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Summary

We propose that for all situated agents, the process of task learning has many

elements in common. A better understanding of these elements would be benefi-

cial to both engineers attempting to design new agents for task learning and com-

pletion, and also to scientists seeking to better understand natural task learning.

Therefore, this dissertation sets out our characterisation of agent-independent

task learning, and explores its grounding in nature and utility in practise.

We achieve this chiefly through the construction and demonstration of two

novel task learning systems. Cross-Channel Observation and Imitation Learn-

ing (COIL; Wood and Bryson, 2007a,b) is our adaptation of Deb Roy’s Cross-

Channel Early Lexical Learning System (CELL; Roy, 1999; Roy and Pentland,

2002) for agent-independent task learning by imitation. The General Task Learn-

ing Framework (GTLF) is built upon many of the principles learned through the

development of COIL, and can additionally facilitate multi-modal, lifelong learn-

ing of complex skills and skill hierarchies. Both systems are validated through

experiments conducted in the virtual reality-style game domain of Unreal Tour-

nament (Digital Extremes, 1999). By applying agent-independent learning pro-

cesses to virtual agents of this kind, we hope that researchers will be more inclined

to consider them on a par with robots as tools for learning research.
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Chapter 1

Introduction

Life is not always predictable. To survive in an uncertain world, all but the

simplest living creatures need skills; patterns of behaviour which can be adapted

to solve a given problem in a variety of contexts. In fact, this is not just desirable

for natural agents, but for any that we would create to operate in uncertain

domains. In environments as dynamic and varied as the Real World, evolution is

rarely a sufficiently rapidly adaptive mechanism to hard-wire every specific skill

necessary for survival. However, learning itself can be seen as a skill; a solution to

the problem of acquiring the knowledge necessary to alter one’s behaviour based

on past experience. If evolution is able to provide this skill, then it can be used

to acquire missing low-level skills. Another way of acquiring the skill of learning

that is available only to created agents, is through design.

Bearing this in mind, it is important that we do not underestimate the impor-

tance of an agent’s inherent biases. The fewer innate skills available, the larger

the search space will be. Consequently it becomes less likely that the agent will

learn some necessary but absent skill, and the probability of survival is reduced.

However, some agents ‘cheat’ this trade-off by narrowing the search space in

other ways, enabling them to learn more and thus retain maximal adaptability.

For example, humans use their culture to gain access to tried and tested skills

which have not been encoded genetically, but would be (too) expensive to learn

individually.

2



1.1 Thesis in Brief

This dissertation explores a method of acquiring low-level skills which can make

best use of both individual and social information channels; namely task learning.

Even life itself can be seen as a task with the goals of survival and reproduction;

goals which can be decomposed into many other sub-goals and sub-tasks. In this

way, skills and tasks have a symbiotic relationship: tasks require skills in order to

be completed, and (many) skills require tasks in order to be acquired and honed.

Studies in nature of how and why agent A learns task T , and engineering

projects which attempt to endow agent A with the ability to learn task T , have

been carried out for very many pairs (A, T ). Often, the two research streams

have informed and influenced each other. Indeed, this project began with our

attempt to create agents called bots which could learn how to play the virtual

reality-style computer game Unreal Tournament (Digital Extremes, 1999); one

such (A, T ). However, our experiences inspired us to ask a different question:

how can agent A learn task T for any (A, T ) possible in practise. In other words,

what elements of task learning depend neither on the specific task being learned,

nor on the agent doing the learning? The crucial follow-up question must be:

what benefits could such a study bring to specific science and / or engineering

projects?

1.1.1 Finding a General Description

At the core of this problem is the question of what it means to be an agent. In

recent years, the word has come to refer to a broad range of entities, including

some which are sufficiently abstract that ‘task learning’ has no meaning in their

domain. We therefore make the following restrictions:

1. Agents are situated in space and time.

We do not limit this to material or even Cartesian space, nor need time

be continuous. Fundamentally, the agent and the environment it inhabits

must be distinguishable.

2. Agents perceive.

This includes both elements of the environment (exteroception) and its own

state (proprioception).

3



3. Agents act.

This includes both acting upon elements of the environment (actuation)

and upon its own state (cognition). Actions take time.

4. Agents are resource-bounded.

Their perceptual resolution, memory and processing speed are all finite.

So, far from being tabula rasa, our notion of agent-independence brings with it

significant constraints within which to work. Humans clearly fit the description,

as in fact do all animals and autonomous robots. Situated autonomous software

(or ‘virtual’) agents are less obviously included, and one of the subsidiary aims

of this dissertation is to elevate the status of virtual agent research by working

within this common description framework, thus drawing it closer to its material

counterparts. We are not proposing to design a complete agent architecture; we

focus on task learning and skill acquisition, along with any necessary interfaces

with the agent’s other sub-systems. This frees us to create both a task-oriented

description of our agent, and an agent-oriented description of tasks.

A Task-Oriented Agent Description

Tasks could conceivably contain many different types of elements and goals that

once perceived may need to be processed in various ways. Our framework there-

fore uses grounded perceptual classes, capable of representing anything from low-

level sensor readings to high-level concepts, providing that there is always a map-

ping back to the raw sensory input. Similarly, action elements can encode any-

thing from single motor commands to co-ordinated sequences of movement1. An

acquired skill or behaviour can then be stored as a function mapping perceptual

classes to action elements, and the same representations can be used at (m)any

level(s) of detail.

An Agent-Oriented Task Description

On the other hand, since tasks themselves are defined by goals, and goals must

be defined by agents, it seems reasonable for tasks also to be described in terms

1Bearing in mind that ‘motor’ and ‘movement’ might not have particularly natural analogues
for some of the agents under consideration.
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of these ‘agent-centric’ representations. Practically, we associate task goals with

a set of perceptual classes which must concurrently apply (a perceptual state) for

the goal to be satisfied. Now, this does not mean that the agent learning the

task must have knowledge of the goal states, or even a perceptual configuration

that is capable of distinguishing them. The task goals could be set or defined by

another agent, and would therefore be defined in terms of that agent’s perceptual

configuration. In any case, the observer is key, whether that refers to the agent

itself; motivating, observing and assessing its own task performance; or whether

it refers to an external assessor (or both).

1.1.2 Putting the Framework to Use

The remainder of this dissertation is primarily concerned with detailing and sup-

porting the framework proposed above: a General Task Learning Framework

(GTLF). We now put forward some ways in which, assuming such a construct is

at least conceivable, it might be useful.

Engineering

First, let us consider the potential benefits to engineers attempting to build agents

capable of task learning. GTLF provides universal representations for perception

and action, as well as specifying the flow of information between its component

modules. The constraints of these representations and processes should be flexible

enough for use by designers favouring symbolic (i.e. GOFAI2), non-symbolic,

and hybrid AI systems. The modules themselves are underspecified; some are

also optional, and for those that are required, we give some example default

procedures in Chapter 3. This allows an agent designer to implement only those

modules relevant to their particular research problem, as well as conferring all

the usual benefits of the modular programming approach (code transfer / re-

use, parallel development, ease of debugging, etc.; Sommerville, 2006). If it is

an individual component rather than a whole agent system that is of interest,

GTLF also in principle provides a platform for comparison of behaviour models,

learning algorithms, performance comparison metrics, and so on (although we

do not demonstrate this practically within this body of work). The agnostic

2Good Old-Fashioned Artificial Intelligence.
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nature of the learning system to its implementation domain should allow for a

wide sphere of application, as well as easing domain transfer; for example, from

simulation to robot platforms, as is a common process.

Science

There are also a number of potential benefits from the perspective of scientific

investigation. Firstly, we hope GTLF will help researchers (in both biology and

technology) consider the task learning process in isolation, without being unduly

influenced by a particular case-in-point. Then when returning to concrete ex-

amples, it should be easier to identify common features and requirements of the

process, for example. Also, although the system as a whole is not a model of

task learning in any particular species, the individual components are to some

extent biomimetic (see Chapter 2). It can thus be used as a starting point for

more biologically plausible models of task learning; a rough sketch to be refined

and to stimulate thinking. We believe that one of the most interesting avenues

of study using GTLF is the role of social learning, and how it interacts with and

complements individual learning, and we show how this could be done in Chap-

ter 7. Finally, as we mentioned above, by designing a framework which applies

to many different classes of agent, and demonstrating its use for virtual agents,

we hope to encourage others to use virtual agents as a research tool (Laird and

van Lent, 2001).

1.2 Contributions

We view the primary contribution of this thesis to be:

• The General Task Learning Framework (GTLF): for incorporating

and investigating task learning in situated agents. Our version of GTLF

has been implemented as a package of Java classes, and can be integrated

with any agent which accepts string input / output.

Additionally, we view the secondary contributions to be:

• Cross-Channel Observation and Imitation Learning (COIL): an adap-

tation of Deb Roy’s Cross-Channel Early Lexical Learning system (Roy,
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1999; Roy and Pentland, 2002) to learning by imitation. Also implemented

as a Java package.

• A formal method for defining task performance metrics, inspired by the

work of Nehaniv and Dautenhahn (1998, 2001).

• An extension of the JavaBots package (Marshall, 2000; Adobbati et al.,

2001) for interfacing Unreal Tournament bots with external AI programs.

Our additional classes improve the interface with our learning systems (and

in principle with others), as well as including useful game object represen-

tations and helper functions.

1.3 Supporting Publications

Chapters 5 and 6 of this dissertation are supported by:

Wood, M. A. and Bryson, J. J. (2007). Skill Acquisition through Program-Level

Imitation in a Real-Time Domain. IEEE Transactions on Systems, Man and

Cybernetics, Part B, 37(2):272–285.

Chapter 6 is also supported by:

Wood, M. A. and Bryson, J. J. (2007). Representations for Action Selection

Learning from Real-Time Observation of Task Experts. In Veloso, M. M., editor,

Proceedings of the Twentieth International Joint Conference on Artificial Intel-

ligence (IJCAI ’07), volume 1, pages 641–646, Hyderabad, India. IJCAI, AAAI

Press.

Chapter 2 is supported by:

Bryson, J. J. and Wood, M. A. (2005). Learning discretely: Behaviour and organ-

isation in social learning. In Proceedings of the Third International Symposium

on Imitation in Animals and Artifacts, pages 30–37, University of Hertfordshire,

Hatfield, UK. SSAISB, AISB.

Related work on task learning not described in this dissertation includes:
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Wood, M. A., Leong, J. C. S., and Bryson, J. J. (2004). ACT-R is almost a

model of primate task learning: Experiments in modelling transitive inference.

In Forbus, K., Gentner, D., and Regier, T., editors, Proceedings of the Twenty-

Sixth Annual Conference of the Cognitive Science Society, pages 1470 – 1475,

Chicago, Illinois, USA. Cognitive Science Society, Lawrence Erlbaum Associates,

Inc.

1.4 Road Map

Following this introduction, Chapter 2 introduces our agent-independent descrip-

tion of task learning, explaining the basic principles of the framework with refer-

ence to biological and technological cases of social and individual learning. Chap-

ter 3 then presents GTLF in full detail, examining each module in turn alongside

hypothetical implementation examples. To conclude the first part, Chapter 4

steps back from this detail and attempts to uncover the broader design principles

behind GTLF, and how they might best be applied by an agent designer.

The second part of the dissertation shows how we arrived at GTLF through

a chronological account of systems development. The story starts with CELL, a

system which we identified as having successfully achieved task learning in the

particular context of lexical acquisition. Chapter 5 describes our adaptation of

this system, which we called COIL, to learning by imitation in general. COIL’s

operation is demonstrated through learning two tasks by imitation in the virtual

3D domain of the ‘First Person Shooter’ game, Unreal Tournament (Digital Ex-

tremes, 1999). In fact, all of the experiments reported in this dissertation are

conducted using this real-time, non-Markov testbed. Chapter 6 looks further

into what was learned from COIL, in particular identifying its limitations. We

then show how COIL can be improved using alternative learning algorithms, and

use this principle to justify the design of the more general framework: GTLF.

The particular extension to COIL that we implement here uses Multi-Layer Per-

ceptron (MLP) learning, but this is just an example of one possible (class of)

learning algorithm(s), as opposed to being integral to the path we trace:

COIL −→ ‘Extended COIL’ −→ GTLF.

In contrast with COIL (and its extension), which focuses solely on imitation
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learning, GTLF also encompasses insight, trial-and-error, and instruction, al-

though only imitation and trial-and-error (in this case, Reinforcement Learning)

have been implemented and tested thus far. We report this in the first part of

Chapter 7, followed by results (again, using Unreal Tournament agents) demon-

strating how GTLF could be used to investigate the interplay between social

and individual learning. The second half of the chapter compares and contrasts

GTLF with its nearest-neighbour learning systems in the literature. These in-

clude the robot task learning system of Nicolescu and Matarić (2001, 2002, 2003,

2007); Dogged Learning (Grollman and Jenkins, 2007); the virtual pilot system

of Sammut et al. (1992); Morales (2003); Morales and Sammut (2004); and learn-

ing by imitation in Quake II (id Software, 1997; Bauckhage et al., 2003; Thurau

et al., 2004a,b,c, 2005; Bauckhage and Thurau, 2004; Gorman et al., 2006a,b;

Gorman and Humphrys, 2005, 2007). Although many of the key ideas behind

GTLF were inspired by other systems (eg. Roy, 1999; Bryson, 2001; Nehaniv and

Dautenhahn, 2001), the framework itself is our work alone. We have not yet had

the opportunity to collaborate, and as yet (as far as we know) no other research

groups have made use of it. However, all of the code related to our experiments

has been written in Java and is available online3, and although these classes have

thus far only been applied to the problems described in this dissertation, it is our

hope that others will download and make use of them.

The final part begins by exploring how GTLF could be used in current research

applications, such as robotics, and also how it could be integrated with and

supported by other learning systems. Chapter 9 moves from the practical to

the philosophical, and explores the wider implications of GTLF to embodied

intelligence and cognition. We end with an overview given the context of the

entire thesis, ideas for fruitful future research problems, and some concluding

remarks.

3Code available at http://www.cs.bath.ac.uk/~cspmaw/disscode.zip
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Chapter 2

An Agent-Independent Theory of

Task Learning

Many human skills are acquired through learning how to do a task and then

practising it (Newell and Rosenbloom, 1981). The knowledge required for this can

come from many sources, both external and internal. In this chapter, we further

examine the representational substrate needed to describe task learning, and the

process by which task learning results in skill acquisition and improvement. In

doing so we look at four different learning methods which may be available to

an agent. Although human task learning is the richest motivating example, we

wish to make the discussion that follows as general as possible, making only the

assumptions laid out in Chapter 1; i.e. that we are talking about situated agents :

“An agent is said to be situated if it acquires information about its

environment solely through its sensors in interaction with the environ-

ment. A situated agent interacts with the world on its own, without

an intervening human1. It has the potential to acquire its own history,

if equipped with appropriate learning mechanisms.”

(Pfeifer and Scheier, 1999, p. 656)

We assume nothing further about their form or capabilities, nor whether they are

natural, robotic or virtual. We begin by detailing the building blocks motivated

and introduced in Section 1.1.1, before moving onto the learning processes them-

1It is clear from the broader context that Pfeifer and Scheier are here referring to human
teleoperation, as opposed to human interaction with the agent in the environment.
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selves. As many of the terms we use are in common parlance, it is particularly

important that we tie down our own interpretations.

2.1 Representations

Firstly, we define an agent’s sensor space as the space of all possible readings from

all sensors. This includes external stimuli, proprioceptive and other internal sen-

sor data, and even working or long-term memory. Recall that our fundamental

unit of perception is the perceptual class, which could correspond to any dis-

tinct subset of sensor space. Intuitively, a perceptual class defines some property

(or set of properties) of an agent’s sensor space; equally, some property (or set of

properties) in sensor space could be used to define a perceptual class. We refer

to the set of mappings an agent makes from sensor space into perceptual space

as the agent’s perceptual system.

The above definition of perceptual classes could be seen as an agent-independent

abstraction of perceptual symbols (or images) as described by Barsalou (1999). In

that paper he develops a model of human cognition, integrated with both the neu-

roscience and psychology literatures, which uses symbols that remain ‘grounded’

in the neural substrate. He proposes, for example, that the neural pattern gen-

erated when perceiving an object is symbolised by a compressed neural pattern

which represents a concept of that object.

Perceptual classes are assumed to remain similarly grounded in ‘sensory-motor

space’, but that space may not be neural — that depends upon the agent in ques-

tion. For instance, the concept of sensory-motor space for a virtual agent requires

an abstract definition of sensors and actuators (see also Sections 5.2.2 and 9.1).

Apart from the theoretical correlates, categorisation also has clear practical ben-

efits. Since many sensors perceive a continuum of values, categorisation helps to

make decision-making tractable by decreasing the size of the state space (Ueda

et al., 2004). On the other hand, there are also circumstances in which smooth-

ness and continuity are preferable to discreteness (see Section 10.3).

The propriety of a given categorisation depends entirely upon the task at

hand and the degree to which the agent has learned it. Perceptual classes can

be nested (e.g. car, vehicle, object) and overlap (e.g. red, car, red car).

Given that tasks can be described using different goal granularities (see below),
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perceptual class categorisations need similarly to be able to ‘filter’ the world at an

appropriate level for decision-making. A coarse categorisation results in the agent

making decisions based on broad, high-level classes, whereas a fine categorisation

implies that classes are narrow and low-level. We refer to the set of all perceptual

classes that an agent ‘occupies’ at a given time as the agent’s perceptual state.

Any physical or mental activity which is motivated by a goal or sequence of

(sub)goals can be described as a task. A goal (or effect — see Section 3.3.1)

specifies a perceived state of the world (including the internal state of the agent)

which must be reached in order for the goal to be satisfied. We argue that goals

(and consequently tasks) are always generated and monitored by agents; therefore

goal states correspond to perceptual states. Goal states can be generated from

three possible perspectives, depending upon how the agent’s progress is being

assessed:

1. Another agent external to the environment; a passive observer such as the

agent’s designer, for example.

2. Another agent situated within the environment, possibly able to provide

feedback to the agent; a conspecific agent, for example.

3. The learning agent itself.

If a task is being assessed from more than one viewpoint, the measures of progress

may differ. For example, suppose an agent has set itself the task of building a wall.

If, at the end, the wall remains upright, the agent may consider the task to have

been successfully completed. However, bricklaying is a skill with a recognisable

social standard attached to it, and simply remaining upright may not be sufficient

to fulfil it. This is even more the case if the handiwork were being assessed by an

expert builder. In contrast, the task of carving a sculpture has far fewer globally

accepted constraints.

It is possible to describe a task not only from different perspectives, but also

at many different levels of detail; that is, at different granularities. This concept

is used by Nehaniv and Dautenhahn (2001) in the context of comparing two

behaviours. At a coarse granularity, building a wall using bricks and mortar

could have the same series of goals as building a wall using toy wooden blocks:

1. Choose a level surface.
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2. Set down a row of bricks.

3. Set down another row of bricks on top of and offset with the row below.

4. Repeat (3) until the wall is high enough.

At this level they are effectively the same task: building a wall. At a finer granu-

larity, however, the sub-goals could be very different (i.e. apply mortar to trowel).

If we fix the granularity of description, then tasks can be put into equivalence

classes, or task classes, such that member tasks have the same sequence of sub-

goals. Referring back to the example above, building a wall is a task class which

includes both building with bricks and building with blocks; at a coarse de-

scriptive granularity the two tasks have the same sequence of sub-goals. At a

finer granularity we could find another task class, building a brick wall. This

class would contain members corresponding perhaps to different types, heights,

shapes, etc. of brick wall since each of these tasks could share the same sequence

of sub-goals. This class, however, would be distinct from the building a block wall

class, which could similarly contain members representing different block walls,

but would have a different sequence of sub-goals to the brick wall class. We fur-

ther discuss granularity and its relation to measures of task error in Section 3.3.1.

An action element can refer to anything that is executable by an agent as

a single unit, ranging from, say, low-level motor commands to learned high-level

movements. Like the perceptual class, it is thus capable of covering many levels

of task description. We borrow the term from Bryson (2003), where it is similarly

used to describe both primitive and aggregate actions. For example, when learn-

ing to pick up a ball, it may be that the only action elements needed are individual

motor commands, e.g. extend thumb(), extend first finger(), etc. Learning

to juggle, however, requires action elements which are composed of other action el-

ements, such as pick up ball(), throw ball() and catch ball(). Learning to

put on a circus show requires action elements such as juggle(), walk tightrope(),

tame lion(); and so on.

A skill is a specification of transferable behaviour which when executed in

a suitable environment can bring about the completion of a task or tasks. It is

represented as a function

s : P(P ) → A (2.1)
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where P is the set of perceptual classes discernible by the agent, P(P ) is the

power set2 of P , and A is a subset of the action elements possessed by the agent

(see Section A.1 for more details). It is analogous to a policy as described in

the Reinforcement Learning and Operations Research literatures (Sutton and

Barto, 1998; Hillier, 2004), and to a behaviour in the Behaviour-Based Artificial

Intelligence (BBAI) and related literature (Matarić, 1997; Arkin, 1998). We will

often adopt particularly the latter term in reference to skills.

From the above definitions, we see that an action element may itself be a

skill. This allows for a hierarchical skill structure in which high-level skills

(e.g. put on circus show()) can map coarse-grained perceptual classes (e.g.

lion is attacking) to other lower-level skills (e.g. tame lion()). For a skill to

qualify as an action element and therefore be available to other skills, it must be

executable as a unit; in other words, it must either be innate or both acquired and

mastered. Skills can be acquired and improved by learning and practising tasks

which require those skills, through the alteration of the perception-action map.

Skill improvement with respect to a task class can be measured by an increase

in accuracy (fewer mistakes) and / or efficiency (less time, memory or steps re-

quired). However, improving a skill by learning only one task from a class does

not guarantee improvement for the other member tasks. Indeed, the skill may

become overspecialised and performance on other tasks may decrease (Ratnieks

and Anderson, 1999). Therefore, a skill is improved in general if its performance

increases on average across all tasks in a given class. We say that a skill is com-

plete with respect to a task if every perceptual state that can be entered in the

task environment is associated with an action (also see Section A.1). In other

words, however inaccurate its actions may be, the agent always has something to

do.

Now we have our definitions in place, one more thing to consider before the

task learning process itself is the prior state of the agent.

2.2 Prior Knowledge

At the point at which task learning commences, an agent will possess a certain

amount of knowledge. This could have been accumulated genetically via evolu-

2That is, the set of all subsets.
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tion, gifted by the agent’s designer, acquired through previous interactions with

its environment, or a combination of these (see Chapter 1). We wish to better

understand this prior knowledge, and how it relates to any new task knowledge

the agent acquires. Prior knowledge can be categorised as follows:

2.2.1 Innate Skills and Biases

Innate skills and biases refers to the abilities afforded, and limitations and ten-

dencies imposed, by an agent’s composition. Firstly, agents will be equipped

with a finite number of sensors, which each operate with only limited scope and

precision. This imposes natural limits upon the perceptual classes that can be

formed. Similarly, the agent’s structure and motor capabilities limit the number

of available actions. In addition to these absolute limitations, the agent could

have certain ‘hard-wired’ tendencies which serve to ease the complexity of the

learning problem. It may be that some high-level perceptual classes ‘come as

standard’ even though the agent is capable of perceiving at a finer grain. The

same is true for nontrivial action elements, or even whole behaviours which are

reflexive or automatic in some way. Apart from these perceptual-motor biases,

there are other more abstract mental capabilities that can strongly influence the

learning process. Indeed, learning itself can be done in many ways (see Section

2.3.1), some of which will be more natural for a given agent than others. This in

turn may depend on other factors such as the richness of mental representation

available; memory capacity and accuracy; ability to reason, predict and abstract;

and so on. For example, human infants are born with relatively few skills3, but

have advanced capacities and strong biases for learning through various means.

Humans may have a longer maturation period, but eventually master a wider

variety of skills when compared to other animals born with more skills, but with

lesser learning capabilities and having shorter maturation periods (Sloman and

Chappell, 2005).

3And there is evidence to suggest that learning takes place even before birth (Mennella et al.,
2001).
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2.2.2 Acquired Skills and Biases

Acquired skills and biases encompasses anything that the agent has learned dur-

ing its lifetime through interaction with the world it inhabits. For example,

some actions may have proved to be generally easier, more rewarding or more

frequently observed than others. Equally, some may have accumulated negative

connotations or even proved redundant. Some perceptual classes, like those as-

sociated with danger or sustenance, may have high prior saliency compared to

more common percepts. Prior task learning episodes may have necessitated the

creation of new compound actions which still reside in memory, and are available

for application in new tasks. They may also affect the granularity of perception

with which the agent approaches new tasks. For example, suppose some previous

task required a high level of scrutiny in a particular region of perception space.

The agent may then start a new task with a similarly fine-grained categorisation

in that region. Conversely, a task requiring only broad categories to enable cor-

rect behaviour could bias the agent toward using a coarser perceptual granularity.

Not only such perception and action configuration, but also general associations

(or dissociations) between them can be acquired through experience. Certain

actions in certain situations may have always yielded reward or punishment, for

instance. A highly experienced agent may have many stored skills when coming

to a new task, and these will inevitably affect the learning primitives and paths

chosen.

Having considered the knowledge an agent brings to a task, we now define the

task learning process itself in more detail.

2.3 The Task Learning Process

We propose that the task learning problem comprises four major sub-problems:

1. Forming or reinforcing associations between attended perceptual classes

and known action elements.

2. Improving the selection of perceptual classes to attend to in the case that

many concurrently apply (Wood et al., 2004).
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3. Creating new perceptual classes to allow for finer-level behavioural distinc-

tions where mistakes are being made.

4. Forming new action elements where behaviour is proficient, to allow for

more efficient organisation.

The first of these is equivalent to the forming of new skills, and the improvement of

existing ones, and later in this section we look at the various sources of knowledge

available to this process. The second problem of learning a strategy for attention,

and the reasons why this may be necessary in the first place, are then covered in

Section 2.3.2. By iterating between these two processes, an agent with good prior

knowledge may be able to acquire accurate and efficient skills. However, if prior

knowledge is poor, the agent’s perception (3.) and action (4.) representations

may need to be reconfigured to allow for continued improvement. This is the

subject of Section 2.3.3.

2.3.1 Forming and Improving Skills

To isolate this part of the process, let us assume that our agent has a fixed

perceptual categorisation, a fixed action repertoire, and some predetermined way

of choosing which perceptual classes to attend to and which to ignore (if any) at

a given time. We identify four different learning methods by which an agent may

be able to discover perception-action associations:

Insight

Insight refers to the process of forming hypotheses for novel behaviour using prior

knowledge and mental processes only. That is not to say that the perceptual input

must be of a certain type (i.e. memory, proprioception, etc.). We have already

established that the perceptual system makes no explicit distinction between

different sources, and in any case, insight learning can make use of exteroceptive

input. It is the absence of social input or interaction with the task, and hence

the reliance on mental processing, that defines this learning method.

For example, suppose that the task is to retrieve some food that is out of the

agent’s reach, and that there are various boxes and poles available in the environ-

ment which the agent could make use of. If the agent is able to complete the task
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through appropriate manipulation of the available tools without previous experi-

ence of the same task, the chance to experiment with the tools, the opportunity

to observe the task being completed, or any kind of external guidance, then we

would describe this as learning through insight. For this to be possible, the agent

would at least need some relevant knowledge or experience of some elements of

the task; e.g. that boxes can be stacked and stood upon, that poles can be used

to extend reach, etc.

In general terms, insight requires some prior knowledge of the task domain. At

the human-level, insight can make use of our cognitive skills for symbolic represen-

tation, reasoning, inference, deduction, abstraction, generalisation, and so forth.

However, there are claims that animals too are capable of insight. Köhler records

probably the most famous (and controversial) case, in which chimps apparently

solve the very task described in the above example (Köhler, 1925). Even non-

primates such as pigeons (Epstein et al., 1984) and crows (Chappell and Kacelnik,

2002), when faced with similar problems, seem to exhibit this ability. For other

examples in biology, see a recent review of animal reasoning by Watanabe and

Huber (2007).

Although insight by definition supposes no physical interaction with a task, it

is strongly dependent upon trial-and-error learning (see below) for two reasons.

Firstly, no matter how advanced the powers of insight at an agent’s disposal,

forming a complete solution to a complex task in an unpredictable environment

is unlikely. Fine-tuning can come through trial-and-error. Secondly, a solution

formed through insight may be entirely correct, but the only way the agent can

verify this is through test interactions with the task (see Section 3.3).

Trial-and-error

In contrast with insight, learning by trial-and-error or Reinforcement Learning

(RL) requires the agent to interact with the task environment. During this in-

teraction, the environment will administer rewards and / or punishments which

can be used by the agent to guide behaviour improvement.

This time let us suppose that the task is to play a certain tune on a piano.

We will assume that the agent knows the target tune, and that pressing piano

keys causes notes to be played, but does not know the key-note correspondence.

Providing that the agent has an aural sensor and a metric for measuring the
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distance between heard notes, the correct tune could be learned by pressing

a random key and then improving its choice next time. The pitch difference

between the target note and the played note constitutes a ‘punishment’ which

the agent can attempt to minimise. If the agent has no aural sensor (is deaf) or no

such metric (is tone-deaf), and has no other means of receiving punishment (by

vibration, for example), the task becomes impossible using this method alone.

In principle, any agent that can perceive and ‘interpret’ environmental feed-

back can utilise reinforcement learning. These minimal requirements should make

it more widely available than the other learning methods. However, for RL to

be tractable, the task itself needs to be sufficiently constrained, or equivalently,

an agent’s prior biases need to be sufficiently strong. For example, very simple

biological and artificial agents are able to use RL to solve equally simple tasks.

Worms can learn to approach or avoid tastes, odours or temperatures that predict

the presence or absence of food (Rankin, 2004). Software agents that catalogue

internet pages, ‘web spiders’, can learn to choose better hyperlinks as they crawl

(Rennie and McCallum, 1999). When it comes to more complex tasks, however,

agents may not possess an adequately rich representational substrate, or may

not be able to commit the time and resources required to solve them. A task

behaviour (or policy) can improve only slightly with each interaction, and as the

required behaviour becomes more complex it becomes hard and time-consuming

(if not intractable) to acquire it using trial-and-error alone (Littman et al., 1995).

Also, some situations yield irreversible or crippling punishments (death being the

most extreme example) if certain actions are taken. Clearly, a total reliance on

reinforcement learning in these circumstances is best avoided.

Observation

An agent learning a task may also be able to gain relevant information by observ-

ing physical interactions with the task environment, rather than by taking part

in them. We distinguish between three different types of learning by observation:

1. Nonsocial learning — where the task interactions are caused by physical

effects in the environment. This includes ‘natural’ effects such as gravity

and wind, and ‘mechanical’ effects such as automated signals and switches.

2. Nonimitative social learning — where the task interactions are carried out
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by other agents, but not as part of an attempt to complete the task.

3. Imitation — where another agent can be observed while attempting to

complete the task.

All of these forms of learning are united by their reliance on at least a partial

solution to the correspondence problem (Nehaniv and Dautenhahn, 2002). That

is, agents must possess a correspondence library linking allocentric and egocentric4

actions, states and / or effects (depending on the task description and the learning

methods available).

If our piano-learning agent could observe a player piano5 playing the piece of

interest, then this would constitute nonsocial learning. If a human pianist were

to sit and play a scale instead of the piece, task-relevant knowledge could still

be obtained from the key-presses — this is nonimitative social learning. Lastly,

if a piano maestro were to perform the piece in a recital, learning would be by

imitation. Note that for all of these examples, the observer could be entirely

incidental to the interactions.

Learning by observation seems to come naturally to humans, with infants be-

ing capable of facial and gestural imitation near birth (Meltzoff and Moore, 1977),

and goal-oriented imitation within a few years (Bekkering et al., 2000). As for

other animals, the most widely cited example is that of the cultural transmission

of sweet potato washing behaviour in Japanese macaques (Imanishi, 1957). Par-

rots (Pepperberg, 1994) and dolphins (Herman, 2002) are also apparently capable

of a kind of goal-oriented imitation which goes beyond simple mimicry. In the

ethology literature, social influence, social learning and imitation have been de-

constructed into many different sub-categories (Whiten and Ham, 1992; Zentall,

2001). Since we are concerned with task learning, that is, learning how to satisfy

a sequence of goals / achieve a sequence of effects, we use a very broad definition

of imitation that captures this level of behaviour replication called effect-level

imitation (Nehaniv and Dautenhahn, 2001). We discuss this in Section 3.3.1, in

relation to measuring task performance.

4We use allocentric to mean ‘from an external perspective’, and egocentric in place of ‘from
the perspective of the observing agent’.

5A type of piano developed in the late 19th century which uses mechanical, pneumatic or
electrical devices to strike the keys in place of a human player.
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Instruction

Learning by instruction, like learning by observation, makes use of a source of

knowledge external to the agent. Instruction differs, however, in that it involves

the explicit communication of lexical symbols, in contrast with the symbols gen-

erated internally via the correspondence library during learning by observation.

The most obvious examples are spoken or written language, and gestural signals.

To take advantage of this learning method, an agent must be able to obtain in-

struction from a suitably qualified teacher agent. Also, these instructions must

be communicable and interpretable, which in turn requires teacher and student

to share some kind of common lexicon.

Assume now that the tune is unknown to our piano-learning agent, but that a

score has been provided to read from. As long as the agent knows how to translate

the written notes into keystroke instructions, then it can use them to generate

behaviour in tandem with its piano-playing skill. The instructions themselves

are provided by another agent (in this case indirectly) that has knowledge of

the task. They are given for the specific purpose to convey information which

reduces learning time and raises the saliency of the relevant elements of the task

environment.

Caro and Hauser (1992) give two broad categories of teaching in nonhuman

animals:

“. . . situations where offspring are provided with opportunities to prac-

tice skills (“opportunity teaching”), and instances where the behaviour

of young is either encouraged or punished by adults (“coaching”).”

We, on the other hand, would see both of these as examples of learning by a

combination of observation and trial-and-error. Observation in the first case,

because salient elements of the task are brought to the attention of the young

by the adult through interaction, which requires a correspondence library. Trial-

and-error in the second, because the encouragement and punishment provided by

the adult mirrors the reward function required for reinforcement learning. While

we fully support Hauser’s definition of teaching, and would indeed be happy to

use it ourselves if we were studying teaching in isolation, our narrower definition

better suits our purposes. We are considering a more general class of agent than

Hauser (with a view to constructing our own), therefore the distinction we make
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between learning methods is determined to a greater extent by their requirements.

This is not to say, though, that humans are the only animals capable of symbolic

(or functionally referential) communication. Ants (Hölldobler, 1999) and bees

(Gould, 1975), for example, use chemical and movement cues to refer to locations

outside of their nests.

Summary

In addition to the different requirements for each method set out above, they also

have some in common. For example, learning from past experience is not possible

(by definition) if an agent has no capacity for storing state (memory). Also,

effective learning by observation and trial-and-error relies on at least rudimentary

statistical inference6.

Different contexts and task classes suit different learning methods, and an

agent that is able to take advantage of this by switching between them as appro-

priate should do so, or preferably use all of them in parallel and then consolidate

the knowledge centrally for maximum gain. Instruction, imitation and nonim-

itative social learning are only available to agents who have access to relevant

social input for a given task. Nonsocial observation learning, although possible

for nonsocial agents, still requires external input which may not be present. Trial-

and-error can be used by any sufficiently capable agent, provided that learning

is appropriately constrained, and the task is conducive to repetitive interaction.

Caution should be exercised before using RL for time-critical and / or danger-

ous tasks, for example. Insight can in principle be used for the broadest variety

of tasks, but makes the highest demands upon the mental capacities and prior

knowledge of the agent.

2.3.2 The Attention Problem

An agent with a variety of skills will be able to discern many different perceptual

classes. However, not all of these classes will be relevant to every task, even if

many of them are present in the environment. We refer to the problem of choosing

which perceptual classes to select when more than one concurrently applies as

6That is, some kind of recognition that the more frequently an association is observed, the
more likely it is that the association holds in general.
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the attention problem. But why is this necessary?

Recall that the perceptual system outputs the perceptual state (the set of

all perceptual classes that currently apply) given the sensor state. Recall also

that a skill is a map from subsets of this state to action elements. If there were

no intermediate processing, then skills would be required to encode a map from

every possible subset of the perceptual state. For simple, sequential tasks, highly

constrained environments and / or carefully tailored perceptual representations,

this may not be a cause for concern. However, an increase in task complexity

necessitates a parallel increase in the complexity of the agent’s perceptual con-

figuration. This in turn causes an exponential increase in skill complexity7 and

therefore acquisition time. To avoid this problem, we implement a secondary

stage of processing: an attention strategy. This serves to select a subset of the

perceptual state to present to the learning methods (above), thus sharing the

complexity load.

Input Selection vs. Action Selection

This trade-off between skill complexity and attention strategy complexity can be

thought of in terms of a trade-off between input selection and action selection.

To illustrate, let us first suppose we are dealing with a single, ‘standalone’ skill

with an associated attention strategy. The attention strategy performs input

selection; it narrows the input space by selecting some subset of the full perceptual

state. The skill is a mapping from the input subspace (provided by the attention

strategy) to action; the skill performs action selection.

Now let us consider the more complex (but also more common) case in which

an agent possesses multiple skills for carrying out multiple tasks and achieving

multiple, possibly conflicting, goals. Assuming each skill has an associated at-

tention strategy, we know that any given skill will select an action for our agent

(or possibly no action if that skill is not complete on the input space — see Sec-

tion 2.1). The question becomes, then, how to select which skill to ‘listen to’

in the case of multiple tasks / goals being present in the environment. Back in

Section 2.1 we argued that goals only exist in terms of agents and must always be

7As the maximum size of the perceptual state (i.e. the total number of discernible perceptual
classes) |P | grows, the number of subsets (i.e. the domain of the skill function) |P(P )| = 2|P |

grows exponentially.
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represented in the perceptual state. Put another way, all the information needed

(or at least all the information available to the agent) in order to select which

skill should dictate action is necessarily present in the perceptual state. The

remaining job of skill selection or goal selection is really just action selection at a

higher level: given some input perceptual state, choose which skill (rather than

which action) to execute.

In principle we see no reason why such goal / action selector hierarchies could

not be several layers deep; we talk about this further in Section 3.5.1. At any

given node of this hierarchy, the attention mechanism could be made to work

hard and reduce the state space available to the goal / action selector, or the

hard work could be done during the goal / action selection process itself.

Biological Attention Mechanisms

Attention is a common phenomenon in biology. We cite mainly examples from

human studies, since as agents we are the most adept at managing perception

and cognition to solve highly complex tasks. On this subject, Pashler (1998, p.

2) writes:

“. . . the mind is continually assigning priority to some sensory in-

formation over others, and this selection process makes a profound

difference for both conscious experience and behaviour.”

This perceptual selection seems to be associated with two major factors. The

first of these is the broad category of resource constraints, which can be further

subdivided into perceptual and cognitive constraints. Perceptual constraints in-

clude those limitations imposed by an agent’s sensory capabilities. For example,

the human retina has high resolution only over a few degrees of visual angle,

limiting the number of items to which we can simultaneously attend (Pylyshyn

and Storm, 1988). Our use of space-variant active vision (also used by all other

higher vertebrates) also caters for our cognitive constraints. Indeed, Schwartz

et al. (1995) claim that if our brains had to handle image representation at full

resolution across our entire field of view, then they would need to weigh many

thousands of pounds. This enormous space-complexity is mirrored by the NP-

Complete computational complexity of unbounded visual search (Tsotsos, 1990).
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The human attentional system thus makes use of innate genetic biases to intro-

duce sufficient bounds on this complexity.

The second reason we should attend, particularly when it comes to task learn-

ing, is that not all stimuli are equal. Some may be irrelevant; their status bears

no relation to the task at hand. Some may be unreliable; they are bad predictors

of task-critical relationships. Some may be distracting, actually interfering with

more useful stimuli. It makes information-theoretic sense to filter out ‘bad’ stim-

uli such as these, and focus on those which provide maximal predictive power

(Dayan et al., 2000).

So, given that attention confers a number of advantages to a learner, how can

a suitable strategy be learned?

Learning an Attention Strategy

The problem of learning a strategy for a given (i.e. fixed) perceptual categori-

sation is interdependent with the problem of optimising the categorisation itself

with respect to a task. The latter is complex in its own right, and is addressed in

Section 2.3.3 below. We first look at how the six sources of task-related informa-

tion listed in Sections 2.2 and 2.3.1 could contribute to selecting from a known

configuration:

Innate Bias Some perceptual classes, such as those signalling danger, may have

a pre-programmed high priority. Innate prioritisations may or may not be

able to be modified by subsequent learning; for example, the re-training of

phobic behaviour (Öhman and Mineka, 2001).

Acquired Bias Past interactions with the world may have proved some per-

ceptual classes generally more salient than others. This knowledge can be

passed into a new task, introducing a bias for attention (which could be

beneficial or otherwise).

Insight The agent’s reasoning system may allow it to infer at least an initial

strategy estimate before any external interaction is necessary.

Instruction If provided with instructions, these may explicitly or implicitly con-

tain priority information.
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Observation Suppose that an agent has learned a skill which maps the set of

perceptual classes P onto action a. Suppose the agent then observes another

agent exercising this skill execute action a when some of the classes in P are

missing from the perceptual state. This allows the observer to hypothesise

a new, tighter attention strategy.

Trial-and-error To infer a strategy by trial-and-error, the relative reward of

attending to some sets of classes above others (inasmuch as they may dictate

different actions in the same perceptual state) must be sampled.

2.3.3 Iterative Episodic Learning

So far we have suggested methods for learning perception-action associations,

and for learning a good attention strategy, which should both lead to better task

performance. It may be, however, that these processes hit a ceiling, unable to

further improve behaviour because the agent’s task representation itself is not

adequate for a solution. Now, attempting to learn associations and an attention

strategy while simultaneously altering the very components referenced by these

processes seems unwise if not impossible. If, however, the learning process is

interrupted (either naturally or artificially), then any necessary reconfiguration

can take place during these respites. We refer to such discrete learning sessions

as episodes. The remainder of this chapter looks at the reconfiguration process

and the sources of information which can be used to inform it. Before moving

onto this, however, it is worth noting two further advantages to so-called episodic

learning. Firstly, it allows for optional batch processing of data acquired during

an episode, potentially enabling the use of more resource-intensive learning algo-

rithms and / or relieving the pressure on other sub-systems. Secondly, it gives

agents the opportunity to move between different tasks in a task class, lessening

the likelihood of overspecialisation.

The Learning Loop

Suppose that all the knowledge gained during a given learning episode is accu-

mulated in a buffer called the episodic buffer. This is our agent-independent

adaptation of the episodic buffer that Baddeley conjectures to be a component

of human working memory (Baddeley, 2000, 2001). It is similarly “assumed to
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be a limited-capacity temporary storage system that is capable of integrating in-

formation from a variety of sources”. At the end of each episode, the knowledge

in the buffer is then integrated with the skill being learned. In this way we can

define a ‘learning loop’ which iterates with each learning episode. Skill perfor-

mance should show an overall trend of improvement as the loop iterates, with the

process terminating when the improvement rate falls below a certain threshold,

when ‘optimal’ behaviour has been learned, or after a predetermined timeout

(effectively, when the agent gets bored). As was said in Section 2.2, improvement

can be gauged in terms of increase in accuracy and increase in efficiency, but

we need to establish metrics on both of these factors to make this possible in

practise.

We have loosely defined accuracy as a measure of the number of mistakes

made when completing a task, where perfect accuracy implies faultless execution.

However, task goals are set by an observer (see Section 2.1), and deviations from

these goals can only be defined by that observer. In other words, each task

assessor must also supply an accuracy error metric. Even if a task is assessed

to have been completed perfectly on a given attempt, it may be that errors in

behaviour exist in an area of the task space not entered during that attempt. But

if the error metric is defined on the whole of task space, and the agent’s behaviour

can be accessed directly, then a more accurate assessment can be made than

would be possible using empirical trials. Also, if the metric takes into account

not just the specific task being learned, but the entire task class, then overfitting

(discussed below) can be alleviated.

Suppose a perfectly accurate skill has been acquired, resulting in zero error

across a task class. It may still be that the amount of memory, number of deci-

sions, perceptual scope, etc. required by the skill causes problems for an agent

with limited resources. The impact of these factors is dictated by the structure

and granularity of perception space (see Section 2.3.2), as well as the complex-

ity of the actions available in the agent’s repertoire. These can be compared

numerically in terms of their respective building blocks: perceptual classes and

action elements. It is worth bearing in mind that however simple perception

space might be, the underlying properties in sensor space could be very com-

plex, and the work done by the perception system to generate perceptual classes

correspondingly great.
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Improving Accuracy

Even if an external assessor of the agent’s learned behaviour has defined an ideal

behaviour, the agent itself will not have done (otherwise, it would have nothing to

learn) Therefore, it needs ways of identifying which regions of task space contain

behavioural flaws. We do not detail exactly how an agent could achieve this;

instead we discuss how it could hypothetically be facilitated by the four learning

methods listed in Section 2.3.1:

Insight It may be that the prior learning episode has provided the agent with

enough extra information for it to locate errors in its behaviour through

mental processing, before the commencement of the next episode. These

conjectures may need to be tested in the task environment itself, but can

at least provide constraints on the improvement search.

Instruction The availability of this resource totally depends on the teaching

programme in which the agent is involved. For example, it may be that

instruction is provided incrementally; once a basic aptitude at the task is

gained, a new, more detailed set of instructions is given to increase fine-level

accuracy.

Observation If, after the end of an episode, observation of the task is still possi-

ble, then the behaviour learned up to that point can be used to predict the

observed behaviour. The areas of task space which require most improve-

ment are those where the predicted actions most often mismatch those of

the demonstrator. This, of course, assumes that the demonstrator is com-

petent at the task (i.e. is exhibiting better behaviour than has been already

been learned by the agent), otherwise a reduction in accuracy could occur.

Trial-and-error How easy it is to detect errors using trial-and-error depends

on how rewards and punishments are administered by the environment. If

certain regions of task space often yield immediate punishment (or even

consistently low reward), then it is these regions that are likely to require

the most behaviour correction. On the other hand, if rewards are more

long-term it becomes difficult (although not impossible) to identify in which

states the most serious mistakes are being made.
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It may be that once a fault is discovered, a change in mapping (i.e. assigning

different actions to existing perceptual classes) or attention will correct it. How-

ever, it may equally be that the perceptual representation in the faulty region

is just not rich enough to allow correct completion of the task. Provided that

the classes in this region are not ‘at full magnification’ (i.e. being perceived at

the finest possible grain), then sub-classes can be added under these classes to

allow for more precise decision-making. For example, if a class represents an

interval of an underlying continuum, that interval can be further subdivided to

produce child classes; if a class represents a group of environmental features,

then those features can be separately monitored, and so forth. To illustrate the

latter case, suppose that an agent begins to to take into account the separate

‘posture features’ of another agent, where before it was just concerned with the

agent’s position. Through additionally monitoring head orientation, hand posi-

tion, stance, etc., a more information-rich perceptual input space is available for

decision-making.

When a more complex perceptual structure is required, it is possible to create

a mapping which performs identically to the previous one. Suppose a ‘parent’

perceptual class p has been sub-divided into p1 and p2. Suppose also a skill s

defines a mapping from a set of perceptual classes P which contains the parent

class:

p ∈ P, s(P ) = a, for some a ∈ A (2.2)

where a is an action element, and A is some subset of all such elements available

to the agent. Then, generate the sets P1 and P2 from P by replacing p with p1

and p2 respectively. Now define:

s(P1) = a, and s(P2) = a (2.3)

and the behaviour is replicated with a new underlying representation. We can

therefore state that, in theoretical terms, accuracy increases monotonically with

perceptual complexity. In practise, a more exploratory choice of assignments is

likely to be made, in which case performance may initially drop before rising to

a higher level than was possible before.

Bearing these things in mind, it might seem that the best idea would be

to perceive the whole of task space at the finest possible granularity, as that

29



would allow the best potential accuracy. There are two main problems with this;

reduction in efficiency and task overfitting ; which we describe briefly in turn.

An increase in the number of perceptual classes has a knock-on effect which

must be distributed amongst other sub-systems:

• The attention system has to work harder to find a good selection.

• Behaviours must encode more complex associations (the trade-off between

this and attention was touched upon in Section 2.3.2).

• Memory capacity must increase in either case.

In addition, searching the enlarged task space may require obtaining many more

‘samples’ via one of the four learning methods. Further discussion on efficiency

can be found in the next section.

It could be that a task can be prescribed in sufficiently general terms for

perfect behaviour to be learned across all tasks of that type. This is trivially

true if, for example, the agent in question need only ever perform a single task

(possibly repeatedly). However we should also consider the case of more difficult,

dynamic situations and tasks in which any given behavioural specification will

perform better on some tasks in a task class than others. Here, the more exactly

a behaviour is tailored to a specific task (i.e. as it approaches 100% accuracy),

the worse it is likely to perform in general (Kuris and Norton, 1985; Lawrence

and Giles, 2000). For many tasks, general accuracy will increase with specific

accuracy to begin with, and then at some point will start to decrease as the

task is overfit. The aim should therefore be to find the point of maximal general

accuracy, as opposed to seeking perfect behaviour in a specific task.

Improving Efficiency

Efficiency in this context refers to the amount of memory and search time required

for learning. As discussed above, this is directly linked to the complexity of

perception and action space; a reduction in complexity will lead to improved

efficiency. To reduce perceptual complexity, we can invert the procedure outlined

above. Groups of regions of task space which all point to the same action can be

represented by a single feature (i.e. perceptual class), and redundant divisions

can be removed by perceptual merging.
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As task familiarity rises, it may be possible for the agent to build compound

actions from elements already in its repertoire. For example, suppose an agent

has learned to move to a visible object using the following map:

object left =⇒ turn left()

object right =⇒ turn right()

object ahead =⇒ move forward()

If the agent can then create a compound action (in this case with a deictic

goal) such as move to(object), the mapping can be re-expressed as:

object left =⇒ move to(object)

object right =⇒ move to(object)

object ahead =⇒ move to(object)

Note now, however, that the perceptual divisions are unnecessary (at least

as far as this part of the task space is concerned), and so can be removed via

perceptual merging to give:

object visible =⇒ move to(object)

This example illustrates the interdependence of perception and action representa-

tion. The expressed behaviour is identical to the original, but the new compound

action has ‘absorbed’ some of the complexity from both spaces (Bryson, 2001,

Section 6.5, discusses this deictic state / action trade-off in depth). The extent to

which actions can be compounded in this manner depends greatly on the corre-

sponding reasoning abilities of the agent and the dynamism of the task domain.

It is unlikely that arbitrary reductions in complexity could be achieved using this

method. Therefore, if improved efficiency is desired and action space cannot be

further simplified, then perceptual merging / pruning is the only systematic way

this can be achieved. At some point, as this process continues, accuracy degrada-

tion (which could be thought of as task underfitting) will occur. This is the point

at which the perceptual representation ceases to be rich enough to adequately de-

scribe the task, resulting in a greater and greater number of mismappings being

present in the learned behaviour. So, we have a clear trade-off between accu-

racy and efficiency within the constraints imposed by the agent’s capabilities.

An agent with infinite resources could simply aim to maximise accuracy across
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a task class as outlined in the section above. A resource-bounded agent on the

other hand must find the point at which accuracy is maximal given that real-time

learning and decision-making must remain tractable.

2.3.4 Summary

In this chapter, we have formulated an agent-independent description of task

learning which rests on three fundamental concepts. Perceptual classes can rep-

resent any region of sensor space, from raw low-level data to complex high-level

concepts. Action elements can represent any executable action, from low-level

motor commands to high-level co-ordinated sequences of movement. Skills or be-

haviours map perceptual classes to action elements, and too can be implemented

at any level. Possessing innate biases and past experiences to constrain and guide

learning, agents can make use of a combination of insight, trial-and-error, obser-

vation and instruction to hone their skills, depending upon their capabilities and

circumstances. For best long-term results, this is likely to occur over a number

of episodes, with the learner aiming to gradually improve both task accuracy and

efficiency.

In the next chapter we set out in detail a task learning framework based upon

this formulation, with a view to enabling others to implement it.
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Chapter 3

General Task Learning

Framework

Let us now move from the theoretical into the practical: given an agent situated

within a task environment, how can the principles set out above be implemented?

In Section 2.3.3, we proposed a cyclic approach to learning, and highlighted some

of its advantages. We now sub-divide each learning cycle into the following four

stages (see also Figure 3-1):

Stage 1: Learning Episode The agent uses exploratory behaviour to acquire

knowledge from the task space, making use of any learning methods which

are available (insight, trial-and-error, observation or instruction). Acquired

behavioural data relating to perception-action association, attention, and

perceptual categorisation (see Section 2.3) are stored in the episodic buffer.

Stage 2: Consolidation The association data in the episodic buffer are com-

bined with those in long-term skill memory to create a new combined be-

haviour.

Stage 3: Testing The agent switches to the new behaviour and applies it to

the task. Its relative performance is assessed using error metrics, which

could be possessed both by the agent itself and by external observers. If

performance is deemed to have improved, then the new behaviour is stored

in place of the old one in long-term memory.

Stage 4: Reconfiguration The error data gathered during testing, along with
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Figure 3-1: A schematic showing information flow in the General Task Learning
Framework. The agent-environment interface is shown explicitly, and the approx-
imate locations of each processing stage are also marked: Stage 1 – the agent
gains task knowledge by exploring the environment; Stage 2 – newly acquired
and prior task knowledge is combined; Stage 3 – the new combined behaviour is
tested; Stage 4 – the agent’s task representation is reconfigured if necessary.
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Figure 3-2: Stage 1: Learning Episode — the agent accumulates task knowledge
via available learning methods during exploration of the environment.

the remaining data in the episodic buffer, are used to identify those parts

of task space which are poorly attended or represented. Any applicable

known rules are used to update the selection strategy or improve the rep-

resentations accordingly.

Each of these stages deserves a detailed explanation, which follows:

3.1 Stage 1: Learning Episode

The purpose of a learning episode is to acquire task-related knowledge and store

it in a buffer. This is done through processing raw sensor data, and using it to

both guide exploratory behaviour and provide input to the agent’s learning core

(see Figure 3-2). We look at these in turn:
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3.1.1 Processing Sensor Data

Task learning and execution requires response to changing environmental stimuli,

and this is only possible if the agent possesses an array of sensors. As a physical

property of the agent, they constitute part of the agent’s innate learning biases

(see Section 2.2.1). Few assumptions are made about the properties of these sen-

sors, except that their input can be expressed as a series of attribute-value pairs.

The attributes are symbols describing some varying sensed property and the val-

ues contain the current state of that property, and could also be a symbol, or

equally a real, integer or boolean. A soccer-learning agent, for example, might re-

ceive the following raw sensor data: {energy level, high}, {goals scored, 2},

{see ball, true} and {distance to goal, 18.2634}, which are all valid pairs.

For the purposes of the framework, proprioceptive (e.g. energy level, goals scored)

and exteroceptive (e.g. see ball, distance to goal) sensors are treated identi-

cally. Knowledge such as goals scored can be thought of as the input from a

memory sensor.

We assume each sensor attribute can have at most one value at a given time,

and thus the entire sensor state can be expressed as an ordered n-tuple, where

n is the number of attributes, and each position corresponds to a different at-

tribute: e.g. (high, 2, true, 18.2634 ). If a sensor attribute only receives an

intermittent value (e.g. it can be deactivated), then it should still have a dedi-

cated position in the tuple, which should contain a null value whenever another

is not received.

The agent’s perceptual system acts as a function, p, mapping sensor states

onto perceptual states (that is, the set of all perceptual classes which currently

apply):

p : σ → P(P ) (3.1)

where σ is the set of all possible sensor states, P is the set of all perceptual classes

recognisable by the agent, and P(P ) is the power set of P . A simple yet powerful

example would be to define each perceptual class in terms of conditionals on some

or all of the tuple quantities. If σ1 represents the sensor state given above, and

σ4
1 represents the fourth tuple quantity (distance to goal), then we can define
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a perceptual class goal near by saying:

σ4
1 < d =⇒ goal near ∈ p(σ1) (3.2)

That is, if distance to goal < d, then goal near should be included in the

perceptual state. It is equally possible to use a highly complex p function, to

map very low-level raw sensor data (e.g. pixel Red-Green-Blue values from a

camera) to high-level perceptual classes (e.g. goalkeeper ahead). Once the

perceptual system has output a perceptual state, the agent’s attention strategy,

a, then selects a subset of these perceptual classes for subsequent processing:

a : P(P ) → P(P ), a(X) ⊂ X ∀ X ∈ P(P ) (3.3)

The most trivial possibility is that the entire state is retained, so a(X) = X.

Another is that only the highest priority perceptual class is retained; this is the

premise for our model of attention outlined in Section A.3. The perceptual classes

output by the attention strategy serve two purposes: they provide input to drive

the agent’s exploratory behaviour, and they provide input to the learning core.

3.1.2 Exploratory Behaviour

Just as sensors are required for detecting environmental change, actuators are re-

quired to navigate the agent through perceptual states which might best facilitate

learning, as well as for actually completing tasks. As explained in Section 2.2,

an agent’s action repertoire; that is, the set of action elements available for exe-

cution; is determined partly by the physical capabilities of the agent, and partly

through experience. Action elements include both external and internal (i.e. cog-

nitive) actions / skills, as both can cause changes to the agent’s perceptual state.

Also, they may or may not take (deictic1) control parameters:

• move forward 10() – low-level action, externally executed, no parameters

• move forward(10) – low-level action, externally executed, numerical pa-

rameter

1In this context, deictic control parameters make reference to variable elements of the task
environment.
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• retrieve ball() – skill, externally executed, no parameters

• assess player ability(goalkeeper) – skill, internally executed, deictic

parameter

From this last example, we see input and control being internally passed down

to a lower-level skill, presumably from some high-level arbitration behaviour (see

Section 3.5.1). This kind of internal interaction between modules is reminiscent

of Minksy’s Society of Mind model (Minsky, 1986).

It is assumed that the agent already possesses some kind of exploratory be-

haviour, which needs to be executed during this learning stage. If we recall

from Equation 2.1 that a skill s maps perceptual states onto action elements

(s : P(P ) → A), then we can see how a composition of the systems / functions

described above provides a map from sensor states onto action elements:

p ◦ a ◦ s : σ → A (3.4)

To execute a behaviour (in this case an exploratory behaviour), apply the agent’s

current sensor state to the composite function above, and execute the output

action element.

For learning by observation, an exploratory behaviour might not require any

action, but could include, say, moving to a good vantage point to view a demon-

stration. Learning by trial-and-error would require interaction with elements

of the task environment, and so on. In some cases it may make sense for an

agent to have two different attention strategies – aE which outputs classes to

the exploratory behaviour, and aL which outputs classes to the learning core.

To illustrate this, consider the act of following an expert soccer-playing agent

to observe its shooting technique. This would require monitoring relationships

such as distance and orientation with respect to the expert. Learning to shoot,

on the other hand, requires monitoring distance from the ball, position of the

goalkeeper, distance to the goal, etc. – the perceptual classes of interest in each

case are very different.
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3.1.3 The Learning Core

As the agent executes its exploration behaviour, the attention strategy period-

ically2 outputs a subset of the perceptual state (p ◦ aL : σ → P(P )). We refer

to this series of observations as the episode trace, T = {T1, T1, . . . , TN}, which

is output in sequence to the learning core. The learning core is implemented as

four separate modules; one for each of the four learning methods described in

Section 2.3.1 – insight, trial-and-error, observation and instruction. The situa-

tion in which some of these modules are missing is simplified by the fact that

each is assumed to operate independently and in parallel. The output from aL is

input to each available module, which then carries out its respective processing

and outputs data to the episodic buffer. Before considering how each of these

modules might generate data, we first look at the three categories into which they

fall:

1. Association Data – if the module has learned something about the per-

ceptual context in which certain actions should / should not be executed

in order to complete the task (see Section 2.3.1).

2. Perceptual Selection Data – if the module has learned about which

perceptual classes are more / less important with respect to the task (see

Section 2.3.2).

3. Perceptual Categorisation Data – if the module has learned about

which perceptual classes should be examined in more / less detail (see

Section 2.3.3).

Association data are represented as triples in the set P(P )×A×R, where P(P )

is defined as above, A is the set of all action elements in the agent’s repertoire,

and R is the set of real numbers. In other words, each triple represents a set

of perceptual classes associated with an action element and a real number. The

meaning of the real number is entirely dependent upon how skills are stored

and updated in a given implementation (see Section 3.2.1). Suffice it for now

to say that it could represent a frequency (in which case it would in fact be

∈ N), weight, probability, utility value, strength, or indeed anything which might

indicate a ‘degree of associativity’.

2How this is regulated depends upon the specific agent implementation.

39



Perceptual selection data are represented as pairs in the set P(P )×R, where

definitions are as above. This time, the meaning of R depends upon how the

attention strategy is stored (see Section 3.2.2), but will in some way represent

‘degree of priority’.

Finally, perceptual categorisation data are also represented as pairs in the set

P(P )×R, where definitions are as above. They are used later in the learning cycle

to reconfigure the perceptual system, as explained in Section 3.4. The meaning

of R will depend upon exactly how they are used in a given implementation, but

will in some way represent ‘degree of scrutiny’.

So, how might such data be obtained? Part of the purpose of the framework

is to allow researchers to answer this question by experimenting with different

learning algorithms. Here, we look at some of the fundamental properties and

requirements of each module, together with some examples to clarify and provide

a baseline for further investigation.

The Insight Learning Module

To summarise the description given in the previous chapter, insight learning refers

to the application of prior knowledge to form new hypotheses about previously

unseen tasks. The primary example of insight as far as this framework is con-

cerned, is the transferral of knowledge from a learned skill to a new one. There-

fore, the primary role of the insight learning module is to search skill memory

for knowledge that may be relevant to a new task, and present it in a form that

can be integrated with the skill being learned. In turn, exploratory behaviour for

this purpose amounts to surveying the task environment for stimuli which might

match existing skills. Any relevant knowledge possessed by the agent which is

not a component of an existing skill, can instead be represented by rules stored

in the module itself (see below).

For example, suppose our soccer-learning agent has no knowledge of the game

whatsoever, but instead is a skilled rugby3 player. When the agent is placed on

a soccer pitch, it may immediately recognise its context due to its familiarity

with rugby pitches; e.g. the perceptual class on pitch is included in the set Tn

passed to the learning core. However, it may initially fail to notice the soccer

3Similar to the game of American football, except that play can continue if the ball touches
the ground.
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ball on the pitch; see ball 6∈ Tn. By searching skill memory, suppose that the

insight learning module finds that rugby-playing might be a relevant skill, since

its associated attention strategy regards on pitch as a salient class. The same

attention strategy may also regard see ball, ball far and ball near as salient

classes, in which case the insight learning module could output the perceptual

selection data

({see ball}, 1)s, ({ball far}, 1)s, ({ball near}, 1)s

suggesting that the attention strategy associated with the new soccer-playing

skill also selects those perceptual classes. If in the next learning episode:

see ball, ball far ∈ Tn

this indicates that the attention strategy has indeed been changed. Note that

this agent’s ability to recognise the soccer ball as a type of ball even though it

differs in size, shape and colour from a rugby ball, is represented by the ability of

its perceptual system to appropriately map the different regions of sensor space

to the same perceptual classes.

Given Tn as above, suppose that the insight learning module finds that the

rugby skill function, sr, defines the following association:

sr({see ball, ball far}) = move to ball()

and therefore outputs the association datum

({see ball, ball far}, move to ball(), 1)a

suggesting that the same association should be made by the new skill. This

insight happens to be correct. If next time, however:

see ball, ball near ∈ Tn

this could lead the insight learning module to output

({see ball, ball near}, pick up ball(), 1)a

an incorrect insight, as this is against the rules of soccer4. This demonstrates the

importance of testing skills learned by insight alone.

4Except for a goalkeeper standing within the goal area.
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If we assume that the soccer-learning agent has no rugby-playing skill, but

has still learned by some other means that when on a sports field the ball is

important, this could be represented within the insight learning module by the

following rule:

IF on pitch ∈ Tn, THEN output ({see ball}, 1)s

Such rules are searched and matched in exactly the same way as skill memory.

The fact that insight learning relies chiefly on internal search has unique

benefits. Firstly, its exploratory behaviour requirements are relatively low, and

are likely to be more than satisfied by allowing the more ‘demanding’ modules to

control exploration. This means that insight can run ‘in the background’, acting

almost like an advisor; periodically making suggestions which inform the learning

process for the other modules. Secondly, an agent may still be able to make use

of insight even when not occupying the task environment. Recall that an agent’s

perceptual state can include memories of previously observed perceptual states

or classes. These remembered stimuli can be used for learning by insight in the

same way as ‘live’ stimuli, allowing insight to also run ‘offline’. In this case,

insight functions comparably to Stein’s concept of robotic ‘imagination’ (Stein,

1994).

The Trial-and-Error Learning Module

Task learning by trial-and-error involves interpreting feedback signals generated

through interacting with elements of the task, and adjusting behaviour accord-

ingly. Feedback signals can originate in the environment, in which case they

arrive in GTLF via the perceptual state (as do all environmental stimuli), and

must be identified and translated by the trial-and-error learning module. They

could also be generated internally by reward functions, which comprise part of

the module itself. Exploratory behaviour for the purpose of learning by trial-

and-error should seek to attend to any relevant reward signals present in the

environment, and carry out task interactions which yield a maximal amount of

new information for processing by the learning module, as opposed to neces-

sarily attempting to complete the task optimally. This technique of learning a

deterministic behaviour for completing a task while executing a different (but

probably related) exploratory behaviour is known as off-policy learning in the
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Reinforcement Learning literature (Sutton and Barto, 1998). The later Testing

stage (Section 3.3) involves receiving feedback while executing the current best

estimate of task behaviour; on-policy learning. In some task scenarios there may

be a trade-off between information gain and the cost of that gain to the agent (in

terms of resources, damage, continued opportunity to complete the task, etc.),

which should be considered when choosing an exploratory behaviour.

To illustrate these features of learning by trial-and-error, we move from our

sporting case study to the more safety-critical task of minefield clearance. Sup-

pose that the mines, when deactivated, emit an audible shutdown tone. This tone

constitutes an external feedback signal which should be interpreted by the trial-

and-error learning module as a reward. In addition, suppose the module contains

a reward function which outputs a penalty signal in proportion to the distance

travelled by the agent, reflecting its prior knowledge that roaming around a mine-

field is best avoided. To gain maximal knowledge about the mines, it would in

theory be advantageous to experiment with all possible manipulations, in or-

der to determine which would best contribute to an optimal completion of the

task. However, since certain operations could result in a very significant penalty

(i.e. destruction of the agent), exploratory behaviour should be appropriately

restricted.

Of all the learning methods, trial-and-error has the most widely studied and

accepted formalism with respect to implementation in autonomous agents: Rein-

forcement Learning (RL). The use of this formalism is nowhere assumed in GTLF;

the researcher can use any methodology that is compatible with the framework.

However, by using RL as our trial-and-error learning example both in this chapter

and experimentally (see Section 7.1.2), we hope to demonstrate its compatibility

with GTLF, as well as clarifying the role of this learning module for the widest

possible interested audience. In Section 3.2.1, we look at how RL action-value

matrices can be used to define skill functions, and at a commonly-used method

for updating these matrices. For now, we look at how the general formulation of

the RL problem, as shown in Figure 3-3, relates to the role of the trial-and-error

learning module. To summarise:

1. The environment sends a state signal, st to the agent.

2. The agent executes an action, at, determined by the policy it is following.
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Figure 3-3: The Reinforcement Learning paradigm: having entered state st at
time step t, the agent executes action at, determined by the policy it is following.
The environment then responds with reward signal rt+1, the agent is moved to
state st+1, and the process iterates. Diagram by Sutton and Barto (1998).

3. The environment sends a reward signal, rt+1, determined by the new state.

4. The environment sends a new state signal, st+1.

States in RL are assumed to be discrete, and can therefore be associated

with the discrete perceptual states used in GTLF. Similarly, RL actions can

be associated with our discrete action elements. The reward signal, rt+1, is a

real number, and in GTLF it is derived from a combination of external stimuli

and internal reward functions as described above. If we assume that the action

element being executed by the agent at any given time is represented in the

agent’s perceptual state (i.e. that the agent is aware of its own actions), then the

perceptual state signal received by the trial-and-error learning module during

exploration contains all the information necessary to create the {(st, at, rt+1)}
sequence required for skill update.

For example, suppose our minefield-clearing agent detects an armed mine,

moves toward it, disarms it, and then continues searching. The perceptual state

sequence could be:

P1 = {armed mine detected, moving to mine}
P2 = {armed mine near, disarming mine}
P3 = {hear shutdown signal, searching for armed mine}

resulting in the following output from the trial-and-error learning module:

({armed mine detected}, move to mine(),−0.1)a
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({armed mine near}, disarm mine(), 1)a

where the reward of −0.1 is generated by an internal reward function which pe-

nalises movement (see above), and the reward of 1 results from the module’s

translation of hear shutdown signal into a reward5. Even though moving to-

ward an armed mine is necessary for success in the task, the immediate reward

received is negative (since movement in general is bad). This is an example of

the credit assignment problem, and its effects depend upon which algorithms are

used to update the policy (see Section 3.2.1).

The basic formulation of the RL problem that we have considered so far,

assumes that tasks can be described as discrete time Markov Decision Processes

(Russell and Norvig, 2003, ch. 17). In our implementation of GTLF, we show

how this can be extended to continuous time Semi-Markov Decision Processes

(see Section 7.1.1).

The Observation Learning Module

Observing other agents interacting with elements of a task can provide informa-

tion to speed the learning of that task. This can be extended to task-related

events caused by forces not generated by agents (e.g. gravity, wind, etc.), but

here we concentrate on the former case of social learning. It should be noted

that, compared with the highly complex and well-founded categorisations pro-

posed in the ethology literature (Whiten and Ham, 1992; Zentall, 2001), we make

a simple, functional distinction between imitation and other nonimitative types

of social learning. Specifically, learning is by imitation if the agent being observed

is carrying out the task being learned.

Regardless of their intentions, we refer to any agent deemed a source of task

knowledge by the learner as an expert. We refer to the behaviour about which

the expert is relaying (noisy and possibly incorrect) information to the observer,

5Note here that we have assumed that the agent is capable of mapping its perception of its
actions (e.g. moving to mine) to executable action elements (e.g. move to mine()). This is a
safe assumption, since we have already assumed the inverse of this map exists: the agent was
able to include the actions it was executing in the perceptual state. It is also worth noting that
this map is equivalent to the action correspondence library required for imitation learning (see
below), except that it relates the agent’s own observed actions to its action repertoire, rather
than the actions of another agent. In biology, such a map could be seen as a forward model of
the kind learned by infants through body babbling (Meltzoff and Moore, 1983).
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and which the observer should attempt to recreate, as the target behaviour. It

need not be optimal or ‘correct’ in any absolute sense; in fact, it can be defined

arbitrarily. The problem of deciding which agents will demonstrate good target

behaviours, and therefore should be treated as experts, is a complex one in its

own right (Schlag, 1998), and beyond the scope of this module.

Consider a common scenario in which a learner is attempting to acquire a skill

by observing an expert. Exploratory behaviour for this purpose should obviously

seek to put the learner in a position where it can observe the task being carried

out. The exact nature of this behaviour depends upon the task, but some work

suggests that following as opposed to statically observing a task demonstrator can

lead to improved learning performance due to closer perceptual matching (Hayes

and Demiris, 1994; Billard, 2002). As for any external source, salient information

generated by the expert’s actions must be contained within the perceptual state.

However, there remains the question of how perceptual classes relating to the

state and actions of the expert can be translated by the learner into executable

task behaviour. This is the role of the correspondence library.

We refer to those perceptual classes which describe the expert’s state and ac-

tions as allocentric. These must be translated into egocentric perceptual classes

and action elements; that is, describing the state and actions of the learner; in

order to be usable for subsequent skill update. To this end, the correspondence

library contains two types of correspondences. Perceptual correspondences as-

sociate allocentric perceptual classes relating to state with egocentric perceptual

classes relating to state. For example, the allocentric class expert sees ball

could be associated with the egocentric class see ball. Action correspondences

associate allocentric perceptual classes relating to action with (egocentric) action

elements. For example, expert running to ball could be associated with the

action element run to(ball). In the examples above, the implication is that the

correspondences are between conspecific agents, but this need not be the case. It

is equally possible for the library to contain correspondences for agents with dis-

similar embodiments (Alissandrakis, 2003; Alissandrakis et al., 2002, 2005, 2007).

For example, if a robot on tracks was imitating a human, the action correspon-

dence above might become expert running to ball ⇒ roll to(ball).

Given that the learner can relate the expert’s behaviour to its own, what cues

should prompt the observation learning module to output data to the episodic
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buffer? We give an example in our implementation (see Section 7.1.2), but for

now we highlight what we consider to be some desirable general principles:

1. Perceptual classes which always give rise6 to action should increase in at-

tentional priority.

2. If a given perceptual state reliably gives rise to the same action, an associ-

ation between the state and action should be created (or strengthened).

3. If a given perceptual state gives rise to many different actions, this is an

indication that the task is not well represented in this region of task space.

Either the perception / action configuration is inappropriate, or the corre-

spondence library contains incorrect associations (or both).

Each of these principles constitutes a condition which should be evident from

the (sequence of) input perceptual states. The first should output a perceptual

selection datum; the second an association datum; and the third a perceptual

categorisation datum.

The Instruction Learning Module

For the purposes of GTLF, we define learning by instruction as the acquisition

of task knowledge via explicit communication with another agent. Implicit in-

struction, through deliberate demonstration for example, falls under the remit of

the observation learning module. However, communication could be indirect, via

written instructions for example.

Instructions, like observations, must be received via the perceptual state.

For example, suppose an agent can discern a set of perceptual classes of the

form heard word Wi, where each Wi corresponds to a different spoken word.

Consider the sequence of words (sentence) W1,W2, . . . , Wn, given as instruction

to the learner by a teacher agent. Ignoring the other perceptual classes, and

providing that the learner is attending to the teacher, this would correspond to

the perceptual state sequence:

6If an action is initiated while the agent occupies a given perceptual class, we say that the
perceptual class gives rise to the action.
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P1 = {heard word W1}
P2 = {heard word W2}

...

Pn = {heard word Wn}
The instruction learning module must attempt to interpret this state sequence;

that is, output appropriate data to the episodic buffer.

The simplest case involves instructions issued as commands throughout a task

learning episode. Such commands may consist of just one or two words, and can

thus be interpreted by referring to a relatively basic lexicon. State information

need not necessarily be part of the instruction, since this can be inferred from the

state of the learner at the time the instruction was issued. For example, suppose

our soccer-learning agent experiences the perceptual state:

P1 = {have ball, heard word shoot}

The interpreter looks up heard word shoot in the agent’s lexicon, and finds it

is associated to the action element shoot(). The interpreter can then associate

this action element to the remainder of the learner’s perceptual state at the time

of the command, to generate the association datum:

({have ball}, shoot(), 1)a

Similarly, commands such as “Watch!” could be used to generate perceptual

selection data, since they imply that the perceptual classes currently contained

within the perceptual state should be given an increased priority. Commands

such as “Bad!” could be used to generate perceptual categorisation data, as

they may indicate that the classes contained in the perceptual state need to be

reconfigured in order to allow correct behaviour7. This technique has been used

successfully in tandem with learning by observation to teach robots to traverse a

maze (Nicolescu and Matarić, 2007).

As far as more complex interpretation algorithms are concerned, the mod-

ule can in principle implement any that are capable of parsing a sequence of

symbols. This includes advanced Natural Language Processing (NLP) methods,

which may reference complex grammars (Manning and Schütze, 1999). Rather

7Such commands could also indicate an incorrect perception-action association.
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than merely barking orders, such systems could allow teachers to issue (sets of)

instructions in advance (e.g. “If you have the ball, shoot.”). If an instruction

cannot be exactly interpreted, then the learner can either ignore it, or attempt to

infer an approximate interpretation. For example, a learner that is incapable of

parsing the complete sentence given above may still be able to infer its meaning

by recognising the keywords “have”, “ball” and “shoot”. Of course, such approx-

imate inference introduces the possibility of making incorrect interpretations and

consequently incorrect skill updates.

All of the above discussion applies to any sequential form of instruction, e.g.

read word Wi for written words, observed gesture Gi for symbolic gestural

communication, and so on. However, instructions could also be given in parallel,

e.g. the spoken command “Pass!” accompanied by a referential gesture indicating

another player.

Clearly, opportunities for learning by instruction are largely dependent upon

the actions of other agents. The learner’s exploratory behaviour can only really

seek to take full advantage of those opportunities. Firstly, if a teacher is available

but not present, then it should be sought out; in other words, the learner should

get into a position where instructional classes may appear in the perceptual state.

Secondly, if a teacher is teaching, pay attention; the learner’s attention strategy

should select the instructional perceptual classes. As with learning by insight,

the minimal requirements of this exploratory behaviour (given the availability

of a teacher) renders learning by instruction ideal for combination with other

methods. Instructions could be used to guide the trial-and-error learning process,

or augment the observation learning process, for example.

Summary

Data continue to accumulate in the buffer until either the learning episode ends

or the buffer becomes full. In the latter case, any subsequent data are either

discarded or overwrite the prior contents, whichever is preferable. The size of

the buffer is a physical constraint of the individual agent, and affects (amongst

other things) the frequency with which it must transfer between learning and

consolidation (see below).

Endel Tulving, who first proposed the concept of episodic memory in hu-

mans (Tulving, 1972), describes it as ‘memory for personally experienced events’
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or ‘remembering what happened where and when’ (Tulving, 2001). Baddeley

(2000, 2001) proposes the addition of an episodic buffer to his model of work-

ing memory which acts as a ‘limited-capacity temporary storage system that is

capable of integrating information from a variety of sources’. GTLF’s episodic

buffer fits both Tulving’s description, since it records a sequence of experienced

(grounded) perceptual classes, and Baddeley’s model, since it is a finite buffer

which integrates data from multiple learning modules. The idea has gained fur-

ther credence recently, with Nuxoll and Laird (2007) adding episodic learning

capabilities to the SOAR cognitive architecture.

Before we look at how the buffer contents are used for skill update, we further

consider the case in which multiple learning methods are concurrently available.

For example, it is conceivable that an agent with reasoning abilities (insight)

could be given a demonstration of a task (observation) accompanied by verbal

prompts (instruction) while being allowed to practise it (trial-and-error). If the

agent is capable of attending to multiple information sources, then this is clearly

the best option so that no information is ‘wasted’. Otherwise the exploratory be-

haviour, along with its attention strategy, will have to arbitrate between sources.

It may be wise to give priority to those which are dependent upon the actions

of other agents when they are available (e.g. imitation and instruction). On the

other hand, if the information quality from some sources is particularly poor, an

exploratory behaviour which can determine this and switch attendance accord-

ingly would be beneficial.

3.2 Stage 2: Consolidation

Upon completion of a learning episode, the agent should attempt to consolidate

what it has just learned (see Figure 7-1). Whether this must be done ‘online’

(i.e. while the agent remains active) or can be done ‘offline’ (i.e. while sleeping,

dormant, daydreaming, etc.) depends on the capabilities of the agent and, more-

over, the circumstances of learning. For example, an agent that is being pursued

through a maze by a predator does not have the luxury of offline consolidation

available to a robot which is learning to stack blocks in a lab. This example also

highlights another possibility: that consolidation could be deferred until a more

convenient time.
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Figure 3-4: Stage 2: Consolidation — newly acquired and prior task knowledge
is combined.

Practically speaking, the purpose of consolidation is to:

1. Create a hypothetically improved skill by using the newly acquired asso-

ciation data in the episodic buffer to adjust previously defined perception-

action associations.

2. Similarly improve the agent’s attention strategy by using the new percep-

tual selection data to adjust the previous strategy.

We now look at how each of these can be achieved.

3.2.1 Creating an Improved Skill

The first stage in creating an improved skill is to take the original skill stored in

long-term memory, and copy it to working memory. This way, if the updates that

are made result in a decline in task performance (see Section 3.3), the new skill

can be discarded and the former one retained. As we explained above, association

data takes the form (Pi, ai, wi), where Pi is a set of perceptual classes, ai is an

action element, and wi is a real number. The meaning of wi, and in fact the whole

combination process, is governed by the way a particular agent stores skills in

long-term memory. This is not specified in the framework, but we now look at

some alternatives and explain possible combination approaches for each.
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Tabular Representations

Recall that a skill is a function s : P(P ) → A. One way of storing such a

function would be to tabulate the members of P(P ) against the members of A.

At each cell position, a value indicating the agent’s measure of confidence in that

assignment (e.g. probability, weight, frequency count, etc.) can be stored. For

example, suppose P = {p1, p2}, and A = {a1, a2}. Then the table would look as

follows:

a1 a2

∅ U(∅, a1) U(∅, a2)

{p1} U({p1}, a1) U({p1}, a2)

{p2} U({p2}, a1) U({p2}, a2)

{p1, p2} U({p1, p2}, a1) U({p1, p2}, a2)

and so U forms a matrix referenced by a subset of P and an action in A. The

skill function can be defined by selecting the action element with the greatest

value for each row, or the selection could be stochastic; in fact any process which

makes a unique selection would define a valid function.

Consider the association datum (Pi, ai, wi), stored in the episodic buffer. Due

to the complete enumeration of the task space, this datum will match exactly

one cell of the matrix U . The value attached to the datum, wi, and the value

in the matched cell, U(Pi, ai), can then be merged using an appropriate merging

function, m:

m : R× R→ R (3.5)

If the values represent frequency counts, then these can simply be added and the

result stored in the skill under construction:

Unew(Pi, ai) = m
(
Uold(Pi, ai), wi

)
= Uold(Pi, ai) + wi (3.6)

If they represent weights, then some kind of weighted sum could be appropriate;

a linear interpolation, for example:

Unew(Pi, ai) = m
(
Uold(Pi, ai), wi

)
= (1− α)Uold(Pi, ai) + αwi (3.7)

where 0 ≤ α ≤ 1 represents the degree of influence new data have on the new

behaviour, compared to the old behaviour. If α is fixed, then new data will always
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have the same impact, no matter how well practised the skill in question is. For

example, α = 1 indicates that new data should just be copied directly to the

new behaviour. Suppose instead that α is set to equal 1
n
, where n scales with

the number or length of episodes so far spent learning the skill. Then each new

episode has a lesser effect, as skill proficiency (theoretically) increases; this could

be a desirable property.

Also, if weight updates have occurred on row i, then it may be necessary to

renormalise that row:

Unorm(Pi, ai) =
Unew(Pi, ai)∑
j Unew(Pi, ai)

, ∀ i (3.8)

The simple examples given above only make use of each datum individually.

One of the advantages of episodic learning is that batch learning algorithms which

reference multiple data can be used for skill update if desired. For example, sup-

pose U represents an action-value matrix, as would be common in Reinforcement

Learning problems. The update formula for one-step Q-learning (Watkins and

Dayan, 1992) is:

Unew(st, at) = Uold(st, at) + α
[
rt+1 + γ maxb[Uold(st+1, b)]− Uold(st, at)

]
(3.9)

where st is the state at time t, at is the action taken at time t, st+1 is the new state

reached, rt+1 is the reward received, α is the learning rate, and γ is the discount

factor. Recall from Section 3.1.3 that the trial-and-error learning module outputs

data such that (Pi, ai, wi) = (st, at, rt+1). Substituting into Equation 3.9 we have:

Unew(Pi, ai) = Uold(Pi, ai) + α
[
wi + γ maxb[Uold(Pi+1, b)]− Uold(Pi, ai)

]
(3.10)

which references two consecutive data in the episodic buffer: (Pi, ai, wi) and

(Pi+1, ai+1, wi+1).

Alternative Representations

Tabular skill representation is able to express any possible assignment of action

elements to perceptual classes, but such expressiveness comes at a price. The

table described above contains |A|.|P(P )| cells. Using a well-known result from
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set theory, we have:

|A|.|P(P )| = |A|.2|P | (3.11)

In other words, although the size of the table grows linearly with the size of the

agent’s action repertoire, it grows exponentially with the number of perceptual

classes it can discern. For example, an agent with 10 action elements that can

recognise 10 different perceptual classes must assign confidence values to 10240

perception-action combinations for each skill8. Apart from space (i.e. memory)

constraint considerations, this could pose a significant learning problem for com-

plex task spaces, as the number of behavioural data which must be sampled by

the learning modules also increases exponentially.

There are at least two solutions to this problem. The first is to reduce the

number of classes passed to the learning core by the attention strategy, aL (see

Sections 2.3.2 and 3.1.3). This effectively requires the skill to map (i.e. find values

for) only a subset of P(P ), without having to remove classes from P altogether

which might be salient. This method rests upon the assumption that at any

one time, only a few perceptual classes will actually affect the agent’s choice

of action, and therefore, provided the strategy is good, little if any behavioural

expressivity will be lost. This assumption must hold true in the case of human

vision, for example, which only allows a few percepts to be concurrently attended

to (Rensink, 2000). The most restrictive strategy possible would be for aL to pass

on only what it considers to be the highest priority perceptual class, which reduces

the table size from |A|.2|P | to just |A|.|P | (only a map from the singleton subsets

must be defined).

The second solution involves approximating the skill function using a statis-

tical classification algorithm. The classification problem in question is to find:

P(an|Pn), ∀ an ∈ A, Pn ∈ P(P ) (3.12)

i.e. what is the probability that an should be chosen as an action element given

that perceptual classes Pn apply? In this case, the skill is represented by the

parameters of the classifier, and the output probabilities serve the same purpose

as the confidence values described above. Here the reduction in learning / space

complexity results from the fact that, as long as an appropriate classifier is chosen,

8That is, as long as the skill uses the same perceptual categorisation and action repertoire.
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the number of parameters which need tuning should be significantly fewer than

the number of values necessary for the tabular representation. To approximate

P(an|Pn), a classifier needs training samples of the form (Pn, an) in order to adjust

its parameters. The data in the episodic buffer is of the form (Pn, an, wn), and can

therefore be used for training, with wn in this case representing a frequency count

for each datum. Examples of using Decision Tree and Multi-Layer Perceptron

classifiers for this purpose are given in Section 6.2. It should also be noted

that these two solutions can be used in tandem, i.e. using the agent’s attention

strategy to restrict the types of training samples available to a classifier.

3.2.2 Creating an Improved Attention Strategy

As well as improving perception-action associations, the agent may also have

learned enough to improve its attention strategy (see Section 2.3.2). Recall that

an attention strategy selects a subset of the perceptual state to pass onto the

learning core and / or the agent controller during exploration and task execution

(see Section 3.1.1). If an agent has multiple attention strategies, we focus here

on aL; that is, the strategy that filters data relating to the task being learned to

the learning core. Any strategy aL must satisfy:

aL : P(P ) → P(P ), a(X) ⊂ X ∀ X ∈ P(P ) (3.13)

Now, a full enumeration of this function would require tabulating members of

P(P ) against their subsets in P(P ). Since every member of P(P ) has at least

one subset (itself) and at most 2|P | subsets (for the element P ∈ P(P )), this

implies there would be between 2|P | and 22.|P | cells in such a table – in any case,

exponential in the number of discernable perceptual classes. Since the single

role of the attention system is to make the learning and skill execution processes

more efficient, it would seem unnecessary (albeit perfectly legal) to consider such

a complex representation. Instead, we briefly look at some simpler, more practical

strategies.

The first, mentioned above, is the trivial strategy which passes on the entire

perceptual state:

a(X) = X, ∀ X ∈ P(P ) (3.14)
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This strategy forces the skill representation to deal with the full complexity of the

agent’s current perceptual configuration. In fact, many of the agents described in

Part II are able to use this strategy, due to the simplicity of their categorisations.

Perceptual selection data can have no effect here, and can be discarded.

Another possibility would be to impose a total order on P , and then return

the n (< |P |) highest priority classes. For example, if P = {P1, P2, P3}, the order

is (P2, P1, P3) and n = 1, we have for X ∈ P(P ):

X ∅ {P1} {P2} {P3} {P1, P2} {P1, P3} {P2, P3} {P1, P2, P3}
a(X) ∅ {P1} {P2} {P3} {P2} {P1} {P2} {P2}

Recall perceptual selection data is of the form (P1, w1), where w1 ∈ R. Here w1

could represent absolute or relative ranking information; i.e. w1 = 1 implies the

paired perceptual class should move to position 1 in the order (absolute), or move

up 1 position in the order (relative). In either case the displaced classes would

move down.

A partial order could be represented by a set of pairs of the form P × N,

e.g. {(P2, 1), (P1, 1), (P3, 3)}; in this case P2 and P1 have equal highest prior-

ity. Perceptual selection data can be used to update a partial order in a sim-

ilar manner to a total order. Yet another possibility is for the pairs to have

the form P × R, where the real number represents, say, probability of saliency:

{(P2, 0.7), (P1, 0.6), (P3, 0.2)}. Perceptual classes could then be selected only if

this probability exceeds some threshold, for example. Updating these probability

values using perceptual selection data (e.g. (P1, 0.65)) would require a merging

function similar to that discussed in Section 3.2.1.

It should be noted that all of the above strategies assume that the saliency

of a perceptual class is independent of the other classes. It is, of course, possible

to create strategies in which, for example, P1 only has high priority when P2

is present. In fact, as we said at the start of this section, arbitrarily complex

strategies are possible, although the problem of allowing them to be updated

when new data arrive must also be solved.

3.3 Stage 3: Testing

At this stage, the agent has hypothesised a new combined skill, along with a

new attention strategy (if one was required), but these need to be tested in
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Figure 3-5: Stage 3: Testing — the new combined behaviour is executed, and the
extent of improvement assessed using error metrics.

order to determine the extent of performance improvement (see Figure 3-5). It

is of course possible that during consolidation, the agent’s environment will have

changed such that the task in question is no longer present, or that it is somehow

not appropriate for the agent to attempt the task immediately. In these cases,

the combined behaviour remains stored until the task becomes both available

and executable. At this point, the attention strategy and currently executing

behaviour are switched from exploration mode9 (the state they were in during

Stage 1) to task execution mode (using the newly combined behaviour created in

Stage 2).

By practising its newly updated skill, the agent will hope to learn two things:

1. Whether the new behaviour is an improvement upon the old (trivially true

if this is the first learning episode).

2. Where in task space any weaknesses in the new behaviour lie.

Both of these require the agent to receive feedback on its performance from

sources that can both observe the agent’s demonstration, and have knowledge of

what (they think) the task requires. This could apply to the agent itself, to other

agents sharing the task environment (e.g. a coach or team-mate), and to passive

agents observing from outside the environment (e.g. a commentator or critic). In

our framework, such knowledge is represented by behavioural error metrics and

(possibly) task goal states. Performance feedback is received via an error signal

9Or from whichever behaviour was being executed if others have been used in the mean
time.
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generated by applying the metrics to the observed demonstration. The idea is

similar in essence to the actor-critic method for Reinforcement Learning (Witten,

1977; Barto et al., 1983). We first look in detail at the different forms error metrics

can take, then at how the error signals generated can be used for subsequent

learning.

3.3.1 Error Metrics and Correspondence

Our approach of using behavioural error metrics to assess task performance is

an adaptation of an approach used in imitation learning research; in particular,

research into the correspondence problem. By far the most work in this area has

been done by the Hertfordshire Adaptive Systems Research Group, therefore we

give their definition here:

“Given an observed behaviour of the model, which from a given start-

ing state leads the model through a sequence (or hierarchy [or pro-

gram]) of sub-goals in states, actions and/or effects, one must find

and execute a sequence of actions using one’s own (possibly dissim-

ilar) embodiment, which from a corresponding starting state, leads

through corresponding sub-goals — in corresponding states, actions,

and/or effects, while possibly responding to corresponding events.”

(Nehaniv and Dautenhahn, 2002, p.43)

Solving the correspondence problem requires solving another: that of assessing

the quality of correspondence between an observed behaviour and one’s own at-

tempt to imitate it. This, in fact, is very similar to the problem under current

consideration: assessing the quality of correspondence between an observed be-

haviour and some assessor agent’s definition of a target behaviour for a given task.

Nehaniv and Dautenhahn (2001) define correspondence metrics in terms of their

formal definitions of states, action-events and correspondences. Elsewhere they

describe three levels of imitative correspondence: the action-level, the program-

level, and the effect-level (Nehaniv and Dautenhahn, 1998). We now give an

interpretation of these categories from a task learning perspective, and construct

example error metrics for each in terms of the components of our framework.
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Action-Level Metrics

Action-level imitation usually describes the process of acquiring novel move-

ment primitives through the (relatively) precise reproduction of observed motion.

Much of the foundational biological imitation literature focuses on this level, and

where imitation is defined, it is often defined in these terms.

An action-level task error metric, then, would serve to detect deviations from

a continuous motion path. Since task error is judged from an observer’s point-

of-view, a continuous motion path corresponds to a continuous path through

sensor space. This also allows the concept of motion to have meaning in virtual

reality domains, for example. In our framework, the mapping of continuous sensor

space onto continuous motor space only happens within the lowest level of action

elements. In other words, the only conceivable use for such an error signal would

be to alert the agent that one of its action elements was inadequate. Correcting

such a fault, and learning action-level tasks in general, is outside of the scope

of GTLF – this is discussed further in Section 10.3. This statement comes with

a proviso, however: some apparently action-level tasks could be represented in

GTLF by using a finer-grained set of action primitives (see below).

For the sake of completeness, an action-level error metric would be a function

of the form:

dα : σ × σ → R (3.15)

where σ is the set of all sensor states. At any point during testing, the output error

signal is equal to dα(σO, σE), where σO is the observed state of the demonstrator,

and σE is the expected state. For example, suppose we have an agent that inhabits

a 2D Cartesian plane, and has two sensors; one to detect its x-co-ordinate and

one to detect its y-co-ordinate. It’s actuators can propel it in any direction in

the plane, and it’s task is to move from (0, 0) to (0, 1) in a straight line. One

possible action-level error metric would be:

dα(σO, σE) = dα((xO, yO), (xE, yE)) = |xO| (3.16)

that is, the magnitude of the agent’s deviation from the y-axis.
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Program-Level Metrics

In contrast to the action-level, imitation at the program-level involves acquiring

novel behavioural structure from observation, using existing action and percep-

tion primitives. The detail of low-level movement need not be accurately repro-

duced, and could in fact be quite different. Byrne and Russon (1998) coined the

term ‘program-level’ in part to establish the existence of a kind of imitation that

wasn’t action-level, and even go so far as to suggest that most (biological) ex-

amples of action-level imitation could be considered as instances of fine-grained

program-level imitation10.

We interpret task performance assessment at the program-level as being equiv-

alent to identifying mismatches in perception-action association. Put another

way, we are still interested in how the task is achieved, but only at the level of

function rather than form (action-level). A program-level metric, therefore, has

the form:

dπ : S × S → R (3.17)

where S is the set of all skill functions. As an initial simplifying assumption, let

us assume that the observer and demonstrator share the same perception-action

categorisation (trivially true if the agent is also the observer). Then we propose

the following definition:

dπ(sO, sE) =
∑

Pn∈P(P )

dA(sO(Pn), sE(Pn)) (3.18)

where sO is the demonstrator’s skill function, sE is the skill function expected

by the observer, P is the set of all perceptual classes (common to both agents),

P(P ) is the power set of P , and dA : A×A → R is a metric on action elements.

A simple example of such a metric would be:

dA(aO, aE) =

{
0 if aO = aE

1 if aO 6= aE

(3.19)

Under this arrangement, the error value is basically the number of mismatched

10They see individual muscle contractions as the only ‘true’ movement primitives, and argue
anything which requires more co-ordination could be viewed as a ‘program’ of such contractions.
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perception-action associations. This value can be normalised:

d̄π(sO, sE) =
dπ(sO, sE)

|P(P )|.||dA||∞ (3.20)

where ||.||∞ is the uniform norm11: ||dA||∞ = sup{|dA(ai, aj)| : ai, aj ∈ A}. For

the above example of dA, the denominator equals |P(P )| = 2|P |, since ||dA||∞ = 1.

These metrics assume that the skill function of the demonstrator is directly

accessible, and therefore make an empirical testing stage redundant. If, however,

the perception-action associations must be estimated from a series of observations

Ω = {(P1, a1), (P2, a2), . . . , (PN , aN)}, then Equation 3.18 becomes:

dπ(sO, sE) =
∑

1≤n≤N

dA(an, sE(Pn)) (3.21)

and in Equation 3.20, |P(P )| is replaced by |Ω|. This can provide an estimate of

the true error value after each observation, and is clearly affected by the breadth

of perceptual states observed. To limit the effects of noise at the beginning of

the demonstration, the normalised metric could be weighted as follows:

d̄′π(sO, sE) = α + (1− α)d̄π(sO, sE) (3.22)

where α = 1
n
, and n is the number of observations made so far. In other words,

the more observations made, the more confidence is put in the estimated error

value.

The same technique can be used even if the demonstrator’s perceptual cate-

gorisation is unknown. In this case the perceptual states, Pn in Equation 3.21,

are defined according to the observer’s categorisation. Now, the perceptual states

of the demonstrator and observer do not necessarily co-incide. Therefore, observ-

ing both (P1, a1) and (P1, a2), for example, does not necessarily imply that the

demonstrator has acted inconsistently with its own policy; it may just mean that

P1 overlaps more than one demonstrator perceptual state. If, furthermore, the

action repertoires of the two agents differ, then the metric on action elements,

dA, must define the relationship between those of the demonstrator and observer.

An example of a program-level behaviour metric in use is given in Section 5.4.

11NB. equation 3.20 is only well-defined if dA is bounded, and thus ||dA||∞ < ∞.
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It is assumed that the demonstrator (that is, the learner) does not have access

to sE (that is, the expected behaviour) or else it would have nothing to learn.

Program-level metrics are designed for use by an external assessor. Knowledge

that the learner may have, however, relates to the desired goals or effects of the

task — this is the third and final level of task assessment.

Effect-Level Metrics

Effect-level imitation describes the process of forming behaviour which will achieve

similar ‘results’ to those achieved by an observed behaviour (Demiris and Hayes,

1997). Neither low-level movement nor behavioural structure need necessarily be

reproduced, as long as the relevant goals are met.

Effect-level task performance, therefore, is determined by the states the task

environment goes through, in relation to the goals required by the task. In our

framework, both of these are described by perceptual states, so an effect-level

error metric is of the form:

dε : P2(P )×P2(P ) → R (3.23)

where P is the set of perceptual classes discernible by the observer (i.e. assessor),

P(P ) is the set of all perceptual states discernible by the observer, and thus

P2(P ) (that is, P(P(P ))) is the set of all subsets of perceptual states.

To illustrate, let G ∈ P2(P ) be the set of all goal states for a given task

(according to some task assessor), and T ∈ P2(P ) be the trace of environmental

states observed during a task demonstration (from the perspective of that asses-

sor). To simplify, suppose also that the task has a single goal state, G1 ∈ P(P ),

so that G = {G1}. We could define the following metric:

dε(G, T ) = inf{dP (G1, Tn) : Tn ∈ T} (3.24)

where dP : P(P ) × P(P ) → R is a metric on perceptual states12. A simple

12Recall that the infimum of a set X of real numbers, denoted inf{X}, is defined as the
greatest lower bound of that set. That is, it is equal to the greatest real number that is less
than or equal to all the members of X.
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example of such a metric would (as before) be:

dP (G1, Tn) =

{
0 if G1 = Tn

1 if G1 6= Tn

(3.25)

This arrangement gives an error of 0 if the exact task goal state G1 was visited

at any time during the demonstration, and an error of 1 otherwise. Another

possibility for dP is

dP (G1, Tn) =

{
0 if G1 ⊂ Tn

1 if G1 6⊂ Tn

(3.26)

which allows the goal state to be included in, rather than exactly equal to, one

of the visited states. This is useful if the goal is only defined on part of percep-

tual space. To generalise to multiple goals which can be visited in any order,

Equation 3.24 becomes

dε(G, T ) =
∑

Gm∈G

inf{dP (Gm, Tn) : Tn ∈ T} (3.27)

which can be normalised by dividing by the number of goals:

d̄ε(G, T ) =
dε(G, T )

|G| (3.28)

This gives a final error value of 1 − n
|G| , dependent only upon 0 ≤ n ≤ |G|,

the number of achieved goals. Even though we may not care how task goals

are achieved, there may still be other motivating factors that we would like our

metric to capture, such as how fast or how efficiently they are achieved. In this

case, we are interested in the change in error value with respect to the variable

we care about. If we call this variable x, this can be written as:

∆d̄ε

∆x
(3.29)

We would like the greatest possible decrease in error for the least possible increase

in x. Therefore we are seeking to minimise this quantity, and it can be viewed

as another error metric. For example, suppose two different behaviours lead to

the satisfaction of all goals in a task, but behaviour A takes 60 seconds and

behaviour B takes 90. So we have ∆d̄ε(G, TA) = ∆d̄ε(G, TB) = −1, ∆tA = 60,
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and ∆tB = 90. So

d̄t
ε(G, TA) =

∆d̄ε(G, TA)

∆tA
= − 1

60
< d̄t

ε(G, TB) =
∆d̄ε(G, TB)

∆tB
= − 1

90
(3.30)

i.e. behaviour A produces a lower error value. This could equally well be applied

to distance travelled, number of operations carried out, fuel expended, etc.

We consider two final cases: firstly, tasks which require goals to be ex-

ecuted in a particular sequence. Here, we need G = {G1, G2, . . . , GN} and

T = {T1, T2, . . . , TN} to be temporally ordered sets. The case in which failing

to achieve a certain goal Gn prevents the agent from achieving goals Gn+1, . . . GN

is already covered by the metric given above, which just penalises the agent for

uncompleted goals. We are left, then, with the case in which it is possible but

undesirable to complete goals in the wrong order. One way of doing this would

be to alter the metric on perceptual states as follows:

dP (Gm, Tn) =

{
0 if Gm ⊂ Tn, and ∀ i < m ∃ j < n s.t. Gi ⊂ Tj

1 otherwise
(3.31)

In this example the ordering is very strict; if any goal in the sequence is missed,

all subsequent completed goals are treated as unsatisfied.

Lastly, for some tasks, it may be desirable for an error metric to reflect that

an agent can get ‘close to’ a goal that is never actually attained, and that this

is preferable to getting ‘nowhere near’ it. Again, this could just involve using a

‘softer’ metric on perceptual states, and may be best illustrated by an example.

Suppose the task of collecting tokens from an arena is set, and let P be the set

of perceptual classes that our (self-assessing) agent can discern, G be the set of

goal states, and T be an initial task trace:

P = {many tokens left, some tokens left, few tokens left, no tokens left}
G = {{no tokens left}}
T = {{many tokens left}, {some tokens left}}

We can allow the agent’s moderate success to be reflected by defining the

64



following metric on perceptual states:

dP ({no tokens left}, Tn) =





0 if Tn = {no tokens left}
1
3

if Tn = {few tokens left}
2
3

if Tn = {some tokens left}
1 if Tn = {many tokens left}

(3.32)

and so d̄ε(G, T ) = 2
3
.

3.3.2 Making Use of Error Feedback

It may be that during or after a demonstration, error feedback is transmitted from

multiple sources simultaneously, in which case the agent would need a system for

weighing and integrating such feedback appropriately. For example, the more

advanced the task knowledge of a critic, the more weight should be given to the

error signal they transmit. If the error signals received convince the learning

agent that the new task behaviour is an improvement upon the old, then it can

be copied into long-term memory (along with its error estimate), and the old

discarded. Less straightforward is the process of interpreting and storing error

data for later use in the perception-action reconfiguration stage (see Section 3.4),

and we look at this now.

Recall that we assume program-level error signals necessarily originate from

an external source. While dπ as defined in Equation 3.21 can provide a measure

of overall skill performance, the metric on action elements, dA (Equation 3.19),

can be more useful for identifying particular regions of task error. For example,

if an assessor observes the demonstrator carry out action an in state Pn, then

dA(an, sE(Pn)) (3.33)

where sE is the expected behaviour, gives the assessor’s error measure for that

particular action. If the error signal generated by dA can be transmitted to the

demonstrator, then perceptual categorisation data can be generated for use by

the reconfiguration module (see below). Such a datum would be of the form:

(Pn, wn)c (3.34)
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indicating a possible behavioural flaw in state Pn. Accompanying weight wn could

be used to indicate the learner’s confidence in the error signal it has received.

It is more difficult, as one would expect, to identify the location of flaws in

behaviour based only on information about goal states. For this reason, task

learning is hard even for an agent who has set themselves the task. The non-

satisfaction of a goal or goals, as indicated by a dε metric (Equation 3.23), implies

behavioural flaws, but in which perceptual state? If there are no other constraints

on the goals then this may be impossible to discern. However, suppose that the

goals must be reached in sequence G1, G2, . . . , Gn. If Gi is the first goal not

to be satisfied, the perceptual states occupied after the completion of Gi−1 are

more likely to have generated faulty behaviour than others. These states can

be found by examining the task trace between Gi−1 and Gi (see above). If the

learner is also an assessor (i.e. possesses an appropriate effect-level metric), then

this information can be used to generate perceptual categorisation data directly.

If the assessor is external, it must first be passed to the learner. There are, of

course, many other possible constraints on goals which could inform this process.

There are a number of conditions which could bring an end to the testing

phase, including:

• The task (or the opportunity to practise it) being removed from the envi-

ronment.

• The agent reaching some threshold confidence level in the new behaviour, al-

lowing it to make decisions regarding the extent of its improvement and / or

the source of faulty behaviour.

• The period of time prescribed for testing by the agent elapsing.

In any of these cases, task interaction will cease and the agent will wait as before

for an opportunity to apply its findings.

3.4 Stage 4: Reconfiguration

It may be that iterating the prior learning stages results in the agent converging

upon a behaviour which completes the task to an acceptable standard. If, how-

ever, a performance ceiling is reached before this occurs, then it may be that the
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Figure 3-6: Stage 4: Reconfiguration — if the prior learning stages consistently
fail to improve task performance, it may be possible for the agent to reconfigure
its perception-action primitives.

agent’s perception-action representations themselves are inadequate to define a

solution. In this case, some agents may be able to reconfigure these primitives so

that learning can continue.

This process can be contrasted with Stage 2 as follows: during consolidation,

the perception/action representations were fixed, and the links and priorities were

updated. This time the situation is reversed, and the purpose is to re-factor the

representations being used to better fit the task while fixing the metadata values.

The ‘wake-sleep’ algorithm for finding optimal internal representations in neural

networks (Hinton et al., 1995) may contain helpful analogies here. In wake-sleep,

bottom-up ‘recognition’ weights determine the internal (i.e. hidden unit) repre-

sentation given an input, and top-down ‘generative’ weights estimate the input

given an internal representation. In the ‘wake’ phase, recognition weights are fixed

while generative weights are updated; analogous to our consolidation stage. The

opposite occurs in the ‘sleep’ phase, which parallels this reconfiguration stage.

Reconfiguration requires reasoning about the perceptual categorisation data
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both stored in the episodic buffer, and input from Stage 3. We can, without

significant loss of generality, describe the agent’s reasoning capabilities by a set

of production rules which are satisfiable by criteria on the data and cause changes

in mental representation (effectively executing ‘mental actions’). By this we do

not intend to make any implications about conscious control of the process, even

if that term was well-defined for all agents. We return to our token-collecting

example to illustrate.

Suppose this time that the tokens distributed around the area come in two

colours; green and red; and that the task is to collect only green tokens. Suppose

also that the agent has a visual sensor which generates RGB values for the per-

ceptual system. At the start of this learning cycle, the agent could discern two

colour classes defined in terms of this sensor value: light (RGB mean ≥ 127.5)

and dark (RGB mean < 127.5). The red tokens have a mean RGB value (ignoring

lighting effects) of 85, and the green tokens have a mean value of 68. Both these

types of tokens are thus indistinguishable (dark) under this perceptual configu-

ration. We assume that the agent’s tendency to make errors when in the {dark}
state (i.e. to mistakenly pick up red tokens) has been identified by an assessor

during testing, and that the following datum has arrived here for processing:

({dark},−0.8)c (3.35)

The reconfiguration module has two options at this point. Firstly, if this a new

mistake (i.e. it hasn’t received this datum before), then it is quite possible that

a change in skill mapping could rectify the problem. In this case the module will

attempt to use its knowledge base to alter exploratory behaviour associations, so

that the offending perceptual state will be more thoroughly explored during the

next learning episode. If, however, this is a repeated mistake, then the module

may try to alter the agent’s perceptual configuration instead.

A simple rule which could be applied here would be to subdivide the per-

ceptual class dark into two. Of course, this rule could take a number of cycles

to achieve a reasonable separation between the red and green tokens, because

only the mean value is being used. Also, a number of redundant classes will

be created, potentially adversely affecting efficiency (see Section 2.3.3). Another

rule could be used to merge redundant classes once error has been sufficiently
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reduced. Alternatively, a more complex rule involving the separate consideration

of R, G and B values could reduce error in fewer cycles.

The example above focuses on altering perceptual structure, but the princi-

ples could equally well apply to a task which requires, say, finer-grained action

elements. We have shown elsewhere (Section 2.3.3) that when increasing rep-

resentational complexity it is always possible, in theory, to at least maintain

accuracy for a given task. Also note that although the agent was not initially dif-

ferentiating between red and green, it was always capable of doing so. If instead

the agent were equipped only with a binary light/dark sensor, it would never

be able to make the necessary distinction, regardless of perceptual configuration.

The agent would have reached maximum perceptual resolution in this region of

task space, and no further performance improvements would be possible (in this

region).

Agents implementing this module could vary greatly in their ability to improve

their representations, due to the corresponding potential variety in the complexity

of the rules which govern the process. The rules must be part of prior knowledge,

and some agents may not possess them at all, effectively limiting them to their

innate categorisations. At the other extreme, cognitively advanced agents (such

as humans) may be able to consciously alter their primitives, e.g. “In the future

I must remember x as an important special case of X.”

Having made use of all available data for representational improvement, the

learning cycle ends and episodic memory is cleared ready for the next cycle. How

soon this occurs depends, amongst other things, upon when the task next presents

itself.

3.4.1 Incremental Learning

It should be noted that, although episodic learning has advantages (see Sec-

tion 2.3.3), some scenarios may require more rapid, online skill updates. In this

case, the learning phase (Stage 1) could output a single observation, which could

then be immediately ‘consolidated’ (Stage 2) with prior knowledge. If we make

the reasonable assumption that the learning agent will at some point wish to put

into practise what it has learned, then it is at this point we enter Stage 3 (Test-

ing). If necessary, re-factoring (Stage 4) would occur before any more learning
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takes place (if any more is possible). In other words, rather than the 1-2-3-4

episodic pattern, we have a 1-2-1-2-...-1-2-3-4 incremental pattern. In this case

we say GTLF is operating in incremental learning mode.

3.5 Exploiting Task Structure

So far we have implicitly accounted for the acquisition of single, ‘flat’, reactive

task behaviours. We wish, however, the framework to be sufficiently general to

be able to handle tasks containing temporal sequences, and also those which can

be hierarchically organised into sub-tasks.

3.5.1 Hierarchy

As previously explained, we wish to make as few assumptions as possible about

the internal representation of our task behaviours, allowing them to be imple-

mented in many different ways. Our only constraint is that they can in some

way be interpreted as a map from sets of perceptual classes to action elements.

Rather than the low-level problem of acquiring a single task behaviour, which

would involve associating relatively high granularity perceptual classes with ac-

tion elements, let us consider the problem of arbitrating between a set of known

task behaviours. We refer to this as an arbitration behaviour.

Since an arbitration behaviour must be capable of deciding which task be-

haviour to execute, its perceptual classes must be high-level and coarse-grained.

For example, suppose task behaviours X and Y have been learned, then the per-

ceptual classes of the arbitration behaviour must allow it to determine whether

each task is available in the environment for execution. The association structure

(tabular, functional, etc.) must then determine which task it is appropriate to ex-

ecute, or even if both can be executed concurrently. Once this has been decided,

the action - or task behaviour in this case - is executed. Control passes down the

hierarchy and the process continues. For highly complex tasks with many nested

sub-tasks, it may be necessary to extend this hierarchical control system to many

levels. In this case, we can borrow the slip-stack approach from Bryson’s POSH

reactive plans (Bryson, 2001): the top-level arbitration behaviour (analogous to

the drive collection) and the lowest level task behaviour receive perceptual input
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and can regulate control. The intermediate-level behaviours are not queried at

every perceptual cycle, so that efficient traversal of the tree can be maintained.

Clearly, attempting to learn multiple levels of hierarchy simultaneously could

potentially require enormous resources in terms of prior knowledge or learning

(or both). However, if we assume a bottom-up approach in which all sub-task

behaviours below the one in question have already been learned (to a sufficient

degree), then there is no reason to consider learning an arbitration behaviour

as requiring any different process to learning a task behaviour. Therefore, we

can generalise the GTLF to hierarchy by simply making the assumption that

the actions being associated during learning could include complete sub-task

behaviours or skills.

3.5.2 Sequence

It is even more straightforward to deal with temporal sequencing in GTLF. Until

now we have assumed that the perceptual state, which specifies a set of occupied

perceptual classes, is sufficient to specify action. A temporal sequence, on the

other hand, requires dependency on the previous action taken. Suppose we add

to our categorisation perceptual classes pertaining to the state of the previous

action taken — effectively a sensor sensing the past. Then, associations built be-

tween perceptual classes in this channel and actions specify a temporal sequence.

So, as for hierarchy, we can use exactly the same process for learning temporal

sequences as we do for any other type of task dependency. In fact, since we can in

principle add an arbitrary number of such history sensors (constrained in practise

by resources available), it is theoretically possible for GTLF to handle arbitrarily

long temporal dependencies.

3.5.3 Summary

Based on the principles set out in the Chapter 2, we have specified a General Task

Learning Framework which comprises four stages. In Stage 1, the agent explores

the task environment according to the learning methods that are available, and

that it wishes to use. Insight involves applying known rules and skill elements to

the task; trial-and-error involves interacting with the task; observation involves

watching an expert complete the task; and instruction involves attending to and
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interpreting a teacher. In Stage 2, knowledge gained during exploration is com-

bined with old to create an updated skill and attention strategy. In Stage 3, the

new skill is tested and feedback received from any agents monitoring the learner’s

performance. In Stage 4, the learner’s perception space is reconfigured to enable

improved accuracy in future episodes, and actions are compounded where possible

to improve efficiency. The new skill is stored and the cycle iterates. Some tasks

may have inherent hierarchical or sequential structure which can be exploited to

improve the efficiency of this process.

In Chapter 7, we describe in detail an implemented example of GTLF, to-

gether with the results of an experiment which demonstrate its use, before com-

paring and contrasting the framework with similar existing systems. Before that,

however, we look at the bigger picture: what are the design lessons that could

be learned from GTLF, and what are the practical implications for an agent

designer?
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Chapter 4

GTLF as a Design Philosophy

The aim of this chapter is twofold: to distill and summarise what we consider to

be the main lessons in agent design to be learned from GTLF, and to discuss some

of the more philosophical ideas and questions that have arisen from its creation.

It is particularly suited to the busy designer who is interested in a quick ‘take-

home message’ without the need to trawl through the technicalities of the longer

chapters.

Before we begin the discussion proper, we make two general points. Firstly,

above all else GTLF should be useful. If it is a hindrance rather than a help in

designing or thinking about agents then it has failed in its primary purpose. We

do not see it as a collection of rules or parameters that must be adhered to in

order to create some kind of ‘GTLF-compatible agent’. Rather, we hope GTLF

is used as a collection of guidelines and structures, open to debate and revision,

around which designers can organise their own ideas and research interests. If the

reader considers any of the points put forward in this chapter before designing

another agent, then we see that reader as using GTLF.

Secondly, although there is much advice on agent design contained within this

chapter, it does not come from one who has vast experience and has designed

countless agents. Some may suggest that this invalidates the advice, but we would

argue that the perspective of the young researcher has advantages in this case.

The author is not yet rooted in one particular way of thinking; is not allied to

any specific academic cause or ideal; has a perhaps näıve yet still relatively fresh

outlook on the subject. No doubt many established designers will have considered

a number of the issues raised in this chapter, quite possibly more formally and
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in more detail than given here. However, by collecting all such ideas in the same

place, it is our hope that at least one will be novel to the reader.

4.1 Five Design Considerations from GTLF

There are a number of points that could have been added to the list below, but

for the sake of brevity we have selected what we see as the top five. It is worth

reiterating that these considerations are the product of the entire dissertation

experience; if the chronology is not taken into account, it could be construed

that the author does not follow his own advice. Put another way, the author

learned some of these lessons ‘the hard way’.

4.1.1 Consider the Whole Problem

It is tempting and, it seems, fairly common to present a task learning problem as

consisting of just the part that needs learning plus whatever is needed to make

that part comprehensible. The remainder is either swept neatly under the carpet

or else simply ignored or taken for granted. This makes some sense when it

comes to publishing work, as the alternative would be very lengthy papers with

relatively little interesting content. However, we believe that it is important for

the one actually carrying out the work to consider the whole problem.

For example, every problem contains hard-coding. From the physical design

of the agent hardware (if applicable), to the operating system they are running

(on), to the programming language being used, to the statistical assumptions

being made, to the representations and algorithms which have been chosen, to

the choice of algorithm parameters, and so on; without hard-coding there is

no problem. It is unrealistic to expect everything to be learnable (at least not

everything simultaneously) — there is no free lunch — so the best alternative is

to try and define as precisely as possible what needs to be hard-coded or assumed.

Once this is acknowledged, it should be easier to accurately define exactly what

the core learning problem is.

Included within the rather broad definition of hard-coding given above is the

definition of the task itself, and the (often implicit) metric for success associated

with it. But it is worth asking where these quite fundamental definitions come
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from. We assert that they do not exist independently of an agent. If (as is

likely) the answer is “from the agent designer”, then how tailored is the task

and its success metric to the specific agent and environment which one hopes

will generate (publishable) results? How much have the designer’s social priors

affected these definitions? Or perhaps the task definition originates from another

agent, either external or internal to the experimental arena. How trustworthy

is that agent? How high or strict a standard is expected? If the origin is the

learning agent itself, does it fully understand the task, and can it reliably chart

its progress? What if there are multiple definitions of the same task? How can

a concensus be reached? How should different opinions be weighted? By asking

and answering some of these questions, an agent designer may discover things

they never knew they had assumed.

4.1.2 Consider Your Primitives

In some respects, to “Consider the Whole Problem” covers all possible bases.

The remaining considerations listed here, then, are those that we feel are worthy

of particular attention. As far as perception-action primitives are concerned, we

suggest asking the following three questions:

1. Where are my primitives coming from? — this is part of the same question

we asked above. Are the learning primitives for this problem hard-coded or

themselves learned? Or perhaps more accurately, what aspects of my prim-

itives are hard-coded? What silent priors have influenced those aspects?

2. Where are my primitives going? — are the primitives I have defined

and / or derived for this problem static? If so, I’d better be pretty sure

that they are suitable, but on the other hand not so tailored as to mask the

difficulty of the problem in general. If it is anticipated that the perception-

action primitives should change over time, then this is a very difficult learn-

ing problem in itself, orthogonal to the task learning problem in question.

Can the two solutions evolve simultaneously, or is it better to have some

kind of episodic ‘E-M style’ dithering between the two; that is, hold one

problem fixed and optimise the other, and then swap over.

3. What level of learning am I looking at? — is it closer to the action-level
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end of the spectrum, alongside robot controllers, where the primitives re-

late to quantities such as joint angles and motion paths? Or is it closer to

the effect-level end, where the primitives are perhaps conflicting high-level

goals and the various skills needed to achieve them. Or is it somewhere in

between? Do the primitives themselves relate to each other independently

of the particular task context? For example, can the perceptual primitives

be nested or organised in such a way as to simplify the decision problem?

Can low-level action primitives be concatenated and co-ordinated to cre-

ate complete movements and behavioural units which can then in turn be

applied to learning at a higher level?

4.1.3 Consider Different Learning Methods

It stands to reason that every learning researcher will have their favoured learning

method, algorithm, paradigm, etc.; let’s call it X. However, this can have the

unfortunate side-effect that every learning problem is seen (at least initially)

in terms of X. At worst, problems become hammered into type X problems,

whether it suits them or not.

We are not proposing that all methods are equal; instead we suggest consid-

ering what parts of a given problem or what classes of problem in general might

be suited to different learning methods. If we take as a case in point the two

paradigms most familiar to us: social learning via imitation and individual learn-

ing in the form of Reinforcement Learning. The latter is suited to tasks which

can be safely repeated many times over until some convergence criterion is satis-

fied; perhaps in simulation, for example. For RL to work, the agent must be able

to choose its path through the task using some action selection scheme designed

to maximise learning. Once a policy has been learned in this way, it could be

used to adaptively control an agent which perhaps does not have the opportunity

to repeat trials ad infinitum. Coupled with the proven convergence properties

of many RL systems (MDPs for example), this is a very powerful method with

proven real-world applications.

However, there are also many situations where it is impossible to use RL.

Some tasks must be learned very quickly; those that result in death in the event

of a bad choice for example. For any agent with limited energy, longevity, or
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even just attention span, repeating tasks indefinitely may not be possible. On

the other hand, social learning requires some kind of model agent to be available

to learn from, and this immediately limits the situations in which it could be

used. It is also very different in process from RL: the source of task knowledge is

another (presumably) autonomous agent over which the learning agent exercises

no control. The path through task space is determined not by the learner but by

the demonstrator; ‘random search’ or indeed any control policy for the purposes

of learning becomes meaningless. Also, the opportunity for learning to conver-

gence is completely dictated by the demonstrator. If the demonstrations cease,

then learning ceases, no matter how short the learning time may have been. In

imitation learning you get what you’re given, which is why so-called ‘one-shot’

learning is of critical importance. But by harnessing social knowledge in this way,

some tasks which would take a huge amount of time to learn using RL could be

learned very quickly.

It is also worth considering when different learning methods could be used

in tandem or in sequence to complement each other. For example, using social

learning when a model is available to garner ‘rough’ task knowledge as quickly

as possible, and then using reinforcement learning when no model is available

(or everything possible has been learned from it) to fine-tune behaviour to the

agent’s particular configuration or situation.

4.1.4 Consider Other Agents

Suppose that an agent designer designs an agent to learn and execute a given

task in a given environment. What may not be apparent to the designer is that

that agent represents a point in a huge design space of possible agents. Part

of the role of GTLF is to try to define some of the ‘dimensions’ of that design

space, and in doing so make the space easier to explore systematically. This could

be useful if, say, the designer wants to find a better agent, as an alternative to

just implementing a bunch of agents having somewhat random or ‘best-guess’

properties and parameters, hoping to chance upon an improvement.

This way of thinking about design spaces should also be of benefit when

working with or reading about agents designed by others. It should more readily

allow a designer to see how his agent relates to another, and encourages an open
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mind when it comes to design differences: “I have done it this way out of these

possible ways for these reasons, they have done it that way out of those possible

ways for those probable reasons” as opposed to, “I have done it right, they have

done it wrong.”

The third and final point we would like to make in this section is to suggest

that apparently quite different agents might lie closer to each other in design

space than one might initially suppose. The particular hypothesis expounded

later in this dissertation is that virtual agents have more in common with robotic

agents in terms of embodiment than some researchers give them credit for. In

other words, it could be that a particular agent embodied in a virtual domain

could be ‘re-embodied’ in a material domain without having to move very far in

design space. It is worth noting that in general, this space is very likely not as

well-behaved as we have made it sound.

4.1.5 Consider the Bigger Picture

As a researcher in X, you may only really be interested in one type of agent, one

type of task, or even just one type of algorithm. However we would urge you to

consider the ‘bigger picture’. For example:

• Your agent might only ever need to learn one type of task, but what if

it needed to learn many? How would it structure and co-ordinate that

knowledge? How could learning be consolidated across multiple episodes

and be extended to lifelong learning?

• Your agent may be required only to operate in a constrained environment,

but suppose its sphere of operation needed to be widened. How could its

task knowledge be adapted or transferred to new domains, both ostensibly

similar and obviously different? Would this require major change at all

levels of representation within the agent, or only at the levels close to the

agent-environment interface? How agnostic is your learning system to its

implementation platform?

• Your agent may only ever act in isolation, but how would it cope if forced

to interact with other agents? Could it learn to co-operate? Could it learn

to compete? Could it learn to defend itself? Could it learn to attack? How
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could it be adapted to make use of socially available task knowledge? How

could it be adapted to impart its own task knowledge socially?

• You might only be interested in the learning system of your agent, but

what about the rest of the architecture? What other modules are there,

how are they implemented, and where do they come from? How can your

learning system best support the data requirements of other modules and

vice versa?

Looking at some of these questions should allow both yourself and others to better

place your work within the vast and expanding body of learning agent research.

4.2 Summary

By treating GTLF as a broad design philosophy as opposed to either an agent

classification framework or baseline learning system, we find five considerations to

put forward to the learning agent designer. Firstly, consider the whole problem,

as opposed to just the fragment of interest; define what is hard-coded so it is

easier to define what needs to be learned. Secondly, consider the primitives being

used; where they come from and how they might change. Thirdly, consider using

different learning methods; recognise their relative strengths and weaknesses in

different learning scenarios. Fourthly, consider your agent as one taken from a

large design space; try and relate your agent to others. Fifthly, consider the

bigger picture; although you might be interested in only a relatively constrained

problem, try and hypothesise how the agent’s operation could be generalised.

This first part of the dissertation has concluded with a philosophical discussion

on agent design, based upon the lessons learned by the author by the end of the

project. In the next part we restart the story at the beginning, describing the

origins of our interest in task learning, and documenting the evolution of the

framework set out in this part.
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Part II

System Development
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Chapter 5

COIL: Cross-channel Observation

and Imitation Learning

In Part I we took a theoretical path, looking first at the concepts that we believe

are core to task learning, and then at our framework in detail with reference to

examples and hypothetical implementations. In Part II we essentially take the

same route, but from the more concrete, empirical perspective of chronological

systems development. We trace the evolution of our framework via the systems

and algorithms that have inspired us, toward the current GTLF implementation.

At the outset of this project, our primary interest was in human-level real-

time social learning (Bryson and Wood, 2005; Wood, 2006). We were persuaded,

chiefly by the arguments of Laird and van Lent (2001), that the domain of virtual

reality-style computer games could offer a fresh perspective on this research topic,

also allowing for relatively rapid development when compared with other domains

(see Section 5.2). We settled on the particular problem of using program-level

imitation (Byrne and Russon, 1998) to allow virtual agents called bots, which

inhabit the game world of Unreal Tournament (Digital Extremes, 1999), to learn

skills that might improve their in-game performance. In search of inspiration, we

began to investigate other high-level, real-time social learning systems,

One such system which not only produced impressive practical results, but

also comprised a computational model with convincing biological correlates, is

Deb Roy’s Cross-channel Early Lexical Learning (CELL) system (Roy, 1999; Roy

and Pentland, 2002). CELL essentially learns to associate audio input produced

by spoken words (e.g. “ball”) with visual input which contains the referent(s)
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of those words (e.g. a picture of a ball). As we studied CELL more closely, it

became apparent that the process it used to learn bindings between spoken words

and their perceived meanings might be adapted to learn bindings between more

general percepts and actions, as observed during the demonstration of a task.

The further we explored how such a generalisation might be made, the more we

started to learn about and question the components and processes necessary for

learning which were task- and / or agent-independent. This, then, was the origin

both of our interest in the nature of task learning, and of the sequence of systems

which has (thus far) resulted in GTLF.

In Chapter 3 of his thesis dissertation, Roy gives an implementation-independent

description of CELL, stating:

“...[CELL] may be applied to a variety of domains beyond those im-

plemented in this thesis.” (Roy, 1999, p. 47)

We had three reasons to test this hypothesis:

1. To see if we had found / could create a system capable of performing

program-level imitation in Unreal Tournament.

2. To see what could be discovered about task learning in general through the

domain transfer process.

3. To test if our target domain was included in the ‘variety of domains’ con-

jectured by Roy.

This chapter explains our modification of CELL to create COIL – Cross-

channel Observation and Imitation Learning – and presents experimental results

using the modified system. We start by giving an overview of the workings of

the original CELL model, and explain how it could in principle be adapted to

program-level imitation. We then defend our original choice of Unreal Tourna-

ment as a research platform, and present some test tasks that an imitation system

would ideally be able to learn from an appropriate demonstration. Next we go

through each stage of COIL in detail, relating them back to CELL, and also ex-

plain our addition of a module for executing learned behaviour. Finally, we give

the results of COIL’s performance on the test tasks, which show some degree of

imitative success. The chapter concludes by summarising what we had learned
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from our initial COIL implementation, and introduces the subject of Chapter 6;

a critical analysis of COIL.

5.1 CELL: a Working Learning System

As the name suggests, CELL was designed to emulate lexical acquisition in in-

fants; specifically, to associate views of a given target object with spoken words

describing that object. Roy’s experimental setup consisted of a camera mounted

on an articulated robot arm which moved around an object to capture it visually

from different angles. The sounds it was trained on were the utterances of a

series of parents during sessions of natural1 interaction with their infants, and

their joint interaction with the target objects of the experiment. This occurred

independently of the picture data capture, and the parents were not informed

that their interactions should achieve any specific goals. A noise-cancelling mi-

crophone was used, and the utterances were subsequently digitally sampled for

processing. The association of words to pictures was carried out artificially by an

analyst noting the period during which a certain object was the focus of attention,

and then pairing that period of sound with pictures of that object.

The CELL learning model consists of five main stages (see Figure 5-2 and

details below in Section 5.3):

1. Feature Extraction — salient features of the input sensor stream are ex-

tracted and isolated in separate Linguistic and Semantic data channels.

2. Event Segmentation — the channels are divided temporally into chunks

called events and subevents.

3. Co-occurrence Filtering — Linguistic and Semantic chunks which co-occur

are linked together and stored in a short-term memory buffer.

4. Recurrence Filtering — any paired chunks which are repeated in close tem-

poral proximity are extracted and stored in a mid-term memory buffer.

These pairs are lexical candidates.

1At least, as natural as possible given the circumstances of a controlled laboratory experi-
ment.
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5. Mutual Information Filtering — cross-channel Linguistic-Semantic mutual

information is calculated for all lexical candidates. Those for which the

value is sufficiently high are output (into a long-term memory buffer) as

lexical items.

By the definitions we set out in Part I, CELL’s language-learning method

falls under non-imitative social learning – its task is just to acquire knowledge

from observation. However, if we were to extend this task by asking it to gen-

erate spoken words given visual input (whether or not this behaviour is actually

expressed), then this moves us toward imitation; toward COIL. In this extended

context, we can think of CELL’s perception space as consisting of all possible

views, and its action space as containing all possible vocalisations (the converse

is the case if we assume the task is to match objects to given speech). Percep-

tual classes, then, are groups of views which represent certain object properties,

and action elements are (strings of) phonemes. These are extracted from camera

and microphone data respectively through CELL’s Feature Extraction and Event

Segmentation stages, which thus define the perception and action categorisations

available to subsequent learning processes. So, how does CELL solve the four

task-learning sub-problems outlined at the start of Section 2.3? Co-occurrence

Filtering creates bindings between perceptual classes and action elements, and

Mutual Information Filtering assigns a real number; a measure of mutual infor-

mation; to these bindings. This constitutes the agent’s solution to sub-problem

1 (skill formation / improvement). Both of these stages, along with Recurrence

Filtering, contain mechanisms for eliminating classes and elements which are un-

likely to be relevant to the task at hand. This can be seen as forming the agent’s

attention strategy (sub-problem 2). Improving the perception and action config-

urations (sub-problems 3 and 4) would require progressively improving the rules

encoded in the Feature Extraction and Event Segmentation stages. CELL does

not include this feature.

Having recast CELL in terms of task learning by imitation, we can now at-

tempt to generalise its domain of operation.
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Raw Sensor Data

Feature Extraction

Co−occurence Filtering

Event Segmentation

Recurrence Filtering

Mutual Information Filtering

L−channels
S−channels

L−events
S−events

LS−events

Lexical candidates

Lexical items

Figure 5-1: The inputs and outputs of each stage of CELL: Feature Extraction
separates the raw sensor data into Linguistic and Semantic channels; Event Seg-
mentation identifies discrete blocks of data within each channel set; Co-occurrence
Filtering pairs co-occurring Linguistic and Semantic events; Recurrence Filtering
identifies those pairs which have been seen most frequently; Mutual Information
Filtering creates prototype pairs from those which yield the highest information
(Roy, 1999).
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5.2 Learning in Different Domains

We wish to move from CELL’s domains of object recognition for perception and

vocalisations for action into a more task-independent framework. As we have done

throughout, we are considering situated agents of the sort described in Chapter 1.

For imitation, this implies that an embodied imitator agent remotely observes an

embodied expert agent acting in a shared environment. Human imitation, for

example, is a special case which satisfies these constraints.

COIL’s goal is to create executable skills – that is, bindings of perception

to action – through imitation. Therefore, COIL replaces CELL’s Linguistic and

Semantic channels with generic Action and Perception channels. The Action

channels receive data relating to the actions executed by the expert while com-

pleting the task. The Perception channels receive data relating to the perception

of the expert, which is then used to determine the context of actions. Of course,

the context determining actions includes internal state unlikely to be observable

by the imitator, as well as external state which, while visible, will not perfectly

correspond to the expert’s view.

As Roy points out (Roy, 1999, ch. 2), human infants possess innate biases

which make learning tractable (see also Thiessen and Saffran, 2003). This is

reflected in CELL by, for example, the extraction of shape and colour character-

istics from captured images, and the automatic recognition of phoneme bound-

aries. COIL is no different: the success of the Feature Extraction and Event

Segmentation stages depend upon the imitator’s biases to filter out extraneous

sensor information and parse continuous behavioural / perceptual data streams

into representative categories (Byrne, 2003). Thus, the data going into the ‘main’

processing stages of COIL (Co-occurrence, Recurrence and Mutual Information

Filtering) consist of select, segmented Action and Perception channels. Details

of these stages can be found below, but the key question for now is: what is the

output of the model?

In high-level terms, the resultant chunks stored in COIL’s long-term memory

buffer represent actions paired with perceptions. Since the goal of an imitator is

(presumably) to act, we can view these chunks as building blocks for a specifica-

tion of imitated behaviour. If a given perception has been seen to instigate some

action, this could be described as motivation. Conversely, if an executed action
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has been seen to bring about some perceptual state, this could be called expec-

tation. Hence the output of COIL’s fifth stage consists of Motivation Items

and Expectation Items, which I henceforth refer to collectively as M-E Items.

These chunks are similar to Drescher’s context/action/result schemas (Drescher,

1991), except that COIL does not go so far as to merge its observed context/action

(Motivation) and action/result (Expectation) pairs. The issue of deciding how to

act based upon M-E Items is beyond the scope of CELL’s original operation, but,

since it is such a crucial part of the imitation process, we have added extra stages

to COIL specifically for this purpose (see Section 5.3.6). Note that, if the percep-

tual categorisation is correctly tailored so as to create mutually-exclusive classes,

then a well-defined skill function can be formed without the need for an attention

strategy. If, however, in order to be generally powerful and reusable, M-E Items

do sometimes include non-exclusive perceptual state, then an attention strategy

will have to be inferred.

In the next sections, we realise this abstract description of COIL. We first

introduce our chosen task domain and the initial test behaviours to be imitated

therein. This is followed by a detailed breakdown of each stage of the model,

supported by implemented examples, and contrasted with examples from Roy’s

implementation.

5.2.1 The Real World, Robotics and Realistic Simulations

Much recent imitation research makes use of robots (or at least robot simulators)

as the platform to test new models and algorithms (Alissandrakis et al., 2005;

Hafner, 2005; Schaal, 1999). Robots have many advantages as experimental plat-

forms: they operate in the real world, in real time and face many of the same

problems as human imitators while being able to exploit similar constraints (e.g.

the physics of gravity, optics and impact). Robots like humans must deal with

noisy and incomplete sensor information, imperfect motor control, and dynamic,

unpredictable surroundings.

On the other hand, many practical issues associated with robots can inhibit

research. Robots may severely exaggerate the effects of noise, since it is difficult

to tune them to the precision achievable by a human infant learning hand-eye

coordination. Maintaining them takes considerable cost and expertise that is
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orthogonal to artificial intelligence, often requiring special technicians in the lab-

oratory. As a result of these constraints, robot tasks seldom approach anything

like the complexity of animal behaviour. Animal behaviour is characterised by

multiple, dynamic and conflicting goals in environments populated with agonistic

agents2. It also is characterised by phased or cyclic activity operating on multiple

concurrent time courses. Because robot behaviour is currently so severely con-

strained, concentrating all research on these platforms can result in overlooking

combinatorial issues in learning and action selection that might be quite acces-

sible in other platforms, such as artificial life (Tyrrell, 1993; Zettlemoyer et al.,

2005).

For this reason, we have opted for what we believe is a ‘best of both worlds’

domain: real-time, virtual reality-style computer games. This is certainly not a

new approach, and there are many AI researchers already working in this domain

(Laird, 2001b; Le Hy et al., 2004; Thurau et al., 2004a; Gorman and Humphrys,

2005). Although games do avoid some of the technical problems of robots, they

do introduce others. Again, perception and action may be far less reliable than

for a skilled animal, and further they can be unreliable in ways that are bizarre

by animal standards (e.g. failure to report the presence of a wall blocking move-

ment.) However, they are real-time and highly dynamic environments which

require the pursuit of multiple goals (defeating aggressive opponents, curing in-

juries, accumulating weapons and/or other tokens, rescuing innocents, assisting

teammates). They contain both continuous and discrete actions and perceptions.

Also, importantly, they are not constructed by the experimenters as biased “toy”

domains (Bryson et al., 2001). Rather, they present tasks on a general-purpose

platform that are challenging for even human intelligence.

We now describe the game we have chosen, Unreal Tournament, highlighting

its suitability for our purposes.

5.2.2 Unreal Tournament

Unreal Tournament (UT) is a commercially released, multi-player ‘First Person

Shooter’ (Digital Extremes, 1999). As the term suggests, the user has an agent’s-

eye view of the game and direct, real-time control of an avatar’s actions. UT also

2By agonistic we mean competing for survival and therefore liable to conflict.
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supports remote control of agents by sending commands to the game server over

a network, which provides a framework for allowing external programs to direct

an agent’s actions. Thus, UT provides a viable platform for testing strong AI,

since humans and AI can compete and interact in a real-time, spatially situated

domain. AI-controlled agents are commonly known as bots in the literature and

gaming community. The game server sends two categories of sensor data back to

the client. The first is synchronous: at regular intervals the client is informed of

the agent’s status (e.g. health, ammunition, current weapon, etc). The second

is asynchronous: for example whenever a wall is bumped, a footstep is heard or

damage is taken.

Figure 5-2: A screenshot from the virtual reality-style computer game, Unreal
Tournament (Digital Extremes, 1999).

These data, when viewed as a whole, are a highly dynamic, high-dimensional

mixture of categorical and continuous variables, akin to sensory data acquired in

the real world. Other similarities include physics simulation, such as collisions,
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gravity, and sound and light transmission. The bots’ sensor data are incomplete

in the sense that only a reduced subset of the game variables are observable;

the bots have limited virtual sensors. For example, the imitator cannot know

the health state of the expert, although this may well affect the expert’s choices.

However, what sensors are available are not subject to noise in the same way

physical sensors would be. Neither are bots hampered by imperfect motor control.

In fact, low-level movement (i.e. that of arms or legs) is dealt with by the

graphics engine, and bots can only be externally manipulated at a higher level

(i.e. move forward or rotate). This may seem unrealistic to those familiar with

fine gesture simulation (e.g. Schaal et al., 2003), but note that there is a good

deal of neurological data indicating that the ‘higher’ level brain functions we are

presumably simulating (e.g. frontal lobe control of behaviour) can also operate at

a similar fairly gross abstract level (Bizzi et al., 1995; Graziano et al., 2002). Much

of the natural imitation literature does not deal with precise replication of gesture

(Byrne and Russon, 1998) — or even using the same effector on an affordance.

For example, Custance et al. describe agents that imitate a demonstrator pulling

a peg out with fingers by pulling it out with their teeth (Custance et al., 1999).

In summary, we believe that UT is realistic enough to allow the study of

human-like imitation, but simple enough to enable us to get at core learning

problems relatively quickly. To make explaining the mechanics of the COIL

model clearer, we first take a moment to set out the initial task behaviours that

we designed to test COIL’s aptitude for imitation in this domain. We will then

use these example tasks in the description of the COIL algorithm.

5.2.3 The Task Scenarios

UT ships with an environment editor, UnrealEd (Digital Extremes, 2000), which

we used to create game worlds containing (and, in fact, defined by) the fea-

tures necessary to complete our initial tasks. These simplified domains are much

like the simplified domains used by Roy (1999) and many other developmental-

learning researchers. For Task 1, the expert demonstrator was a human-controlled

bot, and the imitator was the COIL system ‘embedded’ in an AI-controlled bot.

The imitator was programmed to follow the expert, remaining a fixed distance

behind and to one side, so as much perceptual information as possible was shared.
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The only data made available to the imitator was that received from its own sen-

sors. Latent variables within the expert (such as health) were invisible, just as

they are to humans playing the game.

The environment itself was a single cuboid cavern aligned with the world

axes3. Near each corner, equidistant from the nearest two walls, was placed a

health vial. Such vials are visible both on screen and on sensors, provided they

fall within a bot’s field of view (view cone). Once picked up they disappear, reap-

pearing (re-spawning) after a short fixed time interval. The task demonstrated

by the expert was simply to locate and collect vials as quickly as possible.

The expert, imitator and cavern remained unchanged for Task 2, but the

health vials were replaced by a total of sixteen bots. These bots were recognisably

from two different teams; half to be considered ‘friends’, and half ‘enemies’. The

task demonstrated was to locate and fire at enemy bots while avoiding friendly

ones. A bot which is hit by weapon fire takes damage, affecting its internal health

score, and is ‘killed’ when this score reaches zero, disappearing from sensors. The

bots themselves were unarmed and posed no threat to either the expert or the

imitator.

A full account of the scope of these tasks to test the breadth of COIL’s

imitation abilities will be given in Section 5.4. First we describe the detail of

COIL’s modelling procedures in the following section.

5.3 The COIL System

Our first theoretical COIL model, as detailed below, is as close an adaption as we

found possible of CELL to a broader imitation learning context. We now look at

each stage in depth: its input, its processes and its output. To aid understanding,

we also explain how each stage was applied to Task 1, and compare it with Roy’s

implementation.

5.3.1 Feature Extraction

The initial input into the first stage of the model is in the form of ‘raw data’

from the imitator bot’s sensors. Each sensor cycle provides data about objects of

3So the floor plane was horizontal and the walls were vertical.
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note in the environment, specifically the imitator bot’s own state, and the visible

or audible state (such as location or actions) of other bots, items, weapons,

navigation nodes, projectiles, etc. These data are extracted and / or merged into

different channels. Conversely, a given channel should receive data pertaining

to some specific feature of interest in the environment. COIL allows a channel

to be one of two types: Action or Perception. Henceforth, we will use the term

channel set to refer to the set containing all channels of a given type.

Our goal for Task 1 was to extract a minimal but sufficient set of features

to allow learning of the task. There were only two types of action necessary to

complete the task effectively: turning and moving4. We thus needed to build

biases for detecting these kinds of behaviour into our system (see Section 5.2),

and so created two Action channels: one for monitoring rotation in the expert,

and one for monitoring motion. Using a piece of memory state in the imitator

bot, we designed an algorithm to detect change in attitude of the expert and

output the signal to the rotation channel. A similar algorithm detected change

in position relative to attitude and fed that data into the motion channel.

Due to the simplicity of the environment, only one type of perceptual infor-

mation is required for completion of Task 1. We know that the only visible items

are the vials to be collected, and that there are no other obstacles, so tracking

the bearing of the nearest item to the centre of view is sufficient. This single

Perception channel receives data from a more complex algorithm in the imitator

bot which uses the item and bot sensors to calculate the relative bearing of each

visible item to the expert, and returns the least of these.

Roy’s experiment utilised two sensors and a total of three channels. Micro-

phone data were fed into a single Linguistic channel ready for phoneme analysis.

Camera data were fed into two Semantic channels: one transformed into colour

histograms, and one into shape histograms. Using noisy physical as opposed to

clean virtual sensors has disadvantages (see Section 5.2.1), but applying COIL to

a real-world problem is nevertheless an interesting open research area (see also

Section 8.2). As with Roy’s implementation, after feature extraction the relevant

data resided in three channels. The next stage is to separate the streams into

discrete events which will eventually form the basis for the desired M-E Items.

4By moving we mean translational movement along the floor plane.
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5.3.2 Event Segmentation

Once the relevant data have been diverted into channels, two levels of event

detection occur. Top-level event boundaries span the given channel set and are

determined by a condition on all of these channels simultaneously. The resulting

chunks are known as A-events or P-events (depending upon the channel set

in question). Lower-level segment boundaries also span the channel set but, in

contrast, are determined by conditions on each channel individually. In other

words, every channel contributes segment boundaries that then span every other

channel in the same channel set. A-subevents are consequently defined as any

continuous sequence of segments within an A-event, across any subset of Action

channels. P-subevents are analogously defined.

To clarify, let us take a long jump as an example of an A-event. Suppose the

A-channels being monitored are running and jumping. Before the athlete starts

moving, there will be no activity in either channel. If we suppose the condition for

commencing an A-event is passing from ‘no activity’ to ‘some activity’, then the

start of the athlete’s run would trigger the start of an A-event. When the athlete

switches from running to jumping, activity in the running channel will cease and

activity in the jumping channel will commence. These conditions could be used

to define a segment boundary. Finally, when the athlete lands, activity in the

jumping channel ceases, leaving both channels dormant. This condition could be

used to define the end of the A-event. The A-subevents for this A-event include

any subsequence of segments across any subset of the channels, namely (ignoring

‘empty’ subevents): just the run, just the jump, and the two in sequence.

As an example of a P-event, consider a memory task in which the participant

must remember a series of letters held up on cards, as well as the colour and

position of those letters. Assume we have three P-channels; one for shape, one

for colour, and one for position. When a card is held up, all the channels go

from being dormant to being active; a suitable condition for the start of a P-

event. In this case, all the channels remain active for as long as the card is

visible. When it is hidden, the channel inputs all cease simultaneously; a suitable

condition for ending the P-event. No suitable segment boundary conditions arise

from this example, although if the letters were to somehow change colour or

position then this could provide such conditions. The P-subevents, then, are:

letter, colour, position, letter & colour, colour & position, letter & position, and
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all three together.

In our experiments, the Feature Extraction process assigned representative

‘labels’ (real numbers) to pre-defined perceptual classes within each channel. For

the rotation channel, the classes were turning anticlockwise (represented by

−1), not rotating (0) and turning clockwise (1).

For the motion channel, they were moving other than forward (−1), not moving

(0) and moving forward (1). The bearing channel classes were no items visible

(100), item anticlockwise (−1), item ahead (0) and item clockwise (1). In

addition to the choice of channels, the classes themselves also reflect the imita-

tor’s innate knowledge brought to the task at hand and provide a bias toward

tractable learning.

Given the data classes, designing event recognisers was relatively straightfor-

ward. A-events (events which span the Action channels) were triggered by any

change in expert bot state. In other words, an A-event started whenever the

expert moved or turned (or both) and ceased when it stopped. The gaps be-

tween A-events represented times in which the expert was still. A-event segment

boundaries were triggered by a change in state in either of the Action channels;

a change in the direction of motion from forward to strafing sideways, for exam-

ple. P-events (events which span the Perception channels) were triggered by

any change in the bearing channel state. So if, for example, an item that was

previously clockwise of the expert becomes ahead, a new P-event commenced. In

our implementation, P-events formed a continuous sequence, with the start of a

new event triggering the end of the prior. No further segmentation of P-events

occurred.

Linguistic-event (L-event) boundaries in Roy’s model were triggered by the

commencement or cessation of speech input, and so the events themselves con-

sisted of spoken utterances delimited by silence. Segment boundaries coincided

with probable phoneme boundaries generated by a Recurrent Neural Network.

Semantic-events (S-events) worked slightly differently in that they were not tem-

poral, but a collection of static pictures taken of the object in question from

different angles, or object view sets. As such, they had no constituent seg-

ments, and only contained subevents differentiated by channel span, i.e. colour

and shape. This allowed Roy to control the complexity contribution from at least

one channel, which we could not.
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5.3.3 Co-occurrence Filtering

Co-occurrence filtering is a simple procedure which searches the segmented chan-

nel sets for A-events and P-events which overlap in time. Such a pair of co-

occurring events is termed an AP-event, and shunted to Short Term Memory

(STM), which is implemented as a queue.

All the channels receive data concurrently due to the imitator’s fixed sensor

cycle frequency5. Since P-events covered the entire time line for the duration of

each simulation, every A-event overlapped with at least one P-event6. When a

coincident pair was found, they were copied to STM as an AP-event: a period

of continuous action coupled with a period of uniform perception.

Roy’s object view sets were timestamped, as were the utterances, which al-

lowed overlap to be established. Consequently, an LS-event in his model consisted

of a spoken utterance paired with an object view set.

5.3.4 Recurrence Filtering

The arrival of an AP-event in STM initiates a comparison to be made between the

new member and each of the existing members. The constituent A-events of the

pair of AP-events under comparison have already been subdivided into segments.

Using some predefined metric on A-subevents, da, every A-subevent from the

new AP-event is compared with every A-subevent from the other. If the distance

between them falls below a predetermined threshold, ta, then the two subevents

are marked as matching. The same process is carried out for P-subevents.

Given the matched pairs of subevents generated by the above process, the new

AP-event is scanned for co-occurring matches. If a matched A-subevent coincides

with a matched P-subevent, their partners in the other AP-event are checked for

co-occurrence. If they too coincide, then a recurrent match has been found. Such

a match is used to create an M-E Candidate, and these are stored in another

buffer: Mid Term Memory (MTM).

An A-subevent in this instance is a continuous sequence of motion and / or

5Again, this may not be as biologically implausible as it sounds; the brain seems to also
work to synchronise sensory input (von Stein and Sarnthein, 2000).

6In principle, entire P-events could occur in the gap between A-events (i.e. when the bot is
stationary), but this didn’t happen in our experiments since the environment was largely static
and only the bot’s action caused changes in its perception.
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rotation segments. To measure the distance between such segments, we defined

the action distance metric initially as follows:

da(x, y) =
∑
c∈C

|ȳc − x̄c|
|C| (5.1)

where x and y are A-subevents in A-space, C is the set of all channels spanned

by x and y, and x̄c and ȳc are the mean class values for the given channel c for

each respective subevent.

For example, let both x and y be A-subevents representing uniform clockwise

turns. So, C = {R} (just the rotation channel), |C| = 1, x̄R = 1 and ȳR = 1.

Then we have:

da(x, y) =
|1− 1|

1
= 0 (5.2)

in other words, the two A-subevents are coincident in A-space. If, however, we

let y represent a uniform anticlockwise turn (so ȳR = −1), we have:

da(x, y) =
|1−−1|

1
= 2 (5.3)

P-subevents are blocks of uniform perception, and the perception distance metric

was defined similarly:

dp(x, y) = |ȳB − x̄B| (5.4)

No sum is necessary, since all P-subevents span and only span the bearing channel

(B). The thresholds ta and tp were initially both set at 0, so only coincident A-

and P-subevents were regarded as matching. Recall that AP-events in STM

undergo recurrence filtering whenever a new AP-event arrives. When a pair of

matching A-subevents co-occurs with a pair of matching P-subevents, then one

of the A-subevents is taken as representative and coupled with one of the P-

subevents. This couple is an M-E Candidate, which is then added to MTM.

Examples of M-E Candidates could include a ‘clockwise turn’ coupled with an

‘object clockwise’, and a ‘forward motion’ coupled with an ‘object ahead’.

Bearing in mind that L-subevents in Roy’s implementation consisted of se-

quences of phonemes, the metric dl that he used was an acoustic distance metric

based on the likelihood that two sequences were generated by the same Hidden
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Markov Model. He restricted the search by only comparing phoneme sequences

of less than one second duration containing at least one vowel. S-subevents were

either colour or shape view sets in the form of histograms. The visual distance

metric used, ds, was based upon a χ2-test for histogram similarity. The match

thresholds were set relatively low, and so many Lexical Candidates were created.

The metrics Roy selected were well-established; unsurprisingly, there are no con-

ventions for measuring the distance between two generic actions or perceptions.

Also, Roy assumed ‘close’ temporal proximity of similar LS-events (justified by

his study of highly repetitious infant-directed speech), and implemented STM as

a queue of around just five items. This, in turn, capped the number of compar-

ison operations necessary for each new AP-event. We could not make a similar

assumption, as action-perception pairs which arise from a task demonstration

could be separated by significant time intervals. Thus our STM buffer was much

bigger (typically 25 items), which increased the number of necessary comparisons

and affected the efficiency of the process (see also Section 6.1.2).

5.3.5 Mutual Information Filtering

Providing the number of Lexical Candidates in MTM exceeds some fixed mini-

mum, mutual information filtering occurs whenever recurrence filtering generates

a new candidate. Before attempting to explain the process, some more terms

need to be defined:

• A-space and P-space are metric spaces with metrics da and dp respec-

tively.

• An M-E Candidate is equivalent to a point in A-space, coupled with a

point in P-space. These points are known as the candidate’s A- and P-

prototypes.

• An A-unit is a sphere in A-space of radius ra, with an A-prototype at its

centre (P-categories are defined analogously).

• An A-unit coupled with a P-category is called an M-E Item.

• An M-E Candidate matches an M-E Item if the candidate’s A-prototype

falls within the item’s A-unit, and the candidate’s P-prototype falls within
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the item’s P-category.

And so, the algorithm runs as follows:

1. An M-E Candidate is selected. Its A-unit and P-category are initialised to

have sufficiently small radii so as to contain no other A- or P-prototypes.

2. ra is increased until another A-prototype falls within the A-unit7.

3. The mutual information for this configuration of radii is calculated (see

Appendix B for method and example). If it exceeds the previous maximum,

then it is stored along with the current radii configuration.

4. Steps 2 and 3 are repeated until every other A-prototype has been included

in the A-unit.

5. rp is increased until another P-prototype falls within the P-category. ra is

reset to its initial state.

6. Steps 2 to 5 are repeated until every other P-prototype has been included

in the P-category.

7. Steps 1 to 6 are repeated for every M-E Candidate in MTM.

8. If the maximum mutual information exceeds some predefined threshold,

then the M-E Candidate and its optimal radii are used to create an M-E

Item (see above). This is stored in Long Term Memory (LTM). The

M-E Candidate, and all those that match the new M-E Unit, are removed

from MTM.

For Roy, an L-prototype was a phoneme sequence in L-space, the space of

all such sequences. An L-unit was therefore a sphere of phoneme sequences that

‘sound sufficiently like’ the prototype. An S-prototype was a colour or shape

view set in S-space, the space of all such view sets. An S-category was thus a

sphere of view sets that ‘look sufficiently like’ the prototype. So, a Lexical Unit

was effectively a spoken word paired with a viewed object, both with allowances

7We achieved this by pre-calculating the pairwise distances between all A- and P-prototypes
in MTM; a number of calculations quadratic in the number of M-E Candidates.
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for individual variation. Roy used a linearly-interpolated prior to smooth mutual

information values for infrequently observed pairs, and later versions of COIL

also include this function.

5.3.6 Generating Behaviour

Half of the challenge of imitation is acting upon what has been learned, but this

function is not incorporated into CELL (although Roy does practically demon-

strate his acquired language knowledge in other applications; Roy, 1999, ch. 6).

Therefore we have added modules to COIL to complete the ‘imitation loop’ —

to facilitate acting upon acquired behavioural knowledge. These modules, along

with their theoretical basis, are the subject of this section.

We have seen how, through observing the completion of a given task by an ex-

pert, COIL can construct a ‘dictionary’ describing the apparent action-perception

relationships that are required for, or are a consequence of, the completion of that

task. However, the fundamental question of how to act upon said knowledge re-

mains, and is nontrivial. To answer this question, we need to consider what the

resultant M-E Items represent in more detail.

In section 5.2, we suggested that motivation implies a perception that triggers

an action, and expectation implies an action that predicts a perception. Recall

that an M-E Item is an A-unit coupled with a P-category, and that these, in

turn, are derived from an A-subevent which coincides with a P-subevent. The

temporal priority of these subevents indicate whether a given M-E Item is in

fact a Motivation or Expectation Item. If the initiation of the corresponding P-

subevent preceded the A-subevent (the perception preceded the action), then it is

a Motivation Item; if the A-subevent was initiated first, then it is an Expectation

Item.

We discuss the correspondence problem (Nehaniv and Dautenhahn, 2002) in

relation to UT at length in Section 9.2, but for now we make the simplifying

assumption that the expert and imitator have similar embodiment ; their avatars

in the game world have identical body configurations. We can thus write cor-

respondence libraries for the imitator (see Section 3.1.3) which contain simple

one-to-one mappings for both perceptions (e.g. item ahead ⇒ item ahead) and

actions (e.g. moving forward ⇒ move forward()). This allows the imitator to
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search its acquired Motivation Items for those which match its perceptual state

(via the P-category), and retrieve candidate actions for execution (via the A-

unit). If the Motivation Items cover the imitator’s perception space, then the

above method provides a complete specification for behaviour, albeit with a sim-

ple reactive mapping between state and action. Expectation Items are not as

obviously applicable in terms of determining action, and for Tasks 1 and 2 the

reactive behaviour provided by Motivation Items alone has been adequate for

effective imitation.

Recall that the Perception channel classes for Task 1 related to the possible po-

sitions of the nearest item to the centre of the bot’s view cone: no items visible,

item anticlockwise, item ahead and item clockwise. Having observed the

expert collect vials for some period of time, the imitator switches into acting

mode and begins to ‘observe’ its own perceptual state instead of that of the ex-

pert. At the instance at which acting commences, the imitator searches LTM

for Motivation Items which match its current state. If there is more than one,

the Motivation Item with the highest mutual information value attached to it

is chosen. If none match, then the imitator has not learned what to do in this

circumstance; depending on the experimenter’s preference, it either returns to

observing, or is forced to take a random action in the hope of entering a new

perceptual state.

Having decided on a Motivation Item to ‘act upon’, the action that is ‘most

representative’ of its component A-prototype is selected for execution. This is

calculated by measuring the distance between the A-prototype and contrived

‘pure actions’ (that is, a set of A-subevents, Y = {yi}, for which each ȳi is

equal to an action class label — see Equation 5.1). The action classes which are

comparable depend upon which channels are spanned by the A-prototype. The

action closest to the A-prototype in A-space (measured using the action distance

metric in Equation 5.1) is then executed.

For example, suppose that the selected Motivation Item contains an A-prototype

recorded from the Rotation channel only, where the expert turned clockwise for

90% of the time, then paused for 5%, and finally turned anticlockwise for 5%.

The mean rotation class value for this A-prototype is:

x̄ = (0.05×−1) + (0.05× 0) + (0.9× 1) = 0.85 (5.5)
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bearing in mind that the rotation class labels (and thus the ‘pure actions’) are

turning anticlockwise (−1), not rotating (0) and turning clockwise (1).

So, the closest action is turning clockwise, which has a distance of:

da(0.85, 1) = |1− 0.85| = 0.15 (5.6)

The action selected for execution is therefore turn clockwise(). The particular

action classes that the imitator can recognise in the expert represent a bias in

COIL for recognising actions in the imitator’s own repertoire. As we mentioned

above, this can be partly justified due to the similar embodiment of the imitator to

the expert. The command turn clockwise(d◦) (i.e. with an angle parameter),

for example, exists as a method in the bot controller module.

For Task 1, the imitator was programmed to retrieve a new action every

time its perceptual state changed (checked at each sensor cycle), or to repeat the

previous action if the state remained unchanged. We defined the actions typically

to be short and discrete (such as turn clockwise(20◦)), for several reasons:

1. The sensor cycle rate was slow enough that at maximum rotation velocity

(for example), whole perceptual classes could be turned through in between

cycles, missing an opportunity to change course of action.

2. Most of the available bot commands must be given a numerical parameter,

so true continuity of action is difficult (see Section 9.2.2).

3. The game server requires some delay between commands. For example,

trying to execute an action every sensor cycle is impossible.

It is quite possible to build apparent continuous motion out of small discrete

‘decisions’, particularly for embodied agents where their physical plant does a

certain amount of its own integration, though it is also possible to build a sys-

tem with dedicated integration modules (Schaal and Atkeson, 1994; Bryson and

McGonigle, 1998; Thórisson, 1999; Bryson, 2005).

Clearly, the quality of the imitated behaviour depends upon both the biases we

have built into COIL for the task in question, and the quality of the demonstration

given – the next section looks at our results in this area.
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5.4 Results

Prior to giving our experimental results, it would seem appropriate to explain our

choice of tasks in terms of hypothesising COIL’s ability to solve a wider range of

imitation problems.

Task 1 is designed to be an elementary task to test the correct functioning

of the different system components. Perception space is partitioned, so there

are no concurrent competing perceptual classes. However, the observed actions

(i.e. turning and rotating) are real valued with varying duration and may overlay

multiple perceptual classes: they are not naturally discrete. Also, the bots sense

with respect to absolute (world) co-ordinates; COIL must translate these readings

into expert-centric co-ordinates to allow easier recognition of the expert’s objec-

tives. Task 2 requires all of the above, but additionally COIL must arbitrate

attention by prioritising multiply satisfied perceptual classes (see Section 5.4.2

for examples). Task 2 necessitates firing a weapon which, although being more

easily discretisable, introduces a new problem: such a short action could get lost

or ignored amongst long continuous ones, especially when the sensor sampling

only occurs at around 10Hz. We believe that many imitation problems could be

constructed from arbitrarily complex combinations of these problems; however,

we discuss potential issues with COIL’s scalability in the next chapter (Section

6.1.3). We now recap the specific requirements of each task in turn, and give the

results of COIL’s learning efforts.

5.4.1 Task 1

At the highest level, the behaviour to be imitated in Task 1 was to collect health

vials. To achieve this, the imitator monitored the rotation and motion of the

expert, and the relative position of the vials in the environment. There were thus

two Action channels (rotation and motion) and one Perception channel (bearing).

Broadly speaking, actions were delimited by a change of direction (or cessation

of motion), and perception by a change of perceptual class. A full specification

of Task 1 can be found in the examples of Section 5.3.

As previously mentioned, the Perception space of Task 1 is divided into four

mutually exclusive classes: no items visible, item anticlockwise, item ahead

and item clockwise. COIL ideally must acquire sufficient Motivation Items,
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Table 5.1: Correct Behaviours for Task 1: O1 and O2 represent optimal policies,
whereas NO1 and NO2 will complete the task, but with wasted rotation. Arrows
indicate bearing or direction of motion; × represents no items visible.

Perceptual Class

Policy Item ↖ Item ↑ Item ↗ Item ×
O1 Turn ↖ Move ↑ Turn ↗ Turn ↗
O2 Turn ↖ Move ↑ Turn ↗ Turn ↖

NO1 Turn ↗ Move ↑ Turn ↗ Turn ↗
NO2 Turn ↖ Move ↑ Turn ↖ Turn ↖

by observing the expert, to ‘cover’ this space with the correct actions to com-

plete the task. The actions recognised by COIL were: turning clockwise,

turning anticlockwise, not turning, moving forward, moving other than forward

and not moving. Including the possibility of a null assignment arising from a gap

in the observed behaviour, there are therefore seven possible assignments to each

perceptual class, giving 28 possible pairings and 16384 possible behaviour poli-

cies, where a policy is a set of pairs covering all salient perceptual categories8.

Of these, only four policies will correctly complete the task (see Table 5.1).

Policies O1 and O2 are ‘optimal’ inasmuch as an agent acting accordingly will

complete the task in minimal time and with minimal wasted ‘energy’. The ‘non-

optimal’ policies NO1 and NO2 arise from the fact that turning clockwise x◦

is equivalent to turning anticlockwise (360 − x)◦. An agent adopting either of

these policies will be able to complete the task, but, unless the imitator and vials

have a very specific initial configuration, time and energy is likely to be wasted

through surplus rotation. Any other policy will result in an inability to complete

the task. An experimental trial consisted of COIL observing, via an imitator

bot, the demonstration of the task by a human-controlled bot for 60 seconds. As

operators of the expert, we used three different ‘tactics’ to complete the task:

8moving other than forward does not translate directly into an executable action. In our
experiments, it was mapped to move backward(), but never appeared in any of the learned
behaviour. Also, although not moving, not turning and the null assignment all have the same
practical outcome for the imitator, as far as COIL is concerned, they are different actions,
which is why we make the distinction above.
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CW Tend to turn clockwise if no vials are visible.

ACW Tend to turn anticlockwise.

Mix No fixed tendency.

We carried out ten trials for each tactic, for a total of 30 trials. To discover

the imitator’s learned behaviour, we queried the model directly with the four

perceptual classes, rather than by observing the imitator act. Attempting the

latter could have lead to further error and subjectivity affecting the results. We

used the following program-level task metric (see Section 3.3.1) as the basis for

assessing the quality of learned behaviour:

dπ(sO, sE) =
∑
Pn

dA(sO(Pn), sE(Pn)) (5.7)

where sO is the behaviour learned by the observer on a particular trial, sE is

one of the expected behaviours defined in Table 5.1, and Pn ranges over the four

(mutually exclusive) perceptual classes. The metric on actions, dA, is defined

simply as:

dA(aO, aE) =

{
0 if aO = aE

1 if aO 6= aE

(5.8)

We normalise dπ to give d̄π by dividing by |{Pn}| = 4 (see Equation 3.20). For

each trial, we applied this metric to compare the learned behaviour with each of

the four correct behaviours, which allowed us to determine the closest match (sE

where d̄π is minimum) along with a percentage correctness measure:

(1− d̄π)× 100% (5.9)

Any behaviour which does not score 100% (i.e. which does not exactly match any

of the correct behaviours) will fail in the imitation task. The results are shown

in Table 5.2.

Note that nearly half of the 30 imitators learned a fully correct behaviour.

The majority of the remainder formed only one incorrect association; two formed

two incorrect associations (our worst case). Additionally, 27 of the 30 learned

policies matched most closely to one of the optimal policies (15 matched O1,
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Table 5.2: Results for Task 1: 30 trials were carried out; 10 for each tactic (CW:
turn clockwise, ACW: turn anticlockwise, Mix: turn at random).

% correct behaviour

Tactic 100 75 50 25 0

CW 5 3 2 0 0

ACW 4 6 0 0 0

Mix 5 5 0 0 0

Total 14 14 2 0 0

Mean correct behaviour: 85%

and 11 O2), with only 3 which more closely matched non-optimal policies (2

matched NO1, and 1 NO2). Clearly, COIL performs significantly better than

random action allocation would; further discussion and performance comparison

is carried out in Chapters 6 and 7. For now we move onto the second task.

5.4.2 Task 2

Until now, Task 2 has only been described in brief (see Section 5.2.3), so the

specification that follows adds enough detail to gauge COIL’s success, but omits

the lowest level technicalities. For this task, the expert aimed to seek and destroy

‘enemy’ bots, while avoiding ‘friendly’ bots. The expert was armed, but the

target bots were not. This time, the environment was encoded by two Perception

channels: bearing and affiliation. The bearing channel functioned analogously

to that in Task 1, replacing items with potential target bots. The affiliation

channel received a classification of the nearest bot as either friend, enemy or

no target visible. The Action channels available to the imitator were rotation

(identical to Task 1) and firing. The firing channel received a binary signal,

firing or not firing. As per Task 1, A-events were delimited by absences of

action, and A-subevents by a class change on either A-channel. P-events were

delimited by changes in the affiliation of the nearest target bot, and further

segmented into P-subevents by changes of bearing class. The A-space and P-

space metrics were defined very similarly to Task 1, with the notable exception
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of the firing channel: we defined the distance between firing and not firing to

be significantly farther than other distances, to reduce the probability that the

imitator would confuse the two states.

One of the key differences between the encoding of this task and the previous

one is that there are now two Perception channels concurrently receiving data.

Therefore, there are three (non-empty) sets of perceptual classes ({bearing=B},
{affiliation=A} and {bearing=B, affiliation=A}) concurrently applicable to

the expert, as opposed to one ({bearing=B}). COIL must learn to correctly

prioritise these sets. For example, the imitator might observe the expert firing at

an enemy:

{bearing=ahead, affiliation=enemy} ⇒ firing

COIL could, however, assign firing to just {affiliation=enemy}, which would

result in the imitator opening fire before the target is in position, or to just

{bearing=ahead}, which would disastrously result in the imitator firing indis-

criminately, at friends and enemies alike. We now describe two ways of measuring

success in this task. The first concentrates on the key states:

KS1 {bearing=ahead, affiliation=enemy}
KS2 {bearing=ahead, affiliation=friend}

These are key, because correct behaviour in these states is most critical for com-

pleting the task. It is worth noting that, although we use the terms enemy and

friend, to the imitator they have no intrinsic meaning; they are just two different

types of target. We specify the four possible outcomes relating to these states,

in descending order of merit, as follows:

Good Fire at enemies, avoid friends.

Safe Avoid both enemies and friends.

Trigger-happy Fire at both enemies and friends.

Bad Fire at friends, avoid enemies.

Formally, this amounts to limiting Pn in Equation 5.7 to range only over the

key states {KS1, KS2} – every learned behaviour that covers these states will

exactly match (i.e. dπ = 0) one of the above outcomes. The second way of

measuring success is by attempting to define an optimal policy over all of task
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Table 5.3: Results for Task 2: 30 trials; 10 for each tactic (as for Task 1). The
left-hand side of the table shows the number of imitators exhibiting each type of
key state behaviour: Good, Safe, Trigger-happy or Bad. The right-hand side
gives the average % correctness score for each tactic.

Key state behaviours

Tactic G S T B Mean % correct

CW 6 4 0 0 72

ACW 7.5 2 0.5 0 71

Mix 8 1 1 0 65

Total 21.5 7 1.5 0 69

space, and then calculating percentage correctness, using the same process as for

Task 1. In this case, we define such a policy as Good in the key states, turn

toward a visible enemy, and turn (in either direction) when faced with a friend.

Each trial lasted as long as it took for the expert to eliminate all the enemy bots,

typically approximately 60 seconds. Tactics CW, ACW and Mix were used

analogously to Task 1, again with ten trials each for a total of 30. Results are

shown in Table 5.3.

Decimals arise from the fact that, for this task, maximal mutual information

was often shared by a number of Motivation Items. Where the number of Motiva-

tion Items for two actions were equal, the action assignment for that perceptual

class was divided in two (clearly in practise, a method of selecting between these

actions would need to be found). Note that over two thirds of the bots tested

performed correctly in the key states, and the remainder acquired a definite ten-

dency against shooting friends. The mean behaviour correct score was less for the

Mix tactic, because the inconsistency in turning direction provided fewer similar

examples for the imitators to form a fully correct policy.

The clear differentiation between firing at friends and firing at enemies shows

that COIL had succeeded in prioritising concurrently applicable sets of perceptual

classes. Combining this result with that of Task 1, we had some motivation for

constructing more complex behaviours to solve hierarchically-structured and / or

multi-part tasks. On the other hand, the lack of perfect performance on such

seemingly simple problems, and the fact that the algorithm as it stood would
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not improve performance if it got off to the wrong start in learning were both

troubling.

5.4.3 Summary

GTLF and our interest in the characterisation of task learning grew out of a

project which focused on imitation learning (Bryson and Wood, 2005). Specif-

ically, our Cross-channel Observation and Imitation Learning (COIL) system

(Wood and Bryson, 2007b) is a generalisation to imitation of Deb Roy’s Cross-

channel Early Lexical Learning system (Roy, 1999; Roy and Pentland, 2002).

COIL channels and segments information relating to the perceptions and ac-

tions of an agent observed demonstrating a task. It then attempts to find good

perception-action bindings by identifying co-occurrence, recurrence and high mu-

tual information. The bindings are used as a specification for imitated behaviour

which can then be executed by the learner. The system was implemented and

tested in the virtual reality-style computer game Unreal Tournament (Digital Ex-

tremes, 1999). Agents (called bots) running COIL successfully learned two task

behaviours from human demonstration.

In the next chapter, we look at weaknesses in the COIL model, both demon-

strated and potential, and show how the use of different representations and

algorithms can compensate for them. This discovery ultimately paved the way

for GTLF, as described in Part I and implemented in the final chapter of this

part.
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Chapter 6

From COIL to GTLF

At this point, we felt that COIL had given us some valuable insights into the

building blocks we would need for task learning in general, such as a concrete

basis for perceptual classes and action elements, an example representation for

acquired skills, and so on. We had also gained a working module1 for learning

by observation, along with a deeper understanding of the requirements of this

particular method. Nevertheless, we could also see that our strict ‘CELL-clone’

version of COIL was already hitting obstacles which were likely to prevent it from

becoming the powerful, general-purpose tool and model we were aiming for. We

examine the most significant of these obstacles in the next section.

6.1 Limitations of COIL

The problems impeding COIL fell into three main categories: issues with the

representations inherited from CELL, issues with the algorithms inherited from

CELL, and issues with the scalability of our characterisation of task space. We

now look at these in turn, and propose some possible solutions.

6.1.1 Issues of Representation

The CELL model seeks to pair a spoken word with a semantic category, where

each has associated with it an allowable tolerance for variation. Our direct trans-

1Bearing in mind that, at this time, we had not fully envisaged the final modular setup in
GTLF.
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lation to COIL attempts to pair an action with a perception, again with error

boundaries within their respective ‘spaces’. A key question is: is this a good

model for action-perception linkage or more importantly, given that our goal is

imitation, is this a useful model?

A Linguistic Unit for Roy was an example of speech which lay in a continuous

space of such examples. Two units could be easily compared by an established

acoustic distance metric, and part of CELL’s aim was to find clusters in this

metric space corresponding to words in the English language. In what sense,

though, does a generic Action Unit lie in a similar continuous space? For defining

reactive behaviour, as is our primary aim, the problem reduces to deciding which

action to initiate in a given perceptual state. This set of actions is surely discrete

and finite for a UT bot, and the actions themselves have no established or even

easily definable metric relationship to each other. For example, how far is jump()

from turn right(), and what use would that information be anyway?

The difference in nature between Roy’s Semantic and our Perceptual Cat-

egories emerges from the way they are formed within their respective models.

P-Categories have P-subevents at their core and P-subevent temporal bound-

aries are defined by innate (pre-programmed) triggers. There is no sensible way

to define these triggers other than having them respond to changes in perceptual

class; classes which the programmer predetermines may inform action selection

for the given task. Put another way, COIL requires the programmer to discretise

each perception dimension (channel) into the finest granularity that could be nec-

essary to disambiguate perceptual context. This is in fact what happens in Roy’s

Linguistic channel: the vocal stream is discretised into syllables and pauses, so

all words must have boundaries which correspond to syllable beginnings/endings.

It is not, however, how his Semantic Categories are found. S-Categories created

from S-subevents are not temporal as such in Roy’s implementation: the associ-

ation to L-subevents is done manually offline and no triggers need to be defined

(see Section 5.3.2). Consequently, no pre-categorisation needs to be done and

S-Categories can emerge from clusters formed in well-behaved histogram spaces

governed by well-established metrics (Roy, 1999, p. 104).

In summary, COIL assumes discrete action and perception representations,

and it is unclear how a well-defined metric could be assigned to such spaces in

the general case. This conclusion pointed us toward the more symbolic repre-
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sentations we used both in the extension of COIL described below (Section 6.2),

and ultimately in GTLF. We were further convinced by results obtained using a

symbolic classifier; specifically a decision tree (DT). The classifier took a purely

symbolic form of the M-E Candidates that arrived in MTM as input, and output

a behaviour specification as described in Section 5.3.6. Run on the same data

that was recorded during the experiments of Chapter 5, the DT scored a perfect

100% in Task 1, with non-optimal behaviour learned in only one trial. Interest-

ingly in Task 2, the DT always learned Good behaviour in the key states, but

made almost as many mistakes on average as COIL (overall mean 70% correct

behaviour).

The final motivation for our change of representation was the potential saving

in complexity of the matching and clustering algorithms inherited from CELL,

and this is the topic of the next section.

6.1.2 Issues of Process

CELL is designed to emulate early lexical learning, so the task environment is

expected to be constrained in certain important ways. One constraint that cannot

easily be mapped into the broader domain in which COIL is expected to operate

is the Recurrence Filtering constraint (see also Section 5.3.4). This limits

CELL’s ‘attention span’ to about five consecutive LS-events, and only word-

concept pairs which recur within this frame survive the filter. It is, of course,

perfectly reasonable to assume high-frequency repetition of keywords, given that

the recorded speech is infant-directed. However, our UT imitators cannot always

assume equivalent high-frequency repetition of action-perception pairs during the

completion of a task: that quite depends upon the task. This begs the question

of whether learning UT entirely socially would require ‘infant-directed violence’.

Notably, some species of predator provide their young with extra practice for the

final (and thus, least frequently occurring) stage of a hunt (Caro and Hauser,

1992).

In our first implementation of COIL, we simply slackened the constraint by

extending the attention frame to cover a ‘large’ number of AP-events. In fact,

we initially removed it altogether, allowing the filter to compare each new AP-

event with all of those that had previously been added to STM, but this proved
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too computationally inefficient. This led us to consider removing the filter alto-

gether, and replacing it with something more appropriate both to the learning

problem and to the new representations mentioned above. Our idea was for short

term memory to become some form of episodic memory (Tulving, 1983, 2001;

Baddeley, 2000, 2001), which eventually became a key part of GTLF (see Sec-

tion 3.1.3). At first, we reasoned that rather than storing the past five events,

we might store an entire task-learning episode. Each game could consist of a

sequence of episodes where different tasks are learned and perhaps returned to

later. M-E Candidates created from events stored in episodic memory could then

be stored in MTM for the duration of a game (or possibly a fixed number of

games), and LTM would hold M-E Items generated during all the games of an

agent’s lifetime.

We then began to envisage episodic memory as a new structure designed

specifically to deal with discrete representations and replace both STM and MTM.

An episode could be represented as a list of observed co-occurring A-subevents

and P-subevents, with a count of the number of times that pair recurred with

the episode. That way, each AP-event could be processed individually (i.e. no

pairwise comparisons would be needed), potentially reducing the computational

complexity of the system as a whole. We viewed this as a reasonable match

to indexical theories of the hippocampus’ role in memory (Teyler and Discenna,

1986; McClelland et al., 1995; Louie and Wilson, 2001), which are best known

for capacity reasons: a sparsely encoded representation allows the retention of

many events in a finite neural memory. However, they provide the extra (and

perhaps more important) attribute of generalised storage of commonly occurring

events, which may thus accumulate more ‘weight’ in the representation. This line

of thinking was the basis for the episodic buffer described in Section 3.1.3.

As well as the need for a change to the Recurrence Filtering process, we also

identified some potential problems with the Mutual Information Filter (see Sec-

tion 5.3.5). The algorithm has cubic complexity in the number of elements in

MTM (which in general could grow without bound) and exponential in the num-

ber of monitored channels (which grows with the complexity of the task domain).

Additionally, the probabilities used in the calculation of the mutual information

are frequentist (as opposed to Bayesian) approximations, and are consequently

very sensitive to noise caused by small frequency counts (i.e. rarely observed
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events). Roy tackles this by interpolating these probabilities with priors, but the

choice of prior mass parameter required by this technique can have significant

effects on the resulting probabilities, particularly if many of the events in ques-

tion are infrequent. This may well be the case for our applications, so we desired

the option of using a more robust method, such as the MLP implemented in our

extension to COIL (see Section 6.2).

6.1.3 Issues of Scalability

We have only ever applied COIL to two relatively simple ‘local’ tasks carried out

independently of each other. Even these have highlighted some serious computa-

tional issues, which we highlighted in the previous section. However, confronted

with the ‘full’ world of UT, we think it unlikely that even an ideal version of

COIL could succeeded in learning correct behaviour across a range of tasks. This

is mainly due to the complexity of the perception space that would make this

possible. We’ve already established that the number of executable actions is not

a major issue, but in a flat COIL architecture, every goal and ‘thing worthy of at-

tention’ (including memory) in every conceivable in-game task would necessitate

its own perception channel.

We conjectured that the solution to this problem was to construct a system

which allows for different task-learning frameworks or spaces. To again reference

the biological solution, we know that in rats the semantic referent of hippocam-

pal ‘place’ cells are dependent on the task the subject believes it is engaged in

(Kobayashi et al., 1997). Further, the developers of the two dominant cogni-

tive modelling tools, Soar and ACT-R, have found that creating modular ‘work

spaces’ is necessary for replicating human-like learning (Laird and Rosenbloom,

1996; Anderson and Matessa, 1998). Even at an intuitive level, new recruits are

generally trained on one aspect of a complex job at a time.

Our initial goal for the extension of COIL was to make improvements at the

local level – we needed the core aspects of the tasks to remain constant, both so

that we could focus on this goal, and also so that we could make useful compar-

isons with prior results. Consequently, we put hierarchical task organisation on

the back-burner until it came to specifying the full GTLF. Here, it underpins the

multi-level roles of perceptual classes, action elements and skills (Section 2.1),
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which can be combined with / traded-off against a hierarchical task description

(Section 3.5.1).

Before we move on to explaining our first adaptation of COIL, we should

state that none of the above critique is aimed at discrediting Roy’s application

of CELL to the learning problem for which it was designed. However, we have

now seen some evidence relating to the research questions stated at the outset of

the previous chapter, indicating that program-level imitation may not be one of

the ‘variety of domains’ (Roy, 1999, p. 47) in which CELL is readily applicable.

Roy makes no such direct claim, of course, and we hope that GTLF, which is a

direct ‘descendant’ of CELL, will prove to be successful in this sphere of learning

and others.

6.2 The Next Step

Given that we had achieved some success with COIL, and yet had conjectured a

significant number of problems with the system, we were unsure as to its potential

both as an adaptive controller and as a learning model. We therefore set out to

implement an algorithm which could operate within the COIL framework, while

seeking to minimise the impact of the issues we had identified. We specified four

desiderata for such an algorithm, based on our analysis up to that point. It

should be:

Scalable - both in terms of memory requirements and learning complexity.

Incremental - so that all observations are used and knowledge is consolidated

in a natural way.

Rigorous - having output that is interpretable and justifiable through established

mathematical argument.

Robust - not prone to failure when processing unusual, unforseen or extreme

events.

It would also be preferable for the algorithm to be sufficiently general-purpose

to be applicable to other task learning problems. The Bayesian framework seemed

like a good place to begin, as it allows each observed event to update prior belief

in an efficient and well-defined manner (Bishop, 1995, p. 17). However, there are

many algorithms which make use of it, so the question becomes which one to use
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in order to obtain the desired posterior beliefs. We chose a multi-layer perceptron

(MLP) architecture which, given a certain set of constraints, provides Bayesian

posterior probabilities as its outputs. We describe this specific configuration in

the next section.

6.2.1 Multi-Layer Perceptron Learning

As explained in Section 6.1.2, the parts of COIL of greatest concern to us were

the Recurrence and Mutual Information filters, together with their supporting

memory structures. To replace these, we therefore required that the new algo-

rithm receive perception-action data from the Co-occurrence filter and output a

behavioural map. In MLP terms, this map looks like a classifier network, which

receives perceptual data and assigns it to the appropriate action class. To allow

an MLP to learn such a classification, we must translate the observed perception-

action pairs into an appropriate set of training examples. Each example should

consist of a set of input variables and a set of target variables. In this case, the

input variables should correspond to the observed perceptual state of the expert,

and the target variables should correspond to the observed action. The question

is, what encoding to use for these variable sets?

Following from the discussion in Section 6.1.1, we are assuming now that

perceptual classes (such as item left and no item visible) have no implicit

relationship to each other. They do not lie in a metric space and so cannot

be represented by ordinal variables. We therefore use a purely categorical 1-

of-c encoding for the input: suppose a given Perception channel has n possible

symbolic states. Then symbol i can be represented by a vector of n bits where

only the ith bit is set (1 ≤ i ≤ n). If there are m Perception channels then the

concatenation of m such vectors produces the complete required binary input

vector of length n1 + ... + nm. If there are k observable actions, then this is

equivalent to a classification problem with k target classes, and we can create

one output node for each class. We have already stated that it is desirable for

these outputs to have a Bayesian interpretation as posterior probabilities of action

class membership for a given perceptual state. This is achievable using a softmax

activation function for the network output units (Bridle, 1990) and minimising a

cross-entropy error function for the network weights (Bishop, 1995, p. 237). After
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some empirical testing, we chose to include three hidden units in the network,

although the results were not particularly sensitive to this choice. It should also

be possible to use Bayesian model selection techniques for selecting the number

of hidden units (see Section 6.2.4). Given the above node structure, the network

we used was fully connected with a simple feedforward structure, as shown in

Figure 6-1.

binary inputs grouped by Perception channel

biases

A1 A2 A3 A4 A5

outputs correspond to action class probabilities

Figure 6-1: Diagram of MLP architecture. The binary input vector is a con-
catenation of 1-of-c encoded symbols for each Perception channel. There are
three hidden units with softmax activation to the outputs, which consequently
correspond to posterior probabilities of action class membership. Arrow shows
direction of forward propagation; biases are shown explicitly for clarity.

The network training scheme uses Bayesian regularisation with separate hy-

perparameters for each of four weight groups: first-layer weights, first-layer biases,

second-layer weights and second-layer biases (Bishop, 1995, p. 408). Training

was by back-propagation for up to 100 cycles of scaled conjugate gradient search

(fewer if convergence occurred beforehand), followed by re-estimation of the hy-

perparameters using the evidence approximation technique (MacKay, 1992b).

This cycle of re-estimation and re-training was carried out 8 times. The test

data for the network consisted of querying all possible combinations of percep-

tual state, to evaluate the most probable action assigned to that state by the

classifier. Finally, these posterior probabilities were marginalised according to

the observed data (MacKay, 1992a). Although this last step does not affect the
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most probable action class, it can have significant effects if loss matrices are added

(see Section 6.2.3 below). Further detail about the MLP structure and training

methods we used can be found in Appendix A.2.

Empirical evidence showing the increased learning performance of the new

algorithm can be found in the next section. Before we examine this however, we

review the desiderata set out at the beginning of this section and ask if they are

satisfied:

Scalable - as far as learning complexity is concerned, network training time

increases only linearly with the number of observed events, as compared to the

combinatorics of the original algorithms (see Section 6.1.2). Also, the MLP is

a function which requires storage equal to the number of network weights as

opposed to a potentially boundless number of stored M-E Items.

Incremental - due to this increase in efficiency and the belief accumulation

property of the Bayesian framework, every observation can be taken into account

and consolidated with prior knowledge.

Rigorous - the fact that we can interpret the MLP outputs as posterior proba-

bilities is a well-proven property of this type of network and totally independent

of the domain in which we’re working.

Robust - the parametric re-estimation carried out after each network training

cycle serves to minimise any problems caused by local minima relating to, say,

weight initialisation.

6.2.2 Results

To evaluate our new algorithm, we tested it against the same data collected for

the original COIL experiments.

Task 1

Recall that the first task involved collecting health vials from various locations

within a game map. During the original experimental runs, the data arriving in

channels (i.e. post Feature Extraction) were saved prior to further processing.

This allowed us to compare the new learning algorithm on the same data sets. The

MLP replaces only the Recurrence and Mutual Information Filtering stages of
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COIL, with the first three stages remaining unchanged. For further performance

comparison, we also fed this data into a decision tree algorithm, C4.5 (Quinlan,

1992). The results comparing the three techniques are shown in Figure 6-2.

Black COIL
White C4.5 (decision tree learner)
Grey COIL with MLP

Figure 6-2: Comparative mean performance of the different learning algorithms
for Task 1, for each of the different tactics (CW: turn clockwise, ACW: turn
anticlockwise, and Mix: turn at random, as described in Section 5.4.1). The
black bars correspond to the original COIL processes, the white bars to C4.5 and
the grey bars to the new MLP classifier. Error bars show the standard error of
the means.

We were able to use the same task performance metric as before (see Equa-

tion 5.7), since the trained classifiers are effectively skill functions, and can be

queried as such. As can be seen from the figure, the MLP (grey bars) generated

universally perfect behaviour for this task, correcting all errors made by COIL’s

native algorithms (black bars). Interestingly though, C4.5 (white bars) also per-

forms a perfect classification; maybe not too surprising considering the relative

simplicity of the perceptual space. The one minor advantage of the network over

C4.5 is that the decision tree generated non-optimal behaviour (see Table 5.1)

for just one of the trials (the rest were optimal) whereas the network always

generated optimal behaviour.
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Task 2

The second task required the expert to locate and destroy enemy bots in an en-

vironment which also contained an equal number of friendly bots. All algorithms

and training methods remained the same for this task as for the previous one.

Results are summarised in Figure 6-3.

Figure 6-3: Comparative performance results for Task 2; as for Figure 6-2, except
that the additional right-hand grey bar for each tactic corresponds to the MLP
output moderated by a loss matrix (see Section 6.2.3).

The MLP (left-hand grey bar for each tactic) provides a small but not sig-

nificant (t-test, p = 0.05) increase in performance from both COIL (black bars)

and C4.5 (white bars), which for this task performs no better than COIL. Upon

inspection of the data, it is clear that for a majority of the trials, the associations

that would be necessary to form a fully correct behaviour are never observed.

Specifically, most of the misclassifications are made for turning toward an en-

emy; in the absence of such associations the imitator tended to adopt the domi-

nant turning direction observed and consequently err in either the enemy left or

enemy right state. The other common mistake was to fire before the enemy was

centred in sights; both were made less by the network than the other algorithms.

Performance is further improved, this time significantly (t-test, p = 0.05), by

introducing a loss matrix to encode prior task knowledge (right-hand grey bar
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for each tactic); one of the extentions we go on to talk about in the next section.

6.2.3 Bayesian Extensions

As discussed in Section 6.2.1, the probabilistic interpretation of results possible

from the network model is highly desirable. This also allows other Bayesian

techniques to be applied to the network and its outputs. We now discuss two

such techniques and show preliminary results.

Loss Matrices

In general decision theoretic terms, a loss matrix describes the relative penalties

associated with misclassifying a given input (Bishop, 1995, p.27). In this case

we can describe the matrix as having elements Lkj representing the loss resulting

from assigning an action Aj to a given perceptual state when in fact Ak should

be assigned. Decisions are then made by minimising the risk, or equivalently by

using the following discriminant to classify a given perceptual state x:

c∑

k=1

LkjP (Ak|x) <

c∑

k=1

LkiP (Ak|x) ∀ i 6= j (6.1)

where P (Ak|x) can be obtained from the (marginalised) network output probabil-

ities. The loss matrix values are independent of perceptual state; this is factored

in through the conditional probabilities in the discriminant. To demonstrate, we

applied a simple loss matrix to the networks generated during Task 2:

(Lkj) =




0 5 5

1 0 1

1 1 0


 (6.2)

where A1 is the fire() action, A2 is turn left() and A3 is turn right().

This matrix specifies that ‘accidentally’ firing instead of correctly turning should

incur five times greater a penalty than any other misclassification2. Informally,

one would expect this to be equivalent to giving the imitator the instruction

“only shoot if you’re sure”, prior to acting. The results of applying this matrix

2Note a loss matrix with zeros on the main diagonal and ones everywhere else describes a
discriminant equivalent to simply choosing the class with the greatest posterior probability.
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to the Task 2 network outputs are shown in Figure 6-3 (right-hand grey bar

for each tactic). The improvement, as expected, is due to fewer cases of firing

before the enemy is in position. Although this is a relatively simple example of

the application of this technique, it does demonstrate the ease at which prior

knowledge can be formally incorporated into the model, and how it could be

systematically altered to test the effect on output behaviour.

Selective Attention

It is likely that for a given task, only a small subset of the full available perceptual

state will be required for good performance. So far this subset has been chosen

by hand, but the MLP model can enable us to make this selection automatically,

within a sound Bayesian framework. This Automatic Relevance Determination

(Neal, 1996, p. 15) is achieved by using a different hyperprior. Instead of grouping

the weights such that there are four independent regularisation hyperparameters,

the weights associated with each input have their own hyperparameter. These

coefficients vary in proportion to the inverse posterior variance of the weight

distribution for that input. Thus if a given input has a high coefficient value,

the weight distribution for that input has a low variance and the input has little

bearing on the ultimate classification: the input has low relevance. Using a similar

training and re-estimation scheme as described earlier, these hyperparameters can

be used to determine the relative relevance of the different network inputs, which

in this case correspond to different aspects of the environment. Thus we have a

method for automatic attention selection within a broader set of channels.

To test this theory, we added a Perception channel to Task 1 which identified

the absolute direction the imitator was facing, represented by one of four ‘com-

pass’ symbols. One would expect this set of inputs to have lower relevance than

the existing channel relating to the relative bearing of the vials. We carried out

a further ten trials under much the same conditions as Task 1. The results are

summarised in Figure 6-4.

As expected, the coefficient values for the inputs associated with the new

channel are significantly higher on average than the inputs associated with the

original channel. The exception to this is the fourth Bearing input which (bear-

ing in mind the 1-of-c encoding) was fully determined by the state of the first

three inputs. Given these inputs converged to high relevance, the fourth was
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Figure 6-4: Each bar for Bearing represents one of the possible states of the Bear-
ing (Perception) channel: item anticlockwise, item ahead, item clockwise

and no items visible respectively. For the Direction channel, the bars corre-
spond to the states facing west, facing north, facing east and facing south

(reference direction is arbitrary). Each input state is associated to a network hy-
perparameter, the value of which is inversely proportional to the relevance of that
state for determining course of action.

correctly deemed of very low relevance. Although not demonstrated here, this

technique could in principle be used to prune perception space down to make

local task learning more accurate and efficient. To allow this, some kind of ‘rele-

vance threshold’ would have to be chosen, which may well vary from task to task.

The method for making such a choice remains an open question.

6.2.4 Summary

Despite COIL’s initial success, we identified a number of potential problems look-

ing to future development. Firstly, the representations designed for speech and

vision inherited from CELL were not best suited for representing generic actions

and percepts. Secondly, some of the algorithms inherited from COIL relied on

assumptions which did not hold in the general case, and this adversely affected

efficiency. Thirdly, COIL had no facility for representing hierarchical task or be-

haviour structure, which is likely to have rendered it unusable for complex tasks.
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We built an improved version of COIL — “COIL with MLP” — which sought

to address the first two of these issues: simpler representations were used, and a

generic MLP classifier network replaced some of COIL’s native algorithms (Wood

and Bryson, 2007a). Experimental results confirmed that the system had been

improved, and the immediate success of applying Bayesian techniques to intro-

duce prior knowledge and inform attention revealed some potentially interesting

avenues of research. This left us with two obvious options for the next, and what

became the final, step of this dissertation project:

1. Follow the success of generalising perception-action representations and al-

gorithms by exploring the idea of a general framework for task learning,

which would include the systems we had designed up to that point as spe-

cial cases.

2. Follow the success of applying Bayesian techniques by fixing our representa-

tion / algorithm combination, and conducting more experiments of a similar

type with a view to imitating more complex behaviours.

As is clear from Part I, we chose to pursue the former. Although the MLP

training algorithm complexity scales well in comparison with COIL, the global

scalability issues we highlighted in Section 6.1.3 were still of some concern. It

seemed a distinct possibility that we would reach a dead-end when trying to

imitate more complex behaviours. However, creating a generic framework would

allow us to retain the possibility of using MLPs, or indeed any other learning

algorithm, while at the same time re-designing the surrounding processes. We

could then build in the flexibility we needed to attack more complex behaviour

learning. We also conjectured that such a framework would be of more benefit

to the field at large, and would open up more interesting research problems (e.g.

investigating the role of social learning with respect to individual learning).

We have already described the framework and its basis in detail in Part I, so

the subject of the next chapter is our first proof-of-concept implementation of

GTLF, including results which indicate its potential as a research tool.
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Chapter 7

GTLF Implementation

GTLF, as specified in Chapter 3, is a large and complex modular system. It is

likely that most researchers wanting to make use of it will have neither the need,

the inclination, nor the time to implement every part. In this chapter, we demon-

strate how, using just a few simple modules and algorithms, GTLF can be used

to compare firstly the effect of different learning methods, and secondly the dif-

ficulty of different observation learning tasks. This should serve both to validate

the system, and provide examples for others to follow. For each experiment, we

first describe the method used, followed by the GTLF modules we implemented,

and then present our results.

Having seen GTLF both in theory and practise, the second half of this chapter

reviews a selection of its nearest-neighbour task learning systems in the literature,

both robotic and virtual. The relationships between the systems and their relative

strengths and weaknesses are discussed.

7.1 Experiment 1: Multi-Modal Learning

To demonstrate the basic workings of GTLF, we chose to design a simple experi-

ment which investigates multi-modal learning. Specifically, we wished to discover

the effects that good vs. bad demonstrations during learning by observation has

on subsequent trial-and-error learning.
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7.1.1 Method

For continuity, we again used Task 1 as described in Section 5.2.3 as our test

task; that is, the agent must learn to collect health vials distributed around the

environment. This time, however, we created an AI-controlled bot to be the task

demonstrator, as opposed to the human-controlled bots of the previous experi-

ments. This allowed us to systematically alter the quality of the demonstration

by programming the demonstrator to execute an action element selected uni-

formly at random from its repertoire with probability r, instead of following the

target task policy. An added advantage of using automated demonstrators is

that we were able to carry out significantly more trials than had previously been

possible1. This first experiment was split into three stages. We give an overview

here of each stage; more detail can be found in the later Results section.

Stage I

The aim of the first stage was to test if GTLF was capable of learning the task

by observation alone and, if so, how long the agents would take to do so. As a

control, we used ‘perfect’ task experts only here — those that always performed

according to the target behaviour specification (r = 0). We could then use the

recorded learning times for this first set of observers to calculate a ‘benchmark’

trial length; one that is sufficiently long such that a GTLF bot will successfully

learn the task with near certainty; and use this in the subsequent stages to test

observers learning from less-than-perfect demonstrators. To this end, we ran 30

trials, each one until the task had been successfully learned by the observer.

Stage II

In the second stage we fixed the trial length at the ‘benchmark’ length calculated

from the Stage I results. We then varied the quality of the demonstrations given

by varying expert randomness, r (as specified above). The r values used were

0, 0.25, 0.5, 0.75, and 1. An ‘expert’ operating with r = 1 continuously selects

actions at random and therefore gives no information about the target behaviour

to the learner. This is why we had to use fixed learning times; observers learning

1Although note that UT has no quick simulation mode; experiments must still be carried
out in real-time, just as for robots.

125



from such bad demonstrations would never be expected to converge upon the

target. Instead, we compared the performance of the learned task behaviour

with the target behaviour at the end of the trial, using the same program-level

metric as for the COIL experiments. We ran 30 trials for each type of expert.

Stage III

In the final stage of our first experiment we introduced the third variable of

interest: learning method. Stage II provided us with results for GTLF bots using

learning by observation alone. In Stage III we add trial-and-error learning, for

the comparison of three different learning methods:

1. Agents using just observation learning (i.e. Stage II).

2. Agents which start learning by observation, but then switch to learning by

trial-and-error half way through the trial.

3. Agents using just trial-and-error learning.

If we revisit the original aim of the experiment; “to discover the effects that

good vs. bad demonstrations during learning by observation has on subsequent

trial-and-error learning”; then the results of the type 2 agents will be of primary

interest. As for the previous stage, we varied r to give five different demonstration

qualities and ran 30 trials for each. The results of type 3 agents (also 30 trials)

are mainly a frame of reference for the trial-and-error learning of type 2 agents.

Before we describe the results of each stage in detail, we first describe how we

set up GTLF to cater for this experiment as a whole.

7.1.2 Implementation Specifics

Every agent using GTLF must specify a perception system, (initial) attention

strategies, exploratory behaviours, a skill representation, and skill update algo-

rithms. For this experiment, we also needed to implement the observation and

trial-and-error learning modules. We chose to assess task performance entirely ex-

ternally, just as for our previous experiments, therefore we neither implemented

Stage 3 (Testing) nor Stage 4 (Reconfiguration). We switched to incremental

learning mode (see Section 3.4.1) during trial-and-error exploration to allow for

within-episode convergence.
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Perceptual System

The perceptual system outputs the perceptual state; the set of perceptual classes

occupied by an agent at a given time; given the sensor state. GTLF imposes no

particular relationships between perceptual classes, and therefore no particular

structure to the perceptual state. However, transferring an idea directly from

CELL / COIL (see Section 5.3.1), perceptual classes can be grouped together

into channels such that for a given instant in time

1. it is impossible for any two classes in a given channel to both apply, and

2. it is not impossible for any two classes in different channels to both apply

A natural grouping occurs when each channel corresponds to an independent

feature of the environment. For example, consider an agent which has a visual

sensor capable of discerning light and dark, and an audio sensor capable of

discerning loud and quiet. According to the constraints above, the only valid

allocation is to put light and dark in one channel, and loud and quiet in

another. The classes light and loud, say, cannot occupy the same channel,

since it is possible for both to apply simultaneously, violating constraint 1. Nor

can light and dark occupy different channels, since it is impossible for both to

apply simultaneously, which would violate constraint 2.

With this system, at most one perceptual class from each channel can ap-

ply at any given time. With n perception channels the perceptual state can be

represented as an n-dimensional vector P = (p1, p2, ..., pn) with each element pi

representing the perceptual class contributed by channel i. If at a given instant

no perceptual classes in channel i apply, then for completeness we say this channel

occupies its null class, and represent this by ∅i. Organising perception into chan-

nels in this way can improve theoretical efficiency as task complexity increases

(for more details see Section A.3).

For this experiment we define 8 perception channels. The first channel, vial

bearing, contains the only perceptual classes necessary for executing correct task

behaviour. The remaining seven contain classes necessary for learning the task

by observation and trial-and-error:

1. The vial bearing channel — monitors the closest vial to the learner ’s centre
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of view. Contains no vials visible, vial clockwise, vial anticlockwise

and vial ahead.

2. The rotation channel — monitors the rotation of the learner. Contains

turning clockwise, turning anticlockwise and not turning.

3. The motion channel — monitors the motion of the learner. Contains

moving forward, not moving and moving other than forward.

4. The action history channel — monitors (i.e. remembers) the previous action

initiated by the learner. Contains turned clockwise, turned anticlockwise

and moved forward.

5. The reward channel — monitors rewards administered by the environment.

Contains reward received and punishment received.

6. The expert bearing channel — monitors the closest vial to the expert ’s centre

of view. Contains no vials visible2, vial clockwise, vial anticlockwise

and vial ahead.

7. The expert rotation channel — monitors the rotation of the expert. Con-

tains turning clockwise, turning anticlockwise and not turning.

8. The expert motion channel — monitors the motion of the expert. Contains

moving forward, not moving and moving other than forward.

Note that channels 6, 7, and 8 correspond to the Perception and Action Channels

respectively as defined for the COIL experiments — these classes will be used

by the observation learning module. The remaining channels monitor the state

of the learner, and will be used by the trial-and-error learning module. Note

that the perceptual class reward received appears in the perceptual state when

the learner picks up a health vial, and punishment received appears after the

learner bumps into a wall.

In summary, the learner’s perception system will map its sensor state to a per-

ceptual state vector of length seven. Henceforth pi will represent the perceptual

class contributed to the state by channel i.

2The duplicated names for perceptual classes are for the sake of brevity; i.e. to avoid
cumbersome names like no vials visible to expert. This should not cause a problem, since
the classes can be disambiguated by reference to their containing channel.
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Attention Strategies and Exploratory Behaviours

In these experiments, where different learning methods are used the always occur

in sequence rather than in parallel. This allows us to define two pairs of attention

strategies; one for observation learning, and one for trial-and-error; making for a

total of four (see Section 3.1.2):

• aO
E — selects the classes necessary for executing exploratory behaviour for

observation learning.

• aO
L — selects the classes necessary for the observation learning module.

• aT
E — selects the classes necessary for executing exploratory behaviour for

trial-and-error learning.

• aT
L — selects the classes necessary for the trial-and-error learning module.

For observation learning, we wish the exploratory behaviour to move the ob-

server to a good vantage point at a fixed distance and orientation to the expert.

The location of this vantage point is calculated automatically upon seeing the

expert, within one of the learner’s sensor modules, and so can be referenced de-

ictically by the action element move to(viewpoint). If the expert is not visible,

we wish the agent to turn anticlockwise() and look for it. The expert is visible

iff p6 6= ∅6, p7 6= ∅7 and p8 6= ∅8, so selecting any one of these classes is sufficient

for determining the correct exploratory action to execute. In our experiments,

aO
E selects p6.

The classes needed by the observation learning module are those relating to

the state of the expert; p6 (bearing), p7 (rotation) and p8 (motion); so aO
L selects

these classes (see below for details).

For trial-and-error learning, we wish the exploratory behaviour to mostly cor-

respond to the learner’s current approximation of the task behaviour (bearing

in mind that this gets updated after every observation in incremental learn-

ing mode). Only the bearing of the learner, p1, is needed for this. However,

we also wish the learner to periodically execute a random exploratory action

(turn clockwise(), turn anticlockwise() or move forward()), which is han-

dled by the action element random(). This can be achieved by referencing the

exploration rate variable, e, stored in the trial-and-error learning module (see
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below). With probability e, then, the learner executes random(), and this does

not depend in any way on the perceptual state. To summarise, executing a task

action requires p1, and executing a random action has no requirements, therefore

aT
E selects p1.

The classes needed by the trial-and-error learning module are those relating

to the current state of the learner; p1 (bearing), p2 (rotation) and p3 (motion);

the previous action of the learner; p4; and the reward channel; p5. Therefore, aT
L

selects these classes (see below for details).

Skill Representation

In this implementation, we represent skills as a 2-dimensional matrix U of real-

valued utilities. The utility of executing action element a in perceptual state P is

given by the value stored at matrix position U(P, a). The behaviour policy itself

is then determined by simply selecting the highest utility action element for a

given perceptual state.

Observation Learning Module

Compared to COIL and the MLP used in Chapter 6, the observation learning

module in this implementation is very much simpler. The basic premise remains

the same however; that an action which is observed to be initiated in a given

state should be more strongly associated with that state.

The module receives input from the attention strategy aO
L (see above) those

perceptual classes pertaining to the state of the expert; namely p6 (bearing),

p7 (rotation) and p8 (motion). It has a one-step memory containing the values

of these variables at the previous time step: pold
6 , pold

7 and pold
8 . If the expert’s

rotation has changed; p7 6= pold
7 ; this implies that the expert’s rotation p7 was

initiated in state pold
6 . By our learning principle, the association between p7 and

pold
6 should be strengthened. However, p7 and pold

6 are perceptual states relating

to the expert (i.e. allocentric) and, as they are, cannot be used for skill update.

This is where the correspondence library comes in. The module searches

its perceptual correspondences for a match to the allocentric class pold
6 . The

perceptual correspondences for this task are trivial:
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Perceptual Correspondences

Allocentric Class Channel Egocentric class Channel

no vials visible 6 no vials visible 1

vial clockwise 6 vial clockwise 1

vial anticlockwise 6 vial anticlockwise 1

vial ahead 6 vial ahead 1

We refer to the matching egocentric class as pmatch
1 . The module then searches

its action correspondences for a match to the allocentric class p7. The action

correspondences for rotation are:

Action Correspondences (Rotation)

Allocentric Class Channel Action Element

turning clockwise 7 turn clockwise()

turning anticlockwise 7 turn anticlockwise()

We refer to the matching action element as a. The module is now ready to output

an association datum to the episodic buffer (see Section 3.1.3):

({pmatch
1 }, a, 1)a

The data in the buffer at the end of an observation learning episode is used for

skill update by the corresponding algorithm (see below). It should be noted that

the above process applies in an identical manner for a change in expert motion;

p8 6= pold
8 .

Trial-and-error Learning Module

Given the real-time nature of the task environment, together with our ‘somewhat

semi-Markovian’ characterisation of the task (see Appendix A.4), any standard

discrete-time Markov-based RL algorithm would have been inappropriate for in-

clusion in this module. We therefore decided to use a model-free RL algorithm

called SMART (Semi-Markov Average Reward Technique), constructed by Das

et al. (1999). As well as its superior suitability, it has the added advantage (as

its name suggests) of using rewards averaged over time (see below). This has the

effect of encouraging our learning agents to collect rewards (i.e. vials) as quickly

as possible; desirable in timed trials such as those we are carrying out.
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The module receives input from the attention strategy aT
L (see above) those

perceptual classes pertaining to the current state of the learner; p1 (bearing),

p2 (rotation) and p3 (motion); the previous action of the learner; p4; and the

reward channel; p5. The module also contains three pieces of state; pold
2 and pold

3 ,

respectively the rotation and motion of the learner at the previous time step;

and pold
1 , the state of the learner at the previous iteration of the algorithm. An

iteration is triggered whenever the learner changes state; p1 6= pold
1 ; the bot stops;

p2 = not turning and p3 = not moving; or the bot receives a reward; p5 6= ∅5.

As we noted in Section 3.1.3, we assume that the trial-and-error learning mod-

ule contains a ‘self-correspondence library’, much like the action correspondence

library in the observation learning module, that in this case can be used to re-

trieve the agent’s previously executed action element, a, given its perception (i.e.

memory) of that action, p4. For example, a memory stored in channel 4 that the

agent moved forward, corresponds to the element move forward() in the agent’s

action repertoire.

For each iteration, the module generates a reward signal r as follows:

r =





10 if p5 = reward received

−1 if p5 = punishment received

0 if p5 = ∅5

(7.1)

The module keeps track of five further variables to allow for average reward RL:

e, the exploration rate (see above); α, the learning rate; τ , the elapsed time

since the last iteration; t, the total time of the learning episode so far; and c,

the total reward gained in the learning episode so far. The average reward, g,

at a given iteration is therefore given by c
t
. Both the learning rate, α, and the

exploration rate, e, decay slowly to 0 according to a Darken-Chang-Moody search-

then-converge process (see Appendix A.4.1; Darken et al., 1992; Das et al., 1999,

for details). Access to the current utility values for the skill being learned, Uold,

is also required.

Given that all the necessary variable values are available, the following update

rule is used to find the new utility value:

Unew({pold
1 }, a) = (1− α)Uold({pold

1 }, a) + α (r − gτ + maxb[Uold({p1}, b)]) (7.2)
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In words, the new utility value (Unew({pold
1 }, a)) is a linear interpolation (where

the relative weighting is determined by the learning rate, α) of the previous value

(Uold({pold
1 }, a)) with the sum of the reward just gained (r) and the maximum

utility value for any possible action in the previous state (maxb[Uold({p1}, b)]) less

the reward expected during the time interval (gτ). So, if the reward just gained is

less than the reward expected for that time interval, r−gτ contributes negatively

to the update, and vice versa.

The new utility value is output as an association datum to the episodic buffer:

({pold
1 }, a, Unew({pold

1 }, a))a

Since we have set GTLF to run in incremental mode during trial-and-error learn-

ing, this datum is processed (i.e. the skill is updated) immediately and then

removed from the buffer readying it for the next iteration.

Skill Update

Skill update occurs at the end of an observation learning episode, and after each

iteration for trial-and-error learning. We look at each case in turn.

For observation learning, recall that the association data have the form:

({pmatch
1 }, a, 1)a

We use a very simple learning rule adapted from Bryson (2001, p. 153) to update

the utilities in the skill matrix. For each datum in the episodic buffer:

U ′({pmatch
1 }, a) = Uold({pmatch

1 }, a) + δ (7.3)

where δ is a free parameter, with a value of 0.1 in our experiments. Once all the

data has been processed, each row of the matrix is renormalised:

Unew({pmatch
1 }, a) =

U ′({pmatch
1 }, a)∑

b U ′({pmatch
1 }, b) (7.4)

For trial-and-error learning, skill update occurred after each new datum.

These data have the form:

({pold
1 }, a, u)a
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Where u is the new utility value calculated in the trial-and-error learning module.

The update, then, is trivial:

Unew({pold
1 }, a) = u (7.5)

since all the work has already been done. This illustrates the trade-off between the

amount of work done within the learning modules and the amount done during

skill update. There are likely to be a number of different ways the workload could

in theory be distributed, and which is chosen depends on the constraints of the

problem in question. For example, if skill update occurs offline between episodes,

it makes more sense to do resource-intensive processing at this stage, as opposed

to within the learning modules at each time step.

7.1.3 Results

We now give our results for each stage in turn (since each stage builds upon the

results of the previous), along with any implications that we have drawn. Where

significance is claimed and a p value is given, we have used a two-tailed t-test.

Stage I

Before we could measure learning time for each trial, we had to define reasonable

stopping criteria which indicated when convergence had occurred3. We therefore

stipulated that a trial ended when all of the following were satisfied:

• A complete behaviour had been learned (i.e. one that defines an action in

every possible perceptual state).

• The behaviour mapping had not changed for some predetermined length of

time.

• The difference in utility values between successive skill updates (which could

be seen as the ‘learning error’) had fallen below a predetermined threshold.

3For observation learning, there are no formal guarantees of convergence. Regardless of the
target behaviour, if the demonstration changes or otherwise fails to provide sufficient informa-
tion, then learning may never converge and in fact may begin to diverge.
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Across 30 trials, then, the mean time taken by agents learning by observing

perfect experts to converge, in accordance with the above definition, was 106.6

seconds, with a standard deviation of 48.7 seconds.

We had then to convert this result into a ‘benchmark’ trial time for use in

the subsequent stages, which we achieved by defining an appropriate tolerance

interval (Croarkin and Tobias, 2003). In brief, a tolerance interval for a given

measured quantity (in this case learning time) estimates the range of measure-

ments that will with probability p contain a pre-specified proportion q of the

population. We wished to define a tolerance interval for learning time that with

99% probability (p = 0.99) contained 99% of GTLF bots (q = 0.99). Finding the

tolerance factor for a population sample of size 30 using the method described

in Appendix B, we calculated the upper bound of this tolerance interval to equal

288.5 seconds. A benchmark trial length of 300 seconds (i.e. 5 minutes), then,

should be adequate to all but guarantee convergence for agents observing perfect

experts. We used this length of trial moving into Stage II: learning by observation

for variable qualities of demonstration.

Stage II

The results from Stage II are shown in Figure 7-1. Both the target behaviour

and the program-level metric used to calculate percentage match were the same

as those used for COIL Task 1 (see Section 5.4.1). As predicted from Stage I,

the observers learning from perfect demonstrations unanimously scored a 100%

match to the target behaviour. Each drop in expert performance caused a highly

significant (p < 0.01) drop in learner match percentage, also as would be expected.

One notable feature of the results is that the degradation appears to be somewhat

nonlinear — the drop between 50% and 75% expert randomness is greater than

previous drops. This could be because at 75% (and 100%) randomness, the

expert began sometimes to get stuck in certain areas of the task environment

(e.g. in a corner), thus providing the observer with no more clues about the

target behaviour for the remainder of the trial. It is also not clear why 100%

random demonstrations would consistently result in a 25% match to the target

behaviour. We believe that this is probably an anomaly of our results set, and

that in a larger sample there would a few who chance upon a 50% match, and

equally a few who end up with a 0% match. Given these results for observation
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Figure 7-1: Comparative performance of agents learning by observation as expert
performance degrades. Error bars show standard error of the mean.

learning alone, we now move onto results comparing different learning methods.

Stage III

The results from Stage III are shown in Figure 7-2. The results from Stage II

are also included (the dark-grey bars) for ease of comparison. The first thing to

note is that, for all but the perfect demonstrations, trial-and-error learning does

compensate for poor expert performance by improving the resulting match to

the target behaviour. For the particularly bad demonstrations (75% and 100%

randomness), this improvement is highly significant (p < 0.001). The shallower

decline of 50-50 learning can be explained by the fact that areas of task space

which were not visited by bad experts can be explored during the trial-and-error

phase.
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Figure 7-2: Comparative performance utilising different learning method ratios
as expert performance degrades. The dark-grey bars represent pure learning by
observation (Stage II). The light-grey bars represent a 50-50 split, first observation
then trial-and-error. The white bar on the far right represents pure trial-and-
error. Error bars show standard error of the mean.

We also note that for the better demonstrations (0% and 25% randomness),

the mixed learning method performs significantly better than pure RL (p < 0.05),

indicating that some useful behavioural information from the observation stage

is being retained and built upon. Perhaps the most interesting result for the

mixed learning agents is at 25% expert randomness, where this approach both

significantly outperforms pure RL (p < 0.01) and pure observation (p < 0.1). It

may be interesting to perform further tests at a finer granularity in this region;

i.e. for expert randomness between 20% and 30% at 2% intervals; to see if there

is an apparent optimum for using the mixed learning approach. It may also be

interesting to vary the proportion of learning time spent using each method; i.e.
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25% observation followed by 75% trial-and-error, and vice versa.

Metrics and Performance in Practise

Before we move onto the next experiment, we should briefly justify our universal

use of a program-level metric for measuring task performance. Firstly, it should

be borne in mind that none of the agents, whether learning by observation or

trial-and-error, have knowledge of the metric by which their performance will

end up being measured. The observers are slaves to their learning algorithm;

blindly replicating whatever behaviour is demonstrated to them. They have no

knowledge of whether this behaviour is ‘good’ or ‘bad’, and no recognition of

the existence of a task or its goals — they simply imitate. In exactly the same

way, the trial-and-error learners are slaves to their internal reward function; they

act to maximise long-term reward, but effectively have no explicit knowledge of

performing a task. Ultimately, then, for both these types of agents, success in

this task depends upon the agent designer’s choice of algorithm. If the algorithm

provides sound learning advice, performance will be good; if not, it will be bad.

This should highlight the designer’s involvement in any experiment of this type:

the results and conclusions drawn can never be truly objective.

However, we do not believe this is necessarily a problem, as long as it is

acknowledged. As we have argued previously, a task must always be defined by

some agent, in this case the agent designer himself, and cannot be independently

or absolutely defined. Therefore, performance can only ever be measured in a

subjective sense, and so long as the extent of that subjectivity is understood,

then the conclusions drawn can be interpreted in the light of this. Our choice

of program-level metric is exactly that: our choice to define the task itself in

terms of that metric. The metric and the task are the same thing. We have also

designed the internal algorithms of the learning agents as best we can to guide

the agents towards good performance in terms of this metric. So, the influence of

the agent designer in this task learning problem is admittedly ubiquitous, but we

suggest that this is likely to be transparently the case in many similar research

scenarios.
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7.2 Experiment 2: Different Target Behaviours

The second experiment we carried out was somewhat simpler than the first; to

compare time to convergence for a number of different target behaviours when

learning by observation. This should serve to give a better idea of the relative

difficulty of learning problems when defined in terms of GTLF constructs.

7.2.1 Method

For this experiment, we slightly adapted the task environment from the previous

experiment to add an extra dimension of complexity. As before, the task to be

completed was picking up vials. This time, the cavern also contained two groups

of bots: one group designated as enemies and one as friends (much the same

as for COIL Task 2, Section 5.4.2). The vials on one side of the room were

‘unguarded’ (i.e. they had no bots near them). For the vials on the other side

of the room, one was guarded by enemy bots, and one was guarded by friendly

bots. Given this setup, we were then able to define the following target behaviour

variants to compare:

1. Pick up all vials, regardless of whether or not they are guarded.

2. Pick up only guarded vials.

3. Pick up only vials guarded by friends.

Behaviour 1 is superficially the same target behaviour as for the previous experi-

ment. The difference is that the learning agent must explicitly learn that the bots

in the environment should not have any bearing on its vial-collecting behaviour.

In advance of running the trials, we predicted that these behaviours are listed in

ascending order of learning difficulty, and therefore should also be in ascending

order of mean learning time. We used AI-controlled demonstrators as before (all

operating with 0% randomness), and ran 30 trials of observation learning for each

behaviour, where each trial ran to convergence (as defined above).

7.2.2 Implementation Specifics

As far as GTLF implementation is concerned, this remained in most respects

identical to that used for observation learning in the previous experiment. We
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added one more perception channel for monitoring the bot closest to the learner’s

centre of view, which contained the classes no bots visible, enemy bot ahead,

and friendly bot ahead.

7.2.3 Results
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Figure 7-3: Comparative learning (by observation) times for different target be-
haviours. White bar shows target behaviour from Experiment 1 for comparison
(pick up vials, no bots in environment). Target behaviour 1 was to pick up vials
regardless of other bots. Target behaviour 2 was to pick up only guarded vials.
Target behaviour 3 was to pick up only vials guarded by friendly bots. Error bars
show standard error of the mean.

The results from Experiment 2 are shown in Figure 7-3. The target behaviour

from Experiment 1 is also included (white bar) for ease of comparison. The first

thing to note is that our prior intuition was incorrect. Target behaviour 2, where
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only guarded vials should be collected, is apparently easier to learn than target

behaviour 1, where any vials can be collected. Although this seems surprising at

first, we offer the following explanation as to the cause. All of the new target

behaviours require the observer to learn the significance of the other bots in the

environment. This is why behaviour 1 takes more than twice as long to learn

as the target behaviour from Experiment 1, even though they are identically

expressed in the environment. However, for target behaviour 2, the demonstra-

tor’s actions are focused around the other bots, since it only ever collects vials in

their vicinity. This gives the observer twice as many opportunities to discern the

relevance of these bots when compared with behaviour 1, which visits guarded

vials only half as often. In other words, demonstrators executing behaviour 2

provide information much more efficiently than those executing behaviour 1, and

therefore allow learning to converge more quickly. In fact, the bottleneck for

behaviour 2 seems to be learning what to do with the vials, since the mean learn-

ing time is only marginally (i.e. not significantly) longer than learning this task

without any bots being present (Experiment 1). Target behaviour 3 introduces

the requirement that the learner must distinguish enemy bots from friendly bots,

and coupled with the fact that ‘behaviour samples’ involving enemy bots are

rarely demonstrated, this behaviour follows our prediction of being much harder

to learn.

We conclude the first half of the chapter by observing that even simple exper-

iments such as these have prompted some interesting discussion. It is essentially

this fact even more than the results themselves which validates GTLF as a po-

tentially valuable research tool. In the next section we seek to augment this

validation by attempting to determine where GTLF sits in the literature, and

thus how it can be best put to use from now on.

7.3 Existing Task Learning Systems

Back in our introduction to the subject, we considered some biological examples

of task learning, to examine and draw inspiration from those methods already in

place in nature (Section 2.3). Now our framework has been presented, we look

at existing artificial task learning systems, to see where ours can explain, extend

or improve the state-of-the-art, and vice versa. We focus on systems which fulfil
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the following criteria to the greatest extent:

1. The system theory bears a resemblance to ours inasmuch as it is a frame-

work for co-ordinating learning of multiple kinds at multiple levels.

2. The system implementation domain bears a resemblance to ours inasmuch

as it involves virtual agents learning complex tasks in a real-time setting.

3. The system is the subject of a recent publication.

Artificial systems, by definition, will fall into two sub-categories, which we will

label robotic and virtual. The former pertains to any system which has been

designed for and / or tested using man-made material agents; the latter applies

to non-material agents. It so happens that robot task learning systems have,

until now, better fulfilled the first criteria, whereas (for obvious reasons) virtual

task learning systems better fulfil the second.

7.3.1 Robot Task Learning

Reinforcement learning in robots is inherently difficult due to the generally large

number of trials needed, necessity of real-time learning, time and expense in set-

ting up experiments, and so forth. For these reasons, many robot task learning

systems concentrate on social learning methods such as imitation and instruc-

tion4. We now review two of the most relevant:

Nicolescu and Mataric̀

Nicolescu and Matarić (2001, 2002, 2003, 2007) present a system for task learn-

ing by imitation motivated by two related problems: the need to design robots

capable of natural interaction with humans, and the desire for robots to be able

to expand their capabilities through learning. The latter constitutes the more

significant overlap with our work.

The learning robots are assumed to initially possess a library of behaviours

(in the BBAI sense) stored using action-based representations. This is the first

of the main contributions, and divides behaviours into two parts; abstract and

primitive. The abstract part of behaviour relates to perception, and defines the

4Programming could be included here, or simply regarded as prior knowledge.
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pre-conditions necessary to initiate a behaviour and the post-conditions which

indicate when the goal of the behaviour has been satisfied. The primitive part

relates to actions that can be executed by a given robot in a given task domain,

and so the linked pair provides the coupling of perception and action. By using

representation to abstract the ‘logical’ part of behaviours from the active part,

it is possible for learned tasks to be transferable between specific task-robot

scenarios. This enhances standard Behaviour-Based Systems, in which perception

and action have no behaviour-independent representation, and cannot therefore

be de-coupled, generalised or subjected to higher-level reasoning processes.

In practise, the robots learn by following human demonstrators around the

task environment, responding to instructions given at key points. As the demon-

stration is experienced, the robot monitors its behaviour repertoire, observing

when the pre- and post-conditions of the various abstract behaviours are met.

This firing sequence defines one possible path through the task, a behaviour net-

work, which can then be executed by the robot. On a test trial, the robot sim-

ilarly monitors its abstract behaviours, but instead of following it executes the

associated primitive behaviours which should carry the robot through the task.

This learning method allows the robot to acquire an approximation of the task

behaviour in just one demonstration. However, mistakes can be corrected by re-

peated observations or by corrected trials. In the latter case, the robot carries out

the task according to the behaviour network it has constructed so far. The human

teacher can then intervene in the trial to correct mistakes, effectively forcing the

robot to alter its network. This observe-practise-correct learning methodology is

the second major contribution of this work.

For Nicolescu and Mataric̀, the task is necessarily defined entirely through

demonstrations, albeit generalised over a number of iterations. The task will

eventually be learned correctly provided that the ‘mean demonstration’ covers

task space sufficiently and correctly. Furthermore, goals are necessarily linked to

behaviours; it is only possible to monitor and thus attempt to achieve a (sub-)goal

if the agent already possesses some behaviour which results in that goal. The

authors state of their system:

“The spectrum of tasks learnable with our method includes all tasks

achievable with the robot’s basic set of behaviours. If the robot is

shown actions for which it does not have any representation, it will not
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be able to observe or learn from those experiences . . . we are not aim-

ing at teaching a robot new behaviours, but at showing the robot how

to use its existing capabilities to perform more complicated tasks.”

(Nicolescu and Matarić, 2007, p. 419)

In GTLF, the task metric could be similarly derived from a single source (if

that is the only one available), but may also be partly defined by prior social

knowledge or internal drives, for example. If other sources of task knowledge

are available, then it may be possible for an agent using GTLF to assess the

demonstrations themselves for accuracy. Goals in GTLF are perceptual states,

which are independent of behaviours. This allows an agent to monitor goals

before it has any idea about the behaviours necessary to achieve them. The

association between behaviours and goals is made via the learning process as and

when sufficient information has been gathered.

Ultimately, we believe there is very little to criticise when it comes to both

the premise and results of the Nicolescu and Mataric̀ system. The main question

which GTLF raises is: why limit the system to co-ordinating behaviours? Else-

where they document in detail that the system caters for both hierarchical and

sequential control (Nicolescu and Matarić, 2002), something which GTLF also

accounts for, although this has not yet been validated through experiment (see

Section 3.5). Their behaviour networks can be nested within other behaviour

networks allowing in principle the solution of arbitrarily complex tasks. Why

not, then, start the hierarchy at ‘ground level’, and allow the construction of be-

haviours out of perceptual classes and action elements as well as the co-ordination

of behaviours for the completion of complex tasks? The answer to this question is

probably that both construction and co-ordination are quite hard enough prob-

lems in their own right (as both their results and ours indicate), without trying

to build one on top of the product of the other (Bryson, 2001, ch. 11). However,

in principle, GTLF does not have a cut-off point below which learning should not

occur5. It would be interesting to test this principle in practise, and equally to

see if there exists a level of description below which the Nicolescu and Matarić

system fails to learn and / or control effectively. Also, using action-based rep-

5Of course, for any given implementation of GTLF there will be a minimum useful gran-
ularity of perception and action, but the point is that we impose no general bounds on this
minimum.
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resentations for the co-ordination of behaviours at higher levels of the GTLF6

could be beneficial, while the construction of low-level behaviours may still be

better suited to other representations (see Section 3.5.1).

Grollman and Jenkins

Another framework geared toward learning by demonstration is the Dogged Learn-

ing (DL) system of Grollman and Jenkins (2007). The novelty of their approach

lies in the incorporation of Mixed Initiative Control (MIC) to provide the nec-

essary task demonstrations. In most imitation learning systems, the demon-

strator is another agent which the imitator either passively observes or actively

follows / copies (Demiris and Hayes, 2002). Indeed, we have looked at one such

system already. In DL’s MIC policy, however, the demonstrator actually assumes

control of the learning agent.

The DL algorithm itself is remarkably simple. Both the demonstrator and

the imitator have access to the same sensory inputs. At each decision cycle, both

agent policies are queried for an action to output along with a confidence value

for its correctness. DL then uses the two confidence values to choose which of

the proposed actions to execute, and then the imitator’s policy is updated based

on this input-output pair and the learning algorithm being used. In their ex-

periments so far, Grollman and Jenkins have used a Sony Aibo as their learning

platform, while the task demonstrations have been provided by hand-coded al-

gorithms. The imitator’s policy updates were calculated using Locally Weighted

Projection Regression (LWRP) (Vijayakumar et al., 2005).

From a design principles perspective, DL is as similar a system to ours as we

have found. Like GTLF, it exists as a platform-independent framework for testing

and comparing different learning methods and agents. It is agnostic as to the na-

ture of its inputs and outputs, which could range from raw sensor data / individ-

ual motor commands to high-level concepts / co-ordinated movements. However,

as Grollman and Jenkins point out:

“It is important that the perception and action concepts provided be

sufficient for the desired task, as we cannot ask the robot to learn to

do a task that it does not have the tools to perform.”

6In our terminology, the construction of arbitration behaviours.
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While we accept that sometimes an agent will be genuinely incapable of perform-

ing a task, the authors seem here to be implying that for DL, an inadequate

characterisation of the task space could be the limiting factor. Like GTLF, the

association between perception and action can be arbitrarily complex, dependent

upon the learning algorithm (or behaviour representation for GTLF) used. How-

ever, GTLF has the added strength of allowing inter-episodic reconfiguration of

inadequate representations (Section 3.4), and the hierarchical structuring of both

perception space7 (Section A.3.2) and the tasks themselves (Section 3.5.1).

Although both systems are agnostic to the choice of learning algorithm / be-

haviour representation, DL is designed for incremental real-time online learning

and GTLF for the episodic learning system described above. There is no rea-

son to suppose, however (and the authors themselves raise this point), that DL

could not be adapted to run in a “quasi-batch” mode analogous to GTLF episodic

learning. Conversely, as we have demonstrated, provided that the choice of learn-

ing algorithm is appropriate with respect to the resources available, GTLF can

be made to run incrementally (see Section 3.4.1).

Although, in principle, DL is impressively platform-independent, we see MIC

as the limiting factor with respect to the range of agents which could actually

make use of the system, since both the imitator and demonstrator ‘minds’ must

make use of the same body. The learners, then, must be able to periodically re-

linquish control of their body while remaining party to sensory input and motor

output for training the DL algorithm. Demonstrator agents must either reside

within the imitator’s body, or be capable of teleoperating that body (see also Sec-

tion 9.1.3). The former is limited to disembodied agents, such as the hand-coded

programs used by Grollman and Jenkins. The latter could also be a program,

or in principle any embodied agent with sufficient task knowledge and a control

interface (i.e. humans). These restrictions have no effect on the scope of DL

within the purposes for which it was designed, that is, as a tool to allow the

teaching of robots by näıve users. However, GTLF, which is not restricted in

these ways, can be used for this purpose, as well as potentially many others. For

example, GTLF allows for MIC: since the imitator can observe the input-output

sequence using it’s own representations while the task is being demonstrated (be-

7Hierarchical perception, as described in Section A.3.2, could be seen as a kind of pre-
processing of the input data. Therefore DL could, in principle, also take advantage of it.
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cause its own body is being manipulated), this falls under imitation learning with

a one-to-one correspondence map in place. Then, every cycle the demonstrator

is in control corresponds to Learning (Stage 1), and every cycle the imitator is in

control corresponds to Testing (Stage 3).

7.3.2 Virtual Task Learning

The use of what we have termed ‘virtual agents’ for research into task learning

is not yet as widespread as the use of material robots (or virtual agents whose

purpose is merely to simulate material robots) for this purpose. In turn, there ex-

ists a lack of examples of implemented general-purpose learning frameworks, like

those described above, in virtual agents. Instead, we now look at two virtual task

learning systems which have successfully combined multiple learning techniques

for solving complex tasks in real-time; all key goals of GTLF.

Morales and Sammut

The first example we consider lies within the relatively specialised domain of flight

simulation. The original work was carried out by Sammut et al. (1992), and was

considered sufficiently significant to be republished in a relatively recent book on

imitation (Dautenhahn and Nehaniv, 2002). The latest developments (Morales

and Sammut, 2004), which we will discuss now, are of particular relevance to us.

The approach can be summarised as follows:

1. Use behavioural cloning on data generated by humans completing flight

tasks to acquire broad descriptions of the necessary behaviour.

2. Explore this narrowed policy space using reinforcement learning to find a

(near-)optimal policy.

Behavioural cloning is the process of extracting control rules from recorded data

in an attempt to replicate the policy of an expert (or experts). It therefore fits

exactly within our broad description of imitation (Section 2.3.1).

Morales and Sammut used a high fidelity flight simulator which produced

symbolic output relating to aircraft position, velocity, orientation, roll, pitch and

yaw, as well as to objects ‘visible’ from the cockpit. The data were output as

symbolic Prolog facts. Similarly, action commands could be sent to the aircraft’s
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ailerons, elevators, throttle, flaps and gear levers. The huge state-action space

thus generated was discretised using a relational representation: r-states and

r-actions (Morales, 2003). R-states are conjunctions of first-order predicates,

derived from the flight simulator output, which partition the state space into

classes. For example:

distance target(State, close) ∧ orientation target(State, left)

is an r-state which would be satisfied by any State in which the target is close and

to the left. R-actions are similarly defined as classes of action, e.g. move stick(y)

where y is a value along the y-axis of the control stick. Included in the r-action

representation is an r-state which acts as the pre-condition for applicability of

the action.

When an expert pilot carries out a flight task, the state is recorded along

with each action command given. To construct a behaviour clone from this log,

each state-action pair is processed in turn. If it is an instance of an existing

r-action, then it is skipped; otherwise a new corresponding r-action is created.

Effectively, this process eliminates all r-actions which were never instantiated

during the demonstration. Since the observed flights are unlikely to cover all

possible circumstances without discrepancy, an additional exploration phase was

introduced prior to reinforcement learning. During this phase, the r-actions stored

previously are used to try to navigate the aircraft into unseen and / or uncertain

regions of the task space. The user is then queried for an action command, which

is used to generate another r-action. An adaptation of Q-learning to r-space,

rQ-learning (Morales, 2003), is then used with this restricted set of r-actions to

converge upon an optimal control policy.

Although the task domain in which GTLF has been tested so far differs some-

what from the flight simulations of this project, our methodologies have much in

common. Firstly, throughout the development of COIL and GTLF our imitation

module has sought to extract a policy from a log of observed expert actions – be-

havioural cloning. The main difference here is the data source: ours was collected

by a bot using its limited sensors situated within the environment, resulting in

subjectivity in and partial observability of the state-action sequence, whereas the

flight simulator logs this directly from the expert with no interference. The use of

multiple complementary learning methods is another rare feature that we share,
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and by collating our data we now have cross-domain results pertaining to the

relationship between imitation and RL.

The flight simulator outputs symbolic knowledge as Prolog facts; Unreal Tour-

nament sensors output symbolic knowledge as attribute-value pairs. As r-states

are conjunctions of logical predicates, we defined perceptual classes as conjunc-

tions of (disjunctions of) sensor conditions, but r-states form a partition of sensor

space, whereas perceptual classes can nest and overlap. This gives us the option

of using hierarchical perception (see Section A.3), where concurrently present

perceptual classes compete over time for priority. For both systems it is assumed

that an initial state space division is provided (e.g. user-defined prior knowl-

edge), but through re-prioritisation and reconfiguration, GTLF can update this

division if it proves unhelpful. In both systems ‘actions’ in fact represent classes

of executable actions, which interestingly has led to exactly the same problems:

how to choose a representative from the class to execute in practise, and how

to stop ‘jerky’ behaviour resulting from a sequence of discrete movements (see

Section 9.2.2). In other work from the same group, they have used regression

models to produce smoother flights (Isaac and Sammut, 2003), and they cite this

as future work for this project. Their results may be of direct application to

GTLF.

Bielefeld and Dublin

As we explained at the start of Chapter 5, the development of COIL and ulti-

mately GTLF has its origins in the particular problem we chose in order to in-

vestigate social learning; that is, enabling gamebots to imitate human behaviour.

This section reports on the work of two groups who have focused on this very

problem, and have recently begun to collaborate.

The first of these groups is based at Bielefeld, and their starting point was the

problem of imitating the movement of human players. They chose Quake II (id

Software, 1997) as their experimental platform, which is an FPS approximately

contemporary to Unreal Tournament. The structure of the environment, range

of actions available, nature of the tasks that can be set, and indeed most of the

relevant features, are common to both games. One important difference is the

ability of the Quake engine to record so-called demo files – a sequential record of

the state of a given bot at each sensor cycle. Thousands of such files are available
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for download on the internet, providing a wealth of human gameplay data for

analysis. By applying data pertaining to absolute position and relative angle and

distance to opponents to networks of MLPs, they were able to create reactive

behaviours to control velocity and viewpoint. This allowed their imitator bots

to traverse paths in a manner comparable to that of a human player (Bauckhage

et al., 2003).

To make this motion more natural, their next step was to apply a Neural

Gas clustering algorithm (Martinez et al., 1993) to the training data to form a

topological map – that is, waypoints along these paths. They then used a com-

bination of PCA and k-means clustering to find action primitives – co-ordinated

sequences of movement – to allow the bots to move smoothly from one mode to

the next (Thurau et al., 2004c). By applying differing potential fields across these

waypoints, Thurau et al. (2004b) were able to motivate movement between them.

The forces generated by the fields changed as the bots moved through a sequence

of state classes, mostly associated with item pick-ups. In Quake, as in UT, pick-

ups can be seen as goals, and so this behaviour appears to be goal-oriented or

‘strategy-level’ as opposed to purely reactive (Thurau et al., 2004a). They applied

similar techniques to learn basic context-dependent weapon handling behaviour

(Bauckhage and Thurau, 2004).

At this point the Dublin group began to publish their work in this area. Gor-

man and Humphrys (2005) took a step toward ‘genuinely’ goal-oriented behaviour

by deriving a topology which necessarily places nodes at item pick-up points, us-

ing an adaption of Elkan’s fast k-means algorithm (Elkan, 2003). By modifying

the value iteration method of reinforcement learning, their bots were able to ar-

bitrate between multiple weighted goals, as well as take into account goal (i.e.

pick-up) transience. This work complemented that of the other group at this

time – that is, an extension of the Bayesian imitation model of Rao et al. (2007)

(Thurau et al., 2005) – and led to collaboration. The result: a hybrid system,

with Dublin’s goal arbitration mechanism integrated with the Bielefeld Bayesian

motion model (Gorman et al., 2006a). The ‘believability’ of the bots using this

system was subsequently assessed using a novel formal method (Gorman et al.,

2006b).

Along another line of inquiry, the Bielefeld group have begun to look at the

problem of the exponential increase in sample size necessary for training as the
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input state space grows (Thurau and Bauckhage, 2005). They have so far tried

(using 3D co-ordinate data as a test case) projection onto a lower-dimensional

manifold through Locally Linear Embedding (Roweis and Saul, 2000), but their

results were adversely affected by the sensitivity of embedding space to parameter

selection. Dublin’s other contributions include the QASE API (Gorman et al.,

2007), a well-stocked toolkit to aid fast development of AI bots, and most re-

cently moving onto combat behaviour, focusing on the issue of replicating human

inaccuracy for believability (Gorman and Humphrys, 2007).

Overall, there are a few key differences which set this work apart from ours,

and will hopefully bring new insights to both methodologies. As Gorman and

Humphrys (2007) state, their work is motivated by ‘human-likeness’ and believ-

ability:

“...this places us at odds with most of our counterparts in the field of

robotics, who use imitation as a means of quickly attaining optimal

performance; since we are primarily interested in producing realisti-

cally human behaviour, we often need to deliberately strive for the

competent yet suboptimal.”

For us, a task performance metric, as opposed to a believability metric, provides

the measure of learning success, along with the more ‘conventional’ sub-goal of fil-

tering out noise behaviour from demonstrations. Having said that, a believability

metric could itself be seen as a task performance metric: one that specifies ‘form’

as well as ‘function’, and which we would therefore likely classify as an action-

level metric (see Section 3.3.1). Since GTLF is more suited to learning at the

program-level and above, perhaps the two approaches are in fact complementary,

rather than being merely two different perspectives on the same problem.

At any rate, we believe the quest for believability has naturally led the authors

to a ‘controller’s-eye-view’ of imitation; in other words, their aim is to create a

bot controller which mimics a human controller (we discuss this in the context

of embodiment in Section 9.2). In contrast, we have taken an ‘agent’s-eye-view’,

in which a bot with local perception and action (and therefore analogous to any

embodied agent) observes and imitates another bot. For example, the data used

to train the Quake bots contained state which would not have been detected by

other bots in the environment (i.e. health, armour, inventory, etc.), but is used
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in the imitator’s action selection policy. In our system, task error is primarily

due to the partial observability of the demonstrator’s decision space, as opposed

to the deliberate replication of demonstrator error.

The use of x-y co-ordinates for both high-level goal navigation and low-level

motion modelling renders all such learned behaviour map-specific. Also, ran-

domly, dynamically or relatively positioned goals cannot be accounted for. By

using a more egocentric data representation as we have done, it may be possi-

ble to use their techniques to learn map-independent control policies. On the

other hand, navigation at the highest level is necessarily map-specific, so per-

haps a dual approach would be most appropriate, with allocentric region / room

goal representations and egocentric local control. In fact this may already be

intended, as in their latest work on combat behaviour, Gorman and Humphrys

(2007) transform the raw input data to approximate human perception prior to

training.

Another distinction arising from our differing perspectives relates to data:

volume, collection, representation and processing. As we have said, there are a lot

of data available for Quake, and this is ideal for probabilistic learning algorithms

which require significant training. However, in most imitation learning scenarios,

even Unreal Tournament, accumulating that volume of data could range from

laborious to impossible. This raises the question whether such techniques could

practically be transferred to other domains. Also, most of the papers cited above

refer to the importance of factors such as good parameter selection and correct

sample size; one even to the extent that hyper-sensitivity led to inconclusive

results (Thurau and Bauckhage, 2005). Although not necessarily as rigorous or

well-founded, it should be beneficial for a system to allow for the kind of ‘quick-

and-dirty’ one-shot learning that allows agents to learn a task from very few

trials (e.g. Nicolescu and Matarić, 2007, above). As far as data representation is

concerned, we believe that there is a useful middle ground between the ‘classical

AI’ and ‘pattern recognition’ categories emphasised by the collective authors.

In addition to our own, a number of the previously mentioned systems (e.g.

Roy and Pentland, 2002; Morales and Sammut, 2004; Grollman and Jenkins,

2007), as well as cognitive architectures such as ACT-R (Anderson and Lebiere,

1998), combine statistical learning algorithms with sensory-motor ‘symbols’. This

potentially allows for both generality and cognitive reasoning beyond that which
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is possible using sub-symbolic processes alone, without ever suffering from the

symbol grounding problem of classical AI.

Differences aside, Bielefeld and Dublin are well on their way to achieving what

we could not with COIL; that is, a fully integrated bot trained by imitation and

capable of competing against humans. We believe this would represent a major

milestone in imitation learning research.

Other Systems

The learning system of Le Hy et al. (2004) has elements in common with both

ours, and that of Bielefeld and Dublin. Like us they used the GameBots API in

Unreal Tournament, and were therefore subject to the same perception, action

and data constraints. Their method is based on a Bayesian behaviour selection

model. The bots start with a small set (six in their implementation) of hand-

coded behaviours, such as Attack, SearchHealth, and Flee. In the model, the

discrete random variable St represents the behaviour state of the bot at time t;

that is, which of the base behaviours it is executing. They then specify seven

other random variables corresponding to various relevant sensor states. To allow

behaviour selection, conditional probability tables must be specified as follows:

• One for each sensor state conditional on the next behaviour state,

P (Sensor|St+1), e.g. “what is the state of Health likely to be, given that

the next thing I’m going to do is Flee?”

• One for the next behaviour state conditional on the current behaviour state,

P (St+1|S) – “what should I do next, given that I’m currently Fleeing?”

The latter table is effectively a baseline state sequence model. The others, al-

though somewhat counterintuitive due to the sensor state being conditional on

the behaviour rather than the other way around, drastically reduces the number

of input probabilities required. This technique of inverse programming is one of

the major contributions of the paper. Instead of specifying these tables manually,

they can be derived from human demonstration. Either the player simply directs,

in real-time, which behaviour they want the bot to execute, or they play the game

using a natural interface, and the behaviour state is inferred through recognition

algorithms. Again, this system uses discrete behaviour symbols and sensor state
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categorisations to allow probabilistic inference. It operates only at the ‘strat-

egy’ / ‘behaviour arbitration’ level, with all lower-level behaviour assumed to

be part of prior knowledge. Not only internal bot state (like the Bielefeld and

Dublin system), but also in some cases the behaviour category choice is recorded

directly from the demonstration, as opposed to via intra-environmental sensing.

This places it at a similar distance with respect to our ‘agent-centric imitation’

ideal.

The argument for using FPS games as a research platform for advanced AI

has perhaps been made most strongly by Laird and van Lent (2001). They also

used Quake, with their bot AI being supplied by the SOAR cognitive architec-

ture (Laird et al., 1987). SOAR has a native learning mechanism called chunking,

which basically stores the solutions to previously solved problems, thereby elimi-

nating the need for reasoning when a similar problem is encountered in the future.

This kind of learning is weak inasmuch as it can neither produce novel behaviour

nor organise existing behaviour – it simply reduces ‘thinking’ time. Chunking

was disabled in the basic Quakebot, but was used to compile rules for predicting

opponent actions by running internal simulations in later work (Laird, 2001a).

More recently, they have added Reinforcement Learning capabilities to SOAR

(Nason and Laird, 2005; Wang and Laird, 2007), which makes it yet another

example of a system with symbolic reasoning coupled with statistical learning,

although to date it has not yet been implemented in a Quakebot. A similar

project called COGBOTS, this time using ACT-R (Anderson and Lebiere, 1998)

in Unreal Tournament, seems not to have gotten past the conjecture stage (Lee

and Gamard, 2003).

7.3.3 Summary

In this chapter, we have described in replicable detail an implementation of

GTLF, and applied it to an investigation into multi-modal learning. Our re-

sults suggest that demonstrations which are good enough not to adversely affect

an agent learning purely by observation, can nevertheless introduce enough doubt

to those also using trial-and-error to cause unnecessary exploration and thus be-

havioural error. On the other hand, very bad demonstrations which leave parts

of the task space unvisited can be compensated for by the exploration inherent
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to trial-and-error.

We have also identified GTLF’s nearest neighbours in the literature. The

robot task learning system of Nicolescu and Matarić (2001, 2002, 2003, 2007) has

proved very adept at learning novel high-level behaviour co-ordination, but may

not have realised its full potential at the lower level of behaviour construction.

Dogged Learning (Grollman and Jenkins, 2007) is a platform-independent frame-

work like our own, but its reliance on Mixed Initiative Control somewhat limits

its scope of application. The flight simulation work of Sammut et al. (1992);

Morales (2003); Morales and Sammut (2004) is of great interest because they

have encountered many of the same problems that we have, but in a very spe-

cialist domain inhabited by quite different agents. Finally, research by groups

in Bielefeld and Dublin have created bots that successfully learn complex tasks

in Unreal Tournament more successfully than we have been able to with COIL

(Bauckhage et al., 2003; Thurau et al., 2004a,b,c, 2005; Bauckhage and Thurau,

2004; Gorman et al., 2006a,b; Gorman and Humphrys, 2005, 2007). However, we

offer a different perspective on the problem: from inside the agent looking out,

as opposed to from outside looking in.

In the final part of this dissertation, we continue to look outward into our

research community, highlighting further the wide applicability of both GTLF

and UT as a research platform.
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Part III

Discussion

156



Chapter 8

Wider Applications

The experimental results presented in the previous chapter are primarily designed

to convince the reader that GTLF is usable and useful. In this chapter we broaden

our horizons, and ask two questions from different sides of the same applications

coin. Firstly, what systems and methods exist that could contribute knowledge

to and act as a foundation for GTLF? Secondly, how can GTLF be modified to

contribute to research in the widest variety of learning domains?

8.1 Acquiring Prior Knowledge

Throughout our description of of GTLF theory (Chapters 2 and 3) and imple-

mentation (Chapter 7) we have been referring to prior knowledge. The term has

encompassed all of the agent’s innate abilities, as well as everything that it has

learned up to the present time. GTLF makes use of a significant amount of such

knowledge; the initial perceptual configuration and action repertoire for example.

To allow us to focus on the task learning problem, we have so far assumed that

all prior knowledge is provided by the agent’s designers through hand-coding. In

this section we hypothesise how some could be acquired using alternative means,

and how these could be integrated with GTLF. Each reference to prior knowledge

is examined in turn.
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8.1.1 Initial Perceptual Configuration

This is the problem of defining an initial set of perceptual classes, and an accom-

panying function to map sensor space (determined by innate sensor configura-

tion; see Section 3.1.1) onto this set. For the sake of this discussion, we assume

that each sensor functions independently, and receives either discrete or real-

valued data. One option is to use the perception channel system described in

Sections 7.1.2 and A.3, assigning each sensor its own channel and each discrete

input its own perceptual class. The remaining continuous sensor channels can

then be subdivided arbitrarily, with each division mapping to a perceptual class.

This is a valid initial configuration for GTLF, but may never converge to one that

makes solving the task possible. That depends upon subsequent reconfiguration,

should it occur (see Section 3.4).

If we suppose that the agent has had some opportunity to explore and interact

with the world in which it lives, we can use that experience to automatically

extract a better perceptual structure. There are many algorithms under the

broad category of unsupervised clustering which attempt to detect statistical

regularities in possibly high-dimensional data (Bishop, 2006). Pre-processing

dimensionality reduction techniques such as Principal Components Analysis could

also be used.

For examples in perception research, Gdalyahu et al. (2001) use a graph par-

titioning technique to cluster visual data, and Ajmera et al. (2004) use a Hidden

Markov Model to cluster acoustic data. Each cluster could map to a perceptual

class, and such an initial configuration should provide quicker convergence due to

the extra information. Adding some degree of supervised learning could further

reduce the amount of reconfiguration required during learning, but this increases

the designer’s knowledge input.

8.1.2 Initial Action Repertoire

This is the complementary problem of creating a set of executable action ele-

ments given a set of actuators. This in turn comprises two sub-problems: finding

the relationship between commands sent and effects achieved, and co-ordinating

different actuators to create useful elements.

The former is thought to be achieved by human infants through a process
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known as ‘body babbling’ (Meltzoff and Moore, 1997). The infant sends ex-

ploratory motor commands to its actuators, and discovers the effect these com-

mands have on its body configuration via perceptual feedback. The information

and practise gained allow the infant to work toward forming goal-directed ac-

tions. An artificial analogue of this process could allow an agent to reduce the

search space of possible action elements by eliminating those which have little or

no (desirable) effect. How precisely this would be achieved in practise remains

an open question.

The latter sub-problem has been of fundamental importance to roboticists

trying to cope with the combinatorial explosion which occurs when creating

controllers for robots with many degrees of freedom. Schaal et al. (2004) use

both imitation and trial-and-error learning to find ‘dynamic movement primi-

tives’ (DMPs), which are based on differential equations. Fod et al. (2002) apply

PCA and clustering algorithms to human motion capture data (in a similar way

as described above) to derive a set of ‘perceptuo-motor primitives’.

8.1.3 Correspondence Library for Imitation Learning

Recall that in GTLF, the correspondence library is effectively a lookup table link-

ing egocentric perceptual classes and actions to equivalent allocentric ones. For

perceptual correspondence, this could be linking to my right to to expert right,

and for action, turn right() to expert turning right (see Section 3.1.3). Now

we think briefly about how a library containing both perception and action cor-

respondences might be constructed without resort to hand-coding.

Considering actions initially, what makes a good correspondence depends en-

tirely on what level of imitation is required (i.e. action-level through effect-level;

see Section 3.3.1), which in our case depends upon the task at hand. In other

words, the task will determine the choice of error metric needed to measure

degree of correspondence. We discuss work on generating such metrics automat-

ically later in this section. For now, we assume that an appropriate metric has

been decided upon, and that we are left with the problem of building a library.

ALICE (Alissandrakis et al., 2002; Alissandrakis, 2003) and JABBERWOCKY

(Alissandrakis et al., 2005), ALICE’s successor specifically designed for imitat-

ing human motion, are capable of solving this problem. Like GTLF, ALICE is
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a framework which allows different algorithms to be used to generate potential

action correspondences. The system then checks to see if the generated action

is a better correspondence (determined by the error metric) than the currently

stored one, and updates the library if so. This is very similar to the testing stage

of GTLF (see Section 3.3), but at a lower level.

At the effect-level end of the spectrum, action correspondence is more about

satisfying equivalent goals, and therefore recognising goal-directed behaviour in

others, than finding equivalent motor movements. Behaviour recognition has a

significant literature of its own, so here we just highlight some applications that

could potentially integrate with social learning in GTLF. No matter how the

matching is carried out, ‘recognition’ implies that some set of model behaviours

must already exist to match against. These could be user-defined or themselves

learned from observation. Albrecht et al. (1998) have shown that a Dynamic Be-

lief Network (DBN) can be used to predict a user’s quest in a Multi-User Dungeon

(MUD). Their approach is likely to be best suited to similarly discretely-defined

domains. More applicable to UT is the work of Han and Veloso (2000), who

represent dynamic real-time robot behaviour using Behaviour Hidden Markov

Models (BHMMs). Probabilistic reasoning can then be used to find the most

likely behaviour being executed given observations of a robot. Kaminka and

Avrahami (2004) attack the same problem using a graphical representation of

behaviour; more specifically, behaviour-based controllers. This allows them to

use tagging and graph theory to generate behavioural hypotheses. Potentially

the most challenging application of behaviour recognition is to ‘natural’ human

activity. Again, it seems variations on the HMM are most popular (Clarkson and

Pentland, 1999; Nguyen et al., 2003; Oliver et al., 2004), most likely because they

can deal robustly with the uncertainty inherent when using noisy sensors (e.g.

video and audio surveillance) and behaviour models (humans).

Perceptual correspondences can be formed through sharing perceptual con-

texts with another agent during completion of a task. This approach is used by

Hayes and Demiris (1994), who experiment with an imitator robot following a

teacher robot through a maze. The imitator’s perceptual context at a given point

where it must change direction corresponds to the teacher’s perceptual context

at that point. A similar method has been used to allow one robot to teach a

lexicon to another (Billard, 2002). The teacher emits a different radio signal for
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each perceptual class it occupies, and the following robot learns to associate the

signals (symbols) with its own perceptual context at the time.

8.1.4 Lexicon for Instruction Learning

A lexicon for instruction learning serves much the same purpose as the corre-

spondence library serves for imitation learning. This time the links would be

between ‘reference’ perceptual classes (e.g. heard word red) and ‘referent’ per-

ceptual classes (e.g. see colour red). Lexical learning is really just a specialised

type of perceptual correspondence learning, so it is not surprising that one of the

examples given above (Billard, 2002) relates to both applications. In that case,

the references were (classes of) radio signals. Also, in Section 5.1 we examined in

detail one of the best lexical learning systems to date: CELL (Roy and Pentland,

2002). In summary, using temporal and mutual information analysis, CELL finds

‘central’ examples of spoken words (the references) and visual stimuli (the refer-

ents). The perceptual classes are spheres in audio / visual feature space centred

on these examples. The information gathered during interaction is also used to

link word and stimulus classes to create a lexicon, which should be fully compat-

ible with GTLF; our perception channel system (Sections 7.1.2 and A.3) is based

on (and is in fact a generalisation of) that of CELL.

8.1.5 Reward Function for Trial-and-error Learning

Reward functions in trial-and-error learning determine the (real-valued) reward

received by an agent in each possible state. This should not be confused with

the value function, which gives the expected future rewards (return) for taking

each possible action in each possible state, given the reward function (and a state

transition probability function). Put simply, finding (or at least approximating)

the value function is the aim of reinforcement learning (RL) (Sutton and Barto,

1998). Which RL algorithms are used will depend on the particular implementa-

tion of GTLF, but here we consider how the reward function itself, necessary for

any RL algorithm, could be acquired.

The vast majority of RL applications make use of a human-designed evalu-

ative feedback system, which gives rise to the credit assignment problem. One

alternative is to use evolutionary methods, as demonstrated by Humphrys (1995,
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1996). Here, Q-learning agents (Watkins and Dayan, 1992) with different re-

ward functions encoded in their genomes compete for control of a robot via a

process called W-learning. Groups of agents whose functions perform best with

respect to some (hand-coded) fitness function are then selected for reproduction

using a genetic algorithm (GA). A more recent example of related work is that

of Damoulas et al. (2005a,b), where a similar process is described as ‘evolving

a sense of valency’. Clearly the extent to which these methods require repeated

trial somewhat limits their practical applicability. Another alternative is to in-

fer a reward function socially. For example, Atkeson et al. (1997) use human

demonstrations of a pendulum swing to inform a function which rewards similar

performance. Formally, the process of inferring an agent’s reward function given

its behaviour (and a model of the environment) is called inverse reinforcement

learning (IRL) (Russell, 1998). Very recently, this has been extended to finding

a probability distribution over the space of possible reward functions using the

Bayesian framework (Ramachandran and Amir, 2007). The problem with these

techniques is that they impose the same constraints as imitation learning: that

the opportunity exists to observe an agent executing exemplary behaviour. In

fact, IRL basically recasts the imitation learning problem in an RL framework.

8.1.6 Rules for Insight Learning

Any knowledge an agent has about the world and the way it operates (which could

be helpful in task learning) should be represented by the rules in the insight

learning module. Put another way, it is a ‘catch-all’ for types of learning or

inference that don’t fall into the other three categories.

We illustrate through an example from UT: suppose through reinforcement,

instruction and / or imitation an agent learns that attacking enemies brings

about a performance improvement in a given task. This does not, however,

imply that the agent has any ‘understanding’ of the effect that its attack actions

have on other agents – it cares only about improving performance according to

the error metrics it is using. From the agent’s point-of-view, there is no reason

why attacking allies would not also be beneficial to task performance1. By the

time the agent learns of its error, it could well be too late for a number of its

1Provided that it has not learned otherwise via the other three learning methods.
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allies. If the agent has some insight into the situation, however, such as:

1. Attacking agents causes damage.

2. Causing damage to allies is bad.

Then fatal mistakes may be prevented. So how could such rules be acquired?

In a sense, finding rules is all that GTLF does. The task behaviours it gen-

erates can also be seen as hierarchies of production rules : ‘IF <some percep-

tual state is occupied> THEN <initiate some course of action>’. So it may be

that whichever learning algorithms are being used in GTLF could be adapted to

learn ‘insight’ rules. For example, suppose that an MLP is being used to learn

perception-action associations through imitation learning (Wood and Bryson,

2007a, and Section 6.2.1). A similar network could be used to associate current

perception with past perception to produce basic cause-and-effect rules, for exam-

ple. An obvious choice of algorithm for rule induction is the decision tree learner

(C4.5 for example; Quinlan, 1992), since its inputs and outputs are generally al-

ready human-readable categories. However, rule extraction from neural networks

using sub-symbolic data representation is also possible (Omlin and Giles, 1996),

along with many other techniques (e.g. Cohen, 1995).

8.1.7 Error Metrics for Testing

Error metrics are used by agents to assess whether new behavioural tendencies

learned in previous episodes have improved task performance. In Section 3.3.1

we adapted the concept of correspondence metrics for imitation, as defined by

Nehaniv and Dautenhahn (2001), to create task performance metrics. Just as the

choice of correspondence metric determines what to imitate, the choice of task

metrics determine what the task is. In turn, deriving a correspondence metric

automatically amounts to learning what to imitate, and deriving task metrics

automatically amounts to learning what the task is. As was laid out in Section

2.1, a task is defined by a set of goals to be achieved. These goals could originate

from three main sources:

1. A passive observer – that is, an intelligence external to the task environ-

ment. The agent designer is the most obvious example, who may in turn be

representing society’s ‘corporate intelligence’. In this case, the agent would
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be assessed according to pre-specified error metrics, defining the task ac-

cording to some globally (i.e. socially) accepted standard. This is the case

for all of our experiments.

2. An expert presence – an agent which possesses knowledge of a task and

also inhabits the task environment. This knowledge could conform to social

norms or be individual to the expert.

3. Internal drives – some agents may possess desires / drives / goals of their

own, regardless of external input. In this case the agent can define its own

success metrics, or maybe bias those that have been imposed upon it.

For Source 1, the learner has no way of inferring the metrics being used, since

the observer is assumed to be outside of the agent’s sphere of sensing. The only

way for the learner to benefit in this case is if it is provided with the metrics in

advance (i.e. as part of prior knowledge). We look instead at the more interesting

cases in which it might be possible to infer error metrics. Where Source 2 is the

best information source, task metrics would approach correspondence metrics.

Put another way, if an expert demonstrator is the best source of information

about a task, then performance in that task is best approximated by the quality

of imitation achieved. Learning what to imitate and learning what the task is

become the same problem. To this end, Calinon et al. (2007) use an improved

version of a technique they developed previously (Billard et al., 2004) to determine

the best metric (or cost function) for assessing imitative performance. Using a

series of probabilistic processes (Gaussian Mixture Models [GMMs], Bayesian

model selection, Hidden Markov Models and Gaussian Mixture Regression), a

robot is able to extract high-level goals and thus reproduce two different task

behaviours from observation of a human, even if the task environment changes.

For inspiration from biology, Carpenter and Call (2007) give a good review of

how animals and infants go about solving this problem.

In the absence of other sources, the agent must set itself a task, and this will be

influenced by its internal drives and desires. A drive could be as simple as wishing

to maximise some reward signal over a period of time. In this case, task metrics

are like value functions (see above), where error is minimised for behaviour that

is expected to elicit the highest returns. In principle, the complexity of an agent’s

drives, and the extent to which they could influence its choice of task metrics,
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are entirely arbitrary and dependent upon the agent in question. It may also be

that, rather than being the sole determining factor, drives merely weight already

existing task metrics acquired from other sources.

Depending upon the experimental context, the inverse of the above problem

may also need addressing. That is, how can an external observer assess an agent’s

task performance? If the observer provided the agent’s task metrics in the first

place (or has direct access to them), then there is a simple option – use the same

metrics. If not, and this is always the case to some extent when studying animal

behaviour, then the assessor has two options: either attempt to approximate

the agent’s task metrics via inference (the inverse of the above procedure), or

assess according to some socially-defined norm. In both cases, but particularly

the latter, it is possible that the agent and the assessor will use very different task

metrics, and therefore make very different qualitative assessments of performance.

8.2 Into the Real World

So far GTLF has only been implemented in Unreal Tournament, where perception

and action are noise-free. However, in Real World applications, this will not be

the case, so it would be useful to see how GTLF could be improved to cope with

noisy environments. Also, even in noise-free environments, partial observability

may still introduce uncertainty into reasoning, particularly as perceptual classes

become more complex.

8.2.1 Uncertain Perception and Action

Perceptual states in GTLF are like tiles covering sensor space. In probabilistic

terms, given the sensor state, the probability of occupying a given perceptual state

is either 0 or 1. That is not, of course, to say that perceptual class definitions are

‘correct’ in any absolute sense; boundaries can in fact be arbitrarily re-defined

by the agent to maximise task performance (see Section 2.3.3). It just means

that we have 100% confidence in our sensor readings — that they are entirely

noiseless. If this were not the case, then it would make more sense to make use

of a function which returns the probability of perceptual state occupancy given

the sensor state. Put another way, rather than the perception system mapping
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sensor states directly to perceptual states (see Section 3.1.1), it could map sensor

states to probability distributions over perceptual states. These distributions

would need to be determined either by known sensor noise models, or sampled

from the environment.

The same reasoning applies to two other cases. Firstly, the case in which

sensors are noiseless, but the sensor state does not contain all the information

needed to fully determine the perceptual state: partial observability. In UT, an

example of this would be the latent health of another bot, which can be estimated

(i.e. assigned a probability distribution) based on past experience, but can never

be read directly. Secondly, the case in which perceptual classes themselves have

probabilistic as opposed to deterministic boundaries. For example, whether a

light is on or off (i.e. the probability of occupying light on or light off) is

near certain, but whether something is blue or green is a lot more subjective. Of

course, there is also the possibility of noisy, partially-observable and subjectively

defined task domains, common in the Real World, in which uncertainty from all

sources would need to be consolidated.

If a given sensor state gives rise to a distribution over perceptual states, then

this could be used as a basis for stochastic action selection. Assuming that skills

remain as deterministic mappings between perceptual states and action elements,

then the probability of occupying a given perceptual state could correspond to

the probability of selecting the action element which is the image of that state

under the skill function. Of course, even if sensor state deterministically maps

to perceptual state (as in our experiments), action elements could still be chosen

stochastically, using a softmax distribution for example (see Appendix A.2 for

definition).

8.2.2 Summary

GTLF, like many complex learning systems, relies on a substantial amount of

prior knowledge. However, there are a number of potential systems and tech-

niques that could provide an alternative to laborious hand-coding. An initial

perceptual configuration could be provided using statistical clustering techniques,

(Bishop, 2006) as demonstrated for sound by Ajmera et al. (2004) and for vision

by Gdalyahu et al. (2001). Fod et al. (2002) and Schaal et al. (2004) similarly
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demonstrate methods for creating robot action primitives. Creating a corre-

spondence library, particularly for agents with dissimilar embodiments, is the

subject of work by Alissandrakis et al. (2002, 2005); Alissandrakis (2003), and

the aforementioned CELL system (Roy, 1999; Roy and Pentland, 2002) imple-

ments lexical learning which could facilitate instruction. Humphrys (1995, 1996);

Damoulas et al. (2005a,b) show that it is possible to evolve reward functions for

Reinforcement Learning using a genetic algorithm. There are many rule induc-

tion methods (Cohen, 1995) which could seed the insight learning and perceptual

reconfiguration modules, including the use of decision trees (Quinlan, 1992) and

neural networks (Omlin and Giles, 1996). The technique used by Billard et al.

(2004); Calinon et al. (2007) for learning what to imitate could potentially be

adapted to create error metrics for learning the goals of a task. We also note that

the Real World is subject to noise and uncertainty in a way that UT is not, and

suggest that GTLF could be adapted for this by way of a probabilistic perception

system and stochastic action selection.

Next, we turn to the more philosophical subjects of embodiment and corre-

spondence in virtual domains.
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Chapter 9

Wider Implications

In the previous chapter we looked outward, considering how our work might be

integrated with other systems and implemented within other domains. Now we

focus inward, aiming to promote our virtual agent research paradigm by giv-

ing our perspective on two topics discussed frequently in agent-based learning:

embodiment and correspondence.

9.1 Intelligence, Embodiment and UT

Since the publication of the seminal Brooks (1991b,a) papers just over fifteen

years ago, the idea that intelligence is fundamentally linked to embodiment has

gained much support within the field of AI. Indeed, this principle is very much

at the heart of the ‘agent-based perspective’ with which we align ourselves. It is

beyond the scope of this thesis to give a systematic account of our opinions on

the subject, taking into account the full philosophical and psychological perspec-

tives. Instead we now attempt to tackle some important implications for us as

AI researchers working in virtual domains.

It seems that some working in the field of Virtual Reality use the term ‘em-

bodiment’ freely (Biocca, 1997). However, the emphasis of research such as this is

more the realism and immersiveness of the environments — how much they give

the user a sense of presence or ‘situatedness’. Our perspective on Virtual Reality

is slightly different, and looks to answer some of the following questions: is it

possible to produce intelligent virtual agents? Can virtual agents be counted as

embodied? Or is our research useful only insofar as it can be applied to material
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domains?

9.1.1 Can one be embodied without having a body?

Although the term ‘embodiment’ has been used in many different contexts and

research areas, to most it would imply materiality. Indeed, we have encountered

those who vehemently insist that this is a requirement. This assumption has

thankfully not gone unchallenged, however, and a number have attempted to

abstract the concept of embodiment by analysing how it relates to agency and

intelligence. We now trace one of these lines of argument through.

Etzioni

We initially look back to Etzioni (1993), who published a rebuttal to Brooks’

papers two years later. Etzioni was working with softbots ; software agents that

‘inhabited’ real-world software systems such as databases and the internet. In

fact, current research on ‘agents’ often refers to this very type of agent. He claims

that softbots offered ‘easy embodiment’, citing many of the same practical argu-

ments that we do in defence of UT (see Section 5.2.2). His arguments are based on

“software environments [which] are not idealisations of physical environments”,

in particular emphasising that such domains are neither designed nor controlled

by researchers. He also states:

“. . . in contrast to simulated physical worlds, software environments

are readily available. . . and intrinsically interesting. Furthermore,

software environments are real.” (Etzioni’s emphasis)

It is difficult to see where Etzioni would place Unreal Tournament in his think-

ing. It is not a specially designed research testbed; it is a ‘readily available’,

commercially successful computer game designed to be challenging and enter-

taining (intrinsically interesting?). On the other hand, it is possible (just as it is

in the Real World) to create highly constrained environments for experimenta-

tion. But is it real? He doesn’t really define the term, nor does he attempt to

pin down the notion of embodiment in any detail. For all these reasons, we need

to look elsewhere for further support for virtual embodiment.
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Kushmerick

A preliminary formal analysis of what it could mean for a software agent to be

embodied came from Kushmerick (1997). When referring to agents, he also has

in mind those which operate within real-world software environments. He is more

impartial than Etzioni, however, who is openly defending his own agents from the

implications of Brooks’ claims. He introduces two important concepts for us: that

of a computational account of the body, and that of degree of embodiment. For

the former, he lists seven ways in which agents’ bodies reduce the computational

requirements of a task. We list two that he himself focuses on in his article:

1. Bodies exchange information with their environments across a high-bandwidth

interface.

2. Bodies can off-load state into their environments.

Kushmerick criticises Etzioni’s ‘easy embodiment’ claim, stating that (1) does

not hold for his UNIX softbots. He argues that, since softbots cannot broadcast

information (they send it [e.g. rm] point-to-point) or respond to interrupts (they

must explicitly poll [e.g. ls] for sensory data), this epitomises low -bandwidth

agent-environment interfaces. This judgement in turn leads him to concede that,

because bandwidth is a continuum, so must embodiment be according to his

framework. We discuss this further in a moment. For now, let us consider UT

bots in light of Kushmerick’s list.

Firstly, UT bots receive sensory data at a frequency of about 10Hz. This is

a passive scan (i.e. it requires no polling by the bot) and contains data about

‘continuously available’ quantities, such as the bot’s own health and ammunition

status, and other visible agents and objects. Additionally, one-off events (such

as nearby audible footsteps or taking damage) are received as bundles of extra

‘interrupt’ data. Bots can also initiate new actions at the same frequency, al-

though some actions (such as jumping) have duration and cannot necessarily be

interrupted. This gives bots a reaction time (depending on when in the sensor

cycle an event occurs) of about 200ms, which is comparable to that of humans

(again, depending on the task and many other factors). This makes sense, since

UT bots are designed to behave in a ‘human-like’ way, as opponents to human

players. The results of actions, such as a change in the bot’s position or the
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firing of a weapon, are ‘broadcast’ to nearby agents, and this happens automati-

cally regardless of the agent’s intent. Thus we can confidently say that according

to Kushmerick’s first criterion, UT bots are significantly more embodied than

Etzioni’s softbots.

Fulfilment of the second criterion is facilitated by the first, as the following

example should clarify. The bot’s ammunition, represented by a non-negative

integer, is a variable which should greatly affect the bot’s decision-making (e.g.

fight or flight). As mentioned above, the bot receives its current ammunition

status at each sensor cycle; the value is effectively ‘held’ externally by the en-

vironment (actually in the gamestate) and becomes known to the bot via its

sensors. This is what Kushmerick means by ‘off-loading state’ into the environ-

ment. The alternative would require the bot to store an internal representation

of its ammunition status, updating it as and when events occur which cause it to

change. For ammunition, this may not be prohibitively costly, but the principle

of trading off perception and representation applies to many aspects of UT. Bots’

emphasis on perception, according to Kushmerick, implies a greater degree of

embodiment.

Quick et al.

While Kushmerick’s report focuses on exploiting the practical advantages con-

ferred by embodiment within software domains, Quick et al. (1999) have a more

bottom-up perspective (see also Dautenhahn et al., 2002). They propose the

following minimal definition of embodiment:

“A system S is embodied in an environment E if perturbatory chan-

nels exist between the two. That is, S is embodied in E if for every

time t at which both S and E exist, some subset of E’s possible states

with respect to S have the capacity to perturb S’s state, and some

subset of S’s possible states with respect to E have the capacity to

perturb E’s state.”

It is minimal in the sense that it isolates embodiment, making no claims about its

relation to intelligence or ‘interesting’ behaviour. By this definition, embodiment

is independent of the nature of S and E, instead describing the relationship

between them; a structural coupling of complex dynamical systems (Franklin,
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1997). Since such a coupling has quantifiable properties, Quick et al. claim that

this in turn makes degree of embodiment measurable. Although they suggest in

passing that total complexity, as defined by Nehaniv and Rhodes (1997), could

be a suitable metric, no actual quantitative analysis is given. Like Kushmerick,

however, they do highlight two potential qualitative measures of embodiment:

1. Perturbatory bandwidth — ‘total bandwidth of the perturbatory channels

between system and environment, defined by the number and efficacy of

the system’s sensory and effector surfaces’.

2. Structural variability — ‘structural complexity of system and environment,

defined as the number of constituent components, and plasticity with regard

to the configuration of those components in relation to one another’.

The former measure is closely related to Kushmerick’s first criterion, which was

discussed above. One further point: because UT is designed to be a game played

from the bot’s perspective, perturbation of the bot’s state (S) with respect to

its environment (E) ‘matters’ much more than the converse, and is therefore

more likely to occur. For example, explosions which can ‘kill’ bots usually have

no effect at all on the virtual masonry. As for the latter measure, Quick et al.

basically add overall structural complexity to Kushmerick’s second criterion, the

ability to transfer complexity between system and environment (which they refer

to as plasticity). In their papers they take an agent with very low variability and

bandwidth, the E. coli bacterium, and ‘re-embody’ it on the internet using words

instead of chemicals to stimulate interaction (Quick et al., 1999). Following this

principle, virtual UT bots, which ostensibly have substantially higher variability

and bandwidth, can be seen as ‘more embodied’ than material bacteria. The

problem with this assertion is that the state descriptions (i.e. components) of

biological (and sometimes virtual) agents are very subjective and often deter-

mined by the agent’s manifest behaviour. Maybe the behaviour is what matters,

but making strong claims seems unwise when the subjectivity of the choice of

metrics used for determining relative bandwidth and variability is also taken into

account.

Riegler (2002) describes the above definition of embodiment as ‘an important

first step... [but] at the same time an insufficient characterisation’. He argues

that since it applies to almost every conceivable system (even inanimate objects),
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it is too general to be of practical use. He makes the stronger claim that ‘a system

is embodied if it has gained experience within the environment in which it has

developed ’ (our emphasis). Although this leaves open the possibility of virtual

embodiment, it is closed for any agent that has been designed rather than evolved:

‘they are not embodied... but merely embedded in the dynamics of their environ-

ment’. For Riegler, cognition arises from embodiment due to evolution within an

environment. Design replaces evolution and therefore makes embodied cognition

impossible. It is unclear what his conclusions would be on agents which are par-

tially designed and partially evolved (i.e. which have learned / developed / gained

experience). Dautenhahn et al. (2002) respond with the underlying message that

such criticisms are borne out of an attempt to make embodiment (and cognition,

life, etc.) a binary property. Being ‘too general to be of use’ misses the point of

the definition — not to classify but to measure degree of embodiment and allow

for comparison between different system-environment pairs. Although they agree

that cognition arises from embodiment, they see it as something which ‘can be

considered along a continuum of increasing degrees of embodiment’. In other

words, cognition too is a matter of degree, and is strongly influenced by degree

of embodiment. This raises another interesting question: how cognitive are UT

bots?

Before we summarise the implications of these views for UT bots, it is worth

noting that a broader overview of what embodiment can mean in different areas

of research has been provided by Ziemke (2001, 2003).

9.1.2 Are UT bots embodied?

Throughout this discussion, it has been a continual temptation to be biased

toward an affirmative answer to the above question1, simply because UT bots

look embodied. This is a clear credit to the game designers (Digital Extremes,

1999), as presumably this was exactly their intention. It is worth reminding

ourselves, though, that UT is just a collection of bits and algorithms. Some

of these elements represent bots (our system S), and some the environment (E).

They are used by the graphics engine to create a 2D rendering containing human-

and world-like images. In relation to this problem, Riegler (2002) makes a valid

1Quite apart from the benefit it would have on our research agenda.
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point; that the ‘designedness’ of a system, environment, and relationship between

the two can lead us to imbue meaning and generally over-anthropomorphise.

With this at the forefront of our thinking, can we still claim that UT bots

are embodied? For every time t (bearing in mind that UT is a real-time game) a

change of state in the environment E (i.e. an external event) can cause a change

of state in the bot S. Similarly, a change in bot state (an action or internal

event) can perturb the state of the environment. These mutual perturbations

are facilitated by the algorithms associated with each set of variables. Also, all

changes to a bot must come via the environment (or the bot’s operator — see

Section 9.1.3 below), whereas the environment can ‘contain’ many bots able to

perturb different subsets of its state. We can thus view bots as being embedded

in their environment (Dautenhahn et al., 2002) – the relationship is asymmetric,

and the assignment of the labels S and E is not arbitrary. So, by Quick et

al.’s minimal definition of embodiment, the easy answer to the question is ‘to an

extent’. However, a more appropriate question would be: to what extent are UT

bots embodied?

Based on the properties of perturbatory bandwidth and structural variability,

we are fairly safe in saying they are not as embodied as (most) humans. Bot

sensors are not as numerous, sensitive or high-resolution as ours, and the human

brain and nervous system is orders of magnitude more complex than the state

space of a native UT bot, for example. We do, then, need to take careful account

of how the lesser embodiment (and therefore lesser cognition?) of bots might af-

fect our results before making any behavioural generalisations to highly embodied

(and cognitive) agents such as humans. However, we suggest that UT bots are as

embodied as many of the material robots used in social learning research to date.

Many such robots operate in highly constrained environments and / or problems

spaces to make learning possible (see Section 7.3.1 and Chapter 8 for examples).

In practise, both types of agent can vary greatly in complexity, depending upon

the resolution of internal representations used, for example. The point is that

there is no reason in principle not to place social research carried out in UT on

equal footing with that carried out using robots in the Real World. The two re-

search domains theoretically provide the same opportunities and limitations for

commenting on learning in general. They have the same issues of ‘designedness’,

lesser embodiment and lesser cognition.
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9.1.3 Embodiment and Teleoperation

So far we have implicitly considered UT bots which are operated by algorithms

native to the UT engine — the intelligence is embedded in the environment with

the agent2. However, the bots we have conducted experiments with have been

operated remotely across a network, either by a human or a Java application.

What effect does removing the intelligence from the environment have on em-

bodiment? The philosophical nature of this question puts a complete treatment

of it outside the scope of this thesis. Instead, we will informally discuss some

possibilities assuming the more interesting case of human operation.

Firstly, the perturbation channels between body and environment are inde-

pendent of the location of the mind, so removing the mind from the body still

satisfies the minimal definition of embodiment. As far as degree of embodiment

is concerned, the human visual and motor interfaces are designed to provide the

same data and command options to a human that would be available to a UT-

operated bot (see Section 9.2 below). Therefore, perturbatory bandwidth would

change, because the sensory and effector surfaces would change, but maybe not

drastically. However, by introducing the human brain into the control loop, struc-

tural variability could be seen to significantly increase, which would imply that

human-operated bots are more embodied than native bots. This seems like a sur-

prising result, but this notion of ‘tele-embodiment’, for some roboticists at least,

is not an uncomfortable one (Paulos and Canny, 2001). Also, tele-embodiment

is the only kind possible from the point-of-view of immersive Virtual Reality.

9.2 The Real Correspondence Problem

In Section 5.3.6, we mentioned the correspondence problem in relation to our

COIL experiments, and saw the solution of mapping between two identical UT

bots as a trivial one. But the section above suggests a deeper, nontrivial cor-

respondence problem – that of mapping the perceptions and actions of one bot

operator onto another. At this point we make an important distinction in ter-

minology: the bot operator is the source of commands for the bot; the (possibly

remote) intelligence or mind. The bot controller is a piece of software named

2What it would mean for the intelligence to be embedded ‘within the agent’ is unclear here.
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as such within UT which provides an interface between the bot and its opera-

tor. The role of the controller is to translate whatever commands it receives and

execute them (i.e. appropriately change the bot’s state). Let us examine the

scenario used in our COIL experiments in which a correspondence must be found

between a bot operated remotely by an AI system and a bot operated remotely

by a human.

9.2.1 Perceptual Correspondence

As far as perception is concerned, not much sensor data is made directly available

to human players. Instead, the perceptual state required for decision-making

must be extracted by interpreting a series of images on a screen. The images

represent a projection of the 3D environment from the view point of the operated

bot, as well as some on-screen data such as health and weapon status. Because

the human brain can interpret these views similarly to views of the Real World,

the perceptual classes used are also likely to be similar (e.g. to the left or

through that door). The broad, stochastic nature of these classes could also be

seen as resulting from the information loss between the game state variables and

the brain (via the screen-eye interface).

An AI system, on the other hand, has direct access to the sensor data received

by the operated bot, which arrives in bundles of attribute-value pairs. Such values

could be of type real, integer, boolean or string symbols. In fact, the data perceiv-

able via bot sensors is designed to match as closely as possible that perceivable

via the screen, albeit represented very differently. For example, bot sensors only

detect objects within their view cone, mimicking the restricted view provided on-

screen. Also, bots cannot detect doors and walls (except through collision), but

the human perception of navigating through discrete locations is approximated

using a network of way points, which can be detected. For an AI system to learn

socially from a human, it must be able to infer a perceptual correspondence that

at least allows it to generate similar behaviour, regardless of how similar the un-

derlying representations are (Bryson and Wood, 2005). GTLF is flexible in that

it can use any combination of sensors and partitions to form perceptual classes.

Good correspondences can in principle evolve via the representational reconfig-

uration process (see Section 3.4). For examples of possible correspondences, see

176



those we designed for our experiments (Sections 5.3.6 and 7.1.1).

9.2.2 Action Correspondence

The ‘life-like’ images UT displays give the human player a sense of presence

in the environment, which results in ‘life-like’ perceptual classes. Action cor-

respondences, however, are forced through a much more artificial process. The

actions used by humans to operate bots are manipulations of the keyboard, mouse

and / or joystick3. This input is then translated by the bot controller into exe-

cutable actions.

An AI system can send commands to the bot controller using function calls.

The two main differences in this method of interaction when compared to a human

player are:

1. Function calls generally initiate actions which have duration, and therefore

need a parameter which refers to a definite goal within the environment. In

contrast, human players send continuous commands to the bot controller.

The goals are managed moment-by-moment by the player.

2. As a result of this, there are ‘short-cut’ actions available via function call,

which are not available to human players. Examples include run to(somewhere)

and shoot at(something). Of course, human players can replicate these

actions, but they must do it using continuous commands.

In essence, the bulk of the action correspondence between human and AI re-

sults from both sets of action commands being forced through the bot controller.

What remains is to infer a correspondence for the anomalies listed above. For

AI attempting to learn socially from a human, this amounts to either forfeiting

‘short-cut’ actions in favour of more basic ones, or attempting to infer the goal of

an action or action sequence. For simplicity, we chose the former for our experi-

ments, but the latter could be made possible using action compilation rules (see

Section 2.3.3) or machine learning techniques (Section 8.1.2). From a cognitive

modelling point of view, there is some neurological justification of the capacity

for recognising goal-directed action units (Rizzolatti et al., 2000; Hurley, 2005).

3If an immersive Virtual Reality interface was used, however, the action correspondences
would become more ‘life-like’.
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9.2.3 Summary

The notion of embodiment for virtual agents is not an uncontroversial one. Brooks

(1991b,a) seemed to rule it out in his seminal papers, but Etzioni (1993) dis-

agreed, claiming that his softbots offered ‘easy embodiment’ since they resided

in real world applications as opposed to simulated idealised worlds. Kushmer-

ick (1997) gives a preliminary formal analysis of the concept, focusing on the

practical benefits embodiment could have in software domains. This contrasts

with the bottom-up perspective of Quick et al. (1999); Dautenhahn et al. (2002),

who provide both a minimal definition of embodiment and add to it the notion

of an embodiment continuum. By these definitions we conclude that UT bots

are embodied to an extent at least as great as some of the material robots used

in recent learning research, and should therefore be given an equal status as re-

search tools. Also, as a consequence of so-called tele-embodiment, there exists a

nontrivial correspondence problem when AI-controlled bots attempt to imitate

humans in UT.

This concludes our account of the main contributions of this thesis. In the

final part, we review these contributions and outline the directions we think this

line of work would best take in the future.
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Part IV

Conclusions and Appendices
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Chapter 10

Conclusions

This dissertation contains descriptions of two large, complex learning systems,

as well as numerous other algorithms, formalisms and experiments. In this final

chapter we aim to tie all these threads together by summarising the entire dis-

sertation and its contributions in a few pages. With these things at the forefront

of the reader’s mind, we then give some ideas for future research directions and

draw the dissertation to a close.

10.1 Chapter Summary

Below is a brief description of the contents of each of the preceeding chapters for

the purposes of both review and reference.

Chapter 1: Introduction

Intelligent agents need skills in order to handle the various tasks life in an unpre-

dictable world throws at us. Not all skills can be gifted by evolution or design,

but the remainder may be learned through practising tasks. We propose that this

task learning process has elements common to all situated agents across many

tasks. Identifying these elements and constructing a framework to house them is

the primary purpose of this thesis. Such a framework should benefit engineers by

giving them a structure within which to compare machine learning techniques,

and should benefit scientists by giving them a starting point from which to create

and compare biologically plausible models of task learning.
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Chapter 2: An Agent-Independent Theory of Task Learning

We formulate an agent-independent description of task learning which rests on

three fundamental concepts. Perceptual classes can represent any region of sensor

space, from raw low-level data to complex high-level concepts. Action elements

can represent any executable action, from low-level motor commands to high-

level co-ordinated sequences of movement. Skills or behaviours map perceptual

classes to action elements, and too can be implemented at any level. Armed with

innate biases and past experiences to constrain and guide learning, agents can

make use of a combination of insight, trial-and-error, observation and instruction

to hone their skills, depending upon their capabilities and circumstances. For

best long-term results, this is likely to occur over a number of episodes, with the

learner aiming to gradually improve both task accuracy and efficiency.

Chapter 3: General Task Learning Framework

Based on the principles set out above, we can specify a General Task Learn-

ing Framework, which comprises four stages. In Stage 1, the agent explores the

task environment according to the learning methods that are available, and that

it wishes to use. Insight involves applying known rules and skill elements to

the task; trial-and-error involves interacting with the task; observation involves

watching an expert complete the task; and instruction involves attending to and

interpreting a teacher. In Stage 2, knowledge gained during exploration is com-

bined with old to create an updated skill and attention strategy. In Stage 3, the

new skill is tested and feedback received from any agents monitoring the learner’s

performance. In Stage 4, the learner’s perception space is reconfigured to enable

improved accuracy in future episodes, and actions are compounded where pos-

sible to improve efficiency. The new skill is stored and the cycle iterates. Some

tasks have inherent hierarchical or sequential structure which can be exploited to

improve the efficiency of this process.

Chapter 4: GTLF as a Design Philosophy

By treating GTLF as a broad design philosophy as opposed to either an agent

classification framework or baseline learning system, we find five considerations to

put forward to the learning agent designer. Firstly, consider the whole problem,
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as opposed to just the fragment of interest; define what is hard-coded so it is

easier to define what needs to be learned. Secondly, consider the primitives being

used; where they come from and how they might change. Thirdly, consider using

different learning methods; recognise their relative strengths and weaknesses in

different learning scenarios. Fourthly, consider your agent as one taken from a

large design space; try and relate your agent to others. Fifthly, consider the

bigger picture; although you might be interested in only a relatively constrained

problem, try and hypothesise how the agent’s operation could be generalised.

Chapter 5: COIL: Cross-channel Observation and Imitation Learning

GTLF and our interest in the characterisation of task learning grew out of a

project which focused on imitation learning (Bryson and Wood, 2005). Specif-

ically, our Cross-channel Observation and Imitation Learning (COIL) system

(Wood and Bryson, 2007b) is a generalisation to imitation of Deb Roy’s Cross-

channel Early Lexical Learning system (Roy, 1999; Roy and Pentland, 2002).

COIL channels and segments information relating to the perceptions and ac-

tions of an agent observed demonstrating a task. It then attempts to find good

perception-action bindings by identifying co-occurrence, recurrence and high mu-

tual information. The bindings are used as a specification for imitated behaviour

which can then be executed by the learner. The system was implemented and

tested in the virtual reality-style computer game Unreal Tournament (Digital Ex-

tremes, 1999). Agents (called bots) running COIL successfully learned two task

behaviours from human demonstration.

Chapter 6: From COIL to GTLF

Despite COIL’s initial success, we identified a number of potential problems look-

ing to future development. Firstly, the representations designed for speech and

vision inherited from CELL were not best suited for representing generic actions

and percepts. Secondly, some of the algorithms inherited from COIL relied on

assumptions which did not hold in the general case, and this adversely affected

efficiency. Thirdly, COIL had no facility for representing hierarchical task or be-

haviour structure, which is likely to have rendered it unusable for complex tasks.

We built an improved version of COIL which sought to address the first two
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of these issues: simpler representations were used, and a generic MLP classifier

network replaced some of COIL’s native algorithms (Wood and Bryson, 2007a).

Experimental results confirmed that the system had been improved, and we were

also able to show that Bayesian techniques could be used to systematically intro-

duce prior knowledge and inform attention. However, we still felt that working

within the CELL framework was a limiting factor. We thus decided to take what

we had learned in developing COIL and design a new framework which extended

to other learning methods: GTLF.

Chapter 7: GTLF Implementation

As a proof-of-concept, we implement several GTLF modules and use the frame-

work to carry out experiments investigating the relative merits of social (ob-

servation) and individual (trial-and-error) learning. To demonstrate compatibil-

ity with the Reinforcement Learning paradigm (Sutton and Barto, 1998), our

trial-and-error learning module implements the Semi-Markov Average Reward

Technique (SMART — Das et al., 1999). Our results suggest that demonstra-

tions which are good enough not to adversely affect an agent learning purely by

observation, can nevertheless introduce enough doubt to those also using trial-

and-error to cause unnecessary exploration and thus behavioural error. On the

other hand, very bad demonstrations which leave parts of the task space unvisited

can be compensated for by the exploration inherent to trial-and-error. We also

identify GTLF’s nearest neighbours in the literature. The robot task learning

system of Nicolescu and Matarić (2001, 2002, 2003, 2007) has proved very adept

at learning novel high-level behaviour co-ordination, but may not have realised

its full potential at the lower level of behaviour construction. Dogged Learning

(Grollman and Jenkins, 2007) is a platform-independent framework like our own,

but its reliance on Mixed Initiative Control somewhat limits its scope of applica-

tion. The flight simulation work of Sammut et al. (1992); Morales (2003); Morales

and Sammut (2004) is of great interest because they have encountered many of

the same problems that we have, but in a very specialist domain inhabited by

quite different agents. Finally, research by groups in Bielefeld and Dublin have

created what we failed to with COIL; bots that successfully learn complex tasks

in Unreal Tournament (Bauckhage et al., 2003; Thurau et al., 2004a,b,c, 2005;

Bauckhage and Thurau, 2004; Gorman et al., 2006a,b; Gorman and Humphrys,
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2005, 2007). However, we offer a different perspective on the problem: from

inside the agent looking out, as opposed to from outside looking in.

Chapter 8: Wider Applications

GTLF, like many complex learning systems, relies on a substantial amount of

prior knowledge. Other than laborious hand-coding, what systems and tech-

niques exist which could supply this knowledge? An initial perceptual configu-

ration could be provided using statistical clustering techniques, (Bishop, 2006)

as demonstrated for sound by Ajmera et al. (2004) and for vision by Gdalyahu

et al. (2001). Fod et al. (2002) and Schaal et al. (2004) similarly demonstrate

methods for creating robot action primitives. Creating a correspondence library,

particularly for agents with dissimilar embodiments, is the subject of work by

Alissandrakis et al. (2002, 2005); Alissandrakis (2003), and the aforementioned

CELL system (Roy, 1999; Roy and Pentland, 2002) implements lexical learn-

ing which could facilitate instruction. Damoulas et al. (2005a,b) show that it is

possible to evolve reward functions for Reinforcement Learning using a genetic al-

gorithm. There are many rule induction methods (Cohen, 1995) which could seed

the insight learning and perceptual reconfiguration modules, including the use of

decision trees (Quinlan, 1992) and neural networks (Omlin and Giles, 1996). The

technique used by Billard et al. (2004); Calinon et al. (2007) for learning what to

imitate could potentially be adapted to create error metrics for learning the goals

of a task. Finally, we note that the Real World is subject to noise and uncertainty

in a way that UT is not, and suggest that GTLF could be adapted for this by

way of a probabilistic perception system and stochastic action selection.

Chapter 9: Wider Implications

The notion of embodiment for virtual agents is not an uncontroversial one. Brooks

(1991b,a) seemed to rule it out in his seminal papers, but Etzioni (1993) was quick

on the defensive, claiming that his softbots offered ‘easy embodiment’ since they

resided in real world applications as opposed to simulated idealised worlds. Kush-

merick (1997) gives a preliminary formal analysis of the concept, focusing on the

practical benefits embodiment could have in software domains. This contrasts

with the bottom-up perspective of Quick et al. (1999); Dautenhahn et al. (2002),
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who provide both a minimal definition of embodiment and add to it the notion

of an embodiment continuum. By these definitions we conclude that UT bots are

embodied to an extent at least as great as some of the material robots used in

recent learning research, and should therefore be given an equal status as research

tools. Also, as a consequence of so-called tele-embodiment, there is a deeper cor-

respondence problem than meets the eye when considering bots imitating humans

in UT.

10.2 Review of Contributions

We now revisit and review the list of contributions made in Section 1.2.

The General Task Learning Framework

The General Task Learning Framework (GTLF) is a system for incorporating and

investigating task learning in situated agents. It specifies a perceptual represen-

tation that can in principle interface with a huge variety of sensor configurations.

It also specifies an action representation that is agnostic to the platform on which

it is implemented. Skills are defined as executable maps from perception to ac-

tion and can be applied at any level, or hierarchically at many levels, of task

description. The framework itself is composed of many underspecified, indepen-

dent modules which impose an order on information flow. The engineer need

only implement those modules which are key to solving a problem, and can make

use of the default algorithms provided both in this dissertation and in the Java

implementation. The scientist can study the listed requirements of each module,

together with the data flow, and use them as a basis for natural models of task

learning. The combinatorial complexity of learning, and how it can be exchanged

between different sub-systems, can also be studied. On paper, GTLF is suitable

for implementing or modelling lifelong learning (Thrun and Mitchell, 1995) and

autobiographical agents (Dautenhahn, 1998), since it allows for learning across

multiple tasks and episodes, and for the gradual evolution of perception-action

primitives. The validation of these more advanced properties through empirical

testing provides an interesting path for future work.

The basic functioning of the framework has been validated in the virtual

domain of Unreal Tournament, where it was used to investigate the effects of
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combining different learning methods. It has been implemented in Java and is

available, along with the code for our host agents, as a package of Java classes.

Cross-channel Observation and Imitation Learning

The Cross-channel Observation and Imitation Learning (COIL) system (Wood

and Bryson, 2007b) is an adaptation of Deb Roy’s Cross-Channel Early Lexi-

cal Learning system (Roy, 1999; Roy and Pentland, 2002) to learning by imi-

tation. Like GTLF, it is platform-independent. COIL introduces the concept

of using recurrence, co-occurrence and mutual information to form perception-

action bindings which can compose novel behaviour. The extended version (Wood

and Bryson, 2007a) demonstrates the novel use of loss matrices (Bishop, 1995,

p.27) for rigorously encoding prior knowledge, and automatic relevance determi-

nation (Neal, 1996, p. 15) for selecting the most informative perceptual classes.

COIL has been validated through achieving successful imitation in UT. It has

been implemented in Java and is available, along with its corresponding host

agent code, as a package of Java classes.

Task Error Metrics

We have introduced a new formal methodology for measuring task error based on

the approach of Nehaniv and Dautenhahn (1998, 2002) to measuring correspon-

dence error during imitation. Our metrics use the task- and agent-independent

perception and action representations specified in GTLF, and should thus be ap-

plicable in an equally broad variety of research contexts. Action-level metrics can

be used to assess error in tasks which require precise, continuous movement in

real-time. Program-level metrics can be used to assess error in tasks which must

similarly be performed in a certain way, but at the level of function rather than

form (Byrne and Russon, 1998). Effect-level metrics can be used to assess error

in tasks which require only the satisfaction of (a sequence of) goals, and do not

impose any constraints on method.

We demonstrate the utility of program-level metrics by using them to assess

the performance of our learning agents.
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JavaBots Extension

GameBots (Adobbati et al., 2001) is a module contained within Unreal Tour-

nament which allows external programs to access the game environment and

manipulate bots. JavaBots (Marshall, 2000) is a Java package that acts as a

wrapper to GameBots, allowing for more rapid development of Java-based AI

programs. We began developing extensions to this package while implementing

a Java version of the BOD / POSH architecture (Bryson, 2001) for controlling

UT bots (see Partington and Bryson, 2005; Brom et al., 2006, for related work).

We have now added many classes and functions for various purposes, including

parsing string input from sensors; systematically updating state variables with

respect to the sensor cycle; regulating sensing and control; increasing bot spacial

awareness; representing other bots, items and elements of the game map with

Java-friendly objects; and (with Tristan Caulfield) executing automated trials.

We have simply updated the JavaBots package, allowing the whole system to be

ported to any version of Unreal Tournament which includes GameBots.

10.3 Limitations of GTLF

We have discussed many of the relative strengths and weaknesses of GTLF with

respect to other systems in the literature review at the end of Part II. There are,

however, two further issues which have surfaced a number of times during the

development of GTLF which we now discuss.

Continuous Data

Perception in GTLF is based on a discrete unit: the perceptual class. In short,

everything that gets as far as the learning core has to (in theory) have been filtered

through the perception system and thus discretised. However there are times

when perceiving a continuum of values is necessary, or at least seems natural. A

reward signal received from the environment (or another agent) is a case-in-point.

The reason GTLF does not deal with continuous data is that its representa-

tions are tailored for skill-learning at the program-level and above. Continuous

mapping at the action-level is simply beyond the scope of the system, although

integrating GTLF with low-level learning algorithms is an interesting prospect.
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Put another way, this means that fine-tuning skills and correcting behavioural

errors is only possible down to the level of the finest possible (or sensible) cate-

gorisation. However, perhaps GTLF should be altered to allow continuous data

through the perceptual system, as there are many potential uses for it other than

in defining skills.

To this end, we hypothesise a new definition for the perceptual class. Instead

of representing only a simple binary condition (i.e. whether some property is

present or absent from the sensor state), a perceptual class could also encode

some measurement retrieved from the sensor state (i.e. a real-valued function

from sensor space to perception space). These values could represent strengths,

rewards, intensities, distances, probabilities1, etc., and could propagate through-

out GTLF, potentially being used for more informed skill updates (especially

during reinforcement learning), attention strategy updates, and in the reconfig-

uration of perception and action representations. The rate coding model (Rieke

et al., 1999) provides an example of how such continuous information could be

encoded neurally in biological (or bio-mimetic) agents.

Semantic Knowledge

The second issue is that of representing semantic knowledge. In short this is

virtually impossible in GTLF; since everything is geared towards task learning,

all of GTLF’s data types have a distinctly procedural flavour.

For example, consider the fact: “soccer balls are round”. It is perfectly possi-

ble for GTLF to contain a perceptual class for representing soccer balls, and even

one for representing the notion of roundness. However, there is no natural way of

connecting these two concepts using GTLF’s native data types. Unfortunately,

this kind of knowledge could come in very useful for task learning, particularly

by insight. It could allow much better abstraction and transfer of knowledge

between skills. This being the case, we would be wise to consider adding rep-

resentations for semantic knowledge, as well as defining how this might interact

with procedural knowledge, when designing future versions of GTLF.

1In fact, this could be a good way of representing uncertain perception (see Section 8.2).
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10.4 Future Work

In this final section, we highlight what we believe to be the most promising

avenues of research branching from this dissertation:

• Further implementation and validation of GTLF modules. As we have

demonstrated, even a fairly rudimentary implementation can lead to in-

teresting results. Specifically, we would like to see working modules for

instruction, insight, and reconfiguration, as well as implemented examples

of testing with our error metrics. We would also like to build a hierarchical

task / skill, even if only initially for control and not learning, so that we

can better understand the power of our representations.

• An implementation of GTLF for more complex skills. This is the other

side of the coin: as well as seeking to validate more of the system, it would

also be desirable to focus on its core elements and validate them more

convincingly. The most obvious way to do this would be to use a minimal

implementation of GTLF to learn a task significantly more complex than

those described here, such as a full Unreal Tournament Deathmatch.

• Integration of GTLF with other agents and sub-systems. GTLF is not a

complete agent architecture, and should not be expected to ‘do everything’.

It should, however, be integrable with other systems, some of which are

conjectured in this dissertation. Fundamentally, we wish to validate our

claim that GTLF can scaffold learning independently of the choice of host

agent and task (provided learning is at the program-level or above).

• Further development of the task learning formalism. Just as Nehaniv and

Dautenhahn’s correspondence metrics have been the basis for a formal de-

scription of imitation learning, it may be that our task metrics could be a

similar basis for task learning in general.

• Further investigation into the interplay between social and individual learn-

ing. It is still rare to find a system which incorporates more than one form

of learning. This leaves much potential for new study, and our experiment

has started just to scratch the surface of this potential.
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• A programme of experiments investigating the effects and uses of loss ma-

trices for encoding of prior action knowledge and Automatic Relevance De-

termination for selective attention when using MLP skill representations.

We have so far only carried out initial experiments as part of the COIL

extension.

• A comparative quantitative analysis of the degree of embodiment of UT

bots. We would particularly aim to compare UT bot embodiment with that

of state-of-the-art task learning robots. The complexity measure defined by

Nehaniv and Rhodes (1997) could provide a suitable starting point.

10.4.1 Final Thoughts

We would like to thanks those who have taken the time to read this dissertation.

We hope it will have inspired the reader to consider taking up or continuing the

study of task learning. Any questions, offers of collaboration, or offers of funding

would be gladly received.
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Appendix A

Mathematical Notes

A.1 Notes on the Skill Function

In Section 2.1, we define a skill as a function:

s : P(P ) → A

where P is the set of all perceptual classes, P(P ) is the power set of P , and

A is the set of all action primitives. Now, we do not expect skills to necessarily

explicitly define mappings from every possible subset of P . Therefore, if we define

anull ∈ A, the null action, and X ⊂ P(P ), the set of all subsets of P which remain

unmapped by the skill, then we can let:

s(X) = anull

and still have a legal function. In other words, all sets of perceptual classes not

explicitly mapped to action space by a skill, are by default mapped to the null

action. Also, the fact that a behaviour is complete (that is, defined on the whole

of a given task space) does not necessarily mean X = ∅. For example, suppose

that the perceptual class p1 is ubiquitously present in a given task space, and

suppose s(p1) = a1 for some action a1. Then s defines a complete behaviour. But

we could still have p2, a perceptual class nested within p1, for which s(p2) = anull,

and therefore p2 ∈ X 6= ∅.
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A.2 MLP Details

In this section, we define some of the terms used in connection with the Multi-

Layer Perceptron architecture described in Section 6.2.1.

1-of-c Encoding 1-of-c encoding is a way of representing purely categorical

data. If there is a total of c categories, then category i is associated with a

binary vector of length c in which only the ith bit is set. Example for four

categories: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1).

Cross-Entropy Error Function For a binary output vector (y1, y2, ..., yN), such

as those used to represent action categories in our MLP implementation,

the cross-entropy error function on network weights w is defined as:

E(w) = −
N∑

n=1

{tnlnyn + (1− tn)ln(1− yn)}

where (t1, tn, ..., tN) is the binary vector representing the correct target cat-

egory.

Softmax Activation Function Using a softmax activation function to the out-

put layer of an MLP effectively forces the output values to sum to one; they

can then be interpreted as posterior probabilities of category membership.

The softmax activation for a given output node yi is given by:

yi =
eai

∑n
j=1 eaj

Where ai is the sum of the inputs to yi from the previous (hidden) layer of

nodes.

Scaled Conjugate Gradient Search Gradient descent can be used to update

MLP network weights by seeking the minimum of an error function (in

our case, the cross-entropy error function shown above). The optimal

‘direction of descent’ can be found by using conjugate gradients. Scaled

conjugate gradients update the network weights iteratively after seeing ev-

ery piece of training data and its corresponding error value, as opposed to

192



at the end of a batch of training data. The weight update is as follows:

w(τ+1) = w(τ) − η∇En(w(τ))

where w(τ) is the weight vector prior to update, η > 0 is the learning rate

parameter, and En(w(τ)) is the error vector for training data point n.

A.3 Perception Channels in GTLF

Using the perceptual channel system described in Section 7.1.2, at most one

perceptual class from each channel can apply at any given time. This allows us to

decrease the average-case upper bound on the size of the perceptual state. With

no structure, the upper bound is equal to |P |, the total number of discernible

perceptual classes. With a perception channel system, this is reduced to n, the

number of channels. In the worst case, every perceptual class is assigned to its

own channel, and we have n = |P |, so we can say in general that n ≤ |P |.
How much less n is than |P | depends on the task, the environment, the agent’s

sensors, and so on. For example, a task which requires monitoring a few different

stimuli each with many different states will require few channels; a task which

requires monitoring many stimuli each with few possible states will require many

channels. This matches our intuitive notion of a perceptual information channel.

With n perception channels the perceptual state can be represented as an

n-dimensional vector (P1, P2, ..., Pn) with each element Pi representing the per-

ceptual class contributed by channel i. If at a given instant no perceptual classes

in channel i apply, then for completeness we say this channel occupies its null

class, and represent this by ∅i. If channel i contains mi perceptual classes (in-

cluding its null class), then there are a total of m1m2...mn different perceptual

states. This number grows polynomially with the average number of perceptual

classes per channel, and exponentially with the number of channels.

As discussed in Section 3.2.1, a complete, tabular skill representation would

require assigning an action element to every possible perceptual state: m1m2...mn

assignments in all. An alternative specification is to assign an action to every

perceptual class, for a total of m1 + m2 + ... + mn assignments. This reduces

the expressibility of behaviour, but scales far better than the specification above,
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growing linearly with the number of classes and polynomially with the number of

channels. However, there are still n perceptual classes which apply at any given

time, and now one must be selected so that in turn a unique action can be selected

for execution. This can be achieved through an attention strategy consisting of

two elements: perceptual prioritisation and perceptual hierarchy.

A.3.1 Perceptual Prioritisation

For perceptual prioritisation, the simplest method is to order the channels: at

a given instant, the channel with highest priority is inspected for its current

perceptual class. If this channel occupies its null class, then the next in line in

inspected1 and so on. A disadvantage of this prioritisation is that it assumes all

classes (except null) within a channel are of equal importance, which clearly may

not be the case.

A more flexible method would involve ranking the perceptual classes individ-

ually. Only a partial order is required, since groups of classes from the same

channel could have equal rank as they never compete. Storing priority informa-

tion requires one piece of memory for each class, m1 + m2 + ... + mn in all, which

has the same space complexity as action assignments for this method. Upon in-

put of a perceptual state, the rank of each class is retrieved, compared and the

highest selected. This takes n operations (one for each class), growing linearly

with the number of channels. If either this search time or memory requirement

turn out to be prohibitive, it is possible for an agent using this method to further

select which channels to attend to.

For a tabular assignment, all channels must be attended to; otherwise the

perceptual state is not well-defined and no action can be retrieved. Although it

may in theory be possible for artificial agents to attend to an arbitrarily high

number of inputs, it surely becomes impractical above a certain threshold. Cer-

tainly, even the most advanced biological agents have proven to have quite limited

attention (see Section 2.3.2). Using perceptual prioritisation on the other hand,

entire channels can be ignored by simply not examining the corresponding per-

1This assumes that a channel occupying its null class implies that ‘nothing noteworthy’ is
occurring on that input. If this is not the case, then a new perceptual class should be formed
to represent the noteworthy perception, which of course redefines the null class automatically.
For completeness, some default action should be assigned to the null classes for execution when
all of the channels have null input.
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ceptual state element during decision-making. This could result in non-optimal

behaviour, severely so if high priority classes are consistently ignored. To min-

imise this, a systematic way of governing attention is necessary.

A.3.2 Perceptual Hierarchy

One such system is to implement a perceptual hierarchy. As an agent develops

a variety of skills for application in a variety of circumstances, the number of

salient channels and perceptual classes could potentially increase without bound.

However, each skill is likely to require only a few channels, leaving the rest in-

active or redundant. Also, the granularity at which the environment needs to

be monitored may change during a task, or if the agent is arbitrating between

tasks. By nesting channels and perceptual classes, attention can be progressively

focused on the most salient parts of the task domain. Using ‘flat perception’,

every perceptual class points to an action to be executed when that class is ‘in

focus’ (i.e. has the highest priority). In the hierarchical model, a class can point

‘down the tree’ to one of three things:

1. Another set of channels. These channels are independent of those above,

and provide a new perceptual state vector. Typically they will relate to

lower-level features of the parent class. The process of selecting a single

perceptual class from this vector is identical to the parent process.

2. Another set of perceptual classes. This is effectively ‘zooming in’ on the

parent class, and the new classes will be subdivisions of the parent. Since

we are in the same channel, there will be no competing classes; one and

only one of these new classes can apply, allowing the process to continue to

the next level of detail.

3. An action. When a perceptual class which points to an action is selected, a

leaf of the perceptual tree has been found and no further descent is required.

By this definition, ‘flat perception’ is simply a special case of hierarchical

perception, in which all the top-level classes are leaves.
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A.4 SMART and the Somewhat Semi-Markov

Property

In the experiments described in Section 7.1.2 we use a Reinforcement Learning

algorithm called SMART as the core of our trial-and-error learning module. How-

ever, we suggest that the task environment may not be fully Semi-Markov; here

we explain the extent to which it does and does not fulfil this property.

Before we do this, however, we make the following observations. In some

ways, it is not particularly important whether or not the task environment is

Semi-Markov. The main point of the experiments in Chapter 7 is to demonstrate

and validate the usefulness of the framework itself, and we never make formal

claims about the results. Even if the task environment were completely non-

Markov, the use of SMART could be seen as a poor choice of learning algorithm,

but would not necessarily detract from the utility of the surrounding framework

in any way. Secondly, the results show that SMART successfully learned the

task asked of it to a greater extent. It is, of course, possible that had the task

environment been fully Semi-Markov then SMART would have fully converged

on the target behaviour within the allotted time.

Bear in mind that in order to fulfil the Semi-Markov property:

1. The state transition probabilities must depend only upon the action chosen

in the current state, and not on any further state-action history (the Markov

property).

2. The state transition times must similarly depend upon only the action

chosen in the current state.

We now discuss these conditions with respect to the specific task learning

problem from Section 7.1.2; the vial pick-up task. To assess the first condition,

let us at first ignore times and focus simply on state transitions. The task learning

problem in question would be Semi-Markov if the following statements held:

• When facing a vial

– turning right will eventually mean there is a vial to the left.

– turning left will eventually mean there is a vial to the right.
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– moving forward will eventually mean the vial is collected and disap-

pears so that no vials are visible.*

• When a vial is to the left

– turning left will eventually mean a vial is directly ahead.

– turning right will eventually mean a vial is to the right with probability

p, or no vials are visible with probability 1− p.**

– moving forward will eventually mean no vials are visible.***

• When a vial is to the right, this is symmetric to the above case.

• When no vials are visible

– turning right will eventually mean there is a vial to the right.

– turning left will eventually mean there is a vial to the left.

– moving forward will forever mean that no vials are visible.

However, the statements marked with stars do not hold:

* In fact, there is a non-zero probability that moving forward when facing a vial

will take the agent back into a ‘vial left’ or ‘vial right’ state. This depends in

some complex way on the process history; i.e. it is a non-Markov transition.

A reasonably close Markov approximation would be to say that with some

small but fixed probability p the agent will re-enter the ‘vial left’ or ‘vial

right’ state, and with probability 1− 2p the vial will remain ahead until it

is collected.

** This is a more serious violation: in fact, whether or not a second vial is visible

upon turning depends on the agent’s position in the room, which in turn

depends on the process history. From far back, two vials will be visible and

the transition will be from ‘vial left’ straight to ‘vial right’. Close up there

will be a gap before a second vial is visible and the transition will be from

‘vial left’ to ‘no vials visible’. The crude approximation given above is the

best possible to a Markov transition.

197



*** This condition does not hold if the agent is between the wall and the vial, and

facing in toward the other vials. In this case moving forward could cause

a transition to either ‘vial left’ or ‘vial right’ depending on orientation. An

agent would very rarely get into this situation; the best approximation to

Markov would probably be just to ignore this case.

It is clear, then, that the task in question does not satisfy the first criterion of the

Semi-Markov property. However, we have one more observation to make before

commenting briefly on transition time. Situations ** and *** described above

are entered less frequently the better the behaviour gets. Optimal behaviour will

never enter these states. In other words, the closer the learner gets to convergence

the ‘more Markov’ the learning becomes. The more it learns, the better it learns

(situation * will always apply to a small extent).

If we were to accept that the state transitions alone could be described as

somewhat Markov, then what about the transition times, to make the process

somewhat Semi-Markov? As above, the target behaviour does have consistent

time intervals given present and future state, so as learning converges the Semi-

Markov property becomes gradually ‘stronger‘. In general, however, transition

time depends on distance from the vials; further away means longer forward

motion and shorter rotations; closer means shorter forward motion and longer

rotation. In short, the second Semi-Markov condition is also violated. Since

there is no formal definition of a somewhat Semi-Markov process, we leave the

reader to decide how well this describes the task environment in question.

A.4.1 Darken-Chang-Moody Exploration

The Darken-Chang-Moody search-then-converge procedure (Darken et al., 1992)

gradually decays the SMART learning and exploration rates to zero as the process

continues. The nth update for both parameters (represented by Θn) is defined

as:

Θn =
Θ0

1 + n2

Θτ+n

where Θ0 and Θτ are constants.
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Appendix B

Glossary

Below are listed definitions of the key terms and abbreviations used throughout

this dissertation, together with examples where appropriate. References to other

glossary entries appear in bold.

A-Channel: [Action Channel] An A-channel in COIL receives data pertain-

ing to a particular type of action being executed by an observed expert. If

we suppose, for example, that an A-channel is created to monitor rotation

in a given expert, then as the expert turns, the channel will change state.

A-Prototype: [Action Prototype] — see A-Unit

A-Space: [Action Space] In COIL, A-space is defined as the space of all pos-

sible A-subevents (i.e. action segment sequences).

A-Unit: [Action Unit] In COIL, an A-unit is an exemplary A-subevent,

known as an A-prototype, plus a radius in A-space defining its boundary.

Intuitively, an A-unit represents an exemplar of an action class, coupled

with a defined scope for variation. For example, an A-unit representing a

jump could have a jump of 1 metre at its ‘centre’ (i.e. as its A-prototype),

and a radius (defined on jump length) of 0.5 metres. Anything falling within

this radius falls inside the boundary of the A-unit and is matched as a jump

(in this case perhaps leaving room for hops and leaps which fall outside).

Action Element: Just as perceptual classes can describe an agent’s envi-

ronment at many different levels of detail, so action elements can encode
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an agent’s interaction with its environment at many different levels. For

example, action elements could represent low-level ‘action primitives’ (e.g.

straighten arm(), bend arm(90)), compound actions (e.g. serve(long),

smash()), or even entire skills (e.g. play tennis with(opponent), play badminton()).

We express the ability of agents to apply some action elements differently

in different situations through the use of action parameters. Some ele-

ments may take no parameters (e.g. walk()), some may take numerical

(e.g. walk forward(10)), symbolic (e.g. walk(backwards)), or deictic

(e.g. walk to(object)). This action element terminology is derived from

Bryson’s definition of POSH reactive plans Bryson (2001).

Action-Level: We use the term ‘action-level’ to describe the lowest-level type of

task metric; those which account for the exact movements executed during

completion of a task. For example, if the task is to sign a sentence in sign

language, then a metric which measures deviation in hand and digit position

from the ideal position (that is, from the target behaviour) would be

described as action-level. The term is borrowed from the imitation learning

literature, where it is used to describes the precise reproduction of gestures,

facial expressions, postures, orientations, and other fine-level movements.

Action Repertoire: An agent’s action repertoire is defined as the set of all

action elements it is (in principle) capable of executing. The potentially

infinite variety of agent actions may be represented by relatively few action

elements through the use of action parameters (see Action Elements).

Agent: Since the term ‘agent’ has come to mean a variety of things both in com-

puter science circles and beyond, in this dissertation we make the following

restrictions on the definition:

1. Agents are situated in space and time. We do not limit this to material

or even Cartesian space, nor need time be continuous. Fundamentally,

the agent and the environment it inhabits must be distinguishable.

2. Agents perceive. This includes both elements of the environment (ex-

teroception) and its own state (proprioception).

3. Agents act. This includes both acting upon elements of the environ-

ment (actuation) and upon its own state (cognition). Actions take
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time.

4. Agents are resource-bounded. Their perceptual resolution, memory

and processing speed are all finite.

We tend to make reference to three main types of agent: biological (such as

humans and animals), robotic (humanoid or otherwise), and virtual (such

as computer game bots).

Allocentric: We describe perceptual classes as allocentric if they are de-

scribed in terms of a reference frame external to the observer. This could be

some fixed frame innate to the environment (such as compass directions)

or centred around another agent (e.g. describing the percepts and actions

of that agent). We have used the latter category of classes as part of the

description of the imitation learning tasks listed in this dissertation.

Arbitration Behaviour: — see Skill

Attention Strategy: The role of an attention strategy is to select a subset of

the full perceptual state available to the agent (i.e. input selection)

to pass onto a skill (for action selection) or learning module. This effec-

tively reduces the co-domain of the skill function being executed / learned

which in turn decreases the complexity of action selection / learning. Of

course, learning / applying an attention strategy will itself require some

overhead, so ultimately there is a trade-off between the work done at this

‘pre-processing’ stage and the work done later.

BBAI: [Behaviour-Based Artificial Intelligence] BBAI was first developed

by Rodney Brooks (1991b,a), and is characterised by modular intelligence.

That is, intelligence decomposed into many, simpler, independent modules

— behaviours — linked together by their inputs and outputs, but having

no access to each other’s internal state and no centralised arbitration. We

borrow the idea of a behaviour or skill as a small unit of intelligence which

can be arranged with others (possibly hierarchically) to complete complex

tasks.

Behaviour: — see Skill
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Bot: In Unreal Tournament (and other First-Person Shooters), the in-

game agents controlled by humans and AI algorithms are known as bots.

Bots are generally humanoid avatars whose movement is managed by a

module in the game engine known as a bot controller. Any intelligence

wishing to control bots must route control commands through this module,

which effectively defines the bot’s action repertoire.

C4.5: C4.5 is a decision tree learning algorithm designed by Ross Quinlan (1992),

which uses normalised information gain (difference in entropy) to find opti-

mal decision nodes amongst the attributes of the input data. The decision

trees generated by C4.5 can subsequently be used to classify unseen data.

The algorithm can handle both discrete and continuous data, missing at-

tribute values, and can also perform automatic pruning of learned trees.

CELL: [Cross-channel Early Lexical Learning] CELL is a robotic learning

system designed and created by Deb Roy at MIT, and described in his

PhD dissertation (Roy, 1999; Roy and Pentland, 2002). In the associated

experiments, a robot equipped with a camera and microphone is exposed to

mother-child-like interactions with simple objects. From these interactions

the robot learns a basic lexicon; that is, associations between visual features

of objects (S-Categories) and spoken words describing those objects (L-

Units).

Channel Set: In CELL and COIL, we define a channel set as the set of all

channels of a given type, e.g. all A-channels or all P-channels.

COIL: [Cross-channel Observation and Imitation Learning] COIL is our

adaptation of CELL to general imitation learning, implemented in Un-

real Tournament (Wood and Bryson, 2007b). In our experiments, AI-

controlled bots observe human-controlled bots carrying out simple tasks

in real-time from within the UT environment. Using COIL, the observers

acquire behaviours comparable (through the use of task metrics) to those

of the so-called expert bots.

Complete Behaviour: We describe a behaviour as complete with respect to a

task if it is everywhere-defined in the task space. In other words, for every
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perceptual state that it is possible for the agent to enter, the behaviour

specifies a way of choosing an action element to execute (i.e. could be

stochastic).

Conspecific: Broadly speaking, a conspecific of a given agent is another agent

of the same ‘type’; exactly what this implies depends upon the context in

which the term is used. In our experiments, we use it to refer to another

Unreal Tournament bot of the same class; in biology it generally refers

to two members of the same species; in other contexts it could refer to two

completely identical agents, or merely two agents with a readily identifiable

perception / action correspondence (e.g. two humanoids).

Deictic: A deictic variable is a variable which can refer to a different element of

the environment or agent depending upon the situation; e.g. nearest opponent,

damaged servo, unexplored room. Some action elements may take deic-

tic variables as parameters, which allows the actions to be applied in differ-

ent situations; e.g. dodge(nearest opponent), repair(damaged servo),

explore(unexplored room). In this way, a potential set of largely identi-

cal action elements (e.g. repair servo 1(),. . ., repair servo n()) can be

represented by a single ‘multi-purpose’ element.

Effect-Level: We use the term ‘effect-level’ to describe a type of task metric

which takes into account only the goals (i.e. effects) of a task. The process

by which these goals are achieved is disregarded. For example, if the task

is to win a soccer match, then a metric which counts only the total number

of goals scored could be described as effect-level. The term is borrowed

from the imitation learning literature, where it describes the reproduction

of goals by the imitator without (necessarily) the reproduction of either

behavioural structure or precise motion.

Egocentric: We describe perceptual classes as egocentric if they are de-

fined in terms of the perspective of the observing agent. For example,

nearest object and turning clockwise are egocentric, since they use

the observer as the reference point. Intuitively, egocentric classes should

be useful when describing tasks which are centred around the learner or
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participant, such as those included in the experimental work of this disser-

tation.

Event: In CELL and COIL, an event is associated with a channel set and

has boundaries defined by some condition (or set of conditions) on all of

the channels in that set. For example, the start of an event on a set of

A-channels (that is, an A-event) could be triggered by the initiation of

action from a state of inaction (in all channels); the end could be triggered

by the cessation of that period of action.

Expectation Item: — see M-E Item

Expert: In our imitation learning experiments, an expert is an agent which

provides a learning observer with a demonstration of the skill to be acquired

/ task to be learned. Despite the natural connotations of these terms, for

us an expert need not necessarily act perfectly in accordance with a given

task or skill, nor need its demonstration be overt or purposefully intended

as such.

Environment: For our purposes, an agent’s environment, which we also refer to

ask the task environment, can perhaps best be described as the complement

of the agent in the world. If the world which the agent inhabits can be seen

as a vast array of arbitrarily complex state variables, then the agent will in

some sense exercise control over or have ‘ownership’ of some subset of those

variables. The environment is what’s left over, which includes, amongst

other things, other agents.

FPS: [First-Person Shooter] A First-Person Shooter is a genre of computer

game in which the view displayed to the player on screen is designed to ap-

proximate the view of the avatar that the player is controlling. The games

are played in real-time within often large and complex three-dimensional

virtual reality-style arenas (or maps), and involve interacting with other

game agents (or bots) and objects (or pickups). Simulated gun fights are

commonly part of the gameplay, which is reflected in the genre’s name. Ex-

amples include Quake II (id Software, 1997), Unreal Tournament (Dig-

ital Extremes, 1999), and Half-Life II (Valve, 2004).
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Gamebots: — see Unreal Tournament

Goal: In GTLF, a goal is identified with a perceptual state; some state of the

world, as perceived by the goal-setting agent, which it defines as desirable to

occupy or pass through (for the purposes of completing a task, for example).

To reiterate this point: we assume goals are always associated with agents

and cannot exist independently of them.

Infimum: The infimum of a set X of real numbers, denoted inf{X}, is defined as

the greatest lower bound of that set. That is, it is equal to the greatest real

number that is less than or equal to all the members of X. For example,

inf{1, 2, 3} = 1, inf{x : x > 0} = 0, inf{R} = −∞.

JavaBots: — see Unreal Tournament

L-Channel: [Linguistic Channel] An L-channel in CELL receives data per-

taining to a particular stream of speech input. If we suppose, for example,

that an L-channel is created to monitor a speech signal from a given agent

received from a microphone, then as the agent speaks, the channel will

change state.

L-Prototype: [Linguistic Prototype] — see L-Unit

L-Space: [Linguistic Space] In CELL, L-space is defined as the space of all

possible L-subevents (i.e. phoneme sequences).

L-Unit: [Linguistic Unit] In CELL, an L-unit is an exemplary L-subevent,

known as an L-prototype, plus a radius in L-space defining its bound-

ary. Intuitively, an L-unit represents a spoken word, coupled with a defined

tolerance for individual variation. For example, the word “ball” could be

spoken using many different accents, pitches, volumes, etc.; an L-unit rep-

resenting “ball” would account (to an extent) for these variations, but still

exclude similar words (e.g. “bill”).

Lexical Candidate: — see Lexical Item

Lexical Item: In CELL, a lexical item is defined as an L-unit paired with an

S-category. Intuitively, this is a spoken word paired with some aspect of
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an object that is described by that word; the word “round” and a round

object such as a ball. The purpose of CELL is to generate lexical items

automatically by observing infant-directed speech and object manipulation.

LTM: [Long-Term Memory] In CELL and COIL, LTM is the buffer which

stores the final output of the system; lexical items for CELL, and M-E

items for COIL. In other words, LTM is a dictionary, either of word-

meaning pairs, or of perception-action pairs, respectively.

M-E Candidate: [Motivation-Expectation Candidate] — see M-E Item

M-E Item: [Motivation-Expectation Item] In COIL, an M-E item is de-

fined as an A-unit paired with a P-category. Intuitively, this is an action

paired with the perception that either caused or resulted from taking that

action. In fact, we can differentiate M-E items on that basis: Motivation

Items are those which represent perception that motivates a given action;

Expectation Items are those which represent perception that is expected

to follow a given action. Since Motivation Items can be interpreted as a

map from perception to action, they can be used as a basis for building a

simple reactive behaviour. This is the purpose of COIL; to automatically

generate these items whilst observing another agent carrying out a task, so

that the behaviour needed to complete that task can be reconstructed.

MDP: [Markov Decision Process] An MDP is a discrete-time stochastic con-

trol process which comprises the following elements:

• A set of discrete states.

• A set of discrete actions.

• A transition matrix which defines the probability of entering state s2

in the next time step if action a is taken in s1, for all possible actions

and states.

• A reward function which defines the expected immediate reward of

moving to state s2 from s1 having taken action a, for all possible

states and actions.
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The aim of the process is to maximise cumulative expected reward, and

is related a Markov chain in that a policy learned in this way will take

actions based only on the present state.

MLP: [Multi-Layer Perceptron] An MLP is a feedforward neural network

model having at least one hidden layer of nodes (i.e. at least three layers in

total). Nodes in an MLP have nonlinear activation functions and, through

supervised learning, can be trained for use in pattern recognition and clas-

sification. There are many different training methods, activation functions,

and error functions in common use; we describe those that we used in our

experiments in more detail in Section A.2.

MTM: [Mid-Term Memory] In CELL and COIL, MTM is a buffer which

stores pairs of subevents which recur within STM. At this stage, each

subevent is a prototype for the channel set with which it is associated (L-

and S-prototypes in CELL; A- and P-prototypes in COIL). Each pair,

therefore, represents a candidate for the associative units being constructed

(Lexical candidates in CELL; M-E candidates in COIL).

Motivation Item: — see M-E Item

Mutual Information: [MI] Mutual information is a measure of the reduction

in uncertainty of one variable due to knowledge about a second variable. In

COIL, MI is used to evaluate the degree of cross-channel structure captured

by an M-E Candidate selected from MTM for a given configuration of

radii. To calculate the mutual information for an M-E Candidate having

A-prototype A0 and P-prototype P0, let Ra and Rp be random variables

such that:

Ra =

{
0 if da(A0, A) > ra

1 if da(A0, A) ≤ ra

(B.1)

Rp =

{
0 if dp(P0, P ) > rp

1 if dp(P0, P ) ≤ rp

(B.2)

for each M-E Candidate (A-prototype A, P-prototype P ) in MTM (exclud-

ing the selected one), given radii ra and rp. Then the mutual information
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I(Ra, Rp) for this configuration is:

I(Ra, Rp) =
1∑

i=0

1∑
j=0

P (Ra = i, Rp = j)log

[
P (Ra = i, Rp = j)

P (Ra = i)P (Rp = j)

]
(B.3)

where the probabilities are estimated using frequency counts: the number

of M-E Candidates in MTM that satisfy the criterion divided by the total

number of M-E Candidates in MTM. For example, suppose that we have

selected an M-E Candidate from an MTM containing 8, and have fixed radii

ra and rp. Of the remaining 7 M-E Candidates, suppose that:

• 1 has both A- and P-prototypes which fall within ra and rp

• 3 have just their A-prototypes fall within ra

• 1 has just its P-prototype fall within rp

• 2 have neither A- nor P-prototypes which fall within ra and rp

The estimated probabilities, then, are as follows: P (Ra = 0) = 3
7
, P (Ra =

1) = 4
7
, P (Rp = 0) = 5

7
, P (Rp = 1) = 2

7
, P (Ra = 0, Rp = 0) = 2

7
, P (Ra =

0, Rp = 1) = 1
7
, P (Ra = 1, Rp = 0) = 3

7
, and P (Ra = 1, Rp = 1) = 1

7
.

Substituting these into Equation B.3, we have I(Ra, Rp) = 0.006.

P-Category: [Perception Category] In COIL, a P-category is an exemplary

P-subevent, known as a P-prototype, plus a radius in P-space defining

its boundary. For example, a P-category representing dark could have

the complete absence of any light at its ‘centre’ (i.e. as its P-prototype),

with some predetermined small amount of light allowable under the same

categorisation.

P-Channel: [Perception Channel] A P-channel in COIL receives data per-

taining to a particular aspect of the perception of an observed expert, from

the perspective of that expert. Suppose, for example, that a P-channel is

created to monitor the position of other agents in the environment with

respect to the expert. Then as the agents move around, or as the expert

moves around and changes its perspective, then the state of this P-channel

will change accordingly.
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P-Prototype: [Perception Prototype]— see P-Category

P-Space: [Perception Space] In COIL, P-space is defined as the space of all

possible P-subevents (i.e. perception segment sequences).

Perceptual Class: Formally, we define a perceptual class as some possibly dis-

joint (in fact, arbitrarily complex) subset of an agent’s sensor space. We

refer to the particular mappings an agent makes from sensor space onto

perceptual space as the agent’s perceptual system. Intuitively, a percep-

tual class could define anything from simple binary states (e.g. switch up,

switch down), through complex percepts (e.g. hear footsteps, hungry),

cognitive entities (e.g. opponent is aggressive) and memories (e.g. recently saw food).

Perceptual State: We define an agent’s perceptual state as the set of all per-

ceptual classes generated by the agent’s perceptual system at a given

time. In general, the perceptual state can contain overlapping classes (e.g.

red, car, red car) and nested classes (e.g. object, vehicle, car). In

our GTLF experiments we demonstrate that by defining perceptual space

in terms of n input channels, the perceptual state can be correspondingly

defined as an n-dimensional vector (one for each channel).

Perceptual System: — see Perceptual Class

Policy: — see Skill

Program-Level: Program-level task metrics lie in between the action-level

and the effect-level in terms of the kind of behavioural correspondences

they account for. Some degree of behavioural structure (that is, the method

or process by which the task is achieved) beyond merely the goals is cap-

tured, but the fine-level mechanics of movement is disregarded. In short,

the focus is function as opposed to form or effect. For example, in a com-

bat situation the goal may be to eliminate enemies, but the method used

is also important. Eliminating innocents, needlessly wasting ammunition,

and staying exposed to enemy attack should all be avoided, but the form of

each individual action is unimportant. A metric which accounts for ‘combat

style’ as opposed to just outcome could be described as program-level. Ulti-

mately, any set of such program-level specifications could also be described
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in terms of individual, competing effect-level metrics. The difference from

the learner’s perspective would be in attempting to replicate the behaviour

as opposed to its effects. The former may be more efficient in a social learn-

ing situation where a behaviour model is present, but the latter may be the

only option in the case of individual learning.

S-Category: [Semantic Category] In CELL, an S-category is an exemplary

S-subevent, known as an S-prototype, plus a radius in S-space defining

its boundary. Intuitively, an S-category represents some aspect of an object

(i.e. colour, shape, etc.) with a defined scope for individual variation. For

example, an S-category representing round might have a ball at its centre

(i.e. as its S-prototype), but should also include a coin. An egg might be

close to its S-space boundary, whereas a brick should fall outside.

S-Channel: [Semantic Channel] An S-channel in CELL receives data per-

taining to some perceived semantic property of an object in the environ-

ment. Examples of visual semantic properties include different colours,

shapes, textures, tones, etc. If we suppose, for example, that an S-channel

is created to monitor the colour of a given object, then if the object changes

colour, or if a new object of a different colour commands attention, then

the channel will change state accordingly.

S-Prototype: [Semantic Prototype]— see S-Category

S-Space: [Semantic Space] In CELL, S-space is defined as the space of all

possible S-subevents (i.e. object views).

Segment: In CELL and COIL, a segment is associated with an individual chan-

nel and has boundaries defined by some condition (or set of conditions) on

that channel alone. The segment boundaries generated by a given channel

are then extended across all channels within the same channel set; in other

words, all channels within a set contribute segments to all other channels.

For example, the start of a turn could trigger the start of a segment in an

A-channel which monitors rotation, and this would therefore also start a

new segment across all other defined A-channels.
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Semi-Markov Decision Process: [SMDP] A Semi-Markov Decision Process

is essentially a generalisation of the MDP to continuous time. Suppose we

were to simply time-slice a continuous time process and treat it as an MDP.

Then for any state-action combination with variable duration, the process

becomes non-Markov; it depends how long an action has been executed

for; it depends on state-action history before the present state. We can

compensate for this by associating a state-time transition function with an

MDP; this is an SMDP.

Sensor Space: — see Sensor State

Sensor State: An agent’s sensor state is defined as the set of all readings from

all functioning sensors at a given time; i.e. all of the available ‘raw’ sensor

data. Sensor space is thus defined as the space of all possible sensor

states. If we assume (as is possible with many agents) that the readings

from a given sensor can be fully described in terms of a finite number of

attribute-value pairs, then an agent’s sensor state can be described as a

finite-length vector with each index corresponding to a sensor attribute.

Skill: Formally, we define a skill as a function which maps sets of perceptual

classes (or equivalently subsets of the agent’s perceptual state) onto

action elements (contained within the agent’s action repertoire). In-

formally, a skill, combined with an attention strategy, defines a sequence

of actions an agent should take in order to make progress in a task (a skill

performs action selection after the input selection of an attention strategy).

This definition of a skill is akin to the definition of a behaviour within the

Behaviour-Based Artificial Intelligence community, and we tend to

use the terms interchangeably throughout this dissertation (for those in-

volved in Reinforcement Learning, a skill is analogous to a policy). Since

skills are themselves a type of action element, skills can be organised into

hierarchies. We refer to skills which map high-level perceptual classes onto

other lower-level skills as arbitration behaviours.

STM: [Short-Term Memory] In CELL and COIL, STM is a buffer which

stores pairs of subevents which have overlapped within a given time frame.

In CELL, STM is implemented as a short queue (about 5 items) where the
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pairs are L-subevents coupled with S-subevents (the basis of lexical can-

didates). In COIL, STM is a larger buffer containing pairs of A-subevents

and P-subevents (the basis of M-E candidates).

Subevent: In CELL and COIL, a subevent is associated with a channel set

and is defined as any consecutive sequence of segments across any subset

of channels with that set.

Target Behaviour: We use the term ‘target behaviour’ to refer to a behaviour

that an imitator would ideally learn to replicate by observing an expert

carrying out (some variant of) that behaviour. We refrain from using the

terms ‘optimal’ or ‘correct’, simply because a target behaviour could be

entirely arbitrarily defined, having no necessary intrinsic reward, usefulness,

or benefit to the agent (it could even cause harm).

Task: A task is some activity motivated by goals defined by some agent or

group of agents. The nature of the goals determine how performance in that

task is best assessed; that is, what type of task metric is most appropriate.

Tasks tend to be ubiquitous for autonomous agents such as ourselves, and

require the exercising of skills in order to be completed. This is the main

motivating fact behind this dissertation.

Task Class: The goals of a task can be described at different levels of detail. If

that level is fixed, then a broad range of individual tasks may be described

by a single set of goals. For example, the sequence get up, go to work, come

home, is likely to be satisfied every day by many different people doing

many different jobs; i.e. carrying out many different individual tasks. The

set of all tasks that is defined by a particular set of goals is an equivalence

class which we call a task class.

Task Metric: A task metric defines a way of measuring how ‘close’ two be-

haviours are with respect to a given task. Where we have used task

metrics in this dissertation, one of the behaviours has corresponded to a

target behaviour for a given task, and the other has corresponded to an

agent’s learned behaviour for that task. In this case, the metric measures

how well the agent has learned the task (up to that point). Task metrics
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fall into three categories: action-level, which compares precise movement;

program-level, which compares behavioural structure; and effect-level,

which compares goal completion. Performance in a given task is likely to

be more suitably assessed by one type of metric than another.

Tolerance Interval: A tolerance interval for a given measured quantity esti-

mates the range of measurements that will with probability p contain a

pre-specified proportion q of the population (the measurements are assumed

to be normally distributed). This contrasts with a confidence interval which

estimates the range in which the measurement itself falls. Suppose that we

take a sample of size n of the measurement from the population. Then we

can define a two-tailed tolerance interval as x̄ ± ks, where x̄ is the sample

mean, s is the sample standard deviation, and k is the tolerance factor,

calculated as follows:

k =

√√√√(n− 1)(1 + 1
n
)z2

1−q
2

χ2
p,n−1

where z2
1−q
2

is the critical value of the normal distribution which is exceeded

with probability 1−q
2

, and χ2
p,n−1 is the critical value of the chi-squared dis-

tribution having n−1 degrees of freedom which is exceeded with probability

p. For more details, consult Croarkin and Tobias (2003).

UT: [Unreal Tournament] Unreal Tournament is a First-Person Shooter

computer game (Digital Extremes, 1999). Its agents (or bots) can be con-

trolled by humans, native AI algorithms, or external AI programs over

a network via a UT plug-in module called Gamebots (Adobbati et al.,

2001). JavaBots, which we extended, is a package of Java classes designed

to interface with Gamebots allowing easier implementation of Java-driven

bots.
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Appendix C

Implementing JavaBots with

GTLF in Unreal Tournament

We add this appendix so that exploring, using, and extending our code is as

painless as possible for any that might wish to do so. We also hope that seeing

how some of the pieces fit together in practise may aid in understanding the

principles of the framework.

C.1 Requirements and Setting Up

The first step toward implementing an Unreal Tournament JavaBot is to make

sure the necessary software is in place. We now briefly describe what is needed:

• Install Unreal Tournament. We used the Game of the Year (GOTY) ver-

sion for Windows, which is available cheaply to buy online (any search

on Amazon or eBay is likely to find several copies for sale). Like all

commercial computer games, installation is simply a matter of inserting

the CD and following on-screen instructions. There is also a Linux port

of UT by Loki Software, Inc., but it is no longer maintained and ap-

parently still requires the purchase of the Windows version (see http:

//www.lokigames.com/products/ut/).

• Install GameBots. Recall that Gamebots is an Unreal Tournament mod-

ule that allows the control of bots by external programs over a network.

The relevant files are available from the project sourceforge page: http:
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//gamebots.sourceforge.net/ — follow the Downloads link, and select

the UT-BotAPI package. You then have a choice of how to install: either

download the .umod file and double-click it — this will install the module

automatically. Alternatively you can download the .zip archive and copy

the BotAPI.ini, BotAPI.int, and BotAPI.u files into the System directory

of your Unreal Tournament installation.

• Install JavaBots, our extension classes and GTLF. All of the Java code

needed can be downloaded from http://www.cs.bath.ac.uk/~cspmaw/

disscode.zip — simply unzip the archive into a location in your Java

classpath. The packages of interest are:

– edu.isi.gamebots.client — a slightly modified version of Andrew Mar-

shall’s JavaBot code.

– maw.gamebots — including a number of utility classes, wrappers, ex-

ample bots, etc. The most important class is BasicBot.java which

extends Marshall’s Bot class. Any bot designed for use in this setup

should extend this class.

– maw.tls — the GTLF classes as described below (Section C.3). We

have also included all the test code in the test directory.

The BotRunnerApp application can then be launched by typing “java BotRun-

nerApp” at the command line. To create a bot instance and connect it to

your UT server:

1. Start Unreal Tournament.

2. Go to the Game menu and click Start Practise Session.

3. Make sure you select one of the Remote Bot Game Types (i.e. one

that uses the GameBots module), and select a map of your choice.

4. Click Start — the game should start.

5. Start the BotRunnerApp.

6. Make sure the UT server’s IP address is entered in the Server input

box (you’ll need to hard code this if you want to run the automated

version — see below).
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7. Go to the Team menu, select Add Bot, and then type in the name of

the bot class in the Class input box (or select it from the drop-down

menu if it is there) and click Add Bot.

8. Click Connect All — your bot should appear in the game.

So that we could run a series of automated trials, we have adapted BotRun-

nerApp: by typing “java BotRunnerApp -b<bot class name>” where <bot

class name> is the name of the bot instance you want to create, the BotRun-

nerApp will open, create, and connect the bot automatically.

Having set up the platform, the next step is to create a test bot. We have

included the code for such a bot below, along with explanatory comments.

C.2 Example: “Hello World!” GTLF JavaBot

As we mentioned above, the important class to override when designing new

bots is the BasicBot class in the maw.gamebots package. The following code

demonstrates both the methods that should be overridden to get a bot up and

running, and also how to do a trivial set up of the GTLF. The latter requires

creating a motor interface by overriding the MotorInterface class in the maw.tls

package (see below).

C.2.1 HelloWorldBot

import maw.gamebots.*;

import maw.tls.*;

import java.util.*;

public class HelloWorldBot extends BasicBot{

private TLS GTLF;

// bot constructor

public HelloWorldBot(){

// call the superclass and set up the GTLF

super("HelloWorldBot");

setUpGTLF();

}

private void setUpGTLF(){

// set up the root of the perceptual hierarchy
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ChannelSet perceptualSystem = new ChannelSet();

// set up a channel which only has one perceptual class to

// monitor self-existence

Channel doIExist = new Channel("E");

doIExist.add("y", "exist", "==", 1, "I exist!");

perceptualSystem.add(doIExist);

// create the GTLF, passing it the motor interface and

// perceptual class definitions

GTLF = new TLS(new HelloWorldBotMI(this), perceptualSystem);

// create a (fixed) skill which will stipulate that the agent

// should shout continuously

Associations alwaysShout = new Associations(false);

// define action elements

maw.tls.Action shout = new maw.tls.Action("S");

// and define the appropriate perception-action mapping

alwaysShout.add(doIExist, "y", shout);

// then add this to GTLF as the task behaviour

GTLF.addTaskBehaviour(alwaysShout);

}

// this method is called at the end of every sensor cycle

protected void onSyncEnd(double time){

// set up a store for the sensor data

TreeMap<String, String> sensorData = new TreeMap<String, String>();

// if this is being called, then I must exist!

sensorData.put("exist", "1");

// then execute the appropriate action according to the

// defined task behaviour

GTLF.executeTaskAction(sensorData);

}

}

C.2.2 HelloWorldBotMI

import maw.gamebots.*;

import maw.tls.*;

public class HelloWorldBotMI extends MotorInterface{

// link to the bot’s action functions

private HelloWorldBot bot;

public HelloWorldBotMI(HelloWorldBot bot){

super();

this.bot = bot;

}
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public boolean execute(maw.tls.Action action){

// the bot has been asked to execute a shout action

if(action.getSymbol().equals("S")){

bot.say("Hello World!", true);

return true;

}

else{

System.out.println("Action not recognised");

return false;

}

}

}

C.3 Pseudocode

Below is some pseudocode which may help some gain a better understanding of

GTLF, particularly any who would wish to implement it on a non-Java platform.

We have listed only the main classes, and for each of those classes listed only the

field names and most important methods. Basic ‘housekeeping’ methods such

as constructors, mutators, and accessors are not described. Full java code is

available for download at http://www.cs.bath.ac.uk/~cspmaw/disscode.zip.

C.3.1 TLS

This is the main class for the Task Learning System, which houses all of the sub-

systems; i.e. the perceptual system, the exploratory and learned behaviours, the

learning modules, episodic memory, and the motor interface. The main methods

are for executing exploratory or testing actions, and for passing the perceptual

state onto the learning modules for processing.

class TLS {

-- field list --

ChannelSet perceptualSystem

Associations taskBehaviour

Associations exploratoryBehaviour

Associations[] behaviourLibrary

LearningModule[] learningModules

EpisodicMemory EM

MotorInterface motorInterface

-- methods --

get perceptual state given sensor state {
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use the perceptualSystem to look up the perceptual state for this sensor state

and return it

}

execute exploratory action given sensor state {

get perceptual state given sensor state

return the exploratory action (defined in exploratoryBehaviour) for this perceptual state

look up the action in the motorInterface and execute it

}

execute task action given sensor state {

get perceptual state given sensor state

return the task action (defined in taskBehaviour) for this perceptual state

look up the action in the motorInterface and execute it

}

process incoming sensor state for learning {

for each learning module defined in LearningModules:

get perceptual state given sensor state

pass the perceptual state on to the learning module for processing

(this will update EM)

}

}

C.3.2 ChannelSet

The perceptual system we implemented is the perceptual hierarchy model de-

scribed in Section A.3.2. The root of the hierarchy is a set of perception channels,

as described in this class definition. If a designer wishes to implement a different

perceptual system, then this class can be overridden or replaced, as long as there

exists a method for deriving the current perceptual state given the sensor state.

class ChannelSet {

-- field list --

Channel[] channels

PerceptualClass[] order

-- methods --

get the highest priority perceptual class given the sensor state {

for each perceptual class in salience order:

if the perceptual class is present in the perceptual state:

descend into it and further down the hierarchy

return the highest priority leaf perceptual class

}

get the full perceptual state given the sensor state {

for each channel in this channel set:

get the perceptual classes which apply
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then return the set of all these classes

}

set the saliency of a perceptual class to a given value {

look through the perceptual classes in this channel set

set the saliency of the relevant perceptual class

reorder the hierarchy at this level

}

}

C.3.3 Channel

class Channel {

-- field list --

String symbol

PerceptualClass[] perceptualClasses

-- methods --

get the part of the perceptual state defined in this channel (and below) {

for each perceptual class in this channel:

if this class is in the perceptual state,

add it and descend deeper into the hierarchy

then return the set of all these classes

}

}

C.3.4 PerceptualClass

Note that the saliency, sub-features and sub-classes of a perceptual class are

properties associated with the perceptual hierarchy model. These can be omitted

or replaced if a different perceptual system is used.

class PerceptualClass {

-- field list --

String symbol

SensorGroup[] sensorCriteria

double saliency

ChannelSet features

PerceptualClass[] subClasses

String description

-- methods --

is this perceptual class included in the perceptual state? {

for each sensor group which defines this perceptual class:

check that the conditions on that sensor group are satisifed

if they all are, return true

else, return false

}
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return the highest priority perceptual class nested within this one {

if this is a leaf class, return it

otherwise, if this class has sub-features, look inside them

otherwise, for each subclass of this class:

look inside that subclass

return the highest priority leaf class found

}

add this class and any subclasses to the perceptual state vector {

if this is a leaf class, add it to the perceptual state vector being built

and return the vector

otherwise, if this class has sub-features, descend into them and add

if appropriate

otherwise, for each subclass of this class:

if the subclass should be in the perceptual state,

add it to the vector

then return the vector

}

}

C.3.5 SensorGroup

class SensorGroup {

-- field list --

SensorCondition[] sensorConditions;

-- methods --

is this sensor group satisfied given the current sensor state? {

for each sensor condition which is part of this sensor group:

check if the condition is satisfied

if they all are, return true

else, return false

}

}

C.3.6 SensorCondition

In this implementation, a sensor condition defines the name of the sensor attribute

for which the condition is specified, the type of comparison it should make (i.e.

“<”, “>”, “==”), and the value with which the live input should be compared.

class SensorCondition {

-- field list

String sensorName

String comparator

String value
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-- methods --

is this sensor condition satisfied given the current sensor state? {

look up the value this sensor condition applies to in the sensor state

use the appropriate comparator to check if the condition is satisfied

if it is, return true, else return false

}

}

C.3.7 Associations

The Associations class represents one of our implementations of a skill in GTLF. It

consists of a map from perceptual classes to a list of actions ordered by associative

strength. It also keeps track of the change in strength values for the previous

learning cycle so convergence can be identified. It also contains a method for

‘importing’ a skill in utility matrix representation (see below).

class Associations {

-- field list --

Map<PerceptualClass --> ActionStrengthPair[]> associations

Map<PerceptualClass --> double> changes

Action defaultAction

-- methods --

increase the associated strength of a given action to a perceptual class {

if the perceptual class already has associations:

if the action is already associated to it:

just adjust the strength

otherwise, add an association

normalise across all associations

sort the associations by strength

and record the changes made for convergence checking

if the perceptual class has no associations

first add the default action with maximum strength

then call this method again with the same arguments

}

update this skill representation given a matrix of utilities {

for each perceptual class in the utility matrix:

if the mimumum utility value is negative for that class:

shift all utilities for that class so that the least is zero

for each action:

add the utility value as an ActionStrengthPair to

the associations list for this perceptual class

normalise strengths for this perceptual class

then sort by associative strength

add this perceptual class and its new list to the associations map

}
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check if learning has converged for this skill given an error threshold {

if not all the necessary perceptual classes have associations

then we haven’t converged yet

for each perceptual class in the associations map:

if the action at the top of the list changed last time

then we haven’t converged yet

if the last change was bigger than the error threshold

then we haven’t converged yet

otherwise we have converged

}

}

C.3.8 ActionStrengthPair

class ActionStrengthPair {

-- field list --

Action action

double strength

}

C.3.9 Action

The Action class represents the GTLF action element.

class Action {

-- field list --

String symbol

String[] parameters

}

C.3.10 LearningModule

LearningModule was an abstract class designed to be implemented by concrete

learning modules. We ourselves implemented two: one for observation learning

and one for SMART (trial-and-error) learning (see below).

abstract class LearningModule {

-- methods --

process incoming date from the perceptual system and update episodic memory { }

}

C.3.11 EpisodicMemory

Recall that in GTLF, episodic memory stores association data, perceptual selec-

tion data, and perceptual categorisation data. In our implementation, only the

first two were catered for.
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class EpisodicMemory {

-- field list --

Associations associations

PerceptualClass[] perceptions

}

C.3.12 MotorInterface

Again, MotorInterface is an abstract class that needs to be implemented differ-

ently for every different type of agent. It provides the link between the abstract

skill / action element representations and the concrete executable actions avail-

able for a given agent.

abstract class MotorInterface{

-- methods --

find out how to execute the given action element and execute it { }

}

C.3.13 Utilities

Utilities represents our other representation of a skill; as a matrix of perceptual

class / action element utility values. It too contains a function for importing data

from the Associations skill representation.

class Utilities{

-- field list --

PerceptualClass[] states

Action[] actions

double[][] utilityTable

-- methods --

get the (joint) highest utility action for this perceptual state {

for each action value in the appropriate row of the matrix:

if this is the (joint) highest value:

add this action to the return set

return the set of actions

}

update the utility matrix using values from an associations map {

for each perceptual class in the associations map:

for each action in descending order of strength:

copy the strength value into the appropriate place in

the utility table

}

}
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C.3.14 ObservationLM

These final two class definitions are included just for the sake of interest and

completeness. They describe the two learning modules we have implemented

in GTLF so far, starting with the observation learning module. This module

contains a list of action channels (relating to the actions of the observed expert),

a list of perception channels (relating to the perceptions of the expert), and two

correspondence libraries; one linking expert actions to egocentric actions, and

one linking expert perceptual classes to egocentric perceptual classes.

class ObservationLM extends LearningModule {

-- field list --

String[] actionChannels

String[] perceptionChannels

Map<String --> PerceptualClass> previousState

Associations actionCorrespondences

Map<PerceptualClass --> PerceptualClass> perceptionCorrespondences

-- methods --

process incoming data from the perceptual system and update episodic memory {

check the action channels and update episodic memory given the perception channels

save the current perceptual state

}

check the action channels and update episodic memory given the perception channels {

for each action channel:

if this action channel is represented in both the current

and previous perceptual states:

if the expert’s action state has changed since last time:

update the association of this action state to the expert’s

perception state

}

update the association of a given action state to the expert’s perception state {

look up the expert’s action in the actionCorrespondence library to

find the equivalent action for me

for every perceptual class in the expert’s perceptual state:

look up the class in the perceptionCorrespondences library to find

an equivalent perceptual class for me

update episodic memory with a new association between the action and

egocentric perceptual class

}

}
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C.3.15 SMART

SMART is the Semi-Markov Reinforcement Learning module we implemented for

our experiments.

class SMART{

-- field list --

double[] parameters

Utilities utilities

PerceptualClass[] states

Action[] actions

-- methods --

get the next action to execute given the current state {

update the explore-exploit parameters

select a random number between 0 and 1

if the number is less than the explore threshold:

execute a random exploratory action

otherwise, execute the highest utility action for

this perceptual state

}

update the rewards given the state, action and reward data {

update the cumulative reward using the SMART equations

update the average gain

write the new reward to the appropriate place in the

utilities matrix

}

}
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