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Abstract

‘Simplification’ is a key concept in computer algebra. But many simplification

rules, such as
√
x
√
y → √xy, are not universally valid, due to the fact that

many elementary functions are multi-valued. Hence a key question is “Is this

simplification correct?”, which involves algorithmic analysis of the branch cuts

involved. The problem can, in principle, be reduced to connectedness questions

and can be solved via Cylindrical Algebraic Decomposition (CAD).

In practice, while CAD is a powerful technique in real algebraic geometry, its

application is far from straightforward. This thesis discusses how CAD can be

applied to this problem, notably

• initial problem formulation;

• choice of variable ordering;

• problem pre-conditioning;

• decomposition post-conditioning;

for two different CAD algorithms — projection and lifting and triangular decom-

position.
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Chapter 1

Introduction

The problem concerning the simplification of elementary functions has long been

recognised as one of the fundamental problem in computer algebra [Mos71], and

the subject has been intensively researched for many years. However, even for the

class of elementary functions, it has not been resolved in a satisfactory way. One

of the major obstacles encountered when trying to simplify such functions, either

by hand or by using a computer algebra system, is that many of the elementary

functions are, in principle, multi-valued functions, while most users and computer

programs tend to work with single-valued functions. The consequence is that

many well-known identities may no longer be true everywhere in the complex

plane when working with their single-valued counterparts: generally they only

hold on specific regions of the complex plane (or higher-dimensional space for

multivariate identities) defined by the branch cuts of the functions. However, we

cannot ignore these identities, since in some contexts they may be valid.

This thesis is concerned with the accurate simplification of multi-valued elemen-

tary functions, and concentrates on the use of Cylindrical Algebraic Decomposi-

tion (CAD) as a tool for the analysis and decomposition of branch cuts in complex

(or real) space.
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1.1 Motivation

Simplification rules are often stated in terms of single-valued functions, for ex-

ample
√
z2 → z. These are not universally true, try z = −1 in this example and

we have an old paradox,

−1 =
√

(−1)2 =
√
1 = 1. (1.1)

Less obvious are that √
1− z

√
1 + z →

√
1− z2

is true for all z ∈ C, but the apparently similar

√
z − 1

√
z + 1→

√
z2 − 1

is not for all z ∈ C (z = −2 is a counterexample).

Many people are unaware of these difficulties: assuming the identities are true

everywhere. This leads to incorrect simplifications. Not only human beings make

this mistake, computer algebra systems which “ought to” be correct, also suffer

from it. Computer algebra developers have struggled for years to find the best

way to handle possible simplifications. They are torn between:

• being cautious and refusing to do simplification when there is uncertainty,

as in Maple’s simplify(. . . ) and therefore failing to perform obvious sim-

plifications, leaving the user with an unpleasant expression when a simpler

one should have been given such as
√
1− z

√
1 + z →

√
1− z2;

• adopting a lax attitude and using all possible algebraic rules regardless of

the exceptional domain, as in Maple’s simplify(. . . , symbolic), and there-

fore making incorrect simplifications such as
√
z − 1

√
z + 1→

√
z2 − 1.

2



1.2 Notation and Conventions

The operation of taking square root is fundamentally ambiguous. The solutions

of z2 = 4 are {−2,+2}, and the solutions of z2 = 2 are real numbers α ∈
(−2,−1)|α2 = 2 and β ∈ (1, 2)|β2 = 2, conventionally denoted α = −

√
2 and

β =
√
2. When it comes to z2 = −1, we cannot use bounding intervals on the real

line, and trying to define bounding boxes in the complex plane requires us to know

what i is: a vicious circle. Hence we fix, arbitrarily but consistently throughout

this thesis, i to be one of the two complex numbers such that i2 = −1.

Notation 1.2.1. Z, N, R and C denote the integers, natural numbers, real

numbers and complex numbers respectively.

Notation 1.2.2. The letters x, y, u, v and their decorated varieties denote real

variables and z, w and their decorated varieties are complex variables, where z =

x+ iy, w = u+ iv.

Notation 1.2.3. ℜ(z) and ℑ(z) denote the real and imaginary parts of z respec-

tively, where z = ℜ(z) + iℑ(z).

Notation 1.2.4. Lower case variants, such as log, arctan and
√

denote single-

valued functions from C → C. Capitalised variants, such as Log, Arctan and

Sqrt denote multi-valued functions, regarded as mapping C into sets of values,

and defined via their inverses. For example, Log(z) = {w : exp(w) = z} =

{log(z) + 2nπi | n ∈ Z} and Sqrt(z) = {w : w2 = z} = {±√z}.

Our branch cut for log is defined in Section 4.1, and other elementary functions

in Appendix A. Note that our
√
z takes the value of the square root of z with

non-negative real part, i.e.
√
z = ((w : w2 = z) ∧ (csgn(w) = 1)), where csgn is

as defined in Appendix C.

Notation 1.2.5. The arithmetic operations are assumed to act on these sets

element-wise, so that A +B = {a+ b | a ∈ A, b ∈ B}.

3



1.3 Elementary Functions

Elementary functions, as defined by Liouville [Ros68], are the members of a

field of functions that is generated by arithmetic operations and composition of

exponentials, logarithms, and algebraic functions, and constant functions. Thus,

polynomials, exponential, trigonometric and hyperbolic functions, are elementary

functions in the sense of Liouville. They may be many-to-one as functions C→
C. Their inverses, i.e. algebraic roots, logarithmic, inverse trigonometric, and

hyperbolic functions, are also elementary functions in the sense of Liouville, but

are naturally one-to-many as functionsC→ C, and hence require branch cuts. To

distinguish these, the latter are sometimes referred to as the inverse elementary

functions. While fractional powers are roots of algebraic equations, non-rational

powers are obtained via exponential and logarithm, and therefore bring in the

constant problem [Ric68], which we will not treat further in this thesis.

1.4 Genesis and Evolution of the Thesis

This thesis contributes towards a larger EPSRC1 project on the simplification

of elementary functions, supervised by Professor James H. Davenport and Dr.

Russell J. Bradford. The main objective of the project is to develop a tool to

verify if a proposed simplification of elementary functions is correct: providing

either a proof of the simplification, or a counterexample. In [Kah87], Kahan

gave an informal description of a process: how a mathematician would attack the

problem. Our CAD based simplification system (described formally in Chapter 3)

can be thought of as a formalisation of this process, making each step of the

process algorithmic.

The main body of the thesis is on the CAD algorithm which drives the decomposi-

tion step of our verification system. At the start of the thesis, there was essentially

only one way for computing the CAD, that is Collins’ projection and lifting ap-

proach [Col75]. We investigate the feasibility of employing this algorithm within

1Under grant number GR/R84139/01.
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our system. This is important since, although the algorithm has been around

and has been an active research topic since the mid-1970s, most developments

have been with respect to its original use in quantifier elimination.

During the course of the thesis, a different approach which is based on triangular

decomposition [CMMXY09], has surfaced. Its implementation became available

soon afterwards, allowing us to study its applicability to our system, for the later

part of the project, in parallel with the original Collins’s method.

1.5 Thesis Outline and Contributions

In Chapter 2 we provide an overview of the possible simplification problems. Also

in this chapter, we examine the existing approaches to handle multi-valued func-

tions and evaluate the limitations and difficulties in applying these approaches.

Chapter 3 introduces an algorithm to decide whether a proposed simplification

of the elementary functions is correct. The algorithm uses multi-valued function

simplification, followed by the decomposition method. The latter step can be

seen as a generalisation of the process outlined in [Kah87]. Also in this step we

propose to use Cylindrical Algebraic Decomposition as a tool for the analysis and

decomposition of branch cuts in the complex plane.

In Chapter 4 we describe and develop machinery to translate the set of branch

cuts of the proposed simplification into a semi-algebraic representation. The

process involves transforming a problem in Cn into a problem in R2n [Dav03],

and de-nesting square roots present in the expression where necessary. In this

chapter, we also suggest possible shortcut and ways in which it can be used to

reduce the size of the set of branch cuts.

Chapter 5 gives the exposition of the Cylindrical Algebraic Decomposition tech-

nique. In this chapter we review the two existing approaches for constructing

Cylindrical Algebraic Decomposition:

1. projection and lifting approach, i.e. Collins’s original method, and its vari-

ant namely Partial Cylindrical Algebraic Decomposition;
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2. triangular decomposition approach, a more recently developed approach

due to Chen et al.

In chapter 6 we demonstrate the limitations of Cylindrical Algebraic Decom-

position as a building block in our technology. We then propose an algorithm

to manipulate the branch cut formulae such that more information is preserved

when handing them to the Cylindrical Algebraic Decomposition algorithm. The

algorithm can be used as a post-processing step to the method of Chapter 4. The

idea and some of the results were presented in [PBD10].

Chapter 7 focuses on the last step of our system, i.e. the identity evaluation phase

of the algorithm proposed in Chapter 3. We introduce the method of adherence

to tackle the problems inherent in numerical evaluation on non-full dimensional

regions. In this chapter we also suggest how to make this step more efficient by

avoiding unnecessary testing of cells.

In Chapter 8 we outline our implementations and investigate the practical ap-

plicability of CAD within our framework, using the existing implementations:

QEPCAD and Maple’s CylindricalAlgebraicDecompose command. The ex-

periment is based on a set of well-known elementary function identities.

Chapter 9 contains a summary and suggestions for potential future work.
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Chapter 2

Simplification

Simplification is a key concept in computer algebra. It is not unusual in al-

gebraic manipulation for expressions to be several lines, or pages, long, and a

wrong choice of representation can easily swell the size of the problem. Algebraic

simplification plays an important role in helping to keep the expressions com-

prehensible and make the system efficient and effective. However, simplification,

even when dealing with the class of elementary functions, is more difficult than

one usually realizes and has been one of the fundamental problems in computer

algebra [Mos71].

In this chapter we first describe the simplification problems together with their

causes. The latter part of the chapter concentrates on a particular simplification

problem generated by elementary functions. We examine a number of techniques

to tackle the problem and what they are lacking.

2.1 Simplification Problems

An ideal computer algebra system should simplify the results as much as practi-

cable but only when it is correct to do so, i.e. never changing the values of the

results. Despite the straightforwardness of the statement, the aim is difficult to

formalize for all potential users. A perfect simplification system may not even

exist due to the fact that simplification itself is not totally well-defined. To ob-
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tain and define precisely the definition of a simplification is an old and difficult

problem [Mos71] that has not been fully resolved yet. How to determine what

is the best simplification is a major question. Given two expressions A and B,

what is meant by saying that “expression A is simpler than expession B”? Is

simplification decided on the compactness of the formula, or on the number of

primitives? For example

• Is 1 + x+ x2 + ...+ x1000 “simpler” than x1000−1
x−1

?

• Is arctan(z) “simpler” than 1
2i
(log(1 + iz)− log(1− iz))?

The answers to these questions will probably depend on the requirements of the

situation. It is often the case that one of the equivalent expressions is more useful

than another. However, it is not necessary that an expression which is consid-

ered simpler than another equivalent expression in one context would always be

considered simpler in every context. For example,

x5

x6 + 1

is a more compact representation of an expression than the equivalent

1
6
(6x5)

x6 + 1

and is often easier to perform algebraic manipulation. However, the latter ex-

pression suggests the substitution y = x6 which, when integrating, yields

∫ 1
6

y + 1
dy

a much simpler expression in comparison to the first expression.

An attempt to address this issue was given in [Car04]; we will not analysis this

issue further. In this thesis, we will focus solely on another important ingredient

for a good simplification system, that is how to correctly manipulate functional

expressions involving elementary functions. The procedure is not entirely trivial.

On one hand
√
x
√
y =
√
xy is false in general (x = y = −1 is a counterexample),

but on the other hand
√
1− z

√
1 + z =

√
1− z2 is true everywhere. How to
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translate such knowledge into usable code is a challenging and unresolved task.

Current computer algebra systems provide no assistance when working with sim-

plification rules which are “partially” or “almost” true. They would either make

or not make simplifications, without giving information as to what the simplifica-

tions might have been, nor what the exceptional domains are. Faced with these

problems, the user of a computer algebra system cannot rely on the system to

perform simplification with full confidence.

2.2 Multi-Valued Functions

The fundamental problem underlying the complication is that the inverse elemen-

tary functions are what are commonly called “multi-valued functions”, at least

as C→ C. One sees phrases like

A multi-valued function (or multiple-valued function [Mar65]) is a“function”

that assumes two or more distinct values in its range for at least one

point in its domain.

Of course, this is not a function C → C in the sense of Bourbaki [Bou70,

page E.II.13], or indeed computer programming (the “table-makers point of

view” [Dav10]).

The usual definition of functions R+ → R such as log may be as integrals,

log(z) =
∫ z

1
1
x
, series, log(z) = (z − 1) − 1

2
(z − 1)2 + · · · , or inverse functions,

log(z) = exp−1(z) (with log(1) = 0). Any of these definitions of f(z) may be

extended to C by analytic continuation ([Mar67, page 257]) along paths P , but

it is this continuation that gives rise to ambiguity: we have no longer defined

f(z), but rather fP (z) where P is a path from the starting value z0 to z.

Definition 2.2.1. [Mar65, page 217]

Given a multi-valued function w = f(z) with continuous single-valued branches

defined on a domain G with closure G, we say that the point ζ ∈ G is a branch

point of f(z) if there exists a neighbourhood N(ζ) such that one complete circuit

around an arbitrary closed Jordan curve [Mar65, page 60] γ ⊂ N(ζ) with ζ ∈
I(γ), carries every branch [Mar65, page 213] of f(z) into another branch of f(z).
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Definition 2.2.2. Branch cuts are lines drawn (semi-arbitrarily [Kah87, CDKS11])

between branch points of a locally-analytic function such that the function can be

uniquely defined by analytic continuation along paths that do not cross the branch

cuts.

The placement of the branch cuts is not standardised and can differ from one

computer algebra system (or mathematical textbook) to another. For example,

one may rule that −π < arg(z) ≤ π, while it is also completely correct to rule

that 0 ≤ arg(z) < 2π. However, the fundamental problem is caused by the fact

that branch cuts are necessary, and the problems exist regardless of the choice of

the branch cuts.

Suppose, here, we follow the modern convention, i.e. −π < arg(z) ≤ π. This

places the branch cut of logarithm along the negative real axis, and it is counter-

clockwise continuous (CCC), i.e. continuous with the upper half-plane of the cut.

Therefore, for x < 0

lim
y→0+

log(x+ iy) = log(x), (2.1)

but

lim
y→0−

log(x+ iy) 6= log(x). (2.2)

Consequently, we lose several mathematical identities that we are accustomed to.

For example,

log(z)
?
= log(z), (2.3)

is not always true, instead log(z) = log(z) + 2πi on the cut, and

log

(

1

z

)

?
= − log(z), (2.4)

is not always true, instead log
(

1
z

)

= − log(z) + 2πi on the cut.

The problems are not limited to complex numbers as is often believed; algebra

with the reals (as opposed to the entirety of C) also encounters these problems

due to the facts that:

• complex numbers can be introduced via operations on reals, as in putative
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equation (1.1) or arccos(2) ≈ 1.317i, and

• the well-known “equations” may be invalid even on the reals, as in

arctan(x) + arctan(y)
?
= arctan

(

x+ y

1− xy

)

, (2.5)

the two sides differ by ±π if xy ≥ 1.

However, the problems are more manifest on C.

2.3 Handling Multi-Valued Functions

This section describes a number of approaches which have been proposed over

the years to tackle the problems caused by the multi-valued nature of the func-

tions.

2.3.1 Signed Zeros

Kahan [Kah87] suggested using the concept of signed zero [IEE85], the IEEE

standards for floating-point arithmetic, which distinguishes positive zero from

negative zero. The reason for zero to have two values is because all the necessary

branch cuts which we have to take into consideration are on either the real or

imaginary axes, therefore the side to which the branch cut adheres depends on the

the sign of the real or imaginary part, including the sign of zero. For clarity, we

write 0+ for positive zero and 0− for negative zero. By stating that log(x+0+i) =

log(|x|) + πi and log(x + 0−i) = log(|x|) − πi for x < 0, the “signed zero” can

be used to resolved the above problems; equation (2.2)1, (2.3)2 and (2.4) become

equalities throughout. Unfortunately, the concept does not offer any help in the

situation where the putative equation is on a set of measure greater than zero,

such as (1.1) and (2.5).

1interpreting the x on the right as x+ 0−i
2where 0+i = 0−i
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2.3.2 Auxiliary Functions

[CJ96] pointed out that the errors, which occured due to the existence of branch

cuts, can be prevented by introducing a special function, which they named the

unwinding number K.

Definition 2.3.1. Define the unwinding number K(z) by

K(z) = z − log(exp(z))

2πi
=

⌈ℑ(z)− π

2π

⌉

∈ Z.

Note that the sign convention here is as defined in [CDJ+01, BCD+02], which is

the opposite to that of [CJ96]3

Remark 2.3.1. The apparently equivalent definition
⌊

ℑ(z)+π

2π

⌋

differs precisely

on the branch cut for log(z) as applied to exp(z).

The putative equation

log(z1z2)
?
= log(z1) + log(z2)

can be rescued as

log(z1z2) = log(z1) + log(z2)− 2πiK(log(z1) + log(z2)),

and (2.3) can be rescued as

log(z) = log(z)− 2πiK
(

log(z)
)

.

Note that, as part of the algebra of K,

K
(

log(z)
)

= K(− log(z)) 6= K
(

log
1

z

)

.

3K is defined in [CJ96] by K(z) =
⌊

π−ℑ(z)
2π

⌋

: the authors of [CJ96] recanted later to keep the

number of -1s occurring in the formulae to a minimum.
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K(z) depends only on the imaginary part of z, K(log(z)) = 0 for all z, and

K(− log(z)) =







−1 z real negative

0 elsewhere.

This is therefore a “fingerprint” for the branch cut.

Some correct identities for elementary functions using K are given in Table 2.1.

z = log(exp(z)) + 2πiK
K(a log(z)) = 0 ∀z ∈ C if and only if −1 < a ≤ 1

log(z1) + log(z2) = log(z1z2) + 2πiK(log(z1) + log(z2))

a log(z) = log(za) + 2πiK(a log(z))
zab = (za)b exp(2πiK(a log(z)))

Table 2.1: Some correct identities for logarithms and powers using K

The unwinding number approach is a two-step approach. First the unwinding

number is inserted to preserve the mathematical correctness while performing

algebraic manipulation and cancellation of the elementary functions. Generally

the insertion of the unwinding number is done using one of the following mecha-

nisms:

• log
(

z1
z2

)

= log(z1)− log(z2)− 2πK(log(z1)− log(z2)), or

• log
(

1
z

)

= − log(z)− 2πK(− log(z)), or

• log(exp(z)) = z − 2πiK(z).

The formulae for other elementary functions are given in Appendix C.

The result is then simplified by removing the unwinding number, where this is

possible. This is harder than inserting the unwinding number, which can be done

algorithmically. The values of the unwinding number might reduce to any of the

following possibilities:
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• an unwinding number may be identically zero, or

• an unwinding number may be zero everywhere except on certain branch

cuts in the complex plane, or

• an unwinding number may divide the complex plan into two regions, one

where it is non-zero and one where it is zero, or

• an unwinding number may correspond to the usual +nπ, n ∈ Z of many

trigonometric identities.

The unwinding number has several attractive features, namely:

• an unwinding number is single-valued, and

• an unwinding number is integer-valued: little accuracy is necessary in prac-

tice to evaluate it, and

• an unwinding number is familiar in the sense that “everyone knows” that

the multi-valued logarithm can be written as

the principal branch + 2πik, k ∈ Z,

and

• an unwinding number can be computed by a formula not involving loga-

rithms.

However, using the unwinding number in computer algebra systems does have a

number of disadvantages including:

• inserting the unwinding number essentially doubles the size of the printed

output, giving the answer in the form Y + 2πiK(Y );

• eliminating the unwinding number cannot be done algorithmically, the rules

are essentially geometric and require decisions to be made on the grounds

of where its arguments are in C.

Other mathematical functions similar to the unwinding number have been defined

several times, including
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• the adjustment, adj [Bra93]

adj(z) = −2πi
⌊ℑ(z)

2π

⌋

,

• the imaginary quotient, Imq(z) [Asl96]

Imq(z) =

⌈ℑ(z) + π

2π

⌉

∈ Z,

• the unln [Pat96]

unln(z) = ln(exp(z))− z.

2.3.3 Multi-Valued Functions as Set Valued Functions

This approach is to accept the multi-valued nature of the elementary func-

tions.

Notations 1.2.4 and 1.2.5 validate the algebraic rules of simplification, which

otherwise might not be true in single-valued cases. For example,

Sqrt(x) Sqrt(y) = Sqrt(xy),

whereas √
x
√
y

?
=
√
xy

is not true: x = y = −1 is a counterexample.

Some multi-valued identities are given in Table 2.2, along with a counterexample

to the single-valued counterpart, if it exists, and the relative dimensionality of

the counterexample space.
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Multi-valued rule Single-valued counterexample Counterexample’s dimensionality

Log(z1) + Log(z2) = Log(z1z2) z1 = z2 = −1 lower (over C)

Log(z1)− Log(z2) = Log
(

z1
z2

)

z1 = 1, z2 = −1 lower (over C)

−Log(z) = Log
(

1
z

)

z = −1 lower (over C)

Log(z) = Log(z) z = −1 lower (over C)

Sqrt(z1) Sqrt(z2) = Sqrt(z1z2) z1 = z2 = −1 lower (over C)

Sqrt(z)2 = {z} no counterexample

Sqrt(z2) = {±z} not single-valued

Arctan(x) + Arctan(y) = Arctan
(

x+y

1−xy

)

x = y = 2 full (over R)

tan(Arctan(x)) = {x} no counterexample

Arctan(tan(x)) = {x+ nπ | n ∈ Z} x = π full (over R)

sin(Arcsin(x)) = {x} no counterexample

Arcsin(sin(x)) = {x+ 2nπ | n ∈ Z} ∪
{−x+ (2n + 1)π | n ∈ Z} x = π full (over R)

Table 2.2: Multi-valued simplification rules and single-valued counterexamples
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There are, however, a few caveats which must be mentioned.

• Not all multi-valued functions have simple expressions. For example,

Arcsin(x) = {arcsin(x) + 2nπ | n ∈ Z} ∪ {π − arcsin(x) + 2nπ | n ∈ Z}.

• Cancellation is no longer trivial, since in principle, rather than being zero,

Arctan(x)− Arctan(x) = {nπ | n ∈ Z},

or more confusingly,

Arcsin(x)−Arcsin(x) = {2nπ | n ∈ Z} ∪ {2 arcsin(x)− π + 2nπ | n ∈ Z}
∪ {π − 2 arcsin(x) + 2nπ | n ∈ Z}

= {2nπ n ∈ Z} + {0, 2 arcsin(x)− π, π − 2 arcsin(x)}.

Note that Arcsin(x) − Arcsin(x) still depends on x, unlike the case of

Arctan(x)− Arctan(x).

• Some identities take on somewhat unexpected forms in this context. For

example, the multi-valued representation of

arcsin(z)
?
= arctan

(

z√
1− z2

)

,

(which is valid except on the branch cuts), is either

Arcsin(z) ⊂ Arctan

(

z

Sqrt(1− z2)

)

,

or

Arcsin(z) ∪ Arcsin(−z) = Arctan

(

z

Sqrt(1− z2)

)

.

• There is an aliasing problem. For example,

Log(z2) 6= 2Log(z), (2.6)
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if 2 Log(z) is interpreted as {2w | exp(w) = z}, since 2 Log(z) = {2 log(z)+
4kπi | k ∈ Z}, but Log(z2) = {2 log(z) + 2kπi | k ∈ Z}. For equation (2.6)

to be valid, 2 Log(z) needs to be interpreted as Log(z) + Log(z):

Log(z2) = Log(zz) = Log(z) + Log(z) = 2 Log(z).

• Putative equations in which ambiguity disappears, such as
√
z2

?
= z, cannot

be encoded as Sqrt(z2) = z, since this is trying to equate a set and a number,

but rather have to be encoded as z ∈ Sqrt(z2).

• It is unclear of what will happen when multi-valued functions are replaced

by the corresponding single-valued functions of numerical programming lan-

guages.

2.3.4 Riemann Surfaces

Riemann surfaces are often used to represent multi-valued functions. They allow

us to visualize the multi-valueness graphically [AS60, Tro97, CJ98]. The idea of

the Riemann surface is to transform the one-to-many mapping to a one-to-one

mapping by changing the domain of definition from C to a more complicated

object, say D, and thus the multi-valued functions are made single-valued.

Consider the simple case of the Riemann surface of the square root as an exam-

ple. Unlike the other approaches described above, where the attention is on the

behaviour of w =
√
z in the w-plane, the Riemann surface studies the behaviour

of the mapping z = w2 in the z-plane.

Let w = r exp(iθ),−π < θ ≤ π, then we have z = r2 exp(2iθ). If we take two

copies of the z-plane and cut along the negative real axis (Figure 2-1), then glue

together the edges of these cuts so that B1 is joined to A2 and B2 to A1, we get

the intuitive Riemann surface of w =
√
z. Starting at the point w = r in the

w-plane and travelling anti-clockwise along a circular path to the point w = ir,

the image points run from the point r2 to the point −r2 on the first copy of the

z-plane. Next if we continue along the circular path on the w-plane from the

point ir to the point −ir, the image points are now on the second copy of the
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z-plane going one full circle from the point −r2 through the point r2 back to the

point −r2. Finally, if we travel on the w-plane from the point −ir to the point r,

the image points are now back on the first copy of the z-plane and run from

the point −r2 to the point r2. This makes the multi-valued function w =
√
z

single-valued on the union of the two copies of the z-plane.

w - plane 

two z - planes 

z = w 2

ir 

-ir 

r -r 

B

B 

A 

A 

1

2

1 

2

first sheet 

second sheet 

r 2

r 2 

Figure 2-1: The Riemann surface for z = w2

Similarly, we can study the logarithm, w = ln(z). In this case, for each k ∈ Z,

choose a copy Sk of the z-plane. For z = R exp(iφ),−π < φ ≤ π, z 6= 0, we

define

Ln(z) = ln(R) + iφ + 2kπi on Sk, k ∈ Z.

Make a cut along the negative real axis on the copy Sk, k ∈ Z, ∀k. Then glue

together the copy Sk with the copy Sk+1 for all k. The resulting Riemann surface

is an “infinite round staircase” (Figure 2-2).

Therefore, to use Riemann surfaces to study the elementary functions, one re-

quires to know what Riemann sheet they are on. Furthermore, the Riemann

surface depends upon the function being considered, for example the Riemann
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Figure 2-2: The Riemann surface for w = ln(z)

sheet for log(z) is different from the Riemann sheet for arctan(z). Thus it is

unclear how to use Riemann surfaces computationally when considering multi-

valued functions, such as equation (2.5), since we have merely moved the problem

to that of relating the Riemann surfaces for x and y to that of x+y

1−xy
.

2.4 Summary

In this chapter we have introduced simplification problems. In particular, we

have shown the difficulty when handling simplification of inverse elementary func-

tions. The problem stems from the fact that these inverse elementary functions

are multi-valued. Hence the well-known simplification rules may not be true

everywhere when working with their single-valued counterparts.

We have given an overview of several treatments of the inherently multi-valued

functions, and showed that none of these have provided a complete solution to

the problem.
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Chapter 3

Simplification System

The primary concern of this thesis is to develop a practical tool to analyse whether

simplification in elementary functions, which is naively correct, is actually math-

ematically correct. This chapter outlines the algorithms that we are using to

build such a system.

There have been several discussions on the best way to deal with the problem

of multi-valued functions [Kah87, Bra93, Asl96, CJ96, Pat96, CDJ+01, BCD+02,

Dav03]. However, most techniques have remained largely unimplemented. To the

best of our knowledge, the first major implementation of a verification system

for elementary function identities was made in [DF94]. The paper took what

we shall call the decomposition method (Algorithm 1), which was first described

informally in [Kah87].

By defining a (multi-valued) function f , starting from an element e0 with a series

expansion about z0, we mean [Mar67, page 269 note 22], given any z1 ∈ G, z1 6= z0,

let L ⊂ G be a curve joining z0 to z1, and let e1 be the result of continuing e0

along L, with disk K1 ⊂ G and series

∞
∑

n=0

an(z − z1)
n (z ∈ K1).

Then f(z1) = a0.
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Theorem 3.0.1. The Monodromy Theorem [Mar67, page 269].

Given a simply connected domain G, let e0 be an element with disk K ⊂ G centred

at z0. Suppose e0 can be continued along every continuous curve [Mar65, page

59] in G, thereby defining a function f(z) at every point of G. Then f(z) is

single-valued on G.

Algorithm 1 Decomposition method

1: Calculate all the branch cuts of the proposed identity.
2: Decompose C (or Cn) with respect to the branch cuts into cells and find a

sample point in each cell.
3: Evaluate the identity on each connected component using the obtained sample

point, thereby conclude whether the identity is true or not on that entire
region by the Monodromy theorem.

For each step of Algorithm 1, [DF94] proceeded as follow.

1. The branch cuts are represented by a triple (r0, r1, f) with r0, r1 ∈ R ∪
{±∞} and the function f : [r0, r1] 7→ C. The branch cuts of a func-

tion E(z) = f(g(z)) are determined by computing the inverse function φ(z) =

g−1(z), then applying φ to the interval(s) representing the cut(s) for f .

2. (a) Determining the decomposition of C involved eliminating the inter-

acting branch cuts, before traversing the branch regions. The latter

requires computing the derivatives to sort the branch cuts and seg-

ments which have non-infinite and infinite endpoints respectively.

(b) Draw a line L which bisects the angle between two cuts on the bound-

ary of region R, both with the same endpoint e on the boundary of R.

Compute all intersections of L with the boundary of R. Select e′ such

that e′ is the nearest point to e towards the interior of R.

3. Evaluate the identity numerically using the sample points.

The procedure was implemented in Mathematica and it was capable of han-

dling many simple examples. However, the approach suffers from a few limita-

tions.

• Only one complex variable is allowed.
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• It may not be possible to compute the inverse function φ(z). For example,

the function
√

p(z) where p(z) is a polynomial of degree 5 or more cannot

generally be expressed in terms of radicals.

• The traversal will not locate the regions which are contained entirely inside

other regions.

In [BD02], Bradford and Davenport proposed another algorithm to decide the

correctness of simplification of elementary function identities. Like [DF94], the

algorithm is based on the decomposition method (Algorithm 1), but they pro-

posed using Cylindrical Algebraic Decomposition (CAD) in the second step. In

addition, they introduced the use of multi-valued functions to find the candidate

for a proposed simplification, before proceeding to the decomposition method.

The overall approach proceeds as follow.

1. Find a possible simplification g of the candidate f .

2. Check algebraically that the simplification is correct in the multi-valued

sense as defined in Notations 1.2.4 and 1.2.5.

3. Check, following the decomposition method, that the simplification is cor-

rect in the single-valued, branch cut respecting, sense.

(a) Determine all branch cuts of f and g, representing the set of branch

cuts by semi-algebraic equations in ℜ(z) and ℑ(z).

(b) Determine a decomposition D of C (or Cn), viewed as R2 (or R2n),

according to the branch cuts by using Cylindrical Algebraic Decom-

position.

(c) Evaluate1 the identity on each component C of the decomposition D

(see Chapter 7).

Remark 3.0.1. Analysis of the putative equation in terms of multi-valued func-

tions, shows how small a non-zero discrepancy can be, so a “sufficiently accurate”

numerical evaluation will do — see [BD02].

1Purely numerical verification may not work on branch cuts, since the smallest error may result
in us choosing a sample point from an adjacent cell instead.
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This thesis is based upon Bradford and Davenport’s approach, focusing partic-

ularly on the last step. Note that it is possible to combine steps 1 and 2 in

practice, and they can be done by using a standard simplifier such as Maple’s

simplify(..., symbolic).

3.1 Necessary Conditions

The CAD based decomposition method works for the cases where:

1. the only nested elementary functions which appear inside other elementary

functions are square roots, and

2. the inverse elementary functions only appear in the numerator.

The first restriction is to ensure that the branch cuts can be described by semi-

algebraic sets so that CAD is feasible. The second restriction is necessary so that

numerical sample point testing is possible [BD02].

3.2 Practical Restrictions

Most of the well-known identities, such as those found in [AS64] or as one is

likely to meet in practice, are of one or two complex variables. Hence we shall

focus on these cases, although occasionally we will choose to discuss expressions

involving real variables as well. Unlike the complex problems where the branch

cuts in complex space are always lower-dimensional, i.e. lines on the complex

plane, the branch cuts of the real cases (functions on real domains) may be

lower-dimensional or full-dimensional. For example, the branch cut of

h = arctan(x) + arctan(y)− arctan

(

x+ y

1− xy

)

is a point at infinity, therefore it is a lower-dimensional problem.

On the other hand, the branch cut for logarithm is a half line, (−∞, 0], which

is full-dimensional in real space. Hence, the set of branch cuts in the real case
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of

h = log(x) + log(y)− log(xy),

includes the branch cut of log(x) which is full-dimensional in x-space, the branch

cut of log(y) which is full-dimensional in y-space, and the product of the two,

which is full-dimensional in real (x, y)-space.

In this thesis, our primary focus will be on the cases involving lower-dimensional

branch cuts. The same methodology as described here can be applied to the

full-dimensional problems to compute the set of branch cuts of the proposed

identity and construct the decomposition, but different interpretations may be

required to analyse the decomposition. Since the main interest of this thesis is

the decomposition, we will not discuss further how to use the decomposition in

these cases.

3.3 Summary

We have presented an algorithm for deciding whether a proposed simplification of

elementary functions is correct in the presence of branch cuts. The algorithm uses

multi-valued function simplification followed by verification that the branches are

consistent, by means of the decomposition method using CAD. The details of each

step of the algorithm will be described in later chapters.
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Chapter 4

Branch Cuts

In this chapter, we describe the method for computing the set of branch cuts for

the class of inverse elementary functions in complex variables. We represent the

branch cuts in the form of semi-algebraic sets, which opens the door to powerful

tools from real algebraic geometry [BCD+02]. We begin the chapter with the

branch cut conventions and some restrictions which will be used throughout the

thesis.

4.1 Convention

The existence of branch cuts is forced on us by the mathematics of analytic func-

tions. Their precise positioning is a matter on convention [Kah87, CDKS11];

however, it is important to make a consistent choice. In this thesis, the defini-

tions and the choice of branch cuts of the inverse elementary functions are as

given in [CDJW00], which repeats, with more justification, the definitions given

in [AS64]. If one made a different choice, some of the examples in this thesis

would be different, but the theorems and arguments would remain valid.

Definition 4.1.1. Define the branch cut of log(z) to be (−∞, 0] and rule that

−π < ℑ log(z) ≤ π. (4.1)
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This specifies the principal value of the logarithm function to be

log(z) = log |z|+ i arg(z)

with −π < arg(z) ≤ π. Thus the branch cut of logarithm is

ℜ(z) < 0 ∧ ℑ(z) = 0.

The definitions and the branch cuts of other inverse elementary functions are

derived from the definition and the branch cut for the logarithm function, and

are summarized in Appendices A and B respectively.

Note that the precise choice of < and ≤ in (4.1) specifies the adherence rule of

what log actually does on the branch cut: it adheres to the upper half-plane (see

Figure 7-1).

4.2 Semi-Algebraic Representation

The branch cuts of square roots, logarithm, and the inverse of trigonometric and

hyperbolic functions, which are described in Appendix B, can be represented in

terms of sets of equality and inequality (a special case of a semi-algebraic set —

see [BR90], [BCR98, Chapter 2])

{(s σ1 c1) ∧ (t σ2 c2)},

where s, t ∈ R and represent the real and imaginary parts respectively, σi ∈ {=
, <,≤, >,≥}, and ci ∈ {0,±1} for i = 1, 2. For example, the branch cut for

arctan(z) : (−i∞,−i] ∪ [i, i∞) is the set

{(s = 0) ∧ (t ≥ 1)} ∨ {(s = 0) ∧ (t ≤ −1)}.

Moreover, for every function, either s = 0 or t = 0 in each branch cut for-

mula.

Remark 4.2.1. In real cases, t = 0 always.
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4.3 Branch Cut Computation

4.3.1 Rational Functions

For simplicity, suppose that the function f(g(z)) where f is an inverse elementary

function and g ∈ C(z), with g(z) 6= 0, contains only one complex variable and

no square roots inside f .

We proceed as follows:

• re-writing g, if necessary, as g(z) = p(z)
q(z)

, where p, q ∈ C[z];

• substituting z → x+ iy, where x, y ∈ R;

• multiplying g(z) by the expression ℜ(q)−iℑ(q)
ℜ(q)−iℑ(q)

, with q /∈ R[z], to obtain the

equation:

g(z) =
ℜ(p)ℜ(q) + ℑ(p)ℑ(q) + i(ℜ(q)ℑ(p)−ℜ(p)ℑ(q))

(ℜ(q))2 + (ℑ(q))2 . (4.2)

For each branch cut of function f :

• Setting up a system of the following form:

g(z) = s+ it (4.3)

s σ1 c1 (4.4)

t σ2 c2. (4.5)

The σi and ci depend on the function f .

• Without loss of generality, suppose the function f requires that s = 0. Then

combining (4.3) and (4.4) gives

g(z) = it (4.6)

t σ2 c2. (4.7)
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Substituting (4.2) into (4.6) and equating the real and imaginary parts give

ℜ(p)ℜ(q) + ℑ(p)ℑ(q)
(ℜ(q))2 + (ℑ(q))2 = 0 (4.8)

ℜ(q)ℑ(p)−ℜ(p)ℑ(q))
(ℜ(q))2 + (ℑ(q))2 = t (4.9)

t σ2 c2.

• Combining (4.5) and (4.9) gives

ℜ(p)ℜ(q) + ℑ(p)ℑ(q) = 0 (4.10)

ℜ(q)ℑ(p)−ℜ(p)ℑ(q))
(ℜ(q))2 + (ℑ(q))2 σ2 c2. (4.11)

• Since the denominator of (4.2) is always strictly positive, we can multiply

both sides by the denominator without changing the sign of σ2,

ℜ(p)ℜ(q) + ℑ(p)ℑ(q) = 0 (4.12)

ℜ(q)ℑ(p)−ℜ(p)ℑ(q) σ2 c2(ℜ(q))2 + (ℑ(q))2. (4.13)

In addition, we also need to consider the set {z | q(z) = 0}.

The case where the function f requires t = 0 is analogous to the above.

The s and t in the original set up system can always be eliminated. The output

is a semi-algebraic set with two equations in two real variables.

For the more general case of h(f1(g1(z)), . . . , fn(gn(z))), with h is a rational

function in fi(gi(z)), i ∈ 1, . . . , n, the above procedure is applied to each fi(gi(z)),

then the union of the branch cuts is taken. This process can give rise to removable

branch cuts — see Section 4.4. The procedure can be further extended to handle

an arbitrary number of complex variables.
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4.3.2 Nested Roots

The method of Section 4.3.1 can be generalised to cover all functions allowed

by our restrictions, that is for f(g(z)) where f is an inverse elementary function

and g(z) contains square roots of arbitrary depth but no other elementary or

inverse elementary functions. One can build the set of branch cuts for f(g(z))

by working, for convenience although not necessity, starting with g and working

outwards. Thus, we first calculate the set of branch cuts for each square root

of g, and then take the union. The final step requires computation of the set of

branch cuts for the outermost f and adjoining this to the set of branch cuts for

all g. The procedure here involves more work than that of Section 4.3.1, since

once the system corresponding to equations (4.3), (4.4), and (4.5) has been set

up, the square roots in equation (4.3) need to be removed. This may be achieved

using one of the methods which we will describe next.

Notation 4.3.1. Suppose f(g(z)) is as described earlier in this section. Without

loss of generality, suppose further that the function f requires that t = 0. Thus,

g(z) = s. (4.14)

• Squaring

A root-free expression may be derived by repeatedly squaring up the equa-

tion (4.14), rearranging if necessary. Unfortunately, for a general g(z) where

g(z) contains 5 or more root monomials, the above procedure may be in-

feasible.

• Resultant

Let g is a polynomial expression of the terms n1

√
p1, ..., nm

√
pn with pi ∈ C(z)

and m ∈ N.

In line 4 of Algorithm 2, resultant(a, b)φ denotes calculating the resultant

of polynomials a and b with respect to variable φ.

• Gröbner basis

This procedure eliminates the intermediate “square root” variables as in

the resultant method [BBDP04].
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Algorithm 2 Nested roots elimination: Resultant

Input: g − s = 0
Output: Root-free g′.
1: Clear denominators from g − s = 0 to obtain g′ = 0.
2: Substitute ωi = ni

√
pi for each distinct ni

√
pi in g′.

3: for i = 0 to m do
4: g′ ← resultant(g′, ωni

i − pi)ωi

5: end for

Once we arrive at a root-free expression, we can apply the method of Section 4.3.1.

However, given g in n variables, the above procedures produce g′ in n+1 variables:

that is we introduce an extraneous variable, i.e. s above. For simple cases,

we may be able to eliminate this extraneous variable after equating the real

and imaginary parts as described in Section 4.3.1. For more complicated cases,

quantifier elimination such as CAD (see Section 5.1) can be used to produce an

equivalent formula without the extraneous variable. However, the downside of

this is that extra computational time will be added to the overall algorithm.

Once again, as in Section 4.3.1, the method of this section can be extended to

include the case of h(fi(gi(z))) where h is a rational function in fi(gi(z)), i =

1, . . . , n, and to the case of arbitrarily many complex variables.

4.3.3 Spurious Branch Cuts

A side effect of removing the square roots is that it introduces spurious branch

cuts.

Suppose f(g(z)) is as in Section 4.3.2, and

g(z) =
√

p(z). (4.15)

If the squaring method is used and we naively square (4.15). We derive

g2(z) = p(z).

This, however, represents the solution set of g(z) = ±
√

p(z), that is the solu-
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tions for both branches of the square root, instead of just the desired principal

branch.

For example,

h(z)
?
= h1(z)− h2(z) = arccosh(

√
z)− 2 log

(
√√

z + 1

2
+

√√
z − 1

2

)

,

which has branch cuts for both h1(z) and h2(z). To illustrate the problem, we

will look at just the branch cut for h1(z) here.

After reduction, we must consider the system:

√
z = s (4.16)

s < 1.

Naively squaring (4.16) and equating real and imaginary parts produces the

set

{x = s2, y = 0, s < 1},

which would lead to the conclusion that the set of branch cuts for h1(z) is

{(x > 0) ∧ (y = 0)},

when the desired result is only the set

{(0 ≤ x < 1) ∧ (y = 0)}.

Definition 4.3.1. Define

sgn(z) =

{

1, (ℜ(z) > 0) ∨ ((ℜ(z) = 0) ∧ (ℑ(z) ≥ 0)),

−1, otherwise.

To avoid including the negative branch in the solution set, p(z) should only be

solved on the region where sgn(g(z)) = 1. To achieve this, some polynomial

constraints need to be added to the system. Thus the following pair of systems

should be considered, once again assuming f(g(z)) has a branch cut of the form
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(s σ c) ∧ (t = 0):

g2(z) = p(z)

ℜ(f(s, z)) > 0 (4.17)

s σ c,

and

g2(z) = p(z)

ℜ(g(z)) = 0 (4.18)

ℑ(g(z)) ≥ 0 (4.19)

where equations (4.17), (4.18) and (4.19) are the additional constraints.

In the case where g2(z) does not contain any square roots, this reduces to the case

of Section 4.3.1. If g2(z) does contain square roots, then the procedure has to be

recursively applied and additional new variables may be needed. For example,

to convert the system containing (4.17) above, the following system would be set

up:

g2(z) = p(z) (4.20)

g2(z) = s1 (4.21)

s1 > 0 (4.22)

s σ c, (4.23)

and the procedure proceeds from here. Notice that the original constraint on s

is still required.

A disadvantage of these systems is that it may not be possible to eliminate si

(or ti depending on the function f) from the system after equating the real and

imaginary parts as described in Section 4.3.1. These extra variables will, clearly,

reduce the efficiency of the decomposition1.

1The CAD method is intrinsically doubly-exponential in the number of variables (see Sec-
tion 5.5).
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If the resultant or Gröbner basis method is used, then we face a problem of

identifying the most appropriate side-conditions as in (4.20), (4.21) and (4.22).

This is because of the lack of information as to what manipulations of the original

equation (4.15) have been used at each step.

While clearly it is good to remove spurious branch cuts, leaving them merely

harms the efficiency of the process, not the fundamental correctness of the algo-

rithm. Using any of the methods of Section 4.3.2, we will not lose any “true”

branch cuts, but we will simply add more. Hence we will derive a decomposition

with larger number of cells: the spurious cut itself might only be a single cell,

but it will have divided other cells that “ought not” to have been divided.

4.4 Removable Branch Cuts

The methods of Sections 4.3.1 and 4.3.2 would return a set of all possible branch

cuts. This may include some removable2 branch cuts, which are the regions

where the function is not actually discontinuous. It may not be apparent that

these branch cuts exist. To illustrate this, let us consider the function

f(z) = log(z + 1)− log(z − 1).

The method above will calculate the branch cut of log(z + 1), which is the set

{(x ≤ −1) ∧ (y = 0)}, the branch cut of log(z − 1), which is the set {(x ≤
1)∧(y = 0)}, and conclude that the branch cut of f(z) is the union of the two, i.e.

{(x ≤ 1)∧(y = 0)}, when the actual branch cut is only {(−1 ≤ x ≤ 1)∧(y = 0)}.
The extra branch cut arises from the fact that the procedure fails to detect that

f(z) is in fact continuous across {(x ≤ −1) ∧ (y = 0)} and thus has a removable

branch cut across this region.

The inclusion of the removable branch cuts will lead to an overcautious decompo-

sition, and consequently add more work to the identity testing step. Therefore,

while we will still obtain correct results, it would be nice to detect these removable

2This is similar to the idea of “removable singularity”.
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branch cuts.

4.5 Special Case

Since
√

denotes the single-valued function from C→ C, and
√
z = {w : w2 =

z} = {+Sqrt(z)}, we may by-pass computing some branch cuts of a function

f(g(z)) where f is any elementary function and g(z) is any function allowed by

our restriction. If g(z) = c1
√

g1(z) + · · ·+ cn
√

gn(z) with real constants ci ≥ 0,

then ℜ(g(z)) ≥ 0, ∀z. Hence, when calculating the top-level branch cuts for

f(g(z)), the parts of the cuts which lie on the negative real or negative imaginary

axis can be ignored. This is also true for arbitrarily many complex variables.

4.6 Summary

In this chapter we have showed how a branch cut expression can be mathemat-

ically computed. The methods require specification of branch cuts, which are

purely conventional. The methods described here will work with any choice of

branch cuts.
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Chapter 5

Cylindrical Algebraic

Decomposition

Decomposition of C (or Cn), viewed as R2 (or R2n), as defined by branch cuts

can be achieved via Cylindrical Algebraic Decomposition (CAD1). The initial

application of CAD, when it was first invented in 1970s, was to solve quantifier

elimination in real closed fields (as [Col75], we refer to [VDW53] for a descrip-

tion of real closed fields). However, it has over the years been shown that its

data structure representing semi-algebraic sets is also useful in other applications

requiring a decomposition of Rn according to certain polynomial equations and

inequalities, including robot motion planning and our simplification problem. To

date, there have been two different approaches to compute CAD. The first was

due to Collins [Col75]. The approach is based on a projection and lifting tech-

nique. A more recent approach by Chen et al. [CMMXY09] computes CAD via

Triangular Decomposition.

1Not to be confused with Computer Aided Design. In this thesis, CAD will always refer to
Cylindrical Algebraic Decomposition.
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5.1 Quantifier Elimination

Quantifier elimination (QE) is a procedure to remove the quantifiers, i.e. the

existential quantifier (∃) and universal quantifier (∀) from the quantified for-

mula

(Qkxk)(Qk+1xk+1) . . . (Qrxr)F (x1, . . . , xr). (5.1)

where (Qixi) is either an existential quantifier (∃xi) or an universal quanti-

fier (∀xi), and F (x1, . . . , xr) is a quantifier-free formula, 1 ≤ k < r, resulting in an

equivalent quantifier-free formula. While quantifier elimination, as an abstract

problem, can be posed for any class of F , we are concerned with polynomials

with integer coefficients.

The quantifier elimination method for real-closed fields was first discovered by

Tarski in 1930. The work was first published in 1948 [Tar48], and in a sec-

ond edition three years later [Tar51]. Although Tarski proved that quantifier

elimination is possible, the complexity of the algorithm was too great for it to

be practical except for trivial problems. Neither the two subsequent algorithms

by Seidenberg [Sei54] in 1954 and Cohen [Coh69] in 1969 offered any advan-

tage over Tarski’s in term of complexity. The first practical approach to quan-

tifier elimination came in 1970s with a discovery of CAD by Collins [Col75]. It

was followed by a number of other methods, including the methods by Heintz,

Roy and Solernó [HRS90], Renegar [Ren92a, Ren92b, Ren92c] and Weispfen-

ning [Wei98].

5.1.1 Implementations of CAD

The first implementation of CAD was made by Dennis Arnon in 1980 based on

Collins’ original CAD algorithm. Currently, there are four reasonably complete

CAD implementations. The first three compute CAD via Projection and Lifting,

while the fourth uses CAD via triangular decomposition.

1. QEPCAD (Quantifier Elimination by Partial Cylindrical Algebraic De-

composition) is a quantifier elimination system for computing with semi-

algebraic sets using partial Cylindrical Algebraic Decomposition. It is a
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stand-alone, command-line program written in C and based on the SACLIB

library of computer algebra functions. The system was developed primar-

ily by Hoon Hong, but subsequently extended by many other contributors,

including Christopher W. Brown, George E. Collins, Scott McCallum, etc.

The current version of QEPCAD is QEPCAD B [Bro, Bro03, Bro04]. It

improves the basic implementation of CAD as well as providing additional

functionality. The system is maintained by Christopher W. Brown, and is

written in C++ rather than C.

2. RLCAD is implemented by Andreas Seidl and Thomas Sturm in REDLOG

which is part of the REDUCE system.

3. Mathematica. Starting with version 5.0, Mathematica now provides a

command CylindricalDecomposition[ineqs, {x1 , x2, . . . }].

4. Maple. Starting with Maple 14, Maple now provides a command

CylindricalAlgebraicDecompose(F, R).

For this thesis, we will base our analysis and experimentation on the use of CAD

for our verified simplification application on QEPCAD B (which will simply be

referred to as QEPCAD), and Maple’s CylindricalAlgebraicDecompose com-

mand (which will simply be referred to as Maple’s CAD). We use QEPCAD for

projection and lifting based CAD because it is active open source software and

we have a good relationship with the maintainer.

5.2 CAD via Projection and Lifting

In this section, we look at Collins’ original CAD algorithm and its ameliorations.

We will refer to the algorithm as CAD-PL to distinguish it from CAD via tri-

angular decomposition (Section 5.3). We begin with the definitions necessary to

describe the algorithm. The definitions follow those given in [ACM84a] which

gave somewhat different, but equivalent, ones to those in [Col75].

Definition 5.2.1. A region R is a non-empty connected subset of Rn.
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Definition 5.2.2. For a region R, a cylinder over R, Z(R), is the set

R×R1 = {(α, x) | α ∈ R, x ∈ R}.

Definition 5.2.3. Let f be a continuous, real-valued function on R. A f -section

of Z(R) is the set

{(a, f(a)) : a ∈ R}.

Definition 5.2.4. Let f1 < f2 be continuous, real-valued functions on R. A

(f1, f2)-sector of Z(R) is the set

{(α, β) : α ∈ R, f1(α) < β < f2(α)}.

The constant functions f1 = −∞, and f2 =∞ are permitted.

Definition 5.2.5. Let X ⊆ Rn. A decomposition of X is a finite collection of

disjoint regions whose union is X:

X =
k
⋃

i=1

Xi, Xi

⋂

Xj 6= ∅, i 6= j.

Definition 5.2.6. Let f1 < f2 < · · · < fk, k ≥ 0 be continuous, real-valued

functions on R. A stack over R is a decomposition of Z(R) comprising of

i.) the fi-sections of Z(R) for 1 ≤ i ≤ k, and

ii.) the (fi, fi+1)-sectors of Z(R) for 0 ≤ i ≤ k, where f0 = −∞ and fk+1 =

+∞.

Definition 5.2.7. A decomposition D of Rn is cylindrical if either

• n = 1 and D is a stack over R0, or

• n > 1 and there exists D′ a cylindrical decomposition of Rn−1 such that for

each region Ri of D
′, there is a stack Di over Ri with D =

⋃

Di.

Definition 5.2.8. A subset of Rn is said to be a semi-algebraic set if it can be
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R-region

f1-section

f2-section

(f1-f2)-sector

Cylinder

Figure 5-1: A geometrical interpretation of the definitions of region, cylinder,
sections, sectors and stack

expressed in the form

m
⋃

i=1

li
⋂

j=1

{x ∈ Rn | fi,j(x) σi,j 0},

where fi,j ∈ R[x1, . . . , xn] and σi,j ∈ {=, 6=, <,≤, >,≥} for i = 1 . . . , m, j =

1, . . . , li.

Definition 5.2.9. A decomposition is said to be algebraic if each of its regions

is a semi-algebraic set.

Definition 5.2.10. A Cylindrical Algebraic Decomposition of Rn is a decom-

position which is both cylindrical and algebraic.

Definition 5.2.11. Let X ⊆ Rn and F ∈ Z[x1, . . . , xn]. F is said to be sign-

invariant on X if one of the following conditions holds:

i.) F (x) > 0 ∀x ∈ X;

ii.) F (x) = 0 ∀x ∈ X;

iii.) F (x) < 0 ∀x ∈ X.

Definition 5.2.12. The order of F at the point x is the number of consecutive
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derivatives of F (starting with F itself), which are zero at x, i.e.

order =



















0 if F (x) 6= 0;

1 if F (x) = 0 but F ′(x) 6= 0;

k if F (x) = F ′(x) = · · · = F (k)(x) = 0 but F (k+1)(x) 6= 0.

F is order-invariant on X if it has the same order at x for all x ∈ X.

Definition 5.2.13. A sign-invariant CAD of Rk for F is a CAD of Rk such

that F is sign-invariant on each region.

Remark 5.2.1. Every order-invariant F is sign-invariant, but not vice versa.

5.2.1 The Algorithm

CAD-PL algorithm takes a set of polynomials, A, in, say n, variables, A ⊆
R[x1, . . . , xn] as an input, and outputs a CAD of Rn, sign-invariant for A. The

algorithm consists of three phases: projection, base and lifting phases. This

section outlines the algorithm; more detailed descriptions can be found in [Col75,

ACM84a].

1. Projection Phase

In the projection phase, a projection operation recursively computes suc-

cessive sets of polynomials, eliminating one variable at each projection until

a set of univariate polynomials is obtained.

Pn = A ⊆ R[x1, . . . , xn]

↓
Pn−1 ⊆ R[x1, . . . , xn−1]

↓
...

↓
P1 ⊆ R[x1]
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The projection from Pk to Pk−1 is such that a decomposition Dk sign-

invariant for Pk can be constructed from a decompositionDk−1 sign-invariant

for Pk−1. That is the zero set of the resulting polynomials of each set is the

projection of the “significant points” (e.g. self-crossings, isolated points,

vertical tangent points) of the zeros of the preceding polynomials. In prac-

tice, we make each Pi be a set of square-free relatively prime polynomials,

and call it a projection factor set.

2. Base Phase

A sign-invariant decomposition D1 of R
1 can be derived from the univariate

polynomials produced at the end of the projection phase [EGT10]. The

decomposition D1 consists of sections, which are the real zeros of these

polynomials, and sectors, which are the open intervals between consecutive

zeros, including the open intervals prior to and after all zeros. The sample

points of cells which are sectors can be chosen to be any points belonging to

the cells, but for the cells which are sections, the sample points may need

to be irrational algebraic.

These univariate polynomials and isolating intervals, in which the polyno-

mial has only one root, decompose R1. For example x2 − 2 induces two

sections:

α: that root of x2 − 2 with α ∈ (1, 2);

β: that root of x2 − 2 with β ∈ (−2, 1); and
three sectors x < β (typical sample point -2), β < x < α (typical

sample point 0) and x > α (typical sample point +2).

Note that x2 − 3 has a section:

γ: that root of x2 − 3 with γ ∈ (1, 2).

However, if both x2 − 2 and x2 − 3 are in P1, to answer α < γ, we need

to refine these to α ∈
(

1, 3
2

)

and γ ∈
(

3
2
, 2
)

. Isolating and refinement are

discussed in many papers, e.g. [KS11, MS11, EGT10].

3. Lifting Phase (often called extension)

The decomposition D1 of R1 is successively lifted to a decomposition D2
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of R2, this decomposition D2 of R2 to a decomposition D3 of R3, . . . ,

decomposition Dn−1 of Rn−1 to decomposition Dn of Rn, each Di being

sign-invariant for Pi and cylindrical over Di−1. During each step of the

lifting phase, a stack is constructed over each cell of the lower-dimensional

CAD. The intersections of the cylinders whose bases are the cells of the

lower-dimensional space with the zeros of the next higher-dimensional poly-

nomials are the sections. The connected sets between consecutive sections

and the sets below and above all sections are sectors. These sections and

sectors form a stack and all the stacks form a CAD, sign-invariant for Pk

of the higher-dimensional space. The sample points for the cells of CAD of

R2 are obtained by substituting the sample point of the CAD of R1 into

the bivariate polynomials and computing the real zeros of the resulting uni-

variate polynomials. The process is repeated to obtain the sample points

of the cells of the CADs of R3, . . . ,Rn.

5.2.2 Improvements

Since the introduction of CAD-PL, there have been several improvements to the

original algorithm by various authors.

• Adjacency and clustering [ACM84b, ACM85, ACM88, Arn85, Arn88, MC02].

• Improved projection [McC84, McC85, McC88, Hon90, McC98, Bro01a].

Lazard [Laz94] also suggested an improved projection which further re-

duce McCallum’s projection, but is more widely applicable. While contain-

ing interesting ideas, Lazard’s projection is unproven as it stands (though

no counterexamples to the projection have been found). Proposition 3 of

[Laz94] is wrong as stated: Schicho found the counterexample: take n = 1,

s = 1/x, a = 0 [McC10].

• Partial CAD construction [CH91].

• Interactive implementation [Col98].

• Equational constraints [Col98, McC99, McC01, BM05].
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• Improved subalgorithms [Col98].

• Simplification of truth CADs [Bro98, Bro01b].

• Choice of variable ordering [DSS04, Bro04].

5.2.3 Projection Operator

An important component of CAD-PL is the projection operator. The function

defines the projection factor set during the projection phase. The original al-

gorithm produced an overly large projection set resulting in a very refined de-

composition with many stacks and cells. It has been shown that the size of the

projection set can be reduced, improving the efficiency of the algorithm. Signif-

icant advancements have been made in a series of improved projection methods

including [McC84, McC85, McC88, Hon90, McC98, Bro01a]. They fall into two

basic models, ones which produce sign-invariant projection sets, i.e. the Collins’

and Hong’s projection, and ones which produce order-invariant projection sets,

i.e. McCallum’s and Brown-McCallum’s projection. For reasons that are out-

side the scope of this thesis, order-invariant projections have better recursion

properties [Bro04].

Although, McCallum’s and Brown-McCallum’s projection operators produce smaller

projection factor sets, they require a more complicated lifting algorithm and they

may fail to produce a CAD in rare cases where a projected polynomial is zero

everywhere in a cylinder: however these failures can always be detected. Another

advantage of Hong’s projection is that it makes clustering easier; the clusters only

need to be sign-invariant, not order-invariant.

5.2.4 Partial CAD

Collins and Hong observed that in many cases of QE, a full CAD does not need

to be constructed if one makes use of the information within the input formulae

rather than just extracting a set of polynomials. This led them to introduce par-

tial CAD (PCAD) [CH91]. The objective of PCAD is to reduce the number of
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stacks in the construction during the lifting phase. We note that the projection

phase of PCAD is the same as for basic CAD, and therefore still doubly expo-

nential [DH88, BD07]. The method constructs one stack at a time and avoids

building unnecessary stacks over some cells in two ways.

1. Truth value propagation. Suppose (Qkxk) is an existential quantifier,

then as soon as any cell in the stack above cell c in Rk−1 is found to be

true, cell c can be assigned the value true and no further stack needs to

be constructed. The method can also be applied to universal quantifiers,

propagating false.

2. Trial evaluation. This applies when some variables are not presented in

some polynomials in the input formula. Suppose cell c has already been

constructed in Rk and at least one polynomial occurring in the input for-

mula does not contain any other variables than the first k. The truth value

of these polynomials can be evaluated at the sample point of cell c and

hence the truth value of the atomic formulae in which they are presented

can be determined. If these truth values already yield the truth value of

the quantifier-free part of the input formula, then the stack does not need

to be constructed above cell c.

It has been showed that PCAD is more efficient than the original CAD when

applied to QE problems [CH91]. Since PCAD, and hence QEPCAD, were devel-

oped for QE problems and our problems are different, a question arises about the

use of QEPCAD within our application. To demonstrate the idea of PCAD, we

run a small example using QEPCAD. This example, although not derived from

a branch cut problem, is chosen for its simplicity. We consider the formula

x− 2 < 0 ∧ y2 − 4 = 0. (5.2)

Examining data structure shows that once the polynomials are projected down to

the base case, when constructing a CAD with respect to variable ordering y > x

(Figure 5-2), QEPCAD decomposes the real line R1 into a point (x = 2) and two

open intervals. Since the point (cell 2) and the right open interval (cell 3) do not

satisfy the condition x − 2 < 0, no stack is constructed above these two level 1
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Enter a variable list:

(x,y)

Enter the number of free variables:

2

Enter a prenex formula:

[x-2 < 0 /\ y^2-4 = 0].

=======================================================

...

Before Solution >

d-pscad ()

--------------------------------------------

The Partial CAD over ()

()---(1)p1(-)---(1,1)p1(-,-) F

---(1,2)p1(0,-) T

---(1,3)p1(+,-) F

---(1,4)p1(+,0) T

---(1,5)p1(+,+) F

---(2)p1(0) F

---(3)p1(+) F

--------------------------------------------

Figure 5-2: Partial CAD data structure for formula (5.2) (y > x)
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cells. As a result, we only have a CAD of that part of R2 which lies above the

left open interval (cell 1) part of R1. This gives us five connected cells in that

partial space as shown in Figure 5-3.

x

y

Cell 3Cell 2Cell 1

Figure 5-3: QEPCAD’s CAD for formula (5.2) (y > x)

If a CAD is constructed with respect to variable ordering x > y (Figure 5-4),

the decomposition D1 of R1 consists of two points (y = ±2) and three intervals.

This time only the two points (cell 2 and cell 4) satisfy the condition y2− 4 = 0,

and only these points are lifted to a decomposition D2 of R2, giving six cells

(Figure 5-5).

Clearly the smaller CAD produced by QEPCAD does not imply that the whole

space is decomposed into fewer connected components, but rather that only parts

of the whole space are decomposed. This poses a serious problem for us as we

may not have enough sample points to perform identity testing. QEPCAD is not

wrong in taking the shortcut; it just solves a different problem to ours: stressing

the difficulty of using QEPCAD as a black-box in our application.

The fact that QEPCAD (at least by default) may in certain cases only give us

decompositions of partial spaces has escaped unnoticed until recently because the

problems we are interested in often consist of more than one branch cut and the

“interesting” parts were decomposed correctly. Comparing with Maple’s CAD

made us realise this gap.
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Enter a variable list:

(y,x)

Enter the number of free variables:

2

Enter a prenex formula:

[x-2 < 0 /\ y^2-4 = 0].

=======================================================

...

Before Solution >

d-pscad ()

--------------------------------------------

The Partial CAD over ()

()---(1)p1(-,-) F

---(2)p1(0,-)---(2,1)p1(-) T

---(2,2)p1(0) F

---(2,3)p1(+) F

---(3)p1(+,-) F

---(4)p1(+,0)---(4,1)p1(-) T

---(4,2)p1(0) F

---(4,3)p1(+) F

---(5)p1(+,+) F

--------------------------------------------

Figure 5-4: Partial CAD data structure for formula (5.2) (x > y)
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Cell 5Cell 4Cell 3Cell 2Cell 1

y

x

Figure 5-5: QEPCAD’s CAD for formula (5.2) (x > y)

We see from this example that QEPCAD has in fact not decomposed the whole

of R2 at all, but only the “interesting” portions of it. A consequence of this is

that the cell counts reported in [BBDP07] are in fact a slight underestimate of

the number of cells needed for a complete proof of the identity. In practice the

cells omitted are the generic ones, on which the putative identity is true because

it is true in a multi-valued sense, but this would need to be checked for a full

proof of correctness.

5.2.5 Equational Constraints

The main idea is that if an input formula contains the constraint f = 0, once the

decompostion of Rr is constructed into regions such that f is sign-invariant and

other polynomials appearing in the formula are sign-invariant within the cells in

which f = 0, then what happens when f 6= 0 is irrelevant.

The equational constraints idea, which was first introduced in [Col98] and par-

tially validated in [McC99, McC01], takes advantage of a single equational con-

straint f = 0 to reduce the McCallum projection operator. A more recent devel-

opment by Brown and McCallum [BM05], addressed the problem involving two

equational constrains, bi-equational constraints, i.e. of the form f = 0 ∧ g =
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0 ∧ . . . . Unlike the earlier scheme, Brown and McCallum restricted the Brown-

McCallum projection operator. Note that this development is of less direct use

to us, since bi-equational constraints are not a natural representation of a branch

cut.

Furthermore, equational constraints can also be used to reduce the number of

stacks to be constructed during the stack construction phase. If a stack has

already been constructed in which there are sections of an equational constraint

polynomial, all other cells in the stack can be marked “false” and stacks are not

required to be constructed over them.

Recall that our branch cut representations of a function in complex variables

consists of one or more pairs of an equality and an inequality. Therefore, we may

be able to take advantage of the equational constraints in our input formulae. Of

course, there might not be an inequality in some cases, e.g. {xy − 1 = 0} is a

branch cut for equation (2.5).

5.2.6 Variable Ordering

Variable ordering is an important attribute in CAD. Generally, there is a certain

degree of freedom in choosing the order in which the variables are projected

for performing CAD. For most applications other than quantifier elimination,

the order can be chosen completely freely. For quantifier elimination, all the

quantified variables are required to be projected before all the non-quantified

variables, and ∃ and ∀ are not interchangeable.

For example, consider a prenex formula γ,

γ = Qk+1xk+1 . . . Qrxr φ, Qi ∈ {∃, ∀}

where φ is a semi-algebraic formula in variables x1, . . . , xr for r ≥ 1.

All quantified variables xr, . . . , xk+1 must be projected before unquantified vari-

ables xk, . . . , x1, and they must be projected sequentially in order except when

Qi = Qi+1 for i ∈ {k + 1, r − 1}, for which Qixi and Qi+1xi+1 are interchange-

able.
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Therefore, there is a certain degree of freedom in choosing variable order. This is

especially true for our problems, where, in general, we do not have any quantified

variables: hence we have total freedom in choosing variable order. For each

variable block (a block of unquantified variables, or a block of variables with the

same quantifier) of n variables, there are n! possible projection orders. Since

the number of cells being constructed depends greatly on the order in which the

variables are projected, choosing a correct order can significantly reduce the size

of the problem, for example 785 cells versus 92829 cells in Table 8.11, and with

certain problems, we may only be able to construct CAD using QEPCAD in

reasonable time or space with certain variable orders but not with other variable

orders (see example 28, Table 8.8). Furthermore, we do significant amount of

work per cell for identity testing (see Chapter 7), so reducing the number of cells

is a good way to improve the total time of the system. However, the number

of cells is not known until we have done the whole projection and lifting cycle.

Therefore, it is beneficial to have a heuristic to determine a favourable variable

order at the earliest possible stage.

5.2.6.1 The sotd Heuristic

Lifting is much more expensive than projection, hence, rather than doing n!

projection and lifting combinations and choosing the one with the fewest cells,

we would be better off doing n! projections, then choosing the best, or at least a

good one, to lift and post-process.

Definition 5.2.14. [DSS04] The sum of total degrees of all monomials of all

polynomials in all projection sets Pn, . . . , P1 with respect to variable orderings

X = (xn > xn−1 > . . . > xn) is defined as

sotdall(P,X) =
n
∑

i=1

∑

f∈Pi

σ(f),

where, using the convention e = (e1, . . . , en),

σ

(

∑

e∈E

aex
e1
1 . . . xen

n

)

=
∑

e∈E

n
∑

i=1

ei.
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[DSS04] observed that sotdall is more correlated with the size of the output CAD

than other measures. Hence we could do n! projection, and pick the one with

lowest sotdall.

5.2.6.2 The Greedy Projection Algorithm

While cheaper than doing n! liftings, computing sotd required us to do a complete

projection, so [DSS04] then suggested2 a greedy heuristic using just

sotdn−1(Pn−1, xi) =
∑

f∈Pn−1

σ(f),

the first contribution to sotd, as a measure.

The algorithm picks the first variable to be projected from n possible variables

by first computing the first projection factor set with respect to each of the

n variables. The complexity of each projection factor set is compared using

sotdn−1(Pn−1, xi) and the xi which produces a set with lowest sotdn−1(Pn−1, Xxi)

value is chosen to be the first variable to be projected. The process is repeated

using sotdn−2(Pn−2, (xi, xj)) to choose the next variable to be projected from n−1
possibilities, and so on, until we have a complete order.

Since the algorithm was developed based on QE problems, we investigated the

possibility of employing the algorithm within our verification system [BBP05,

BBDP07]. The method proved to be effective in choosing optimal, or near opti-

mal, projection orders, and proved to be useful in practice. However, while the

algorithm is less expensive than naively examining all possible variable orders,

we still needed to compute projections “one step down” at a time. Furthermore,

there remains the question of which variables to choose when there is a tie in

sotdk(Pk, (xi1 . . . , xik)) values. There is sometimes genuine symmetry between

variables, so it does not matter which we choose, but other times it may matter

how we break such ties.

2Confusingly [DSS04] also calls this sotd.
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5.2.6.3 Brown’s Heuristic

[Bro04] suggested a simple, less expensive, alternative to the greedy projection

algorithm. It makes decisions based on input polynomials alone and does not

require any projection computation. The heuristic suggests choosing variable

order as follows:

1. descending order by degree of variable, breaking ties with

2. descending order by highest total-degree term in which the variable appears,

breaking ties with

3. descending order by number of terms containing the variable.

Note that Brown’s convention is that the last variable in the order is the first to

be eliminated.

Although the approach has the potential to be much faster, there is, as in the

greedy projection algorithm, a question of what to do if after all three steps there

is still a tie. This is a major problem when applying the criterion to our problems

involving real and imaginary parts of complex variables.

Definition 5.2.15. The coupled variables are a pair of real variables which de-

rive from the same complex variable.

Suppose we have an identity, h = 0, containing two complex variables, z and

w. Suppose further that the identity does not contain any nested root. Recall

that during branch cuts computation, Chapter 4, we substituted z := x+ iy and

w := u + iv into each function hi in our identity h = 0, hi ∈ C[z, w]. Applying

Brown’s heuristic will always result in a tie between coupled variables3.

5.2.6.4 Combining the Approaches

Despite the fact that Brown’s heuristic is unable to make a decision between

coupled variables, it does not mean that the heuristic is totally inapplicable to our

3If additional constrains are used, or QE is required, this may not happen.
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application involving complex variables. The heuristic can be used in conjunction

with the greedy projection algorithm, in two ways, to reduce the cost compared

to the case when the greedy projection algorithm is used alone. Suppose we have

an identity containing two complex variables, h(z, w) = 0.

1. The greedy projection algorithm with a shortcut inspired by Brown’s heuris-

tic (abbreviated to greedy/Brown’s heuristic).

We first run the greedy projection algorithm, doing four projections to

determine the first variable to be projected. Suppose, without loss of gen-

erality, x is chosen. Then the coupled variable, i.e. y, can automatically

be chosen to be the next variable to be projected. This is because Brown’s

heuristic would put the coupled variables next to each other. We then only

need to do two projections to decide between the variables u and v.

2. Brown’s heuristic with the greedy projection algorithm as a tie breaker (ab-

breviated to Brown’s/greedy heuristic).

We first follow Brown’s heuristic and then use the greedy projection algo-

rithm to break the tie between the coupled variables. Suppose the coupled

pair (x, y), without loss of generality, is favoured by Brown’s heuristic. This

reduces the number of possible variables to be selected as first variable to

two, and we can then use the greedy projection algorithm to determine

which of the tied coupled variables should be projected first. Once the first

variable is decided, it is only left to determine the third variable, since the

second variable is the variable coupled with the first variable and is chosen

automatically along with the first variable.

Although we do not intend to carry out a full statistical analysis in the spirit

of [DSS04] on these combined heuristics, the preliminary results are presented in

Chapter 8.

5.3 CAD via Triangular Decomposition

In 2009, Chen et al. introduced an alternative approach to CAD-PL for comput-

ing Cylindrical Algebraic Decomposition via triangular decomposition [CMMXY09],
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which is the subject of this section. We will call this approach CAD-TD.

While CAD-PL works exclusively overR, CAD-TD starts work overC. Hence the

concept we have previously called “cylindricity” will be referred to more precisely

as R-cylindricity in this section to avoid confusion, as CAD-TD starts by using

a different kind of cylindricity, which we will refer to as C-cylindricity4.

Notation 5.3.1. Throughout this section let k be a field of characteristic zero

and K be the algebraic closure of k. Let k[y] := k[y1, . . . , yn] be the polynomial

ring over the field k and with ordered variables y1 < · · · < yn
5.

Note that we are still assuming an order on the variables, even though we will

not be projecting in the same sense as CAD-PL.

We first need ten standard definitions from the general theory of triangular de-

compositions.

Definition 5.3.1. Let p ∈ k[y] be a non-constant polynomial. The main vari-

able, mvar(p), is the greatest variable appearing in p.

Definition 5.3.2. The degree, the leading coefficient and the leading monomial

of p regarded as a univariate polynomial in mvar(p) are called the main degree,

the initial and the rank of p; they are denoted by mdeg(p), init(p) and rank(p)

respectively.

Definition 5.3.3. Let p, q ∈ k[y] be two non-constant polynomials. We say that

rank(p) < rank(q) if one of the following conditions hold:

• mvar(p) < mvar(q), or

• mvar(p) = mvar(q) and mdeg(p) < mdeg(q).

Definition 5.3.4. A triangular set, T ⊂ k[y], is a set of non-constant polyno-

4This is our terminology, as we found [CMMXY09] could be confusing if one did not keep track
of which kind of cylindricity was in use where.
5This corresponds to Maple’s CAD’s PolynomialRing([yn, . . . , y1]).
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mials with pairwise distinct main variables, i.e.

∀p, q ∈ T ⊂ k[y]\k, p 6= q ⇒ mvar(p) 6= mvar(q).

Definition 5.3.5. 6 Let T ⊂ k[y] be a triangular set, 〈T 〉 be the ideal it generates
in k[y] and h be a polynomial in k[y]. The saturated ideal of T , Sat(T ) is the

set

Sat(T ) = {q ∈ k[y]|∃m ∈ N s.t. hmq ∈ 〈T 〉},

where h is
∏

t∈T init(t) .

Definition 5.3.6. The polynomial is regular modulo 〈T 〉 if it is neither zero, nor
a zero-divisor modulo 〈T 〉.

Definition 5.3.7. A triangular set T ∈ k[y] is a regular chain if one of the

following conditions hold:

• T = ∅, or

• T\{Tmax} is a regular chain, where Tmax is the polynomial in T with max-

imum rank, and the initial of Tmax is regular w.r.t. Sat(T\{Tmax}).

Definition 5.3.8. A pair [T, h] is a regular system if T is a regular chain, and

h ∈ k[y] is regular w.r.t. Sat(T ).

Definition 5.3.9. An algebraic variety is a set of solutions of a system of poly-

nomial equations.

Definition 5.3.10. A constructible set of Kn is any finite union

(A1\B1) ∪ · · · ∪ (Ae\Be)

where A1, . . . , Ae and B1, . . . , Be are algebraic varieties in Kn.

We now introduce the key concept from [CMMXY09].

Definition 5.3.11. A finite collection of constructible sets is C-cylindrical if

6This is also written Sath(T ) or 〈T 〉 : h∞, where in both cases h =
∏

t∈T
init(t).
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• n = 1. A cylindrical decomposition of C is either C itself or of the form

p1 = 0, . . . , pr = 0, p1 · · · pr 6= 0 where p1, . . . , pr are non-constant square-

free and pairwise coprime polynomials of k[y1].

• n > 1. Given a cylindrical decomposition D′ of Cn−1, one builds a cylin-

drical decomposition D of Cn. For each cell Di of C
n−1:

– either Di ×C is an element of D, or

– there exist polynomials pi,1, . . . , pi,ri, ri > 0 ∈ R[y1, . . . , yn] such that

1. the initial of each pj does not vanish on Di and,

2. the pj’s are square-free and pairwise coprime at all u ∈ Di,

3. Di× (p1 = 0), . . . , Di× (pr = 0) and Di× (p1 · · · pr 6= 0) are in D.

Note the distinction between C-cylindricity and R-cylindricity, even in the case

n = 1. If r = 1 and p1 = x2− 2, then a C-cylindrical decomposition of C1 is into

two sets: x2−2 = 0 and x2−2 6= 0 (dimensions 0 and 1 respectively), whereas an

R-cylindrical decomposition of R1 has two 0-dimensional cells x = −
√
2 (more

formally x2 = 2∧−2 ≤ x ≤ −1) and x =
√
2 (more formally x2 = 2∧ 1 ≤ x ≤ 2)

and three 1-dimensional cells x < −
√
2, −
√
2 < x <

√
2 and

√
2 < x.

Definition 5.3.12. A polynomial p is delineable on R if the variety, i.e. the

zero set of p, consists of k disjoint sections of Z(R).

Theorem 5.3.1. [Col75] Let p be a polynomial of ring R[y1 < · · · < yn] and

R be a region of Rn−1. If init(p) 6= 0 on R and the number of distinct complex

roots of p is invariant on R, then p is delineable on R.

Corollary 5.3.1. [CMMXY09] Let F = {p1, . . . , pr} be a finite set of polyno-

mials in R[y1 < · · · < yn] of level n. Let R be a region of Rn−1. Assume that for

every α ∈ R,

1. the initial of each pi does not vanish at α;

2. all pi(α, yn), 1 ≤ i ≤ r, as polynomials of R[yn], are squarefree and coprime.

Then each pi is delineable on R and the sections of Z(R) belonging to different
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pi and pj are disjoint.

5.3.1 The Algorithm

We now describe an algorithm, CAD-TD, for constructing a CAD.

1. Initial Partition

In the initial partition phase, we compute a set of regular systems via

comprehensive triangular decomposition [CGL+07], whose set of zero sets is

an intersection free basis of constructible sets C = {C1, . . . , Ce} and forms

a partition of Cn such that each f ∈ Fn is invariant in Ci, 1 ≤ i ≤ e (f

either is identically zero in Ci or vanishes at no points of Ci).

2. Make C-cylindrical (known as MakeCylindrical in [CMMXY09])

During this phase the SeparateZeros algorithm ( [CMMXY09, Section 3.1])

is recursively applied to the regular systems in the output of the Initial

Partition phase. This algorithm makes further use of the regular chain-

based algorithm of [CGL+07]. The process produces another partition of

Cn into disjoint constructible sets such that this second decomposition is

C-cylindrical.

3. Make R-cylindrical (known as MakeSemiAlgebraic in [CMMXY09])

The cylindrical decomposition of Cn derived in the previous step is trans-

formed into an Fn-invariant CAD of Rn, via Corollary 5.3.1 which is ob-

tained from Collins’ Theorem 5.3.1 by means of real root isolation of zero-

dimensional regular chains.

5.4 Comparison

In this section we give an overview comparison of the two approaches, or more

precisely a comparison between QEPCAD and Maple’s CAD since these are the

two software packages which are used in our experiments to compute CAD via

projection and lifting, and triangular decomposition respectively.
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QEPCAD Maple’s CAD

- Projection and lifting approach. - Triangular decomposition approach.
- Partial CAD. - Full CAD.
- Takes prenex formulae as input. - Takes polynomials as input.
- Gives a truth value for each cell. - Does not give a truth value for each cell.

Table 5.1: Comparison of QEPCAD and Maple’s CAD

5.5 Complexity

[DH88, BD07] show that the complexity of a CAD is at least doubly exponential

in the number of variables in the input formula. In [BD07], Davenport and Brown

prove that the worst case running time is

22
r−1
3 ,

where r is the number of variables in the input formula7.

Of course, on particular examples, particular implementations may have widely

different behaviours (see Chapter 8). [BD07] has examples which are doubly

exponential with respect to one variable order, but polynomial with respect to

another, so that variable ordering (see Section 5.2.6) can also be seen to be

important from a theoretical point of view.

5.6 Summary

Cylindrical Algebraic Decomposition is a powerful and useful tool for solving

problems in real algebraic geometry and connectedness. The algorithm partitions

n-dimensional real space Rn into regions such that

• all the regions are cylindrically arranged, that is for any k, 1 ≤ k ≤ n, the

projections of any two regions onto Rk are either identical or disjoint,

• each region is a connected subset of Rn.

7[BD07] improves the bound of [DH88].
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In this chapter we reviewed the two existing approaches to construct Cylindrical

Algebraic Decomposition:

1. CAD via projection and lifting (CAD-PL),

2. CAD via triangular decomposition (CAD-TD).

The former has been around since 1970s and has received many improvements.

However, most research has tended to focus on its original use in the QE setting,

and may not be applicable to our application in simplification of elementary

functions.

Variable order has significant impact on the efficiency of the CAD algorithm. We

reviewed Dolzmann et al. heuristic and Brown’s heuristic to generate an effective

variable order. We then presented the combined heuristics which apply to our

special circumstances: if we are working over C, variables are naturally paired

together (real and imaginary parts).
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Chapter 6

A Partial CAD for Branch

Cuts

The method of branch cuts by CAD which we described so far, takes a set of semi-

algebraic formulae describing the branch cuts as an input, and constructs a CAD

of Rn such that, for each branch cut Bi, and all cells cj, Bi

⋂

cj is either empty or

cj . While it is theoretically correct, more work is often done than is necessary due

to the well-known fact that the CAD method is too powerful, resulting in more

cells being constructed than necessary. Given a set of polynomials and a variable

ordering, it produces a CAD which not only answers the problem asked but also

all other potential problems involving the same polynomials and the same variable

ordering, but possibly different σ ∈ {=, 6=, <,≤, >,≥}, different quantifiers, and
different boolean formulae. For example, given a set of polynomials y2 = 2∧ . . . ,
it will naively translate this into problems involving y2 = 2 (y = ±

√
2), y2 <

2 (−
√
2 < y <

√
2) and y2 > 2 (y >

√
2 and y < −

√
2). Thus, we will

spontaneously solve problems outside y2 = 2 as well. In this chapter, we present

a method for manipulating the set of branch cut formulae involving boolean

connective pairs of an equality and an inequality, which we will call the pre-

conditioning method.

The idea of this pre-conditioning method is based on the observation that a

smaller number of cells may be constructed if, instead of throwing a lot of useful

information on the branch cut structure away when handing the problem to
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CAD, more information is carried forward. We are adopting, here, a similar

approach to that of Collins and Hong’s Partial CAD [CH91] in the sense that

we carry forward more information from the given problem to the CAD phase.

However, while Collins and Hong’s Partial CAD method is looking at the lifting

phase, our pre-conditioning method is looking at the input polynomials prior

to CAD construction. Hence our pre-conditioning method, unlike Collins and

Hong’s Partial CAD which is useful only for CAD via projection and lifting,

is applicable and useful for both CAD via projection and lifting and CAD via

triangular decomposition.

The following four figures (Figures 6-1, 6-2, 6-3 and 6-4) give an overview of CAD

and Partial CAD algorithms for applications to QE problem and to the verified

simplification problem.

QE problem

Polynomials Cells

Solve QE problem

Projecting

R1

Lifting

Figure 6-1: Original Collins’s CAD for QE [Col75]

6.1 Motivation

Our initial idea of pre-conditioning was aimed at Maple’s CAD, after realising

that unlike QEPCAD which takes a boolean combination of equalities and in-

equalities as an input, Maple’s CAD takes a set of polynomials as an input.
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QE problem

Polynomials Cells

Solve QE problem

Projecting

R1

Lifting

PCAD

Figure 6-2: Collins and Hong’s Partial CAD for QE [CH91]

Branch cut problem

Polynomials Cells

Solve branch cut problem

Projecting

R1

Lifting

Triangular
Decomposition

Figure 6-3: CAD for branch cuts [BBDP07]

Branch cut problem

Polynomials Cells

Solve branch cut problem

Modified

Projecting

R1

Lifting

Triangular
Decomposition

Figure 6-4: Partial CAD for branch cuts
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Therefore information on pairings and relations is lost when handing information

to Maple’s CAD. This often leads to a larger geometric problem and hence to

a greater number of cells produced by the decomposition step than is necessary.

The goal of pre-conditioning is to ameliorate this by utilizing more of the available

branch cut information.

6.2 An Illustrative Example

To illustrate the idea of the pre-conditioning method, let consider a simple but

well-known simplification rule:

√
z − 1

√
z + 1

?
=
√
z2 − 1. (6.1)

Recall that the branch cut for
√
z is conventionally

{z | ℜ(z) < 0 ∧ ℑ(z) = 0}.

Let z = x+ iy. The set of branch cuts for (6.1) is as follows:

The branch cut for
√
z − 1 is {x− 1 < 0 ∧ y = 0} (Figure 6-5).

The branch cut for
√
z + 1 is {x+ 1 < 0 ∧ y = 0} (Figure 6-6).

The branch cut for
√
z2 − 1 is {x2 − y2 − 1 < 0 ∧ xy = 0} (Figure 6-7).

These branch cuts decompose C = R2 into three two-dimensional regions, five

one-dimensional regions and three zero-dimensional regions as shown in Figure 6-

8.

This optimal decomposition is not cylindrical and does not depend on variable

ordering. It is unfortunate that we do not have a tool to directly produce this

decomposition and have to rely on cylindrical decomposition. Cylindrical decom-

position, on the other hand, depends on variable ordering and these branch cuts

will produce two best cylindrical decomposition approximations to the optimal

decomposition with respect to different variable orderings.
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y

x
1-3

Figure 6-5: The branch cut for
√
z − 1

y

x

Figure 6-6: The branch cut for
√
z + 1

y

x

Figure 6-7: The branch cuts for
√
z2 − 1
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0-30-20-1

1-1 1-2

2-3

1-4

1-5

2-1

2-2

1-3

y

x

Figure 6-8: The optimal decomposition for equation (6.1)

Figure 6-9 shows the minimal cylindrical decomposition with respect to variable

ordering y > x. C = R2 is decomposed into seven two-dimensional regions, nine

one-dimensional regions and three zero-dimensional regions.

2-7

2-52-1 2-3
1-81-61-4

2-62-2 2-4

1-31-1

1-91-71-5

0-3

1-2

0-20-1

y

x

Figure 6-9: The minimal cylindrical decomposition for problem (6.1) (y > x)

The minimal cylindrical decomposition with respect to variable ordering x > y

would decompose C = R2 into four two-dimensional regions, six one-dimensional

regions and three zero-dimensional regions, see Figure 6-10.

Given that a CAD method is our only tool, the following two sections show how

Maple’s CAD and QEPCAD handle the problem of (6.1) when supplied with the

original set of polynomials.
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1-3

1-4

1-1

1-2

0-3

0-2

0-1

2-4

1-6

2-2

2-3

1-5

2-1

y

x

Figure 6-10: The minimal cylindrical decomposition for problem (6.1) (x > y)

6.2.1 Maple’s CAD

Maple’s CAD takes a list of polynomials:

> R := PolynomialRing([x, y]):

> P := [x-1, y, x+1, y, x^2-y^2-1, x*y]:

as an input, and therefore views the set of branch cuts as six individual polyno-

mials. It is obvious that the redundant y in P can be removed without affecting

the result.

> P := [x-1, y, x+1, x^2-y^2-1, x*y]:

Maple’s CAD partitions the whole complex plane, with respect to variable order-

ing y > x, into 29 cells.

> R := PolynomialRing([x, y]):

> P := [x-1, y, x+1, y, x^2-y^2-1, x*y]:

> nops(CylindricalAlgebraicDecompose(P, R, output=list));

29

Examining the data structure for each individual cell, we able to translate the

partition into Figure 6-11.

It is apparent that the decomposition, while cylindrical, is not minimal (compare

Figure 6-9: 19 cells). The two dotted line curves (x2−y2−1 = 0) can be removed
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y

x

Figure 6-11: Maple’s CAD for problem (6.1) (y > x)

without destroying the connectivity property.

6.2.2 QEPCAD

QEPCAD takes a prenex formula:

Enter a prenex formula:

[[x-1<0 /\ y=0]\/[x+1<0 /\ y=0]\/[x^2-y^2-1<0 /\ x y=0]].

as an input, and therefore, theoretically, should take into account the boolean

connectives and not mix, for example, x2 − y2 − 1 < 0 and x − 1 < 0. In

practice, however, it turns out that despite being fed in the boolean combination

of equalities and inequalities, QEPCAD makes little use of this information and

hence suffers from the same problem as Maple’s CAD, as shown in an extract of a

QEPCAD session below. Figure 6-12 gives the visualization of the corresponding

CAD.

Enter a variable list:

(x,y)

Enter the number of free variables:

2

Enter a prenex formula:

[[x-1<0 /\ y=0]\/[x+1<0 /\ y=0]\/[x^2-y^2-1<0 /\ x y=0]].
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...

------------------------------------------

Level 1 2 Total

------------------------------------------

Cells 7 29 36

x

y

Figure 6-12: QEPCAD’s CAD for problem (6.1) (y > x)

6.3 Pre-conditioning the Branch Cut

6.3.1 The Approach

We realised that the same branch cut can be defined by different sets of polyno-

mials. The goal is to produce an alternative1, hopefully simpler, but equivalent

representation of the branch cut problem which should produce a smaller CAD

than the initial polynomials. The concept of using a different, but equivalent

for our purposes, input formula to construct a CAD, is similar to Brown and

Strzebonski’s Black-Box/White-Box [BS10] approach to CAD, but the under-

lying algorithm is different as we are working with branch cut problems while

Brown and Strzebonski worked with Tarski formulae.

1Branch cut formulae may be unique and so such an alternative does not exist.
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The current CAD algorithm partitions Rn into cylindrically arranged regions in

which each polynomial is either identically zero or non-zero. Here, we are seeking

to produce instead a decomposition in which the branch cut formula is either

identically true or identically false, i.e. each polynomial is no longer considered

independently, by taking advantage of the presence of the boolean connective

“AND (∧)” in our branch cut formula. In this section, we propose a method

which takes a pair of polynomials (an equality and an inequality) as an input

and produces a polynomial that contains information of both input polynomials.

Note that the method is only applicable to the complex cases where there are a

pair of an equality and an inequality; the case of trivial f , for example {1−xy = 0}
for arctan(x) + arctan(y)

?
= arctan

(

x+y

1−xy

)

has no benefit here.

6.3.1.1 pprecond

For ease of exposition and without loss of generality, for the remainder of this

chapter, it will be assumed that a branch cut is described by a pair of polynomi-

als

f < 0 ∧ g = 0.

Definition 6.3.1. Let p be a polynomial in, possibly, several variables. deg(p, x)

and lcoeff(p, x) are the degree and the leading coefficient of p regarded as a poly-

nomial in x respectively.

Notation 6.3.1. Throughout this chapter, let k[x] be a polynomial ring, f and g

be two polynomials in k[x], and d = deg(f, x), e = deg(g, x) and c = lcoeff(g, x).

Definition 6.3.2. The pseudo-remainder, r, of f by g with respect to the variable

x is defined by

mf = qg + r

where deg(r, x) < deg(g, x),

m = cmax(d−e+1,0) is the multiplier,

q is the pseudo-quotient.

Notation 6.3.2. [r,m] = prem(f, g, x) is the pseudo-remainder of f by g with

respect to variable x.
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Proposition 6.3.1. Let φ be an evaluation homomorphism k[x]→ R such that

φ(g) = 0, then clearly φ(f) = 0 if and only if φ(r) = 0. In general φ(r) =

φ(m)φ(f) = φ(c)max(d−e+1,0)φ(f).

Proposition 6.3.2. If max(d − e + 1, 0) is even, then φ(r) and φ(f) have the

same sign for any φ with φ(g) = 0.

Definition 6.3.3. The method of pre-conditioning is to produce an alternative

polynomial which is possibly smaller2 than f but with a sign equivalent to f when

g = 0.

Algorithm 3 gives an algorithm for pre-conditioning based on the pseudo-remainder.

Algorithm 3 Pre-conditioning: pprecond

Input: A branch cut represented by f < 0 ∧ g = 0.
Output: Polynomial h such that h has lower (or the same) x degree than f but

with a sign equivalent to f when g = 0.
1: d = deg(f, x)
2: e = deg(g, x)
3: c = lcoeff(g, x)
4: if d < e then
5: return f
6: else
7: [r,m] = prem(f, g, x)
8: if d− e + 1 is even then
9: h = r

10: else
11: h = cr
12: end if
13: return h
14: end if

6.3.1.2 sprecond

It may be possible to produce a smaller polynomial, h, with the same sign as

f when g = 0 than that described above if the sparse pseudo-remainder is used

instead.

2Smaller in the main variable but may be larger in other variables.
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Definition 6.3.4. The sparse pseudo-remainder, r′, of f by g with respect to the

variable x is defined by

m′f = q′g + r′

where deg(r′, x) < deg(g, x),

m′ = ck is the multiplier with k is as small as possible,

q′ is the pseudo-quotient.

Notation 6.3.3. [r′, m′] = sprem(f, g, x) is the sparse pseudo-remainder of f by

g with respect to variable x.

The sparse pseudo-remainder has the same functionality as the pseudo-remainder

except that with the pseudo-remainder, the expression of the multiplier in terms

of c can be calculated in advance, whereas with the sparse pseudo-remainder, the

expression of the multiplier in terms of c can only be determined after computing

the sparse pseudo-remainder.

Proposition 6.3.3. If k is even, then φ(r′) and φ(f) have the same sign for any

φ with φ(g) = 0.

We now give the algorithm for pre-conditioning based on the sparse pseudo-

remainder (Algorithm 4).

Remark 6.3.1. Generally the output of sprecond is often the same as that of

pprecond; it may be better (smaller) but never worse.

6.3.2 Example

Let us revisit problem (6.1):

{{x− 1 < 0 ∧ y = 0} ∨ {x+ 1 < 0 ∧ y = 0} ∨ {x2 − y2 − 1 < 0 ∧ xy = 0}}.

We have shown in Sections 6.2.2 and 6.2.1, the CADs produced by QEPCAD

and Maple’s CAD with variable ordering y > x. Figure 6-13 shows that, similar

to the CAD construction with variable ordering y > x, the CAD produced with

variable ordering x > y by both QEPCAD (Figure 6-13(a)) and Maple’s CAD
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Algorithm 4 Sparse pre-conditioning: sprecond

Input: A branch cut represented by f < 0 ∧ g = 0
Output: Polynomial h′ such that h′ has lower (or the same) x degree than f

but with a sign equivalent to f when g = 0.
1: [r′, m′] = sprem(f, g, x)
2: c = lcoeff(g, x)
3: k = 0
4: while m′ 6= 1 do
5: m′ ← m′/c
6: k ← k + 1
7: end while
8: if k is even then
9: h′ = r

10: else
11: h′ = cr
12: end if
13: return h′

(Figure 6-13(b)), is also not minimal (29 cells compared to 13 cells in Figure 6-

10).

Clearly, the unwanted partitions, when using either variable ordering, come from

the branch cut for
√
z2 − 1. Applying the pseudo-remainder pre-conditioning to

this set of branch cuts, with respect to variables x and y

> f := x^2-y^2-1:

> g := x*y:

> pprecond(f, g, x);

y(−y3 − y)

> pprecond(f, g, y);

x(x3 − x)

yields two equivalent but different branch cut formulations, depending on variable
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y

x

(a) QEPCAD

y

x

(b) Maple’s CAD

Figure 6-13: Un-pre-conditioned CADs for problem (6.1) (x > y)

orderings used, for problem (6.1), i.e.

{{x− 1 < 0 ∧ y = 0} ∨ {x+ 1 < 0 ∧ y = 0} ∨ {y(−y3 − y) < 0 ∧ xy = 0}},

or

{{x− 1 < 0 ∧ y = 0} ∨ {x+ 1 < 0 ∧ y = 0} ∨ {x(x3 − x) < 0 ∧ xy = 0}}.

Note that for this particular example, pprecond and sprecond produce the same

polynomials.

Table 6.1 shows the difference in the number of cells in the CAD constructed

with different branch cut representations.

QEPCAD Maple’s CAD

y > x x > y y > x x > y

Without pre-conditioning 29 29 29 29
x-pre-conditioning 21 21 21 21
y-pre-conditioning 15 21 21 21

Table 6.1: Number of constructed cells for problem (6.1)

Both QEPCAD and Maple’s CAD produce the same results for the original prob-

lem, and the same (but smaller CADs) for the x-pre-conditioned problem. But

for the y-pre-conditioned problem, with one of the projection orders (i.e. y > x),
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x

y

(a) QEPCAD

y

x

(b) Maple’s CAD

Figure 6-14: x-pre-conditioning CADs for problem (6.1) (y > x)

y

x

(a) QEPCAD

y

x

(b) Maple’s CAD

Figure 6-15: x-pre-conditioning CADs for problem (6.1) (x > y)

Cell 7Cell 6

x

y

(a) QEPCAD

y

x

(b) Maple’s CAD

Figure 6-16: y-pre-conditioning CADs for problem (6.1) (y > x)
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y

x

(a) QEPCAD

y

x

(b) Maple’s CAD

Figure 6-17: y-pre-conditioning CADs for problem (6.1) (x > y)

QEPCAD finds an additional simplification (recall that QEPCAD performs par-

tial CAD). Analysing the data structure of the constructed CAD shows that when

extending the decomposition D1 of the real line R1 to the decomposition D2 of

R2, the rightmost point (cell 6) and the right open interval (cell 7) are not lifted

(see Figure 6-16(a)), resulting in a CAD of only part of R2. This illustrates the

subtle interactions that are going on. Fortunately, for this example, QEPCAD

provides enough sample points for our purpose to test the identity. However, this

requires knowledge of CAD to perform the analysis, something we cannot expect

every general user of our system to have.

6.4 Summary

In this chapter we have seen that neither of the software tools at our disposal

makes good use of the information we have:

Maple’s CAD which is obvious as it only takes polynomials as input;

QEPCAD which is more surprising as it is meant to take advantage of the

logical structure of formulae.

In connection with this, we have presented algorithms to allow us to make better

use of the information we have available. Essentially, the algorithms convert

information we have into a potentially better choice of polynomials. It has been
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empirically demonstrated (see Section 8.2.2.3) that pre-conditioning the branch

cuts often helps in reducing the number of cells produced by CAD. QEPCAD,

despite taking in as input a boolean combination of equalities and inequalities,

and therefore being aware of all information available without pre-conditioning,

also benefits from it. It does not, however, guarantee that the algorithms will

produce polynomials that will produce a CAD with fewer cells (example 17 in

Tables 8.13 and 8.14 is an example when it does not), but for most simple cases

they do (see Tables 8.13 and 8.14).

The different representation of branch cuts which is obtained through such a

procedure will in turn construct different sign-invariant CADs and may make

adherence (Section 7.2) harder, but this has yet to be empirically tested.
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Chapter 7

Identity Evaluation

In this chapter we consider the final phase (step 3c on page 23): the compo-

nent testing, of the algebraic simplification system. The validity of the proposed

identity is evaluated on each relevant1 component of that decomposition, using

the sample point of each cell constructed by CAD. This can be done either nu-

merically or symbolically. The procedure is surprisingly non-trivial and both the

numerical and symbolic approaches pose problems which we discuss in the first

section. The second section introduces the concept of adherence of branch cuts

to tackle the problem of evaluation on non-full-dimensional regions. In the last

section we describe post-conditioning the CAD as a possible way to facilitate this

last phase of the system.

7.1 Problematic Issues

Definition 7.1.1. A sample point for a cell is any point in the cell.

Definition 7.1.2. An identity, which is generally false in a cell, may nevertheless

be accidentally true at a sample point. We call this the accidental truth problem.

1Assumptions [WG93] made by the user, or an explicit lack of interest in lower-dimensional
components, may mean that not all components need to be analysed. Also, if we have found
a full-dimensional component on which the “identity” is false, there is little point in testing
lower-dimensional components.
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For example (z + 1) log(z) = (z + 1) log(z) is generally false on the branch cut

(y = 0 ∧ x < 0), with error 2πi(x+ 1), but happens to be true at z = −1, which
might well be chosen as a sample point.

• Numerical

Numerical evaluation [BD02] suffers from the accidental truth problem.

Furthermore, it requires the sample point, say p = (x, y), to have finite

floating point representation. Hence when evaluating the identity on branch

cuts, or more generally, on the cells of dimension less than the full-space of

the decomposition it may give completely incorrect results. Error bounds

cannot be used here as the smallest error may result in choosing a sample

point from an adjacent cell instead. For example log
(

1
2+iπ

)

= − log(2+ iπ)

is false on y = −iπ, x < 0, but log
(

1
z

)

= − log(z) is true for every floating

point z. This can be described as “falling off branch cuts”.

• Symbolic

There are two possible symbolic computations: one is direct symbolic eval-

uation, which has the same accidental truth problem as numeric evaluation.

Another symbolic computation [BBD03, BBDP04] is based on the method

of [vdH02], which checks enough of the series expansion of the claimed

identity to distinguish accidental truth from genuine truth. The method

is, however, computationally intensive. Additionally, both methods require

the sample points to be explicit. Thus they cannot be used when the sam-

ple points cannot be expressed in terms of radicals. Even when the sample

points are expressible in terms of radicals, there remains the constant prob-

lem [Ric97] and we would need to resort to algorithms which rely on the

truth of number-theoretic conjectures.

7.2 Adherence

The adherence method [BBP05] provides a way to evaluate the identity on the

non-full-dimensional cells. This is advantageous for two reasons:

1. the non-full-dimensional cells are more difficult (“falling off branch cut” is-
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sue, and the sample points may be algebraic which makes evaluation trick-

ier),

2. there are generally more of them, so reducing the problem to full-dimensional

cells is a real efficiency.

The method is based on the concept of adjacency of the cells in the decomposition,

which has been used to simplify CADs [ACM84b, ACM85, MC02].

Definition 7.2.1. Two disjoint cells are adjacent if their union is connected.

Notation 7.2.1. RS(f) denotes the Riemann surface for function f .

Recall from Section 2.3.4 that RS(f) is a path-connected domain having either

n or an infinite number of sheets depending on the function f .

Definition 7.2.2. Let D be a CAD with respect to the branch cuts of f . Suppose

c ⊂ D is a branch cut (section) cell and s ⊂ D is an adjacent sector cell to c.

Then c adheres to s if c belongs to the same sheet of RS(f) as s.

Recall that for the examples in this thesis, we follow the modern convention, i.e.

using counter-clockwise closure (CCC): any other convention would work in the

same way. Thus arg(z) ∈ (−π, π] and the branch cut c ∈ C adheres to the side

where arg(z) > 0 (Figure 7-1), or in CAD terminology, the branch cut cell (1, 2)

adheres to the cell (1, 3) rather than to the cell (1, 1).

(1,1) -

+  
(1,3)

Figure 7-1 Counter-clockwise closure

In [Kah87], Kahan introduced the concept of signed zeros (see Section 2.3.1):

having both 0+ and 0− allows branch cuts to adhere to either side. The scheme
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is useful when doing numerical computation. However, it is not natural mathe-

matically for zero to have two values, and less than ideal for our situation since

in the sample point testing phase, we want to be able to evaluate the identity at

a point on a branch cut, and obtain a single answer from which we can conclude

the accuracy of the simplification on the cut.

7.2.1 The Idea

For the rest of this chapter, we will only consider problems comprising of one com-

plex variable or two real variables, resulting in two-dimensional CADs. This en-

sures that the adjacent cell to a branch cut (which is therefore one-dimensional) is

always of full-dimension. For higher dimensional cases, such as four-dimensional

CADs arising from two complex variables or four real variables, complications,

such as singularities, on which the adherence cannot be calculated, and the pos-

sibility that several components of a branch cut having different dimensions from

another, may arise, and this requires further study. Furthermore, we note that

even pure adjacency in CAD is only solved up to dimension 3 [ACM85, ACM88].

In addition, we limit our discussion in this thesis to the case where the branch

cut cell c derives from a single h = f(g(z)) only. The treatment for the case

where h
?
= 0 contains several building blocks hi = fi(gi) and c derives from more

than one hi can be found in [BBDP07].

Let c be a branch cut of h = f(g(z)) where f is a logarithm or nth root, and g

is a rational function in a complex variable. Let β : [0, 1] → C be a path with

β(0) = p and β(1) = q, with q ∈ c, and let g(q) = s where s ∈ R− (R− is a

branch cut of f), see Figure 7-2.

Then if g(β(t)) → s + 0+i as t → 1 then c adheres to s1, where s1 is the cell

that contains p (Figure 7-3), otherwise c adheres to another cell, s2 say (Figure 7-

4).

Once we find which adjacent cell the branch cut adheres to, we can replace a

sample point on the cut with a point well off the cut in the adherence cell. In

fact, we can regard the branch cut cell to be part of the adherence cell, and do

not need to test this cut cell at all.
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p  
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β

Figure 7-2 Adherence: general principle

c 

p  
 

q 

β 

s

g(β(z)) 

g

s 1

s 2

Figure 7-3: Adherence: g(β(t))→ s+ 0+i as t→ 1

c

p

q

β

s 1

s 2

s

f(g(z)) 

g

Figure 7-4: Adherence: g(β(t))→ s+ 0−i as t→ 1
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7.2.2 The Algorithm

Definition 7.2.3. Let f be a logarithm or nth root. The Riemann index, RI(f)|c,
of f on a cell c of the CAD induced by the branch cuts is

RI(f)|c =







2kπi, if f is a logarithm (where k ∈ Z);

exp
(

2kπi
n

)

, if f is nth root (where k ∈ Zn).

Definition 7.2.4. Define

sign(x) =







1, if x > 0;

−1, if x < 0.

Definition 7.2.5. The truth value of cell c, tv(c), with respect to a branch cut

formula φ is a boolean value of true or false. It is equal to true if φ(p) is satisfied

at any p ∈ c and it is false otherwise.

Algorithm 5 gives an algorithmic description of the idea described in Section 7.2.1.

Algorithm 5 Adherence: Non-nested roots

Input: A CAD, D, of the set of branch cuts of h = f(g(z)).
Output: Adherence cells determined.
1: for each c ∈ D do
2: if tv(c) = True then
3: sgn := sign(ℑ(g(p))), p ∈ s1, with s1, c adjacent.
4: if sgn = 1 then
5: RI(h)|c = RI(h)|s1
6: else
7: RI(h)|c = RI(h)|s2 where s2 is adjacent to c and not to s1.
8: end if
9: end if

10: end for
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7.2.3 Non-Nested Roots

There are two possibilities for c.

1. If c is not a vertical line. Then cells s1 and s2 are the two sector cells that

are adjacent to c in the same stack (Figure 7-5). In this case we do not

need to calculate adjacency of the CAD since intra-stack adjacency alone

is sufficient.

S 2 

S 1 

S 2 

S 1 g 

Figure 7-5: Adherence: c is not a vertical line

2. If c is a vertical line. Then cell s1 is an adjacent sector cell to c which lies in

either of the two adjacent stacks to the one in which c resides, and cell s2 is

another adjacent sector cell to c but in a different stack to the one in which

s1 resides (Figure 7-6). In this case, we need to calculate adjacency of the

CAD.

S 1 

S 2 

S 1 

S 2 

g 

Figure 7-6: Adherence: c is a vertical line

Note that there will be a finite number of adjacent cells s1 (or s2) to c, and we

only need to choose one cell for each branch cut.
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7.2.4 Nested Roots

Each branch cut cell c falls into one of the following three categories.

1. A line which is really a branch cut. Of course the branch cut formula is

true on this cell.

2. A line which we think it is a branch cut. The branch cut formula is true,

but it is actually a spurious branch cut which is a result of the de-nesting

process (see Section 4.3.3).

3. A lower-dimensional cell on which the branch cut formula is false. This is

an artefact of building the CAD.

We only need to evaluate the cells which belong to the first two categories (Sec-

tion 7.3). In this case, when computing the adherence of c with respect to h, we

need to compute the adherence of c with respect to g first, before computing the

adherence with respect to f . This is to ensure that g is continuous onto c.

It is clear that if c is a spurious branch cut then c, s1 and s2 will belong to the

same sheet of Rs(h), and therefore c adheres to both s1 and s2. Although the

correctness of the result is guaranteed, it is wasteful in that we must compute

g(p), p ∈ si. Unfortunately, we currently do not have an algorithm to detect

such spurious cells.

7.2.5 Branch Cuts “at Infinity”

Consider (this analysis is from [BBDP05, Section 3, example 1])

h = arctan(x) + arctan(y)− arctan

(

x+ y

1− xy

)

?
= 0, (7.1)

where x, y ∈ R are finite.

arctan(x) is a continuous, bijective and differentiable function (−∞,∞)→
(

−π
2
, π
2

)

.

Therefore, although arctan(x) has no branch cuts over the reals, it has a branch

cut at infinity since limx→+∞ arctan(x) = π
2
whereas limx→−∞ arctan(x) = −π

2
.
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Furthermore, it is possible for x+y

1−xy
to pass through ∞ even when both x and y

are finite, that is when 1− xy = 0.

Recall that our branch cut representation is only for finite branch cuts, therefore

the only branch cut for h is the branch cut at infinity deriving from arctan
(

x+y

1−xy

)

.

The branch cuts decompose the (x, y)-plane into three two-dimensional regions

and two one-dimensional regions2 as shown in Figure 7-7.

1

3

2a

y

x

2b

L

p
1

p
2a

p
2b

p
3

Figure 7-7: Decomposition for equation (7.1)

Evaluating the identity on each of the two-dimensional regions shows that the

identity is true on region 2 and false on regions 1 and 3 and requires correction

factor π and −π respectively (Figure 7-8). Now it is left to evaluate the identity

on the cuts.

We define arctan(∞) = π
2
, so that arctan(x) is a function of the form (−∞,∞]→

(

−π
2
, π
2

]

. Thus, we are working with the one-point completion domain (−∞,∞] =

R∪{∞}, and the point
(

∞, π
2

)

belongs to the principal branch of arctan(x) whilst

the point
(

−∞,−π
2

)

belongs to the branch arctan(x) − π. Therefore, here, we

work with positive infinity only, that is we pass onto the point ∞ continuously if

we let x→∞+, but not when we let x→∞−.

Let c1 = {(1 − xy = 0) ∧ (x > 0)} and c2 = {(1 − xy = 0) ∧ (x < 0)}. Suppose

g = x+y

1−xy
. Adherence can be used to evaluate the identity on each branch cut

ci by determining whether g tends to +∞ or −∞. In this case ci will adhere to

2CAD will in fact decompose the plane into seven regions.
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the cell where g is positive, since arctan(∞) = arctan(+∞) = π
2
. We proceed as

follow.

1. Construct a CAD which is sign-invariant with respect to g. This can be

done by adding the line L = {(x, y)| x+ y = 0} to the CAD.

2. Evaluate the identity on each branch cut ci.

(a) c1. The adjacent cells are region 1 and region 2a. Suppose our sample

points are p1 = (1, 2) and p2a =
(

1, 1
2

)

. Then g(p1) = −3 and g(p2a) =

3. Hence c1 adheres to region 2, and therefore the identity is true on

this branch cut.

(b) c2. The adjacent cells are region 3 and region 2b. Suppose our sample

points are p3 = (−1,−2) and p2b =
(

−1,−1
2

)

. Then g(p3) = 3 and

g(p2b) = −3. Hence c2 adheres to region 3, and therefore the identity

is false on this branch cut and requires a correction factor of −π.

h = π 

h = -π

h = 0

x
c1

c2

y

Figure 7-8: Adherence for equation (7.1)

7.3 Post-Conditioning the CAD

We reiterate that, as in previous section, we will only consider two-dimensional

CADs, arising from one complex variable or two real variables.
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It was demonstrated in Chapter 6 that CAD is too powerful and generally pro-

duces more cells than the actual number of connected components defined by the

branch cuts. Evaluating every single constructed cell means more cells are tested

than necessary. This obviously affects the efficiency of the algorithm. This sec-

tion presents a method to improve the efficiency of the identity evaluation phase.

The method is based on two observations.

Notation 7.3.1. Let cf(ci,j) denotes the correctness factor, true/false3, of cell

ci,j.

1. Observation 1. Many unwanted cells in the CAD construction arise from

section cells where the truth values of the branch cut formulae in the cells are

false. Some of these section cells can be removed with the pre-conditioning

method, such as the dotted parabola lines x2 − y2 = 1 in Figure 6-11.

Others which are features of cylindricity, such as the vertical lines x = ±1 in
Figure 6-11, cannot be removed with the pre-conditioning method. These

cells also give rise to unwanted sector cells. Thus, we can avoid testing

these unwanted cells by simply examining the truth values of the branch

cut formula of these cells from the CAD data structure.

2. Observation 2. Suppose we have determined the correctness factor for

cell ci,j, cf(ci,j). Then for an appropriate ni, we can assign the value cf(ci,j)

to each cell in the set S = {ci,t| tv(ci,t) = False, t = j + 1, . . . , ni} without
further work.

7.3.1 The Algorithms

For simplicity, suppose h = f(g(z)) where f is either a logarithm or nth-root

function, contains only one complex variable. Let ci,j denote the cell with in-

dex (i, j). There are 2 cases to consider, 1-d and 2-d stacks. All cells in each

of the 2-d stacks must be dealt with first (Algorithm 6), before considering the

remaining 1-d stacks (Algorithm 7).

3In practice, for simple examples, we can associate an explicit correction such as π and −π, as
in problem (7.1).
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Algorithm 6 Sample point testing with post-conditioning: 2-d stacks

Input: A CAD of M stacks, each with Ni cells.
Output: A CAD where each cell ci,j in 2-d stacks has the correctness factor

cf(ci,j) for h = 0 assigned.
1: for i = 1 to M by 2 do
2: Compute cf(ci,1).
3: for j = 2 to Ni by 2 do
4: if ci,j is a branch cut then
5: if ci,j adheres to ci,j−1 then
6: cf(ci,j)← cf(ci,j−1)
7: Compute cf(ci,j+1).
8: else
9: Compute cf(ci,j+1).

10: cf(ci,j)← cf(ci,j+1)
11: end if
12: else
13: cf(ci,j)← cf(ci,j−1)
14: cf(ci,j+1)← cf(ci,j−1)
15: end if
16: end for
17: end for
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Note that, in Line 3 of Algorithm 6, the “by 2” is a consequence of the

sector/section/sector/ . . . structure. Here we step through full-dimensional cells,

i.e. sector cells.

In the case of a 1-d stack, we must perform a local adjacency algorithm to deter-

mine an adjacent cell to c which lies in one of the other two possible stacks, say

S1, S2.

Algorithm 7 Sample point testing with post-conditioning: 1-d stacks

Input: A CAD with the correctness factors, cf(c) for all cells of 2-d stacks already
determined.

Output: A CAD with each cell c is assigned a correctness factor, cf(c).
1: for each 1-d stack do
2: for each cell c do
3: if tv(c) = True then
4: Determine adjacent cell s1 to c from S1.
5: if c adheres to s1 then
6: cf(c) = cf(s1)
7: else
8: Determine adjacent cell s2 to c from S2.
9: cf(c) = cf(s2)

10: end if
11: end if
12: end for
13: end for

7.4 Summary

This chapter introduced the notion of the adherence of a branch cut. The method

helps facilitate the identity evaluation phase. It provides a way to test the identity

on a non-full-dimensional branch cut which can be problematic if using numerical

or direct symbolic evaluations alone. The second part of the chapter presented

the idea of post-conditioning the CAD, an attempt to improve the efficiency of

the identity evaluating phase by reducing the number of examined regions.
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Chapter 8

Implementations and

Evaluations

In this chapter we investigate the practical aspects of the methods discussed in

Chapters 4–6, focusing particularly on the feasibility of CAD in our framework.

All implementations and experiments are run in QEPCAD version 1.581 which is

compiled with SACLIB library version 2.2.5, and Maple version 142. The first sec-

tion gives an overview of our implementations. The second section, which forms

the main part of this chapter, summarises our findings for the CAD construction

phase.

8.1 Implementations

The implementations include routines to extract the relevant branch cuts of the

proposed identities allowed by our restrictions, with optional commands for flex-

ibility in displaying the computed set of branch cuts, to pre-condition the set of

1Some earlier work was done in earlier versions of QEPCAD. The most recent version of QEP-
CAD when this writing up was concluded, was version 1.65, but we stuck with QEPCAD 1.58
for consistency.
2Some earlier work was done in Maple 13. As this writing up was being concluded, Maple 15
came out, but we stuck with Maple 14 for consistency.
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branch cut polynomials, and to compute the greedy projection algorithm. All

the code, except for the greedy projection algorithm implementation, is done in

Maple. While we have endeavoured to make the code efficient, we are not at this

stage aiming to develop a complete and sophisticated simplification system. The

primary goal is to produce necessary results for our analysis.

branchcuts

The procedure branchcuts takes as an input a function f and returns a set of

branch cuts of f .

> f := sqrt(z^2-1) - sqrt(z-1)*sqrt(z+1):

> bc := branchcuts(f);

bc := {{y = 0, x < -1}, {y = 0, x < 1}, {2*x*y = 0, x^2-y^2 < 1}}.

Figure 8-1: Maple: branchcuts

Recall that the set of branch cuts of f comprises the union of the set of branch

cuts of fi where f is built up from the fi. Furthermore, the branch cut of fi is

defined by semi-algebraic equations in real and imaginary parts. Therefore the

bc in Figure 8-1 should be read as:

{{y = 0 ∧ x < −1} ∨ {y = 0 ∧ x < 1} ∨ {2xy = 0 ∧ x2 − y2 < 1}}.

qepcadbc and maplebc

We want to pass the set of branch cuts to either QEPCAD or Maple’s CAD to do

the decomposition. So representing bc in forms which are acceptable by QEP-

CAD and Maple’s CAD would be convenient. Hence we provide the commands

qepcadbc and maplebc which translate bc in Figure 8-1 to a set of branch cuts

in QEPCAD and Maple’s CAD input formats respectively.

> qepcadbc(bc);

[[y = 0 /\ x < 1] \/ [y = 0 /\ x < -1] \/ [2 x y = 0 /\ x^2-y^2 < 1]].

Figure 8-2: Maple: qepcadbc

> maplebc(bc);

[y, -1+x, y, 1+x, 2*x*y, -1+x^2-y^2]

Figure 8-3: Maple: maplebc
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For convenience, the qepcadbc and maplebc procedures have been integrated

into the branchcuts procedure and can be called using the following commands

to directly produce 8-2 and 8-3 respectively:

> branchcuts(f, output=qepcad):

> branchcuts(f, output=maple):

Figure 8-4: Maple: branchcuts(f,‘output’)

pprecond and sprecond

The procedures pprecond and sprecond are based on the pre-conditioning method

described in Chapter 6. The difference is that the former uses the pseudo-

remainder method, while the latter uses the sparse pseudo-remainder method.

In the Maple session in Figure 8-5, f and g are two related polynomials regarded

as inequality and equation respectively. The third argument is a main variable.

They return a polynomial equivalent to f .

> f := x^2-y^2-1:

> g := x*y:

> pprecond(f, g, x);

y(−y3 − y)

> sprecond(f, g, y);

x(x3 − x)

Figure 8-5: Maple: pprecond and sprecond

Greedy projection algorithm

It is natural to use the same projection operator3 as the tool we are using. We

have, therefore, added our code to QEPCAD to extract the projection factor sets

after each projection step in order to compute sotdk(Pk, (xi1 . . . , xik)) as used by

the greedy projection algorithm (Section 5.2.6.1).

3Different projection operators may produce different projection factor sets which in turn yield
different sotdk(Pk, (xi1 . . . , xik

)) values.
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8.2 Results and Evaluation

These experiments are run using well-known simplification rules from Abramowitz

and Stegun [AS64]. Since all inverse elementary functions can be defined in terms

of the logarithm and square root, most of our examples are comprised of these

functions. However, we will show a few examples of other inverse elementary

functions as well.

8.2.1 Branch Cuts Phase

All branch cuts are computed on a 1.86 GHz Intel Core 2 Duo, and all timings are

given in milliseconds. Tables 8.1 and 8.2 show the times Maple took to calculate

the branch cuts for the problems listed in Appendix D. Two different timings

corresponding to two nested root removal methods are listed for each problem in

Table 8.2. The result shows an obvious gain in efficiency when we use resultants

instead of Gröbner bases. These timings in Table 8.2 exclude the times to remove

the extraneous variable by QE, if required. These times are recorded separately in

Table 8.3, which shows the time taken after initialisation. Note that the variable

ordering used when solving the QE problem in example 29 is v > u > y > x.

The ordering was chosen purely at random.

Sample sets of un-pre-conditioned branch cuts for examples 1, 3, 4 and 11 are

listed in Table 8.4.

8.2.2 Decomposition Phase

This section looks at the performance of QEPCAD and Maple’s CAD as tools

to decompose the complex plane. Cell count is used as our evaluating measure.

This is because it drives the cost of the next phase (component testing phase) of

our simplification system, which we have not gone into in great detail here, and

more pragmatically it is the only consistent measure in our experiments.
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Example Dimension Time (10−3 s)

1 1C 3
2 1C 3
3 1C 9
4 1C 9
5 1C 4
6 1C 3
7 1C 6
8 1C 6
9 1C 5
10 1C 6
11 2R 3
12 2R 3
13 2R 2
14 2R 3
15 1C 26
16 1C 13
17 1C 13
21 2C 11
22 2C 11
23 2C 26
24 2C 13
25 2C 11
26 2C 14
27 2C 16
28 2C 22

Table 8.1: Time taken to compute branch cuts (non-nested roots)

Example Dimension
Time (10−3 s)

Resultant Gröbner basis

18(a) 1C 44 64
18(b) 1C 76 100
19(a) 2R 24 44
19(b) 2R 20 48
20 2R 28 108
29 2C 36 69

Table 8.2: Time taken to compute branch cuts (nested roots)
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Example Dimension Time (10−3 s)

18(a) 1C 44
18(b) 1C 76
19(a) 2R 16
19(b) 2R 20
29 2C 134472

Table 8.3: Time taken to remove extraneous variable

1. {x2 − y2 < 0 ∨ 2xy = 0}
3. {1− x < 0 ∧ y = 0} ∨ {1 + x < 0 ∧ y = 0} ∨ {1− x2 + y2 < 0 ∧ xy = 0}
4. {x− 1 < 0 ∧ y = 0} ∨ {x+ 1 < 0 ∧ y = 0} ∨ {x2 − y2 − 1 < 0 ∧ xy = 0}
11. {xy − 1 = 0}

Table 8.4: Branch cut formulae for examples 1, 3, 4 and 11

8.2.2.1 Two-Dimensions (1C/2R)

In this section, we consider the problem arising from formulae containing one

complex variable or two real variables. Table 8.5 reports the number of cells

produced by QEPCAD and Maple’s CAD in the decomposition step. The results

demonstrate that in most examples, QEPCAD and Maple’s CAD produce exactly

the same number of cells. The only exception to this was when QEPCAD only

constructed the decomposition of partial spaces. As argued in Section 5.2.4, the

smaller number of cells produced by QEPCAD does not necessarily mean that

it is superior to Maple’s CAD. This is because in these cases we may not have

enough sample points for our purpose, and therefore are required to do further

examination to determine if we have sufficient sample points.

It is not surprising that in examples 1–14 both variable orderings produce the

same number of cells as there is a symmetry between the two variables, x and y,

in the sets of polynomials representing the branch cuts. It is less apparent in the

cases where there is no symmetry between the variables how the variables should

be ordered.

Examples 18, 19 and 20 represent examples with nested square roots, which need
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Table 8.5: Number of constructed cells for examples 1-20

Example Dimension
QEPCAD Maple’s CAD

y > x x > y y > x x > y

1 1C 17 17 17 17

2 1C 17 17 17 17

3 1C 29 29 29 29

4 1C 29 29 29 29

5 1C 22† 25 25 25

6 1C 33 33 33 33

7 1C 9 9 9 9

8 1C 9 9 9 9

9 1C 17 17 17 17

10 1C 25 25 25 25

11 2R 7 7 7 7

12 2R 14† 14† 43 43

13 2R 6† 6† 9 9

14 2R 6† 6† 9 9

15 1C 391 373 391 373

16 1C 663 615 663 615

17 1C 1209 1627 1209 1627

18(a) 1C 47 99 47 99

18(b) 1C 69 141 69 141

19(a) 2R 10† 10† 25 25

19(b) 2R 10† 10† 25 25

20 2R 13 13 13 13

† QEPCAD only computed a partial decomposition, so the cell
count is an underestimate.
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to be removed using resultants, or Gröbner bases, or repeated squaring methods.

For all three examples, the root free polynomials produced by the different meth-

ods happen to have exactly the same representation. In general, they may not

be identical, but they will be equivalent. Examples 18 and 19 require us to solve

QE problems to remove the extraneous variables, before constructing the CADs.

For each example, the process produces two equivalent but different branch cut

formulations, depending on the variable orders used. The result of example 18

indicates that different representations of the same set of branch cuts may result

in different numbers of constructed cells. If CAD is involved, then the branch

cut construction step will also depend on variable order.

We now look at the performances of the greedy projection algorithm and Brown’s

heuristic on each example. It must be noted that both methods were developed

based on CAD-PL which has a totally different underlying algorithm to that of

Maple’s CAD. Moreover, if we are to run Maple’s CAD in isolation, we will not be

able to choose a variable order using the greedy projection algorithm since theo-

retically we do not have projection factor sets to compute sotdk(Pk, (xi1 . . . , xik)).

We also note that in the two-dimensional case, the greedy projection algorithm

computes both of the possible projections. For most examples, except exam-

ples 15–18, the greedy projection algorithm was unable to make a choice between

the two possible variable orderings (and the two branch cut representations in

example 19). This could mean that it thinks both variable orderings are equally

good, which they are. The experiments show that the resulting CADs for these

examples have the same cell counts regardless of which variable ordering or which

branch cut formulae are used. For examples 15–17, the greedy projection algo-

rithm suggests variable ordering y > x. For example 18, where there are two

branch cut formulae, each with two possible variable orderings, the greedy pro-

jection algorithm chooses variable ordering y > x for 18(a) over the three other

possibilities. Brown’s heuristic, on the other hand, gives a tie between all exam-

ples except example 18 where it agrees with the greedy projection algorithm and

chooses variable ordering y > x for 18(a).

There is more than one branch cut representation of the same abstract problem

for examples 18 and 19, as a result of the de-nesting process (or more precisely

its use of QE). On the basis of the Dolzmann el al. assertion [DSS04] that
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“sotd is well-correlated with the final number of cells in the CAD and other

“cost” measures”, we suggest using sotdn(Pn) to determine a good branch cut

formula

sotdn(Pn) =
∑

f∈Pn

σ(f),

where σ is as in (5.2.14), i.e. using the convention e = (e1, . . . , en),

σ

(

∑

e∈E

aex
e1
1 . . . xen

n

)

=
∑

e∈E

n
∑

i=1

ei.

We note that Pn in terms of QEPCAD is different from the actual input poly-

nomials. This is because QEPCAD simplifies the input by means of factorising,

square-free relatively prime decomposition and eliminating inconsistent sets of

polynomials. On one hand, factoring and square-free decomposition are good

since, for example, x10 is no worse than x2 and both will result in the same num-

ber of cells being constructed in the CAD, but on the other hand eliminating

the inconsistent sets is bad for us since, unlike QEPCAD, we do have interest in

them. The measure we are going to use is the sotdn(Pn) of the reduced polyno-

mials because this is an input as far as QEPCAD is concerned and this is what

QEPCAD is going to be manipulating. The criterion selects a good formula for

example 18, but no suggestion for example 19. Nevertheless, both formulae of

example 19 are equally good. The heuristic can be used in conjunction with

the greedy projection algorithm to reduce the number of projections considered.

That is, if we first use sotdn(Pn) to select a formula, say P1, from, in the cases

of examples 18 and 19, the two possible formulae4, then we only need to perform

two projections and compare sotd1(P11 , x) and sotd1(P11 , y). Whereas, without

sotdn(Pn), we would have to do four projections in order to calculate sotd1(P11 , x),

sotd1(P11 , y), sotd1(P21 , x) and sotd1(P21 , y).

4Other problems may have different numbers of branch cut representations.
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8.2.2.2 Four-Dimensions (2C)

Tables 8.6, 8.7, and 8.8 show the number of cells constructed by QEPCAD and

Maple’s CAD for the examples containing two complex variables, resulting in

four-dimensional problems. We deemed that 30 minutes or less is a “reasonable”

time to perform the computation, and terminated the program thereafter. The

dashes indicate that the program either returned failed by itself, or we terminated

it.

Once again, the results demonstrate that when there is a symmetry between

different variables, there is no difference in cell counts between different variable

orderings. When the input polynomials do not exhibit a symmetry between

different variables, the number of cells being constructed in the decomposition

step depends heavily on the variable ordering, and a wrong choice of variable

ordering may swell up the cell count enormously: a factor of 118 more cells

are constructed by QEPCAD in example 27 when using the worst projection

order (92829 cells produced with respect to variable order x > v > u > y or

u > y > x > v) as opposed to the best projection order (785 produced by the

variable order y > v > x > u or v > y > u > x).

It is interesting to see that in more complicated cases, QEPCAD is shown to have

more variation than Maple’s CAD. With good variable orderings, they are often

in the same general area. However, in the case where the variable orderings are

bad, QEPCAD is often significant worse than Maple’s CAD, even when it con-

structs only the partial CADs in examples 26, 27 and 29, and hence, if anything,

the cell counts in these examples are underestimated. Considering example 27,

for example, Maple’s CAD constructs 557 cells with the best order and 1869 cells

with the worst order, whereas QEPCAD constructs 785 cells with the best or-

der and 92829 with the worst order. Furthermore, there are 6 variable orderings

where Maple’s CAD produces 1782 cells, but with these variable orderings some-

times QEPCAD produces 2049, sometimes 92829, showing a great variation in

QEPCAD.
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Variable order
Example 21 Example 22 Example 23

QEPCAD Maple’s CAD QEPCAD Maple’s CAD QEPCAD Maple’s CAD

x > y > u > v 104 113 95 113 - -
x > y > v > u 104 113 95 113 - -
x > u > y > v 104 113 95 113 - -
x > u > v > y 104 113 95 113 - -
x > v > y > u 104 113 95 113 - -
x > v > u > y 104 113 95 113 - -
y > x > u > v 104 113 95 113 - -
y > x > v > u 104 113 95 113 - -
y > u > x > v 104 113 95 113 - -
y > u > v > x 104 113 95 113 - -
y > v > u > x 104 113 95 113 - -
y > v > x > u 104 113 95 113 - -
u > v > x > y 104 113 95 113 - -
u > v > y > x 104 113 95 113 - -
u > x > v > y 104 113 95 113 - -
u > x > y > v 104 113 95 113 - -
u > y > v > x 104 113 95 113 - -
u > y > x > v 104 113 95 113 - -
v > u > y > x 104 113 95 113 - -
v > u > x > y 104 113 95 113 - -
v > y > u > x 104 113 95 113 - -
v > y > x > u 104 113 95 113 - -
v > x > u > y 104 113 95 113 - -
v > x > y > u 104 113 95 113 - -

Table 8.6: Number of constructed cells for examples 21-23
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Variable order
Example 24 Example 25 Example 26

QEPCAD Maple’s CAD QEPCAD Maple’s CAD QEPCAD Maple’s CAD

x > y > u > v - - 1379 1437 2758 2961
x > y > v > u - - 1379 1437 7926 8277
x > u > y > v - - 5371 1085 14798 2929
x > u > v > y - - 3735 1121 12862 3013
x > v > y > u - - 1039 1085 18094 9077
x > v > u > y - - 1039 1121 23862 7509
y > x > u > v - - 507 549 1014 1161
y > x > v > u - - 507 549 2790 3021
y > u > x > v - - 591 253 5494 1217
y > u > v > x - - 211 253 1606 1217
y > v > u > x - - 211 253 1366 1893
y > v > x > u - - 211 253 2254 1513
u > v > x > y - - 801 389 2937 3021
u > v > y > x - - 441 253 1077 1161
u > x > v > y - - 2997 389 2513 1909
u > x > y > v - - 4053 389 1373 1529
u > y > v > x - - 441 253 6061 1209
u > y > x > v - - 1221 253 1781 1217
v > u > y > x - - 217 253 2845 2961
v > u > x > y - - 353 389 8129 8277
v > y > u > x - - 217 253 15697 3069
v > y > x > u - - 217 253 13897 3033
v > x > u > y - - 353 389 19125 9213
v > x > y > u - - 353 389 24465 7605

Table 8.7: Number of constructed cells for examples 24-26
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Variable order
Example 27 Example 28 Example 29

QEPCAD Maple’s CAD QEPCAD Maple’s CAD QEPCAD Maple’s CAD

x > y > u > v 37957 989 - - 4162 4205
x > y > v > u 9101 989 - - 4162 4205
x > u > y > v 5985 557 - - 3026 3069
x > u > v > y 6597 673 - - 3026 3069
x > v > y > u 28821 1781 - - 2878 2949
x > v > u > y 92829 1781 - - 2878 2949
y > x > u > v 2049 989 - - 4136 4185
y > x > v > u 2049 989 - - 4136 4169
y > u > x > v 2049 1869 - - 4576 4625
y > u > v > x 2049 1781 - - 4576 4609
y > v > u > x 901 557 - - 4008 4081
y > v > x > u 785 673 - - 4008 4073
u > v > x > y 37957 989 - (B) - (B) 3298 3341
u > v > y > x 9101 989 - (B) - (B) 3298 3341
u > x > v > y 5985 557 - - 2786 2829
u > x > y > v 6597 673 - - 2786 2821
u > y > v > x 28821 1781 - - 8650 7445
u > y > x > v 92829 1781 - - 8650 7437
v > u > y > x 2049 989 51763 (G), (B) 2065 (G), (B) 642 669
v > u > x > y 2049 989 - (B) 6129 (B) 462 669
v > y > u > x 785 673 86809 - 776 817
v > y > x > u 901 557 - - 776 817
v > x > u > y 2049 1869 - - 1026 1053
v > x > y > u 2049 1781 - - 1026 1053

Table 8.8: Number of constructed cells for examples 27-29
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We now consider examples 25–27 and 29, where there are obvious variations in

cell counts between different variable orderings. We will also discuss the use

of the greedy projection algorithm, Brown’s heuristic, greedy/Brown’s heuristic

and Brown’s/greedy heuristic to determine a good variable ordering for these

examples and example 28, where we could only complete a CAD construction

for two out of 24 variable orderings by both QEPCAD and Maple’s CAD. The

suggestions made by the greedy projection algorithm and Brown’s heuristic are

marked with (G) and (B) in Tables 8.8–8.12 respectively. For brevity, the sugges-

tions made by greedy/Brown’s and Brown’s/greedy heuristics are not included

in these tables.

As we mentioned in Section 5.2.6.1, the greedy projection algorithm leaves an

open question as to what one should do when there is a tie in sotdk(Pk, (xi1 . . . , xik))

with respect to different variables. With respect to this, we chose to carry all tied

variables forward as the possible candidates. For example, in example 28, after

the first projection, the projection factor sets with respect to variables u and v

have a joint lowest sotd3(P3, xi) value. Both variables u and v are kept as possible

candidates. There are now 6 possible candidates (instead of 3 if there is no tie) to

consider. This time projection factor set with respect to variable order v > u has

the lowest sotd2(P2, (xi, xj)). Therefore, we can now discard variable u from our

possible first variable list, and we are left with only two remaining possibilities

to consider. The obvious drawback is that we have to compute more projection

steps. Using this heuristic, we are able to derive a single variable ordering, i.e.

v > u > y > x, which is one of only two variable orderings with which QEPCAD

and Maple’s CAD can manage to finish building a CAD. The same suggestion is

also given by greedy/Brown’s and Brown’s/greedy heuristics.

For example 28, Brown’s heuristic, as predicted (see Section 5.2.6.3), cannot

distinguish between the coupled variables. The only advice it is able to give is

that variables u and v should be ordered before variables x and y.
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Rank according to QEPCAD Rank according to Maple’s CAD

Variable order QEPCAD Maple’s CAD Variable order QEPCAD Maple’s CAD

y > v > u > x 211 253 v > u > y > x (B) 217 253
y > u > v > x 211 253 u > v > y > x (B) 441 253
y > v > x > u 211 253 v > y > u > x 217 253
v > u > y > x (B) 217 253 y > v > u > x 211 253
v > y > u > x 217 253 u > y > v > x 441 253
v > y > x > u (G) 217 253 y > u > v > x 211 253
v > u > x > y (B) 353 389 y > v > x > u 211 253
v > x > u > y 353 389 v > y > x > u (G) 217 253
v > x > y > u (G) 353 389 y > u > x > v 591 253
u > v > y > x (B) 441 253 u > y > x > v 1221 253
u > y > v > x 441 253 v > u > x > y (B) 353 389
y > x > v > u 507 549 u > v > x > y (B) 801 389
y > x > u > v 507 549 v > x > u > y 353 389
y > u > x > v 591 253 u > x > v > y 2997 389
u > v > x > y (B) 801 389 v > x > y > u (G) 353 389
x > v > u > y 1039 1121 u > x > y > v 4053 389
x > v > y > u 1039 1085 y > x > v > u 507 549
u > y > x > v 1221 253 y > x > u > v 507 549
x > y > v > u 1379 1437 x > v > y > u 1039 1085
x > y > u > v 1379 1437 x > u > y > v 5371 1085
u > x > v > y 2997 389 x > v > u > y 1039 1121
x > u > v > y 3735 1121 x > u > v > y 3735 1121
u > x > y > v 4053 389 x > y > v > u 1379 1437
x > u > y > v 5371 1085 x > y > u > v 1379 1437

Table 8.9: Ordered number of constructed cells for example 25
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In example 25, it appears that the number of cells produced by Maple’s CAD

depends most on the position of the variable x in the variable ordering. This is

possibly because x appears in more terms and to higher degree in the input poly-

nomials than variables u and v, therefore it ought to be ordered last. However, it

is unclear why the same thing cannot be said regarding variable y, even though

it appears in the same number of terms and to the same degree as variable x.

In fact 4 out of 6 possible orders which ordered y first are among those which

produced the lowest number of cells. Furthermore the relationship between the

number of cells constructed and the variable order reflects the symmetry between

variables u and v.

Less pattern emerges from example 25 when constructing the CAD using QEP-

CAD. The only observation we make is that all 6 possible variable orders which

project variable v first have low cell counts, even though not the lowest, and 4

out of 6 possible orderings which project v last are among the worst variable

orders.

The greedy projection algorithm performs well here, recommending variable or-

derings v > y > x > u and v > x > y > u, which are the best and second best

orderings respectively for both QEPCAD and Maple’s CAD. Brown’s heuristic

suggests ordering the coupled variables u and v before the coupled variables x

and y, resulting in four possible orders. The prediction is on the whole a good

one, particularly for Maple’s CAD, where the suggestions are among the best and

second best variable orders.

The number of required projection steps can be further reduced with our com-

bined heuristics. Both heuristics choose the same orders, v > u > y > x and

v > u > x > y. While these orders differ from what the greedy projection

algorithm picks, they are equally good choices.
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Rank according to QEPCAD Rank according to Maple’s CAD

Variable order QEPCAD Maple’s CAD Variable order QEPCAD Maple’s CAD

y > x > u > v 1014 1161 u > v > y > x 1077 1161
u > v > y > x 1077 1161 y > x > u > v 1014 1161
y > v > u > x (G) 1366 1893 u > y > v > x 6061 1209
u > x > y > v (G) 1373 1529 y > u > v > x (G) 1606 1217
y > u > v > x (G) 1606 1217 y > u > x > v 5494 1217
u > y > x > v (G) 1781 1217 u > y > x > v (G) 1781 1217
y > v > x > u 2254 1513 y > v > x > u 2254 1513
u > x > v > y 2513 1909 u > x > y > v (G) 1373 1529
x > y > u > v 2758 2961 y > v > u > x (G) 1366 1893
y > x > v > u 2790 3021 u > x > v > y 2513 1909
v > u > y > x 2845 2961 x > u > y > v 14798 2929
u > v > x > y 2937 3021 v > u > y > x 2845 2961
y > u > x > v 5494 1217 x > y > u > v 2758 2961
u > y > v > x 6061 1209 x > u > v > y 12862 3013
x > y > v > u 7926 8277 u > v > x > y 2937 3021
v > u > x > y 8129 8277 y > x > v > u 2790 3021
x > u > v > y 12862 3013 v > y > x > u 13897 3033
v > y > x > u 13897 3033 v > y > u > x 15697 3069
x > u > y > v 14798 2929 x > v > u > y 23862 7509
v > y > u > x 15697 3069 v > x > y > u 24465 7605
x > v > y > u 18094 9077 v > u > x > y 8129 8277
v > x > u > y 19125 9213 x > y > v > u 7926 8277
x > v > u > y 23862 7509 x > v > y > u 18094 9077
v > x > y > u 24465 7605 v > x > u > y 19125 9213

Table 8.10: Ordered number of constructed cells for example 26
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For example 26, despite the fact that all four variables appear in exactly the

same number of terms and to the same degree in the input polynomials, the

order in which they are ordered has a huge impact on the number of cells being

constructed by both QEPCAD and Maple’s CAD, and with no obvious pattern.

The only observation we make is that variable orderings with the two least cell

counts are those which ordered the pair of coupled variables sequentially.

Nothing can be said here regarding Brown’s heuristic since all four variables

resulted in a tie. There is also a tie between all four sotd3(P3, xi) after the first

projection step. Only after the second projection step can we narrow the choice

down to four groups, y > u > . . . , y > v > . . . , u > x > . . . and u > y > . . . , and

arrive at four suggestions after completing the third projection. These variable

orderings clearly are not the best, but they are certainly not anything like the

worst. At least, they are only a factor of 1.1–1.7 wrong as opposed to being a

factor of 24 (in term of QEPCAD) or 8 (in term of Maple) wrong.

A tie between all four variables when determining the first variable in the ordering

either by the greedy projection algorithm or Brown’s heuristic means neither

greedy/Brown’s nor Brown’s/greedy heuristics can help to reduce the number of

projection steps.
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Rank according to QEPCAD Rank according to Maple’s CAD

Variable order QEPCAD Maple’s CAD Variable order QEPCAD Maple’s CAD

v > y > u > x (G) 785 673 y > v > u > x (G) 901 557
y > v > x > u (G) 785 673 u > x > v > y 5985 557
y > v > u > x (G) 901 557 v > y > x > u (G) 901 557
v > y > x > u (G) 901 557 x > u > y > v 5985 557
v > u > y > x 2049 989 v > y > u > x (G) 785 673
y > u > v > x 2049 1781 x > u > v > y 6597 673
v > u > x > y 2049 989 y > v > x > u (G) 785 673
v > x > u > y 2049 1869 u > x > y > v 6597 673
y > x > v > u 2049 989 v > u > y > x 2049 989
v > x > y > u 2049 1781 u > v > y > x 9101 989
y > x > u > v 2049 989 v > u > x > y 2049 989
y > u > x > v 2049 1869 u > v > x > y 37957 989
u > x > v > y 5985 557 y > x > v > u 2049 989
x > u > y > v 5985 557 x > y > v > u 9101 989
x > u > v > y 6597 673 x > y > u > v 37957 989
u > x > y > v 6597 673 y > x > u > v 2049 989
u > v > y > x 9101 989 u > y > v > x 28821 1781
x > y > v > u 9101 989 y > u > v > x 2049 1781
u > y > v > x 28821 1781 x > v > u > y 92829 1781
x > v > y > u 28821 1781 x > v > y > u 28821 1781
u > v > x > y 37957 989 v > x > y > u 2049 1781
x > y > u > v 37957 989 u > y > x > v 92829 1781
x > v > u > y 92829 1781 v > x > u > y 2049 1869
u > y > x > v 92829 1781 y > u > x > v 2049 1869

Table 8.11: Ordered number of constructed cells for example 27
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In example 27, we observed that the cell counts are the same if one swaps the

complex variables z and w in the variable ordering. That is the pair (x, y) can

be swapped with the pair (u, v) (i.e. both u for x and v for y) without affecting

the number of cells being constructed by both systems.

The greedy projection algorithm, once again, gives a good suggestion here. Brown’s

heuristic, on another hand, does not offer any suggestion since all four variables

resulted in a tie.

As in the previous example, a tie between all four variables when following

Brown’s heuristic means that it does not narrow down the greedy projection

algorithm search space. Hence Brown’s/greedy heuristic will require exactly the

same computation as the greedy projection algorithm. However, unlike the last

example, this time we can apply greedy/Brown’s heuristic. Although Brown’s

heuristic does not favour one coupled variable over another, if we follow the

criterion and choose the coupled variables as adjacent in the list, the choices

made by greedy/Brown’s heuristic, which are y > x > u > v, y > x > v > u,

v > u > x > y and v > u > y > x, disagree with the greedy projection algo-

rithm’s choices. The number of cells produced with these orders are more than

those produced by the greedy projection algorithm’s suggestions. Nevertheless,

in term of QEPCAD, they only construct a CAD with a factor of 2.6 more than

the best, rather than a factor of 118 more.
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Rank according to QEPCAD Rank according to Maple’s CAD

Variable order QEPCAD Maple’s CAD Variable order QEPCAD Maple’s CAD

v > u > x > y (G) 462 669 v > u > x > y (G) 462 669
v > u > y > x (G) 642 669 v > u > y > x (G) 642 669
v > y > u > x (G) 776 817 v > y > u > x (G) 776 817
v > y > x > u (G) 776 817 v > y > x > u (G) 776 817
v > x > u > y 1026 1053 v > x > u > y 1026 1053
v > x > y > u 1026 1053 v > x > y > u 1026 1053
u > x > v > y (B) 2786 2829 u > x > y > v 2786 2821
u > x > y > v 2786 2821 u > x > v > y (B) 2786 2829
x > v > y > u 2878 2949 x > v > y > u 2878 2949
x > v > u > y 2878 2949 x > v > u > y 2878 2949
x > u > y > v 3026 3069 x > u > y > v 3026 3069
x > u > v > y (B) 3026 3069 x > u > v > y (B) 3026 3069
u > v > x > y 3298 3341 u > v > x > y 3298 3341
u > v > y > x 3298 3341 u > v > y > x 3298 3341
y > v > u > x 4008 4081 y > v > x > u 4008 4073
y > v > x > u 4008 4073 y > v > u > x 4008 4081
y > x > u > v 4136 4185 y > x > v > u 4136 4169
y > x > v > u 4136 4169 y > x > u > v 4136 4185
x > y > u > v 4162 4205 x > y > u > v 4162 4205
x > y > v > u 4162 4205 x > y > v > u 4162 4205
y > u > x > v 4576 4625 y > u > v > x 4576 4609
y > u > v > x 4576 4609 y > u > x > v 4576 4625
u > y > v > x 8650 7445 u > y > x > v 8650 7437
u > y > x > v 8650 7437 u > y > v > x 8650 7445

Table 8.12: Ordered number of constructed cells for example 29
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QEPCAD and Maple’s CAD agree on variable ordering in example 29. Although

not producing exactly the same number of cells, they rank the variable orders

in the same order. They also favour projecting variable v first for a non-obvious

reason, in spite of the fact that variable v, together with variable y, has the

highest degree (to power of 4) in the polynomials.

Example 29 is an example with nested square roots and QE is required to remove

an extraneous variable introduced through the nested square root solving mech-

anism. Therefore, we hoped Brown’s heuristic would perform better here since

there is no tie between the coupled variables. It turns out that following Brown’s

heuristic still resulted in a tie between variables x and u as first variable in the

ordering. It does, however, manage to order the last two variables. Hence we

have two possible suggestions from Brown’s heuristic. Brown’s/greedy heuristic

will break the tie here to give just a single suggestion, x > u > v > y. However,

it turns out that both suggestions are only average.

The greedy projection algorithm, in contrast, disagrees with Brown’s heuristic on

the first variable to be ordered and goes for variable v, which is a better choice.

A tie between variables u and y after projecting P3 to P2, and again between the

remaining variables after projecting P2 to P1 means we end with 4 suggestions,

which are the top three and top two variable orderings in terms of QEPCAD and

Maple’s CAD respectively. Greedy/Brown’s heuristic narrows the suggestions

down to two, v > u > x > y and v > u > y > x, which are the top two and the

top variable orderings in terms of QEPCAD and Maple’s CAD respectively.

8.2.2.3 Pre-Conditioning

This section gives insight into the performance of the pre-conditioning method

described in Chapter 6. For direct comparison, the number of cells produced

with and without pre-conditioning of the set of branch cuts polynomials prior

to handing the set to QEPCAD or Maple’s CAD are listed in Tables 8.13 and

8.14. Note that for all our examples, pprecond and sprecond produce the same

polynomials. Theoretically, when pre-conditioning the input polynomials either

by means of pseudo-remainder or sparse pseudo-remainder, the method reduces

the degree of the main variable in a polynomial. This is offset by an increase
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in the degree of another variable in the same polynomial. We observed, based

on the above two-dimensional results, that pre-conditioning is often beneficial if

the resulting polynomial, h where h=pprecond(f,g,x) or h=sprecond(f,g,x),

contains fewer variables or fewer terms than the initial polynomial, f . Con-

versely, if the pre-conditioning method produces a polynomial with many terms

and containing high degree variables, then this is not the occasion to use the

pre-conditioning method as in example 17.

Table 8.13: Number of QEPCAD’s constructed cells for pre-
conditioned examples

Example
No elimination Eliminating x Eliminating y

y > x x > y y > x x > y y > x x > y

1 17 17 9 6† 0† 0†

2 17 17 9 6† 0† 0†

3 29 29 21 7† 6† 21

4 29 29 21 21 15† 21

5 22† 25 7† 14† 22†,‡ 25‡

6 33 33 25 22† 22† 25

9 17 17 6† 6† 3† 9

10 25 25 17 14† 25‡ 25‡

15 391 373 211 142† 131† 403

16 663 615 599 306† 580† 1307

17 1209 1627 1931 2050† 1367 2793

† QEPCAD only computed a partial decomposition, so the cell count
is an underestimate.

‡ y-pre-conditioning does not have any effect on input polynomials.

It is evident that the cell count depends not only on the variable ordering but

also on the formulation of the input problem. With pre-conditioning, we have,

in addition to n! variable orderings, various formulations in n variables which are

mathematically the same geometric problem but different algebraically. Hence,

apart from the greedy projection algorithm and Brown’s heuristic, we can also

consider the extended greedy projection heuristic. By extended, we refer to the

idea suggested at the end of Section 8.2.2.1 on page 99, which uses sotdn(Pn)

as a formula predictor, followed by the greedy projection algorithm in the usual

manner. Despite the fact that the three heuristics give different predictions, they

all perform reasonably well: even though the suggestions are not always the best,
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Table 8.14: Number of Maple’s CAD constructed cells for pre-
conditioned examples

Example
No elimination Eliminating x Eliminating y

y > x x > y y > x x > y y > x x > y

1 17 17 9 9 9 9

2 17 17 9 9 9 9

3 29 29 21 21 21 21

4 29 29 21 21 21 21

5 25 25 17 17 25‡ 25‡

6 33 33 25 25 25 25

9 17 17 9 9 9 9

10 25 25 17 17 25‡ 25‡

15 391 373 211 157 137 403

16 663 615 599 323 587 1307

17 1209 1627 1931 2011 1375 2793

‡ y-pre-conditioning does not have any effect on input polynomials.

they are not in the range of the worst. Table 8.15 summarises the suggestions

made by the three heuristics.
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Table 8.15: Operation of heuristics for pre-conditioned examples

Example
No elimination Eliminating x Eliminating y

y > x x > y y > x x > y y > x x > y

1 (B) (G), (B), (EG) (G), (EG)

2 (B) (G), (B), (EG) (G), (EG)

3 (B) (B), (G), (EG)

4 (B) (B), (G), (EG)

5 (EG) (B), (EG)

6 (EG) (B), (EG) (B), (EG) (EG)

9 (EG) (B), (EG) (B), (EG) (EG)

10 (EG) (B), (EG)

15 (EG) (B) (G)

16 (G) (EG) (B) (G)

17 (G) (EG) (B)

(G) The greedy projection algorithm
(B) Brown’s heuristic
(EG) The extended greedy projection heuristic
Computing the greedy projection algorithm for examples 5, 6, 9 and 10 resulted in a tie between all 6 choices.
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8.3 Summary

This chapter presents the results and the evaluations of the performance of the

branch cuts computation and decomposition phases of the decomposition method.

The experimental results demonstrated the efficiency of the branch cuts com-

putation phase, except perhaps when QE is required. The effectiveness of the

decomposition phase is still limited by the complexity of the CAD algorithm.

However, we now have a better understanding of the feasibility of CAD in prac-

tice, and more importantly the capabilities of QEPCAD and Maple’s CAD. We

have made the following observations.

• A Cylindrical Algebraic Decomposition is not unique. There may be more

than one CAD even for a fixed variable ordering and fixed polynomials.

• Input problem formulation is important when using any CAD algorithm.

• Variable ordering is crucial in any CAD algorithm.

• The greedy projection algorithm, generally, gives good suggestions for vari-

able ordering. It should be pointed out that although the experiments

indicate a correlation between the greedy projection algorithm’s prediction

and the number of cells constructed by Maple’s CAD, the algorithm cannot

be applied without performing the projection phase of CAD-PL.

• Despite the obvious drawback of ties of Brown’s heuristic, our effort to use

the idea as a way of reducing the size of search space by the greedy projec-

tion algorithm has been shown to be effective. Greedy/Brown’s heuristic

tends to pick orders which are optimal or close to optimal (up to a factor

of 2.6 more cells in the same example), whereas the truly bad orders are

much worse than these (up to a factor of 118 more cells).

• For a given problem, when the variable produces a small number of cells

for one method, it tends to do so for the other method too, and the two are

comparable. However, the worst case for QEPCAD tends to be significantly

worse than the worst case for Maple’s CAD.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

The simplification problem is not new in computer algebra. It was recognised

as far back as 1971 [Mos71]. However, only hesitant attempts at the problem

have appeared. One problem among its many facets is that many elementary

functions are essentially multi-valued functions. Branch cuts are a well-known

device introduced to define segments on which these functions become discontin-

uous.

The primary concern of this thesis has been to develop a tool to determine the

truth (or falsity) of the proposed identity based on analysing, using the tech-

nique of Cylindrical Algebraic Decomposition (CAD), the geometry of C (or Cn)

induced by branch cuts. Our algorithm took the following approach:

1. verifying that the proposed simplification is correct as a simplification of

multi-valued functions, using a standard simplifier such as Maple’s

simplify(. . . , symbolic) command;

2. decomposing C (or Cn), viewed as R2 (or R2n), with respect to the branch

cuts of the relevant functions, using the technique of CAD, and finding a

sample point in each region in R2 (or R2n) defined by the branch cuts;

3. evaluating the identity on each connected component using the obtained
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sample point, thereby concluding whether the identity is true or false on

that entire region by the Monodromy theorem.

In this thesis, we looked at the last two stages of the system, paying particular

attention to phase 2, which turned out to be more difficult than we had expected.

Most of the work, in this thesis was done in the context of QEPCAD, since for

majority of the time we had to rely solely on it: CAD via triangular decomposi-

tion did not exist until 2009, and its implementation was integrated into Maple

version 14 a year later.

We showed that a problem in C (or Cn) can be treated as a problem in R2 (or

R2n) and how branch cuts of a function can be expressed in terms of real semi-

algebraic sets (Chapter 4), so that they are within the remit of the CAD algorithm

(Chapter 5), which forms a major part of our system. It is evident that the CAD

construction is a significant obstacle. Using any existing CAD implementations as

a black-box is problematic, even for some seemingly small problems. QEPCAD,

as its name suggests, is built based on Partial CAD for QE applications, and

has limitations when applied to our problems (see Section 5.2.4). Maple’s CAD,

on another hand, starts with a weaker branch cut formulation, hence loses some

useful information. Nevertheless, examples in Section 8.2 showed that it is still

very competitive with QEPCAD, sometimes even producing smaller CADs.

The pre-conditioning method was an attempt to allow more boolean connective

information to be taken into consideration when building CAD. It was intended

to address Maple’s CAD weakness, but subsequently found to be equally useful

under the QEPCAD configuration, see Table 8.13.

We have seen that the CAD construction is sensitive to variable ordering, both in

elimination and in projection (QEPCAD) and triangularization (Maple’s CAD),

and the interaction is significant and subtle. We considered the greedy projec-

tion algorithm in Section 5.2.6.1 and Brown’s heuristics in Section 5.2.6.3. These

ideas prompted us to investigate further since we are employing the CAD under

special circumstances, i.e. complex variables are naturally paired together (real

and imaginary parts). Using this information led us to refinements of the greedy

projection algorithm and Brown’s heuristic (Section 5.2.6.4). The empirical re-

sults are promising, see Section 8.2.2. Nevertheless the problem is not totally
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solved.

The last phase of the system relies on numerical or symbolical evaluations of sam-

ple points. When the branch cuts have full-dimension, there is no problem. But

problem may occur when sampling on non-full-dimension cuts (a line in complex

plane or a point in real plane), since even the slightest error may drift us off the

branch cut into an adjacent cell instead, thus probably, and indeed certainly in

the case where the identity is true except on these lower-dimensional components.

An example of this phenomenon is log(z + i
√
2) = log(z− i

√
2), which is false for

z of the form x − i
√
2, but true for all floating-point z. Section 7.2 made evalu-

ating on such cuts possible with the notion of adherence. It is worth noting that

an alternative method, using power series, exists, see [BBD03]. The last phase

of the system was also made more efficient with the method of post-conditioning

the CAD. However, we only explored that in two-dimensional cases.

9.2 Future Work

• Branch cut formulation

Branch cut computation has been made practical, except perhaps when QE

is required. In order to maximize the efficiency of this step, there is a need

for a finer heuristic to remove the nested roots.

We have demonstrated that branch cut formula may not be unique, and

different phrasing of the input may affect the efficiency of the decomposition

step, prompting a call for a heuristic to pick the “best” representative.

• CAD

There are still limitations in the use of CAD in the decomposition phase of

the decomposition method, since the CAD algorithm is inherently doubly-

exponential in the number of variables.

Customized CAD algorithm

A possible way forward is to develop a CAD algorithm for our partic-

ular application. In this regard, it is worth remembering that, if we

restrict ourselves to problems involving complex variables, our semi-
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algebraic representation for the set of branch cuts of an identity in

complex variables is of the form:

{B1 ∨ . . . ∨Bn},

for some n where

Bi = {pi1 = 0 ∧ pi2 σi ci},

with σi ∈ {<,≤, >,≥}, and ci ∈ {0,±1}.

There are a number of aspects which can be considered here.

1. The CAD-PL algorithm in the sense of [Col75] does not take ad-

vantage of the logical structure of the formula during the construc-

tion of a CAD. The distinction between equalities and inequalities

only matters in the solution phase of a QE problem. Likewise, the

CAD-TD which also aimed to construct a CAD in the sense of

[Col75], also does not make use of the logical structure informa-

tion in the input formula. While PCAD utilised this useful infor-

mation, it is geared towards QE problems and its use in our appli-

cation is still questionable (Section 5.2.4). The pre-conditioning

method presented in this thesis (Chapter 6) successfully utilises

the information in the input formula to some extent. However, it

is still limited to some special cases.

2. The method for computing the set of branch cuts as described in

Section 4.3.1 converts a system of polynomials in C (or Cn) to a

system of polynomials inR2 (orR2n) by taking real and imaginary

parts of variables in the polynomials. This makes our application

of CAD somewhat specialised, as coupled variables are dependent

and may exhibit geometric properties.

Lemma 9.2.1. Let f(z) = u(x, y) + iv(x, y) where z = x + iy.

Then u and v meet orthogonally at point p if p is a non-singular

point.
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Proof. From the Cauchy-Riemann equations, we have a pair of

equations:

ux = vy and uy = −vx.

Hence,
(

ux

uy

)

= M

(

vx
vy

)

where

M =

(

cos(θ) sin(θ)

− sin(θ) cos(θ)

)

and θ =
π

2
,

i.e. the 2-d rotation matrix.

3. The presence of equational constraints pi1 = 0 in our branch cuts

expressions. It would be well-worth investigating how the methods

of [Col98, McC99, McC01, BM05] can be adapted to our kind of

problem.

Improvement to CAD via triangular decomposition

The algorithm of CAD-TD relies heavily on triangular decomposition

[ALMM99]. [CDM+10] introduced a lazy triangular decomposition,

for which, under suitable assumptions, the decomposition can be com-

puted in singly-exponential time over the complexes. Exploring the

possibility of employing this within CAD-TD would be a useful piece of

future research. Furthermore, Maple 15 provides a new SamplePoints

command which returns a sample point for each connected component

of the semi-algebraic system. While it is relevant, as is QEPCAD, it is

not a direct answer to our problem as it is also a partial CAD. In addi-

tion, it does not provide any adjacency information, which is required

if we are to use adherence (Chapter 7).

Variable order

The choice of variable order is very important in practice. Experi-

ments show that the greedy projection algorithm and greedy/Brown’s

heuristic work reasonably well. Nevertheless, these heuristics are based

on CAD-PL, and an efficient and effective way to determine a good
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variable ordering in CAD-TD term is desirable. Another interesting

observation for future investigation is that greedy/Brown’s heuristic

positions the coupled variables beside each other in the variable order-

ing and the suggestions are shown to generally be good ones despite

the fact that the experimental results do not favour ordering coupled

variables in this way.

• Identity evaluation

Computing adherence of a cut can be hard in more complex, or high di-

mension problems, or when pre-conditioning is used, since we have to track

how the branch cuts are transformed as we are building up the formulae.

Nevertheless, we are hopeful that with better understanding, the adherence

method, and the post-conditioning method, can be generalised to handle

more identities one is likely to meet in practice.

• Extension

Our verification system, or more precisely its use of CAD, works for the

subclass of the elementary functions that have algebraic branch cuts. Un-

doubtedly, the cases where the branch cuts are transcendental are equally

important. A typical example would be log(exp(z))
?
= z; the branch cut

for log(z) is the negative real axis, hence the branch cut for log(exp(z)) is

{(x, y)|y = (2k+1)πi, k ∈ Z}, which is not algebraic. A possible extension

to our system is to include a class of Pfaffian functions, where one may be

able to use the method of [GV01], although the implementation is rarer and

the feasibility of the approach is still unclear.

Furthermore, many readily encountered identities such as those found in [AS64],

involve non-elementary functions. To include non-elementary functions

would be a major extension of this work.
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Appendix A

Definition of the Inverse

Elementary Function

These definitions of inverse elementary functions are taken from [CDJW00], which

repeats, with more justification, the definitions given in [AS64]. They also agree

with Maple (with the exception of arccot, for the reasons explained in [CDJW00]).

These definitions are in terms of log and therefore specify the branch cuts of these

functions in terms of the branch cut of log — Section 4.1.

arcsin(z) = −i log
(√

1− z2 + iz
)

arccos(z) =
π

2
− arcsin(z) =

2

i
log

(

√

1 + z

2
+ i

√

1− z

2

)

arctan(z) =
1

2i
(log(1 + iz)− log(1− iz))

arccot(z) =
1

2i
log

(

z + i

z − i

)

= arctan

(

1

z

)
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arcsec(z) = arccos

(

1

z

)

= −i log
(

1

z
+ i

√

1− 1

z2

)

,

with arcsec(0) =
π

2

arccsc(z) = arcsin

(

1

z

)

= −i log
(

i

z
+ i

√

1− 1

z2

)

,

with arcsec(0) = 0

arcsinh(z) = log(z +
√
1 + z2)

arccosh(z) = 2 log

(

√

z + 1

2
+

√

z − 1

2

)

arctanh(z) =
1

2
(log(1 + z)− log(1− z))

arccoth(z) =
1

2
(log(−1 − z)− log(1− z))

arcsech(z) = 2 log

(

√

z + 1

2z
+

√

1− z

2z

)

arccsch(z) = log





1

z
+

√

1 +

(

1

z

)2



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Appendix B

Branch Cuts of the Elementary

Functions

Table B.1 lists the branch cuts for square root, logarithm, and the inverse of

trigonometric and hyperbolic functions.

Function Branch cuts

square roots (−∞, 0)
logarithm (−∞, 0]
arcsin (−∞,−1) ∪ (1,∞)
arccos (−∞,−1) ∪ (1,∞)
arctan (−i∞,−i] ∪ [i, i∞)
arccsc (−1, 1)
arcsec (−1, 1)
arccot [−i, i]
arcsinh (−i∞,−i) ∪ (i,∞)
arccosh (−∞, 1)
arctanh (−∞,−1] ∪ [1,∞)
arccsch (−1, 1)
arcsech (−∞, 0] ∪ (1,∞)
arccoth [−1, 1]

Table B.1: Branch cuts of inverse elementary functions
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Appendix C

Formulae for the Inverse

Elementary Functions

The formulae are given in [Lit99]. They use the auxiliary function, csgn:

csgn(z) = (−1)K(2 log(z)) =







+1, if ℜ(z) > 0 or ℜ(z) = 0; ℑ(z) ≥ 0;

−1, if ℜ(z) < 0 or ℜ(z) = 0; ℑ(z) < 0.

The unwinding number [CJ96] K is defined in Definition 2.3.1.

arcsin(sin(z)) =







z − 2πK(zi), if csgn(cos(z)) = 1;

π − z − 2πK(i(π − z)), if csgn(cos(z)) = −1.

arccos(cos(z)) =







z − 2πK(zi), if csgn(sin(z)) = 1;

−z − 2πK(−zi), if csgn(sin(z)) = −1.

arctan(tan(z)) =z + π(K(−zi − log(cos(z)))−K(zi − log(cos(z)))),

provided z 6= π

2
+ nπ | n ∈ Z.

arcsinh(sinh(z)) =







z − 2πiK(z), if csgn(cosh(z)) = 1;

iπ − z − 2πiK(iπ − z), if csgn(cosh(z)) = −1.
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arccosh(cosh(z)) =







z − 2πK(z), if csgn(sinh(z)) cos(nπ) = 1;

−z − 2πiK(−z), if csgn(sinh(z)) cos(nπ) = −1.
where n = K(log(cosh(z)− 1) + log(cosh(z) + 1)).

arctanh(tanh(z)) =z + iπ(K(z − log(cosh(z)))−K(z − log(cosh(z)))),

provided z 6= π

2
i+ inπ | n ∈ Z.
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Appendix D

Examples

List of examples used in Chapter 8.

1.
√
z2

?
= z

2.
√
z2

?
= −z

3.
√
1− z2

?
=
√
1− z

√
1 + z

4.
√
z2 − 1

?
=
√
z − 1

√
z + 1

5.
3
√
z3

?
= z

6.
4
√
z4

?
= z

7. log
(

1
z

) ?
= − log (z)

8. log
(

−1
z

) ?
= − log (−z)

9. log (z2)
?
= 2 log (z)

10. log (z3)
?
= 3 log (z)

11. arctan (x) + arctan (y)
?
= arctan

(

x+y

1−xy

)

12. arctanh (x) + arctanh (y)
?
= arctanh

(

x+y

1+xy

)

13.
√
xy

?
=
√
x
√
y

14. log (xy)
?
= log (x) + log (y)

15. log (pq)
?
= log (p) + log (q) with p = z2 − 3z + 2, q = z2 + 4z + 1

16. log (pq)
?
= log (p) + log (q) with p = z3 − 3z + 2, q = z2 + 4z + 1

17. log (pq)
?
= log (p) + log (q) with p = z3 − 3z + 2, q = z3 + z2 + 4z + 1

18.
√√

p+
√
q
√√

p−√q ?
=
√
p− q with p = 3z + 1, q = z − 4

19. arccosh (x) + arccosh (y)
?
= arccosh

(

xy +
√

(x2 − 1) (y2 − 1)
)

137



20. arcsinh (x) + arcsinh (y)
?
= arcsinh

(

x
√

1 + y2 + y
√
1 + x2

)

21.
√
zw

?
=
√
z
√
w

22. log (zw)
?
= log (z) + log (w)

23. arctan (z) + arctan (w)
?
= arctan

(

z+w
1−zw

)

24. arctanh (z) + arctanh (w)
?
= arctanh

(

z+w
1+zw

)

25. log (pq)
?
= log (p) + log (q) with p = z2 + 1, q = w − 1

26. log (pq)
?
= log (p) + log (q) with p = z2 + 1, q = w2 − 1

27. log (pq)
?
= log (p) + log (q) with p = z − w + 4, q = w − 2z + 3

28. log (pq)
?
= log (p) + log (q) with p = z2 + z − w + 1, q = w − z + 2

29.
√√

z +
√
w
√√

z −√w ?
=
√
z − w
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