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Abstract

Spiking neural networks have, in recent years, become a popular tool for inves-

tigating the properties and computational performance of large massively con-

nected networks of neurons. Equally as interesting is the investigation of the

potential computational power of individual spiking neurons. An overview is pro-

vided of current and relevant research into the Liquid Sate Machine, biologically

inspired artificial STDP learning mechanisms and the investigation of aspects of

the computational power of artificial, recurrent networks of spiking neurons.

First, it is shown that, using simple structures of spiking Leaky Integrate and

Fire (LIF) neurons, a network n(P ), can be built to perform any program P

that can be performed by a general parallel programming language. Next, a form

of STDP learning with normalisation is developed, referred to as STDP + N

learning. The effects of applying this STDP + N learning within recurrently

connected networks of neurons is then investigated. It is shown experimentally

that, in very specific circumstances Anti-Hebbian and Hebbian STDP learning

may be considered to be approximately equivalent processes.

A metric is then developed that can be used to measure the distance between any

two spike trains. The metric is then used, along with the STDP + N learning,

in an experiment to examine the capacity of a single spiking neuron that receives

multiple input spike trains, to simultaneously learn many temporally precise In-

put/Output spike train associations.

The STDP +N learning is further modified for use in recurrent networks of spik-

ing neurons, to give the STDP + NType2 learning methodology. An experiment

is devised which demonstrates that the Type 2 method of applying learning to

the synapses of a recurrent network — effectively a randomly shifting locality of

learning — can enable the network to learn firing patterns that the typical appli-

cation of learning is unable to learn. The resulting networks could, in theory, be

used to create to simple structures discussed in the first chapter of original work.
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Chapter 1

Introduction

1.1 Spiking Neural Networks: Learning and Com-

putational Performance

The research field of artificial neural networks has been an existing and expand-

ing area of computer science for over 50 years. Current neural net research is a

highly diverse subject, insofar as focus of the research can vary from modelling

and investigation of the observed structures individual neurons and synapses,

such as the ion-channels that relay synaptic activity, to investigating the compu-

tational properties of structures ranging from individual neurons, to complex and

highly interconnected networks consisting of many hundreds, or even thousands,

of neurons and with thousands or hundreds of thousands of synapses.

The goals of this research can vary from attempting to build increasingly realistic

models of the biological neurons and synapses, to furthering our understanding

and knowledge of how networks of neurons may learn and remember specific neu-

ral patterns, through to investigating the computational power of such networks

at a fundamental level. In addition to their interest to the academic community,

neural networks, in one guise or another, are currently used in a wide range of

applications throughout a variety of industries. Specific uses include: financial

16
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forecasting (Peltarion, 2008); adaptive control systems such as the Intelligent

Flight Control System (IFCS) developed at NASA (Williams-Hayes, 2005); data

mining (SPSS Neural Networks, 2008). Neural networks can be a highly useful

tool in recognising and categorising real-world patterns, by which it is meant; pat-

terns that may contain elements of variability, distortion or noise. For example,

the task of recognising the same face viewed in different lighting conditions, or

predicting the short term trajectory of a particular stock given prior information

and potentially related but novel time-series data.

While usage of neural networks may be considered to be somewhat widespread,

there are still many questions regarding the fundamental capabilities and char-

acteristics of individual, and networks of, artificial neurons, that are yet to be

addressed. This thesis is concerned with investigating some of these fundamen-

tal aspects. For example, a modified form of Spike Time Dependent Plasticity

(STDP) learning with normalisation is formulated (STDP + N learning) and

used to modify the synaptic weights to spiking Leaky Integrate and Fire (LIF)

neurons. A metric is also developed that allows two spike trains to be compared

and provide a measure of the distance between them. This metric is then used as

measure of how well a single spiking LIF neuron can learn precise goal spike train

patterns and to investigate how the learning of multiple I/O spike train patterns

varies with the number of input connections. A framework is also established in

which structures of spiking neurons are built that operate in such a way and with

a degree of precision that, allows the creation of certain programming constructs

— as seen in the Occam programming language (Inmos Limited, 1998).

Essentially, this thesis is concerned with investigating what single neurons and

recurrently connected networks of neurons can learn and how well they can learn

it. The learning regime used is a variant of the biologically-inspired STDP mech-

anism and novel methods for the application of this STDP learning procedure are

implemented in networks of neurons; with a view to improving learning according

to quantitative and observable measures.
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1.2 Defining the Research Field

The area of particular relevance to this dissertation is the sub-field of neural net

research that involves the use of spiking neurons. The most relevant existing

research, in relation to the work in this thesis, can be summarised as follows.

All experimental work in this thesis is performed in simulation, utilising artificial

neurons and synapses. The detailed review of mathematical models for a range

of neuronal and synaptic models that is presented in Gerstner and Kistler (2002),

represents a definitive collection of just such artificial structures, ranging from

the complex ion-channel models, to the more simple and less computationally

intensive models such as the Leaky Integrate and Fire (LIF) neurons. The LIF

model is used in the original work presented in this dissertation is also widespread

in the existing research.

The Liquid State Machine (LSM), (Maass et al, 2002a) and similarly the Echo

State Network (ESN) (Jaeger, 2001), is a highly recurrently connected spiking

neural network, typically with its neurons arranged in a 3-D columnar structure

and randomly connected. It is designed with the concept of the neo-cortical mi-

cro column in mind. A subset of the neurons of the LSM receive a spiking input

stimulus from an input source and this firing activity spreads throughout the

network according to the randomly generated synaptic weights that, generally,

remain static and are unmodified by firing activity. More recent work (Hæusler

and Maass, (2007)), has used differing connectivity patterns for different layers of

the LSM. These different connectivity regimes were used to investigate the impact

on the computational capabilities of LSMs that exhibit a laminar structure, com-

pared to LSMs that exhibit more homogenous connectivity — synaptic weight

remain static. LSM research typically involves investigation of the Memory Ca-

pacity (MC) of theses columnar LSMs, among other performance indicators.

Just as relevant as the LSM research, is the work that investigates the potential of

individual neurons to learn to perform precise spike train responses to a collection

of specific spike train over multiple input channels, using STDP inspired learning,

as seen in Legenstein et al (2005), and similarly Pfister et al (2006). This research
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was performed concurrently with parts of the precise spike work seen in chapter

6 of this thesis. Pfister et al focus on determining the optimal form of the STDP

learning function for different scenarios involving correlated and uncorrelated

input spike trains to an individual neuron. In Legenstein et al (2005) it is shown

that individual neurons can learn complex precise spike train responses with

Hebbian type learning at the input synapses.

This thesis is concerned with furthering the understanding of the computational

power of spiking neurons and indeed, of recurrent networks of spiking neurons,

using as a starting point, aspects of the previously mentioned research.

1.3 Original Work

The first piece of original work, chapter 4 of this thesis, establishes a framework

in which networks of spiking neurons and synapses can be used to create simple

neuronal structures that facilitate the creation of a network n(P ), where P is a

program that can be implemented in any parallel programming language such

that, n is able to perform P .

The motivation for applying networks of spiking neurons in the manner outlined

in chapter 4, was to investigate how such neurons can be applied to a task that

is very different from their standard usage. The aim of this is to expand on what

it is possible to do with structures of such neurons. Networks of spiking neurons

are not typically used in such a way, and the intention of the work in chapter

4 is to investigate a novel application for these neurons, one that could be used

as a basis for very different form of computing than what is generally considered

their normal application.

While this work does not explicitly use the STDP learning seen in subsequent

chapters, it can be thought of as integrating with the work seen in chapter 7.

This work was accepted and presented as a poster presentation at the 9th Neural

Computation and Psychology Workshop (NCPW) 2004 and accepted for publica-

tion in the journal Theoretical Computer Science, 2007 (Carnell and Richardson,
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2007).

Chapter 5 contains the second piece of original work — a form of Spike Time

Dependent Plasticity (STDP) learning with normalisation, STDP + N learning.

This is a learning mechanism that modifies the synaptic input weights to a spiking

neuron based on the interaction of the timings of pre and post-synaptic spikes

interpreted via an asymmetric learning function. The normalisation procedure

is applied to the input weights of a neuron, and enables the weights to achieve

intermediate values between the minimum and maximum possible values.

It is shown that STDP + N learning, applied to the synapses of a recurrently

connected spiking neural network which receives an input spike train from a spik-

ing source neuron, produces an approximate convergence of the synaptic weights

and that the network can be considered to habituate to the particular input spike

train. An activity link vector L is defined which defines a relationship between

the pre and post synaptic firing activity of an individual neuron. Given a good

alignment of L and the input weight vector, W , of the individual neuron, it is

shown that, if the synaptic weights are allowed to change sign during modifica-

tion, Hebbian and Anti-Hebbian learning can be considered to be approximately

equivalent processes. Part of this work was accepted as a paper to the Brain In-

spired Cognitive Systems (BICS) conference, 2006, and a more complete version

has been accepted for publication in Neurocomputing, 2008 (Carnell, 2008).

The motivation for the work introduced in this chapter is to devise a biologically

inspired learning regime for use in networks of LIF neurons and which is to be

used in the majority of the experimental work of the thesis. It was felt that it was

essential to check the integrity of the learning regime. For example, to check that

the learning produced stable synaptic weight values. It was considered appro-

priate that, the fundamentals of the learning regime be investigated. Hence, the

check on applying different learning regimes one after another (Hebbian followed

by Anti-Hebbian learning), as well as checking the effect of stimulus changes.

Additionally, it was felt that it would be advantageous to explain, in a more

mathematical sense, the process of synaptic weight changes.
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Chapter 6 describes the development of a metric for weighted time series of spikes.

The metric can be used to provide a continuous, quantitative measure of the

distance between any two spike trains. It is also shown that this metric can also

be used as part of a training regime in which a spiking LIF neuron is trained

to produce a specific output spike train. Furthermore, the metric is used to

experimentally investigate the relationship between the number of unique I/O

associations a single spiking neuron can learn and the number of inputs the

neuron receives. The results of this investigation appear to show that there exists

a log-linear relationship between the number of inputs and the number of I/O

associations that can be learned simultaneously. The metric work of this chapter

was accepted and presented as a poster presentation at the European Symposium

on Artificial Neural Networks (ESANN) 2005 and subsequently accepted and

published in the proceedings of ESANN 2005 (Carnell and Richardson, 2005).

The latter experimental work of this chapter has been submitted for publication

in the journal Neural Networks.

Most research involving spiking neurons involves examining the properties of large

networks of such neurons (Maass et al 2002a, 2002b, 2004a, 2004b; Natschläger et

al, 2002a, 2002b; Jaeger, 2001) among many others. Less focus has been placed

on investigating the capabilities of individual spiking neurons (Pfister et al, 2006;

Toyoizumi et al, 2007); Legenstein et al, 2005). This relative lack of research

means that there are likely to be many aspects concerning the computational

capabilities of individual neurons that are unknown. Therefore, the motivation

for performing the experimental work that forms the latter part of chapter 6 was

to further the understanding of what a single neuron with a large number of input

connections, such as a neo-cortical neuron, is able to learn.

In order to investigate learning within these constructs, a measure on weighted

spike train similarity would be needed, in order to be able to determine what, if

indeed anything at all, had been learned. This is the motivation for devising a

metric that could be used to measure similarity between weighted spike trains.

Finally, in chapter 7 the framework for STDP+N learning, introduced previously

in this thesis, is modified further — in terms of its application to recurrently
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connected networks of spiking neurons. In this framework, standard application

of STDP Hebbian learning is referred to as Type 1 learning, while the modified

version is referred to as Type 2 learning. More specifically, this modification, also

referred to as STDP + NType2 learning, involves the introduction of a randomly

shifting ‘locality of learning’, which basically means that the network is able

to learn firing patterns that it was unable to learn with the standard, Type 1,

application of Hebbian learning.

It is noted that the structures borne out of the use of this Type 2 learning

implementation, could be used to train networks of neurons to form the simple

structures first described and built in chapter 4.

Having established the integrity of the STDP+N learning regime and also having

investigated aspects of the computational capabilities of individual neurons with

varying, and in some cases very large, numbers of input connections using this

learning regime, attention was then turned to recurrently connected networks

consisting of many (hundreds) neurons and more specifically the way in which

the learning regime is applied with such networks.

The motivation for the work in chapter 7, is to address the method of application

of Hebbian-type learning from a perspective that has not previously been used.

The aim of this is to determine if there are advantages to using different meth-

ods of application of the Hebbian STDP learning regime other than the typical

method of application. The typical method of application is to have the learning

regime operating on all synapses of all firing neurons of a network all of the time,

during a learning epoch.

1.4 Structure of Thesis

This thesis is split into two distinct sections. The first section deals with the

relevant background research and can itself, be split into two sections, background

work and original work.
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The first background chapter highlights and describes the research material in

which the Liquid State Machine (LSM) is first introduced and the in which the

computational performance of the LSM is investigated on a variety of fundamental

tasks.

The second background chapter describes the most recent research involved with

the investigation of obtaining precise trains from spiking neurons through modi-

fication of synaptic input weights.

The second major section of this thesis presents the original work of this thesis.

Firstly, chapter 4 describes how simple structures of neurons may be used to per-

form the functions of a parallel programming language. In chapter 5 the learning

mechanism is described in detail, this learning is a form of STDP learning with

normalisation, STDP + N learning. This learning mechanism is then applied to

both individual spiking neurons and networks of recurrently connected spiking

LIF neurons in a variety of different experiments designed to further the knowl-

edge in the field, of what spiking neurons can learn, how well they can learn it

and how this learning may possibly be improved. A metric of spike train similar-

ity is introduced in chapter 6 and used extensively throughout the experimental

work of this thesis. Chapter 7 demonstrates a novel application of STDP + N

learning, STDP +NType2 which, is shown to be capable of learning certain firing

patterns that the standard application of STDP + N learning, STDP + NType1

cannot learn.

Chapter 8 contains the conclusions to the original work presented in this thesis,

along with suggestions for further, related future work that is based on the results

of this thesis.
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Chapter 2

The Liquid State Machine

The Liquid State Machine (LSM) concept was first introduced in Maass et al

(2002a), and also investigated extensively in Maass et al (2002b, 2004a, 2004b,

2005), Bertschinger and Natschläger (2004), Natschläger et al (2002a, 2002b),

among others. It is a relatively new and quite novel attempt to model some of

the observed structural, behavioural and computational aspects of the human

neocortex. The Liquid State Machine essentially acts as a filter on a set of

continuous input spike trains and enables this input to be represented in a higher

dimensional form. The LSM in one of its basic forms could typically consist of a

three dimensional column of highly recurrently interconnected spiking neurons,

some of which receive continuous input spike trains from a separate pool, or pools,

of spiking input neurons. The model used for the recurrent neurons is typically the

Leaky Integrate and Fire (LIF) model (Gerstner and Kistler, 2002). Typically,

the emphasis of LSM research tends to the investigation of the computational

power of learning, utilising groups of neurons. This need to simulate groups of

neurons rather than just individual neurons requires that the neuron models need

to allow for the simulation of these recurrent networks in a reasonable timeframe

and so the simpler LIF model, instead of the more complex ion channel models,

is the most favourable.

The recurrent LSM network or ‘microcolumn’, (Maass et al, 2002a), typically

25
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receives a temporally varying input ninput(t) from a pool (or pools) of input

neurons that are connected to a subset of the recurrent neurons within the LSM;

an input pool comprises one or more spiking input neurons. The LSM acts as a

medium through which the input can be expressed in a higher dimensional form

— the number of neurons and the highly recurrent connections of the LSM, each

with its own synaptic weight and time delay (among other parameters which are

discussed later in section), make this possible. The LSM concept is essentially

equivalent to the concurrently and independently developed concept of the Echo

State Network, ESN, introduced in Jaeger (2001) and investigated further in

Jaeger (2002). From an implementation point of view, the two approaches are

the same and the reason for using the LSM as the basis for the work in this thesis

is simply down to the abundance of literature dealing with the LSM, coupled

to the availability of the necessary LSM simulation software CSIM (IGI Group,

2008) which runs under MATLAB.

In the context of the LSM, a readout neuron which receives a connection from

all of the neurons within the LSM is then able to be taught, using a learning

algorithm to modify the synaptic weights on the connections from the LSM, to

perform some computable function F on the input (ninput(t)), with the strong

limiting factor on the complexity of the filter F being the size of the LSM

(Bertschinger and Natschläger, 2004). An example of this type of basic LSM

setup can be seen in figure 2-1.

Using such a diverse representation of the input, it is possible to represent highly

salient aspects of the input, which can then allow for the computation of com-

plex functions on the input. Such functions include both linear and non-linear

functions such as, for example, the training of a group of readout neurons on

memory capacity functions — essentially n-bit parity tasks — or the XOR func-

tion, (Bertschinger and Natschläger, 2004), which will both be discussed in a

later section.
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Figure 2-1: A Basic LSM consisting of LIF neurons with spiking input neuron ninput,
generated using CSIM, IGI group (2008).

2.1 A Typical Implementation

Analyses of the computational qualities of the LSM typically involve the use of

a group or column of highly recurrently connected LIF neurons which facilitate

the projection of an input into higher dimensions, as shown in figure 2-1.

The connectivity between LSM neurons is generated such that those neurons

that are spatially close together have a higher probability of forming a synaptic

connection than neurons that are spatially more distant from each other. For

example, if the term for the probability that two neurons are connected is given

by, eD(a,b)/λ)2 , then the greater the proximity of any two neurons then, the greater

the probability that they will be connected. Here, λ determines the average

distance between neurons as well as the average number of connections. The

euclidean distance between two neurons a and b is given by D(a, b).

Generally, the LSM is implemented in such a way that there exists only a single

connection between any given pair of neurons, with a typical network neuron

receiving hundreds of input connections from surrounding network neurons.

Given that in a real structure such as the neocortex a single neuron could re-
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ceive 10, 000 synaptic connections (Peters and Jones, 1984), this could be a

short-coming of these typical LSM implementations, especially given that there

has been little research into the effect on computational power that such highly

multiple interconnected systems posses. It is unlikely that one can achieve a

thorough understanding of something as complex as a neocortical column if one

does not appreciate, and take into account, the scale of its complexity.

The universal computational power of the LSM concept has been successfully

demonstrated in Maass and Markram (2004). It was shown by Maass and

Markram that certain classes of LSM are capable of universal computation in

an online scenario and on functions of time, or time series data. In other words,

it was shown that within the LSM framework, and for any given continuous func-

tion of time, on a finite interval, it is possible to train a readout neuron of an

LSM to approximate the function.

Additionally, it was shown that, in principle, for any Turing machine, an LSM can

be created, whose readouts may be trained to produce all computations possible

for that Turing machine.

The ability of the LSM to act as a high dimensional representation of its input

is indeed a useful starting point for investigating the general computing power

of micro-columns of neurons. However, research involving the LSM has typically

involved using static synaptic weights within the recurrent network, as opposed

to synaptic weights that be altered via a learning mechanism.

The detailed analyses performed in Maass et al (2002a, 2002b, 2004a, 2004b,

2005), Pfister et al (2006), Toyoizumi et al (2007), Bertschinger and Natschläger

(2004), Natschläger et al (2002a, 2002b) and Jaeger (2001, 2002), on the LSM or

the ESN, provide the neural network community with several interesting and im-

portant concepts and proofs concerning the behaviour and computational power

of LSMs and LSM-type networks. The introduction of these concepts have estab-

lished the LSM paradigm as a new and exciting tool for the community. What

follows is a description of the most important aspects of the concepts arising from

the core LSM research so far.
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2.2 Learning within the LSM paradigm

Typically, the process of learning, in the context of the standard LSM paradigm,

is accomplished as follows. An input stream ninput(t) which, could consist of

a single or many spike trains is presented to a subset of the recurrent LSM.

The learning of a particular function on this input stream F (ninput(t)) is then

accomplished by altering the synaptic weights that connect a readout pool of

neurons — or even just a single neuron — to the recurrent network. Generally,

the neurons which belong to the readout pools are fully connected to the LSM.

This means that a single readout neuron receives a single connection from each

of the recurrently connected neurons within the LSM.

The individual synaptic weights on the connections from the LSM to a readout

neuron are modified by a form of gradient descent known as the p-delta rule —

a variation of the delta rule (Auer et al, 2002), and is discussed below.

Using this technique, it can be said that a single readout neuron is basically

treated as simple perceptron and that a group of readout neurons essentially

functions as a committee. The output of each element of the committee is treated

as a binary signal and the output of such a committee at a particular instant in

time being regarded as the state (either firing or not) of the majority of the

readout neurons which constitute the committee.

2.3 The p-delta rule

The parallel-delta (p-delta) rule (Auer et al, 2002), is a variation of the classic

delta learning rule that was developed by Widrow and Hoff (1960). The essential

difference between the two is that the p-delta rule modifies the delta rule in such

a manner that it is applied to a committee of perceptrons with binary output

that are arranged in parallel. Such a committee can receive input from a LSM

and be trained using p-delta, to perform some function on the state of the LSM.

The weight update rule for p-delta learning can be briefly summarised as follows.
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The p-delta rule is not used in the original work of this thesis, it is shown here

merely for completeness, as it is used heavily in the existing LSM research.

αi ← −η(||αi||2−1)αi + η



(−z) if ô> o + ε and αi · z ≥ 0

(+z) if ô< o− ε and αi · z < 0

µ(+z) if ô≤ o + ε and 0 ≤ αi · z < γ

µ(−z) if ô≥ o− ε and − γ < αi · z < 0

0 otherwise

Where αi is the weight vector of a single readout neuron with i incoming con-

nections, z represents the activity on each connection to the readout neuron, o is

the actual output of the readout neuron, ô is the desired (or goal) output of the

readout neuron, η is the learning rate, γ is the margin around the origin which is

kept clear of dot products (for stability), µ controls the influence of a particular

weight update, ε is the acceptable error of the actual compared to the desired

output of a readout neuron being trained. This is not, by any means, meant to

be a full description of p-delta, but simply a brief summary. For full details see

Auer et al (2002).

p-delta, although not used here, has been compared to several good machine

learning algorithms such as: Gorman-Sejnowski (1988), Sigillito et al (1989),

and Ster-Dobnikar (1996), on a variety of datasets and has been found to be

of comparable performance, see Auer et al (2002). Also, Maass et al use p-

delta to train pools of readout neurons connected to a LSM, see Maass et al

(2002a). Additionally it should be noted that the performance of p-delta is

highly dependent upon the choice of the parameters of the update rule. In actual

fact, for best performance it is necessary to implement dynamic parameters —

see appendices in Auer et al (2002).

2.4 Fading Memory

Fading memory is a concept introduced in Maass et al (2002a), and in Jaeger

(2001) in which it is referred to as the Echo State Property. Informally, a LSM
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is said to exhibit or posses the fading memory property if the significant compo-

nents of its output spike train y(t) at the current time t, are dependent only on

its input spike train u(t) over some finite interval into the past [−T, 0]. There-

fore, fading memory can also be thought of as describing a LSM whose dynamics

are well behaved. This means that the spiking dynamics are not driven by inter-

nally originating spiking sources but are primarily influenced by the driving input

stimulus spike train and that crucially, the effect of the input spike train u(T )

at some point in the past T , on the output of the LSM y(t) at some subsequent

time t, where t > T , is increasingly diminishing as (t− T )→∞.

Consider a LSM at a time t with an input stream at this time given by u(t) and

an output stream y(t), where y(t) = Fu(t). F is a filter function that a readout

neuron performs on the spiking activity of the LSM that is generated by the

input spike train u(t). The formal definition of fading memory can be found in

Maass et al (2002a).Fading Memory has two consequences for the LSM: i) It is

not necessary in an LSM with fading memory to know anything about the input

u(t) beyond a finite interval [−T, 0] into the past; ii) It is not necessary to know

precisely what the input u(t1) was at any time t1 in order to obtain the current

significant components of the LSM output y(t2), where t2 > t1.

2.4.1 Fading Memory Experiments

Consider a LSM, M , that is connected to a single readout neuron which receives

an input from each of the neurons in M . The readout is trained to learn some

filter function of the spiking activity of the LSM. In this LSM setup, there can be

considered to be two filter functions to consider. The first is the filter function

performed by the LSM itself on the input spike trains it receives. This filter

function is denoted by LM (if we are to remain true to Maass’ notation). The

output of this filter function at time t, is the internal state of the LSM — a

function which incorporates the firing states of all neurons within the LSM —

and is given by xM = LMu(t). The second filter function to consider is that

performed by the readout neuron or, what is referred to in Maass et al (2002a)
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as a memoryless readout unit. The readout is memoryless from the point of view

that it does not remember or care about its input (the internal state xM(s) of the

LSM) for any previous time s if s < t where t is the current time. It is the filter

function performed by the readout neuron on the internal state of the LSM that

is the focus of much of the work undertaken on the LSM in Maass et al (2002a,

2002b, 2004a, 2004b, 2005), Bertschinger and Natschläger (2004), Natschläger et

al (2002a, 2002b).

In order to illustrate the Fading Memory concept experimentally, the concept

of the memory capacity of a LSM can be employed. A discussion of memory

capacity follows in section 2.5.

2.5 Memory Capacity and Mutual Information

2.5.1 Information Theory and Mutual Information (MI)

For the sake of completeness and due to the use of memory capacity as a measure

of the computational power of LSMs in Bertschinger and Natschläger (2004)

and Maass et al (2002a) a brief introduction to information theory and mutual

information is included. In 1948 Claude E. Shannon published his seminal paper

on Mutual Information (Shannon, 1948). This paper is considered by most to

be invaluable to the creation of the field of Information Theory and some its

most fundamental concepts. Perhaps one of the most important concepts to be

introduced in this work is that of the Shannon entropy. Entropy is a measure of

the amount of disorder in a system and can also be thought of as a measure of

the amount of information contained in a system.

If one considers two information sources to be both discrete and random, then

the Shannon entropy can be used to describe how much information one source

contains about the other. The Shannon entropy gives rise to the concept of the

mutual information between the two sources. These sources have the potential

to be thought of as almost any kind of information channel and therefore, the
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measure of mutual information, MI, is a useful metric that has been applied in

the fields of language (Magerman et al, 1990; Drábek et al, 2000; Zhang et al,

2006), telecommunications (Peacock and Collings, 2003; McKay et al, 2006), and

computing/mathematics (Haussler and Opper, 1995) among many others.

In order to define and explain MI, first it is necessary to describe and explain

the concept upon which it is based i.e. the Shannon entropy.

2.5.2 Shannon Entropy

The Shannon Entropy, denoted by H, is a quantity which represents the un-

certainty of a variable that has a finite number of possible occurrences. For

example, consider a set of events with probabilities (p1, p2, ..., pn). H is a quan-

tity that reflects the certainty of the outcome. It can be seen that the scenario

with maximum uncertainty is where the probability of each event is equal — in

this scenario, the entropy, H, is at a maximum. If all events but one have a

probability of occurring of 0 and one event has probability of 1 then we can be

absolutely certain of the outcome and so uncertainty, the entropy, H, is zero.

Uncertainty is one way of looking at the quantity H, however H can also be

thought of as representing the amount information we know about a set of possible

events.

The three criteria that Shannon (1948) shows that H should satisfy are:

i) H should be continuous in the pi.

ii) Given equal values for all pi and n events, pi = 1/n and H should be a mono-

tonically increasing function of n i.e. with more events there is more uncertainty,

with events of equal probability.

iii) If a choice is split into two successive choices then the original H should be

the weighted sum of the individual values of H. The original choice is denoted

as: H(1
2
, 1

3
, 1

6
) = H(1

2
, 1

2
) + 1

2
H(2

3
, 1

3
)

From Shannon (1948): H(X) = −K
∑n

i=1 pi log pi which, is the only form of H
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that satisfies the above three criteria, where K is a positive constant. Given two

possible events, one with probability p and the other with probability q = 1−p, a

plot of H versus p can be obtained and is shown in figure 2-2. Using a logarithm

of base 2 means that unit of H is the bit.

In Appendix 2, the following result is established:
Theorem 2: The only H satisfying the three above assumptions is of the form:

H K
n

∑
i 1

pi log pi

where K is a positive constant.
This theorem, and the assumptions required for its proof, are in no way necessary for the present theory.

It is given chiefly to lend a certain plausibility to some of our later definitions. The real justification of these
definitions, however, will reside in their implications.

Quantities of the formH ∑ pi log pi (the constant K merely amounts to a choice of a unit of measure)
play a central role in information theory as measures of information, choice and uncertainty. The form of H
will be recognized as that of entropy as defined in certain formulations of statistical mechanics8 where pi is
the probability of a system being in cell i of its phase space. H is then, for example, the H in Boltzmann’s
famous H theorem. We shall call H ∑ pi log pi the entropy of the set of probabilities p1 pn. If x is a
chance variable we will write H x for its entropy; thus x is not an argument of a function but a label for a
number, to differentiate it from H y say, the entropy of the chance variable y.

The entropy in the case of two possibilities with probabilities p and q 1 p, namely

H p log p q logq

is plotted in Fig. 7 as a function of p.

H
BITS

p

Fig. 7—Entropy in the case of two possibilities with probabilities p and 1 p .

The quantity H has a number of interesting properties which further substantiate it as a reasonable
measure of choice or information.

1. H 0 if and only if all the pi but one are zero, this one having the value unity. Thus only when we
are certain of the outcome doesH vanish. Otherwise H is positive.

2. For a given n, H is a maximum and equal to logn when all the pi are equal (i.e., 1n ). This is also
intuitively the most uncertain situation.

8See, for example, R. C. Tolman, Principles of Statistical Mechanics, Oxford, Clarendon, 1938.
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Figure 2-2: A plot of the Shannon entropy H in bits, versus the probability of each
event, p. (Shannon 1948, p.20)

Shannon continues to show from figure 2-2 that H has several other properties:

1) H = 0 if and only if all pi but one are zero and the non-zero pi is 1 (condition

i) above) — otherwise H is positive.

2) For n events H ≤ log n and is maximum when all pi are equal — the most

uncertain situation (condition ii) above).

3) Consider two events x and y, with m and n possibilities respectively. If p(i, j)

is the joint probability of getting i for the first event and j for the second then

the entropy of the joint event is given by H(x, y) ≤ H(x) + H(y) with equality if

the events are completely independent.

4) Any change to equalise the probabilities results in an increase or no change at

all in H.

5) Consider a similar situation to that in iii) but in which the two events x

and y are not necessarily independent of each other. Shannon shows that the

conditional probability p(j|i) of getting j from the second event y given that the
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first event x produced i is given by:

p(j|i) = p(i,j)P
j p(i,j)

.

Shannon then defines a conditional entropy Hx(y) of y which is the average of

the entropy of y for each value of x, weighted by the probability of getting that

particular x.

Hx(y) = −
∑

i,j p(i, j) log p(j|i)

By substituting p(j|i) with p(i,j)P
j p(i,j)

, Shannon obtains the relationship

H(x, y) = H(x) + Hx(y)

vi) The uncertainty of y is never increased with knowledge about x. Even if the

two events are independent the uncertainty remains the same. Shannon’s final

condition for H is therefore given by: H(y) ≥ Hx(y).

To apply this to the quantity of mutual information between two events or infor-

mation sources, consider two discrete and random information sources X and Y .

Suppose that the Shannon entropy of X and of Y are given by H(X) and H(Y )

respectively.

The mutual information between X and Y is the amount of information, for

example, that Y contains about X and is given in Shannon (1948), as I(X, Y ),

and it was shown that this can be expressed in terms of the Shannon entropy by

the relationship:

I(X; Y ) = H(X)−HX(Y ).

From the previous discussion of the meaning of the Shannon entropy, this ex-

pression can be considered to mean that the mutual information between X and
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Y can be thought of as the uncertainty in X minus the uncertainty in X that

remains when Y is known, i.e. the more information Y contains about X then,

the smaller the uncertainty of X will be when Y is known. Therefore we subtract

this smaller amount from H(X) and consequently end up with a greater amount

of mutual information between X and Y , I(X; Y ) than if Y was not known or if

X and Y are independent of each other.

2.6 Memory Capacity

Memory capacity, a concept introduced in Bertschinger and Natschläger (2004),

is a measure of how much information about its past inputs a system, such as the

LSM, is able to encode in its current dynamical state at any time. Essentially, how

much it can remember. Memory capacity is based upon the concept of mutual

information, MI, as formulated in Shannon (1948). For most computational

systems it is highly useful if not essential that the system has a memory — the

larger and more robust the memory, the more information about its past can be

stored. In the following description of the 3-bit parity task, consider the spikes

contained in an input spike train ninput(t) to be collected into time bins. The

duration of these time bins should ideally be small enough such that it is likely

that a single time bin will only contain one spike. It will be possible for a time

bin to contain more than one spike however, a time bin will be treated the same

whether it has one or more than one spike.

2.6.1 The 3-bit parity task and the LSM

Consider the basic LSM previously described and shown in figure 2-1. Suppose

that this network is in some random, initial dynamic state of firing. The network

is then given an input spike train that will drive the dynamic state of the system.

Many systems that are considered to be computationally useful will need to have

some memory of their input up-to some finite distance into the past. This finite

duration puts a limit on the memory capacity of the system and it is this memory
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capacity that the parity task is designed to measure.

The memory capacity of a LSM can be defined by means of the simple 3-bit parity

task. Suppose we want to know the MI between the spike trains of neurons

ninput and noutput — a measure of how much information the spike train of noutput

contains about the spike train of ninput. Assume the input spike train to the

network is given by nin(t), the output spike train is nout(t) and that the present

time is denoted by T , so that t <= T .A B
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Figure 6: A Memory curve for the 3 bit parity task. Shown is the mutual in-
formation MI(v, y) between the classifier output v(·) and the target function
y(t) = PARITY(u(t − τ), u(t − τ − 1), u(t − τ − 2)) on a test set (see text
for details) for various delays τ . Parameters: N = 250, K = 4, σ2 = 0.2, ū = 0
and r = 0.5. B The gray coded image (an interpolation between the data points
marked with open diamonds) shows the performance of trained networks in de-
pendence of the parameters σ2 and ū for the same task as in panel A. Performance
is measured as the memory capacityMC =

∑
τ MI(τ), i.e. the “area” under the

memory curve. Remaining parameters as in panel A.

about several input bits u(t′), t′ < t in a nonlinear transformed form such that a
linear classifier C is sufficient to perform the nonlinear computation of the parity
task.
In Fig. 6A the mutual information MI(vτ , yτ )8 measured on a test set between
the network output vτ (·) trained on a delay of τ and the target signal yτ (·) is
shown for increasing delays τ (cf. (Natschläger and Maass, 2003)).9 Following

8The mutual information MI(v, y) (in bits) between two signals v(·) and
y(·) is defined as MI =

∑
v′

∑
y′ p(v′, y′) log2

p(v′,y′)
p(v′)p(y′) where the sums are

over all possible values ({−1, +1} in our case) of v(·) and y(·), p(v ′, y′) =
Pr {v(t) = v′ ∧ y(t) = y′} is the joint probability, p(v′) = Pr {v(t) = v′} and
p(y′) = Pr {y(t) = y′} are the marginal distributions. Note that all these proba-
bilities can reliably be estimated simply by counting since v(·) and y(·) are binary
signals in our case.

9Note that for each delay τ a separate classifier is trained. For training a single
linear classifier a trainig set {〈xl, yl〉}, l = 1..9000 where xl are network states
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Figure 2-3: An example of a plot of MIτ (ninput;noutput) for various values of τ .
The area lying beneath the line plot represents the memory capacity of the LSM.
(Bertschinger and Natschläger, 2004, p.1427).

Define τ to be the time-step of the experiment and equal to the width of a time-

bin of the input/output spike trains. Consider three successive time-bins of the

input spike train at multiples of τ into the past. The memory capacity can then

be defined by a simple 3-bit parity task as follows. The target output function

which the readout neuron noutput is to learn, is determined by F (nin(t−τ)), where

F represents the 3-bit parity task filter function on the input spike train and t is

the current time. The mutual information between the actual output spike train

of the readout neuron noutput and the desired output spike train, given by the

training filter function F (nin(t − τ)) gives the value of MI(τ), where the input

and output spike trains are considered over an interval [(0 + τ), T ].

For the 3-bit parity task where, the input to a LSM network is given by nin(t), the

output of a readout trainable neuron is given by nout(t), and the desired output is
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Input spike train

      (binned),

          u(t)

Output spike train

       (binned),

           y(t)

!=0!=4

Figure 2-4: An illustrative figure to demonstrate the 3-bit parity task on a pair of
input and output spike trains. In the time-bin at τ = 0, the desired output parity
function yτ (t) contains a spike as each of the previous 3 time-bins of the input spike
train contained at least 1 spike. Whereas the time-bin of the output spike train at
τ = 4 does not contain a spike, as parity does not exist between the previous three
time-bins of the input spike train.

given by yτ (t), we require that yτ (t) = PARITY (nin(t−τ), nin(t−τ−1), nin(t−
τ − 2)). If τ is taken to be zero (no delay), this means that the target spike train

yτ (t) will contain a spike at the current time t if the input spike train ninput(t)

has either at least one spike in each of the last 3 time bins or no spikes at all in

each of the last 3 time bins. For clarity, this is illustrated in figure 2-4. The MI

between nout(t) and yτ (t) is then calculated for increasing values of delay τ —

the value of τ is equal to the duration of a single time bin — and the memory

capacity of a network can then be given by:

MC =
∑

τ

MIτ (nout(t), yτ (t))

What this means is that the memory capacity of the LSM can be considered to be

the sum of the mutual information between the output spike train of the network

as given by nout(t) and the desired output spike train as given by F (nin(t − τ))

for increasing values of delay τ .

For increasing values of τ , the MC has been shown to drop off to zero, shown

in figure 2-3, taken from Bertschinger and Natschläger (2004). This result can
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Readout
neurons

!=1 !=2 !=3 !=n

Recurrently connected
      LSM network

Spiking Input Neuron

...

Figure 2-5: An illustration of a typical experimental setup that could be used to
demonstrated the concept of fading memory.

be considered to be due to the fading memory concept discussed previously. The

experimental setup required to perform the described MC tasks, and to obtain

the memory capacity curve of a network is shown in figure 2-5. In this illustration

each of the readout units would be trained to calculate the PARITY function

with a unique integer value of τ . In this way a plot of the mutual information

between the actual output of each readout and the desired output versus the

value of the delay τ can be obtained. This plot is shown in figure 2-3, and clearly

demonstrates the drop off in MI between actual and desired output of the readout

with increasing time delay τ . The drop off is entirely due to the memory capacity

limit of the LSM which, is only able to hold a finite amount of information about

its input history within its internal dynamics. The actual value of the memory

capacity of a network can now be thought of as the total area encompassed by

the MI vs τ plot and the τ axis.
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2.7 Ordered, Critical and Chaotic Dynamics

The ability of the previously mentioned readout neurons to learn a particular

function of the input stream of spike trains to the LSM is heavily dependent upon

the response to the input stream, of the LSM itself. More precisely, performance

of such simple, linear readouts is dependent on the LSM exhibiting neither too

chaotic nor highly ordered dynamics in response to the input stream Bertschinger

and Natschläger (2004).

The terms ordered dynamics and chaotic dynamics are defined in Bertschinger

and Natschläger (2004), and this work stems from that of Derrida (1987). Broadly

speaking, a network may be considered to exhibit ordered dynamics if the firing

activity of the network is highly input driven, and the spiking activity produced

by the neurons of the LSM itself do not become the main driving stimulus of

the LSM over and above the input. Along a similar line of thinking, a network

is considered to exhibit behaviour known as chaotic dynamics if the internal

network activity generated by the network itself becomes the dominant, driving

stimulus over and above the stimulus provided by the input stream. A chaotic

network is highly influenced by the initial conditions of the network activity —

initial internal states of recurrent neurons for example — rather than the input

source. Additionally, a network is considered to exhibit critical dynamics if the

dynamics are on the border between ordered and chaotic. The definition of this

boundary for this criticality region is discussed below.

In Bertschinger and Natschläger (2004), the emphasis is investigating the com-

putational performance of LSMs which exhibit ordered, chaotic and critical dy-

namics in terms of the parameters K — the number of incoming connections per

neuron, σ2 — variance of non-zero weights and ū — the mean of the input stim-

ulus. Together, K and σ2 determine the connectivity structure of the recurrent

network.

The Network state of a LSM is defined in Bertschinger and Natschläger (2004)

as follows. All neurons within a LSM are treated as simple threshold gates whose

internal state at a time t is given as +1 if it is firing and −1 if it is not firing.
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Therefore, the state of a neuron i is defined as xi = {−1, +1}. Also, i receives

non-zero weights from K neurons within the LSM, with these weights being drawn

from a gaussian distribution of zero mean and a variance given by σ2. Therefore,

the network state of an N neuron LSM is given by x̄(t) = (x1(t), ..., xN(t)). The

update rule for the state of a single neuron i is then given by:

xi(t) = Θ(
∑N

j=1 wij · xj(t− 1) + u(t))

In which Θ(h) = 1 if h ≥ 1 else Θ(h) = −1.

Consider a recurrently connected LSM with a subset of its neurons receiving an

input spike train stimulus given by u(t). Suppose that the network can have one

of two different states of initial internal activity, denoted by x̄1(t) and x̄2(t). In

each of these initial scenarios, suppose that the network is subjected to the input

u(t). In the first instance the initial network state is given by x̄1(t) and in the

second instance the initial network state is x̄2(t); the new network states after

exposure to u(t) are given by x̄1(t + 1) and x̄2(t + 1) for initial states x̄1(t) and

x̄2(t) respectively. The normalised Hamming distance between the two initial

states x̄1(t) and x̄2(t) is calculated and compared to the normalised Hamming

distance between the two network states, x̄1(t + 1) and x̄2(t + 1), after being

presented with the input u(t). If the distance between states has increased then

the network is said to inhabit the chaotic phase — the dynamics are dependent

on the initial state of the network. Whereas, if the distance has decreased the

network is said to inhabit the ordered phase — dynamics are driven by the input

stimulus, and differences caused by the initial network states x̄1(t) and x̄2(t) have

died away over time.

The normalised Hamming distance between two network states x̄1(t) and x̄2(t)

at time t is given by Bertschinger and Natschläger (2004) as:

d(t) = |{i : x1,i(t) 6= x2,i(t)}|/N

Where x1,i denotes the ith component of the network state vector x̄l(t), l = 1, 2.

The normalised Hamming distance between the two network states at time (t+1)
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is denoted as d(t + 1; u) for a network that is presented with input u. This is

related to the normalised Hamming distance between the original two network

states at time t by the equation:

d(t + 1; u) =
∑K

c=0(K/c) · d(t)c · (1− d(t))K−c · PBF (c, u)

Where, PBF is the probability that, of the K inputs to a single neuron, flipping

the binary output of c of one these K inputs will cause the neuron to change its

own binary output.

Relating to previous work in Maass et al (2002a), Bertschinger and Natschläger

(2004) observe that LSM networks which populate the ordered phase can be said

to posses the fading memory property previously mentioned.

It was found by Bertschinger and Natschläger that in addition to the critical

line being the border between ordered and chaotic dynamics, networks located

on the critical line may exhibit the best computational performance on some

fundamental tasks.

The location of the critical line on the phase plot of ū vs σ2 seen in figure 2-6, is

defined in Bertschinger and Natschläger (2004) as:

r · PBF (1, ū + 1) + (1− r) · PBF (1, ū− 1) = 1/K

Where, PBF is the probability that 1-bit flip out of the K total inputs to a neuron

will result in the neuron producing a different output in the two network states

and r is the probability that the input u is given by u = ū + 1 and 1 − r is the

probability that u = ū− 1.

2.7.1 The effect of criticality of computational power

By using values for K, σ2 and ū that generate networks that lie in one of the

three dynamical regions it is shown in Bertschinger and Natschläger (2004), that
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Figure 3: The critical line. Shown is the critical line for parameters σ2 and ū in
dependence of K (denoted in the figure). As before we set r = 0.5. Note that the
ordered (chaotic) regime is to the left (right) of the critical line.

state x(t) depends just on the values of its input u(t′) from some finite time win-
dow t′ ∈ [t−T, t] into the past4(Maass et al., 2002). A slight reformulation of this
property (Jaeger, 2002) shows that it is equivalent to the requirement that all state
differences vanish, i.e. being in the ordered phase. This property is called “echo
state property” in (Jaeger, 2002).
Fading memory plays an important role in the “liquid state machine” framework
(Maass et al., 2002) (called “echo state networks” in (Jaeger, 2002)) which we will

4More formally a network is said to have the fading memory property if the
following holds: For all ε > 0, initial conditions x1(0), x2(0) and input sig-
nals u1(·), u2(·) exist δ > 0 and T ∈ N such that ‖u1 − u2‖input < δ ⇒
‖x1(T )−x2(T )‖state < ε. Here x1(T ), x2(T ) denote the states that are obtained
by running the network T time-steps on initial conditions x1(0), x2(0) and input
signals u1(·), u2(·) respectively. ‖·‖input and ‖·‖state are norms that turn the space
of input signals and network states into compact vector spaces.

9

Figure 2-6: A plot of ū against σ2, showing the critical line, the border between ordered
and chaotic network dynamics. (Bertschinger and Natschläger, 2004, p.1420)

choices of K, σ2 and ū that produce networks that exhibit critical dynamics are

computationally better than both chaotic and ordered networks on two specific,

fundamental tasks. Determining the computational power of a network is done

using two types of task: i) Determining the memory capacity of the networks

using 3 and 5-bit parity tasks; ii) Training a single readout neuron (linear clas-

sifier) that receives a connection from every neuron within the LSM to perform

the XOR task upon the input to the LSM. Figure 2-7 from Bertschinger and

Natschläger (2004), illustrates the claim of computational advantage of networks

exhibiting critical dynamics, for the 3-bit parity task.

Having shown that the location of the critical line has been shown from plots

of ū vs σ2 for different values of K (see above sub-section), Bertschinger and

Natschläger demonstrate experimentally, the effect on the computational power

of networks that inhabiting the critical phase has. This is accomplished primarily

by using 3 and 5-bit memory capacity tasks. Consider the experimental setup

outlined in the previous section on memory capacity and illustrated in figure 2-5.

By performing the memory capacity test for many networks with K = 2, 4 and 8

and a selection of varying values for the parameters of σ2 and ū, it is then possible

to create a plot of the memory capacity of these network as a population density

in the parameter space of σ2 and ū. These results, obtained by Bertschinger and

Natschläger, can be seen in figure 2-8.
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Figure 7: Computational capabilities scale with network size. Shown is the per-
formance on the 3 bit parity task in dependence on the network sizeN (meanMC
± standard deviation over 10 randomly drawn networks for each parameter set-
ting). The remaining parameters were chosen as K = 4, r = 0.5, ū = 0.4 and
σ2 = 0.1 (ordered), σ2 = 0.5 (critical) and σ2 = 5 (chaotic).

signal is nonlinearly transformed by the network and in which the linear classifier
is operating. It is expected that MC increases with N due to the enhanced dis-
crimination power of the readout function. Hence it is worthwhile to investigate
how the computational power (in terms of MC) scales up with the network size
N ; see Fig. 7. Interestingly the steepest increase of MC with increasing N is
observed for critical parameters (almost perfect logarithmic scaling). In contrast
at non-critical parameters the performance on the delayed 3 bit parity task grows
only slightly with increasing network size.
To further explore the “computation at the edge of chaos” idea the above simula-
tions were repeated for different values of K and different tasks. The networks
were trained on a delayed 1 bit (actually just a delay line), a delayed 3 bit and a
delayed 5 bit parity task as well as on 50 randomly drawn Boolean functions of
the last five inputs, i.e. y(t) = f(u(t), u(t− 1), u(t− 2), u(t− 3), u(t− 4)) for a
randomly drawn Boolean function f : {−1, +1}5 → {−1, +1}. Average results

18

Figure 2-7: Plot of memory capacity, demonstrating the performance advantage on
the 3-bit parity task of critical networks, compared to ordered and chaotic networks.
(Bertschinger and Natschläger, 2004, p.1428)

It is shown that those networks which have the greatest MC value are clustered

about the critical boundary line, with the best of these populating the ordered

side of the critical line in the region where the variance σ2 and the mean of the

input ū are relatively low valued.

As an aside, it should also be noted that in at least one subsequent paper (Maass

et al, 2005) the usefulness of the criticality region as a performance determinant

was questioned. Sufficiently robust predictors of performance which work well in

all relevant scenarios are no doubt difficult to devise. However, is does appear

that the criticality border does posses characteristics which mark it out as a

logically reasonable gauge of the suitability of a network to be able to perform

computationally well in a classical manner.

One can see however, that given the complexity of structures within the neocortex

and the myriad structural types that could exist it may well be possible that

beneficial structures may exist which enhance the computational power of other

cortical structures without themselves being computationally powerful.
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Figure 8: Performance of trained networks for various parameters and different
tasks with increasing complexity. The performance (as measured in Fig. 6B) is
shown in dependence of the parameters σ2 and ū forK = 2, 4, 8 (left to right) and
the 1, 3, and 5 bit parity task as well as for an average over 50 randomly drawn
Boolean functions (top to bottom).

over 10 randomly drawn networks for each parameter setting are shown in Fig. 8.
In almost all cases the best performance is achieved close to the critical line. Just
for the simplest task considered, a delay line, the best performance is achieved in
the chaotic regime. In the case of K = 2 the network can never be made chaotic
by increasing σ2 but still the performance peaks at some intermediate value of σ2.
The reasons for that remain to be uncovered. It is also notable that even so the
best performances are usually achieved close to the critical line the performance
varies considerably along it. Especially at high values ofK the performance drops
significantly if the network is stabilized by using large biases ū. Hence it is advan-
tageous to use unbiased networks (i.e. ū = 0). This is probably related to the fact
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Figure 2-8: A plot of memory capacity, using 1, 3 and 5-bit parity tasks, as a pop-
ulation density in terms of σ2 against ū, with K = 2, 4 and 8, as well as 5-bit RBF,
each averaged over 10 networks. Darker areas indicate higher memory capacities, and
therefore it can be seen that those networks with the highest memory capacities are
clustered around the ordered side of the critical line. (Bertschinger and Natschläger,
2004, p.1429)

2.8 Structured LSMs

2.8.1 The Human Neocortex

The neocortex of the human brain is a structure that has evoked a huge amount

of interest among researchers based in the field of artificial neural networks and

neuroscientists who investigate the brain. The LSM is itself intended as a basic

model for the behaviour of activity in the neocortex and in particular, behaviour

within neocortical micro-columns (Jones, 2000; Mountcastle, 1997; Eccles, 1984).

As such, it is impossible to convey adequately the wealth of work that has been

produced on the subject in this introduction. What follows should be considered

to be merely a basic and generalised overview of the observed structure, proposed
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uses and computational capability of the neocortex.

Structurally, the neocortex comprises of, broadly speaking, around 6 layers (Braak

and Braak, 1992; Peters and Jones, 1984) that may be considered distinct from

each other in terms of: The synaptic connectivity structure, including synap-

tic density (Braak and Braak, 1992; Peters and Jones, 1984); The neuron types

present within each of the layers (Braak and Braak, 1992; Peters and Jones,

1984); The afferent and efferent regions of the brain for each layer (Peters and

Jones, 1984; Sereno et al, 1995; Kaas and Krubitzer, 1991)

The number of layers which make up a neocortical micro-column actually varies

throughout the brain and is dependent on the region that is under consideration.

There may actually be up to 9 distinct layers in certain brain regions. (Braak and

Braak, 1992; Peters and Jones, 1984; Ramón y Cajal, 1902, 1955; Rose, 1926).

Typically the layers are labeled I−V I with layer I being the topmost layer closest

to the surface and layer V I being the deepest layer of the neocortex. Layer V I

is sometimes referred to as being made of two distinct layers V Ia and V Ib. A

basic rendering of a neocortical micro-column with its layers labeled, can be seen

in figure 2-9.

The different layers of the neocortex consist of a variety of different neurons that

vary in their function (Ferster et al, 1996), size, shape and, importantly, the

characteristics of the connection which they form to the surrounding neocortical

neurons (Peters and Jones, 1984; Sereno et al, 1995; Kaas and Krubitzer, 1991).

First, a brief word on the general structure of biological neurons. The core of the

neuron itself is known as the soma. Branching out from the soma are structures

known as dendrites which themselves have numerous branches and are known

as dendritic trees. It is the dendrites that relay firing activity from connected

neurons into the soma. The soma communicates its output via the axon. In

general, a neuron will have only a single axon but this will eventually branch out

into many dendrites which connect the neuron to many other neurons. The point

at which an axon of one neuron interfaces with the dendritic tree of another

neuron is called the synapse. The synapse is able to relay the electrical firing
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Figure 2-9: An illustration of the laminar detail of a neocortical column. Redrawn
from DeFelipe and Fariñas (1992).

activity from the axon of one neuron to a dendritic tree of another neuron by

means of complex chemical ion channels. Detailed analysis and descriptions of

the varieties of neurons and their constituent structures can be found in (Cajal,

1902, 1955; Peters and Jones, 1984; Nimchinsky et al, 1995, 1999; Allman et al,

2002; Hof and Van der Gucht, 2006; DeFelipe and Fariñas, 1992).

Pyramidal neurons are relatively large bodied neurons whose name derives from

the triangular appearance of their structure. Physiologically, a pyramidal neuron

consists of a soma which contains the nucleus of the neuron and this receives

input from a large dendritic tree and has only single (eventually branching) axon

which relays the output of the neuron, (DeFelipe and Fariñas, 1992, p.570). It

is the overall shape of the dendritic tree soma and axon, shown in figure 2-

10 to which the triangular appearance previously mentioned, refers. Pyramidal

neurons account for the majority of neurons within the neocortex and can form

connections that range in length from short range connections to nearby neurons,
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FIG. 5. Drawing to illustrate the synaptic relationships between double bouquet cells, chandelier cells and 
large basket cells with pyramidal cells. These cells constitute the best morphologically and chemically 
characterized types of aspiny nonpyramidal neurons. Inset is a schematic diagram to illustrate the synaptic 
connections between the three nonpyramidal cells and the pyramidal cell. Notice that each type of 

nonpyramidal neuron innervates a different region of the pyramidal cell. 

pyramidal cells and, thus, their synaptic relationships 
with the pyramidal cells and their chemical character- 
istics will be one of the major aspects of this review. 
Another example of the regional specialization of the 
synaptic inputs on pyramidal cells is that their den- 
dritic shafts and spines are the only postsynaptic sites 
for axon terminals forming asymmetric synapses and, 
thus, the only sites where the major cortical afferent 
systems and spiny neurons terminate. This will be 
another major subject of the present work and we 
shall focus on this in Section 4. 

2. SYNAPSES ON THE CELL SOMA 

2.1. MORPHOLOGY OF THE AXOSOMATIC SYNAPSES 

As far as we know, in all electron microscope 
studies reported until now, the axon terminals 
forming synapses with the cell somata (axosomatic 
synapses) of pyramidal cells have been found to be 
exclusively of the symmetric type (e.g. Peters et al., 
1991). 

Recently, Peters and colleagues (Peters and 
Harriman, 1990; Peters et aL, 1990) have further 
morphologically characterized the axon terminals 

synapsing with the cell bodies of layers II/III pyrami- 
dal cells in the rat visual cortex. These authors 
distinguished three types of axon terminals forming 
symmetric axosomatic synapses: Large terminals, 
medium-sized terminals and dense terminals. Large 
terminals. They are the largest axon terminals (1.5/~m 
long and 0.8/~m wide) forming axosomatic synapses. 
Their shape is ovoid, they contain one or two mito- 
chondria, and they frequently synapse with another 
neuronal element adjacent to the pyramidal cell. The 
packing density of the synaptic vesicles is 80--160 
synaptic vesicles per/~m 2 and the vesicles have a mean 
diameter of 33.8 nm. Medium-sized terminals. These 
are the most common axon terminals forming axoso- 
matic synapses. They resemble the large terminals, 
but their size is smaller (1/~m long and 0.5-0.8/~m 
wide). The packing density of the synaptic vesicles is 
usually higher (80--200 synaptic vesicles per ktm 2) and 
they have a mean diameter of  33.5 nm. They only 
occasionally form synapses with an adjacent neuronal 
element. Dense terminals. Not all pyramidal cells 
receive dense terminals on their somatic surface. 
These terminals are usually flattened against the cell 
body, have irregular shapes and their size is approxi- 
mately 1/~m long and 0.2-0.4/~m wide. The packing 
density of the synaptic vesicles is higher (120-240 

Figure 2-10: An illustration of a typical pyramidal neuron and some connectivity.
(DeFelipe and Fariñas, 1992, p.570).

to relatively long range connections to neurons that, can span up to all of the

layers of a micro-column and beyond (Peters and Jones, 1984). Connections

from pyramidal neurons have been observed that are capable of spanning the

two hemispheres of the brain (Peters and Jones, 1984). If one considers that

the diameter of a micro-column is 30µm, (Jones, 2000) it can be seen that

connections from pyramidal neurons could also act as conduits that are able to

relay information between relatively distant neural structures. Pyramidal cells

can possess two different types of synapses known as Gray type I and Gray type

II. These synapses are morphologically different and indicate and excitatory and

inhibitory synapses respectively (Peters and Jones, 1984).

Among the other neuron types that are found within the neocortex are those

neurons known as spindle neurons, (Nimchinsky et al, 1995, 1999; Allman et

al, 2002; Hof and Van der Gucht, 2006). Spindle neurons are referred to as



Structured LSMs 49

such because, they only have a single input to the soma as opposed to the large

dendritic tree inputs that are seen in the case of the pyramidal neuron. An

illustration of a spindle neuron can be seen in figure 2-11. It is thought that their

unique structure may make the spindle neuron a facilitator of higher cognitive

abilities. They are among the most rare of neuron types and are only located

within the region of the brain known as the Anterior Cingulate Cortex ACC and

the frontoinsular cortex, additionally they are most abundant in humans and have

only, so far, been found in the great apes, whales and dolphins, (Hof and Van der

Gucht, 2006; Nimchinsky et al, 1999). In Nimchinsky et al (1999) it was found

that the amount of spindle neurons in samples taken from layer V was 5.6% of

the number of pyramidal neurons in the sample for humans and 2.3% for gorillas.

SPINDLE NEURONS IN HUMAN CORTEX 

Fig. 4. Examples of spindle cells as seen with the Nissl stain (a-d) and with SMI32 immunohistochem- 
istry (e-g). Note variations in somal thickness and in the degree of tapering toward the apical and basal 
dendrites. In e and f, note the abrupt branching of the basal dendrite into numerous secondary dendrites. 
Scale bar = 25 Km. 
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Figure 2-11: An image of a spindle neuron, showing the cable-like structure of the
spindle neuron. (Nimchinsky et al, 1995, p.33)

The form of the structure of spindle neurons means that they appear like cortical

cabling, linking brain regions directly, over relatively large distances (Nimchinsky

et al, 1995). It is interesting to note that spindle neurons only appear to form in

humans post-natally, and are attributed to intelligent behaviour. It is thought

that spindle neurons within the ACC may serve to refract neural waves from one

brain region to another, and that the ensuing neural interference patterns can be

manipulated by the ACC to allow for error feedback and the ability to make good
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choices for a given task, (Allman et al, 2002).

2.9 Laminar Structured Liquid State Machines

The typical LSM implementation will comprise a column of neurons that is gen-

erated with the same connectivity parameters throughout the entire column. In

order to address this disparity between the basic LSM model and the observed

laminar structure of actual biological micro-columns, relatively recent work has

been carried out in Hæusler and Maass (2007), which examines the computational

benefits of Liquid Sate Machines that posses an extra degree of sophistication over

the standard LSM model. These modified LSMs are based upon the concept of

a laminar structure discussed above (Hæusler and Maass, 2007).

The laminar LSM model employed by Hæusler and Maass consists of essentially

4 layers, each of which is generated using connectivity and structural data ob-

tained from studies of the neocortices of both cats and rats (Anderson et al,

2000; Binzegger et al, 2004; Ferster, 1987; Hilgetag et al, 2000; Thomson et al,

2002). The focus of investigation of this work is to investigate the effect of a bio-

logically inspired laminar columnar structure on the computational performance

(XOR task) of a trained linear readout neuron, compared to simply using a ran-

domly generated or amorphous recurrent network. It was shown experimentally

by Hæusler and Maass that, readout neurons connected to networks that were

generated using the biologically inspired laminar structure, were typically able to

outperform those readout neurons that were connected to an amorphously con-

nected network, by a statistically significant amount. This result is an indication

that merely the introduction of connectivity variations across regions of a recur-

rent spiking neural network may provide more diverse firing patterns which, may

in turn enhance the computational power of trained readout neurons that receive

input from the network (Hæusler and Maass, 2007).
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2.10 Limitations and Conclusions

As a model for investigating the computational properties of models of artificial

neocortical columns the LSM is a highly satisfactory approach and one which has

produced much insight and valuable results. However, if one wishes to investigate

the more elusive properties of groups of recurrent neocortical neurons, such as

memory storage and transfer, synaptic modification within neocortical structures

and the relationships between this modification and the creation of memory then,

one must discard the LSM approach (or at the very least modify it), in favour of

a model which incorporates an allowance for long term modification of the effi-

cacy of the synapses within the recurrent micro-circuit. Aspects of these elusive

properties will be addressed in part II of this dissertation.

The LSM approach of using unchanging synaptic weights in the liquid layer does

not allow for any investigation of how, for example, an input stimulus will affect

these weights over a sufficiently long duration of exposure. Additionally, if it

is one’s goal to model such recurrent micro-circuits in as realistic a manner as

possible then again, the LSM is insufficient. Static weights and linear regression

learning regimes, while being computationally useful, are not a realistic represen-

tation of the learning that is known to occur within recurrent neural networks of

biological neurons.

It is known from Bliss and Lømo (1973) and Cooke and Bliss (2006) that Long

Term Potentiation (LTP) and similarly, Long Term Depression (LTD) are impor-

tant processes in the formation of a network structure moulded by the synaptic

firing activity that it receives. Without equivalent modification processes, any

biologically realistic study of memory formation cannot be considered to be real-

istic.

Additionally, the treatment of readout neurons as simple linear perceptrons is

also a limitation of the current LSM paradigm. The readouts are connected to all

neurons in the LSM so, while this means that the readout will be able to sample

the output of the entire LSM and therefore be better able to perform a given

function upon the network state at any given time. This is an unrealistic scenario
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which breaks with the idea that neurons are more likely to receive connections

from their nearest neighbours and that the probability of connectivity decreases

with neuron separation. At the same time the readouts typically do not have any

kind of feedback connectivity to the LSM layer, and therefore the effect of such

feedback on learning cannot be addressed in this scenario.

Synaptic weights are also allowed to ‘flip’ their sign — excitatory connections are

allowed to become negative and vice-versa for inhibitory connections using the

p-delta learning rule, although recently in Legenstein et al (2005) there has been

some acknowledgment that this weight ‘flipping’ is unrealistic and the method of

STDP learning outlined in this thesis uses a bounding and normalisation tech-

nique to ensure that weight flipping cannot occur.

The existing LSM research has produced a great deal of useful and important

results, among them are the work performed to investigate the how the memory

capacity of LSM networks varies with connectivity parameters, and the results

demonstrating the computational power of the LSM micro-circuit.

Recent work (Legenstein et al, 2005; Pfister et al, 2006; Toyoizumi et al, 2007)

that has been carried out concurrently with the work in this thesis, focusses

on the effects of LTP and LTD on learning for single spiking neurons. However,

there is much still unknown about the nature of memory formation and long term

learning for both recurrent networks that consist of many neurons and individual

neurons that receive many inputs. While the LSM provides a good basis for a

starting point, it should be treated as such and expanded upon appropriately.

The work in this thesis, principally the work detailed in chapters 5, 6 and 7,

aims to help further the understanding of some of the properties, behaviour and

possible functions of networks of highly recurrently connected neurons in which

a modified form of STDP learning is applied to the synapses of the recurrent

network.



Chapter 3

Obtaining Precise Spike Trains

3.1 Introduction

Estimates for the number of neurons in the human neocortex, based on sampling

of brain tissue, typically lie in the range 19 to 23 billion neurons (Pakkenberg et

al, 1997, 2003). One could be forgiven for thinking that focussing attention on the

computational capabilities of a single neuron in such a vast population would,

perhaps, be a meaningless task. Indeed, in some instances it may make more

sense to concentrate on investigating the computational power and behaviours of

populations of neurons rather than individual neurons. Functional Magnetic Res-

onance Imaging (fMRI) scans of the active brain show entire populations/brain

regions responding to certain specific stimuli. A detailed overview of such fMRI

techniques can be found in Jezzard, Matthews and Smith (2003).

However, techniques for probing the electrical responses of the brain in vivo, are

not yet sufficiently sophisticated to be able to observe neural activity on the

scale of individual neurons and so, the response of single neurons that belong to

such huge populations cannot yet be observed accurately in-vivo. Current ex-

perimental methods for collecting firing data from neurons make use of arrays of

electrodes, known as Multiple-Electrode Arrays (MEA’s). Experiments that use

53
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the MEA technique for acquiring firing times from populations of real neurons,

generate vast amounts of data. However, while the resolution of MEA technology

is improving, it is still not possible to directly observe the activity of specific indi-

vidual neurons within a larger population of neurons. Technical data pertaining

to the capabilities of MEA technology that is currently available may be found in

Alpha Med Sciences (2008). A typical MEA may have 64 electrodes, arranged in

a 8x8 configuration, with the separation between electrodes being approximately

100µm. A tissue sample containing a population of neurons, could then be placed

on the MEA. One of the electrodes could be used to inject and input current into

the tissue and the remaining electrodes can be used to record the firing activity

response that is produced by the neurons throughout the tissue sample.

The MEA is limited to recording the current response at only 100µm intervals

throughout a sample. Consider that a neocortical microcolumn has a diameter

of 30µm and a depth of 1600µm, and that this column may itself contain

hundreds of cells, see figure 2 in Jones (2000, p.5020), this means that the spike

trains recorded by a typical MEA cannot be considered to have been generated

by an individual neuron but from the population of neurons that surround that

particular electrode. However, it is possible that by using the recordings of many

electrodes and by applying spike sorting algorithms that make use of principle

component analysis, that individual spikes recorded by the MEA can be assigned

to the correct source neuron. Studies of spike sorting can be found in Roberts

and Hartline (1975), Abeles and Goldstein (1977) and in Chandra and Optican

(1997) among many others. Spike sorting allows for not simply the separation of

spike train currents from variable background currents within a sample of neural

tissue, but also separation of individual spike trains and subsequently assignment

to the correct source neurons from which a particular spike train originated. Spike

sorting is made more complex when it is noted that the waveform of spikes from

a particular single neuron is subject to change if, for example, two spikes are

emitted from the same neuron in close temporal proximity. In such a scenario

the waveform of the second spike would be affected by the first spike and therefore,

potentially hindering the classification of the second spike as belonging to that

neuron.
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The work in this dissertation is concerned with simulated, artificial neurons and

not real, biological ones. However, irrespective of whether real or artificial neurons

are used, the study of precise spike trains and in particular in getting neurons to

produce them accurately is relatively new. Far more research has been undertaken

which investigates the computational aspects of networks of neurons — as was

previously discussed in chapter 2. This does not mean that single neurons are not

computationally capable elements in their own right, nor does it necessarily mean

that individual neurons cannot or do not perform macroscopically important

computational tasks in their own right.

An alternative way of dealing with spiking outputs from neurons is to consider

their firing rates. However, studying the precise temporal nature of individual

spike trains is necessary if one wishes to investigate the temporal structure of

the spike trains between neurons and the information that this may convey. The

temporal structure of a spike train merely refers to a spike train in which the

precise placement of the constituent spikes relative to each other is important.

This cannot be observed if one uses firing rates. If one were to consider only

the firing rate and not the precise nature of individual spike trains, the detail

contained in the spike train data becomes blurred, and lost to any subsequent

analysis. Spiking neurons offer a method of encoding information sent between

neurons in a completely temporal manner. As a result they can be used to study

highly temporally precise data that cannot be done using simple perceptron-style

learning.

Consider an artificial, simulated neural network that uses biologically realistic

learning rules at the synaptic level. An interesting approach would be to demon-

strate that a single neuron can respond to a specific input from a large population

with a highly precise spike train. This could be a useful result in demonstrating

that the precise output of single neurons may be of great computational use on

a macroscopically functional level.

Additionally, it would appear to be logical that an important computational

function left to be performed solely by a single lone neuron would be at great

risk of being corrupted or lost completely if that neuron were to be damaged
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or destroyed. For this reason, one may expect to see some form of redundancy

inherent in neural structures, for example, a distributed population of neurons

coding for the same function. Neocortical micro-columns may be a manifestation

of just such a redundancy principle in action.

3.2 Optimised STDP Learning of Precise Pat-

terns

The work by Pfister et al (2006) and Toyoizumi et al (2007), are examples of the

current research being undertaken to investigate the effect of the application of

a synaptic modification algorithm based upon gradient ascent derived learning

rules. The research investigates the ability of a single spiking neuron to generate

spike trains consisting of a specific sequence of precisely timed spikes, in response

to a specific input spiking pattern. In other words, can STDP be used to make

a neuron learn a precise temporal pattern? The work presented in Pfister et al

(2006), investigates the form of the STDP learning function that produces the

optimal solution for adjusting the input synapses to a single neuron in order for

that neurons to learn a precise spike train.

The gradient ascent algorithm optimises the synaptic weights of the spiking neu-

ron such that it will fire at specific desired firing times. It is claimed in Pfister

et al (2006), that their training method does not show any unique reason for the

presence of synaptic depression in response to a pre-synaptic spike arriving after

a post-synaptic spike. It is shown that the existence and also the strength of

synaptic depression can be attributed to specific parameters of the optimisation

rule.

The results obtained by the group, using their algorithm are compared to the

biologically inspired STDP learning scenario seen in Bi and Poo (1998, 1999,

2001), Markram et al (1997) and Zhang et al (1998), as well as the reinforcement

learning method, Xie and Seung (2004), and Seung (2003).
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3.2.1 Experimental Setup

The approach utilised in this work is to use, as a basis, a temporal coding scheme

of the type seen in the human touch stimuli (see the work by Johansson and

Birznieks (2004)). The ideas presented by Pfister et al (2006) could similarly be

applied to other temporal coding schemes as seen in Carr and Konishi (1990),

Bell et al (1997), Hopfield (1995), Brody and Hopfield (2003), Mehta et al (2002)

and Panzeri et al (2001).

Consider an experimental setup as shown in figure 3-1 as described in Pfister

et al (2006). The single post-synaptic neuron seen here could be replaced with

multiple post-synaptic neurons, but in order to simplify the explanation only a

single neuron is considered. The neuron receives input from N input channels or

input lines that are denoted by j where, 1 ≤ j ≤ N .

1 2 N. . .

W1 WN

W2

Single Post Synaptic Neuron

Figure 3-1: An illustration of a single spiking neuron which receives a single input
from each of N input neurons/channels.

The model used for the post-synaptic neuron is a relatively standard one in which,

a pre-synaptic spike at a firing time tfj will produce the Excitatory Post Synaptic

Pulse (EPSP) within the membrane of the post-synaptic neuron.

The time course of this EPSP is described by the double exponential equation:
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ε(s) = ε0

[
exp(− s

τm
)− exp(− s

τs
)
]
Θ(s)

This equation is taken by Pfister et al, from Gerstner and Kistler (2002). Where,

τm is the time constant of the membrane and is set to 10ms and τs is the time

constant of the synapse and is equal to 0.7ms. As a consequence the resulting

rise time of the EPSP is 2ms. Θ(s) is the Heaviside step function and is equal

to 1 if s ≥ 0 and 0 otherwise. The parameter ε0 is set to a value of 1.3mV . The

reason that Pfister et al give for this is so that a spike that is elicited at a synapse

whose weight is set to 1 will produce a spike with an amplitude of 1mV .

In addition to receiving input from N synapses, the post-synaptic neuron also

receives a ‘teaching’ input from a group of neurons. The function of this input

is to stimulate the post-synaptic neuron to fire, or at least be more likely to fire,

at a specific desired time denoted at tdes, which represents the precise input that

the neuron is required to learn to perform.

The form of this teaching current, given in Pfister et al (2006), is a square current

pulse described by:

I(t) = I0Θ(t− tdes + 0.5∆T )Θ(tdes + 0.5∆T − t)

Where, the amplitude is given by I0 and duration of pulse is denoted by ∆T .

The membrane activity that is produced by this teaching input is then given in

Pfister et al (2006) as:

uteach(t) =
∫∞

0
k(s)I(t− s)ds

Where, k(s) = k0exp(−s/τm) and in which k0 is inversely related to the membrane

capacitance and is a constant.
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3.3 Gradient Ascent Learning Algorithm

In this model, learning takes place in the form of the modification of synaptic

efficacies. The modification rule here is a version of gradient ascent and is given

in Pfister et al (2006) as:

∆wij = α δL
δwij

Where ∆wij is the change in the synaptic efficacy (or weight), of the synapse

connecting the pre-synaptic neuron j to the post-synaptic neuron i, α is the

learning rate, L, is a quantity that represents optimality and is discussed below.

Instead of employing a deterministic approach, in which a thresholding method is

used to determine when a given post-synaptic neuron fires, a probabilistic method

is used. A full explanation of the stochastic model can be found in Pfister et al

(2006), and is not discussed in full detail here.

In a deterministic model a post-synaptic neuron will generate an action potential

if its internal state or membrane potential rises above a pre-determined threshold.

Whereas in this and other stochastic models, a post-synaptic neuron will generate

an action potential according to a point process in which the time dependent

stochastic intensity is given by Pfister et al (2006) as:

ρi(t|x, yi
t) = g(ui(t|x, yi

t))

Where g(u) = ρ0exp(u−ν
∆u

) in which ν = −50mV , ∆u = 3mV and ρ0 = 1/ms

and represent the threshold, the width of the threshold region and the intensity

of stochasticity at the threshold value respectively. x is the input stimuli to

the post-synaptic neuron and yi
t is the recent firing history of the post-synaptic

neuron. The stochastic intensity is dependent on these two variables because

each have a refractory effect on the behaviour of the membrane potential. For

example, if the post-synaptic neuron has only just fired a spike, then it will

experience a refractory period during which it is less likely than usual to fire,
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(Gerstner and Kistler, 2002). Similarly, if the neuron has just received some input

spikes that were not quite of the magnitude necessary to elicit an action potential

from the post-synaptic neuron then, for a short period of time the neuron will be

more likely to emit an action potential to a subsequent input spike — due to the

raised membrane potential experienced from the previous input activity.

It is noted in Pfister et al (2006) that, other forms for g may be used without

affecting the results in an adverse manner, at least from a qualitative point and

that for ∆u → 0 the stochastic model becomes equivalent to the deterministic

LIF model, see Gerstner and Kistler (2002).

For the sake of brevity it is simply stated in this thesis that the optimality term

L can be expressed as log-likelihood of the stochastic intensity term ρ. The full

derivation and explanation can be seen in Appendix A of Pfister et al (2006).

3.4 Optimal Spike Timing Results

The results of this work by Pfister et al can be categorised into three separate and

increasingly more complex scenarios A, B and C, each of which can be broken

down further into an unconstrained and constrained scenario.

3.4.1 Scenario A

Scenario A is the simplest of the three scenarios and involves just two neurons.

One of the neurons is a post-synaptic neuron Y and receives a single synaptic

connection from a pre-synaptic neuron X.

In the unconstrained scenario, the post-synaptic neuron must fire a single spike

at time tdes in response to a single spike at time, t < tdes, from the pre-synaptic

neuron, whereas in the constrained scenario, the post-synaptic neuron must fire

a spike only at time tdes and at no other time, in response to a single spike from

the pre-synaptic neuron.
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Unconstrained scenarios Constrained scenarios

Au
Postsynaptic spike imposed Ac

No activity
LAu = log(ρ(tdes)) LAc = LAu − ∫ T

0 ρ(t)dt

Bu

Postsynaptic spike imposed
Bc

Stabilized activity+ spontaneous activity
LBu = log(ρ̄(tdes)) LBc = LBu − 1

Tσ2

∫ T
0 (ρ̄(t) − ν0)2dt

Cu

Postsynaptic spike
Cc

Temporal locality
patterns imposed constraint

LCu = log

∏
i

Pi(y
i|xi)

∏
k !=i

Pi(0|xk)
γ

M−1

 LCc = LCu , P∆∆′ = aδ∆∆′
(
∆− T̃0

)2

Table 1: Summary of the optimality criterion L for the three unconstrained scenarios
(Au, Bu, Cu) and the three constrained scenarios (Ac, Bc, Cc). The constraint for
scenario C is not included in the likelihood function LCc itself, but rather in the
deconvolution with a matrix P that penalizes quadratically the terms that are non-
local in time. See appendix C for more details.
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Figure 2: A. Scenario A: a single presynaptic neuron connected to a postsynaptic
neuron with a synapse of weight w. B. Optimal weight change given by Eq. (10) for
the scenario Au. This weight change is exactly the mirror image of an EPSP.

3.1.1 Unconstrained scenario Au: One Spike at tdes

In this subsection, we assume that the postsynaptic neuron has not been active in the
recent past, i.e. refractory effects are negligible. In this case, we have ρ(t|x, yt) =
ρ(t|x) because of the absence of previous spikes. Moreover, since there is only a
single presynaptic spike (i.e. x = {tpre}), we write ρ(t|tpre) instead of ρ(t|x).

Since the task of the postsynaptic neuron is to fire at time tdes, we can define
the optimality criterion LAu as the log-likelihood of the firing intensity at time tdes,
i.e.

LAu = log
(
ρ(tdes|tpre)

)
(9)

8

Figure 3-2: The pre and post-synaptic neurons of the Scenario A setup, taken from
Pfister et al (2006, p.1326).

3.4.2 Unconstrained Scenario A (Au)

The assumption is made that the post-synaptic neuron has not fired recently and

so any refractory effects can be ignored. Additionally, instead of considering a

sequence of input spikes, there is only a single input spike in this scenario. These

two conditions mean that the expression for the stochastic intensity now becomes

ρ(t|x, yt) = ρ(t|tpre).

The optimality term, LAu , for this scenario is then given as LAu = log(ρ(tdes|tpre))

(Pfister et al, 2006), which allows Pfister et al to re-write the gradient ascent on

the synapse mediating the connection between Y and X as:

∆wAu = αρ′(tdes|tpre)

ρ(tdes|tpre)
ε(tdes − tpre)

A plot of ∆wAu against ∆t = tpre − tdes from Pfister et al (2006), can be seen in

figure 3-3. The plot is the mirror image of an EPSP and is, qualitatively at least,

independent of the form of the function g(u).

This is only a simple model for determining the optimal update rule and as such

it has a fundamental shortcoming in that, if the update according to the gradient
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Unconstrained scenarios Constrained scenarios

Au
Postsynaptic spike imposed Ac

No activity
LAu = log(ρ(tdes)) LAc = LAu − ∫ T

0 ρ(t)dt

Bu

Postsynaptic spike imposed
Bc

Stabilized activity+ spontaneous activity
LBu = log(ρ̄(tdes)) LBc = LBu − 1

Tσ2

∫ T
0 (ρ̄(t) − ν0)2dt

Cu

Postsynaptic spike
Cc

Temporal locality
patterns imposed constraint

LCu = log

∏
i

Pi(y
i|xi)

∏
k !=i

Pi(0|xk)
γ

M−1

 LCc = LCu , P∆∆′ = aδ∆∆′
(
∆− T̃0

)2

Table 1: Summary of the optimality criterion L for the three unconstrained scenarios
(Au, Bu, Cu) and the three constrained scenarios (Ac, Bc, Cc). The constraint for
scenario C is not included in the likelihood function LCc itself, but rather in the
deconvolution with a matrix P that penalizes quadratically the terms that are non-
local in time. See appendix C for more details.
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Figure 2: A. Scenario A: a single presynaptic neuron connected to a postsynaptic
neuron with a synapse of weight w. B. Optimal weight change given by Eq. (10) for
the scenario Au. This weight change is exactly the mirror image of an EPSP.

3.1.1 Unconstrained scenario Au: One Spike at tdes

In this subsection, we assume that the postsynaptic neuron has not been active in the
recent past, i.e. refractory effects are negligible. In this case, we have ρ(t|x, yt) =
ρ(t|x) because of the absence of previous spikes. Moreover, since there is only a
single presynaptic spike (i.e. x = {tpre}), we write ρ(t|tpre) instead of ρ(t|x).

Since the task of the postsynaptic neuron is to fire at time tdes, we can define
the optimality criterion LAu as the log-likelihood of the firing intensity at time tdes,
i.e.

LAu = log
(
ρ(tdes|tpre)

)
(9)

8

Figure 3-3: A plot of the change in synaptic weight w.r.t the difference in firing times
between the pre and post-synaptic neurons. This figure is taken from Pfister et al
(2006, p.1326)

ascent is calculated and applied iteratively, one would expect the perfectly opti-

mal solution to converge, such that weight changes become zero i.e. ∆wAu = 0.

However, this is not what is observed in this particular model. Instead, Pfister

et al observe that if ∆t < 0 the solution tends to ∞ with continued iteration

of the update rule and if ∆t ≥ 0, no unique synaptic weight is found. It is

stated in Pfister et al (2006), that this is directly attributable to the fact that

this particular model has no consideration of inhibitory synapses, only excitatory

connections are modeled.

3.4.3 Constrained Scenario A (Ac)

The requirement for this scenario is intended by Pfister et al to simply allow for

the incorporation of inhibition into the Scenario A model. Consider the exper-

imental setup previously used in the unconstrained scenario A. The additional

requirement now, is that the post-synaptic neuron fires at no time other than

tdes. The optimality function for this scenario LAc is once again given by the

log-likelihood of the post-synaptic neuron producing a spike at the desired time
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tdes when given a pre-synaptic spike at a time tpre.

LAc = log(ρ(tdes|tpre))−
∫∞

0
ρ(s|tpre, tdes)ds.

As a result, the synaptic update rule is given in Pfister et al (2006) as:

∆wAc = αρ′(tdes|tpre)

ρ(tdes|tpre)
ε(tdes − tpre)− α

∫∞
o

ρ′(s|tpre, tdes)ε(s− tpre)ds

As before, this update function can be plotted against ∆t, to give an STDP

learning function as shown in figure 3-4 which is taken from Pfister et al (2006).

Pfister uses the learning function plot to demonstrate two separate cases. For

the first case assume that, the post-synaptic neuron is not trained specifically to

fire at time tdes i.e. the neuron may spontaneously emit a spike at tdes. If this

happens, then the update rule is applied and the synaptic efficacy is modified

accordingly. With each iteration of this method, the post-synaptic neuron will

be more likely to fire spontaneously at time tdes.

For the second case consider that the post-synaptic neuron is forced, by some

external teaching input of duration 1ms, to fire at time tdes. It can be seen that

the resulting STDP plot for different values of the reset potential η0 demonstrate

that, if the after-spike reset is zero, the STDP function has a strong depressive

effect on synapses that are incident on the post-synaptic neuron immediately

after post-synaptic spiking. The explanation given for this is that in the case

where a pre-synaptic spike arrives after the post-synaptic spike, the resulting

weight change is primarily controlled by the after potential of the membrane of

the post-synaptic neuron uAP (t) = η(t) + uteach(t). So when the reset term η(t)

is zero, the teaching input will totally dominate the weight change and a large

depressive weight change is obtained. If, however the reset is small but non-zero,

then this will go someway to reducing the effect of the teaching input on the after

potential and the depressive effect will be less dominating.

The two cases considered in constrained scenario A show the differences to the

synaptic update rule, between using the generative approach and that of using
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Figure 3: Optimal weight adaptation for scenario Ac given by Eq. (7) in the absence
of a teaching signal (A) and in the presence of a teaching signal (B). The weight
change in the post-before-pre is governed by the spike afterpotential uAP (t) = η(t)+
uteach(t). The duration of the teaching input is ∆T = 1 ms. The amplitude of
the current I0 is chosen so that maxt uteach(t) = 5 mV. urest is chosen such that
the spontaneous firing rate g(urest) matches the desired firing rate 1/T , i.e. urest =
∆u log 1

Tρ0
+ θ " −60 mV. The weight strength is w = 1.

from Eq. (13) will make such a timing more likely the next time the presynaptic
stimulus is repeated. The reset amplitude η0 has only a small influence.

In Fig. 3B we consider a case where firing of the postsynaptic spike at the ap-
propriate time was made highly likely by a teaching input of duration ∆T = 1 ms
centered around the desired firing tdes. The form of the STDP function depends on
the amount η0 of the reset. If there is no reset η0 = 0, the STDP function shows
strong synaptic depression of synapses that become active after the postsynaptic
spike. This is due to the fact that the teaching input causes an increase of the
membrane potential that decays back to rest with the membrane time constant τm.
Hence the window of synaptic depression is also exponential with the same time
constant. Qualitatively the same is true, if we include a weak reset. The form of
the depression window remains the same, but its amplitude is reduced. The inverse
of the effect occurs only for strong reset to or below resting potential. A weak reset
is standard in applications of integrate-and-fire models to in vivo data and is one of
the possibilities to explain the high coefficient of variation of neuronal spike trains
in vivo (Bugmann, Christodoulou, and Taylor 1997; Troyer and Miller 1997).

A further property of the STDP functions in Fig. 3 is a negative offset for |tpre−
tdes| → ∞. The amplitude of the offset can be calculated for w " 0 and ∆t > 0,
i.e. ∆w0 " −ρ′(urest)

∫∞
0 ε(s)ds. This offset is due to the fact that we do not want

spikes at other times than tdes. As a result, the optimal weight w" (i.e. solution
of ∆wAu = 0), should be as negative as possible (w" → −∞ or w" → wmin in the
presence of a lower bound) for ∆t > 0 or ∆t% 0.
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Figure 3-4: Plots of the resultant weight change vs. the difference between pre and
post-synaptic firing times using the generative approach (A), and a teaching stimulus
input (B). The figure is taken from Pfister et al (2006, p.1328).

a teaching input method. It should also be noted from the STDP function in

figure 3-4 that there exists a negative offset of the functions along the y-axis.

The presence of this offset is due to the condition that the post-synaptic neuron

should not fire at any time other than tdes

3.4.4 Scenario B

In this scenario Pfister et al address the imposition in scenario A, of no post-

synaptic activity whatsoever, other the single spike at tdes. In place of this rather

extreme constraint, scenario B allows for a certain amount of spontaneous post-

synaptic activity to be present and the focus is on maximising the firing rate of

a single neuron at a desired time tdes.

3.4.5 Unconstrained Scenario B (Bu)

The goal here is to maximise the firing rate of the post-synaptic neuron at time

tdes. There are two differences between this scenario and scenario Au. Firstly,

the stochastic intensity ρ(t|x, yt) is dependent on the spiking history and so an
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additional quantity is introduced to account for spontaneous post-synaptic firing

that is independent of spiking history. Secondly, the single pre-synaptic neuron

of scenario A is replaced here with 200 pre-synaptic neurons. The output of each

of these 200 neurons is a single spike at a time tj = jδt, where δt = 1ms.

The result of this is that the input is essentially a sequential cascade of activity

across the whole range of input neurons, consisting 200 spikes in total and is

described as x = {xj = {tj}, j = 1, ..., N} where, N = 200 in this case. The

experimental setup can be seen in figure 3-5 which is taken from Pfister et al

(2006, p.1329). Each neuron only fires once.

3.2 Scenario B: Spontaneous Activity

The constraint in Scenario Ac of having strictly no other postsynaptic spikes than
the one at time tdes may seem artificial. Moreover, it is this constraint which leads
to the negative offset of the STDP function discussed at the end of the previous
paragraph. In order to relax the constraint of “no spiking”, we allow in scenario
B for a reasonable spontaneous activity. As above, we start with an unconstrained
scenario Bu before we turn to the constrained scenario Bc.

3.2.1 Unconstrained scenario Bu: Maximize the Firing Rate at tdes

Let us start with the simplest model which includes spontaneous activity. Scenario
Bu is the analog of the model Au, but with two differences.

First, we include spontaneous activity in the model. Since ρ(t|x, yt) depends
on the spiking history for any given trial, we have to define a quantity which is
independent of the specific realizations y of the postsynaptic spike train.

Secondly, instead of considering only one presynaptic neuron, we consider N =
200 presynaptic neurons, each of them emitting a single spike at time tj = jδt, where
δt = 1 ms (see Fig. 4A). The input pattern will therefore be described by the set of
delayed spikes x = {xj = {tj}, j = 1, . . . ,N}. As long as we consider only a single
spatio-temporal spike pattern in the input, it is always possible to relabel neurons
appropriately so that neuron j + 1 fires after neuron j.
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Figure 4: Scenario B. A. N = 200 presynaptic neurons are firing one after the other
at time tj = jδt with δt = 1 ms. B. The optimal STDP function of scenario Bu.

Let us define the instantaneous firing rate ρ̄(t) that can be calculated by aver-
aging ρ(t|yt) over all realizations of postsynaptic spike trains:

ρ̄(t|x) = 〈ρ(t|x, yt)〉yt|x . (14)

Here the notation 〈·〉yt|x means taking the average over all possible configuration of
postsynaptic spikes up to t for a given input x. In analogy to a Poisson process,
a specific spike train with firing times yt = {t1i , t2i , . . . , tFi < t} is generated with
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Figure 3-5: Illustrative setup used in the scenario B experiments. Pfister et al (2006,
p.1329)

3.4.6 Constrained Scenario B (Bc)

The constraint applied in scenario Bc, is analogous to the constraint applied to

scenario Ac. It is required that, at times other than tdes, the deviations of the

instantaneous firing rate be kept to a minimum, with respect to what Pfister et

al calls a reference firing rate ν0.

Pfister introduces a penalty term, PB in order to minimise the firing rate devia-
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tions at times other tdes. The form of PB is as follows:

PB = exp(− 1
T

∫ T

0
ρ̄(t|x,tdes)−ν0)2

2σ2 dt).

Therefore, if the parameter σ is small then PB will be large and conversely, if

σ →∞ then the value of PB will be negligible. Once again, the desired outcome is

to determine the optimal synaptic weight update rule in this particular scenario.

The optimal solution will be one that gives a high firing rate ρ̄ at tdes and a

spontaneous firing rate at all other times that deviates from ν0 by as small an

amount as possible. The optimality term is given by Pfister et al as:

LBc = log(ρ̄(tdes|x)PB)

Which then means that the gradient ascent update rule is given by:

∆wBc
j − α

δρ̄(tdes|x)/δwj

ρ̄(tdes|x)
− α

Tσ2

∫ T

0
(ρ̄(t|x, tdes)− ν0)

δ
δwj

ρ̄(t|x, tdes)dt.

Once again, this weight update rule can be considered to be similar in form to an

STDP derived learning function and the plots of ∆wBc
j against ∆t = tpre − tdes,

for both the unconstrained and constrained scenarios can be seen in figure 3-

6, taken from Pfister et al (2006, p.1331). The plots show the learning curves

obtained for different values for the stochasticity — as tuned for by ∆u — for

the unconstrained scenario and for different values of standard deviation σ in the

constrained scenario.

3.4.7 Scenario C

The emphasis here is on pattern recognition. The experimental setup is the most

complex of all three scenarios. Consider N pre-synaptic neurons, each of which

are connected to each of M post-synaptic neurons as shown in figure 3-7 from

Pfister et al (2006).
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Figure 5: A. The optimal STDP functions of scenario Bu for different level of stochas-
ticity described by the parameter ∆u. The standard value (∆u = 3 mV) is given
by the solid line, decreased noise (∆u = 1 mV and ∆u = 0.5 mV) are indicated
by dot-dashed and dashed lines respectively . In the low-noise regime, enhancing a
synapse which fires slightly too early can prevent the firing at the desired firing time
tdes due to refractoriness. To increase the firing rate at tdes it is thence advantageous
to decrease the firing probability some time before tdes. Methods: For each value of
∆u, the initial weight w0 are set such that the spontaneous firing rate is ρ̄ = 30Hz.
In all three cases, ∆w has been multiplied by ∆u in order to normalize the ampli-
tude of the STDP function. Reset: η0 = −5 mV. B. Scenario Bc. Optimal STDP
function for scenario Bc given by Eq. (21) for a teaching signal of duration ∆T = 1
ms. The maximal increase of the membrane potential after 1 ms of stimulation with
the teaching input is maxt uteach(t) = 5 mV. Synaptic efficacies wij are initialized
such that u0 = −60 mV which gives a spontaneous rate of ρ̄ = ν0 = 5 Hz. Standard
noise level: ∆u = 3 mV.

high firing rate ρ̄ at the desired time under the constraint of small deviations from
the reference rate ν0. If we impose the penalty as a multiplicative factor and take
as before the logarithm, we get:

LBc = log
(
ρ̄(tdes|x)PB

)
(20)

Hence the optimal weight adaptation is given by

∆wBc
j = α

∂ρ̄(tdes|x)/∂wj

ρ̄(tdes|x)
− α

Tσ2

∫ T

0
(ρ̄(t|x, tdes)− ν0)

∂

∂wj
ρ̄(t|x, tdes)dt. (21)

Since in scenario B each presynaptic neuron j fires exactly once at time tj = jδt and
the postsynaptic neuron is trained to fire at time tdes, we can interpret the weight
adaptation ∆wBc

j of Eq. (21) as a STDP function ∆wBc which depends on the time
difference ∆t = tpre − tdes. Fig. 5 shows this STDP function for different values
of the free parameter σ of Eq. (19). The higher the standard deviation σ, the less
effective is the penalty term. In the limit of σ →∞, the penalty term can be ignored
and the situation is identical to that of scenario Bu.
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Figure 3-6: Plots of the learning curves resulting from using differing levels of stochas-
ticity, i.e. the width of the threshold region of the neuron is altered — thus altering the
stochasticity of the neuron (A), and for differing deviations from the reference firing
rate (B). The figure is taken from Pfister et al (2006, p.1331).

3.4.8 Pattern Detection — Unconstrained Scenario C (Cu)

The goal now is to train each of the post-synaptic neurons to respond to a simple

but precise input pattern from the N pre-synaptic neurons with a specific output

spike train, and not to respond at all to other pre-synaptic input patterns. So,

in the notation of Pfister et al, it is required that a post-synaptic neuron i,

when presented with a specific and temporally precise stimulus xi, will produce

a specific and temporally precise output spike train yi. Additionally, if the post-

synaptic neuron is presented with input xk where k 6= i then no output spike

train is produced i.e yi = 0. As before the optimality solution must maximise

the probability that this is indeed the case. The optimality term for this scenario

is ultimately given by Pfister et al (2006) as:

LCu =
∑M

i=1 log(Pi(y
i|xi)) + γ〈log(Pi(0|xk))〉xk 6=xi .

Where γ is a measure of how important a particular pattern is i.e. it distinguishes

patterns that shouldn’t be learned from those patterns that should.

The resulting gradient ascent update rule is then given by:

∆wC
ij = α δ

δwij
log(Pi(y

i|xi)) + αγ〈 δ
δwij

log(Pi(0|xk))〉xk 6=xi .
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3.3 Scenario C: Pattern Detection

3.3.1 Unconstrained Scenario Cu: Spike Pattern Imposed

This last scenario is a generalization of the scenario Ac. Instead of restricting the
study to a single pre- and postsynaptic neuron, we consider N presynaptic neurons
and M postsynaptic neurons (see Fig. 6). The idea is to construct M independent
detector neurons. Each detector neuron i = 1, . . . ,M , should respond best to a
specific prototype stimulus, say xi, by producing a desired spike train yi, but should
not respond to other stimuli, i.e. yi = 0, ∀xk, k "= i (see Fig. 7). The aim is to find
a set of synaptic weights that maximize the probability that neuron i produces y i

when xi is presented and produces no output when xk, k "= i is presented. Let the
likelihood function LCu be

LCu = log

 M∏
i=1

Pi(yi|xi)
M∏

k=1,k !=i

Pi(0|xk)
γ

M−1

 (22)

where Pi(yi|xi) (c.f Eq. (6)) is the probability that neuron i produces the spike
train yi when the stimulus xi is presented. The parameter γ characterizes the
relative importance of the patterns that should not be learned compared to those
that should be learned. We get

LCu =
M∑
i=1

log(Pi(yi|xi)) + γ
〈
log(Pi(0|xk))

〉
xk !=xi

(23)

where the notation 〈·〉xk !=xi ≡ 1
M−1

∑M
k !=i means taking the average over all

patterns other than xi. The optimal weight adaptation yields

∆wC
ij = α

∂

∂wij
log(Pi(yi|xi)) + αγ

〈
∂

∂wij
log(Pi(0|xk))

〉
xk !=xi

(24)
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Figure 6: Scenario C. N presynaptic neurons are fully connected to M postsynaptic
neurons. Each postsynaptic neuron is trained to respond to a specific input pattern
and not respond to M − 1 other patterns as described by the objective function of
Eq. (22).
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Figure 3-7: Illustrative setup used in the scenario C experiments. Pfister et al (2006,
p.1332)

The learning rule is applied as a batch update, i.e. the update is applied after

all input/output patterns have been presented to the post-synaptic neuron. It

is noted in Pfister et al (2006) that, a fundamental difference between this and

the previous scenarios is that whereas before it was possible to plot the update

as a function of ∆t = tpre − tdes, this is not possible within scenario C as each

pre and post-synaptic neuron can emit output spike trains consisting of multiple

spikes. Instead Pfister et al obtain for the total weight change in terms of a sum

of contributions from the STDP function of each pair of pre and post-synaptic

spikes, such that:

∆wC
ij =

∑
tpre∈xi

j

∑
tdes∈yi ∆WCu(tpre − tdes).

This means that the interaction between each pre-synaptic spike and each post-

synaptic spike are considered and summed.

Figure 3-8 is taken from Pfister et al (2006, p.1333). There are 400 pre-synaptic

neurons and a single post-synaptic neuron. The panels down the left side rep-

resent a situation in which the post-synaptic neuron is presented with a pattern

that it has been trained to respond to whereas, the right hand panels are for a



Optimal Spike Timing Results 69

situation in which the neuron is presented with a pattern to which it must not

respond. The top panels show the input spike trains from each of the 400 pre-

synaptic neurons. The middle panels show the result of 1000 spike train responses

of the post-synaptic neuron in each situation i.e. to pattern xi on the left and

to a pattern xk on the right. The bottom panel shows the probability density of

firing of the post-synaptic neuron for pattern xi on the left and xk on the right.
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Figure 7: Pattern detection after learning. Top. The left raster plot represents
the input pattern the ith neuron has to be sensitive to. Each line corresponds to
one of the N = 400 presynaptic neurons. Each dot represents an action potential.
The right figure represents one of the patterns the ith neuron should not respond to.
Middle. The left raster plot corresponds to 1000 repetitions of the output of neuron
i when the corresponding pattern xi is presented. The right plot is the response of
neuron i to one of the pattern it should not respond to. Bottom. The left graph
represents the probability density of firing when pattern xi is presented. This plot
can be seen as the PSTH of the middle graph. Arrows indicate the supervised timing
neuron i learned. The right graph describes the probability density of firing when
pattern xk is presented. Note the different scales of vertical axis.

The learning rule of Eq. (24) gives the optimal weight change for each synapse
and can be evaluated after presentation of all pre- and postsynaptic spike patterns,
i.e. it is a “batch” update rule. Since each pre- and postsynaptic neuron emit many
spikes in the interval [0, T ], we can not directly interpret the result of Eq. (24) as a
function of the time difference ∆t = tpre − tdes as we did in scenario A or B.

Ideally, we would like to write the total weight change of the optimal rule given
by Eq. (24) as a sum of contributions

∆wC
ij =

∑
tpre ∈ xi

j

tdes ∈ yi

∆WCu(tpre − tdes), (25)
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Figure 3-8: Raster plots of Pattern detection results, Pfister et al (2006, p.1333).

It can be clearly seen from these results that the use of the update rule does

indeed allow for the post-synaptic neuron to respond only to a specific input

pattern. The plot of the update function vs ∆t = tpre− tdes can be seen in figure

3-9 from Pfister et al (2006). Once again the resulting STDP function has a

negative offset that is a product of the constraints that the neuron must only fire

in response to a specific pattern and no other, and that it must only produce

spikes as specific desired times in response to the appropriate pattern.
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Figure 8: A. Optimal weight change for scenario Cu. In this case, no locality
constraint is imposed and the result is similar to the STDP function of scenario Ac

(with η0 = 0 and uteach(t) = 0) represented on Fig. 3. B. Optimal weight change for
scenario Cc as a function of the locality constraint characterized by a. The stronger
the importance of the locality constraint, the narrower is the spike-spike interaction.
For A and B: M = 20, η0 = −5 mV. The initial weights wij are chose so that the
spontaneous firing rate matches the imposed firing rate.

Fig. 9A shows the STDP functions for various number of patterns M . No sig-
nificant change can be observed for different numbers of input patterns M . This is
due to the appropriately chosen normalization factor 1/(M − 1) in the exponent of
Eq. (22).
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(dotted line) depression dominates.
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Figure 3-9: Unconstrained scenario C learning curve, Pfister et al (2006, p.1335).

3.4.9 Temporal Localisation of STDP learning function

— Constrained Scenario C (Cc)

Pfister et al (2006), elucidate that the problem with scenario Cu just described

is that, the presence of the negative offset of the STDP type learning function

implies that the function is not localised in time around tpre − tdes = 0. Locality

of the STDP learning function is a fundamental property that should be satisfied

for a system to be realistic. Without locality there can be no realistic modeling of

memory because essentially every single pre and post-synaptic spike interaction

would be remembered in some form forever.

As a solution, Pfister et al modify the update rule in such a way as to penalise in-

creasingly temporally non-local terms. In other words, they increasingly penalise

pre and post interactions as |tpre − tdes| → ∞. Pfister et al (2006) introduce the

variable, a which, allows for the control of the how local one wishes the STDP

function to be, i.e. how large |tpre − tdes| can be before it is penalised. Plots of

learning function of different degrees of locality can be seen in figure 3-10, (Pfister

et al, 2006, p.1335).

Figure 3-11 shows the results obtained for the Optimal STDP function for dif-
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Figure 3-10: Constrained scenario C learning curve, Pfister et al (2006, p.1335).

ferent numbers of input patterns with a = 0.04, N = 400. Another result of this

work is shown in figure 3-12 and shows that if the synaptic weights are initialised

such that they are small then the resulting STDP function will have a dominat-

ing potentiating effect, whereas if the weights are initialised to be large, then the

resultant STDP function will have a dominant depressing effect.

3.5 Summary and Conclusions

The principle results of this work are best summarised in figure 3-13, (Pfister et

al, 2006, p.1340). This figure shows the form of the optimality term in each of

the six scenarios just discussed.

Scenario Au focusses on the most simple requirement of training a post-synaptic

neuron to fire first at a desired time tdes with no other constraints. The outcome

of this is that repeated application of the optimal solution does not result in

meaningful, converging synaptic efficacies. If (tpre− tdes) ≥ 0 the weights tend to

there is no single synaptic weight that will satisfy optimality and if (tpre−tdes) < 0

the synaptic efficacy tends to infinity.
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Figure 3-11: Learning curves obtained when the post-synaptic neuron are presented
with different numbers of input patterns and are required to respond to only one of
those patterns, Pfister et al (2006, p.1336).

This is the most simple model, and its short comings are due to the lack of any

modeling of synaptic depression.

Scenario Ac is, essentially, a remedy to the lack of depression of model Au. The

requirement is same as for Au with the addition that, the post-synaptic neuron

should not fire at any time other than tdes.

Scenario B addresses the strict constraint of A which says that there should be no

spikes of the post-synaptic neuron whatsoever, other than at tdes — perhaps an

unrealistic requirement. What scenario B introduces to the model is the ability to

have spontaneous post-synaptic spiking that can occur with a realistic frequency

ν0. Scenario Bu is analogous with Au, the difference being that in Bu Pfister et

al are attempting to maxmise the firing rate at time tdes and not just make the

neuron fire a single spike at tdes, as in Au.

Scenario C presents the most interesting experimental setup. In scenario Cu the

goal is now to train a post-synaptic neuron to emit multiple precisely timed spikes

in response to specific input pattern. The same neuron should not respond to

any other input pattern that may be presented to it. The results indicate that
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Figure 3-12: Learning curves w.r.t. the size of the initial synaptic weights. Initial
weights smaller than w0 will generally tend to increase, whereas with initial weights
larger than w0 synaptic depression will dominate, Pfister et al (2006, p.1336).

such a post-synaptic neuron with 400 input synapses is capable of producing an

output spike train of precisely timed spikes in response to a specific input pattern.

However, the limitations of the scope of the work here are that the spike train on

which the neuron is trained simply consists of two precisely timed bursts of spikes.

In terms of complexity, this is a relatively simple spike train. It leaves open the

question as to whether or not such a neuron can be trained, via a biologically

realistic method, to emit a complex sequence consisting of more than two spikes,

in response to a particular input pattern.

The modified scenario Cc addresses the negative offset of the resultant STDP

function. As previously stated, the offset implies that the function is not lo-

calised to ∆t = 0. The penalisation of increasingly non-local pre-post interac-

tions, the strength of which is determined by the parameter a, fixes the locality

problem. The resulting localised STDP function compares well to the typical

STDP function and, by design, possesses many of the same qualitative features.

This work shows the form to which an STDP learning function should tend to

take if it is to be considered ‘optimal’. Three scenarios were considered, each

differing in terms of the methodology involved in providing the stimulus and the
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Figure 10: Correlation plot between the optimal synaptic weight change ∆wopt =
∆wCu and the reconstructed weight change ∆wrec = C∆WCc using the temporal
locality constraint. A. No locality constraint, i.e. a = 0. Deviations from the
diagonal are due to the fact that the optimal weight change given by Eq. (24) can
not be perfectly accounted for the sum of pair effects. The mean deviations are given
by Eq. (43). B. A weak locality constraint (a = 0.04) almost does not change the
quality of the weight change reconstruction. C. Strong locality constraint (a = 0.4).
The horizontal lines arise since most synapses are subject to a few strong updates
induced by pairs of pre- and postsynaptic spike times with small time shifts.

Unconstrained scenarios Constrained scenarios

Au
pre-before-post Ac

post-before-pre
LTP ∼ EPSP LTD (or LTP) ∼ spike afterpot.

Bu
pre-before-post

Bc

post-before-pre
LTP/LTD ∼ reverse correlation LTD ∼ increased firing rate

Cu

pre-before-post
Cc

post-before-pre
LTP ∼ EPSP LTD ∼ background patterns
LTD ∼ background patterns ∼ temporal locality

Table 2: Main results for each scenario.

updates in typical model approaches (Minsky and Papert 1969; Haykin 1994; Bishop
1995). How does this compare to experimental approaches? Experiments focusing
on STDP have been mostly performed in vitro (Markram et al. 1997; Magee and
Johnston 1997; Bi and Poo 1998). Since in typical experimental paradigms firing of
the postsynaptic neuron is enforced by strong pulses of current injection, the neuron
is not in a natural ‘unsupervised’ setting; on the other hand, the situation is also
not fully supervised, since there is never a conflict between the desired and actual
output of a neuron. In one of the rare in vivo experiments to STDP (Frégnac et al.
1988; Frégnac et al. 1992), the spikes of the postsynaptic neuron are also imposed by
current injection. Thus, a classification of STDP experiments in terms of supervised,
unsupervised, or reward based, is not as clearcut as it may seem at a first glance.

From the point of view of neuroscience, paradigms of unsupervised or reinforce-
ment are probably much more relevant than the supervised scenario discussed here.
However, most of our results from the supervised scenario analyzed in this paper,
can be reinterpreted in the context of reinforcement learning following the approach
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Figure 3-13: Principle results of all constrained/unconstrained scenarios, (Pfister et
al, 2006, p.1340)

task to be performed. Optimality was defined by the objective function L and

synaptic weight changes were made according to a gradient ascent rule performed

on L.

The issue of a single neuron learning more complex precise spike trains is covered

in Legenstein et al (2005) and in Chapter 6 of this dissertation. Additionally,

the work in chapter 6 investigates, among other things, the ability of a single

neuron to learn — via STDP learning on its input synapses — multiple pre-

cise Input/Output associations in such a way that all I/O associations can be

remembered by the input synaptic weights to the neuron simultaneously — with-

out erasing each other. Also shown in chapter 6 is an example of learning using a

non-biologically inspired method to also enable a single neurons to learn to pro-

duce precise output spike trains. An outline of the work carried out in Legenstein

et al (2005), on learning precise spike trains is presented in chapter 3.6 of this

dissertation.

3.6 Complex Precise Spike Trains

The work discussed so far in this chapter has dealt with the optimal learning of

very simple precise spike trains consisting of only two precisely timed spikes. The

research presented in Legenstein et al (2005), investigates the ability of a single

neuron to learn a far more complex spike train consisting of up to approximately
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50 precisely timed spikes, over a 2 second interval. The learning method used

by is a form of STDP learning applied to the input synapses of a spiking LIF

neuron. During training, the LIF neuron is forced by a teaching input to perform

a target spike train in response to the spiking input activity the neuron receives

from its input synapses. The connectivity of the experimental setup is essentially

the same as that seen in figure 3-1.

The details of the LIF model used along with details of the synaptic modification

can be found in Legenstein et al (2005). While a large portion of the work in

Legenstein et al (2005), involves a theoretical analysis, it is the experimental

aspect of the work that is of greater relevance to the research in this thesis

and it is this experimental work that shall be discussed in greater detail in this

introduction.

3.6.1 Uncorrelated Input Experiment

In Legenstein et al (2005), a LIF neuron receives 100 inputs from dynamic

synapses of which, 90% are excitatory and 10% are inhibitory. The sign of

these synapses is fixed, i.e. STDP training cannot cause an inhibitory synapse

to become excitatory, and vice versa for an excitatory synapse. The target in-

put weight vector was chosen as follows. Half of the excitatory input synapses

were assigned their randomly assigned maximum possible value wmax, while the

remaining half were set to zero. The inhibitory synapses remain fixed for the

duration of all experiments performed.

This weight vector is the target weight vector and the threshold of the neuron

was set to ensure that when receiving 100 uncorrelated poisson input spike trains

each with a frequency of 20Hz, the LIF neuron would produce an output spike

train of frequency 25Hz. With this target weight vector and adjusted threshold,

the neuron is said to perform the transformation F on the 100 input spike trains.

For training, the excitatory synaptic weights were set to a spread of, relatively,

very low values (SD and mean can be found in Legenstein et al (2005)). The
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neuron was then presented with a continuous stream of input from the 100 input

synapses for a biologically simulated time of 3600 seconds. These 100 spike trains

are uncorrelated and have a frequency of 20Hz. The neuron also received input

from a teaching stimulus which, caused the neuron to fire at times when a neuron

with the target input weight vector would have fired. For the duration of this

simulation, STDP was performed on the excitatory input synapses, according to

the STDP rules set out in Legenstein et al (2005).

The results of this experiment show that over the course of the learning, the cor-

relation between the actual output of the neuron and the target output, increases

significantly — while error decreases. This is shown in figure 3-14, (Legenstein

et al, 2005, p.2364).2364 R. Legenstein, C. Naeger, and W. Maass
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Figure 3: Learning an arbitrary transformation F on 100 uncorrelated Poisson
inputs. (A) Output spike train on test data after 1 hour of training (trained)
compared to the output of the target transformation F (target). (B) Evolution of
the angle between weight vector w(t) and the vector w∗ that implements F in
radiant (angular error, solid line), the weight deviation (dashed line), and spike
correlation (dotted line). (C) Twenty weights from the vector w∗ (each weight
has its maximal possible value or value 0). (D) Corresponding weights of the
learned vector w(t) after 1 hour of training.

duced for the same input by the neuron with the current weight vector w(t).
For that purpose, each spike in these two output spike trains was replaced
by a gaussian function with an SD of 5 ms. The spike correlation between
both output spike trains was defined as the correlation between the result-
ing smooth functions of time (for segments of length 100 s). This measure
penalizes missing or superfluous spikes produced by the trained neuron,
but also imprecision in timing of spikes on the scale of a few ms. The other
two measures are obtained by comparing directly the current weight vector
w(t), with the target weight vector w∗. The angular error measures the angle
between these two vectors (solid line in Figure 3B). Note that this measure
does not reflect differences in the magnitude of vectors, in contrast to the
third measure: weight deviation. Weight deviation is the mean absolute
weight difference normalized by the mean target weight. Thus, the weight
deviation can be computed as

∑ne
i=1 |w∗

i −wi (t)|∑ne
i=1 w∗

i
, with ne being the number of

excitatory weights. Note that the latter two measures are very direct, but
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duced for the same input by the neuron with the current weight vector w(t).
For that purpose, each spike in these two output spike trains was replaced
by a gaussian function with an SD of 5 ms. The spike correlation between
both output spike trains was defined as the correlation between the result-
ing smooth functions of time (for segments of length 100 s). This measure
penalizes missing or superfluous spikes produced by the trained neuron,
but also imprecision in timing of spikes on the scale of a few ms. The other
two measures are obtained by comparing directly the current weight vector
w(t), with the target weight vector w∗. The angular error measures the angle
between these two vectors (solid line in Figure 3B). Note that this measure
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excitatory weights. Note that the latter two measures are very direct, but

Figure 3-14: The top figure contains a target spike train and the actual spike train
of the trained spiking LIF neuron. The lower figure clearly illustrates, in a quantita-
tive manner, the decreasing error and deviation between the target and actual spike
trains, along with their increasing correlation as exposure to STDP training increases,
(Legenstein et al, 2005, p.2364).
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Legenstein et al replace each spike in the target and actual spike trains with a

Gaussian function with an SD of 5ms. The correlation is then given by the cor-

relation of these two functions of time, and was calculated over 100ms segments.

This result was also shown to hold, even if the number of inputs to the neuron

varied — from 25 to 200. These results are shown in figure 3-15.
2366 R. Legenstein, C. Naeger, and W. Maass

25 50 75 100 125 150 175 200
0

2

4

6

Nb. Inputs

an
gu

la
r e

rr
or

 [°
]B

25 50 75 100 125 150 175 200
0.5

0.6

0.7

0.8

0.9

1

Nb. Inputs

sp
ik

e 
co

rr
el

at
io

n

A

25 50 75 100 125 150 175 200
0

5

10

15

20

25

30

35

40

45

Nb. Inputs

co
nv

er
ge

nc
e 

tim
e 

[m
in

]

C

Figure 4: Results on different input sizes. For each input size, the simulation
was repeated 20 times for different target transformations F, different inputs,
and different initial conditions. The mean and standard deviation is shown for
spike correlation (A) and angular error (B) after 1 hour of training. (C) Training
time needed until an angular error of less than 10 degrees is achieved.

5.3 Experiment 3 (Correlated Input). There exist many correlations
among spike trains from different neurons in a neural system, and there-
fore we have also carried out a variation of experiment 1 where different
subgroups of input spike trains had different degrees of correlation.

In this setup, inputs with weight 0 in the generation of the target transfor-
mation are correlated with the output. The reason is that such inputs are cor-
related with other inputs that have a positive weight and correlations with
the output. Furthermore, stronger correlated groups have a stronger influ-
ence on the output. In the extreme case, weighted inputs of input groups
with small correlation within the group may be less correlated with the
output than nonweighted inputs within strongly correlated groups. Again,
equations 4.5 and 4.6 help to predict successful learning and determine a
suitable quotient of W−/W+.

The experimental setup was similar to that of experiment 1. The 90 ex-
citatory inputs were divided into 9 groups of 10 synapses per group. Spike
trains were correlated within groups, whereas there were virtually no cor-
relations between spike trains of different groups.

Correlated spike trains with given correlation coefficients cc and given
decays τcc of correlations for time-shifted versions of such spike trains were
generated according to the methods that were introduced and analyzed
in Gütig et al. (2003). More precisely, spike trains Si , Sj were generated
such that the correlation function Ci j ("t) = 〈Si (t)Sj (t + "t)〉t of Si and Sj is

Figure 3-15: The two graphs on the left show that the spike correlation and error
between target and actual spike trains holds for different numbers of inputs. The right-
hand graph clearly shows that the time to convergence increases in an approximately
linear manner, as the number of inputs to the LIF neuron increases, (Legenstein et al,
2005, p.2366).

This experiment was also repeated with a ‘noisy’ teacher stimulus. An element of

noise was introduced to the teaching stimulus by means of ‘jittering’ the timing of

the spikes of the stimulus with Gaussian noise — zero mean and SD 4ms. It was

found that while the result was essentially the same, the training time required to

get this result was greatly increased over the noiseless teaching stimulus scenario.

3.6.2 Correlated Input Experiment

Using a similar experimental setup to that considered above, with the 90 excita-

tory inputs being divided into 9 groups of 10 synapses. The input spike trains
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were highly correlated within each group, while there is hardly any correlation

between groups, (Legenstein et al, 2005). The method of correlation used by Leg-

enstein et al, is taken from Gütig et al (2003). The target transformations to be

learnt are those that require different weights for highly correlated spike trains.

The actual form this takes is as follows: 5 of the synapses of each of the 9 groups

would have their weight set to zero and the other 5 in each group would have their

weight set to their randomly chosen maximal value. The learning takes place in

the presence of non-teacher-induced firing, by which Legenstein et al mean; firing

of the neuron that was not due to the input from the teaching stimulus. While it

was found that learning was somewhat successful, it was also found that it was

better if the neuron received additional inhibitory inputs to counter the effect of

the neuron firing in response to highly correlated input spikes. This inhibition

was in the form of 30 inhibitory inputs with uncorrelated spike trains. As a re-

sult the neuron was more likely to fire during training, in response only to the

teaching stimulus. The target weight vector and the learnt weight vector can be

seen in figure 3-16. Full results for this experiment can be found in Legenstein et

al (2005).
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Figure 5: Effects of correlated inputs. (A) A typical target weight vector w∗

for experiment 3 (each weight has its maximal possible value or value 0) and
(B) a typical learned weight vector. No significant loss of accuracy can be seen for
weights of synapses that receive highly correlated input spike trains (cc = 0.8 for
synapses 81 to 90) in comparison with synapses that receive weakly correlated
(cc = 0.1 · (i − 1) for the ith group) or uncorrelated inputs (e.g., synapses 1 to
10). (C) The result of experiment 4 with sharper correlation (τcc = 6 ms instead
of 10 ms) and 4 groups with the correlation cc plotted on the x-axis (solid line). It
also shows as a dashed line the spike correlation achieved by randomly drawn
weight vectors (where half of the weights were set to wmax and the other weights
were set to 0).

angular error of 6.8 ± 4.7 degrees and a weight deviation of 4.25 ± 2.2%.
The spike correlation produced by 20 weight vectors drawn from the same
distribution as the target weight vector w∗ was 0.45 ± 0.05.

5.4 Experiment 4 (Dependence of Learning Performance on Input Cor-
relation). In order to evaluate the dependence of correlation among inputs,
we proceeded similarly as in experiment 3, but increased and sharpened the
correlation among inputs. Now 4 groups consisting each of 10 input spike
trains were constructed for which the correlations within each group had
the same value cc (the input spike train to the other 50 excitatory synapses,
were uncorrelated, as were the inputs to 10 inhibitory synapses; 30 extra un-
correlated inhibitory inputs were added during training as in experiment 3
to reduce undesired firing). In order to make the effects of these correlated
inputs more pronounced, the time constant τcc for the temporal decay of
input correlations was reduced from 10 to 6 ms. Target transformations F
were chosen as in experiment 3 in the most adverse way: half of the weights
of w∗ within each correlated group were set to 0, the other half to a ran-
domly chosen maximal value. The learning performance after 1 hour of
training for 20 trials is plotted in Figure 5C for seven different values of the
correlation cc that is applied in four of the input groups (solid line). The
quotient W−/W+ was set to 1.05, 1.055, 1.06 for correlations of 0.3, 0.4, and

Figure 3-16: The top panel shows the relative target values of the synaptic weights,
while the lower panel shows the actual synaptic weight values that have been learned.
Taken from Legenstein et al (2005, p.2368).
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3.6.3 Dependence of Learning Performance on Input Cor-

relation

Consider the same experimental setup just described in section 3.6.2. The focus

of this experiment is to investigate how correlation among the input spike trains

can affect learning. The correlation between the inputs for this experiment are as

follows: the spike trains of 4 of the input groups — with each group consisting of

10 inputs — are constructed such that the correlations between the spike trains of

inputs within each group are given the same value. The remaining 50 input spike

trains, and the 10 inhibitory inputs were uncorrelated. The neuron also receives

the additional inhibitory input from 30 synapses as in the previous experiment.

The correlation measure was also more pronounced — or sharpened — in this

experiment, as the time-constant of the Gaussian function used to determine the

correlation functions, was reduced from 10ms to 6ms. The neuron was required

to learn the target transform described above for the correlated input experiment

and the results, over 20 trials, can be seen in figure 3-17.

It can be seen from figure 3-17, increasing the correlation between the input spike

trains, results in a decreasing correlation between the actual output of the neuron

and the desired output. It is noted by Legenstein et al that, for even the highest

levels of input correlation, the correlation between the actual and the desired

output of the neuron after training is still not too bad but, the weight vector at

this point is not close to the target weight vector. So it appears that, for high

input correlations, many weight vectors can produce similar output spike trains.

To demonstrate this, figure 3-17 also shows a plot in which the weight vectors

are assigned randomly — the dotted line. Where the input correlation is high,

then even with the randomly assigned weight vector, the neuron can still produce

an output that is of a similar correlation to the desired output as in the case of

the neuron with the trained weight vector (solid line), at least in terms of the

correlation measure used by Legenstein et al (2005).
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Figure 5: Effects of correlated inputs. (A) A typical target weight vector w∗

for experiment 3 (each weight has its maximal possible value or value 0) and
(B) a typical learned weight vector. No significant loss of accuracy can be seen for
weights of synapses that receive highly correlated input spike trains (cc = 0.8 for
synapses 81 to 90) in comparison with synapses that receive weakly correlated
(cc = 0.1 · (i − 1) for the ith group) or uncorrelated inputs (e.g., synapses 1 to
10). (C) The result of experiment 4 with sharper correlation (τcc = 6 ms instead
of 10 ms) and 4 groups with the correlation cc plotted on the x-axis (solid line). It
also shows as a dashed line the spike correlation achieved by randomly drawn
weight vectors (where half of the weights were set to wmax and the other weights
were set to 0).

angular error of 6.8 ± 4.7 degrees and a weight deviation of 4.25 ± 2.2%.
The spike correlation produced by 20 weight vectors drawn from the same
distribution as the target weight vector w∗ was 0.45 ± 0.05.

5.4 Experiment 4 (Dependence of Learning Performance on Input Cor-
relation). In order to evaluate the dependence of correlation among inputs,
we proceeded similarly as in experiment 3, but increased and sharpened the
correlation among inputs. Now 4 groups consisting each of 10 input spike
trains were constructed for which the correlations within each group had
the same value cc (the input spike train to the other 50 excitatory synapses,
were uncorrelated, as were the inputs to 10 inhibitory synapses; 30 extra un-
correlated inhibitory inputs were added during training as in experiment 3
to reduce undesired firing). In order to make the effects of these correlated
inputs more pronounced, the time constant τcc for the temporal decay of
input correlations was reduced from 10 to 6 ms. Target transformations F
were chosen as in experiment 3 in the most adverse way: half of the weights
of w∗ within each correlated group were set to 0, the other half to a ran-
domly chosen maximal value. The learning performance after 1 hour of
training for 20 trials is plotted in Figure 5C for seven different values of the
correlation cc that is applied in four of the input groups (solid line). The
quotient W−/W+ was set to 1.05, 1.055, 1.06 for correlations of 0.3, 0.4, and

Figure 3-17: Plot of the spike correlation function for the LIF neuron (y-axis) against
the correlation strength of the inputs (x-axis). The plot shows the results over 20 runs
for 7 particular input correlation values that were chosen, where each run was for a
simulated duration of 1 hour (solid line). The dotted line shows the result of randomly
assigning a weight value of zero or the maximum allowed value, to all synapses.Taken
from Legenstein et al (2005, p.2368).

3.6.4 Time-varying Input Correlations

It was also found by Legenstein et al, that using a form of time-varying correlation

between the input spike trains also produced good learning results. The nature

of the time-varying correlation is based on work by Song et al (2000). The cross-

correlation function obtained, decays exponentially with a time constant τc. All

results and parameters can be found in Legenstein et al (2005).

3.6.5 Modification of STDP Rules

STDP learning functions are typically applied to all pairs of pre and post-synaptic

spikes. A different approach was considered in Froemke and Dan (2002). In this

alternative treatment of STDP, the plasticity arises not from the repetition of

pairings of pre an post-synaptic spikes but instead, from the use of much longer

pre and post-synaptic spike trains and in which the efficacy of a spike from a
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neuron depends on the time since that same neuron last emitted a spike, such

that in the case of two spikes from the same neuron being temporally close, the

effect of the later spike on any post-synaptic neuron, is reduced according to

εi = 1 − exp(−(ti − ti−1)/τS), where ti and ti−1 are the times of the ith and the

(i − 1)th spike respectively and where τS is the time constant — referred to by

Froemke and Dan as the spike suppression constant.

Using this modified version of STDP, Legenstein et al found that, compared to

the unmodified version of STDP they had previously used, learning performance

was reduced in the case where the correlation between input spike trains was

high, and that there was no effect — or perhaps a small positive effect — on

learning performance for other input correlations. A table of correlations for the

modified and unmodified versions of STDP can be seen Legenstein et al (2005,

p.2371).

A form of STDP was also considered by Legenstein et al which, allows the synap-

tic weights to assume stable values between 0 and their maximum value wmax.

Using this form of STDP, it was found that the learning of target transforma-

tions that require stable intermediate synaptic weights was possible but that,

the resulting correlation measure between actual and desired output spike trains

was not as good as for those target transformations that only required synap-

tic weights to assume either their minimum or maximum values. It is noted by

Legenstein et al that successful learning was highly sensitive to the values of the

learning parameters which control the form of the STDP function.

STDP implementations which are capable of producing stable, intermediate synap-

tic weight values are desirable as a learning method, especially over more basic

STDP implementations, due to the fact that their ability to allow the synaptic

weights to assume significantly more diverse values than just the minimum or

maximum, means that they are capable of learning a larger number of target

transformations than the more basic STDP implementations, (Legenstein et al,

2005).



Recapitulation and Summary 82

3.7 Recapitulation and Summary

This chapter of the thesis has introduced some of the prior research on precise

spike trains most relevant to the original work contained in this dissertation. The

research of Bi and Poo (1998, 1999, 2001), is generally considered to be the most

relevant in terms of recent study into the biological mechanisms. This work by

Bi and Poo is used as the basis for many artificial STDP learning mechanisms

such as those considered in this dissertation, Pfister et al (2006), Legenstein et al

(2005), and some aspects of the work contained in Gerstner and Kistler (2002),

among many others. Bi and Poo (1998), provides real experimental confirmation,

using samples of real neurons, that correlations of pre and post-synaptic firing,

causes an enhancement of the efficacies of the correlated inputs, the strength of

which is dependent on the duration of time between pairs of pre and post-synaptic

spikes.

Legenstein et al (2005) demonstrates that a form of STDP learning can increase

the correlation between the output spike train of a post-synaptic LIF neuron and

some target precise spike train — as measured by their previously discussed spike

correlation function. It was shown that this result also holds for: i) Increasing

network size — from 25 to 200 input neurons; ii) Using a ‘noisy’ input. However,

the introduction of noise did cause the training time to increase significantly when

compared to the noiseless case.

Additionally, Legenstein et al also found that it was possible, using their form of

STDP learning, for input synapses to the post-synaptic neuron to be trained to

learn highly dissimilar weight values, even when their input spike trains are highly

correlated. This is a hard learning scenario as it requires connections that are very

similar in terms of their input spike trains, to achieve weight values that are as

different as zero and the maximum weight value. The effect of correlation between

input spike trains to the post-synaptic neuron is also investigated. Legenstein et

al showed that at higher input spike train correlations, not only do different input

weight vectors cause the post-synaptic neuron to produce similar output spike

trains, but that also these higher input correlations reduce the ability for STDP
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learning to enable the post-synaptic neuron to produce an output spike train that

is highly similar to the target spike train, and that, in fact, the actual output to

target output correlation at these high input correlations is statistically similar to

the spike correlation of a post-synaptic neuron with a randomly assigned weight

vector.

Furthermore, an implementation of STDP is considered in Legenstein et al (2005)

which, allows the synaptic weights to assume intermediate values that lie between

zero and the maximum. It was found that such an implementation produces sta-

ble weight vectors and this learning method can learn a greater number of target

transformations than the scenario in which weights are restricted to minimum

and maximum values. The disadvantage was found to be that the spike corre-

lations between the target and the actual output is not as high as in the weight

restricted case, Legenstein et al (2005).
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Introduction

The research field and the current state of the research in this field has now been

established. The LSM has been introduced along with numerous investigations of

its computational capabilities. Additionally, examples of the recent research that

has been performed on the investigation of learning precise spike trains using

STDP inspired learning techniques has also been reviewed. This next section

presents the original work that forms the core of the thesis.

In Chapter 4 the emphasis of the research is on applying spiking neurons and

structures built out of spiking neurons, in a manner that is very different to the

typical applications that have been discussed in part I. The applications discussed

in this chapter for networks of spiking neurons could possibly be implemented in

hardware to introduce a novel method of computing.

Chapter 5 introduces a learning regime based on Hebbian learning, Spike Time

Dependent Plasticity (STDP) learning with normalising (STDP + N). In it-

self, this is not a particularly new learning regime. However, what this chapter

presents is an analysis of some of the fundamental aspects of this learning regime,

when applied to synapses within a recurrently connected network based on an

LSM. An expression is formulated, the activity link vector L, which relates the

input and output spiking activity of a spiking LIF neuron to the resultant weight

change. Analyses are performed that investigate the effect of Hebbian followed

by Anti-Hebbian STDP + N learning, on the modification of network synaptic

weights.

The work of Pfister et al, examining the capability of individual LIF neurons to

learn temporally precise patterns has been introduced and discussed. This work

is related the original work in chapter 6. The work in chapter 6 expands on the

work investigating the ability of an individual neuron to learn a temporally precise

firing pattern, some of which was performed concurrently with that of Pfister et al

(2006), Toyoizumi et al (2007) and Legenstein et al (2005), and investigates the

ability of a single neuron to learn more than one of these patterns simultaneously.

This chapter also introduces a metric for weighted time series of spikes that is
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used to determine how well the single neuron has learnt a goal precise spike train

response to a collection of specific input spike trains.

Chapter 7 investigates the method of application of STDP learning within an

LSM-style network. In the work discussed in part I, in particular the work seen in

Hæusler and Maass (2007), the learning is applied to all synapses of the recurrent

network. Chapter 7 provides an investigation into a novel application of the

learning regime within a recurrent network, with a view to improving the learning

according to observations of the sequential firing intervals that groups of network

neurons are capable of learning. A form of STDP learning is introduced and

it is demonstrated that this form of learning can enable networks of recurrently

connected spiking neurons to learn firing patterns that the standard application

methods of STDP learning would not be capable of.



Chapter 4

Parallel Computation in Spiking

Neural Nets

4.1 Introduction

A great deal of work is currently going on to design and build spiking neural

nets as nanostructures in silicon. See, for example, the recent paper by Bindal

and Hamedi-Hagh (2007). A review of a variety of different neural models, along

with feasible techniques for implementing these models in hardware, can be seen

in Smith (2006). In connection with this, and the ongoing efforts to understand

the computational powers of biological neurons, as reviewed, for example, in

the paper by Herz et al (2006), it seems important to understand the potential

computational power of artificial spiking neural networks.

Siegelman (1999), shows that the family of analog neural nets with saturated sig-

moid transition function, considered as computing devices, are Turing complete.

This means that any computation which can be carried out by a Turing machine

with its potentially unbounded memory can also, in principle, be carried out by

finite networks of these analog devices. This is possible because the neurons hold

real numbers, each of which may contain an unbounded amount of information.

87
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The essence of Siegelmann’s construction is to consider a real number as a stack

of binary values, via the usual binary decimal expansion. Neto et al (2003) have

also shown that a general purpose parallel programming language, similar to Oc-

cam, (Inmos Limited, 1998), can be compiled into one of these sigmoid neural

nets.

The case of spiking neural nets is somewhat different, because here the messages

sent between neurons are series of stereotyped spikes. The only information car-

ried by a spike is the time at which it occurs. We may, it is true, look at a spiking

network over a long period of time and record the rate of firing, averaged over

some time window, of each neuron at each instant. This rate coding transfor-

mation from one model to the other is not entirely convincing, since the number

of possible values represented by a rate would depend on the size of the time

window, but nevertheless it does suggest that spiking neural nets ought also to

have the property of Turing completeness. This was actually shown by Maass et

al (1996). In this case real numbers, within a certain interval, are represented as

phase differences of oscillating systems. That is, the information is held in the

dynamics of the system, not directly as in the work of Siegelmann. As before,

however, the essential idea is to use the real numbers as binary stacks.

Both of these constructions give more than Turing completeness. They actually

implement the real number machines of Blum et al (1997). A real number ma-

chine is one in which the memory registers can contain real numbers and the

machine is able to perform computations using the reals whereas, the memory

registers of a turing machine do not contain real numbers, only characters from

some finite sized alphabet are allowed. Of course the implementations are in

neural nets considered as dynamical systems, as mathematical abstractions, and

not in actual networks of real neurons.

The Maass construction also depends on some special assumptions about the

postsynaptic response function, the most important one being that it is linear on

some interval. The results of this chapter are closely related but the methods are

different
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The motivation for the work within this chapter is that it utilises neural networks

in a different way and for a different purpose from what is, and indeed has

been, the norm. Our main contribution is a way to represent integer variables.

The natural number n is represented by taking two in-phase copies of oscillating

subsystems and performing n standardised perturbations of one of them. To

read the number back, the subsystem which was not perturbed is perturbed

some number of times until the two subsystems are again in phase, as they were

at the beginning. To support this idea, we require some device, made out of

spiking neural nets, to detect whether or not two oscillators are in phase. This

is called a coincidence detector. In contrast to Blum et al, we do not assume

unbounded precision accuracy of the coincidence detector. Therefore, we can

only compute with integer values of a bounded size, as with ordinary computers.

It is shown that a weak version of Occam can be implemented in this way. As

an example, it is shown how addition and multiplication could be implemented,

albeit inefficiently. We do not need the assumption of linearity in an interval of

the post synaptic response function, as used by Maass. We do assume that the

post synaptic response function is continuous, that it starts from a resting value,

increases to a maximum and then decreases back to the resting value. The need

for highly constructed and controlled networks of neurons to perform the basic

arithmetic operations seen in this chapter is an indication that such coherent and

arithmetical thought may actually be quite a difficult process for biological neural

networks to successfully accomplish.

4.2 Oscillations and Spiking Neurons

The spiking neurons and spiking neural networks discussed in this article should

be understood as members of the family of deterministic mathematical models,

such as leaky integrate and fire, or the spike response model, discussed and de-

scribed in Gerstner and Kistler (2002).

Numerical quantities can be represented as phase differences between equiperi-

odic oscillating subsystems in a spiking neural net. It is then possible to repre-
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sent integer variables, and the increment and decrement operations, X := X +1,

X := X − 1. It is also possible to represent some basic parallel programming

constructions: if, while, seq, par, alt, as used in, for example, the Occam pro-

gramming language. However, we do not claim that computations of this kind

are actually done in this way in biological systems — we merely propose a novel

application for such neurons.

4.3 Terminology

We will say that a network of spiking neurons is an oscillator if it has some initial

state so that, without any further input, every neuron in the network will fire

periodically, possibly with different periods. It is quite possible for an oscillator

to have other behaviours, for other initial states, even without any input. An

oscillating state is only determined by a network and a designated initial state.

We will say that an oscillating orbit is attractive if any initial state sufficiently

near to the designated initial state results in an orbit which spirals in to the

oscillating orbit.

Attractive oscillators are very common in spiking neural networks (Wang, 2000)

For example, a single neuron with an excitatory link to itself and a time delay will

oscillate, if the weight is large enough, and the oscillation is attractive, with rapid

convergence, for most values of the parameters. Another example of this type

would be a chorus, which is a symmetric network of identical neurons, totally

connected by excitatory links, all with the same weights and time delays. For

discussion, see Gerstner and Kistler (2002). Such oscillators can be started from

the zero state by giving an initial excitatory impulse. The periods can be adjusted

or altered, to some extent, by altering the weights and the time delays.

We will say two oscillating subsystems are matched if there is a one to one

correspondence between the neurons and links of the subsystems, preserving all

the parameters of the neurons and the links.

Two matched oscillating subsystems which are started together will be in phase
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forever. If one is started later than the other, the phase difference will be pre-

served forever. It is these phase differences which we will use as elements of

memory. We note that in case there is noise on the links, the phase difference

will drift at random over time. To some extent, such random drift can be slowed

by duplication of systems.

In the following, we will advance the phase of an oscillating system by sending

an exciting impulse to it. This depends on the idea that if a neuron is about

to fire in the near future, a small exciting impulse will cause the firing to occur

earlier. This in turn depends on some assumptions about the post synaptic

response. We assume, in fact, that this post synaptic response is continuous,

that it starts from a resting state, increases to a maximum, and then decreases

back to the resting state. (These assumptions are simpler and somewhat different

from those used in Maass et al (1996), where strict continuity is not needed, but

some intervals of linearity are required). The continuity is important for our

construction, since it allows fine tuning of the response. We consider that this

is a realistic assumption. This can be justified if one considers that in reality,

the response functions of the post synaptic response of real neurons must also

be continuous, no discontinuous jumps in the function can happen in reality.

Note that some event based simulation systems actually depend on the contrary

assumption of an instantaneous and discontinuous initial jump of the response

function in order to simplify their computations. See Delorme et al (1999), Mattia

and Del Giudice (2000).

In the section below we define a simple concurrent programming language. A pro-

gram in such a language is just a statement. These statements will be computed

in spiking neural nets.

A subsystem is a network of spiking neurons. We will assume that each subsystem

has an initiating neuron and a terminating neuron. The subsystem is started by

sending an exciting impulse to the initiating neuron. The subsystem finishes,

if ever, at the first instant after it starts when the terminating neuron fires.

The activity between the start and the finish is called a process. Of course the

process depends on the initial state of the subsystem. We do not always assume
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that the initial state of a subsystem is zero. We intend to use these processes

to implement statements in the programming language. Of course observing

the process should tell us all we need to know about the computation which

is supposed to be described by the original statement. At this point we will

just make the minimum assumption, which is that the process should terminate,

given some initial conditions, if and only if the statement in its usual denotational

semantics describes a terminating computation. In case of termination, we also

expect the terminating state of the variables (described below) to be correct,

according to the denotational semantics, provided that none of the integral values

which occur in the computation are too large, or too small.

4.4 A Simple Parallel Programming Language

The language described below is a very weak version of Occam, without channels,

and only integer variables, and all variables global. See Inmos Limited (1998).

We will use strings of characters starting with upper case letters as variables for

integers.

The language consists of statements:

• If X is a variable, then

X := 0, X := X + 1, and X := X − 1 are statements.

• If X and Y are variables, then

X := Y and X := −Y are statements. These are all called assignment

statements.

• If X is a variable, then

X = 0 and X 6= 0 and X > 0 are tests.

• If T is a test and P and Q are statements, then

If T then P else Q is a statement.
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• If T is a test and P is a statement, then

While (T ) P is a statement.

We will say that two statements are independent if no variable which may be

modified in one statement is referred to in the other.

• If P1, . . . , Pn are statements, then

Seq{P1; P2; . . . Pn; } is a statement.

• If P1, . . . , Pn are independent statements, then

Par{P1; P2; . . . Pn; }, and Alt{P1; P2; . . . Pn; } are statements.

Statements in this language have a natural denotational semantics, defined as

follows. We define a valuation to be an assignment of integral values to some sub-

set of the variables. Then each statement denotes a possibly non-deterministic,

possibly non-terminating, transformation from one valuation to another. These

denotations can be defined by structural recursion on the statements, as usual.

So, for example, the transformation denoted by Par{P1; P2; ...Pn; } is obtained

by running the transformations denoted by P1, P2, . . . , Pn in parallel, and it only

terminates when and if all of them terminate. On the other hand, the transfor-

mation denoted by Alt{P1; P2; . . . Pn; } is obtained by running all of the denoted

transformations in parallel, and it terminates just when one of its constituents

terminates, the choice being non deterministic if several of them terminate. See

Hoare (1995) for discussion of nondeterministic choice.

We show below how the transformations denoted by statements in this program-

ming language can be implemented in spiking neural networks.

4.5 Representation of Variables for Integers

We define a switch to be a pair of oscillators, each inhibiting the other. So if

(A, B) is a switch, it has at least three steady states: A oscillating and B quiet;
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both A and B quiet; A quiet and B oscillating. There should be a large number

of time delayed inhibiting links between A and B to prevent them from both

oscillating together. The simplest case of a switch would be a pair of neurons, A

and B, each neuron exciting itself, and the pair connected by many time-delayed

inhibiting links. A switch can have one pole or the other turned on, or both

turned off. We note that within the context of the deterministic model, there is

no fading memory; whatever state a switch is in will persist until further input

is given.

We define a variable X to be a switch, (A0, B0) together with an array of

matched oscillators (A1, B1), . . . , (An, Bn). For each i, the oscillators Ai and

Bi are matched, and may oscillate independently, but the oscillators A1, . . . , An

are all distinct, with different periods.

Our convention will be that when the value of a variable is positive, the A0 side

of the switch will be on; and when the value of the variable is negative, the B0

side of the switch will be on.

We will say that a variable (A0, B0), (A1, B1), . . . , (An, Bn) is exactly zero if

(A0, B0) are both off, and if, for each i > 0, Ai and Bi are in phase.

Very small phase differences may not be observable. Let us agree that we can

observe whether or not a phase difference is below ε for some ε > 0.

We will say that a variable (A0, B0), (A1, B1), . . . , (An, Bn) is observably zero,

with tolerance ε, if (A0, B0) are both off, and if, for all i > 0, Ai and Bi have

phase difference below ε.

A variable is observably non zero with tolerence ε if it not observably zero with

tolerence ε.

A subsystem which decides, with high probability, whether or not a variable is

observably zero (with some tolerence ε) will be called a coincidence detector. As

mentioned in Gerstner and Kistler (2002), there are actual biological systems of

this type, with quite small values of ε, in the barn owl for example. There may

well be just as precise structures in other species.
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Let X be a variable, represented by (A0, B0), (A1, B1), . . . , (An, Bn). As men-

tioned above, we use the convention that when X is positive A0 will be on, and

when X is negative B0 will be on, and when X is zero both A0 and B0 will

be off, i.e. not firing. We will call A1, . . . , An the positive part of the variable,

and B1, . . . , Bn the negative part of the variable. Incrementing the variable will

mean incrementing all the positive parts, and decrementing the variable will mean

incrementing all the negative parts, and then modifying the switch if necessary.

One oscillator, Ai, will be incremented by sending it one exciting impulse, thereby

advancing its phase.

It follows that, in order to ensure that each increment has the same effect, input

spikes must be ‘injected’ into each neuron of the oscillator at the same point

in the period of the neuron. Obviously another structure is required to ensure

that this is the case. We shall call this structure the synchroniser. The task of

the synchroniser is to ensure that the effect of an increment is independent of

the time when the increment is done. A synchroniser is described below for the

simple case in which the oscillator is just one neuron connected to itself. The idea

is to hold the incrementing impulse and to deliver it, with a small time delay,

when the neuron itself fires.

The natural number n is represented by incrementing zero n times, and reset-

ting the switch to indicate that n is positive. In general, after an increment or

decrement, the switch may need to be reset appropriately, if n changes sign.

Let (A, B) be the simplest matched pair of oscillators, each a single neuron self

exciting. Let the weight for this exciting link be w, and the time delay d. The

period τ of the spiking depends on w, decreasing as w increases. Suppose an

increment advances the phase of A by δ. We must have δ > ε, since the result

of one increment must observably change the phase. Assume δ > 2ε. After

some number N(ε, τ) of increments the matched pair will again appear in phase,

with tolerence ε. After about τ/δ increments there is probability of about 2ε/δ

of appearing to be in phase. So, roughly speaking, we could expect N(ε, τ)

to be about τ/(2ε). That is the expected memory capacity of one matched

pair. Since all the matched pairs in a variable have different parameters, and
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therefore different periods, we expect that the memory capacity of an array of

matched pairs would be approximately the product of the memory capacities of

the individual pairs.

Let X and Y be variables. The statement X := Y could be implemented by a

process which, when initiated, would first turn off all the oscillators of X, and

then take input from all the oscillators of Y and pass it on, with the same time

intervals, to the corresponding oscillators of X, and would then terminate. We

will consider that the subsystem implementing X := Y contains the neurons of

X, and takes input from the neurons of Y , but does not contain them. So the

subsystems implementing X := Y , and Z := Y could be disjoint, even though

both take input from the neurons of Y . So we would say that the independent

statements X := Y and Z := Y could be done in parallel by disjoint subsystems.

4.6 Demonstrations in CSIM

CSIM (neural Circuit SIMulator), (IGI Group, 2008), is a neural network simula-

tion tool that allows the simulation of networks of different models of neurons and

synapses. It has a multitude of user modifiable properties for both synapses and

neurons. These range from models such as the basic integrate and fire neuron, to

more sophisticated models involving ion channel modeling. Similarly, synapses

can be simple static spiking synapses or dynamic spiking synapses which allow

the effects of synaptic plasticity to be accounted for.

All CSIM scripts are written and executed in Matlab. It has been used extensively

in work by Maass and is designed and written by the LSM Group of the Institute

for Theoretical Computer Science at the University of Graz.

We have used CSIM to build examples of the structures described in this chapter.

More detailed information concerning the usage and capabilities of CSIM can be

found in IGI Group (2008).
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4.7 Single neuron oscillator

First it was necessary to show that it is possible to create a stable oscillator which

will oscillate with constant period forever if stimulated and then left undisturbed.

The structure of a single neuron oscillator can be seen in figure 4-1 below.

i

Oscillator

Figure 4-1: A Single neuron oscillator with spiking input neuron i.

4.7.1 Results for a single neuron oscillator in CSIM

Figure 4-2 shows the spiking output of a single neuron oscillator created with

CSIM, using a leaky integrate and fire neuron.

4.8 The synchroniser

Consider a matched pair of oscillators, (A, B), as described earlier. A single

input spike of sufficient magnitude to one of the oscillators would cause a phase

advancement of that oscillator, after which the previous spiking rate is quickly

resumed. However, there now exists a permanent phase difference between A and

B.

The function of a synchroniser is to ensure that the introduction into an oscillator

of a phase advancement spike will only ever occur at or very near to a specific
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Figure 4-2: The top panel shows the single input spike from input neuron i. The
lower panel shows the periodic, oscillating spiking output of the oscillator.

point in the period of the oscillator. This ensures that every input into the

oscillator facilitates a near-identical response — preserving the predictability of

the system.

If we were allowed to introduce a phase advancement spike at any instant during

the period of an oscillator then the instant of spiking of that oscillator would

differ for each phase advancement spike. See figure 4-3 below — where the third

input spike was ignored completely as it arrived while the oscillator was spiking

and was consequently swamped.
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Figure 4-3: Spike injection without a synchroniser. The top panel shows a series
of three input spikes from the spiking input neuron i. In the lower panel it can be
seen that while the first two spike promote similar responses from the oscillator
neuron, na, the third input spike produces a different response.

4.8.1 Structure of a synchroniser

Figure 4-4 illustrates a possible design for the synchroniser. This design is the

one used throughout the chapter.

The input neuron i emits a spike which will produce a phase advancement of

an oscillator A. This spike is relayed to the oscillator via a combination of two

structures, the first of which is a switch, the second is known as the accumulator.

A precondition for the correct functioning of the synchroniser is that the switch
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Figure 4-4: The structure of the synchroniser. This structure can be seen to work
in figure 4-7.

has been in the ‘off’ state for a certain period of time before the spiking of the

input neuron.

4.8.2 Elements of a synchroniser: The switch

The function of the switch is to indicate the presence of an input spike destined

for the oscillator. The ‘on’ side of the switch has a single, time-delayed excita-

tory connection from the input neuron i, the weight of which is sufficient to cause
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spiking, and it has a connection to itself so that the spiking continues periodi-

cally. On the other hand, the ‘off’ side receives multiple inhibitory time delayed

connections from the ‘on’ side — each of which have the same weight but where

the modulus of one of these weights is much smaller than the weight of the exci-

tatory connection to the ‘on’ side from the initiating neuron. The effect of these

multiple inhibitory connections is to temporarily lower the internal state of the

‘off’ side oscillator by a certain amount so that it is unable to continue to spike.

When the accumulator neuron eventually fires, the switch will also receive multi-

ple inputs from the accumulator neuron, with the ‘on’ side of the switch receiving

multiple time delayed inhibitory connections and the ‘off’ side receiving a single,

time-delayed excitatory connection, reversing the switch.

Once the ‘on’ side of the switch has been stimulated by i it will spike regularly and

continually until the accumulator neuron spikes and sends it multiple inhibitory

spikes to shut it down.

There are also mutual inhibitory links between both sides of the switch. This is

to ensure that when one side is active the other is inhibited.

It will be necessary to prevent any scenario in which both the ‘on’ and ‘off’ sides

of the switch are active simultaneously. This can be accomplished by further

delaying the connections denoted in figure 4-4 as the ‘on’ and ‘off’ side excitatory

links. Consider the case where the ‘off’ side of the switch is active and i emits a

spike. We require that the ‘off’ side be inactive by the time ‘on’ is made active

by the spike from i. Therefore we add a delay to the synaptic connection from

i to ‘on’, while instantly relaying the multiple inhibitory spikes from i to ‘off’.

The result is that the internal state of the ‘off’ oscillator will be lowered by an

amount that will prevent it from its next firing so that when the excitatory pulse

arrives at ‘on’, the ‘off’ side will be quiet. The delay is such that the single pulse

arrives after the influence of the mutual inhibitory links has subsided.
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4.8.3 Elements of a synchroniser: The accumulator neu-

ron

Once the presence of an input destined for the oscillator has been detected by the

switch, it will be necessary for the synchroniser not only to ‘remember’ that there

is an outstanding input which needs to be injected into the target oscillator, but

also be able to relay a pulse into the oscillator at the appropriate instant.

The accumulator neuron received input from the switch and also from the os-

cillator A, as shown in figure 4-4. Suppose that the internal state function of

the accumulator is N(s). We may write N(s) = O(s) + A(s), where O(s) is

the response to the oscillator and A(s) is the response to the inputs from the

switch. Since we suppose that the oscillator has been nearly periodic for a while,

it follows that O(s) is nearly periodic with the same period. We suppose that the

link or links between the oscillator and the accumulator have been set so that

O(s) is not only periodic with the same period as the oscillator, but also has just

maximal point in between each firing of the oscillator. Let θ be the threshold of

the accumulator. Pick the weights so that the maximum value of O(s) is θ/2+ δ,

where δ is some small value, well below θ/2. O(s) might have some other local

maxima which are smaller than this but these must all be below θ/2. The time

interval in which O(s) > θ can be made as small as we like by choosing δ suffi-

ciently small. When the switch is off, the accumulator will not fire, since O(s)

will not cross the threshold.

When the switch is on, we arrange so that A(s) rises to a plateau of approximately

θ/2 + δ and oscillates around this with amplitude below δ.

This is accomplished by having n time delayed synapses which connect the ‘on’

side of the switch to the accumulator neuron. The time delays are jτ/n, for

j = 1 . . . n, where τ is the period of the ‘on’ side of the switch.

The weights of these connections are all equal to some value w, which is de-

termined so that the resulting cascade of pre-synaptic pulses has the effect of

charging the accumulator neuron so that A(s) reaches the desired plateau. The
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more connections there are, the more closely will the course of A(s) approximate

to the ideal of perfect flatness.

The accumulator will only spike if it has received a sequence of inputs from the

‘on’ side of the switch and it subsequently receives a input from the oscillator.

At this point the accumulator neuron ‘injects’ the spike into the oscillator, and

sends inhibitory spikes to the ‘on’ oscillator followed by an excitatory spike to

the ‘off’ oscillator. The charging of the accumulator from the switch can be seen

in figure 4-5

4.8.4 Results for the synchroniser in CSIM

Figure 4-6 shows the behaviour of the synchroniser as a whole, while figure 4-7

shows the injection of the three spikes as shown before in figure 4-3, but this time

utilising the synchroniser. It can be seen that with the synchroniser the spike

that was ignored previously is now injected successfully.

Suppose that the synchroniser has been turned on, and that a spike from the

oscillator occurs at time t, and a subsequent spike from the accumulator occurs

at time t + ∆. The value of ∆ will depend on the phase of the oscillator.

We have that A(t + ∆) + O(t + ∆) = θ. Let the maximum value of O(s) be

θ/2 + δ. So A(t + ∆) ≥ θ/2− δ. On the other hand, A(s) is bounded from above

by θ/2 + δ. We have:

θ/2− δ ≤ A(t + ∆) ≤ θ/2 + δ

Let t∗ be the maximum point of O(s) which is nearest to t + ∆.

The quantity | t + ∆− t∗ | is bounded by the time it takes the value O(s) to go

from θ/2− δ to its maximum value θ/2 + δ and then back down to θ/2− δ; and

this tends to zero with δ since O(s) is continuous. Therefore the time between

t + ∆ and the next subsequent spike of the oscillator is approximately constant.
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Figure 4-7: Using the same demonstration previously seen in figure 4-3, it can be
seen here that, with the synchroniser the third spike now has exactly the same
effect on the oscillator as the first two spikes. Using the synchroniser, input spikes
are now injected into the oscillator neuron at the same point in its phase every
time. Therefore, they all have the same effect on the oscillator.



The Coincidence Detector 107

When we advance the phase of the oscillator, the phase of O(s) will follow, keeping

approximately constant the distances between maximum points of O(s) and the

time of the next subsequent spike of the oscillator.

4.9 The Coincidence Detector

The function of a coincidence detector is to indicate if two or more spikes, from

two or more separate inputs, are ‘simultaneous’ events. In any real system it is

expected that simultanaeity can not be observed with perfect accuracy. There-

fore, we define two spikes as being effectively simultaneous if they both arrive

within a time interval of size ε, where ε is small.

ic

S1 S2

na nb

S3 S4

Figure 4-8: The structure of the coincidence detector.

It is expected that the coincidence detector will be highly susceptible to varia-

tions in the synaptic weights of each input. It will be necessary to choose the

weights with particular care, as they will determine how selective the detector is

at classifying two inputs as effectively simultaneous.

Consider a coincidence detector which is a single spiking neuron ic that has two

excitatory synaptic inputs s1 and s2 and two (slightly) time delayed inhibitory

synapses s3 and s4, as shown in figure 4-8. Synapses s3 and s4 have the effect of

sharpening the edge of the input spikes allowing the coincidence detector to be
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more selective.

If the threshold of ic is given by θ, and the synaptic weights of the two inputs are

given by w1 and w2, where w1 = w2 = w we set w so that

θ = (2× w)− x

As x tends towards 0, ε will also tend towards 0. By adjusting the parameters,

we can make ε as small as we desire.

4.9.1 Results for the Coincidence Detector in CSIM

In order to perform accurate operations with phase differences it is necessary that

the integrity of a number stored in a pair of oscillators can be guaranteed.

Figure 4-9 shows the increment oscillator being perturbed 10 times by a phase

advancement spike. This is effectively storing the number 10 in the pair. 10 spikes

are then injected into the decrement neuron until both oscillators are in phase

once again. The number of spikes required for this is 10. Therefore, integrity has

been demonstrated in this case.

4.10 IF, WHILE, SEQ, PAR, ALT constructions

Given structures such as the oscillator, synchroniser and coincidence detector

it is possible, using combinations of these structures, to implement the basic

constructions of the programming language described above.

4.10.1 The IF constructor

Consider some group of spiking neurons which perform some process P . We are

not concerned with the function or the mechanics of the process, only that it is
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implemented using spiking neurons and synapses, and that it can be triggered

by a spike arriving from an input neuron i and that upon completion it activates

some termination neuron which, effectively passes control to the next constructor.

P

i

k

+

+

+

y n

+

Figure 4-10: Example of the IF Constructor

χ is a structure of spiking neurons which represents the condition of the IF

statement which, must be satisfied if P is to be activated. χ has an internal

switch, not shown in the diagram, which is normally off. When this switch is

off, neither output of χ can fire. Upon firing, the neuron i sends a pulse to the

input neuron of χ, which then turns on χ by resetting its switch. Whether or

not the condition is satisfied will determine which output neuron of χ fires. If χ

is satisfied neuron y is activated, if χ is not satisfied then neuron n is activated.

In either case, when χ finishes, it is switched off. Neuron y will send a spike to

the initiating neuron of the process P that, upon completion will activate the
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termination neuron of the constructor k. Neuron n will immediately activate k,

as the condition for P to be activated has not been met.

A precondition for this to work correctly is that χ is turned off before the initiating

neuron fires.

4.10.2 The WHILE constructor

This is similar in structure to the IF statement. The WHILE constructor must

first check if a condition χ is met and then, if it is, allow a process P to be

activated. The cycle continues until the condition represented by χ is no longer

met. If at any point χ is not met when tested, then the WHILE constructor

passes control to the next process. A possible implementation is shown in figure

4-11.

Again χ is the condition of the WHILE statement, P is the process to be run

while this condition is met.

Neuron i is an activation neuron. A spike emitted by i will activate χ. Upon

completion P emits a spike to the input neuron of χ. If the condition χ is being

met then neuron y is activated, otherwise neuron n is activated.

Neuron y is connected to the activation neuron of the process P . If neuron n is

triggered it will activate the constructor termination neuron k, passing control

to the next constructor.

4.10.3 The SEQ constructor

The function of the SEQ constructor is to allow a series of processes to activate

sequentially, with the next process in the list only being activated once the current

process has completed.

Neuron i is the activation neuron of the constructor. P1, P2, P3...Pn is the sequence

of processes to be activated. Assume that each of these has been implemented
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i

k

+

y n

+

P

+

Figure 4-11: Example of the WHILE Constructor

by disjoint subsystems. After each process is completed only then will it send an

activation spike to the next process in the sequence. As figure 4-12 shows, i sends

an activation spike to P1, which in turn sends an activation spike to P2, which

sends an activation spike to P3, which upon its completion will send a spike that

activates the next constructor.

4.10.4 The PAR constructor

The PAR constructor activates a list of processes concurrently. Assume, as be-

fore, that each of these has been implemented by subsystems which are disjoint.



IF, WHILE, SEQ, PAR, ALT constructions 113

P3

P2

P1

i

Figure 4-12: Example of the SEQ Constructor

Control only passes from a PAR constructor once all of the listed processes have

completed.

Once again i is the activation neuron of the constructor. When i spikes, the spike

gets transmitted to the input of each of the processes to be activated. As each

process completes it will send a spike to its specific Input neuron n within an

n input register, see figure 4-13. The weights of this switch are set, such that a

constant charging from each of the n inputs is required to cause activation of the

accumulator. The mechanisms for charging the accumulator are similar to those

described in the previous section on the synchroniser, the only difference being

that we now utilise multiple accumulator input oscillators. The activation of the

accumulator causes a spike to be sent to the constructor termination neuron j,

which passes control to the next constructor.

4.10.5 The ALT constructor

The ALT constructor (essentially nondeterministic choice) is given a set of pro-

cesses implemented on disjoint subsystems, runs them concurrently, and termi-

nates when one of the processes terminates. So the initiating neuron of the ALT
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Accumulatori

P1

P2

Pn

P3

n-Input register

I1

I2

I4

I3

j

Figure 4-13: Example of the PAR Constructor

sends an initiating impulse to all of the initiating neurons of its constituent pro-

cesses, and a spike from any of the terminating neurons of any of the constituent

processes is sufficient to trigger a spike from the terminating neuron of the ALT.

After the ALT terminates, it should turn itself off.

4.11 Examples: Addition, Subtraction and Mul-

tiplication

We can define addition, subtraction and multiplication over the integers in the

language given earlier, using the recursive definitions starting from the successor

function.
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Seq{

Z:=Y;

while Z \= 0

Par{

Z:= Z-1;

X:= X+1;

};

}

defines X := X + Y if Y is non negative. Subtraction can be done similarly for

Y non negative. Addition over the integers can be done as:

if Y > 0 then

Seq{

Z:=Y;

while Z \= 0

Par{

Z:= Z-1;

X:= X+1;

};

}

else

Seq{

Z:= Y;

while Z \= 0

Par{

Z:= Z+1;

X:= X-1;

};

}
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To define X := X ∗ Y , for Y non negative we can use

Seq{

W:= Y;

Wx:= X;

X:= 0;

while W \neq 0

Par{

X:= X+Wx;

W:= W-1;

};

}

and then we can extend to the integers as was done for addition.

The inner Par constructions in the above statements could be changed to Seq

constructions, without altering the function of the statements themselves.

4.12 Decidability and Complexity

If we had a perfect coincidence detector, i.e. sharp thresholds, and a perfect

synchroniser, we could represent arithmetic for unbounded integers with a finite

network. We could make such a network search for solutions to diophantine prob-

lems, which, as a class, are unsolvable. In the deterministic model therefore, long

term behaviour would be expected to be undecidable. In fact even in very simple

networks in the deterministic model, long term behaviour could be undecidable.

This could be formalised using, for example, the Blum Shub Smale real number

machine (Blum et al, 1997). If we add some noise to the links so that the fading

memory concept (Maass et al, 2004b) applies, we may lose the undecidability,

but we would still expect that in a practical sense the long term behaviour of

these systems would not be feasible to compute.
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4.13 Pointers and associations

It should be clear that it is also possible to represent pointers using networks of

spiking neurons. Consider, for example, a pair of oscillators (Ap, Bp). We can say

that this points to another pair (Aq, Bq) if Bp is in phase with Aq. In this way

we can represent networks of associations. An attractive example of how such

ideas can be used can be found in Wang (2000), where interactions of networks

of oscillators are used to compute geometric and topological properties.

4.14 Conclusion and Discussion

The discussion above and the demonstrations we have done with CSIM suggest

the possibility of a compiler which would take a statement in a simple parallel

programming language such as the one given above and would write a script in

for example the CSIM language which would construct a spiking neural network

which would enact the computational meaning of the statement. Instead of train-

ing spiking neural nets to perform given tasks, we are constructing them, as is

also done in Maass (1996). There are already examples of such compilers from

Occam-like languages into sigmoid neural networks. See Neto et al (2003).

The implementation of addition, subtraction and multiplication which we give,

for purposes of exposition, is very inefficient computationally. However, using the

same basic ideas it should be clear that we can implement other, more efficient,

algorithms for arithmetic. For example, we could implement a variable as an

array or pairs of oscillators in such a way that when one of the pairs has been

advanced as far as possible it returns to zero and the next pair is advanced by

one step, as in the usual decimal notation. We could then build in an addition

and multiplication table, and proceed, as we did, with effort, in school.



Chapter 5

Analysis of STDP Learning

properties

5.1 Introduction

The work presented in this chapter is focussed on analysis, at a fundamental

level, of a form of STDP learning within highly recurrently connected networks

of spiking LIF neurons. In addition to STDP learning, the synaptic weights are

also modified by a normalisation process. This normalisation allows for the norm

of the weight vector to each network neuron to be maintained, and allows for the

synaptic weights to assume any value between a minimum and maximum weight

value. The reason for using such a normalising procedure is so that successive ap-

plications of STDP weight changes does not create a bimodal weight distribution

in which the synaptic weights will eventually attain either the maximal or min-

imal possible value. The bimodal nature of such un-normalised STDP learning

was shown in Song et al (2000). Using the normalisation means that the synaptic

weights are able to assume a range of intermediate values between the minimum

and maximum, making the learning meaningful and stable at these intermediate

values in the case of long term application of STDP learning.

118
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We show here that, the application of a form of STDP within a highly recur-

rent spiking neural net based upon the Liquid State Machine (LSM) leads to

an approximate convergence of the synaptic weights. Convergence is a desirable

property as it signifies a degree of stability within the network. This approximate

convergence is not formally proved, but its presence is indicated experimentally.

An activity link L is defined which describes the link between the spiking ac-

tivity on a connection and the weight change of the associated synapse. This

activity link L also enables perfect convergence to be defined as the point as

which the input weight vector, W , of each neuron in a network are aligned with

their respective activity link vectors. It is shown that under specific conditions

Hebbian and Anti-Hebbian learning can be considered approximately equivalent

processes. Also, it is shown that such a network habituates to a given stimulus

and is capable of detecting subtle variations in the structure of the stimuli itself.

It is also shown that it is possible to extend the firing duration of highly recurrent

neural networks in a pre-determined manner. A method for storing precise spike

trains within recurrent networks is also suggested.

There are forms of STDP learning other than the most basic Hebbian STDP

learning. Two major disadvantages of basic Hebbian learning mean that it is

unstable, see Bienenstock et al (1982): Firstly, the tendency is that weights

increase or decrease exponentially with the end result being that synaptic weight

values will lie only at the extremes of their operational range after sufficient

exposure to learning; Secondly, basic Hebbian learning has no mechanism to

allow the synaptic weights of unused connections to decrease in magnitude. In

order to address these shortcomings of basic Hebbian learning, Bienenstock et al

(1982) introduced the Bienenstock, Cooper & Munro (BCM) model of synaptic

modification learning.

BCM theory incorporates modifications that make it a more favourable form of

learning, over basic Hebbian learning. The BCM model includes a time constant

that allows synaptic weights of unused connections to decay to some base weight

value. Full details can be seen in Bienenstock et al (1982).

The first consideration of this chapter is to establish the details of the STDP
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with normalisation (STDP + N) learning regime to be used on the synapses of

the recurrently connected networks. The activity link vector L is then defined.

Having defined the learning rule, it is then applied during a series of experiments.

The initial result is that when a recurrently connected spiking neural network is

stimulated by an external spiking source and the synaptic weights are modified

using the STDP + N learning that, the weights converge, as shown by a plot

of the average synaptic weight change for the whole network w.r.t. the number

of iterations. An explanation is then given, which describes how, under certain

conditions, Anti-Hebbian learning is approximately equivalent to Hebbian learn-

ing. This approximate equivalence is then shown experimentally. Finally, it is

shown experimentally that such a network with STDP +N learning can become

habituated to an input stimuli and that, even once this converged state of habit-

uation is attained, the network is capable to respond to a change in the nature

of the input stimuli by undergoing another sharp change in synaptic weights be-

fore once again converging and becoming Habituated to this new form of input

stimuli. The reason for these basic experiments are to establish firstly that, the

learning regime is stable, but more importantly, to investigate aspects of Hebbian

and Anti-Hebbian learning, such as their approximate equivalence under certain

conditions, that have not been considered in previous research.

5.2 STDP + N learning

Spike Time Dependent Plasticity or STDP learning rules are based upon Hebb’s

postulate, see Hebb (1949). Suppose that a neuron npost receives an input con-

nection from neuron npre. Consider, that if the pre-synaptic neuron npre fires

before the post-synaptic neuron npost, then the synaptic weight on the link be-

tween them is strengthened. In this case npre can be thought of as contributing to

the firing of npost, so its influence is encouraged. If the firing sequence is reversed

and npre fires after npost then the connection is weakened.

The case when the synaptic weight is strengthened if npost fires before npre and

weakened if the firing is reversed is known as Anti-Hebbian STDP. The delay
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between the firing time tpre of npre and the firing time tpost of npost is denoted as

tdelay = tpre− tpost and is the determining factor in how large the synaptic weight

change should be. A review of the importance of the precise timing of pre and

post-synaptic spikes to synaptic modifications, as first outlined in Hebb (1949),

can be found in Bi and Poo (2001).

5.2.1 The STDP + N Learning Window Function

In this chapter, an asymmetric Hebbian learning function is used, the form of

which can be seen in figure 5-1. This is a typical learning function which in-

creases those synaptic weights whose pre-synaptic neuron fires just before its

post-synaptic neuron and weakens the synaptic weight if the post-synaptic neu-

ron fires before the pre-synaptic neuron. The amount of the modification is

determined according to the product of the learning window function S(tdelay)

and some learning rate φ.

An Anti-Hebbian learning window function is one that operates in reverse to

the Hebbian version. Therefore, synaptic weights are strengthened if the post-

synaptic neuron fires before the pre-synaptic neuron, and weakened if the pre-

synaptic neuron fires before the post-synaptic. In this implementation, for Anti-

Hebbian STDP −φ is used for the learning rate instead of φ. It should be noted

that there are different forms of STDP learning, see Izhikevich and Desai (2003),

which shows that BCM learning can be derived from STDP learning under certain

circumstances.

5.2.2 Weight Change and Normalisation

Consider a neuron Y within a recurrent neural network, similar to figure 2-1,

where S is the learning window function, and which receives inputs from neu-

rons X1, ..., Xk with respective synaptic weights w1...wk. W is the weight vector

associated with the input of Y , W = (w1...wk). The individual synaptic weights

that comprise W are modified by two processes; a Hebbian weight update that
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S(tpre - tpost)

(tpre - tpost)

S(tpre − tpost) = e((tpre−tpost)/0.011) for (tpre − tpost) ≤ −2.5ms
S(tpre − tpost) = 0 for −2.5ms < (tpre − tpost) < 0ms
S(tpre − tpost) = −0.2 ∗ e(−(tpre−tpost)/0.03) for (tpre − tpost) ≥ 0ms

Figure 5-1: The form of the learning window function used to calculate the weight
change due to STDP. The actual weight update value is given by the product of this
learning function S(tdelay) and the learning rate φ. The time scale of the learning
window function is such, that the peak occurs at a distance of 2.5ms from the post-
synaptic firing time. This value was chosen in accordance with the finding in Gerstner
and Kistler (2002), that the learning window function maximum S(tdelay)max should be
in the range δ/2 ≤ S(tdelay)max ≤ δ, where δ is the rise time of an EPSP, typically 5ms.
STDP is a biologically derived learning method, but there are many unanswered ques-
tions as to what actually happens when STDP is applied, especially in the context of
recurrent spiking neural networks. An axonal time-delay is incorporated into a synaptic
delay on the transmission of a spike to the receiving neruon. This synaptic time-delay
was drawn from a gaussian distribution with a mean of 0.0015s for Excitatory-to Ex-
citatory neuron connections, and a mean of 0.0008s for all other connections, and with
a standard deviation of 10% of the mean.
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is calculated for w1...wk, and a normalisation procedure which ensures that the

input synapses to a neuron have a constant norm. Therefore, this a competitive

Hebbian process, see Gerstner and Kistler (2002). The normalisation is applied

to W only after all weights w1...wk have had the Hebbian weight update proce-

dure applied. Network activity is simulated in 0.0002s time-steps and weights

are updated every 0.5s for the duration of the simulation. Therefore, using this

update schedule, spikes are collected over a 0.5s interval and the input weights

of each neuron are updated taking into account all pre and post-synaptic spike

interactions within this period. The weights are not updated after each spike or

neuron firing. This is a reasonable approach to take and can be justified if one

considers that meaningful weight updates in biological neurons take place over

a period of time and not necessarily with each firing of a neuron. These update

procedures are performed on the weight vectors of each neuron of the network.

Suppose R is the norm of the original unmodified weight vector W . For a neuron

Xi firing at time ti and a neuron Y firing at time τ , we get:

wi := wi + φS(ti − τ) for i = 1, ..., k

W := R ∗W/||W ||

The normalisation procedure is a necessary tool if the polarisation of synaptic

weights that can occur with Hebbian learning is to be avoided. This polarisa-

tion effect is when the constituent weights of the weight vector assume either the

highest or the lowest possible value after many repetitions of the same I/O stimu-

lus/response at the pre and post-synaptic neurons. The normalisation procedure

used here allows the synaptic weights to assume a range of intermediate values

that fall between the minimum and maximum possible values. Additionally, the

weight vector formed is also stable. The weight update for the jth synaptic input

weight to the ith neuron, in which there are multiple spikes in both the pre and

post-synaptic spike trains is implemented as follows:

wj := wj + 1
M

∑M
m=1

PK
k=1 S(tj−tmf )

K



STDP + N learning 124

This is performed for all input synapses to the ith neuron. M is the number of

spikes of the postsynaptic neuron, K is the number of spikes of the jth input, tkj

is the firing time of the kth spike of the jth input to i, tmf is the postsynaptic firing

time of the mth of neuron i. The updated weight vector Wi of the ith neuron, is

now normalised as follows:

Wi := Wi

norm(Wi)
· normreq

Where, norm(Wi) is the `2-norm over the synaptic weights of Wi and normreq

is the norm to which the weight vector is being maintained. The inclusion of a

normalising effect means that the weight-vector update assumes a winner-take-

all behaviour and the synaptic weights are then each able to assume any value

within the full range of values available.

The learning rate allows the strength of the Hebbian learning to be tuned. A

learning rate that is too high could cause weights to jump around far too much,

and could cause instability instead of a stable learned weight vector. Alterna-

tively, a learning rate that is too low could cause the weight update values to

be so small as to have very little effect on the synaptic weight values, even over

a long period of learning many iterations. A full list of learning, and network

generation parameters can be found in section A.1.2.

5.2.3 Fixing the Sign of the synaptic weights

In CSIM (IGI Group, 2008), a LIF neuron can be one of two types — either

excitatory or inhibitory. The type of the neuron affects several parameters. In-

hibitory neurons have a faster response time, to reflect the observed nature of

biological excitatory and inhibitory neurons, and can therefore have a somewhat

dominating effect on network behaviour. The parameters for each type of neuron

are based on data obtained from study of examples biological neurons (Thomson

et al, 2002).



STDP + N learning 125

Finally, in addition to the parameters already mentioned, the most major differ-

ence between the two types is the sign ascribed to the synaptic weights of the

synapses to which a given type of neuron is connected. The synapses receiv-

ing connections from excitatory neurons are positive, while synapses receiving

connections from inhibitory neurons are assigned a negative weight.

In biological neural networks, the type of a neuron can be generally described

as inhibitory or excitatory. The type of a neuron is a fixed attribute. Indeed,

there are marked physiological differences between the two different types of

neurons, (Peters and Jones, 1984). In addition to differences in connectivity,

size and shape there are also differences in the type of neurotransmitter chemical

employed at the synapse. Whether a particular connection is inhibitory or not

also appears to be dependent not just on the type of the pre-synaptic neuron

and the neurotransmitter chemical used, but also by the type and response of the

post-synaptic receptor to the pre-synaptic neurotransmitter.

Evidence has also been found that suggests that the type of a synapse can change

from excitatory to inhibitory (Fransén, 2005).

The implementation used for STDP + N that has been outlined is one in which

the sign of a synapse (excitatory or inhibitory) is preserved. If a synapse whose

pre-synaptic neuron is positive i.e. excitatory, were to have a negative synaptic

weight modification applied to it that is of sufficient magnitude to change the sign

of the synapse from positive to negative then, the synaptic weight is set equal to

zero.

This solution successfully addresses the problem of synaptic weight changing sign

during STDP+N learning, however it also creates the possibility of another prob-

lem arising. Consider, that the learning rate of the STDP + N implementation

has a direct effect on the absolute value of the synaptic weight modification cal-

culated by the learning function. Now consider that a synapse with a positive

synaptic weight that is to have a large enough negative change applied to it could

have the synaptic weight set to zero. This means that if a learning rate that is

too large is applied, it would then be the case that a large number of synaptic
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weights would be set to zero. Therefore, in order for the learning function to

work correctly with the set-to-zero method just outlined, the learning rate would

need to be small enough to allow meaningful weight changes to be made without

setting a large proportion of the synapses to zero.

Weight fixing was not used for the experiments of chapter 5. The reason for this

was that allowing the weights to change sign means that the weight vectors are

able to become better aligned with the activity link vectors than if weights are

clipped to zero when a weight update may prompt a sign change.

5.2.4 Application of STDP + N learning

In terms of application of STDP + N for a given network, N , of recurrently

connected neurons, the learning rule is applied sequentially to all neurons within

N.

Consider the following scenario: A network of recurrently connected LIF neurons

receives an input stimulus from a separate set of input neurons. The spiking

input activity is injected into the network and the spiking activity of the neurons

of the network is simulated for the time period [0, T sim], where Tsim is the

duration of the simulation. The input and output spike trains of each network

neuron are recorded and each neuron of the network is then processed by the

learning function seen in figure 5-1. The network neuron being dealt with at any

instance is treated as the post-synaptic neuron.

For each spike contained in the spike train of the post-synaptic neuron, STDP+N

learning is done sequentially, between each post-synaptic spike and each spike on

every active input channel to the post-synaptic neurons. An active input channel

is a channel that has a pre-synaptic neuron whose output spike train is not empty.

The neurons are processed in a sequential manner in this way until all have been

dealt with.
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5.3 Activity Link

In order to better describe the weight change brought about by the Hebbian

update, and as a means for describing the link between the spiking activity on a

synaptic connection and the weight change of the synapse associated with that

connection, the activity link L(a, b) is defined where a and b are spike trains.

Suppose that a has spike times t1, ..., tm and b has spike times τ1, ..., τn, then we

can define the following:

L(a, b) =
m∑

i:=1

n∑
j=1

S(ti − τj)

Consider neuron Y from the previous section. Suppose that the spike trains of

X1, ..., XK are x1, ..., xk and Y has a spike train y over an interval I. The update

rules for the Hebbian learning followed by the normalisation update are:

wi := wi + φL(xi, y) for i = 1, ..., k

W := R ∗W/||W ||

5.4 LSM generation parameters

All experiments are performed using CSIM, see IGI Group (2008), under MAT-

LAB. CSIM allows for the simulation of many types of neuron and synapse mod-

els, and enables the creation of pools of recurrently connected neurons.

For the sake of completeness, the choice of the major parameters are given below.

Connection Probability — This is determined by the term C · e−D2(a,b)/λ2):

λ determines the average euclidean distance between the neurons as well as the

average number of connections, the euclidean distance between two neurons a

and b is given by D(a, b), and the value of C is dependent on whether a and b

are excitatory (E), or inhibitory (I). Therefore C is 0.3(EE), 0.2 (EI), 0.4 (IE),
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0.1(II). This is taken from Maass et al, see Maass et al (2004a).

Post Synaptic Potential — A Post Synaptic Potential (PSP) can be considered

to be the post-synaptic effect of a post-synaptic spike on the internal state of the

target neuron. The form of a PSP is e(−t/τ). For an Excitatory Post-Synaptic

Potential, EPSP,τ = 3ms for excitatory and τ = 6ms for an Inhibitory Post-

Synaptic Potential, IPSP. In this model, the rise time of the EPSP/IPSP is

5ms.

5.5 Experiments

5.5.1 Experimental Setup

A recurrently connected network of 135 LIF neurons in a 5x3x9 arrangement is

created with connectivity parameters λ = 1.2 and C was chosen according to

the type of connection as stated previously, 0.3(EE), 0.2 (EI), 0.4 (IE), 0.1(II). A

single spiking input neuron is connected to a random selection the other 134 total

neurons that comprise the network. The connectivity parameters for connecting

the input neuron to the network are set such that the input neuron connects

to between 10% and 20% of the recurrent network neurons. For a full list of

parameters used please see appendix A.

An input spike train is generated as follows. For each time-bin there is a proba-

bility of 0.5 of getting a burst of spikes at a frequency of 150Hz, and a probability

of 0.5 of getting no spikes at all. The time-bin duration is arbitrarily chosen to

be 20ms.

5.5.2 Synaptic Weight Convergence

10 Networks were generated using the above parameter values. Hebbian STDP

was then applied to the internal weights of the network while the network was

stimulated by the input neuron for a period of 300s. It can be seen in figure
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5-2 that the mean synaptic weight change over all networks undergoes a series of

large initial changes, before eventually settling down to a stable state. This state

is referred to as a state of approximate convergence and can be thought of as a

state in which the synaptic weights of each neuron have become approximately

aligned with the pre and post-synaptic firing activity.
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Figure 5-2: A graph of the absolute mean synaptic weight change due to Hebbian
STDP + N learning, averaged over 10 different networks. The networks are exposed
to a stimulus of duration 300s.

Consider the concept of the activity link defined in section 5.3. The input weight

vector of each neuron in the recurrent network is bounded by the normalisation

procedure described in section 5.2.2. As an analogy, the weight vector for each

neuron in the recurrent network, can be said to be constrained to a multidimen-

sional sphere of radius ||W ||, see figure 5-3. The ‘orientation’ of a weight vector

is affected by changes to its constituent individual synaptic weights.

Recall neuron Y and its input spike trains x1, ..., xk. Figure 5-3 illustrates the

weight vector of Y , W = (w1, w2, ..., wk) when it is modified under Hebbian

and Anti-Hebbian learning. In the case of Hebbian learning in figure 5-3, W is

updated as described in section 5.2.2. A small value of learning rate φ is assumed.

It is important that φ is not too large as this would cause synaptic weight changes
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W

L

WHebb = W + L WAnti-Hebb = W - L

Hebbian Learning Anti-Hebbian Learning

Normalisation

||W||

WHebb

Figure 5-3: An illustration of how Hebbian and Anti-Hebbian learning are approxi-
mately equivalent, i.e. d is small, if W and L are approximately ‘aligned’ and if the
learning rate φ is small.

to become erratic, and meaningful changes would be less likely to occur.

An approximate fixed point/stable state, of this Hebbian process is defined as

being when the weight vectors of all neurons are approximately aligned with

their activities. For neuron Y this means W is approximately aligned with the

activity link vector L = (L(x1, y), L(x2, y), ..., L(xk, y)). Given this definition of

fixed points and of the activity link it can be seen that when φ is small and W

and L are approximately in the same ‘direction’, the modifications to W caused

by Hebbian learning followed by normalisation are approximately equivalent to

modifications by Anti-Hebbian learning — see figure 5-3.

The variable d in figure 5-3 describes the ‘difference’ between W after Hebbian

and W after Anti-Hebbian learning. d will tend to be small when W and L are

approximately in the same direction and if φ is sufficiently small, in which case

Anti-Hebbian learning will have the same approximate stable states as Hebbian

learning for a given recurrent network. We believe that for any single network

there may exist many of these stable states, each of which could be maintained
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by Hebbian or indeed, Anti-Hebbian learning.

5.5.3 Hebbian and Anti-Hebbian Approximate Equiva-

lence

The aim of the work in this section is to experimentally test the statement

that, under certain conditions and given enough Hebbian learning iterations,

subsequent Hebbian and Anti-Hebbian learning can be considered approximately

equivalent. Consider the a similar experiment described above but in which, a

network undergoes Hebbian learning with much smaller learning rate for an ex-

tended number of iterations — see section A for details. The reason for this is

to ensure that the synaptic changes are small enough that a sufficiently accurate

alignment of W and L can occur. The left-hand panel of figure 5-4 shows the

actual weight values of the weight vector of one of the network neurons after 1000

iterations of Hebbian learning. This network is then exposed to Anti-Hebbian

learning, also for 1000 iterations, and figure 5-4 also shows the same weight vec-

tor after the additional 1000 Anti-Hebbian iterations. It is seen that there are

obvious visual differences between the values of the weight vector after the Heb-

bian and then the Anti-Hebbian learning. This alternate application of Hebbian

followed by Anti-Hebbian learning was repeated over 10 networks.

The same experiment was performed again, but for 5000 iterations of Hebbian

learning, followed by 1000 iterations of Anti-Hebbian learning, also for 10 net-

works. It can be seen in figure 5-5 that the differences between the weight vector

of a randomly chosen neuron after Hebbian learning and after subsequent ex-

posure to the Anti-Hebbian learning, is negligible. The Anti-Hebbian learning

does not appear to have significantly affected the individual values of the weight

vector.

The left hand plot of figure 5-6 shows the average difference caused in the synaptic

weights of the input weight vector of each network neuron, due to applying 1000

iterations of Anti-Hebbian learning to networks that have previously been exposed
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Figure 5-4: Weight vector values for a single network neuron. The left-hand panel
shows the weight vector after 1000 iterations of Hebbian learning. The weight vector
has mean, m = 1.15e−09, and standard deviation, s = 4.10e−09. The right-hand panel
shows the weight vector after the network has undergone subsequent learning of 1000
iterations under an Anti-Hebbian learning regime, this weight vector has m = 2.95e−09,
s = 3.01e−09. It can be seen that the weight vector has undergone some noticeable
changes, with some weights changing their sign and their strength by relatively large
amounts. The absolute values for the change in the mean and standard deviation are
|∆m| = 1.80e−09 and |∆s| = 1.09e−09 respectively.

to 1000 iterations of Anti-Hebbian learning. The average change in the weight

vector is denoted as δW i
Avg for a neuron i, averaged over 10 networks. If W i

Hebb =

(wH
1 , wH

2 , wH
3 , ..., wH

k ) is the weight vector of a network neuron i after undergoing

Hebbian learning and, W i
Anti = (wA

1 , wA
2 , wA

3 , ..., wA
k ) is the weight vector of neuron

i after it has undergone subsequent, Anti-Hebbian learning then, for this single

neuron i, δW i
Avg =

Pk
j:=1 wH

j −wA
j

k
.

The right-hand plot of figure 5-6 shows δW i
Avg for each neuron i, averaged over 10

networks, but for 5000 iterations of Hebbian learning prior to the 1000 iterations

of Anti-Hebbian learning. It can be seen that this average change is markedly

lower that the typical changes seen in the case in which the network was only

exposed to 1000 iterations of Hebbian learning before being exposed to the 1000

iterations of Anti-Hebbian learning.

These results would appear to indicate that, if a network is trained for a period
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of time that allows it to reach an approximately stable/converged state, then the

changes to the weight vector that are effected by either Hebbian or Anti-Hebbian

learning are approximately equivalent. Convergence was initially determined by a

visual inspection of the plots of average synaptic weight change w.r.t. iterations

of the learning procedure. However, convergence has also been more precisely

defined as being when the weight vectors of each neuron in a network are aligned

with their respective activity link vectors. This alignment is defined in section 5.6

of this chapter and provides a quantitative measure of convergence. It would also

appear that this result suffers from little deviation or divergence as learning time

(number of iterations), increases. It can be seen in figure 5-5, that 1000 iterations

of Anti-Hebbian learning does not alter the weight vectors significantly from

the learned stable state that resulted from 5000 iterations of Hebbian learning.

However, it is possible that yet further application of Anti-Hebbian learning could

yield a divergent behaviour of the weight vectors of the network neurons that

could adversely affect the alignment of the weight and activity link vectors for

each of the network neurons.

If the network is not allowed to reach an approximate stable state from the initial

Hebbian learning phase, then the Anti-Hebbian learning can effect significant

changes upon the weight vectors of the network. These results would seem to

indicate that it may be the case that in order to maximise the ability of a network

to learn, learning should take place early in the development of synaptic weights

in response to continued repetition of a stimulus. It should be noted that the

implementation of STDP +N modification here, does not contain a term to allow

a synaptic weight to decay with time, in the absence of any stimulus, as is the

case in the BCM model, (Bienenstock et al, 1982).

5.6 Measuring Alignment

The experiments shown in the previous section demonstrate that exposing a

network to many iterations of Hebbian learning appears to minimise the effect

of Anti-Hebbian learning. However, they do not relate the alignment of W and
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Figure 5-5: Actual weight vector values for a single network neuron. The left-hand
panel shows the weight vector after 5000 iterations of Hebbian learning. The weight vec-
tor has mean, m = −1.05e−09, and standard deviation, s = 4.46e−09. The right-hand
panel shows the weight vector after the network has undergone subsequent learning of
1000 iterations under an Anti-Hebbian learning regime. This weight vector has mean,
m = −6.04e−10, and standard deviation, s = 4.55e−09.It can be seen that the weight
vector has remained essentially unchanged. The absolute values for the change in the
mean and standard deviation are |∆m| = 4.56e−10 and |∆s| = 9.00e−11 respectively.

L for the network neurons — as illustrated in figure 5-3 — to the approximate

equivalence of Hebbian and Anti-Hebbian learning. The alignment of W and

L shall be referred to as A, and the equivalence of Hebbian and Anti-Hebbian

learning, is investigated as follows.

Consider, the same type of 135 neuron networks used in the previous experiments

in this chapter, stimulated with the same type of input spike train. The networks

are simulated for 10 runs each of 1000, 2000 and 5000 iterations of Hebbian

learning. For each run, after Hebbian learning the activity link vector and the

input weight vector are calculated for each neuron in the network. Let Wi and

Li be the weight vector and activity link vector, respectively, of the ith neuron of

the network, and given as:

Wi = (wi
1, ..., w

i
k)

Li = (L(xi
1, y

i), L(xi
2, y

i), ..., L(xi
k, y

i))
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Figure 5-6: δW i
Avg for Hebbian learning followed by Anti-Hebbian learning, in the case

of 1000 and 5000 iterations of Hebbian learning each followed by 1000 iterations of Anti-
Hebbian learning. Avg over 10 networks. This figure serves to illustrate the difference
that 1000 iterations of Anti-Hebbian learning has on the weight vectors of networks
that have already undergone Hebbian learning, in the cases of 1000 iterations, and of
5000 iterations of Hebbian learning. For the left-hand plot the mean and standard
deviation are m = 3.22e−09 and s = 7.13e−10 respectively, while for the right-hand plot
m = 7.56e−10 and s = 2.73e−10.

Where the ith neuron receives k inputs, yi is the output spike train of the ith

neuron, and (xi
1, x

i
2, ..., x

i
k) are the input spike trains for each of the k inputs

of the ith neuron. The alignment of W and L, after Hebbian learning, is then

calculated for each network neuron. After Hebbian learning the weight vector

of the ith neuron is given by W i
Hebb and and the activity link vector is given by

Li
Hebb, while the alignment of these two vectors is Ai

Hebb and is given by:

1
Ai

Hebb
= norm(

W i
Hebb

norm(W i
Hebb)

− Li
Hebb

norm(Li
Hebb)

)

The network is then subjected to Anti-Hebbian learning for 1000 iterations, after

which the alignment of the weight vector of the ith neuron, W i
Anti, with Li

Hebb for

all i network neurons is calculated and is given by Ai
Anti for the ith neuron.

1
Ai

Anti
= norm(

W i
Anti

norm(W i
Anti)
− Li

Hebb

norm(Li
Hebb)

)
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Please note that the link vector used is from the Hebbian process and not the

Anti-Hebbian link vector. This is done so that the alignment of W i
Anti and Li

Hebb

can be compared to the alignment of W i
Hebb and Li

Hebb. The use of Li
Hebb in both

expressions provides a common factor that allows for comparison of any change

in weight vectors.

Starting with a network that has undergone Hebbian learning and in which, the

alignment of the weight vector with the activity vector for the ith neuron is given

by Ai
Hebb. The absolute change in alignment caused by the Anti-Hebbian process,

Ai
∆, w.r.t. Ai

Hebb, for the ith network neuron is given by:

Ai
∆ =

|Ai
Anti−Ai

Hebb|
Ai

Hebb

Where Ai
Anti is the alignment of the weight vector and the activity link vector of

the ith neuron after the Anti-Hebbian learning. Ai
∆ is calculated for each network

neuron and then averaged over all network neurons to give AAvg
∆ . The average

alignment for all neurons in a network after Hebbian learning is denoted by AAvg
Hebb.

Figure 5-7 shows a scattergram plot of AAvg
∆ w.r.t. AAvg

Hebb for 10 runs each of 1000,

2000 and 5000 iterations of Hebbian learning, each followed by 1000 iterations

of Anti-Hebbian learning. It can be seen that the clear general trend appears

to be that, as the alignment before Anti-Hebbian learning (AAvg
Hebb) increases, the

effect of the Anti-Hebbian learning on the weight vectors of the network neurons

(AAvg
∆ ) decreases.

5.7 Hebbian Learning to Demonstrate Habitu-

ation

Using the same experimental setup as in the previous experiment, the stimulus

spike train is now generated such that its frequency varies as a function of time.

More specifically, the number of spikes, f , that occur in any 20ms time bin of

the input spike train, is given by f = C · sin(t/tc) + C. Where tc is the time
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Figure 5-7: Scatter plot showing that the higher the average alignment, AAvg
Hebb, of W

and L before Anti-Hebbian learning, then the less effect Anti-Hebbian learning has
on the change in alignment, AAvg

∆ . The three different clusters represent the results
of the exposure to 1000, 2000 and 5000 iterations of Hebbian learning and then 1000
iterations of Anti-Hebbian learning, over 10 randomly generated networks for each
scenario of Hebbian learning. Blue represents 1000 iterations of Hebbian learning,
green represents 2000 iterations of Hebbian learning and red represents 5000 iterations
of Hebbian learning.

constant of the function, and C is a scalar which determines the range over

which f varies. A spike train, S1, is created according to f1 = 4 · sin(t/2) + 4.

This stimulus is then used to drive the recurrent network to which the Hebbian

learning window function is applied. The mean change in synaptic weights over

the whole network is calculated and recorded at each 0.5s time step as before.

The network is subjected to this stimulus for a duration of 200 seconds.

A second input spike train, S2, is now created using a similar function to the

first but with a time constant tc = 10. So, f2 = 4 · sin(t/10) + 4. The same

recurrent network that was subjected to S1 for 200 seconds is now subjected to

S2 also for 200 seconds and again the mean change in synaptic weight over the

whole network is recorded at each time step. It can be seen in the top left panel

of figure 5-9 that the mean weight change undergoes a large initial change and
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Figure 5-8: Plots of the different frequency modulation functions f1 and f2 used
to create the input spike trains S1 and S2. The left panel shows a plot of f1 =
4 · sin(t/2) + 4. The right panel shows a plot of f2 = 4 · sin(t/10) + 4.

then settles down. At the onset of the change in the frequency modulation of

the stimulus from S1 to S2 (time-step 400) it can be seen that the mean weight

change once again undergoes a sharp increase and again settles down. If this

same network is then re-presented with S1, see top right panel of figure 5-9, the

network does not respond with any kind of sharp change in synaptic weights.

Similarly if the network is again presented with a stimulus drawn from S2 (from

time-step 400 in top right panel of figure 5-9), the sharp change in weights is also

absent. Figure 5-8 shows a plot of f1 and f2.

This is an interesting occurrence because it would appear that upon being sub-

jected to the stimulus with frequency modulation f1 the network becomes habit-

uated to this stimulus after prolonged exposure. When the frequency modulation

is changed to f2, the network is able to detect this subtle change and responds

with an alteration of synaptic weights so that the weight vectors become aligned

with the activity links once again. However, the weights are apparently altered in

such a way that the learning of the frequency modulation of S1 is not forgotten.

This can be seen in the top right panel of figure 5-9 where S1 doesn’t provoke

another series of sharp changes to the mean weight. This effect was observed by

frequency modulation on the spike train stimulus of only a single spiking input
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neuron.

Future work could extend this to investigate how many frequency modulations a

network of given size can habituate to from a single input neuron. Additionally, it

is thought that the introduction of multiple input neurons could increase number

of ‘Habituations’ a given network could learn.

It can be seen in the lower panel in figure 5-9 that, as the difference between

the time constants of the two input decreases, i.e. the two stimuli become more

similar, the network is less able to respond in a distinct manner to each stimulus

as expected. However, it is not yet known precisely how subtle a change in input

stimuli is detectable by a given network. In order to determine this one could

present many networks with a wide range of varying input types with a wide

variety in similarity as measured by some metric. The response of the networks

to switching between the patterns (of varying similarities) being presented to it

could then be recorded.

5.8 Discussion

The first result of this chapter is the development and implementation of STDP +

N learning with normalisation. The properties of this form of learning are then

investigated and can be summarised as follows:

The results shown in figure 5-2 clearly demonstrate that the STDP + N Heb-

bian learning outlined in this section, when applied with appropriate learning

parameters, facilitates the approximate convergence of the synaptic weights of

the recurrent network. In such a case, the weight vector of each neuron becomes

aligned with the activity on its own inputs. This means that the network has

reached some stabilised state where the values of the synaptic weights have been

determined by the spiking input activity into the network. Figure 5-2 shows mean

weight change data averaged over 10 networks. In each case convergence is seen,

even though the networks are generated in a random manner. This would seem

to indicate that the convergence process is quite robust to variations in network



Discussion 140

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
−10

Time−step 

M
ea

n 
sy

na
pt

ic
 w

ei
gh

t c
ha

ng
e

Mean weight change − Habituation

Onset of S2 

Onset of S1 

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
−10Mean weight change − after Habituation 

M
ea

n 
sy

na
pt

ic
 w

ei
gh

t c
ha

ng
e

Time−step 

Onset of S2 

Onset of S1

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
−10Mean weight change − similar S1 and S2  

Time−step 

M
ea

n 
sy

na
pt

ic
 w

ei
gh

t c
ha

ng
e

Onset of S2 

Onset of S1 

Figure 5-9: The top left panel shows the variation of the absolute mean weight change
when the network is presented with S1 and then S2. The top right panel shows the
mean weight change for the same network for S1 and then S2 after exposure to S1 and
S2 in the top left panel. The lower panel is a plot of the mean weight change when the
time constants of the frequency modulation of S1 and S2 are similar in value (tc = 2
for S1 and tc = 2.5 for S2).
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connectivity.

So, the first result is that, given a recurrent network of spiking neurons, a subset

of which receive a stochastic but time-invariant input regime, and in which all

synapses of all neurons are subjected to STDP + N learning, the information

contained within the input regime becomes contained within the weight vectors

of the network neurons. The observed apparent approximate convergence can be

thought of as an indication of this learning. It should be noted that this apparent

approximate convergence has not been shown formally. Rather, an indication that

it exists has been shown experimentally. For the parameters detailed, convergence

with Hebbian STDP learning occurred in every run observed.

An interesting result is that of the approximate equivalence of Hebbian and Anti-

Hebbian learning, as shown in figure under specific conditions. In section 5.5.2 it

was said that in order for Hebbian and Anti-Hebbian STDP +N to be considered

approximately equivalent, two conditions should be met. Firstly, a small learning

rate φ should be used, and secondly, all synaptic weights should be approximately

aligned with the spiking activity they receive, as indicated in figure 5-3.

The result of the approximate equivalence of Hebbian and Anti-Hebbian learning

is also supported by the experiments in section 5.5.3. It was shown that if the

network is exposed to the stimulus for a sufficiently large number of iterations

of Hebbian learning, such that the mean synaptic weight change for the network

has reached an approximate fixed point, then the subsequent application of Anti-

Hebbian learning does not significantly change the specific weight vectors as much

as if the number of iterations of Hebbian learning were less.

Figure 5-4 shows the changes that are made to the synaptic weights of a neuron

exposed to 1000 iterations of Hebbian followed by 1000 iterations of Anti-Hebbian

learning. It can be clearly seen that the individual synaptic weights that form the

weight vector, undergo significant changes. Figure 5-5 shows the weight vector of

a network neuron in which, the network was exposed to more Hebbian learning

(5000 iterations) before the application of the Anti-Hebbian learning. It can be

seen that in this case the weight vector is largely unchanged by the subsequent



Discussion 142

1000 iterations of Anti-Hebbian learning.

Figure 5-6 shows two plots of the average synaptic weight change for each network

neuron due to applying 1000 iterations of Anti-Hebbian learning to a network that

has already been exposed to either 1000 or 5000 iterations of Hebbian learning

with the same stimulus. These results are averaged over 10 networks for each

of the two amounts of prior Hebbian learning. It can be seen that when the

networks are exposed to 5000 iterations of Hebbian learning, the subsequent

average synaptic weight change caused by an additional 1000 iterations of Anti-

Hebbian learning is significantly smaller than in the case of only 1000 iterations

of Hebbian learning. The mean change for 5000 iterations of Hebbian learning

is 7.56e−10 with SD = 2.73e−10, compared to 3.22e−09 with SD = 7.13e−10 for

1000 iterations of Hebbian learning.

It appears that with the STDP +N learning described here, once an approximate

fixed point has been reached, it is likely to be exceedingly difficult for a network

to have any significant synaptic changes effected on it by repeated learning —

even when the subsequent learning is of a regime that is fundamentally ‘opposite’

to that to which it has been subjected. Longer periods of Hebbian learning

on the weights of a stimulated network allow better alignment of the weights

with the pre and post-synaptic firing activities of the target neuron. It should

be noted that what is being discussed here is an approximate stable state/fixed

point, and not an absolute fixed point, such as that which can be acheived with

perceptron learning using the Perceptron Convergence Theorem, see Rosenblatt

(1962), Haykin (1999), Duda et al (2001).

The Habituation experiments appear to show that it is possible, by applying the

STDP +N learning functions described in this chapter to a recurrent network of

spiking LIF neurons, for a network to become habituated to a very specific spike

train structure from a single spiking input neuron. Figure 5-9 shows that such

a network then responds to subtle changes in the structure of the spike train

on the same spiking input neuron by ‘aligning’ the synaptic weights with the

new spiking activities. Additionally, it would appear that this happens without

‘erasing’ the weight changes which allowed for the habituation of the initial spike
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train.

There is much more research to be done on this subject and future research could

involve investigating the capabilities of such a learning approach in terms of

the sensitivity to structural changes in the input stimuli itself and the number of

stimuli that can be learned before the network begins to ‘forget’ previously learned

stimuli. For example, one could apply input stimuli in which the precise timing of

the spikes is important to the structure rather than simply the average frequency

of the spikes. One could then investigate the effect of alternating between two

distinct but precise input regimes on the Habituation of the network.



Chapter 6

A metric for time series of spikes

6.1 Introduction

The spiking neurons considered throughout the chapters of this dissertation com-

municate by emitting a temporally precise series of spikes, known as spike trains.

In order to be able to perform an investigation in which it is necessary to know

if one spike train is similar to another, or whether or not something has been

learned, some sort of measure of spike train similarity is required.

A metric for weighted spike trains is introduced in this chapter which provides

an accurate measure of distance between temporally precise spike trains. The set

of time series of spikes is expanded into a vector space, V , by taking all linear

combinations of spikes. A definition is then given for an inner product on this

vector space. This gives a definition of norm, of distance between time series,

and of orthogonality. This also allows us to compute the best approximation to

a given time series which can be formed by a linear combination of some given

collection of time series. It is shown how this can be applied to a very simple

learning or approximation problem.

But what about the capacity of the single spiking neuron itself? It is shown in

this chapter that a single neuron can be trained using the STDP + N learning

144
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from chapter 5, to produce a precise output spike train in response to a collection

of specific input spike trains. To take this further, can a single neuron learn more

than one precise input/output spike train association? If so how many, and how

can it be increased? In an attempt to address these questions, this chapter con-

tains an investigation of the capacity of a single neuron to learn multiple precise

input/output spike train relationships or, I/O associations. The work contains an

investigation into the relationship between the number of I/O associations that

a single neuron can learn and the number of spike train inputs it receives. In this

investigation, the metric established at the beginning of this chapter is utilised

as the measure to establish how well a desired output goal spike train has been

learnt.

It is shown that the number of unique, precise I/O associations that a single

neuron can learn is highly dependent on the number of input connections that

the neuron receives. A log-linear relationship exists between the number of inputs

and the number of I/O associations that can be learned without erasing previously

learned I/O associations.

6.2 The Metric

We define a spike at time t1 to be a function s(t1) of time t so that s(t1)(t) = 1 if

t = t1, and is zero otherwise. We define a time series to be a finite sum of spikes,

∑N
i=1 s(ti)

with t1, . . . , tN distinct times.

We define a weighted time series to be a finite sum of the form

∑N
i=1 cis(ti)

The coefficients ci and the times ti can be any real numbers, and the number of

terms, N , can be any natural number. We let V be the vector space, over the
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real numbers, of weighted time series, with the obvious definitions of addition

and scalar multiplication. V is infinite dimensional with uncountable basis.

We consider the following basic problems. Suppose w1, . . . , wk are time series and

suppose also that we are given a goal time series g, and an output neuron N ,

which behaves as one of the spiking models discussed, for example in Gerstner

and Kistler (2002). Let inp(N) = c1w1 + · · · + ckwk be input to N . Let out(N)

be the output time series produced by N when given this input.

• Problem 1). Find values of weights c1, . . . , ck so that inp(N) is close to g.

• Problem 2). Find values of weights c1, . . . , ck so that out(N) is close to g.

In order to say more precisely what “close” means, we define an inner product

on V . A definition of closeness establishes a measure of how much of the goal

output N has learned and is able to replicate in its output spiking pattern.

6.2.1 Inner Product

An inner product on a vector space, V , over the reals is a function

< u,w >: V × V → R so that:

1. < u,w > = < w, u >.

2. < u + v, w > = < u,w > + < v,w >.

3. < cu, w > = c < u, w >, for any real c.

4. < u, u > ≥ 0.

5. < u, u > = 0 only if u = 0.

Because of the linearity of the inner product, and since V is formed by linear

combinations of spikes, we only need to define the inner product between two

spikes. We define
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< s(t1), s(t2) >= e−|t1−t2|/δ

where δ is some scaling factor.

In general

<
∑

cis(ti),
∑

djs(rj) >=
∑

cidje
−|ti−rj |/δ

We should check that this is an inner product. Suppose u =
∑

cis(ti). In order

to show that < u, u > ≥ 0, define F (u) to be
∑

cie
ti−th(ti), where h(ti) is the

function of t which is equal to zero for t < ti, and is equal to 1 for t ≥ ti. We may

think of F (u) as a hypothetical post synaptic response to weighted time series u.

For simplicity, set time scale δ = 1.

∫∞
−∞ F (s(t1))F (s(t2))dt =

∫∞
max(t1,t2)

et1+t2−2tdt =2 < s(t1), s(t2) >

In general
∫∞
−∞ F (u)F (v)dt = 2 < u, v >. Since

∫∞
−∞ F (u)2dt = 0 if and only if

u = 0, we get conditions 4) and 5) above.

From an intuitive point of view < u, v > measures correlation of u and v.

From this we get norm(w) =
√

( < w, w >), d(u, w) = norm(u−w), which gives

us a metric on time series. Following the discussion above, we may think of d(u, v)

as a measure of the difference between hypothetical post synaptic responses to

u and v. To give some idea of how this works, suppose δ = 1/33, and time is

measured in seconds. Then d(s(t1), s(t1 + 0.01)) = 0.75 approximately.

We also get u is orthogonal to w if and only if < u,w > = 0.

Additionally we get Projw(u) = (< u, w > / < w, w >)w. This is the projection

of u onto direction w. This may be understood as the best approximation to u

which can be expressed as a multiple of w.

Example 1. Take time scale δ = 1. Suppose w1 = s(1) + s(2), w2 = s(2) +

s(3), w3 = s(1) + s(3), u = s(2). Then Projw1(u) =< u, w1 > / < w1, w1 >

w1 = s(1)/2 + s(2)/2. We note that, as expected, u− Projw1(u) is orthogonal to
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Projw1(u). We can use the Gram Schmidt process as usual to find an orthogo-

nal basis for the subspace spanned by (w1, w2, w3). Once we have this orthogonal

basis, we can, as usual, find the best approximation in the subspace to any given

element of V .

6.3 Approximation

We now get some solutions to problems 1 and 2.

6.3.1 Gram Schmidt Solution to Problem 1

Use Gram Schmidt process on w1, . . . , wk to get an orthogonal basis for the sub-

space Span(w1, . . . , wk). Suppose this orthogonal basis is w1∗, ...wm∗. We can

find the best approximation to g in this subspace by

∑
projwi∗(g)

This is guaranteed to give the optimal solution to problem 1), i.e. the unique

linear combination in the subspace which is closest to the goal.
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6.3.2 Iterative Approximate Solution to Problem 1

This iterative method is less computationally intensive than the Gram Schmidt

implementation just described. However, it does not produce the optimal ap-

proximation to the goal g. w1, . . . , wk will not be able to provide as accurate

a representation of g as the orthogonal set w1∗, ...wm∗, but it is much easier to

implement and produces a sufficiently accurate approximation.

E = g − inp(N)

WHILE ( norm(E) is large)

Pick i at random

ch(ci) := (Projwi
E)/(norm(wi))

ci := ci + ch(ci)

inp(N) := inp(N) + ch(ci)wi

E = g − inp(N)

END

Where E is the difference between the goal time series g and the input vector

inp(N).

6.3.3 Iterative Approximate Solution to Problem 2

Problem 1) was concerned with the application of the metric to show that the

input vector inp(N) could have its weights modified in such a way that it became

close to the goal time-series g. Problem 2) is more practical in that the neuron

N is now required to output the goal g. Instead of using inp(N) to calculate E

we now use out(N) — the output time-series of N .
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E = g − out(N)

WHILE ( norm(E) is large)

Pick i at random

ch(ci) := (Projwi
E)/(norm(wi))

ci := ci + ch(ci)

inp(N) := inp(N) + ch(ci)wi

E = g − out(N)

END

These iterative solutions are applied in section 6.4 and the results for problem 1)

and problem 2) can be seen in figures 6-1 and 6-2 respectively.

6.4 Testing

The following tests were performed using the iterative algorithm, outlined in

sections 6.3.2 and 6.3.3. The purpose of the first set of tests is to demonstrate the

ability of the algorithm to alter weight values c1, ..., ck such that inp(N) becomes

close to a required goal time series, g. We are attempting to bring the distance

— as defined by norm(g-inp(N)) — between the goal and the input vector to a

minimum.

For each experiment, the goal and each time series that make up inp(N) consist

of 10 spikes that have been randomly drawn from a uniform distribution in the

interval (0,1). The initial values of the weights c1, ..., ck are set to zero. All

experiments are performed in CSIM (IGI Group, 2008).

Figure 6-1 shows a plot of the distance between the goal and inp(N), with respect

to the number of iterations of the algorithm of section 6.3.2, where inp(N) consists

of 500 input channels. In this experiment we used a time scale of 1/33; so,

< s(t1), s(t2) >= e−33|t1−t2|. It can be clearly seen that initially, the distance

falls sharply by a small amount before leveling off. The reason for this is simply
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that any initial adjustment to the weight of an input channel is likely to have the

effect of decreasing the distance by a relatively large amount.
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Figure 6-1: Distance between the goal and the input vector w.r.t step number,
with inp(N) consisting of 500 spike trains.

Figure 6-1 clearly demonstrates that the iterative algorithm steadily reduces the

distance between the desired goal and our input.The distance at step number 0

in figure 6-1 indicates the initial metric distance between the goal spike train and

the output of the neuron before any training has occurred. As the weights are

initially set to zero this distance is the metric distance between the goal spike

train and an empty spike train.

The second set of experiments is designed to apply the iterative training algorithm

to alter the input weights c1, ..., ck of a spiking neuron which, receives inp(N) as

an input, to produce our goal time series as an output.

The neuron used, N , is a basic Leaky Integrate and Fire (LIF) neuron, the

parameters of which, can be found in the implementation appendix, A. The time

scale of 1/33 was used to match the time constant on which N operates. Similar



Testing 152

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.06

−0.04

−0.02

0

0.02
Goal Spike Train

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.06

−0.04

−0.02

0

0.02
Trained Output of N

0 200 400 600 800 1000 1200
1.5

2

2.5

3
x 10

−7

Step Number

d(
go

al
,O

ut
(N

))

d(goal,Out(N)), w.r.t the number of iterations.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

0

0.05
Goal Spike Train

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

0

0.05
Trained Output of N

0 200 400 600 800 1000 1200
1

2

3

4
x 10

−7

Step Number

d(
go

al
,O

ut
(N

))

d(goal,Out(N)), w.r.t the number of iterations.

Figure 6-2: Randomly generated goal spike trains and the trained output pro-
duced by a LIF neuron and the associated distance between them during training
with inp(N) consisting of 10 (upper panel) and 500 (lower panel) spike trains.
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results were obtained with different time scales and parameters.

In the top segments both panels of figure 6-2 we can see our randomly generated

goal time series and in the second segment is the spiking output of the LIF neuron

— see Gerstner and Kistler (2002) — after training. The neuron output is now

somewhat similar to our goal, but not very. This is linked to the fact that only

10 input spike trains were used.

The lower panel of figure 6-2 shows the result of increasing the number of input

channels to 500. The much increased diversity of the spikes that populate inp(N)

means that there is a much greater likelihood that we are able to construct our

goal spike train with increased accuracy. The trained output is now extremely

close to our goal.

The third segments of each of the panels in figure 6-2 illustrate the course of

norm(g-out(N)) with each iteration of the algorithm. This plot is noticeably dif-

ferent from the distance plots of figure 6-1. The peaks are due to the adjustment

of weights which then cause the neuron to fire when it is not desired, or to lose

a spike where it is desired. This over adjustment is then corrected by a single

sharp change or series of sharp changes. For the 500 channel case, it can be seen

that the general trend is that the distance decreases as the number of iterations

increases. The distance plot for the 10 channel case shows very little decrease for

the same number of iterations.

It is clear that to construct the input to a spiking neuron in order to produce an

accurate representation of a specific goal time series it is necessary that the input

vectors be highly diverse.

6.5 Neuron Type and Task Suitability

The results just presented use a slightly modified LIF model to that described

in the implementation section. The difference is in the way the internal state

of the neuron is reset after firing. In the standard LIF model described in the
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implementation section, the internal state was reset to a value well below the

threshold value and below the resting potential value. However it was found that

using such a model placed too much limitation on the diversity of the spike train

the neuron could perform. The time needed for the internal state of the neuron to

rise from its very low reset value to a value at which spiking was again likely was

too long a period — long enough that a second firing in close temporal proximity

to a previous firing would not be possible.

There are numerous ways to address this problem. It was decided that the internal

state reset value would be increased to be above the resting value but below the

firing threshold value. This change means that the neuron is now able to perform

faster successive and precise firing. This modified model will be referred to as

the fast spiking model. The time constant of the internal state of the neuron

was not altered as this would adversely affect the duration that a post synaptic

spike remained in the internal state of the neuron and would therefore limit the

number of post synaptic spikes that would be able to interact with each other

within the internal state of a LIF neuron.

Figure 6-3 shows the values, each averaged over 40 runs, of d(goal, actual) for

the standard and fast spiking models, along with the 95% confidence intervals.

It can be seen that there is a slight trend for better performance from the fast

spiking neuron compared to the slow spiking neuron. Based on this trend, the

fast spiking neuron was used for this chapter. See table A.1 in section A.1.1 for

exact values of the reset values.

6.6 Discussion of the Metric d(u, v)

One of the good properties of this metric is that it is continuous with respect

to variation in times of spikes, as well variation of coefficients. We have limε→0

d(s(t1), s(t2 + ε)) = d(s(t1), s(t2)). Also any two weighted time series u and v are

connected by the straight line (1− x)u + xv, as x goes from 0 to 1.

This should be contrasted with the more usual approach, which is to divide a time
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Figure 6-3: A plot of d(goal, actual) values for fast and slow neuron types Each
has been averaged over 40 uniquely generated patterns.

interval into small subintervals, and to represent a time series of spikes by a vector

of zeroes and ones, the length of the vector being the number of subintervals, and

the ith component of the vector being 1 if and only if a spike occurs in the

ith sub-interval. We can then define some metric on these Boolean vectors, but

however this is done it will not vary continuously with small perturbations in the

times of the spikes. Also it is not always clear what would be a good path from

one Boolean vector to another, especially if they have different numbers of spikes.

Another good feature of our metric is that it gives a unique optimal solution to

Problem 1), whereas if Boolean vectors are used, the result depends on the size

of the subintervals.
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6.7 Related Metrics

This metric is not entirely new, but is similar, for example, to the metric intro-

duced in van Rossum (2001). As in the metric described here, the van Rossum

metric replaces the delta function of a spike with an exponential function and

uses the `2-norm of the difference between two spike trains to provide a notion

of the distance between the two spike trains. While there are great similarities

between these two metrics there are some differences. For the metric described

in this thesis, the vector space, V , is defined for weighted spike trains. Each spike

has a weight associated with it. To obtain a measure of closeness of two spike

trains, an inner product was defined, and confirmed, for V .

Another similar metric is described in Victor and Purpura (1996), on which the

previously mentioned metric of van Rossum (2001) is based. Victor and Purpura

allow for the transformation of one spike train into another by the minimising of

a cost function. Addition and deletion of a spike are assigned a cost of 1, while

temporal shifting of a spike is assigned an arbitrary value that is proportional to

the amount of time the spike is shifted. Therefore, the distance between any two

spike trains is given by calculating the minimal cost function between the two

spike trains. Other, more complex metrics have been devised that are based on

the Victor and Purpura metric.

Another similarity between the metric of this thesis, and the metrics of van

Rossum (2001) and of Victor and Purpura (1996), is that they all allow for a

non-binned approach, and thus provide a continuous measure over the entire

spike train and therefore, are better measures of similarity between spike trains

than the typical ‘binned’ approach.

In the metrics outlined in van Rossum (2001) and in Victor and Purpura (1996),

during the transformation of one spike train to another, a spike can be inserted,

deleted or shifted in time. An advantage of the metric outlined in this thesis is

that each spike is weighted and not simply ‘there’ or ‘not there’. Spike trains can

exist at varying strengths, which are determined by the synaptic weight on the

connection from which the spike train originates. This use of a weighted spike
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train means that the metric of this thesis can be successfully applied to solve the

previously described problem 2) as in section 6.3.3. Spike train reconstruction

was hinted at in van Rossum (2001) but not actually demonstrated.

6.8 Usage of STDP to obtain precise spike trains

The metric outlined in this chapter has been shown to be highly capable of

modifying the synaptic weights of a spiking LIF neuron in order for the neuron to

output a precise spike train in response to a specific and highly diverse collection

of input spike trains, see figures 6-1 and 6-2.

However, one might say that given that the metric has access to the error function

between the goal and the actual output spike train, in addition to being provided

with a highly diverse input, the success of the metric is to be expected.

In an effort to accomplish the same problem in a more biologically realistic man-

ner, the metric shall be replaced with the STDP +N learning described in detail

in chapter 5 of this thesis, and it is used here with some changes to certain pa-

rameters. These changes, along with explanations for each, shall be discussed in

due course.

Consider the same experimental setup as previously described and illustrated in

figure 6-4 below. The 500 inputs each generate 10 spikes that are distributed

randomly throughout the interval (0, 1)s. Each of these inputs are connected to

an output LIF neuron by 500 synapses. A goal spike train is generated which

consists of 5 spikes. Each spike of the goal spike train is randomly generated also

in the interval (0, 1)s. The choice of an average frequency of 10Hz for the input

neurons, and 5Hz for the output neuron can be explained as follows. Firstly,

it is important to realise that both frequencies are entirely feasible working fre-

quencies for neurons of the human neocortex (Ojemann and Schoenfield-McNeill,

1998). Direct measurement of the activity of individual neurons in vivo indicates

that the average firing rate of some neurons can be 3Hz in highly isolated neu-

rons, with maximal frequencies being 11Hz (Ojemann and Schoenfield-McNeill,
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1998). It is not suggested here that, these frequencies should be treated as being

absolutely correct, but they do provide a meaningful basis on which to construct

the spike trains used here. It is assumed that a neuron is able to more accurately

construct a target output spike train when given a collection of input spike trains,

when the input spike trains consist of many spikes compared to the number of

spikes contained in the target output spike train. Therefore, with this assumption

in mind, the average frequency of the output spike train was set at 5Hz — compa-

rable to actual frequencies observed in Ojemann and Schoenfield-McNeill (1998)

in highly isolated neurons, while the average frequency of the input neurons was

set to 10Hz — close to the observed maximal firing frequency of individual neu-

rons observed by Ojemann and Schoenfield-McNeill (1998). As a result of these

choices, the target neuron is given one of the best possible chances of learning

its goal spike train, while maintaining realism. It should be noted that both of

these firing rates are much lower than the firing rates that are typically used in

simulating spiking neurons. For example the work Legenstein et al (2005), much

higher frequencies of 25Hz are used. While it is possible for such firing rates

to occur naturally in populations of neurons, observational evidence obtained

by Ojemann and Schoenfield-McNeill (1998) would seem to indicate that these

frequencies are not necessarily typical at the level of the individual neuron.

Before continuing with the experiments the norm of the weight vector to the

target neuron needs to be set to an appropriate value. Consider a target LIF

neuron with 500 input channels, the input synaptic weights of this neuron are

trained using STDP + N learning technique so that the post synaptic spike

train of the target neuron, referred to as the actual output, is close to the goal

spike train as determined by the distance, d(goal, actual), using the previously

described metric.The norm of the input vector was chosen to be 9× 10−9 as this

gave an average number of output spikes very close to the number of spikes in

the goal spike train i.e. 5 spikes.

In order to maintain realism and, in a departure from the approach used when

using the inner product learning rule, the sign of all of the input synapses is

fixed and cannot be changed by the learning rule. This is accomplished using the
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following procedure: Suppose that the modification, calculated by the learning

rule, that is to be applied to a synaptic weight of magnitude w is of a magnitude

greater than w and is also negative. The weight must not be allowed to become

negative, so instead it is set equal to zero. It should be noted that the use of

this approach, combined with too large a learning rate will cause virtually any

negative change to be large enough to cause the relevant synaptic weight to be

set to zero. Therefore, a value for the learning rate must be chosen that is large

enough for learning to occur within a reasonable time-frame, but not so large

that it causes a great number of synapses to be set to zero.

The disadvantage of this approach is that some performance will be sacrificed

in the form of the similarity that can be achieved between the goal and the

actual spike train after training. All of the synaptic weights used are positive.

This is because it is unclear how to treat inhibitory synapses using the STDP

learning rule. For example, with excitatory synapses, if a pre-synaptic neuron

fires before the the post-synaptic neuron it is treated as though it may have

contributed to the post synaptic firing and is strengthened. If it fires before the

post-synaptic neuron, it is weakened. Now consider an inhibitory synapse, if the

pre-synaptic neuron fires before the post-synaptic neuron it cannot necessarily

be considered to have contributed to the post-synaptic neuron firing, due to its

inhibitory effect — though it could perhaps be thought of as affecting the timing

of the post-synaptic neuron firing, in terms of delaying it. This fundamental

difference means that it is difficult to reconcile using standard STDP learning

on inhibitory connections. Indeed, it may be the case that inhibitory neurons

should be treated by an altogether different learning regime to STDP, such as a

homeostatic learning rule similar to that used in Moldakarimov et al (2006). A

homeostatic learning rule is applied to a purpose-built neural network in which an

excitatory neuron receives an input from an inhibitory neuron and also receives an

input from itself (self excitation). The inhibitory neuron receives an input from

the excitatory. The synaptic weight from the inhibitory neuron to the excitatory

neuron is increased if the firing rate of the excitatory neuron rises above some

threshold value and is decreased if the firing rate of the excitatory neuron falls

below the threshold value. The use of a homeostatic learning rule on inhibitory
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synapses acts as a regulating influence on the firing activity of the excitatory

neuron that ensures that its firing frequency does not rise too high, or drop too

low.

While the majority of research has involved STDP learning with excitatory

synapses, there has been a relative lack of work done on plasticity within in-

hibitory synapses. Some evidence (Haas et al, 2006) has been published that

shows that a form of STDP learning operates on inhibitory synapses of the en-

torhinal cortex. Haas et al found that the strength of synaptic modification

varied as a function of ∆t = tpost − tpre where tpost and tpre are the firing times

of the post-synaptic and pre-synaptic neurons respectively. It was found that

potentiation of the inhibitory synapses occurred for ∆t > 0 and that depression

occurred for ∆t < 0.

However, a review of some of the research into plasticity mechanisms for in-

hibitory neurons (Gaiarsa et al, 2002) highlights that mechanisms for inhibitory

synaptic modification vary throughout different brain regions.

The focus of the research in this chapter is aimed at understanding how much

a neuron can learn. The introduction of plasticity on inhibitory synapses would

introduce another layer of complication and would in itself be worthy of further

research as an extension to the research established here. This future research

could aim to examine the effect of inhibitory synaptic plasticity on what a neuron

can learn, compared to the results obtained here for excitatory plasticity only.

An additional point for consideration is that the use of the normalisation proce-

dure outlined in chapter 5, can be thought of as effecting the stabilisation that

homeostatic learning with inhibitory synapses would provide so, at least in this

respect, the inhibitory synapses are not required for this implementation.
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6.9 STDP Precise Spike Train Results

Consider the experimental setup just described and the previously described

STDP + N leaning technique to modify the input synapses. During a single

training iteration for a particular Input/Output association, the input of 500

randomly generated input spike trains is presented to the output neuron. The

output neuron has its output spike train clamped to perform the desired goal

spike train during the presentation of the input. The term clamped means that

the neuron is forced by an external stimulus, to perform a desired precise firing

sequence. For example, the stimulus could be a neuron with a strong synaptic

connection to the output neuron. The STDP + N learning is then applied to

each of the input synapses using the appropriate input spike train along with the

clamped output spike train of the output neuron. This training is repeated for

50 iterations.

These initial results confirm that the STDP + N learning outlined here, when

applied to the input synapses of the output neuron is indeed capable of produc-

ing precisely timed output spike trains from the output neuron. This results is

similar to that obtained in Legenstein et al (2005), and the work was obtained

independently and concurrently with their result.

As well as showing that STDP +N learning can indeed be used to teach a single

neuron to perform a precise spike train, figure 6-5 shows examples of both good

and not so good metric distances. These are provided so that it can be seen

what a particular metric distance value between a goal and an actual spike train

actually means.

6.10 Multiple Pattern Training Techniques

Given the previous result of STDP + N Hebbian learning enabling a neuron to

produce a precise spike train in response to a specific input pattern, it is possible

to expand upon this result and investigate the capability of a neuron to learn
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Figure 6-4: An illustration showing a single output/readout neuron that has 10
input neurons connected to it. This is a rudimentary setup as the actual setup
involves the use of many hundreds or even thousands of input neurons — only
10 are shown here for illustrative purposes.

multiple, precise input output associations. The weight vector resulting from a

neuron being trained to produce a precise output is a diverse combination of many

values, in this case 500. In order for multiple I/O associations to be learnt by

the same neuron, will obviously require the existence of some sort of compromise,

in which the individual weight of the weight vector are optimised for no pattern

in particular. If this were to be possible one could suppose that the precision

of the learned output spike train must be reasonably robust to changes within

the trained weight vector — perhaps relying on just a small proportion of the

individual elements of the vector.

Consider the same experimental setup used previously, and illustrated conceptu-

ally in figure 6-6. In order to investigate the ability of a single neuron to learn

multiple I/O associations, it will be necessary to first define the training tech-
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Figure 6-5: These two figures are examples of two specific goal spike trains and
the actual output spike train of two separate single neurons after training. The
upper figure is of an output spike train that is highly similar to the goal with a
metric distance of less than 1. The lower figure shows a less successful example
in which, after training, the output spike train of the single neuron has a metric
distance from the goal of greater than 2.
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niques that will be used. For the purposes of the following experiments, the

training technique refers to the method of presentation of the multiple I/O as-

sociations to the target neuron. For the sake of brevity, the number of patterns

used throughout the description of the techniques is limited to 2.

P1in P2in P3in P4in

P1out P2out P3out P4out

Output
Neuron

Figure 6-6: A conceptual illustration of using a single neuron to learn multiple
I/O associations simultaneously. Given input pattern P 1

in the output neuron will
produce, as best it can, output pattern P 1

out, and similarly for the second, third
and fourth input and output patterns.

6.10.1 Serial Pattern Presentation

The first, most basic technique will be referred to as serial learning. Using

this method, the first input pattern P 1
in- comprising of 500 spike trains, each

containing 10 spikes over a 1s interval — is presented to the target neuron. During

the same 1s interval i.e while it is receiving the input pattern, the target neuron is

clamped such that it will perform the goal precise spike train output pattern P 1
out

which it is required to learn as a response P 1
in. The synaptic weight changes are

calculated according the STDP + N learning regime discussed previously. The

target neuron is exposed to 50 iterations of this pattern presentation, clamping

and learning. After 50 iterations, the input pattern is changed to a second pattern
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P 2
in that is randomly generated and is different to the first input pattern. The

output pattern is also changed to pattern P 2
out that is distinct from pattern P 1

out.

The target neuron is then subjected to a further 50 iterations of learning with

the second I/O pattern association. For a target neuron N , the procedure can

be written more formally as follows:

FOR (i=1 To 2)

FOR (j=1 TO 50)

Reset Network

FOR ( simulation time of 1.3s )

IF ( simulation time >0.3s )

Present Input Pattern P i
in;

Clamp N to perform output pattern P i
out;

Calculate and apply weight vector update

END

END

END

END

The network is simulated for 1.3s, but input activity, clamping and therefore

learning do not start until 0.3s into the simulation. This was to allow the ini-

tial internal state of the neuron to fall to resting values before commencing the

training. Learning, therefore, is over a period of 1s. Simulation means that the

spiking activity and learning are active and that the synaptic weight changes due

to pre- and post- synaptic firing activities are being calculated and applied.

6.10.2 Alternate Pattern Presentation

Using the alternate learning technique, the I/O associations P 1
in with P 1

out and P 2
in

with P 2
out are presented at alternating iterations, for a total number of iterations

that is equal to the product of the number of associations and 50, so in this
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case for 100 iterations. For a target neuron N that is to be trained on two I/O

associations, this can be more formally described as:

i=1;

FOR (j=1 TO 100)

Reset Network;

FOR ( simulation time of 1.3s )

IF ( simulation time >0.3s )

Present Input Pattern P i
in;

Clamp N to perform output pattern P i
out;

Calculate and apply weight vector update;

END

END

IF (i==1)

i=2;

ELSEIF (i==2)

i=1;

END

END

6.10.3 Superimposed Pattern Presentation

Superimposed learning is a variation on the Alternate technique just described,

with the difference being that the synaptic weights are not updated after each

iteration. Instead, each I/O association is presented iteratively for the appropri-

ate number of iterations. So, if it is required that n I/O associations be learnt

then after each I/O presentation the weight update is calculated and stored, but

not applied, except after each presentation of the nth I/O association, at which

point the weight vector is updated with the average of the weight vector updates

for the last n iterations.
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Procedurally, this looks like:

i=1;

FOR (j=1 TO 100)

Reset Network;

FOR ( simulation time of 1.3s )

IF (simulation time >0.3s )

Present Input Pattern P i
in;

Clamp N to perform output pattern P i
out;

Calculate and store weight vector update as δWi;

END

END

IF (i==1)

i=2;

ELSEIF (i==2)

Update Vector = Average vector for all δWi;

Use Update Vector to modify the weight vector;

i=1;

END

END

In the following experiments, different numbers of input neurons to the single

neuron are used. Altering the number of inputs means that the total synaptic

contribution to the neuron is altered, and therefore the spiking activity of the

neuron is altered too. In order to preserve the total synaptic input and make it

a constant, such that the effect of the training can be compared as the number

of inputs changes, the norm is changed, and its value depends on the number

of inputs. A norm of 9.0 × 10−9 was chosen for the 500 input case. This value

provided an average spiking output very close to the desired goal output of 5

spikes. A doubling of the number of inputs to 1000, means that the norm — such

as it was previously described — must be multiplied by 1√
2
, resulting in a norm

of 9.0×10−9
√

2
for 1000 inputs. This now means that during training, the norms of
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the input vector to the single neuron, are set such that the total synaptic input

remains constant as number of inputs increases. The training norms for 2000 and

4000 inputs are 9.0×10−9

(
√

2)2
and 9.0×10−9

(
√

2)3
respectively, using the same method.

Additionally, in order to maintain consistency in training while investigating the

effect of changing the number of inputs, the learning rate — which determines

the strength of the absolute change to a synaptic weight before normalising takes

place — is also altered as the number of inputs increases. Consider that as the

number of inputs increases, and the absolute size of individual synaptic weights

decreases, then in order to maintain the strength of the learning, the absolute

change in a synaptic weight must also decrease. This is accomplished by ensuring

that there exists an inverse relationship between the learning rate and the number

of inputs, such that a doubling in the number of inputs results in the learning rate

being halved. If this does not happen, and the same learning rate that was used

for 500 inputs, is also used for 4000 inputs, then the relative change in the 4000

input case will be much greater than in the 500 case. The learning experienced

by the synapses of the single neuron will be much higher and the results for

determining the effect of increasing the number of inputs, would be flawed.

6.10.4 Multiple Pattern Learning Results and Analysis

Figure 6-7 shows a plot of the mean values of d(goal, actual), the distance between

the desired goal spike train for the target neuron and its actual output spike train

after training for the different training techniques just described and for cases of

1, 2, 3 and 4 I/O associations, over 20 runs in each case. For those instances in

figure 6-7 that show the result for multiple patterns, d(goal, actual) is given for

each pattern. The idea is to train a readout neuron on multiple I/O associations

and observe the accuracy of the output of the trained neuron for each pattern it

is required to learn, as the number of patterns increases.

Along with each measure of mean distance, the 95% confidence interval is also

provided so that significant differences between the results of using different train-

ing techniques and/or different numbers of I/O associations can be clearly seen.
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Figure 6-7: A plot of the mean values of d(goal, actual) for varying number of
patterns and training methods. Averaged over 20 runs in each scenario.

For a given training method and number of I/O associations, we can say with

95% confidence level that the given confidence interval will contain the value of

d(goal, actual) obtained from a single run. The difference between any two mean

values of d(goal, actual) can be considered significant (at the 95% level) if their

confidence intervals do not overlap.

The distances are calculated using the metric described previously in this chapter.

The metric acts as an objective measure of how much of the goal pattern the

neuron has learnt, or how well the neuron has learnt a particular goal pattern.

In the experiments that follow, there are many examples of the readout neuron

learning some patterns well, and some not so well, but in all cases the learning is
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imperfect. The metric is ideal as a measure of learning in such cases as it allows

the amount of learning a neuron has undergone to be quantified, and as a result

comparisons can be made between how much a neuron has learnt of two or more

patterns.

It should be noted that in addition to changing the learning rate and the norm to

maintain the relative strength of the training throughout changes in network size,

another check is also implemented. It was found in preliminary testing that as the

number of patterns, on which a neuron was trained, was increased, the number

of spikes contained in the resulting output spike trains for each pattern of the

trained neuron, also increased. The increase was such that it was possible that

the observed poor performance — high d(goal, actual) values — could have been

attributed to too many spikes in the outputs, something which could perhaps

be remedied by reducing the norm of the input weight vector to maintain the

average number of output spikes close to 5, over all of the patterns on which the

neuron was trained. As in figure 6-7, it can be seen that the greater the number

of patterns a neuron is required to learn, the less well it is able to learn them,

even with the output maintained at the goal of 5 spikes.

For each of the training technique/number of I/O associations shown, a total of

20 networks were randomly generated, and the relevant distances calculated for

each. The average was then recorded and plotted in figure 6-7.

Figure 6-8 shows the number of spikes present in the actual output of the target

neuron after training for each of the combinations of training technique/number

of I/O associations used. It shows that the average number of spikes in the output

spike trains of the neuron, over all patterns learned in each instance, is kept close

to 5.

It is thought that the need to change the norm as the number of patterns increases

arise because, as more patterns are required to be learnt, more synaptic weight

are strengthened. This results in a greater synaptic input to the neuron and

therefore a lower norm must used to maintain spiking frequency.

The first bar in figure 6-7 shows the average distance between a goal spike train
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Figure 6-8: The average number of spikes contained in the output spike train of
the output neuron over the 20 runs for each training method-number of patterns
combination used. Also shown are the 95% confidence intervals for each training
method.

and a precise output spike train produced by the STDP + N learning rule when

the 500 input synapses to a single neuron, are trained over 50 repetitions, on a

single I/O pattern and averaged over 20 unique, randomly generated I/O pat-

terns. This is the benchmark distance result, against which all other results shall

be compared.

It can be seen that some entries in figure 6-7 have up to 4 differently coloured

bars. Each of these bars represent a distance d(goal, actual) for one of the goal

spike trains on which the target neuron has been trained.
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The first instance of training the target neuron to learn two patterns uses the

serial method, discussed above. The serial technique was mentioned here for

completeness. In reality, it is not a viable training technique due to the fact that,

as the number of training repetitions increases, the previous learnt patterns get

effectively erased. Therefore, all other results that can be seen in figure 6-7 for

number of I/O associations 2, 3 and 4 are obtained using only the super and

alternate techniques.

The next two results both also represent attempts to train a neuron to learn 2

precise I/O associations, using the alternate and the superposition techniques. It

can be seen that both techniques are capable of producing weight vectors that

allow for the weight vector of the target neuron to store two I/O associations

that are not quite of comparable accuracy to the benchmark single pattern.

As the number of I/O associations increase to 3 and 4, it can be seen that the

results for d(goal, actual) for each of the output spike trains of the target neuron,

increase so much that they are no longer comparable to the benchmark — their

confidence intervals no longer overlap. It can also be seen that the alternate

technique consistently outperforms the superimposed technique. Additionally, it

would appear that increasing the number of patterns a single neuron is required

to know at any time, results in a decrease in the accuracy and the integrity of all

of the patterns learnt.

6.11 Increasing Number of Inputs

It has been shown that a target neuron with 500 inputs and having undergone

the training described, cannot adequately learn 4 multiple patterns. A pattern

is considered to be ‘adequately learnt’, if the confidence interval of the average

d(goal, actual) value — taken over 20 different I/O associations — overlaps with

the confidence interval of the benchmark case, i.e. is not obviously worse than the

worst results of the benchmark case. Figure 6-9 shows the effect on d(goal, actual)

of using different numbers of input channels — 500, 1000, 2000 and 4000 — whilst
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keeping the number of patterns equal to 4. Also shown is the result of using these

different numbers of inputs to learn a single I/O pattern.
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Figure 6-9: This figure shows the plots of the average values of d(goal, actual)
for varying numbers of input connections to a single neuron, along with the
d(goal, actual) values for each size network on learning a single pattern.

In the case of using 500 neurons, it can be seen that the average distances from

the goal for each of the 4 patterns fall far outside the confidence interval of the

benchmark case. Figure 6-9 shows the goal and the actual spike train of one such

neuron. It shows a limited number of spike correlations between the actual output

spike train and the goal spike train. In figure 6-9 it can be seen that as the number

input channels increases, the average values over 20 runs, of d(goal, actual) for

each of the four patterns decreases. In fact the distance decreases by so much
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that in the 4000 input neuron case, the distance is comparable to the benchmark

distance for a neuron with 500 inputs learning a single pattern. It can also be

seen that more inputs allow for single I/O pattern to be learnt that have lower

d(goal, actual) values than for the case of fewer inputs.

6.12 More Patterns

The purpose of this section is to increase the number of patterns that single

neuron with a given number of inputs is trained on, until a point is reached

where the patterns are not able to be all stored successfully.

The dotted line in each of the figures 6-10, 6-11, 6-12 and 6-13 represents the

absolute upper limit of the confidence interval of the average d(goal, actual) value

for the 500 input benchmark case, in which the a single neuron with 500 input

neurons was trained on a single I/O association. This line is included to better

show which patterns do not have an overlapping confidence interval with the

benchmark. A pattern is said to be learnt successfully if its confidence interval

overlaps with that of the 500 input single pattern benchmark case, or if it is

significantly less than that of the benchmark.

The preceding figures show that the 500 input single neuron is only capable of

learning a single I/O association, as the other collections of numbers of patterns

have at least one pattern whose confidence interval does not overlap with that of

the benchmark. The 1000 input case is able to learn at least a maximum number

of 3 I/O associations before integrity is lost and confidence intervals cease to

overlap. Similarly the 2000 input case can learn at least a maximum of 4 I/O

associations, while the 4000 input case is capable of learning at least a maximum

of 6 I/O associations. Additionally, the 4000 input case is also able to learn 4

patterns with most of the patterns being more accurate than the benchmark case.

Figure 6-14 shows examples of the input, goal and actual spike trains for a single

neuron with 4000 input spike trains. These specific examples are indicative that

it is possible for a single neuron to learn a maximum of at least 6 patterns simul-
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Figure 6-10: d(goal,actual) for 500 input neurons trained on 2 3 and 4 I/O
associations — each average over 20 iterations

taneously, while maintaining an acceptable level of accuracy for each individual

pattern stored.

6.13 Extrapolation of number of patterns stored

If one considers the results that are shown in figures 6-14, of the increasing

networks sizes and the number of patterns they are able to store successfully, and

if one were to define a learnt pattern as one that is statistically insignificant from

the 500 input benchmark case, then one is able to create a plot of the number
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Figure 6-11: d(goal,actual) for 1000 input neurons trained on 3 and 4 I/O asso-
ciations — each average over 20 iterations

of patterns that can be stored with respect to the number of inputs to the single

neuron.

Such a plot can be seen in figure 6-15. It can be seen that the relationship would

seem to indicate that in order to store one extra pattern, the number of input to

a single neuron must be approximately doubled. The plot contains data from the

500, 1000, 2000 and 4000 input neuron cases. The number of input connections

for a single neo-cortical neuron is around 10, 000. If one were to extrapolate

these results to 10, 000 synaptic inputs, it can be seen that a single neuron with

approximately 10000 input neurons may be capable of storing a maximum number

of at least 7 I/O associations, at the 5Hz rate.
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Figure 6-12: d(goal,actual) for 2000 input neurons trained on 3, 4 and 5 I/O
associations — each average over 20 iterations

It should be noted that what constitutes a learned pattern here is defined as

a pattern that is statistically insignificant to the 500 input benchmark case, as

previously stated. However, one could equally say that a learned pattern does

not need to be this accurate, because due to the possibility of redundancy in large

neural networks, it would be possible for many neurons to learn the same output

pattern, and so it would not matter so much in this case if the learned pattern

was not so accurate because there would likely be other neurons to literally fill

in the gaps. One could equally have been less rigorous in defining an accurate

pattern, and such an approach would lead to the conclusion that a single neuron

of any size could learn more I/O associations than is stated here. The reason for
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Figure 6-13: d(goal,actual) for 4000 input neurons trained on 4 5 and 6 I/O
associations — each average over 20 iterations

defining a learned pattern as it has been here is that it is suitable for the purpose

of the work and because a line has to be drawn somewhere.

What can be said for sure from all of these results, is that the 500 input case is

capable of learning at least a single pattern simultaneously with a high degree

of accuracy. While a single neuron with 1000, 2000 and 4000 inputs can learn a

maximum of at least 3, 4 and 6 I/O associations respectively. Also, increasing

the number of inputs to a single neuron would appear to improve the accuracy

with which the neuron is able to learn a single precise pattern — up to a point,

as it can be seen in figure 6-9 that the 4000 input case and the 2000 input case

both have a similar average distance result for learning a single pattern. It can
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Figure 6-14: 6 raster plots demonstrating the result of using STDP +N learning
on the input synapses of a single neuron, with a total of 4000 inputs, in order to
simultaneously learn 6 I/O associations.
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Figure 6-15: This figure shows two things: The blue line is a plot of the number of
I/O associations successfully stored, each with an accuracy comparable to the 500
input benchmark case, with respect to the number of input neurons to a single
neuron; The red line is an extrapolation from 4000 to 10000 inputs neurons, with
the purpose predicting how many of these I/O associations may be learnt by a
single neuron in the human neocortex, which typically receives circa 10000 input
connections.

also be said that the relationship between the number of patterns that a single

neuron can learn simultaneously, and the number of input neurons it receives,

would appear to be a log-linear relationship.

Concerning the choice of the firing frequencies of the input and output spike

trains, while the justification for these has already been given previously in this

section, 6.8, it should be noted that it is not the concern of the work presented
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here to investigate the effects of different frequency choices on the number of

patterns which can be successfully learnt by a neuron for any given number of

synapses. However, it thought that changing the firing frequencies used here

would not alter the findings significantly, but merely skew them in some way.

For example, in the extrapolation graph of figure 6-15 it is likely that an increase

in the number of spikes in the goal spike train would lead to a decrease in the

number of patterns that a single neuron could learn for a given number of inputs.

From the results obtained it would be reasonable to say that it is likely that

this effect would be constant across the range of the number inputs the neuron

receives, and so the whole line would likely be shifted downwards by some amount

w.r.t the y-axis.

More research in this area, ideally with access to greater computational power

would allow for even larger numbers of inputs to be investigated and also allow

for more accurate predictions. More computational power would also allow the

learning to be run for a greater number of repetitions, which would also likely

serve to reduce the d(goal, actual) values.

6.14 Discussion

In the first part of this chapter, a metric was defined that is based upon the inner

product of two spike trains. In the metric section the two problems considered are

subproblems of the more difficult problem of constructing given stimulus-response

patterns. This can be modelled in the following way. Let S be a time series of

spikes on an interval [a, b], and let R be a time series on a subsequent interval

[b, c]. Suppose that we give S to every neuron in a network. The problem would

be to pick the weights to the output in such a way that we get response R at the

output of our output neuron. This should be true for a typical internal state of

the network. That is to say, in accordance with the ideas of anytime computing,

we are not allowed to prepare the network by setting the internal state at the

moment when the stimulus S is given. See Natschläger et al (2002b), Maass et

al (2002a).
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It was subsequently shown that it is possible to use STDP + N learning on the

input synapses of a single neuron to train such a neuron to produce a highly

precise spike train output in response to a unique and precise selection of input

spike trains. Furthermore it was shown that it is possible for even a single neuron

to learn several of these highly precise I/O associations simultaneously, without

each of the learnt patterns erasing or interfering in too much of a detrimental

manner with each other. Figure 6-14 demonstrated that it is possible in some

cases for a single neuron to learn at least 6 I/O associations simultaneously. A

neuron is considered to have successfully learnt a collection of I/O associations

if the average metric distances d(goal, actual) for all I/O associations have over-

lapping confidence intervals with the average metric distance of the benchmark

case. There also appears to be an increasing difficulty to store multiple patterns

simultaneously that can only be partially addressed with increasing the number

of inputs to the single neuron. The nature of the log-linear relationship that

was discovered, between the number of inputs to the neuron and the number of

patterns it can learn simultaneously means that, for every extra I/O association

that a neuron is required to learn, there is an exponentially increasing penalty,

in terms of the number of inputs a neuron would require to learn all of the I/O

associations to a sufficient accuracy. This log-linear relationship was shown in

figure 6-15. Figure 6-15 also shows an extrapolation to 10, 000 inputs — a num-

ber that reflects the typical number of inputs a neo-cortical neuron may receive

(Peters and Jones, 1984).

This work demonstrates the potential computing power and usefulness of single

spiking neurons, and that larger networks based upon the inclusion of such well

trained individual neurons could provide computationally powerful solutions to

realtime computing with spiking neural networks. It also presents a possible

limit, based on simulations, on the number of multiple I/O associations that a

neocortical neuron can learn.



Chapter 7

Novel application of STDP + N

Learning

7.1 Introduction

This chapter examines the effects of, and the possibilities arising from, applying

STDP learning to relatively large and highly recurrent networks of LIF neurons.

What are the benefits of applying STDP learning? Can it improve the computa-

tional power of recurrent neural networks, with respect to using memory capacity

as a measure? An improvement in such attributes is desirable, from the point of

view that it is important to study the limits of such networks, in order to know

what they are capable of, and therefore what applications they may have. The

use of an STDP mechanism for learning makes such a study meaningful because

of the biological foundation of STDP. The biological foundation of STDP is the

reason for selecting it as the learning regime.

The LSM is used as a starting point for the networks considered here, in which

learning is applied. The LSM is typically used as a static system from the point

of view that, once generated, its parameters such as, synaptic weights, synaptic

time delays and connectivity among others, are fixed. Examples of such work can

183
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seen in Maass et al (2002a, 2002b, 2004a, 2004b, 2005), Natschläger et al (2002a,

2002b) and in Bertschinger and Natschläger (2004).

In general the LSM has been treated as a system to be used for the representation

of input stimuli in a more diverse and higher dimensional form so that readout

units are able to be trained for salient aspects of the input information stream.

An important property, with respect to the ability of an LSM to perform more

complex computations, is its memory capacity, as defined in Bertschinger and

Natschläger (2004). The greater the memory capacity of a LSM, the further into

the past it can remember — see Bertschinger and Natschläger (2004) for a full

and detailed explanation of memory capacity.

What is proposed and demonstrated in this section is a method of applying the

STDP + N learning described in chapter 5 in a realistic manner to recurrent

neural networks, with the intention of eliciting several functional improvements

to the network. Principally, these improvements can be categorised as follows:

i) An increase in the duration for which the network is able to sustain non-

chaotic and specific activity in response to an input spike; ii) As a result of i),

the network can be trained to store, within its spiking activity, the response to

multiple individual spikes in a robust manner which maintains the integrity of

each spike; iii) As a result of i) and ii), it is shown that the resulting networks

may exhibit an enhanced memory capacity over the typical static untrained LSM

networks — an enhancement which is shown to increase with the size of the

network.

The goal is to train a network of neurons to reproduce a desired goal output of

a Mexican wave type firing pattern, to which it is exposed during some learning

phase. Roughly speaking the recurrent network is divided up into sub-groups of

neurons, also referred to here as groups which, during training, are clamped to

fire by some external stimulus in a sequential order. The time intervals between

the firing of each group may be regular or irregular. Additionally, these intervals

may be larger than the rise time of the post synaptic response, in which case, the

desired Mexican wave pattern cannot be achieved by direct connections alone.
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In the case in which only direct connections are created by the STDP + N

learning, incorrect associations/patterns are formed quickly and clustering of

firing times is observed. In the standard method of STDP application (also used

in application of STDP +N), the learning is applied to all synapses of all neurons

within a network — this is referred to here as STDP + NType1 learning.

Note that, STDP + NType1 is exactly the same learning method as STDP + N

learning. The additional type sub-script allows for the definition of different

varieties of STDP + N learning. Also defined is a Type 2 learning regime,

STDP + NType2, in which the learning locality moves randomly around the net-

work and is restricted to smaller randomly chosen portions of the sub-groups of

the network.

It is found that using STDP + NType2 learning, it is possible for the network

to learn goal patterns that the traditional STDP + NType1 learning is unable

to learn. For example, using STDP + NType2 it is shown that it is possible for

groups of neurons to learn to fire outside of the rise-time of the post synaptic

response, through the creation of bridging neurons, thus avoiding the clustering

effect seen using the traditional STDP +NType1 learning. This means that those

networks trained with STDP + NType2 learning are able to learn to mimic the

goal Mexican wave pattern presented during learning, while STDP + NType1

trained networks are unable to do so, due to the clustering of firing times. It

appears that STDP + NType2 learning produces networks capable of sustaining

activity for longer periods than those trained with STDP +NType1 learning, and

consequently have higher memory capacities.

The resulting STDP + NType2 trained networks can also be used to perform the

more complex task of storing a precise spike train, or PST. This involves a precise

spike train being presented to the network which, due to it having undergone

training on the goal Mexican wave pattern, is able to store each spike within

its temporal firing activity and therefore able to preserve the relative temporal

position of each spike of the PST.

Furthermore, it is proposed that, provided that the duration for which the net-
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work can sustain a single input spike is longer than the duration of the input

PST, then a readout neuron or population of neurons can be trained to produce

a second distinct PST at a time τ after the last spike of the initial PST. The

value of τ is dependent on the size of the network so that, the larger the network,

the longer the initial spike train may be stored. Additionally, the readout can be

trained using STDP + N as detailed in section 5, such that the second PST is

produced only in response to the initial PST and to no other input.

The network structures discussed in this chapter could act as the basic build-

ing block — a module or node — from which much larger networks could be

constructed. A large number of such nodes, with interconnections between nodes

could act as a system for the processing of multiple, diverse precise spike trains —

which themselves could be thought of as originating from either real world stimu-

lus or from other nodes of the system. Such a system could not only have a huge

processing capability for temporal inputs, but would also have the advantage of

being trainable on those inputs. New associations between PSTs could be formed

‘on-line’ — in effect, new memories made. Such structures could also be used

to form the basis of timing or counting mechanisms, similar to the Accumulator

structure that was built in chapter 4.

7.2 Basic Network Structure and Setup

The recurrent neural networks considered in this section can be described as

follows: Consider a fully connected recurrent network of K LIF neurons, where

K is the number of LIF neurons in the network. The recurrent network receives

inputs from a series of pools of spiking input neurons, I1, I2, ..., Im. Each of the

spiking input pools of neurons consists of M input neurons, where, in all cases

considered here, M = 1.

The recurrent network is divided into m sub-groups, with each sub-group con-

sisting of k neurons. In addition to receiving input connections from all other

recurrent network neurons, the neurons of each sub-group also receive input from
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one of the input groups I1, I2, ..., Im. Therefore, the characteristic that defines

what group a network neuron will belong to is the input neuron from which it

receives a connection. The number of neurons in the recurrent network, K, is

therefore equal to the product of m and k. A simple rendering of one such setup

can be seen in figure 7-1.

1
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2

3

3

4

4

Input Stimuli, m=4

Recurrent Network, k=2

I4I3I2

Figure 7-1: A rendering of the experimental setup used for the investigation
into STDP + N learning throughout this chapter. The recurrent connections
between the neurons of the recurrent network are not shown in this illustration.
The number on each of the neurons shown within the recurrent network, represent
the sub-group to which the neuron belongs. The sub-group — usually referred to
as simply group — to which a network neuron belongs is determined by the input
neuron from which it receives an input. Network neurons receiving an input from
input neuron 1 belong to group1, neurons receiving an input from input neuron
2 belong to group2 and so on. There are as many groups of network neurons as
there are input neurons. All groups contain equal numbers of network neurons.
In this figure, only 4 groups and 4 inputs are shown, m = 4, and there are 2
network neurons per group, k = 2.

The above reference to full connectivity, means that each neuron in the recurrent
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network receives inputs from all other neurons within the recurrent network.

7.2.1 Network Generation

Consider a recurrent network, N , of LIF neurons with full connectivity. The

input connection vector to an individual LIF neuron n ∈ N is defined as Cn =

c1
n, c

2
n, ..., c

K−1+M
n where, K is equal to the number of neurons in N , while M

is the number of neurons in a single input pool. In the case of the following

experiments M = 1.

Each LIF neuron in the network N is an excitatory neuron — no inhibitory

neurons are used. This is done because the parameters given for inhibitory neu-

rons within CSIM, based upon study of biological inhibitory neurons (Thomson

et al, 2002), produce inhibitory neurons that respond more quickly to stimuli

than excitatory neurons. This faster reaction time means that an inhibitory neu-

ron receiving a stimulus from one of the input neurons, I1, I2, ..., Im, will have its

synaptic weight modified by an amount that is larger than any modification value

for an excitatory neuron in the same situation — see the form of the excitatory

segment of the learning window in chapter 5. Therefore, with repeated iterations,

the inhibitory neuron dominates and consequently has the effect of dampening

down any activity that may have otherwise occurred.

This may suggest that inhibitory neurons have a specialised role within biologi-

cal neural networks and that they probably should not be treated with the same

learning rules as excitatory neurons as is done in Pfister et al (2006), and Legen-

stein et al (2005).

7.2.2 Why full Connectivity?

The use of full connectivity of the recurrent neurons is due, in part, to the small

size of the sub-groups used throughout this chapter. These groups were discussed

and introduced previously in section 7.2 and are also explained in figure 7-1.
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This small group size, combined with the fact that the neurons for each sub-

group are selected randomly from the whole recurrent network at the initial

network generation means that, in order to be sure that a neuron within the

network receives enough connections from the relevant sub-group, full, or near

full connectivity must be used.

The need for full connectivity can also be thought of as somewhat realistic, by

virtue of the fact that within biological neural networks, local connectivity be-

tween the same number of neurons considered here would typically be very high.

If one considers that a single biological neuron could receive circa 10, 000 synaptic

connections, then one could arrive at the conclusion that enabling full connectiv-

ity in a network of only 200 neurons would be a reasonable implementation.

STDP + N learning discussed in section 5 is applied initially to every single

synapse within the recurrent network. This means that, with each neuron receiv-

ing hundreds of connections there will be tens of thousands of synapses — in the

largest networks considered — to be modified with each iteration of the stimuli

through the network and the resulting firing activity.

Computationally, this is quite an intensive task for the resources immediately

available. As a consequence the majority of experiments detailed here use net-

works consisting of only 200 recurrent neurons — for the purposes of obtaining

multiple runs in order to demonstrate some form of statistical significance and

consistency.

7.3 Choosing Parameters

In order for the STDP + N learning to work successfully when applied to the

synaptic weights of a recurrent spiking neural net, it is important that several

network and learning rule parameters are correctly tuned. Each of the relevant

parameters are outlined and discussed below along with reasoning to support the

end choice.
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7.3.1 Learning Parameters

Learning parameters are directly associated with the learning function itself.

They are: learning rate; excitatory function width; and inhibitory function width.

A full list of learning parameters can be found in section A.

Learning rate φ was explained in section 5.2.1, it controls the strength of the

weight updates. In this chapter it is set to 6.5× 10−10, this is ten times greater

than the learning rate used in chapter 6. In that chapter the readout neuron was

required to learn to replicate a precise spike train consisting of multiple spikes.

The success of this task was dependent on a having a learning rate that was large

enough to effect substantial changes on the weight vector of the neuron, but also

be as small as possible so as to increase the precision of the resulting spike train.

Here however, each neuron in the recurrent network is required to learn only a

single precise spike and so a larger learning rate can be used.

Excitatory and inhibitory function width together define the total width of the

learning window. The total learning window width used is 200ms, with the width

of the inhibitory side of the function being 100ms and the width of the excitatory

side also being 100ms, the actual function itself will have decayed to extremely

low values before 100ms has elapsed.

7.4 Sustaining Network Activity in a Coherent

Manner

7.4.1 Experimental Setup

Consider a LSM similar to that shown in figure 7-1. Suppose that each of the neu-

rons within this network are assigned to one of m groups. Neurons are assigned

randomly to each group. The defining difference between each group is how it is

treated by a training or clamping stimulus. In the case of these experiments, each

group receives input clamping stimuli from a single input source. The clamping
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stimulus is applied in such a way that the groups of neurons fire sequentially

— like a Mexican wave of activity in a controlled and consistent manner. So,

the group firing sequence would be group1, group2, ...groupm. The experiments

performed here use m = 10, and a network size of 50 neurons, giving a group size

of k = 5 neurons, unless stated otherwise. An illustrative example of this setup

can be seen in figure 7-1

It should be noted that some experiments described later in this section will use

20 neurons per group instead of just 5. This four-fold increase means that the

learning rate used for STDP + N learning in the 20 neuron per group case is a

quarter of the learning rate used in the 5 neuron per group case. The norm of

the weight vector to each recurrent network neuron is also reduced by a factor

of 1√
20
5

compared to the 5 neuron per group case. Both of these changes mean

that the effect of the synaptic weight changes caused by the STDP +N learning

function is relatively the same no matter how many input connections a neuron

receives, and that therefore the effect of using more neurons can be isolated and

observed.

A biological analogy could be that of a brain region with m afferent stimuli. One

could suppose that each of the stimuli originates from other brain regions that

are active at different times during some sensory experience, with each stimuli

conveying a particular event to the target brain region. In other words, this target

region receives a particular multi dimensional input picture about an experience.

The firing times of each of the input stimuli are at regular intervals in the fol-

lowing experiments, however one could just as easily substitute these regular

intervals with irregular intervals, within an appropriate range, for a more real-

istic approach. However, for the purpose of demonstrating the concept, only

regular intervals are used.

Due to the spatially distributed nature of the neurons that comprise each group

and the small group size, it is necessary for connectivity in the network to be

high so that it can be guaranteed that neurons belonging to the same group are

actually connected. The small network size is used to give a convenient simulation
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time, and to ensure connectivity between group neurons, the LSM is connected

using full one-to-one connectivity — every neuron receives a single connection

from every other neuron in the network. It should be noted that this is not

necessarily unrealistic, as biological networks are known to have extremely high

connectivity density, and full connectivity in a network of such a small size as is

being considered here, is entirely feasible.

The idea is to apply STDP + N learning previously discussed in section 5, to

the synaptic connections of the recurrent network while the clamping input firing

sequence is applied, with the desired effect that the network learns to recreate

this firing sequence when it is presented with only the first group firing. In effect,

the network learns to respond as if the entire input stimuli was presented, not

just the first group firing i.e. the input sequence becomes imprinted into the

network structure.

7.4.2 Implementation of the Clamping Stimulus

As discussed briefly above, in order to ensure that the recurrent network neurons

fire at precisely the desired time, they are clamped to fire by some external

influence — this is referred to as clamping. The source of the clamping stimuli

can be thought of as perhaps originating from external brain regions, as stated

in the previous section.

One could actually create these external clamping sources and ‘plug’ them into

the network that is to be trained. However, instead of this, group1 of the network

is clamped via an external source, while the remaining groups are made to fire

at the desired times by the means of altering their output spike trains in a hard-

coded manner, i.e. group1 of the network is presented with the clamping stimuli

and the remaining groups of neurons all fire sequentially. The effect is the same

as if the groups were each being stimulated by their own dedicated input group.

The reason for choosing this approach instead of actually creating and connect-

ing clamping sources is that with the approach used it can be guaranteed that
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during training, the activity patterns that the network is exposed to are correct.

Whereas, if one were to use the actual clamping sources, one must not only set

the connectivity parameters used to connect the clamping sources to the net-

work such that the synaptic weights are of sufficiently large magnitude to cause

spiking, but one must also ensure that the network neurons do not experience

multiple firings from being exposed to such a large stimulus. In short, one must

use some additional mechanism to ensure that the network neurons fire at the

desired times, and at these times only.

Investigating how best to train the network effectively using such mechanisms is

a separate problem from the one being addressed here and so this approach was

discarded in favour of the approach outlined above. For the sake of clarifying

the terminology used in the following sections, the clamp that is applied to the

neurons will be referred to as the clamping stimulus, in spite of the fact that

in reality it is not actually an applied stimulus. The effect though should be

essentially the same.

In the latter experiments of this chapter, not all of the neurons in a group are

clamped. Instead, the output of each of these un-clamped neurons is left un-

touched. As a result, the un-clamped neurons are free to fire according to the

actual input activity they receive from their inputs from the rest of the network.

7.5 Sequential Group Firing

Consider a network of the kind described in the section on experimental setup,

section 7.4.1, the network comprises of 50 recurrently connected neurons with

each of the 10 groups exposed and trained in turn to their own training stimulus.

The neurons of the network are each initially given randomly chosen membrane

potentials which decay to resting potential value with time. The clamping stimuli

is applied to the network after the membrane potentials have returned to resting

values. As a result, the time of the first clamping stimuli that is given to group1,

is 0.3s. The subsequent groups two groups of neurons are clamped to fire at 10ms
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intervals, so at 0.31s and 0.32s. Hebbian learning is applied to the synapses of

the network for the duration of the clamping stimulus and the network undergoes

500 iterations of stimulus training. At the end of the presentation of the clamping

stimulus, and once the weights have been modified for the current iteration, the

network activity is reset before the commencement of the next training iteration.

Resetting the network activity means that the membrane potentials of all neurons,

and indeed all synaptic activity is reset to initial values, i.e. the membrane

potentials are randomly chosen and are allowed to decay to resting levels at the

start of the next iteration.

The goal is to train the network so that group2 fires 10ms after group1 and group3

fires 10ms after group2 etc. However, the rise time of the membrane potential of

a neuron in the LSM in response to a post-synaptic spike originating from one

of its pre-synaptic neurons is 5ms. This means that the neurons in groupn do

learn to fire after, and in response to, groupn−1 however, groupn will tend to fire

within the rise time of groupn−1 which is 5ms and not the required 10ms. The

figure 7-2 shows the response of a single network after such a training scheme.

It can be seen in this figure that the first three groups of neurons fire in the

correct sequence. While subsequent group all end up firing in one large cluster.

The right hand panel in figure 7-2 shows a cumulative rasterised firing plot over

10 networks of the same type seen in the left hand panel which only shows the

output of a single network.

7.6 Extending the maximum inter-group inter-

val

In light of what has just been described, a pertinent question would be: Is it

possible to not only extend this time interval between successively firing groups

of neurons, such that intervals longer than the membrane potential rise time can

be achieved, but also to eliminate the clustering of firing times so that all groups

fire at the correct time and the clamping stimulus is mimicked correctly, while
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Figure 7-2: Plots of the sequential firing times of ten trained groups of neurons.
Groups are colour coded to facilitate the differentiation of the firing times of
neurons belonging to the same group from the firing times of other neurons that
fire around the same time. A total of five different colors are used, in the order:
red; orange; yellow; green; blue. group1 neurons are colour coded red, group2

neurons are colour coded orange, and so on. In networks that consist of more
than five groups, the cycle of colours simply repeats itself. Therefore, in networks
that consist of more than five groups, some or all colors will be used for more
than one group. However, this is not a problem as the function of the colour is
merely to distinguish groups that fire close together from each other. The groups
were trained to fire with an interval of 10ms between them. However, it can
be seen that the resulting firing times of the groups are much less than 10ms
apart. The end result is that the majority of groups fire in a cluster, rather than
at their desired sequential times. The groups are unable to learn to fire outside
of the rise time, 5ms, of the membrane potential of the previously firing group
of neurons. The left panel shows the rasterised firing times for a single trained
network, while the right panel shows the cumulative rasterised firing times over
10 networks. k = 5 and m = 10.
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maintaining a realistic and plausible approach?

In order to determine if this can in fact be done, the effect of modifying the

clamping technique used and the manner in which the Hebbian learning is applied,

will be investigated in the following experiments.

In the previously discussed method, the clamping stimulus was applied to all

neurons in a group and this meant that the neurons could only spike at the time

the clamp stimulus is active. In this revised approach, a group of neurons has

only a portion of its neurons clamped during an iteration of the presentation of

the stimulus. 20% of the neurons in the group being trained are chosen randomly

at the beginning of each iteration.

As a justification for this method, consider that in reality the neurons of a bio-

logical network would likely be receiving an amount of background activity/noise

from a number of their numerous input connections. This input noise varies over

time. The LIF neurons modeled here have no input noise and clamping a ran-

domly chosen 20% of the neurons in a group is functionally equivalent to the case

for a biological network in which all neurons of a group are presented with the

input stimulus and in which, the input noise to each neuron is of such a mag-

nitude that upon presentation of the stimulus, the combination of the stimulus

and the input noise is such that only 20% of the neurons in the group fire.

This also has the implication that the remaining, un-clamped neurons of the group

are, essentially, free to spike according to the prevailing network activity that they

receive as they are not being clamped. This is one of the two major modifications

whose effect upon the maximum inter-group interval between successively firing

groups shall be investigated.

Part of the explanation as to why this may extend the inter-group interval is

that it might be leaving some neurons of a group free to spike of their own

accord which means that the un-clamped neurons could act as focal points for

the clamped neurons of the group. In turn, the Hebbian learning would cause

the strengthening of the synapses that relay connections from the un-clamped

neurons that are spiking from network activity, to the clamped neurons.
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The second modification is made to the method of application of the Hebbian

learning and concerns the choice of neuron to which the Hebbian learning is ap-

plied. More precisely, whereas previously, the Hebbian learning was applied to all

synaptic connections within a network, now the Hebbian learning is only applied

to the synaptic connections of selected neurons — specifically, with this modifi-

cation the Hebbian learning is only applied to the synaptic input connections of

the neurons within a group that are active due to the clamping stimulus during

the current iteration.

This modification too can be viewed as being realistic, if one considers that it

may be the case that Hebbian learning does not occur with the same strength or

influence in all parts of a neural network, under all conditions. For example, it

could be the case that the strength or indeed, the presence, of Hebbian learning

that is applied to a neuron may be dependent on the strength of the input to that

neuron. By strength it is meant that a training stimulus would be considered to

be a very strong input to a neuron, whereas other input activity is considered

to be less strong. The mechanism for this could be explained as follows: assume

that an important training stimulus is likely to be represented by more neurons

and in a more synchronised manner than, for example, background noise stimulus

or less important neuronal signals that may stimulate a neuron. Continuing from

this assumption, an important training stimulus would deliver a higher, more

temporally focussed current — in the form of synaptic activity — to a target

neuron, than less important stimuli. It is proposed that large input currents such

as these might actually be required to activate a Hebbian learning mechanism at

a post-synaptic neuron i.e Hebbian learning may require the increased energy of

a concerted training stimulus in order to be activated and that in the absence of

such a stimulus, Hebbian learning is either inactive at a neuron, or operates at a

much lower intensity producing much lower synaptic modifications.

So, in the proposed scenario, a strong training influence — like the clamp stim-

ulus used here — could itself be the initiating event that triggers the synaptic

modification mechanism. Without the presence of the strong influence of such a

stimulus it could be the case that the synaptic update mechanism either does not
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activate or perhaps, operates at a much lower intensity — a dual phase Hebbian

learning scenario.

This modified Hebbian learning shall be referred to as STDP + NType2 Hebbian

learning, and the previous version shall be referred to as STDP +NType1 Hebbian

learning. So to recap: Under STDP +NType1 Hebbian learning, every synapse in

the recurrent network is modified by the STDP + N learning function for each

iteration of the clamping stimulus/learning scenario; whereas under STDP +

NType2 Hebbian learning, the STDP + N learning functions are only applied to

the pre-synaptic synapses of those neurons that are clamped during each iteration.

It is STDP +NType2 Hebbian learning that enables the neurons of a group to fire

at a desired time that is beyond the rise time of the membrane potential of the

neurons that comprise the previous group.

In order to complete this analysis, and to investigate all combinations of appli-

cation the Hebbian learning and the clamping stimulus, two further cases will be

considered: i) STDP + NType3 learning, in which Hebbian learning is applied to

all synapses in a group and 20% of group neurons are clamped; ii) STDP +NType4

learning, in which Hebbian learning is applied to 20% of the neurons in a group,

and the clamping stimulus is applied to all neurons in a group.

In each case the network is presented with the clamping stimulus for 500 iterations

— 50 iterations for each of the 10 groups to be trained. Figures 7-3 and 7-4 show

synaptic weight values for the same neuron. The neuron in figure 7-3 underwent

STDP +NType1 Hebbian learning, while figure 7-4 shows STDP +NType2 Hebbian

learning. It can be seen that exposing a neuron to STDP + NType1 Hebbian

learning resulted in the weight vector consisting of many varied values. Whereas,

for the STDP + NType2 case the weight vector of the neuron consists of mostly

very low values, with a select few synapses having a relatively very high strength.

The STDP + NType2 learning appears to have learnt a more specific relationship

with its input neurons than the STDP + NType1 learning.

In order to obtain a more complete view of what is going on here, figure 7-5

show the resulting histograms of the frequency of occurrence of synaptic weights
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Figure 7-3: Synaptic weight values of the inputs to a group3 neuron for STDP+NType1

Hebbian learning,

throughout the range of their distribution, over 10 networks for STDP +NType1,

STDP + NType2, STDP + NType3 and STDP + NType4 learning. There are 1000

bins in each case.

It can be seen from figure 7-5, that STDP + NType2 learning results in a more

diverse range of synaptic weight values compared to Types 1, 3 and 4.

7.6.1 Bridging Neurons

Figure 7-6 show the raster plots for the neuron firings produced by the four

learning types — each starting from the same initial network. It can be seen

that the STDP + NType2 learning has produced a scenario in which the bulk of

the neurons in each group fire at 10ms intervals, unlike the other learning types.

By closer observation of the STDP + NType2 panel in figure 7-6, it can be seen
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Figure 7-4: Synaptic weight values of the inputs to a group3 neuron for STDP+NType2

Hebbian learning.

that this is accomplished by virtue of the fact that at least one of the neurons of

a group learns to spike early in response to the previous group. The remaining

neurons have learnt to use this early firing neuron which shall be referred to

as a bridging neuron as a means to advance the time at which they fire. The

bridging neurons fill the gap between the desired firing time of the group and the

maximum previously imposed by the rise time.

To reiterate, in the STDP + NType1 case, all neurons in a group are clamped

to the desired firing time and Hebbian learning is applied to all synapses of all

neurons in the group. Whereas, in the case of STDP + NType2 learning, only a

randomly chosen 20% of the neurons in a group are clamped to the desired firing

time for any one training epoch, while Hebbian learning is only applied to these

clamped neurons.

This covers all of the permutations of the applying the clamping stimulus and
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Figure 7-5: Histograms of synaptic weight values produced by Type 1, 2, 3
and 4 learning methods, with values taken over 10 networks in each case.
STDP + NType1 and STDP + NType4 learning can be seen to produce virtu-
ally identical histogram plots. STDP + NType3 learning produces a distribution
in which most weights belong to one of two major populations. STDP + NType2

learning produces synaptic weight vectors in which the majority of the weights are
very low, and in which there are a greater number of higher strength weights than
in the other learning types. STDP +NType2 learning appears to allow individual
post-synaptic neurons to learn more specific relationships with pre-synaptic neu-
rons. Group size for all learning types is 5, while the time interval between each
group firing is 0.1s.
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the Hebbian learning. Figure 7-6 shows the raster plot for the case of applying

the STDP +NType3 style of learning, as well as the raster plot of spiking activity

for the case of STDP + NType4 learning.
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Figure 7-6: Four cumulative firing times plots, each over 10 networks, for fully
connected 50 neuron networks with 5 neurons per group with each group trained
using STDP + N Hebbian learning to fire at intervals of 0.01s. STDP + NType1

learning is shown in the top left panel, STDP + NType2 in the top right panel,
STDP +NType3 in the bottom left panel and STDP +NType4 in the bottom right
panel.

It can be seen that, along with STDP + NType1 learning, both STDP + NType3

and STDP + NType4 learning do not produce the desired result of a group time

interval of 0.01s. Out of the four types of learning just detailed, only STDP +
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NType2 learning achieves the desired result. Bridging neurons are formed in the

STDP + NType2 learning scenario only.

Consider the first two firing groups for STDP + NType1, STDP + NType3 and

STDP + NType4 learning. It can be seen that the first group learns to fire in

response to the input stimuli at 0.3s but, the second group is not able to fire at

the required time of 0.31s. In the STDP + NType2 learning case, the majority

of neurons in a group become ‘tuned’ to the smaller number of bridging neurons

which enables them to fire at the desired time. However, in the other three

learning cases, the group neurons only become tuned to respond to the neurons of

the previous group. This severely limits the interval that can be learnt between

successively firing groups — only intervals that lie within the rise time of the

neuron membrane potential may be learnt.

The clustering of neuron firing times that can be seen in the STDP + NType1, 3

and 4 cases can be explained by considering the width of the excitatory part of

the learning window, and noting that the group firings are so close together. This

means that the later firing groups become tuned to respond to several preceding

groups and because the groups fire in close proximity, the synaptic change caused

by each will also be very close and also relatively high. With such a high number

of active inputs, extended intervals cannot be learnt.

The upper right panel in figure 7-6 shows the plots of neuron firing times for ten

groups of neurons that should fire at 10ms intervals, and are colour coded red,

orange, yellow, green, blue, red, ..., blue, respectively. The plot is done for 10

randomly generated networks. It can clearly be seen that for each group there

exists a cloud of neuron firing times for each group of neurons. The density of

this cloud is greatest near the desired group firing time. With other neurons

being observed firing significantly in advance of this desired time — the bridging

neurons.

If one were to increase the inter-group interval between successively firing groups

of neurons from 0.01s to 0.015s for the same network, then it can be seen in the

lower left panel of figure 7-7 that the gap is too large to be learnt adequately
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and the groups do not learn to fire. A possible explanation for this could be that

the number of neurons in each group — in this case 5 — is too small to allow

for the learning of larger gaps. It may be the case that increasing the number of

neurons per group will increase the length of the maximum inter-group interval

which can be learnt.

Consider a similar experimental setup to the one described immediately above.

The difference being that the experiment is now performed with 20 neurons per

group instead of just 5. For each of the group sizes 10 networks were generated

and trained as in the 5 neuron per group case, with inter-group intervals of 0.01s,

0.015s and the spiking output of the network was recorded. It can be seen in

the upper right panel of figure 7-7 that, the networks with the larger number of

20 neurons per group are able to learn the group firing interval of 0.01s with a

far greater number of neurons being able to firing at the desired time and not

simply act as bridging neurons. In figure the lower right panel of 7-7, it can be

seen that the network with 20 neurons per group is also able to learn the larger

group firing interval of 0.015s, which the networks with only 5 neurons per group

were unable to learn.

The networks with 20 neurons per group, are able to learn the longer interval

group firing times. The number of bridging neurons between two successive

groups groupn−1 and groupn, that are required for these networks to learn the

longer intervals is greater than the entire number of neurons per group of the

smaller networks. It would therefore appear that the more neurons that inhabit

a group, the greater the number of neurons that can become bridging neurons is,

and the greater the number of neurons that are able to fire at the desired time.

However, it should be noted that the maximum length of an inter-group interval

is limited by the form of the STDP + N learning window itself. Consider the

form of the learning window, first described in section 5. The length of the

excitatory portion of the window has decayed appreciably by 20ms . Therefore,

the implication of this for a post-synaptic neuron which fires at a time t, is that

it will become increasingly difficult to learn group firing intervals that approach

20ms in duration.
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Figure 7-7: The upper panels show the cumulative rasterised firing times over 10
networks, consisting of 10 sub-groups, and 5 neurons per group in the top left
panel, and 20 neurons per group in the top right panel, in which the groups have
been trained to fire at 0.01s intervals. Both the 5 and 20 neuron group sizes
are able to learn this interval. The lower panels shows the cumulative rasterised
firing times, also over 10 networks with the same setup as in the upper panels but
in which the groups have been trained to fire at 0.015s intervals. The 5 neuron
group size cannot learn the longer interval, while the 20 neuron group size can.
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These result appear to show that the dual phase Hebbian learning approach

allows for groups of neurons to be trained to respond to past spiking activity on

time-scales that are greater than the time-constant of the dynamics of the neuron

membrane.

7.7 Extending Duration of Activity

It has just been shown in section 7.6 how, through the use of the application

of STDP to the synapses of a recurrent neural network with the setup shown in

figure 7-1, it is possible to enhance the response activity of the network neurons so

that specific groups of neurons spike at a desired time and in a desired sequence.

With a goal in mind of extending the capabilities of the system and in order for

this property to potentially become of more practical use, it will be necessary to

create a method that will allow for a system to be trained that enables further

extended periods of this firing activity that has already been shown. Figure 7-

8 shows a raster plot of the firing times of the neurons in a 250 neuron, fully

connected recurrent network, in which each group consists of 5 neurons. The

network has been trained as detailed previously in this chapter, and is similar in

setup to the network shown in figure 7-1

Figure 7-8 shows that through the use of the co-ordinated wave of network ac-

tivity, it is possible to prolong the life-span of a single spike injected into group1

of the network for an amount of time that depends on the network size and the

inter spike intervals that can be learned — which is itself extended by use of the

STDP +NType2 Hebbian learning in favour of the other learning types previously

discussed.

7.7.1 Storage of Multiple Spikes

The network just described and whose output was shown in figure 7-8, can be

thought of as a basic building block for much larger spike storage systems. For
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Figure 7-8: Spiking output of a 250 neuron network. A spike is injected into the group1

neurons of the network, it can be seen that the STDP + NType2 trained network is
able to sustain the input spike within its network dynamics for an extended period of
time. The large red circles in the figure represent the firing times of each of the group1

neurons, while the large black circles represent the firing times of the group50 neurons.
The single injected spike traverses through all groups of the network successfully. k = 5
and m = 50.
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example, one could connect together a series of such networks in such a way that

spiking activity flows through one network and into another and so on, as shown

in figure 7-9.

Network 1 Network 2 Network 3 Network 4

Stimulus

Figure 7-9: A rendering of a multi-network spike train storage system. Several
of the networks shown in 7-8 are connected together, to create a system capable
of storing entire precise spike trains.

Figure 7-10 shows a raster plot of the spiking network activity for just such a

network. The increase in the number of networks from 1 to 4 means that instead

of just being able to store single spikes within the dynamics, now, entire precise

spike trains my be injected into group1. The plot in figure 7-10 demonstrates

that the network is able to respond in a successful and consistent manner to each

of the precisely timed spikes of the spike train. Note that the network is capable

of holding the spike train within its dynamics for a period of time after the input

to the network has ceased.

This simple experiment demonstrates the ability of a correctly trained recurrent

network to store a precise spike train within its dynamics and while maintaining

the integrity of the spike train.

7.8 Comparison with Static LSM

In Bertschinger & Natschläger (2004), it is shown that the memory capacity of a

LSM consisting of 1000 neurons, has a memory capacity equal to between 4 and

5bits. The 1000 neuron, 200 group network shown in figure 7-10 is able to retain

an individual, unique input spike within its network dynamics for a period of 2
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seconds. The frequency of the input is 4Hz, so if one were to assume a time-

bin width of 250ms for the 3-bit parity task, previously described in chapter

2.6.1, then the network has a maximum memory capacity of 6-bits. However,

due to the nature of the network, there is no fading memory. Rather, there is

an immediate loss of memory after a spike has been within the network for 2

seconds. So, by their nature, these networks are more rigid constructions than

the LSM, in that they rely on a high degree of precision in the timings of the

hundreds, if not thousands, of neuronal and synaptic firings that constitute their

dynamics. The advantage though is that for the full extent of those 2 seconds the

spike is completely preserved within the network dynamics. Such networks are

limited only by their size — the more neurons they possess, the longer a spike,

or indeed a precise spike train may be preserved within their dynamics.

It should be noted that while these mexican wave networks appear to have higher

memory capacities than a typical basic LSM, and can also be trained to behave

predictably, untrained LSM’s exhibit more diverse spiking activity, which may

itself be useful property.

7.9 Discussion

It was shown that the method of application with which Hebbian learning along

with the clamping stimulus are applied, can have a large impact on what a group

of neurons may learn about the stimulus. It was shown in figure 7-6 that it was

only possible for the sub-groups of neurons of the network to learn to mimic

the stimulus if only a selection of neurons within each group actually perform

the stimulus during any single training epoch, while the remaining neurons are

left free to fire — STDP + NType2 learning. This could be an indication that

an appropriate level of noise within the inputs of the network neurons may be

considered to be a good thing, as explained in section 7.6. Additionally, and con-

trary to the accepted methodology of applying Hebbian learning to all synapses

of a network at every training epoch, it would appear that the network can only

successfully mimic the stimulus input if the Hebbian learning is only applied to
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those synapses of the neurons that are activated primarily due to the stimulus.

Using a combination of these methods of application of the Hebbian learning and

the clamping stimulus figure 7-6 shows that learning is successful only in this case

— referred to as STDP + NType2 learning. STDP + NType2 learning is enables

groups of neurons to be trained to fire outside of the rise time of the membrane

potential of the LIF neurons in response to a post-synaptic spike.

It was proposed in section 7.6 that a possible explanation for this could be that

Hebbian learning at a synapse could only be initiated by a sufficiently strong

input signal and that even if the post-synaptic neuron spikes in response to a

weaker input signal, Hebbian learning may not be initiated as the weaker input

is unable to activate the learning mechanism. This is a novel proposal for Hebbian

learning implementation, and appears to enable learning capabilities that normal

Hebbian learning — STDP + NType1 — cannot attain.

In section 7-6, it was shown that STDP +NType2 learning allows for the formation

of bridging neurons in each sub-group of neurons. These bridging neurons spike

early — before the desired firing time of the group — and enable subsequent firing

neurons to strengthen their synaptic inputs to allow them to focus on the bridging

neurons. A string of these bridging neurons forms which then allows the majority

of neurons in the sub-group to fire at the desired time. The STDP +NType2 panel

in figure 7-6 shows the early firing bridging neurons and the higher density of

firings around the actual desired group firing time. It was also shown that using

a larger value of neurons per sub-group means that more neurons can become

bridging neurons and that as a consequence, even greater intervals between sub-

group firings can be achieved, than with a smaller number of neurons per group.

This can be seen in figure 7-7. Ultimately the maximum length of these intervals

is limited by the form of the STDP learning function.

Using a 50 group network, with 5 neurons per group, the trained output of which

is shown in figure 7-8, it was shown that, using STDP + NType2 learning, a

spike can be stored within the spiking dynamics of the network for an extended

period of time, when compared STDP + NType1, STDP + NType3 and STDP +

NType4 leaning and also to an untrained, randomly generated network consisting
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of the same number of neurons. Expanding on this idea, four such networks were

connected together to allow for the storage of a precise spike train consisting of

4 spikes. This expanded network is able to store a spike within its dynamics for

a duration of 2 seconds. This extended capacity means that it is possible for

a spike train of a realistic duration of 1s to be input into the network, stored

within the spiking dynamics and used by a readout neuron — or group of readout

neurons — for further computations during an interval that does not overlap with

the time interval during which the input is active. Larger networks can hold the

spike trains for longer periods of time after the input spike train has ceased.

The type of trained network shown in figure 7-10, by virtue of its ability to

successfully preserve a number of distinct and precise input spikes within its

dynamics, could also be considered as a form of the Accumulator structure that

was introduced in chapter 4. In its current form the network would not store

spikes indefinitely, as the Accumulator did in chapter 4, rather, it would store

them only for a finite period of time before they are lost. However, one could

consider the case in which the final firing group of such a network could be linked

in some way to the first group, thus providing a structure in which precisely timed

spikes are able to cycle indefinitely, unless the network were to be inhibited by

some external source. Such structures could act as reliable timing or counting

mechanisms within even larger spiking neural networks, and provide these larger

networks with regulating mechanisms by which further complex neural activity

could be co-ordinated.
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Figure 7-10: Rasterised spiking output of four of the trained, 250 neuron networks
previously seen in figure 7-8. The four networks are connected in series so that
the firing activity flows though each network and into the next. In the figure the
larger red circles represent the firing times of the group1 neurons, while the larger
black circles represent the firing times of the last group of neurons, group200. The
precise firing pattern injected into group1 is replicated, to a large extent, by the
precise firing pattern of the neurons of group200. This demonstrates that the
precise spike train injected into group1 of the network has traversed all groups
of the network successfully and that the temporal precision has been preserved.
There is an extended period of time, after the last firing of the group1 neurons
and before the first firing of the group200 neurons, during which, the entire spike
train is held within the dynamics of the four connected networks. k = 5 and
m = 200.



Chapter 8

Conclusions and Further Work

The original work in this dissertation has been primarily concerned with inves-

tigating what single neurons and recurrently connected networks of neurons can

learn and how well they can learn it. Chapter 4 demonstrated a novel application

for purpose built networks of spiking Leaky Integrate and Fire neurons, while the

majority of the work, chapters 5, 6 and 7, focussed on using a biologically in-

spired learning regime to investigate learning within networks of spiking Leaky

Integrate and Fire neurons.

Chapter 2 introduced the concept of the Liquid State Machine along with sig-

nificant and relevant examples of the current and recent research in this field.

Chapter 2 also discussed some of the aspects of the biological basis for the neu-

ron and network models that are used in this dissertation. The focus of the

second background chapter, chapter 3, is a detailed review of recent research into

the learning of precise spike time firings using biologically inspired mechanisms.

In this chapter, the results and conjectures of chapters 4, 5, 6 and 7 shall be

reiterated and, where appropriate, possible future avenues of research are given.

213
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8.1 Phase Arithmetic Conclusions

Chapter 4, contains original work describing and demonstrating, through the use

of experimental simulations, how it is possible to perform simple calculations such

as addition and subtraction in neural networks. Moreover, a novel method for

running parallel programming constructs within networks of neurons is described.

The motivation for the work in chapter 4 was to apply spiking neurons to a

task very different to their typical application, with a view to demonstrating a

novel approach to computing using these structures. Section 4.4 defines a very

simple parallel programming language. In sections 4.8 and 4.9, the relatively

simple structures created out of spiking neurons are outlined, such as: oscillators,

switches, synchronisers, accumulators and coincidence detectors. In section 4.10

these basic structures are used to form the basis of the IF, WHILE, SEQ, PAR and

ALT constructors. In section 4.11, the basic language previously defined is used

to describe the processes of addition, subtraction and multiplication, that could

be achieved using differing combinations of instances of the previously defined

neural structures.

The ability to create such constructs out of simple neuron models, and have

them operate with a high degree of integrity raises the possibility of a novel

computing technique. The next step of this work is already being taken in work

by Alain Nogaret at the University of Bath (Nogaret, 2004).The work detailed

in Nogaret et al (2004), involves the use of custom designed and manufactured

semiconductor p-n microwires, to create physical structures that can approximate

the performance and behaviour of the LIF neurons described in this thesis. With

the creation of a workable neuron in silicon, the next step of this work could be

to build custom designed arrays of these neurons to create the structures and

constructs described in here.
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8.2 Convergence and Habituation Conclusions

The reason for undertaking the work in chapter 5 was the need to define a bi-

ologically inspired learning regime for use in networks of LIF neurons and to

establish the integrity of this learning regime in addition to investigating some of

its fundamental aspects from both experimental and mathematical techniques.

The framework for STDP + N learning is introduced in section 5.2 as a bio-

logically inspired learning regime and is implemented with recurrently connected

networks of spiking neurons. Integrity of STDP +N learning is established with

the evidence presented in section 5.5.2 that showed approximate convergence for

STDP + N learning. This convergence is taken as an indication of learning and

that information contained within the input regime has become stored within the

synaptic weight vectors of the network neurons.

In order to examine the learning from a mathematical point of view the activity

link vector L was defined in section 5.3, to define a relationship between the

spiking input activity received by a neuron in a recurrent network, and the input

weight vector of the neuron. It was shown that when exposed to the input

stimulus for a sufficient number of iterations, the weight vector approaches an

approximate fixed point/stable state.

It was shown that continued presentation of the input stimulus to the network,

combined with the Hebbian STDP + N learning at the synaptic level, and with

an appropriate learning rate that, the activity link L becomes more aligned with

the weight vector W for each neuron in the recurrent network, according to the

alignment measure specified in chapter 5.

Further experimental work in section 5.5.3 and 5.6, showed that for recurrent net-

works in which the average alignment of L and W over all neurons, was relatively

high, then Hebbian and Anti-Hebbian could be considered to be approximately

equivalent processes. However, in those networks that have low alignment be-

tween L and W , Hebbian and Anti-Hebbian cannot be considered approximately

equivalent. Section 5.7 demonstrates that networks with STDP +N learning are
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sensitive to changes in its input stimulus and that once weights have reached an

approximately converged state, it is possible to elicit further significant synaptic

modifications by altering the temporal structure of the input stimulus.

8.3 Metric and Multi-Pattern Learning Conclu-

sions

The results of chapter 6 can be divided into two distinct sections. In the first

part of the chapter a new metric on spike trains is introduced that is based on

the inner product between two spike trains. The motivation for this first section

of chapter 6 stems from the need to establish a measure for the effectiveness of

the learning in the experiments of the latter part of the chapter. This metric

is detailed in section 6.2. It is shown in section 6.4 that, this metric can be

successfully used to train a single spiking LIF neuron to produce precise goal

spike train in response to a sufficient number of diverse input spike trains. It

was shown that, using the iterative process seen in section 6.3.3, the distance

between the actual output of the neuron and the goal output — as defined by

the metric itself — decreases with the number of repetitions until they are highly

similar. Such a metric is continuous over the whole spike train and is a highly

effective learning tool, in addition to being a useful continuous measure of the

similarity of different spike-trains. In these sections the metric is used to measure

the error between the actual output spike train and the goal output spike train,

d(goal, actual).

The motivation for the latter part of chapter 6 is borne out by the fact that there

has been relatively little research performed that investigates the computational

power of an individual spiking neuron, compared to the amount of research that

exists on networks of recurrently connected spiking neurons. Therefore, these

experiments were performed in an attempt to further the understanding of the

computational potential of individual neurons. It was shown in section 6.8 that,

the STDP +N learning of chapter 5 can also be used to train a single neuron to
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produce a temporally precise spike train, in response to a collection of temporally

precise input spike trains. It was shown that this can be achieved by forcing a

single neuron to perform a specific goal spike train in response to a selection of

input spike trains, the neuron can be trained to produce the precise spike goal

spike train.

In section 6.9, the STDP + N learning method was then used to investigate the

limit to the number of these precise spike train responses that can be learned

simultaneously by a single neuron. Again, the metric devised in the earlier part

of the chapter is used to indicate how close a given spike train pattern is to the

desired goal pattern. The degradation in goal-to-actual spike train similarity as

the neuron is forced to learn increasing numbers of I/O associations, increases.It

was shown that increasing the number of input spike trains to a single neuron

has the result of causing an increase in the number of unique I/O associations

that a single neuron can know at any time. This is an interesting result, because

it demonstrates that even a single neuron can be a powerful computational tool

when dealing with many precisely timed stimuli and suggests a massive computa-

tional potential if networks of many such neurons, each with many inputs could

be trained on temporal patterns in this manner. Extrapolating the results of the

work here it is conjectured that it may be possible for a typical neuron of the

neocortex with approximately 10, 000 input channels to learn in the region of 7

unique I/O patterns simultaneously. The results obtained appear to show that

there exists a log-linear relationship between the number of connections a single

neuron receives and the number of I/O associations the neuron can learn without

any significant degradation in the recall of each individual I/O association.

8.4 Novel Application of STDP + N Learning

Conclusions

In the context of this thesis, chapter 7 ties together concepts and work from each

of the previously discussed chapters, to investigate further, the capabilities of
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recurrent spiking networks of neurons. In this chapter it was shown that simply

applying STDP + N Hebbian learning — now referred to as STDP + NType1

learning — to every synapse in a recurrent neural network, is not necessarily the

best, nor perhaps the correct, method of application. This was demonstrated by

the experiment in section 7-2.

The motivation for performing the experimental work in this chapter was to

investigate the application of Hebbian-type learning from a perspective that has

not apparently been previously investigated, with a view to determining if there

are any advantages to different methods of application of learning. It was shown

in section 7.5 that, using the typical STDP +NType1 learning, it does not appear

possible for a group of post-synaptic neurons to be taught to fire outside of

the duration of the rise-time of the internal state of a group of pre-synaptic

neurons, which makes sense. However, it was shown in section 7.6 that using

the STDP + NType2 Hebbian learning method, it does become possible to train

groups of neurons to fire outside of the rise-time of the pre-synaptic neurons.

What makes this possible is the formation of bridging neurons in the post-synaptic

neuron group. These bridging neurons in each group, allows for a spread in the

firing times of neurons within the same group, such that, the bulk of the neurons

can fire at the correct time by using the earlier firing bridging neurons as their

most influential pre-synaptic neurons. In this way, the STDP + NType2 Hebbian

learning allows the neurons to learn more diverse firing patterns. This could

prove to be a useful modification to more standard forms of Hebbian learning.

As a consequence of this result it was conjectured that Hebbian learning may

in fact, not simply be the result of pre and post-synaptic neural activity, but

instead it may also result from the presence of a large training stimulus. It was

conjectured that it may be the large magnitude of activity provided to the post-

synaptic neuron by such a training stimulus, which acts as the initiating event

for Hebbian synaptic modification to occur. It was acknowledged that synaptic

modification may occur with pre and post-synaptic activity and without the

presence of a large training stimulus but, that the magnitude of any synaptic

changes in that scenario may be significantly reduced without the stimulus.



Novel Application of STDP + N Learning Conclusions 219

The next finding of this section was that it is possible, using the STDP +NType2

Hebbian technique over many iterations, on many groups of neurons, with each

group stimulated in turn by some external stimuli, to create a network able to

store an input spike within a mexican wave of network spiking activity, as seen

in the experiments and results in section 7-7. The duration for which a spike

can be sustained within the network is dependent on the number of neurons in

the network, the number of neurons per group and the period of time between

the firing each group — note that this period of time is increased by using the

STDP + NType2 Hebbian learning in favour of the standard STDP + NType1

learning. Therefore, using STDP +NType2 learning allows fewer neurons to store

a single spike for a longer period of time than STDP + NType1 learning.

Furthermore, it was shown that such a trained network can be used to store a

precise spike train within a series of waves of network activity, section 7-10. There

are a number of possible applications for such a structure, such as: i) A form

of memory storage for precise spike trains; ii) An internal counter, able to be

used by other neural structures for either counting or timing purposes; iii) An

accumulator structure, as first described in chapter 4. Such a structure could act

as a fundamental component of many types of neural systems.

The nature of the original work in this dissertation is somewhat disparate in

that, while each of the chapters in part II are linked in some way, they also

illuminate a unique aspect on the current state of research within spiking neural

networks. This dissertation has experimentally demonstrated novel techniques

for both improving learning with networks of spiking neurons as well as for using

spiking neurons to perform computational tasks in a manner very different to

that typically considered. A metric of spike train similarity has been shown that

provides a highly useful measure for the similarity of weighted spike trains. This

measure has been used successfully by other members of the academic community

(Schrauwen and Campenhout, 2007). The dissertation also provides some insight,

through experimentation, of the processing potential of single spiking neurons.

These experiments indicate the relationship between the potential of a single

spiking neuron to learn many temporally precise I/O associations and the number
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of synaptic inputs the neuron receives.

8.5 Opinion and Overall Conclusions

I feel that the prognosis for the field of research that encompasses spiking neural

networks and precise spike trains is genuinely good. It is a field of research that

seems to be growing in terms of popularity with researchers both within academia

and commercial research firms. The disposition of these networks to operate

on temporally precise data means that there are undoubtedly many possible

applications for such technology.

As a researcher in the field of spiking neural networks, I genuinely hope that the

field continues to expand and evolve into an even more refined form of science

and technology. The potential offered by these networks in terms of improving

our understanding of the underlying operational principles of the brain, and even

the mind, are hard to ignore. In addition to furthering our understanding, I

believe that the field has much to offer in the way of future technologies. For

example, in the form of increasingly sophisticated recognition systems, novel

and robust creation and storage of temporally complex and precise information

within spiking neural networks, improved processing systems for robotics and no

doubt many applications that have yet to be considered. It is the opinion of this

researcher that the field of spiking neural network research and its related areas

have a great deal more to offer in the coming years.
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Implementation

The purpose of this chapter is outline and explain the details of the CSIM (IGI

Group, 2008) parameters used throughout the simulation work in this thesis.

A.1 CSIM

CSIM (IGI Group, 2008), is a neural network simulation tool written in C++

which is run through a MATLAB interface. It was developed at the University of

Graz by members of the IGI group. It is claimed that the software itself is capable

of simulating networks containing thousands of neurons and around one million

synapses. However, due to the relatively computationally prohibitive require-

ments of simulating such large scale networks, the typical size of the networks

used throughout the work presented here is much smaller. A typical network used

for experiments in this thesis may contain a few hundred neurons and 10, 000

synapses.

CSIM has a highly comprehensive range of neuron and synapse types that can be

simulated. Some of these models are highly detailed ion-channel based models.

Models such as these would typically be used to investigate effects within the

neurons or synapses themselves. The work presented in this thesis is focussed on
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learning through synaptic modification and, as such, requires the use of simpler

neuronal and synaptic models which, can be simulated in recurrently connected

group of hundreds of neurons. These models are discussed below but, if further

information is required on these or indeed any other model within CSIM, such

information may be found in the CSIM reference manual, (IGI Group, 2008).

A.1.1 The Chosen Neuronal Model

The neuron model of choice for this thesis — unless stated otherwise — is the

Leaky Integrate and Fire, LIF, model. This model of neuron has an internal state

variable measured in Volts that is charged by post-synaptic pulses from the input

synapses that are incident on the neuron. If the internal state variable crosses

a threshold value, the neuron emits a pre-synaptic spike and the internal state

undergoes hyperpolarisation — this means that the internal state is reset to a

value that is below the resting potential. If the neuron receives no further synaptic

stimulus, then the internal state gradually rises back the resting potential level

over time. The behaviour of the model is governed by the following differential

equation which, is taken from Gerstner and Kistler (2002):

τm
dVm

dt
= −(Vm − Vresting) + Rm · (Isyn(t) + Iinject + Inoise)

in which Vm is the membrane potential of the LIF neuron, Vresting is the potential

to which the membrane will tend to if given no external stimuli, Isyn is the total

current contributed by the synapses incident on the neuron, Iinject is a background

current and Inoise is a random gaussian noise with zero mean and a given variance.

At the onset of hyperpolarisation, it is highly unlikely that synaptic stimulus

could cause a neuron to fire as the internal state is set to such a low value. The

time that the internal state takes to recover to normal resting levels is determined

by the time constant. The period of time during which the neuron cannot fire is

known as the absolute refractory period.
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Table A.1 shows the complete set of parameters for the LIF neuron model. In

this particular model, upon crossing the threshold the internal state is reset to

the potential Vreset and is held there for a period of time that is given by Trefract

— this period of time represents the absolute refractory period, during which it is

impossible for the neuron is fire. After the absolute refractory period has passed

the internal state falls from Vreset back to the resting potential Vrest is no other

stimuli occurs, this is known as the relative refractory period, during which it is

possible for a post-synaptic spike to cause the neuron to fire, but it is less likely

than if the internal state were at Vrest.

LIF neuron model parameters
Parameter Name Parameter Value
Capacitance 3e−08F (default value)
Resistance 1e06Ω (default value)
Vthresh 0.015V (default value)
Vrest 0V (default value)
Vinit 0.013839V (default value)
Vreset −0.0001V ( default value of 0.0138916V in latter expts of chapter 6)
Trefract 0.003s (default value)
Inoise 0A
Iinject 1.41e−08A (in range 1.35e−08A - 1.41e−08A in chapter 7)
type 2 for excitatory, 1 for inhibitory
Vm Membrane voltage (V)
Isyn Total synaptic input current (A)

Table A.1: This table lists the parameters used in CSIM for the LIF neurons
used throughout the experimental work presented.
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A.1.2 Learning Parameters

Learning parameters
Parameter Name Chapter 5 6 Chapter 7
Learning rate φ 6.5× 10−10 1

, 6.5×10−10

20

2
6.5× 10−11 6.5× 10−10

norm (Input to Net) 20× 10−9 9× 10−9 6× 10−8 3

norm (Net to Net) 20× 10−9 n/a 6.6× 10−9 4

CScale (Input to Net) 4 Inf Inf
Lambda (Input to Net) 10 Inf Inf
WScale (Input to Net) 3 9× 10−7 3
CScale (Net to Net) 10

1
, 4

2
n/a Inf

Lambda (Net to Net) 1.2
1
, 2

2
n/a Inf

WScale (Net to Net) 1 n/a 9× 10−7

Clamp CScale n/a inf n/a
Clamp lambda n/a inf n/a
Clamp WScale n/a 9× 10−7 n/a

Weight sign fixing used No Yes Yes
% excitatory neurons 100 100 100

Table A.2: This table provides a reasonably comprehensive list of both CSIM
and learning regime parameters used in each relevant chapter.

Where norm is the value to which the weight vector of individual neurons are

set, CScale, C, WScale, Lambda, neuron noise and % excitatory neurons all refer

to actual CSIM parameters involved in network generation. For chapter 5 the

input neuron is positioned such that it will connect to between 10% and 20%

of the network neurons, for any given set of the input connectivity values. All

1This is the learning rate for the convergence experiment in section 5.5.2 and the Habituation
experiment in section 5.7.

2This is the learning rate for the equivalence experiments in chapter 5. It is set to a lower
value than the Habituation learning-rate because the learning is to take place over a larger
number of iterations and the lower rate means that the weight changes are much finer than
with the larger weight.

3This is the norm for the group1 neurons (the only neurons that receive an actual input
from an external spiking source, se section 7.4.2). Where the group size is 5 neurons. For a
group size of 20 this value becomes 30× 10−9, see section 7.4.1.

4This is the norm used for the network neurons that do not belong to group1, an where the
group size is 5 neurons. For a group size of 20 this value becomes 3.3× 10−9, see section 7.4.1.
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values for learning rates and norm are initial values and alter with network sizes

according to the rules described in the relevant chapter.

A.1.3 The Chosen Synaptic Model

As with the neuronal models, there are numerous synaptic models within the

CSIM framework. All synapses used throughout this thesis are of the CSIM

type StaticSpikingSynapse. The attributes of this synapse are as follows: Firstly,

the synapse has a weight w that is a measure of the strength of the synapse

— the larger the weight of a synapse is, then the larger the magnitude, of the

post-synaptic spike that is contributed to the internal state of the post-synaptic

neuron, will be. The weight of a synapse is randomly generated. The synapse also

has a time delay parameter tdelay measured in milliseconds typically 2ms. Longer

time delays mean that the synapse will take a longer time before transmitting

the post-synaptic spike to the post-synaptic neuron.

CSIM allows for the simulation of networks of LIF neurons that are interconnected

by many synapses. Networks can be generated in which any given neuron can

be connected to, and receive connections from, many other neurons within the

network.

The vast majority of the work presented in this thesis uses the LIF neuronal model

with the staticspikingsynapse model of CSIM, to which the STDP + N learning

described in chapter 5 is applied, using the above parameters unless otherwise

stated. Full and complete descriptions of all CSIM models and parameters can

be found in the CSIM user manual (IGI Group, 2008).
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Publications

The following is a compilation of the published and submitted original work

derived from the research contained within this thesis:

• Carnell, A., 2008. How much can one neuron learn? - An investigation

of the learning of multiple precise I/O spike train associations. Neural

Networks, submitted.

• Carnell, A., 2008. An analysis of the use of Hebbian and Anti-Hebbian

Spike Time Dependent Plasticity learning functions within the context of

recurrent spiking neural networks. Neurocomputing, accepted.

• Carnell, A. and Richardson, D., 2005. Linear algebra for time series of

spikes. Proc. ESANN 2005, Bruges, Belgium, 27-29 April 2005, p.363-368.

• Carnell, A. and Richardson, D., 2007. Parallel computation in spiking

neural nets. Theor. Comput. Sci, 386(1-2), p.57-72.
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