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Abstract 

The development of biological therapeutics has advanced medicine dramatically in 

the 20th century. Protein-based drugs are now commonly used in treatment of 

disease. Technologies to improve the pharmacokinetic properties of these drugs are 

at the cutting edge of research within the pharmaceutical industry. I have evaluated 

a novel thiol-selective specific linker (PermaLinkTM,, Glythera Ltd) for the attachment 

of chemical groups such as polyethylene glycol (PEG) to cysteine via a stable thio-

ether bond. 

 

Proteins are often PEGylated to improve their serum half-life, reduce their 

immunogenicity and prevent renal clearance by increasing their overall size. The 

linkers which attach these PEG molecules to a protein are an essential part of this 

modification as these affect where the molecule is attached and consequently 

whether the protein stays biologically active. In this study, I have compared 

PermaLinkTM-PEG with commercially available maleimide-PEG for the attachment of 

PEG groups to proteins.  

 

Initially I established a protocol to reduce the test protein prior to reaction with 

PermaLinkTM-PEG or maleimide-PEG. Agarose resin-linked Tris(2-carboxyethyl) 

phosphine (TCEP) was used to reduce cysteines prior to the addition of thiol-reactive 

compounds.  Using this reduction approach, I observed that PermaLinkTM-PEG 

demonstrated an increased apparent cystiene selectively compared to maleimide-

PEG. PermaLinkTM-PEG attached the predicted number of PEG molecules based on 

the number of available cysteines while non-specific multi-pegylation was observed 

with maleimide-PEG.  

 

Based on my results I propose that PermaLinkTM-PEG selectively targets cysteine 

thiol groups compared to maleimide-PEG.  Overall I propose that PermaLinkTM 

technology could be used to develop new therapeutic proteins with reduced non-

specific PEGylation. 
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Chapter 1.0 Introduction 

 

1.1 Biologics as therapeutics  

Medicine has advanced from the early 20th century with the development of 

biological therapeutics; ranging from small biological molecules, gene therapy and 

proteins. Initially, the treatment of diabetes with insulin after its discovery in 1921 

modelled the way for treatment of disease with physiological replacements.  

 

1.1.1 DNA Based Therapeutics 

Understanding the DNA molecule has allowed researchers to investigate the 

potential of DNA-based drugs in therapeutic medicine. Gene silencing, gene 

replacement, mRNA destruction and target protein antisense inhibition are all 

achievable using DNA therapeutics (Patil et al., 2005). The major advantage is their 

exquisite specificity for their target which can be reached at very early stages of 

disease. The interpretation of the human genome and the relative ease at which 

genomes can be sequenced also gives rise to tailor-made medicine for the individual, 

making the fight against disease more likely to succeed (Shastry, 2006).  

Plasmid based DNA drugs contain transgenes which are delivered to cells and utilise 

the cell’s transcriptional machinery to produce a protein which is lacking or 

dysfunctional in a disease state (Uherek & Wels, 2000). DNA vaccines also use this 

mechanism of action, triggering an immune response through introduction of genes 

encoding antigens for specific pathogens (Johnston et al., 2002). Similarly, gene 

suicide therapy is used to transfect malignant cells with chemosensitized genes 

which produce a pro-drug; on treatment with a chemotherapeutic agent only those 

targeted malignant cells are killed (Denny, 2003). The first FDA approved gene 

therapy protocol was in 1998 with a cure of adenosine deaminase deficiency 

(Anderson, 1998). Since then many more have been approved and in 2003, the 

Chinese FDA approved a gene therapy treatment for replacement of the p53 gene in 

head and neck squamous cell carcinoma (Patil et al., 2005).  
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Oligonucleotides are short single stranded DNA segments which can selectively 

inhibit protein expression by blocking translation (Crooke, 1999). The design of the 

oligonucleotide is critical for clinical efficacy and modifications to its length, 

backbone and secondary conformation can affect this. The first oligonucleotide anti-

sense based drug approved was in 1998, formivirsen sodium (Vitravene), to treat the 

cytomegalovirus retinitis in AIDS patients (Crooke, 1998). Alicaforsen, is an inhibitor 

of Intercellular Adhesion Molecule-1 (ICAM-1) for treatment of ulcerative colitis is 

being investigated in clinical trials (van Deventer et al., 2004). 

 

Ribozymes are RNA molecules which target specific mRNAs for destruction (Lilley, 

2005). The two major types of ribozymes which have been studies are the hairpin 

and hammerhead (Stull et al., 1995), although new ribozymes structures have also 

been characterised (Lilley, 2005). They allow endogenous targeting of mRNA 

transcripts from ubiquitous RNases making them unstable in vivo. They can be used 

for knockout gene therapy in cancer cells where particular proteins have been 

implicated; epidermal growth factor receptor gene was targeted by ribozymes 

exhibiting successful inhibition of growth in tumour cells (Yamazaki et al., 1998). 

DNAzymes are mechanistically the same as RNAzymes but are more biologically 

stable (Sheng et al., 2007). Although with vast therapeutic potential, they have yet to 

be developed into therapeutic molecules.  

 

Aptamers are small single-stranded or double-stranded nucleic acid segments that 

can directly interact with proteins (Famulok et al., 2000). They are favoured over 

antibodies therapeutically because they are non-immunogenic, highly specific and 

more stable in the body (Jayesena, 1999). Endogenous expression of an RNA 

aptamer targeting the HIV-1 reverse transcriptase enzyme showed promising results 

in an in vivo setting, where virus replication was reduced by 95% (Chaloin et al., 

2002). In 2004, the US FDA approved an anti-VEGF aptamer for use in treatment of 

age-related macular degeneration (AMD), Pegatanib (Eugene et al., 2006). 

Small interfering RNAs (siRNAs) are short, double-stranded RNA molecules which are 

usually about 21-23 base pairs long; they work by down regulating or blocking the 

expression of a protein by binding to its target mRNA strand (Soutschek et al., 2004). 
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The hardest challenge in therapeutic treatment with siRNAs is the delivery, as with 

other DNA-based drugs, they must pass through the plasma membrane to have 

effect. siRNAs possess a lesser challenge in this respect however, as they do not have 

to pass through the nuclear membrane like plasmid based therapeutics – their 

mechanism of action takes place in the cytosol (Patil D., 2006). siRNA therapies are 

being extensively investigated in treatment of cancer and attempts to control over 

active genes and cell signalling pathways. The silencing of polo-like kinase (PLK)-1 by 

siRNAs has proved successful in inducing apoptosis and impairment of mitosis 

machinery in human prostate cancer cells (Reagen-Shaw & Ahmad, 2005). 

 

DNA-based drugs are fast emerging onto the biological therapeutic market, however, 

delivery systems and confidence in their long-term stability and safety is an essential 

validation needed for the FDA to approve more of these drugs. 

 

1.2 Proteins for Therapeutics 

The use of proteins as therapeutics has increased substantially since the introduction 

of the first US FDA approved human recombinant protein, insulin, in 1982 (Clark et 

al., 1982). They have a diverse cross-section of roles across the body and have a 

large number of benefits associated with their use as therapeutics. With the 

incidence of alternative splicing of genes being more apparent, as well as post-

translational modifications of proteins, increased numbers of functionally distinct 

proteins are present in the body (Leader et al., 2008). This increasingly diverse range 

of proteins, as well as a better understanding of their functioning, highlighted the 

opportunity of utilising proteins for the potential suppression of disease states, and 

exploiting them pharmacologically. 

 

Proteins are good pharmaceutical targets (Leader et al., 2008) because they are 

highly specific with very complex functions, resulting in less adverse effects from 

interference with off-target biological processes which often happens with small 

molecule drugs. They are also well tolerated by the body, with less immunogenic 

effects as a consequence of treatment. They can also provide effective treatment for 
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disease states which result from a deleted or mutated gene, providing the 

missing/correct protein in absence of gene therapy being available. The clinical 

development and FDA approval time is less with protein therapeutics than with small 

molecules. A study in 2003 showed that the time for clinical development and FDA 

approval was on average a year faster with  33 protein therapeutics then 294 small 

molecules from 1980-2002 (Reichert, J. M., 2003). From a financial perspective, this 

is an attractive quality of investing in drug development. Alongside this, the 

specificity and complexity of proteins when compared to small molecules allow more 

extensive patents to be filed to protect them. 

 

1.2.1 Types of protein therapeutics 

1.2.1.1 Enzymes and regulatory proteins 

In disease states, these proteins are deficient or abnormal within the body and a 

replacement is required regularly for sufficient treatment, or sometimes only at 

specific times. Insulin and human growth hormone (HGH) are good examples of 

these types of therapeutic proteins, where regular administration is required to be 

of use. The treatment of Haemophillia A with Factor VIII is another common protein 

therapy treatment which replaces the deficient coagulation factor with the 

recombinant protein. This allows the correct steps in the coagulation pathway to 

happen, preventing the congenital bleeding associated with the disease (Nogami et 

al., 1999).  

 

Particular therapeutic proteins may only be required at certain times during a 

medical procedure and are not necessarily required to treat a disease state. Follicle 

stimulating hormone (FSH) is administered to patients undergoing In Vitro 

Fertilisation (IVF) to increase the maturation of developing oocytes available for 

fertilisation (Out et al., 1997). This is only required at the beginning stage of the IVF 

cycle and is an important illustration of the use of a therapeutic protein to enhance a 

natural physiological process.  
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Similarly, a therapeutic protein can be used to treat certain conditions associated 

with a disease, or the side effects of drugs used in treatment. Alteplase or tPA is an 

enzyme which disrupts blood clots and is a standard enzyme used in the treatment 

of blood clots induced by myocardial infarction (COBOLT, 1997) or strokes (Albers et 

al., 2000). It works by cleaving plasminogen to plasmin, which then degrades fibrin 

and thereby lyses fibrin-based clots (Golan et al., 2007). Although tPA is 

endogenously secreted by endothelial cells lining the walls of the blood vessels, it is 

often required in much larger amounts to disrupt the blood clot (COBOLT, 1997). 

Tenecteplase is a genetically modified version of this enzyme, showing greater 

binding affinity to plasminogin and a longer plasma half-life showing more efficacy at 

breaking up blood clots (ASSENT-2, 1999).  

 

Foreign proteins which are not naturally expressed in human cells or where they may 

be desirable can also be administered to treat particular symptoms. Papain is a 

protease used to degrade proteinaceous debris in wounds, it is purified from the 

Carica papaya (Burke & Golden, 1958). Similarly, collagenase which is obtained from 

fermentation of Clostridium histolyticum, is used to digest collagen in the necrotic 

base of wounds (Boxer et al., 1969). Dystonia, a condition which causes involuntary 

muscle spasms often resulting in affected parts of the body into painful and 

abnormal positions, is treated with the Botulinium toxin derived from Clostridium 

botulinum. This toxin cleaves SNAP25 at neuromuscular junction disrupting the 

SNARE complex, this prevents acetylcholine release causing flaccid paralysis 

(Jankovic & Brin, 1991). Not only is this used therapeutically, but also cosmetically 

under the trade name Botox, where people have injections of the toxin to remove 

wrinkles from their face. 

 

1.2.1.2 Cytokines and Monoclonal Antibodies 

Through major milestones in research into molecular biology, a new generation of 

biological agents were highlighted in their potential for treatment of disease. 

Receptor and antibody based targeting for drugs and progress in understanding 
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cytokine biology and development of monoclonal antibodies (mAb), revolutionised 

medicine in the 20th century. 

 

Initial work on the cytokine Tumour Necrosis Factor (TNF) was to investigate its 

effects on tumour biology. Subsequent discoveries highlighting TNF as an important 

mediator of the inflammatory response encouraged research into development of 

neutralising agents (Cerami, 2011). The discovery that erythropoietin (EPO) blocks 

TNF synthesis lead onto investigation into other cytokine antagonists across the 

scientific community. In Dr. Cerami’s group, EPO derivatives which do not bind to the 

receptor but are tissue protective have been discovered, and are now in Phase 2 

clinical trials (Brines et al., 2004). TNF itself is associated with many major 

inflammatory diseases, such as rheumatoid arthritis (RA), psoriasis and inflammatory 

bowel disease (IBD) (Bradley, 2008). Its diverse range of signalling pathways and 

cellular responses have highlighted TNFs role in a variety of disease. A monoclonal 

antibody for TNFα, infliximab, is used in treatment of disease such as RA (Lipsky et 

al., 2000) and IBD (Present et al., 1999), working by neutralising TNFα in the 

circulation.  

 

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease which is 

characterised by the thickening of the walls of the lungs by excessive fibrotic tissue. 

This lowers lung capacity and results in unusual gas exchange. There is little 

definitive etiology of the disease and treatments are often only sporadically effective 

(ICS, 2000). Traditional treatment has usually been with corticosteroids and cytotoxic 

agents; however, these may exhibit adverse side effects (Flaherty et al., 2001). Pro-

fibrotic cytokines and reduced levels of IF-γ are detected in patients with IPF (Coker 

& Laurent, 1998); with IF-γ exhibiting several regulatory effects on IPF phenotypes 

(Raghu G. et al., 2004). However, the placebo-controlled trial performed by Reghu et 

al. (2004) did not show any advantageous effects, although the size and length of 

treatment could have been a factor.  Various cytokines are used in protein therapy, 

regulating immunoresponses and having protective effects in various bodily 

processes (Andersson & Tracey, 2010). 
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By utilising the binding affinity of protein ligand-receptor binding domains, the 

antigen recognition site of immunoglobulins, or both; protein therapeutics can be 

synthesised to target specific molecules, guiding the immune system to destroy it 

(Leader et al., 2008). Monoclonal antibodies can target specific proteins associated 

with disease, resulting in their removal being organised by the immune system. 

Although monoclonal antibodies are predominantly used to target inflammatory 

disease and cancer, they are also used to treat infectious diseases. Patients at high 

risk of severe respiratory synctial virus (RSV) are given the recombinant monoclonal 

antibody for the RSV F Protein, palivizumab, which targets the virus for clearance by 

the immune system (Impact-RSV, 1998). In the randomised, double-blind, placebo 

trial it was concluded that palivizumab was safe, well-tolerated and an effective 

treatment for prevention of RSV in young children. 

 

Monoclonal antibodies can also be used therapeutically simply by binding to a cell-

surface receptor, thereby preventing its natural ligand binding and inducing a signal 

transduction pathway. Specific cells can be targeted by the immune system, hence 

their role in cancer therapy. Patients with B-cell lymphocytic leukaemia are treated 

with alemtuzumab (Campath), a humanised mAb which targets CD52 antigen on T 

and B cells.  Binding of this mAb to the T and B cells targets them for destruction by 

either complement activation, antibody-dependant cellular toxicity or apoptosis 

(Keating et al., 2002); irrespective of which, the treatment has been effective in 

patients which have failed alternative therapy. Another cell targeted anti-cancer 

therapy treatment with a mAB is trastuzumab (Herceptin) used to treat breast 

cancer. Some malignant cells are seen to express high levels of HER2/Neu receptor 

on their cell surface, this anti-HER2 mAb binds to this receptor helping the cells to be 

targeted by natural T-killer cells (Slamon et al., 2001); however, this is thought not to 

be the mAb’s only mechanism of action. 

 

Immunoadhesion molecules combine the receptor-ligand/protein binding domain 

and an immunoglobulin constant domain to improve on the therapeutic potential of 

mAbs (Ashkenazi and Chamow, 1995). Etanercept is an immunoadhesion used to 



15 

 

target TNF, this combines the TNF receptor and the Fc domain of IgG1 in order to 

bind to TNF and simultaneously target it for destruction by the immune system 

(Mease et al., 2000). Alefacept (Amevive) is a dimeric immunoadhesion molecule 

which binds with CD2 on the surface of lymphocytes thereby inhibiting interaction 

with LFA3 (important for activation of T lymphocytes in psoriasis) (Krueger et al., 

2002); simultaneously it target the T lymphocytes for destruction by Natural Killer 

cells.  

 

1.2.1.3 Other Protein Therapeutics – vaccines and protein diagnostics.  

Disease prevention is the ultimate goal in modern medicine. Vaccines which contain 

heat-killed or attenuated forms of a foreign pathogen provide the immune system 

with a chance to prepare itself for invasion (Leader et al., 2008). However, these 

vaccines contain unavoidable risk in causing infection or adverse reactions (Poland et 

al., 2009). Through genetic engineering, the immunogenic but non-pathogenic part 

of the corresponding protein can be injected, providing the immunogenic imprint 

but none of the risk of toxicity. Hepatitis B vaccine is now successfully administered 

utilising this method of production. A non-pathogenic, recombinant, hepatitis B 

surface antigen (HBsAg) protein is injected providing significant immunity in the 

large majority of individuals (Szmuness et al., 1980). Similarly, the HPV vaccine (Shi et 

al., 2007)) and a vaccine containing a non-pathogenic lipoprotein to protect against 

Lyme Disease (Sigal et al., 1998), follow the same principal.  

 

Some proteins are used in diagnostics and play a key role in disease detection. 

Purified, recombinant proteins are administered and results both in vitro and in vivo 

are monitored, subsequently leading to the choice of definitive treatment (Leader et 

al., 2008). Growth hormone releasing hormone (GHRH) stimulate cells in the 

pituitary gland to release growth hormone (GH), it can help determine whether it is 

pituitary secretion which is defective in patients with a clinical sign of growth 

hormone deficiency (Ghigo et al., 1996). Proteins can also be used as imaging agents; 

in cancer therapy, it is helpful at early stages of disease where treatment can be 

most effective. Satumomab pendetide (OncoScint) is an indium-111-labelled mAb 
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specific for tumour associated glycoprotein (TAG-72), this emits gamma radio-

nucleotides for detection of sites of malignant disease (Maguire et al., 1993). In vitro 

detection also uses proteins for standard screening and confirmatory tests, a major 

one of which is Human Immunodeficiency Virus (HIV). In this case, mAbs are used in 

Western blot and ELISA assays and are specific to the antigens presented through 

the course of HIV infection (Urnovitz et al., 1997).  

 

Protein therapeutics are a playing an increasingly important role in modern 

therapeutic medicine. They have a range of properties and their production is 

becoming cheaper and more efficient, as well as potential for modification 

increasing their efficacy in the body. Recombinant human proteins make up the 

largest group of FDA approved biotechnology medicine (Leader et al., 2008) and they 

can be used in conjunction with small molecule drugs to provide synergistic benefits 

to a treatment. It is undoubted that the field of protein therapeutics will grow 

dramatically in future years.   

 

1.2.2 Production of therapeutic proteins 

The method by which these proteins are produced is dependent on the cost of 

production and/or the extent of post-translational modification required, which 

some expression systems cannot offer. Very few are isolated from their native 

source, pancreatic enzymes from hog and pig pancreas (Staff et al., 1984), but more 

commonly, recombinant DNA technology is used and the protein is isolated from a 

wide range of organisms. Bacterial (Terpe, 2006), yeast (Gerngross, 2004), insect 

(Caron et al., 1990) and mammalian cells (Wurm, 2004) are used. The benefits of 

recombinant technology have broadened the capabilities of therapeutic proteins; 

they allow more efficient production, a much lower incidence of immunological 

adverse effects, there is a reduction in exposure to animal or human disease and the 

option to modify the protein for improved activity (Leader et al., 2008).  

 

Transgenic plants and animals are also used to produce fully refolded and functional 

proteins. For example, human somatotropin was successfully produced in a soluble, 
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biologically active, disulfide-bonded form. It was also isolated to the chloroplasts by 

transplastomic transformation technology which not only contained the protein for 

purification purposes but also apparently prevented transmission of transgenes 

through pollen (Staub et al., 2000).  

 

Transgenic animals have been used as novel ‘bioreactors’ in production of 

recombinant therapeutic proteins. Shortly, recombinant antithrombin III will be 

launched as ATryn for prophylactic treatment of patients with congenital 

antithrombin deficiency (FDA approved in 2006). The protein is raised in goats and 

purified from their milk and is identical to the human amino acid sequence but 

differs in its glycosylation profile (Neimann and Kues, 2007). However, the major 

hurdle in production of protein therapeutics this way remains the complex post-

translational modifications (O- and N- linked glycosylation, phosphorylation and 

sulphation for example) which can initiate an immune response, although the 

success of the above mentioned drug, for example, exhibits its potential in the 

feasibility of is production. 

 

1.2.3 Clearance of protein/peptide drugs 

With all the benefits of proteins’ as therapeutics, there are disadvantages regarding 

the clearance of the molecule from the body. The desired effect of the therapeutic is 

ongoing and a continuous outcome seen from administration is looked for. As with 

any naturally produced protein in the body, endogenous clearance mechanisms are 

in place to ‘switch off’ a signaling pathway or an effect.  

 

The way in which a protein or peptide is removed from circulation is dependent on 

its size, charge and confirmation (Brenner et al., 1978 & Deen et al., 1979). The main 

pathway for protein removal is through ultrafiltration in the kidneys (Rabkin & Dahl, 

1993); the glomerular capillaries are restricted by a double barrier, which are not just 

size selective but also affected by the charge of the molecule (Deen et al, 1979). The 

protein or peptide can also be later reabsorbed by the proximal tubules for re-

circulation or degradation. The effective molecular weight cut off of the glomerular 
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membrane is 70KDa (Knauf et al., 1988), where the membrane witholds proteins 

larger then albumin. It was noted here that the clearance rate through filtration 

above 70KDa slowed dramatically, although it did not drop to zero, suggesting 

another mechanism for clearance.  

 

It is at this stage receptor mediated clearance is thought to play a role. Layton et al., 

(1989),investigating the pharmokinetics of G-CSF on clinical trial, administered 

subcutaneous injections to determine the half-life. At higher doses this increased, 

indicating one mechanism becoming saturated at certain dosage levels. Similarly, 

after monitoring serum levels of G-CSF after continuous administration, a sudden 

drop in levels was seen in the fourth and fifth day, denoting the induction of an 

alternate clearance mechanism. Also, G-CSF levels did not decrease while patients 

were still neutropenic; showing that levels of neutrophils increased as G-CSF 

decreased, highlighting the potential negative feedback mechanism involved in 

neutrophil homeostasis.  

 

1.3 Chemical Modification of Proteins for Therapeutics 

To prevent these clearance mechanisms from rendering the protein with little value 

therapeutically, modifications of the protein are made to try and improve its 

pharmokinetic properties. These modifications target efficacy, stability, specificity 

and immunogenicity. The stability of a protein may be enhanced by making their 

structure more robust against attack from proteases or changes in temperature and 

pH. Modifications to the residues in the protein’s binding site may improve its 

binding affinity for its receptor, improving its efficacy. Efforts to mask its 

immunogenic properties by incorporation of a chemical or post-translational 

modification, as well as fusion partners are also common in therapeutic protein 

modifications.  

 

1.3.1 Fusion Proteins 

Low plasma-half life and decreased circulating time is a common problem with 

therapeutic proteins. Attachment of these proteins to partners which improve its 
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clearance rate has been achieved by genetically fusing the therapeutic to another 

molecule. TNF ligands are of increasing interest therapeutically because of their 

connection with stimulating the immune system and apoptosis inducing properties 

(Wajant H. et al., 2002), however, their plasma half life is very low. Soluble variants 

of this family of ligands have been genetically fused to human serum albumin (HSA), 

producing fusion proteins with similar bioactivity of TNF ligands less HSA. Half life 

was seen to increase from 1 – 16 hours after subcutaneous injection. Bioactivity 

remained higher at both 6 and 24 hours, compared to control (Müller N et al., 2010). 

 

The therapeutic protein is often bound to a carrier protein such as transferrin or 

albumin. Investigation into the pharmacokinetic (PK) properties of these fusion 

proteins is limited, despite their rapid development within the pharmaceutical 

industry. A recent study looked into these properties and developed a 

pharmacokinetic model that can be transposed onto other fusion proteins. By linking 

Growth Hormone (GH) to Transferrin (Tr) via different peptide linkers, different 

binding affinities and plasma half-life was detected. This allowed investigation into 

how the bifunctional fusion protein would be recycled; the subsequent binding of 

GH and then Tr being essential in the balance between degradation and recycling 

(Chen X. et al., 2011). This model was further validated by testing the fusion protein 

Granulocyte colony stimulating factor (G-CSF) and Tr.  

 

Proteins are also fused to human immunoglobulins (IG) to attempt to increase their 

plasma half life. The Fc and CH domains of IG1 and IG4 were expressed in monkey COS 

cells and their bioactivity was measured using standard assays to determine G-CSF 

activity. The G-CSF/IGFc fusion proteins were purified as disulphide-linked 

homodimers and on a molar basis their activity was the same as G-CSF alone in in 

vitro bioassays. However, purified G-CSF/IGFc fusion protein’s bioactivity were 3-4 

fold slower than unmodified G-CSF. The conjugate protein displayed a slower plasma 

clearance rate and stimulated production of white blood cells which were longer 

lasting then G-CSF alone (Cox G. N. et al., 2004); these factors perhaps detracting 

from its decrease in bioactivity. The enhanced heamopoetic properties of this fusion 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22M%C3%BCller%20N%22%5BAuthor%5D
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protein demonstrate the potential of immunoglobulin domain fusion to a 

therapeutic protein.  

The neonatal Fc receptor (FcRn) is expressed on the pulmonary epithelial cells of 

both human and non-human primates, aiding transport of immunoglobulins across 

the epithelial cells. This receptor became an interesting target for potential 

assistance in delivering therapeutics to the lungs using fusion proteins. 

Erythropoietin fused to the Fc domain of IG1 was successfully delivered to the lungs 

and its biological affects seen via Phase 1 clinical trials, acting through the FcRn 

mediated transport pathway (Dumont JA et al., 2005). A second generation of these 

fusion molecules were developed and improved pharmacokinetic properties were 

seen; these fusion proteins were monomeric with respect to the therapeutic but 

dimeric with respect to the Fc region. Both the half-life and the bioavailability of the 

therapeutic are enhanced by these Fc fusion monomers (Dunmont JA et al., 2006). 

However a recent study has shown that these Fc fusion proteins actually have a 

relatively low affinity for the FcRn, indicating there may be other critical factors 

involved in maintaining its plasma half-life (Suzuki T. et al., 2010). Further 

investigation indicated the structural affect the fusion protein may have on the 

receptor binding domain.  

1.3.2 Rational Design and Protein Engineering 

The expansion of knowledge pertaining to properties of individual amino acids, 

conserved domains and the interaction of a protein/ligand with its receptor, has 

allowed a rational thought process into engineering of a protein to enhance its 

therapeutic efficacy. A protein’s affinity for its receptor, its stability and 

immunogenicity can be altered by mutagenesis and protein engineering (Marshall et 

al., 2003). The therapeutic protein is exposed to a variety of stresses which can 

result in degradation or unfolding. Single residue mutagenesis can prevent some of 

these features, for example free cysteine substitution which prevents aggregation 

and dimersation of the protein and therefore exhibits a longer shelf-life (Arakawa T. 

et al., 1993). 
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The protein human Growth Hormone (hGH) is widely used therapeutically for the 

treatment of pediatric hypopituitary dwarfism and in children suffering from low 

levels of hGH. However, its stability is low in solution and as it has to be 

administered subcutaneously several times a week, efforts into optimising its 

stability and half-life were attempted. By using Protein Design Automation® (PDA™), 

computational analysis designed variants of the protein containing from six to ten 

mutations. These protein variants were seen to be active in cell proliferation studies 

and were stable at 16oC higher than the wild type protein (Filkov AV. et al, 2002). 

Similarly, mutations of G-CSF were designed via computational analysis and the 

mutant exhibited enhanced thermostability and 5-10 fold increase in shelf-life, whilst 

maintaining its biological activity (Luo P. et al, 2002). 

Protecting a protein from degradation by proteases can also dramatically improve a 

therapeutic’s pharmacokinetic properties. Mutations can be introduced to the 

specific site on the protein which is known to be more susceptible to proteolysis, 

these are often seen to be flexible loop regions on a protein and there are attempts 

at decreasing flexibility (Marshall et al., 2003). Patients with hemophilia A require 

regular treatment with coagulation factors, several of these factors within the 

coagulation pathway rely on proteolytic cleavage for both activation and 

inactivation. Researchers re-designed Factor VIII (FVIII) making it less susceptible to 

inactivation by cleavage by deleting residue 794-1689 so that the A2 domain is 

covalently attached to the light chain. Further mutations at specific inactivation sites 

resulted in a single chain protein which has maximum activity after single cleavage 

activation (Pipe & Kaufman, 1997). 

The use of biological knowledge to generate protein mutants which can contend 

with endocytic trafficking is another useful tool employed by rational design. Usually, 

on binding to the cell surface, the receptor and the ligand are endocytosed by the 

cell and the ligand is either recycled to the cell surface after being released by the 

receptor during this process; or degraded by the lysosomes along with the receptor 

(Smythe & Warren, 1991).  The pH inside the endosome is often much lower than at 

the cell surface plasma and as ligand-receptor binding is pH dependent, some ligands 
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are released before degradation. By mutating residues at the receptor ligand binding 

site, a molecular switch can be generated which holds strong association with the 

receptor at the cell surface but less so within the endosome. This was successfully 

achieved with G-CSF where histidine residues were mutated into the protein which 

remain neutral at the cell surface but become positively charged within the low pH 

of the endosome, reducing electrodstatic attraction between receptor-ligand, 

allowing it to be released (Sarkar et al., 2002) 

 

Glycosylation is a natural prost-translational modification which has a variety of 

functions such as cell adhesion, self/non-self recognition, molecular trafficking and 

clearance, receptor activation and endocytosis (Ohtsubu & Marth, 2006). In regards 

to improving pharmacokinetic properties of a protein, increased glycosylation sites 

can be engineered to give a longer plasma half-life and stronger binding affinity in 

vivo. Erythropoietin (EPO) which controls the production of red blood cells was 

engineered to contain an additional 1-4 glycosylation sites. This increased 

elimination half-life, activity and functional time when compared to recombinent 

human EPO (Su et al., 2010). 

 

1.4 PEGs and PEGd therapeutics 

 

Poly-ethylene glycol (PEG) residues are polymers of ethylene oxide. Their overall 

molecular weight determines its physiochemical properties when attached to 

another molecule.  

 

Figure 1.4.1 – PEG molecule 
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PEG molecules are generally regarded as stable and non-biodegradable, although 

there have been reports which show degradation by oxidative enzymes: oxidation of 

terminal alcohol groups followed by terminal ether cleavage by alcohol and aldehyde 

dehydrogenases (Kawai, 2002). Similarly, cytochrome P-450 dependent oxidases 

have also been shown to degrade PEGs (Beranova et al., 1990). This degradation 

however, is molecular weight dependent and larger PEG molecules which are used 

for therapeutic purposes are often at least 20KDa in size.   

 

PEGylation is the process of attaching a PEG to a larger molecule, a therapeutic 

protein for example. The properties gained after attaching these residues to a 

therapeutic are highly beneficial in terms of its pharmacology. It is now a commonly 

used method of post-production modification of therapeutic proteins (and other 

biological molecules) with a view to enhance their biomedical efficacy in the body. 

By attaching them to proteins, this is achieved by several mechanisms: prevention of 

renal clearance by increasing the overall size of the molecule, reduced 

immunogenicity and degradation by proteolysis and increased serum half-life. All of 

these attributes result in a smaller dosage frequency which can be more 

economically and patient friendly. 

 

1.4.2 PEGylated Therapeutics 

 

PEGylated therapeutics are not limited to one type of molecule. They have been 

used to improve the pharmacokinetics of DNA based therapeutics, drug delivery 

systems and proteins. Evolutionarily, our biology has developed to protect us from 

contaminating DNA and foreign invaders making the passage through the cellular 

barrier very difficult (Patil & Burgess, 2003). Various drug delivery systems have been 

developed to try and aid this passage: liposomes, virosomes, protein scaffolds and 

nanoparticles.  
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1.4.2.1 Liposomes 

Liposomes were discovered from self-forming enclosed lipid bi-layers upon 

hydration; they are now formulated to improve drug delivery, reduce toxicity and 

help accumulation of a drug at target sites. Lipophillic drugs are encorporated almost 

completely by the lipid bi-layer, whilst hydrophilic drugs are located exclusively in 

the aqueous compartment. Liposomes are initially recognised by the mononuclear 

phagaocyte system (MPS) and removed from circulation (Scherphof et al., 1985); this 

can be utilised accordingly when targeting antiparastitic and antimicrobial infections 

in the MPS (Basu & Lala, 2004). However, when the target for drug delivery goes 

beyond the MPS, problems occur when trying to prevent their rapid clearance from 

the circulation.  

 

Although they are biologically inert and weakly immunogenic, they are quickly 

removed from circulation either via the MPS, after the binding of opsonins such as 

immunoglobulins and fibronectin or through the binding of complement 

components (Patel, 1992).  PEGylated liposomes or stealth liposomes were 

introduced to improve its circulating half-life and are mostly used in the delivery of 

hydrophillic drug molecules involved in cancer therapy, such as doxorubicin (Samad 

et al., 2007). The PEG molecule can be incorporated onto the lipid surface by several 

mechanisms but most commonly by a cross-linked lipid i.e. PEG- 

distearoylphosphatidylethanolamine (DSPE).  

 

The most significant properties gained by attaching a PEG molecule to a liposome 

are a reduced uptake by the MPS and the PEG chains help prevent aggregation of the 

vesicles improving the stability of formulations (Immordino et al., 2006). It has also 

been noted that the PEG molecules bound to the lipid membranes prevent opsonins 

and other plasma proteins binding to the surface and therefore reduce 

immunogeneicity and removal by the MPS (Blume & Cevc, 1993); although other 

studies have shown this may not be the case (Johnstone et al., 2001). 
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PEGylated liposomal doxorubicin (PLD) (DOXIL/ Caelyx) was the first and currently 

the only PEGylated liposomal formulation to be approved in both the USA and 

Europe for treatment of Kaposi’s sarcoma (Krown et al., 2004). The plasma half-life 

of the drug is very slow, exhibiting a biexponential curve of 1.5 and 45 hours (median 

values), compared to 0.2 hours for the free drug. Nearly 100% of the drug detected 

in the plasma after injection was the lipid-encapsulated form, with a very slow 

clearance rate of approximately 0.1L/hour. It also reduces the dose-related side 

effects which are a consequence of administration of the free drug.    

 

Cisplatin is a drug used for treatment of ovarian cancer, although this treatment is 

limited due to its nephrotoxicity (Arany & Safirstein, 2003) and gastrointestinal 

intolerance, among others (Boulikas & Vougiouka, 2004). This drug was encapsulated 

in a PEGylated lysosome, preventing the drug being freely exposed to non-cancerous 

tissue, resulting in less adverse side effects. Phase I clinical trials began in 1995 mild 

side-effects were seen; nausea and vomiting and at does above ≥ 320mg/m2 muscle 

weakness (Meerum et al., 2002). In a Phase II clinical study, there were no 

unexpected adverse affects, although there were concerns related to high lipid doses 

and prolonged accumulation of platinum in the body (Seetharamui et al., 2010). 

 

1.4.2.2 PEGylated Protein Therapeutics 

PEGylation is non-toxic, non-immunogenic and is ‘generally recognised as safe’ by 

the US Food and Drug Administration (FDA) (Pasut & Veronese, 2007). It implements 

many of the desirable improvements to pharmacokinetic properties of a therapeutic 

drug and has therefore rapidly escalated in its employment when developing new 

drugs. First attempts at PEGylating a protein was in the 1970s, where improved 

immunogenic and pharmacokinetic properties were seen on both bovine serum 

albumin (BSA) and bovine liver catalase by Abuchowski et al., (1977). In 1990 the 

FDA approved the first PEGylated drug to be put on the market, a PEGylated version 

of adenosine deaminase (Adagen®) for treatment of patients with Severe Combined 

Immunodeficiency disease (SCID). Since then nine more have been approved and 

marketed, including four ‘blockbuster’ drugs – see table X (Jevsevar S. et al., 2010).  
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The widely acknowledged and success of current PEGylated pharmaceutics has 

allowed up and coming PEGylated drugs to be fast tracked into various stages of 

clinical trials. BiogenIdec Inc. received a FastTrack from the FDA for its PEGylated 

IFN-β1a (for the treatment of multiple sclerosis) at the beginning of July 2009 (Baker 

DP., 2006). The well established process and successful results from PEGylating 

pharmaceuticals mean that there will always be an increasing number of PEGylated 

drugs on the market. Conjugation of PEG to protein results in significant changes to 

the proteins physiochemical characteristics. The most obvious property gained from 

attaching a PEG molecule to a protein is the increase in the overall size and 

hydrodynamic volume of the protein. However, the main draw back of this being its 

low bioactivity in vitro, most likely due to steric hindrance of the protein being able 

to interact with its receptor. However, this is compensated by its bioavailability 

through its increase in elimination half-life (Fishburn C.S., 2008). 

 

1.4.2.3 Other Types of PEGylated Therapeutics 

PEGylation is not limited to attachment to a protein; it is also used to enhance drug 

distribution by attachment to various drug-delivery systems such as protein scaffolds 

and nanobodies. Protein scaffolds demonstrate further development of binding 

structures for delivery of proteins in biopharmaceutical drug design. They provide an 

alternative to antibodies, which are no longer classed as the only receptor proteins 

available in biotechnology and medicine. They also provide more practical 

advantages when compared to antibodies; they have a higher production yield in 

microbial expression systems and elevated stability, also providing wide scope for 

intellectual property (Gebauer & Skerra, 2009). They are also small in size making 

them efficient in tissue penetration and are therapeutically effective to both 

intracellular and extracellular targets (Nuttall S. D., 2008). However, this 

consequently gives them a short plasma half-life, and they are therefore often 

PEGylated.  

 

A type of protein scaffold, Andenectins™, are a new class of therapeutic protein; 

they are highly specific and have a high affinity with their relevant targets. Based on 
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the 10th Fibronectin III domain; they are structurally similar to antibody variable 

domains, they have favourable biochemical properties and are abundant in the 

blood plasma – verifying that it is not toxic and immunogenic (Lipovšek D., 2011). CT-

322, a PEGylated Andenectin was designed to inhibit Vascular Endothelial Growth 

Factor Receptor (VEGF R)-2. Using surface plasmon resonance studies, CT-322 was 

showed to be specific to VEGFR-2 at high affinity (KD 11nM), but did not bind to 

VEGFR-1 or VEGFR-3 at very high concentrations, up to 100nM (MamLuk et al.,2010).  

CT-322 also inhibited growth of human tumor xenograft models of colon carcinoma 

and glioblastoma; similarly, enhancing anti-tumour activity of the chemotherapy 

agent temsirolimus in the colon carcinoma model.  

 

A single-domain antibody fragment, or a Nanobody®, was first discovered naturally 

expressed in camelids (Hamers-Casterman et al., 1993). These were an important 

finding in development of antibody based drugs in pharmaceuticals; nanobodies 

bind antigens without requiring domain pairing. These are also easier to express in 

microbrial expression systems and do not loose affinity and stability like antibody 

fragments have proven to do (Ward et al., 1989). Although most research into the 

biological application of these single-domain antibody fragments have taken place 

on those sourced from camelids, they were later discovered in cartilaginous fish 

(Greenberg et al., 1995). Some advantages of these Nanodies® compared to 

monoclonal antibodies are depicted in Table X (1Hamsen & De Haard, 2007) -  

 

Again, because of the size of these single-chain antibody fragments, chemical 

modification by PEGylation can be utilized to increase its plasma-half life. An 

example of which was the PEGylation of the foot and mouth disease virus (FMDV) 

virus (2Harmsen et al., 2007). The single-chain antibodies were raised in immunised 

llamas using phage display and were tested in vitro (monolayers of secondary swine 

kidney cells) and in vivo (guinea pigs). The results of the study were contradicting; 

the FMDV PEGylated nanobody showed more neutralisation efficiency in vitro, but 

convalescent guinea pig serum proved more effective in vivo. The results indicated 



28 

 

more emphasis on the importance of opsonophagocytosis of FMDV for in vivo 

protection.  

 

1.5 Linkers 

PEGs are commercially available in a variety of forms, with the capacity of utilising 

different chemistries to attach to the molecule of choice. The conjugation requires 

the reaction between the functional group on the target molecule and the reactive 

group which has been activated on one or both ends of the PEG molecule (Roberts et 

al., 2002).  These activated groups or linkers are vital to the conjugation of the PEG 

to the protein and have to be highly reactive and often target-site specific to be a 

successful constituent in the reaction process.  

 

Many different linkers have been developed and there have been substantial 

advancements in the chemistry surrounding PEGylation of proteins. Their chemistry 

can target various amino acids and both N-terminal amino group and C-terminal 

carboxylic acids. The most common of which however, target the lysine residue on 

proteins which is the most abundant in the protein structure and can make up to 

10% of the total amino acid content in a protein. This provides ample target sites for 

PEGylation which often results in multi-PEGylated proteins. The extent of PEGylation 

has an effect on its pharmacological properties; typically, the larger the number of 

PEGs attached the longer its circulation half-life and reduced immunogenicity (Clark 

et al., 1996). 

 

1.5.1 Thiol Reactive Linkers 

A major development was thiol or cysteine specific PEGylation. Cysteine residues are 

the most infrequent on the protein surface (Exarchos K et al., 2011) and it is also the 

only amino acid with a free thiol as its active functional group which further ensures 

the PEGylation specificity. PEG linkers have been developed to coincide with this 

chemistry, such as PEG-maleimide, PEG-vinylsulphone, PEG-iodoacetamide and PEG-

orthopyridyl disulphide. Of these linkers maleimide reacts quickest with the free 

thiol and is the most commonly used linker in the production of PEGylated 
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therapeutic proteins. However, there are disadvantages concerning maleimide 

stability and it also exhibits multi-PEGylation (non-specifc and off-target) which 

results in lack homogeneity.   

 

Figure 1.5.1 – Thiol Reactive Linkers (Veronese & Pasut, 2005) 

 

 

 

 

 

 

1.5.2 Maleimide 

To ensure homogeneity in the production of PEGylated proteins, site specific 

targeting of an amino acid residue is a desirable characteristic of the linker attaching 

the PEG to the protein/peptide. Maleimide is one of several linker technologies 

developed which is cysteine specific and reacts extremely quickly with thiol groups.  

 

A significant milestones in PEGylation chemistry was the modification of interleukin – 

2 (IL-2), an important therapeutic in treating patients with depleted immune system. 

The protein was genetically modified to contain a cysteine residue in its natural 

glycosylation site and a maleimide linked PEG was used for conjugation (Goodson & 

Thiol Reactive Linkers. 1) PEG-Maleimide, 2) PEG- vinyl sulfone, 3) PEG- iodoacetoamide, 

4) PEG-orthopyridyl disulfide 
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Katre, 1990). Here, they retained bioactivity of the cytokine but enhanced its serum 

half life by attaching the PEG molecule.  

 

Maleimide’s many advantages in conjugation chemistry, such as speed and reaction 

under acidic conditions, are also met by some disadvantages. Although the 

maleimide – thiol bond is stable, in water it is seen to undergo ring opening or 

addition of water across the double bond. Slow cleavage of one of the amide 

linkages is also seen over time (Roberts et a., 2002).  

 

The specificity of maleimide is also questionable, as multi-PEGylation is detected in a 

reaction mixture where only one cysteine residue is available for conjugation (data 

shown in results). However, maleimide is the most commonly used thiol specific 

linker technology in conjugating proteins/peptides to PEG molecules, and 

throughout this research project, maleimide is used as a control.  

 

PermaLink™ Technologies (see figure 5.1.3.1) have been developed by an 

independent company, Glythera Limited. They have quickly advanced in linker 

reactivity and specificity and have shown improved reaction efficacy when compared 

to maleimide PEGs. Throughout this project PermaLink™ technology has been used 

and tested, with maleimide as the control. 

 

1.6 Summary of Project Aims 

 

The aims of this project were to attempt to covalently attach novel PermaLink-PEG 

molecules to a therapeutic target, either a peptide or model protein. Comparisons 

could be made to current commonly used thiol-linker technology i.e. maleimide-

PEGs, which have been used as a control throughout these studies. After optimising 

the methods with smaller PEG molecules, the effect of increasing the molecular 

weight of the PEGs (for therapeutic effect) will be investigated.   
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1.7 Conjugation Targets 

 

1.7.1 Model - Bacillus circulans xylanase (BCX)  

Xylanase is a small glycoprotein of approximately 22KDa in size and its natural 

function is the breakdown of hemicellulose in plant cell walls. It is a member of the 

glucanase enzyme family which are characterized by their ability to break down 

various xylans to produce short-chain xylo-oligosaccharides. It has a variety of 

commercial applications such as bio-bleaching of paper pulp, improvement of animal 

feeds and enhancement of fermenting processes (such as silage). For the purposes of 

this project however, it has been used as a model protein for PEGylation 

optimisation. It has been extensively characterised through X-ray crystallography and 

NMR spectroscopy assignments giving a thorough example of its three-dimensional 

structure (Wakarchuk et al., 1994). Its enzymatic activity would also allow easy 

analysis of its bioactivity and whether it has been hindered by PEGylation.  

  

1.7.2 Target Proteins with Therapeutic Potential -  Calcitonin (CT) 

Calcitonin is a 32 amino acid (3418 Da) peptide containing a disulphide bridge which 

is formed between the two cysteine residues at position 1 and 7 (Breimer et al., 

1988).  Its primary function is to reduce levels of calcium in the blood by inhibiting 

bone resorption (Chambers & Magnus, 1982). Within the calcitonin gene family 

there are four known genes (CALC I – CALC IV), however, only CALC I produces 

calcitonin. The other genes produce structurally and functionally similar peptides 

such as calcitonin gene related peptide (CGRP) and amylin (Figure X – Masi & Brandi, 

2007). However, these similar peptides are less potent in inducing hypocalcemia in 

blood plasma levels. However, salmon calcitonin (sCT), sharing only 50% sequence 

similarity to human calcitonin has a much greater potency than human calcitonin in 

most biological assays (Houssami et al., 1995; Breimer et al., 1988).  

 

1.7.2.1 Roles of Calcitonin 

Calcitonin is usually produced by the thyroid gland, although there is evidence 

showing non-thyroidal production of calcitonin. For example, Davis et al., (1989), 



32 

 

showed calcitonin being produced by the prostate gland. Similarly, Fischer et al., 

(1983), showed calcitonin production in the central nervous system. Various roles of 

calcitonin have been determined.  

 

17.2.2 Calcitonin in bone 

Osteoclasts are the primary target for calcitonin. It acts directly on calcitonin 

receptors to inhibit bone resorption by inducing contraction and inhibits osteoclast 

motility (Chambers et al., 1991), followed by a more gradual retraction of 

osteoblasts. cAMP and Ca2+ are secondary messengers of the aforementioned affects 

are GPCR mediated. Inhibiting the release of acid phosphatases by the osteoblasts, 

important in cell signalling pathways, is another effect of calcitonin in bone.  

 

1.7.2.3 Kidney 

The kidney is the site for calcitonin degradation. Calcitonin receptors in the kidney 

have a high affinity for calcitonin and influences the renal handling of electrolytes 

(Clifton-Bligh et al., 1980). It also increases the excretion of calcium and phosphate. 

Therapeutically, in patients with hypercalcemia and bone metaplasia, calcitonin 

decreases levels of calcium in the blood plasma due mainly to prevention of renal 

tubular reabsorption (Pondel, M., 2000). 

 

1.7.2.4 Central Nervous System  

The calcitonin receptor is found in various parts of the brain, the hypothalmic floor 

being the most sensitive site (de Beaurepaire & Freed, 19871).  Hypothalmic 

injections of calcitonin are also found to decrease gastric secretion; the sites where 

calcitonin decrease locomotive activity and decrease food intake appear to coincide 

(de Beaurepaire & Freed, 19872). High densities of the salmon calcitonin (sCT) 

receptor have been found by autoradiographic techniques (Henke et al., 1983). In 

humans it has been shown that large doses of sCT decrease levels of testosterone, 

LH and FSH, indicating action at the hypothalamic level (Mulder H., 1993). 
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1.7.3 Salmon Calcitonin  

Salmon calcitonin (sCT) is the most widely used source of calcitonin for clinical use 

because of its increased potency and improved analgesic properties (Chesnut et al., 

2008). It is commercially available in an injectable form or as a nasal spray; 

formulations of sCT which would be orally available are also being developed. In this 

case, the sCT is combined with a caprylic acid derivative to protect it from intestinal 

degradation; its bioavailability and biological efficacy were successful in a clinical trial 

with healthy volunteers (Buclin et al., 2002). However, approved for use in the USA 

in 1995, sCT-nasal spray (sCT-NS) is currently the most widely used formulation due 

to its efficacy, tolerability and convenience for daily, long-term administration 

(Chesnut et al., 2000).  

 

In a single dose study, the bone reabsorption marker serum C-telopeptide of type 1 

collagen (serum-CTX-1) showed maximum expression an hour after administration of 

sCT-NS (Zikan & Stepan, 2000). Advantageously, the reversibility of osteoblast 

inhibition by sCT has been detected; this study showed that bone reabsorption 

markers returned to baseline levels three months after treatment discontinuation 

(Overgaard et al., 1990). 

 

sCT has shown to improve bone mineral density (BMD) in postmenopausal women 

with established osteoporosis (Overgaard et al., 1992). This study also noted a 

statistically significant reduction in overall bone fracture in these women compared 

to a placebo. sCT provides an alternative treatment for sufferers of Pagents disease, 

who do not tolerate or have secondary resistance to bisphosphonates (Siris, 1999). It 

has been noted however, that as sCT has affinity for other cell types such as liver, 

kidney and lung (Masi & Brandi, 2007); as a therapeutic, some of its efficacy may be 

lost due to off-target effects. A study looked at combining sCT with bisphosphonate 

to help specifically target osteoclast cells. This conjugate exhibited significantly 

greater affinity for bone mineral over unmodified sCT, representing a new class of 

antiresorptive drug (Bhandari et al., 2010). 
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1.7.3.1 sCT - Therapeutic Potential in Other Disease 

sCT has been indicated in the suppression of cancer cell lines. Mitogen-activated 

protein kinases (MAPKs) are implicated in the proliferation and survival of various 

human tumours (Johnson & Lapadat, 2002). In a prostate cancer cells and calcitonin 

was seen to inhibit the phosphorylation of the MAPK extracellular signal-related 

kinase (ERK1/2) (Segawa et al., 2001). Similarly, in MDA-MB-435 and T47D human 

breast carcinoma cell lines, ERK1/2 phosphorylation was inhibited by treatment with 

calcitonin (Nakamura et al., 2007). 

 

1.7.3.2 PEGylated sCT  

Low molecular weight peptides can show more improved pharmacokinetic 

properties when PEGylated than proteins.  This is because their half life is 

substantially increased after PEGylation, because usually, they are subject to rapid 

elimination by renal clearance (Youn et al., 2007). Similarly, they exhibit distinct 

biological activity and stability according to PEGylation sites because they have more 

specific active sites then proteins (Youn et al., 2004). They are also more easily 

targeted for site-specific PEGylation; different methods of PEGylation can also be 

utilised for easier conjugation, such as solid-phase PEGylation (Lu & Felix, 1994). 

 

sCT does not require the disulphide bridge to be bioactive (Orlowski et al., 1987), 

which means that the two cysteine residues 1 and 7 can be targeted for PEGylation 

for thiol specific conjugation. sCT has previously been PEGylated by maleimide PEG 

conjugates at both cysteine 1 and 7 (Cheng et al., 2006). The Mal-sCT conjugate 

presented a stable helical structure in aqueous solutions, with the potential for 

aggregation at concentrations higher then 11µM. It also proved to have better 

cellular uptake and improved enzymatic stability, however, its stability was 

inadequate at allowing oral delivery. Attempts had therefore been made to improve 

on this advantageous, pharmacokinetic property by also attaching a lipid molecule to 

sCT; this was seen to improve its resistance to enzyme degradation but did not 

enhance its biological efficacy (Cheng & Lim, 2009).   
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Alternative sites for PEGylation of sCT have previously been reported as lysine11 and 

lysine18. The lysine18 conjugate, using a 2 KDa PEG, showed the highest bioactivity 

using cAMP assays on T47D cells, as well as increased resistance to enzymatic 

degradation. (Youn et al., 2006). It was also found to have a similar membrane 

permeability to non-PEGylated sCT and has a reduced liver accumulation. In 

attempts to further improve stability and half-life, a comb-shaped PEG was 

conjugated to sCT at cysteine 1 (Ryan et al., 2008). It was noted in this study that the 

comb-shaped PEG conjugate improved serum half-life and the AUC of serum sCT 

over values achieved with sCT alone and PEG-sCT.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 

 

Chapter 2 .0 Aims 

 

The aims of this research project were: -  

1. To attempt to covalently attach a PEG molecule using novel linker technology 

to a therapeutic protein or peptide.  

2. To investigate the effects of increasing the size of the PEG molecule on the 

reaction and the reactivity of the PEG-linkers.  

 

In doing so a direct comparison of this novel linker technology could be made to 

current commonly used maleimide-PEGs. The novel linkers were developed by 

Glythera Ltd. (figure 5.1.3.1) to demonstrate more specificity to thiol groups than 

commonly used maleimide-PEGs. Maleimide has previously reported to react with 

lysine residues which are commonly found on the surface of proteins and peptides 

(Sharpless & Flavin, 1966). However, benefits in speed of reactions are favoured by 

industry.  

 

In order for a therapeutic protein/peptide to be improved by PEGylation, the PEG 

molecule must be large enough for the pharmacokinetic properties of the 

therapeutic protein to be enhanced. Properties such as reduced renal clearance, 

reduced immunogenicity and increased serum half-life (Jevsevar S. et al., 2010) are 

all desirable properties when seeking to improve drug efficacy. However, by 

increasing the size of the PEG molecule the overall reactivity of the linker used to 

attach it to the therapeutic protein is reduced (Veronese, 2001). In this study, the 

effect of increasing the size of the PEG molecule on reactivity of the linkers are 

compared.   
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Chapter 3.0 - Methods 

3.1 Reagents and Buffers 

3.1.1 Table of Reagents 

Reagent Supplier 

NaOAc The Sigma-Aldrich Chemical Co., Dorset, UK 

EDTA Fisher Scientific., Loughborough, UK 

Tris Fisher Scientific., Loughborough, UK 

Sorbitol VWR Jencons, Leicestershire, UK 

Urea Fisher Scientific., Loughborough, UK 

NaH2PO4 Fisher Scientific., Loughborough, UK 

Imidazole Fisher Scientific., Loughborough, UK 

Tris(2-carboxyethyl)phosphine HCL 

TCEP (solution) 
The Sigma-Aldrich Chemical Co., Dorset, UK 

TCEP Resin Thermo Scientific. Nortumberland, UK 

Ellman’s Reagent The Sigma-Aldrich Chemical Co., Dorset, UK 

Coomassie Fisher Scientific., Loughborough, UK 

Methanol The Sigma-Aldrich Chemical Co., Dorset, UK 

Ethanol The Sigma-Aldrich Chemical Co., Dorset, UK 

Bromophenol Blue Fisher Scientific., Loughborough, UK 

2-Mercaptoethanol Fisher Scientific., Loughborough, UK 

IPTG Fisher Scientific., Loughborough, UK 

Ampicillin Fisher Scientific., Loughborough, UK 

Kanamycin Fisher Scientific., Loughborough, UK 

LB Fisher Scientific., Loughborough, UK 

Cellulose Dialysis Membrane  

(10 KDa molecular weight cut off) 
Fisher Scientific., Loughborough, UK 

Salmon calcitonin (CT) Warwick Polymers, Warwick, UK 

NuPAGE® Tris-Acetate SDS Running 
Buffer 

Novex®, Bracknell, UK 

Maleimide-PEG (Various MW) Thermo Scientific. Nortumberland, UK 
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3.1.2 Polyacrylimide SDS PAGE Gel Buffers and Solutions 

Buffer Components 

2 x SDS loading dye 

2.5 mL 0.5M Tris-HCl, pH6.8 

2 mL Glycerol 

4 mL 10% (w/v) SDS 

0.5 mL 0.1% (w/v) Bromo 

phenol Blue 

Then make up to 10 mL with H2O 

(for denaturing loading dye, add Beta-Mercaptoethanol to 

make a 5% concentration) 

Coomassie Stain 

0.25 g Coomassie Brilliant Blue R-250 

100 mL Ethanol 

100 mL H2O 

25 mL Acetic Acid 

then make up to 250 mL with H2O 

Coomassie  

Destain Solution 

450 mL mqH2O 

450 mL Methanol 

100 mL Acetic Acid  

PEG Dye 

Solution A: Dissolve 0.5 g bismuth nitrate  in 20 mL of 20% 

acetic acid 

Solution B: 5 mL of a 40% KI solution in water 

Procedure: Before use, mix 20 mL solution A, 5 mL solution B 

and 70 mL water 

 

3.1. 3 BCX S22C Expression and Purification Buffers 

  

Buffer Components pH 

Lysis Buffer 
40mM NaOAc 

20mM Imidazole 
8 

FPLC Buffer A 40mM NaOAc 8 
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20mM Imidazole 

FPLC Buffer B 
40mM NaOAc 

500mM Imidazole 
8 

Protein Purification Buffer 

A 

40mM NaOAc 

0.12M Sorbitol 
4.5 

Protein Purification Buffer 

B 

40mM NaOAc 

0.12M Sorbitol 

1M NaCl 

4.5 

 

Concentration can be measured using ∑4.08 = 1mg/mL at 280nm  

 

3.1.4 Reaction Buffers 

Buffer Components pH 

Reaction Buffer 

Method 1, 2 and 3 for BCX S22C 

20mM NaOAc 

1mM EDTA 
Various 

Reaction Buffer 

for sCT 

20mM Tris-Cl 

1mM EDTA 
8 

 

3.2 Solutions 

Solutions were made up dissolving the components in mqH2O, NaOH or HCl were 

used to achieve the desired pH. This was measured using a Hanna pH210 

Microprocessor pH meter and calibrated between pH 4-7 or pH 7-10, dependent on 

the buffer.  

 

Buffers which were being used in anaerobic conditions were de-oxygenated by 

bubbling nitrogen through them. 

 

3.3 Aseptic Techniques 

Standard aseptic techniques were used throughout microbiology work. Solutions 

were autoclaved at 121oC for 20 mins and all work was done by a Bunsen burner.  
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3.4 Protein Expression and Purification 

3.4.1 BCX S22 

3.4.1.1 Expression 

The BCX S22C mutant (Supplied by Dr A. Watts, University of Bath) was transformed 

into an E. coli expression system (Wakarchuk et al., 1994). Expression plasmids were 

transformed into E. coli BL21 (DE3) pLysS Competent Cells and grown in LB Miller 

media supplemented with 100 μg/mL ampicillin at 37 ˚C in a shaking incubator at 

200 r.p.m. (Thermoscientific MaxQ 400).   A starter culture (20 mL) was used to 

inoculate 1 L of the same LB media and grown at 37 ˚C until OD600 = 1.2 was achieved 

where optical density was measured using spectrophotometer (Unicam Helios γ 

machine, Thermo Scientific)  with the cell suspension placed in a plastic 1 mL 

cuvette.   The culture was cooled to 18 ˚C, protein expression was induced with 1 

mM IPTG and cells harvested 12 - 14 hrs later.   Cells were collected by 

centrifugation using a Bechman J2-MC centrifuge, JA-10 rotor at 7500 r.p.m., 9950g 

for 30 mins at 4oC and resuspended in chilled 1 M Tris-HCl buffer pH 8.0.  The cells 

were then re-centrifuged as above and stored at -20 oC.  

 

3.4.1.2 Lysis of Cells 

Cells were incubated with lysis buffer (5 mL buffer/gram weight of cells) at 4 ˚C for 

approximately 5 mins until the cell pellet was resuspended in the lysis buffer and the 

suspension was homogenous in appearance. Total volume ranged from 20 mL to 80 

mL depending on the weight of the cell pellet.   In the current study the resuspended 

E. coli cells were lysed by using a Constant cell disruption system with 30.1 MPa  

where the cells were maintained on ice. The lysed cell suspension was centrifuged 

using a Bechman J2-MC centrifuge, JA-14 rotor at 8000 r.p.m., 9820g for 25 min at 4 

˚C. The crude cell extract supernatant was collected and filtered using a 0.88 μm 

filter (Milipore) to remove cell debris.   
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3.4.1.3 His Tag Purification using Nickel (Ni2+) Column 

The BCX protein was purified using a HisTrapTM FF Ni2+ column (GE Healthcare) 

followed by elution with an imidazole gradient to compete with histidine binding to 

the Ni2+ column (Voges & Jap, 1998).  Fast protein liquid chromatography (FPLC) and 

absorbance at 280 nm was used to detect protein eluted from the Ni2+ column.  

 

A sample of crude lysed cell supernatant was initially collected for subsequent 

analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE). 

The Ni2+ column (HisTrapTM, GE Heathcare) was pre-equilibrated with FLPC buffer A 

containing 20 mM Imidazole. The crude cell extract was loaded onto the pre-

equilibrated Ni2+ column that was attached to a ÄKTA FPLC (GE Healthcare) for 

protein detect at 280 nm. The Ni2+ bound protein was eluted with a linear gradient 

of 20 mM to 500 mM imidazole using FPLC buffer A and B described over 150 mL 

(Table 3.1.3). Fractions (0.5 mL) were collected and stored at 4 ˚C for subsequent 

analysis (Figure 4.1.1.3). 

 

The combined BCX fractions (BCX MW 22 kDa) eluted from the Ni2+ column were 

concentrated using a centrifugal 10 kDa MW cut-off 15 mL Amicon Ultra 

concentrator in 20 min cycles using a Beckman CS-15R, S4180 rotor at 4200 r.p.m., 

1381g at 4 oC. This was repeated until a single concentrated protein sample with a 

maximum volume of 30 mL remained. The total crude cell lysate proteins were 

compared to the eluted proteins from the Ni2+ column by SDS PAGE analysis where 

protein was detected using Coomassie Brilliant Blue R-250 staining (see 3.2.1.5 for 

further details). BCX has a predicted MW of 22 kDa and it was clear that the 

concentrated eluted protein sample still contained additional proteins that are 

predicted to not be the target BCX protein. As such a second purification step was 

performed. 

 

3.4.1.4 Further Purification 

At this point, as previously mentioned, the concentrated protein sample was still 

impure and required further purification to extract the 22 kDa BCX protein. The 
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protein sample was further purified using a 1 mL HiTrapTM SP FF cation-exchange 

column (GE Heathcare) equilibrated with protein purification buffer A using the 

FPLC. This column work at a range of pH values, specifically at a lower pH as is 

desired with BCX S22C’s low isoelectric point. A linear salt gradient (0 – 1M NaCl) 

over 150 mL was used to elute the protein using Protein Purification Buffer A and B, 

this gradient promotes slow elution off the column and therefore separation of any 

contaminants. Eluted protein was detected at 280 nm absorbance values where a 

distinct peak was detected, illustrated in figure 4.1.1.3(C)., and fractions analysed by 

SDS-PAGE (figure 4.1.1.3(D)). 

 

3.4.1.5 SDS PAGE and Coomassie Brilliant Blue R-250 Staining 

Two approaches were used to detect proteins in this study, FPLC detection of 

proteins using absorbance at 280 nm and Coomassie Brilliant Blue R-250 staining of 

proteins resolved by SDS-PAGE. Coomassie Brilliant Blue R-250 binds to basic amino 

acid residues and can be used to detect proteins or peptides within a SDS-PAGE gel 

(Westermeier, 2006). Importantly Coomassie Blue staining has a limit of detection 

and varies dependent on localised protein concentration (Neuhoff V. et al., 1990) 

and as such both FPLC 280 nm absorbance and Coomassie Brilliant Blue R-250 

staining to detect proteins/peptides was used in this study.  Protein detection was 

required for (i) expression/purification of proteins and (ii) linker modification of 

proteins/peptides leading to a change in molecular weight. 

 

Protein samples were prepared by mixing 5 mL of protein solution and 5 mL of 2 x 

SDS-PAGE sample buffer. Samples for denaturing SDS-PAGE were heated at 95 oC for 

5 mins before loading onto the gel. 

 

Protein samples (8 μL) and Fisher Molecular Weight Standards (11, 17, 24, 33, 40, 55, 

72, 100, 135, 170 KDa) were loaded onto a SDS PAGE gradient gel (4-12% NuPAGE® 

Novex Bis-Tris gel).   The loaded gel was immersed in NuPAGE running buffer and a 

constant voltage of 180 V applied across the gel for approximately 50 mins.  Proteins 

were stained in the SDS PAGE gel using Coomassie Brilliant Blue R-250 stain by 
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immersing the gel in the stain (approx volume 15 mL), covering the chamber in cling 

film followed by microwaving (Proline Microchef, ST22) for 30 s followed by 

incubation at ambient room temperature on a Stuart mini-orbital shaker for 10 mins.  

The stain was removed and the gel immersed in destaining solution and incubated at 

room temperature until the protein bands were visible and the background stain was 

removed. The destain solution was replaced 3 times over an 30 min period to 

achieve acceptable destaining and visualization of Coomassie Brilliant Blue R-250 

stained bands. 

 

3.5 Conjugation Chemistry for BCX S22C 

The aim of this study was to compare the reactivity of a range of novel cysteine-

reactive linkers, PermaLink PEG conjugates with commercially available Maleimide 

PEG.  The PermaLink compounds were synthesized and provided by Mr T. Katner and 

Dr A.G. Watts (Glythera Ltd and University of Bath, UK).  Structures for Linker 7 (PL7), 

Linker 11 (PL11) and Linker 12 (PL12) can be found in the results chapter 5. Three 

approaches were investigated for reduction of target proteins or peptides followed 

by reaction with maleimide or PermaLink. 

 

A number of commercial reductants are available for the reduction of cysteine thiols 

prior to functionalization with cysteine reactive compounds such as maleimide. In 

this study I choose to use Tris(2-carboxyethyl)phosphine HCL (TCEP) to selectively 

reduce cysteines in proteins and peptides.   This rationale was based on the evidence 

that (1) TCEP rapidly reduces disulfides in water under acidic conditions at room 

temperature (Burns et al., 1991), (2) TCEP is resistant to air oxidation unlike other 

reductants such as Dithiothreitol (DTT) (Getz et al., 1999), (3) TCEP is nonreactive 

towards functional groups other than cysteine and (4) its presence in the reaction 

mix is ‘predicted’ to effect conjugation to a lesser extent with other thiol reactive 

compounds such as maleimide or iodoacetamide (Getz et al., 1999).  In this study 

water-soluble crystalline TCEP HCl and TCEP covalently bonded to a beaded agarose 

resin (Thermo Scientific). 

 



44 

 

3.5.1 Method 1 – Remove TCEP by dialysis  

3.5.1.1 TCEP Reduction and Removal by Dialysis 

In the first approach to TCEP reduction of cysteines, soluble TCEP was reacted with 

the BCX target protein and excess reductant removed by dialysis.  Purified BCX 

protein (1 – 2 mg/mL) was reacted with 1 mM TCEP HCl at room temperature for 3 h 

in an anaerobic chamber (100 % N2) (miniMAX  Anaerobic  Workstation) under 

varied pH conditions (pH 5.5, 7.0 and 8.0) as described in results.  TCEP was then 

removed from the reaction by dialysis.  A length of dialysis tubing was cut and left 

soaking in degassed buffer inside the anaerobic chamber during protein reduction. 

The prepared cellulose dialysis membrane (10kDa MW cut off, Fisher Scientific) was 

tied at one end, filled with the BCX TCEP reaction mix (up to 1 mL) and excess air was 

expelled by squeezing the tubing followed by tying the open end of the tubing. The 

filled dialysis tube was immersed in 500 mL dialysis buffer (20mM NaOAc + 1mM 

EDTA, pH varied on experiment) and stirred at room temperature for 40 mins (see 

figure 3.3.1.2). Dialysis buffer was removed, replaced with an equal volume of fresh 

dialysis buffer and stirred for a further 40 mins. This procedure was repeated a total 

of four times to dialyse the BCX protein and remove TCEP from the reaction mix.    

 

3.5.1.2 Reaction with thiol-reactive PEG linker 

Once this was complete, the dialysed protein solution is removed from the dialysis 

tubing (figure 3.3.1.2) and reacted with the PEG-linker (molar equivalents varied 

dependent on experiment) in reaction buffer. Reduced BCX and PEG-linker were 

reacted for 12-16 h on a rotorting stand in an anaerobic chamber at ambient room 

temperature.   The reactions were analysed by FPLC and/or SDS PAGE to determine 

the extent of PEGylation by evaluation of (i) molecular weight shifts and (ii) staining 

with a PEG detection dye.  
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Figure 3.5.1.2 Diagram illustrating the removal of TCEP by dialysis. 

 

3.5.2 Method 2 – Leave TCEP in solution 

3.5.2.1 TCEP Reduction  

As previously mentioned, TCEP is reported to have minimal effects on the cysteine 

reactivity of other thiol reactive compounds such as maleimide or iodoacetamide. 

(Getz et al., 1999).  In method 2, the thiol reactive conjugate was added in the 

presence of TCEP in atmospheric oxygen at room temperature. Purified BCX S22C (1-

2 mg/mL) was reduced for 2 h with 1.7 molar equivalents of TCEP in 20 mM NaOAc + 

1 mM EDTA, (pH dependent on experiment as stated, ambient room temperature).  

 

3.5.2.2 Reaction with thiol reactive PEG-linker 

After TCEP reduction, the reduced protein was reacted with 2 – 5 molar equivalents 

of PEG linker in reaction buffer, and the reaction was left to shake overnight in 

atmospheric oxygen conditions at ambient room temperature. The reactions were 

analysed by FPLC and/or SDS PAGE to determine the extent of PEGylation. 
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3.5.3 Method 3 – TCEP on immobilised resin 

3.5.3.1 Preparing the TCEP resin and protein/peptide reduction  

Results from Methods 1 and 2 suggested that the presence of TCEP adversely alters 

the reaction of PermaLink with cysteine residues in the target protein or peptide (see 

results sections 5.2.3). As a result I also tested a TCEP resin to facilitate efficient 

removal of TCEP from the reaction mix without the requirement of dialysis or gel 

filtration. First the sealed immobilised TCEP resin had to be prepared before it was 

ready to be used to reduce the protein.  A volume of the resin slurry (equivalent to 

the volume of the protein solution – no more then 250 µL) was centrifuged using a 

HermLe Z160 M centrifuge for 1 min at 4900 r.p.m, 1342g at room temperature and 

then the supernatant was removed. The resin was then resuspended via vortexing 

with an equivalent volume of 20mM NaOAc + 1mM EDTA, (pH dependent on 

experiment) and centrifuged as above. Once all the supernatant is carefully 

removed, an equivalent volume of protein or peptide solution (0.5 - 1 mg/mL in 

20mM NaOAc + 1mM EDTA) was added to the resin and vortexed. The 

protein/peptide and TCEP resin reduction mix is left shaking for 2 h at ambient room 

temperature.  

 

3.3.3.2 Reaction with thiol reactive linker 

After the reduction with the immobilised TCEP resin, the protein-resin solution was 

centrifuged for 1 min as above to pellet the TCEP resin. The resulting supernatant 

contains the reduced protein. This was quickly transferred into a solution containing 

the PEG-linker (2-5 molar equivalents) in atmospheric oxygen conditions and this is 

left to react overnight (12 - 14 h) on the shaker.   The reactions are analysed by FPLC 

and/or SDS PAGE to determine the extent of PEGylation. 

 

3.5.4 PEG staining  

To determine where conjugation of the linker-PEG to the peptide/protein had been 

achieved, the SDS PAGE could also be stained with a PEG dye (Dragendorff reagent). 

After coomassie staining, as outlined in section 3.2.1.5, the SDS PAGE was covered in 

the PEG dye and left on the shaker for 2-3 mins. The dye was then removed (it can 
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be recycled) and the bands are resolved in mqH2O. The areas where PEG is present 

are stained an orange-brown colour, where when corresponded to areas of 

Coomassie staining, confirmation of conjugation is achieved.   

 

3. 5.5 Ellmans Reaction  

Ellman’s Reagent or DTNB [5,5’-Dithiobis(2-nitrobenzoic acid)] solution is used to 

quantifiy the amount of free thiols in a protein or peptide (Riddles et al., 1979).  The 

absorbance of DTNM was measured using a UV spectrophotometer (Unicam Helios γ 

machine, Thermo Scientific) at the wavelength 412 nm (A412) where samples were 

placed in a plastic cuvette.  The control background signal was determined using 

mqH2O and set as the zero reading. The reaction mix buffer absorbance A412 was 

determined and compared to the A412 measured for the reaction mix containing test 

proteins. The reaction buffer contained: 840 μL mqH2O, 100 μL 1M Tris (pH 8.0), 50 

μL DNTB solution, 10 μL protein sample (0.5 – 1 mg/mL) or mqH2O for blank. Each 

sample was well vortexed before being placed into a cuvette and A412 absorbance 

read. To calculate the number of free thiols the following equation is used -  

Absorbance of sample = (Total Volume/sample volume) x (Absorbance read at 412nm) 

Free Thiols (Molar) = Absorbance of sample)/13600 (Ellman’s coefficient) 

Equation taken from Ellman’s Reagent Instruction Manual supplied with the product 

from Thermo Scientific, Pierce Biotechnology.  

3.5.6 Densitometry  

In order to collate the information from multiple Coomassie Brilliant Blue R-250 

stained SDS PAGE, I decided to perform densitometry measurements and summarize 

the data in the form of a histogram.  However it is recognized that densitometry has 

several fundamental limitations that can introduce variation and errors in the 

quantification of Coomassie Brilliant Blue R-250 labelled proteins by SDS PAGE. 

Three steps are required for quantification: image acquisition, selection of bands and 

computed aided density measurements. It is important to ensure that (i) continuity 

in image acquisition is maintained, (ii) awareness that proteins may present different 



48 

 

modifications leading to alterations in Coomassie Brilliant Blue R-250 staining and 

(iii) different software used may use different alogorithms to quantify a protein band 

(Gassmann et al., 2009).   

To minimize these variations and limit errors in quantification, samples were run in 

the same SDS PAGE gel for each individual experiment and scanned under the same 

conitions for all experiments. The Coomassie Brilliant Blue R-250 stained SDS PAGE 

was sealed in a plastic wallet and digitally scanned using a Canon Lide 70 scanner 

and Adobe Photoshop 7.0 software at 150 dpi where the image was stored as a JPEG 

file.  Each scanned image was then analysed using ImageJ software (Public domain 

software developed by National Institutes of Health, USA). Three measurements 

were taken from each protein lane, (1) the background signal, (2) predicted PEG’d 

protein signal and (3) predicted unreacted protein signal.  The total protein signal 

was the sum of all the density measurements of all the bands in the protein lane 

minus the background signal. 

The percent PEGylated protein was calculated by dividing the PEGd   protein (-

background signal) by the total protein signal. 

Data   illustrated   in   a   histogram   as   the   mean with the standard error of the 

mean (SEM using Microsoft Office Excel). Comparisons were made to compare the 

extent of conjugation between methods, pH and maleimide to PermaLink linkers.   

Data were represented by a histogram with the data reported as the mean ± S.E.M 

(n=3 unless stated other wise) where values were obtained from independent 

experiments. Where assessed, significance was determined using a paired t-test on 

Microsoft Excel 2007 software.  

3.5.7 NMR Analysis 

Small reactions were set up between the PermaLink linker and TCEP in 10 mM 

NaOAc at pH7 which was then monitored by NMR.  
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Chapter 4.0 Target Proteins and Competitive Technologies  

4.1 Protein Expression and Purification 

 

4.1.1 BCX S22C 

4.1.1.1 Introduction  

BCX is used as a model protein in these experiments because of its similar properties 

to other therapeutic proteins. The expression of the BCX enzyme has long used E.coli 

as a suitable expression system. However, the natural gene of this enzyme does not 

express well in E.coli (Yang et al., 1989). The potential applications of this enzyme in 

industry make it a desirable target for genetic mutation to ensure its stability when 

used in manufacturing. In 1993, Sung et al., produced a gene for BCX which imitated 

the frequency of degenerate codons in E.coli. This also contained multiple restriction 

sites for future mutagenesis studies and was modified for direct expression in E.coli. 

The development of this mutant marked a steep improvement in levels of 

expression, up to 300mg, when compared to previous expression of the gene. This 

development was cemented by the purification of a functionally active enzyme from 

the expression.  

 

Various mutants of BCX have been produced in the proceeding years, many of which 

involve the thermostabilisation of the enzyme by attempts at introducing a 

disulphide bridge (Wakarchuk et al., 1994). The production of the BCX S22C mutant 

was initiated to produce a model neoglycoprotein. Substituting the serine residue at 

position 22, a cysteine was introduced (Muellgger et al., 2006 – supplementary 

information).   

 

All mutants of BCX, follow the expression protocol laid out in Sung et al., (1993), 

produced high yields of the enzyme. For the purpose of this investigation, the BCX 

S22C mutant had been further mutated to express a his tag for purification purposes. 

This was then expressed in E.coli strain BL21 DE3, successfully producing high yields 

of the protein – see figure 4.1.1.3.  
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4.1.1.2 Summary of Findings 

Optimum conditions were found to express the protein including a) lowering the 

temperature after induction of expression and b) cooling the culture before addition 

of IPTG. The two step purification of the protein ensured the sample was 

uncontaminated; however, the longer the process of purification the more chance 

there is of loss of yield.  

 

4.1.1.3 Results  

4.1.1.3.1 Expression 

BCX S22C was expressed using E.coli BL21 DE3 with optimal protein production 

detected when expression is induced at 18 oC with IPTG. In figure 4.1.1.3 (A) 

expression of proteins are visualised using SDS PAGE alongside total lysate (TL) and 

the flow through (FT), after the first stage of purification (see figure 4.1.1.3.B), where 

protein of the predicted molecular weight for BCX S22C is indicated in the figure. 

 

4.1.1.3.2 Purification 

There are two stages in the purification of BCX S22C. Firstly, affinity purification from 

the total lysate using a Ni2+ column to bind to the BCX His tag, followed by elution 

using an imidazole gradient (20 – 500mM) to compete for Ni2+ binding - see figure 

4.1.1.3 (C).  Here, the cell pellet is lysed in buffer A containing 20mM imidazole to 

equilibrate with the starting buffer of the FPLC. The column is also equilibrated to 

prevent any non-specific binding and to ensure the lysate has affinity to the resin in 

the column. The protein always elutes at about 40% buffer B, so about 200mM 

imidazole concentration. A steep increase in absorbance is detected at this stage as 

the protein is eluted off the column (Figure 4.1.1.3 (D). 

 

Fractions eluted off the column were combined and concentrated where the average 

concentration yielded from the expression was between 2-4 mg/mL. The purified 

BCX S22C was used for subsequent thiol conjugation experiments.  
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Figure 4.1.1.3 –BCX S22C Expression 
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Figure 4.1.1.3 – The protein is expressed at 18oC overnight using 100 µg/µl IPTG. In (A) the flow through (FT) from the first step of purification can 

be seen, alongside the collected total lysate (TL) where higher levels of BCX S22C expression can be seen. Cells are lysed using a cell disruption 

system and purified using a nickel column on an Akta FPLC machine using a linear imidazole gradient (B). The fractions are collected and further 

purified using an ion exchange column and a salt gradient (C). Fractions collected from the second purification are run on an SDS PAGE and the 

protein bands produced are checked they are of the correct molecular weight for BCX S22C. (D)  
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4.1.2 Salmon Calcitonin (sCT) 

4.1.2.1 Introduction 

sCT has a variety of roles in the body and is an important therapeutic for different 

types of bone disease (Chestnut III et al., 2008)). It is naturally produced as a 

hormone precursor which is post-translationally processed in the endoplasmic 

reticulum before secretion (Takahashi et al., 1997). There are several advantages in 

harvesting a peptide from the extracellular matrix; more simplified purification 

process, increased chance of correct refolding and post-translational processing and 

you elicit less stress response from the host cell (Ray et al., 2002).  

 

Problems have arisen as gram-negative E. coli, which contain both an inner and outer 

membrane, making it difficult for the peptide to be secreted (Nikaido, 1996) in 

expression systems. Attempts have been made to make the membrane more 

permeable (Atlan et al., 1986) or implementing osmotic stress to release the protein 

after cell growth (Blackwell & Horan, 1991). However, some of these methods result 

in a fragile host cell, making generated target peptides more susceptible to 

degradation by proteases. Despite this, peptides that can be harvested from the 

culture media are still highly desired and research is ongoing into making this 

process more efficient (Ray et al., 2002).  

 

The sCT used in these studies was provided by Warwick Polymers as a dry power 

stored at 4oC. A known mass of sCT was dissolved in reaction buffer (see methods) 

and reacted with the relevant PEG. It was important in this instance to check the 

purified product and find out where it elutes on the FPLC as the peptide would 

potentially be too small to detect on an SDS PAGE. 

   

4.1.2.2 Summary of Key Findings 

The sCT was eluted off a linear salt gradient in one distinct peak at approximately 

40% Buffer B. 
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4.1.2.3 Results 

As seen in Figure 4.1.2.3, the sCT is eluted off the column at about 40% Buffer B, 

where a minimum of 0.5mg of sCT needed to be used to detect an absorbance on 

the FPLC.  

 

Figure 4.1.2.3 – Purified sCT  

 

 

 

 

 

Figure 4.1.2.3 – Approximately 1mg of  sCT (molecular weight 3200 Daltons) was eluted off 

the Akta FPLC using a linear salt gradient; Buffer A – 10mM NaOAc, pH4.5 and Buffer B – 

10mM NaOAc + 1M NaCl, pH 4.5 were used to create the gradient. One distinct peak is 

detected at approximately 40% buffer B. 

 

 

 

 

 

 

0           50                                  100                               150       Elution Volume (mL) 

 

mAu 

 

 

400 

 

 

 

300 

 

 

 

200 

 

 

 

100 

 

 

 

   0 

 

 

NaCl Gradient 
0 – 1 M  



54 

 

4.2 Conjugation of proteins/peptides to maleimide-PEG 

4.2.1 BCX S22C 

4.2.1.1 Introduction 

BCX S22C works successfully as a model protein in these studies because it is a well 

characterised protein of approximately the same size as a cytokine (a commonly 

used therapeutic) and its three dimensional structure has been established by X-ray 

crystallography and NMR spectroscopy (Wakarchuk et al., 1994), potentially 

providing a means of analysis of conjugation. Similarly, it is xylanase enzyme, its 

natural function is the breakdown of hemicellulose in plant cell walls, therefore its 

activity after conjugation can be analysed.  

 

TCEP has long been used as a convenient phosphine for reduction of disulphides in 

water (Burns et al., 1990). It is known to be very stable in both acidic and basic 

solutions, contrary to dithiothreitol (DTT) which rapidly reoxidises above pH7.5. 

Similarly, it is still active at either end of the pH range, effectively reducing thiols at 

very low or very high pH (Han & Han, 1994). TCEP was chosen in this instance as it 

had previously been noted to allow maleimide attachment to myosin in its presence, 

whereas DTT had not and the conjugation was inhibited (Getz et al., 1999). Similarly, 

after Ni2+ column purification, contaminating Ni2+ ions do not affect the stability of 

TCEP by oxidation as they do with DTT.  

 

Maleimide is one of the most commonly used linker technology for thiol specific 

conjugation (Roberts et al., 2002). It is fast and stable in most reaction conditions, 

and shows specific conjugation at more acidic pH (Pasut & Veronese, 2007). It has 

been used to conjugate PEGs to therapeutic proteins and has been used in 

commercially available biopharmaceuticals for some time. However, some problems 

with maleimide such as stability and specificity have arisen. Maleimide can also react 

with amino groups on lysine residues which are common on a protein surface 

(Sharpless & Flavin, 1966), resulting in heterogenous products from protein 

conjugation. However, this is often a consequence of reaction conditions which can 
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be manipulated. Ring unfolding can also lead to the production of a heterogenous 

products even if malemide reacts with only the required cysteine.  

 

As maleimide is commonly used for cysteine conjugation of PEG molecules to 

proteins or peptides (Roberts et al., 2002), we have used maleimide-PEG as the 

standard control to compare the rate and specificity of PermaLink-PEG reactions. 

Two approaches have been used to evaluate the PEGylation of proteins or peptides. 

First, we have separated proteins by SDS PAGE and labelled for protein (Coomassie 

Brilliant Blue R-250) and PEG (Dragendorff reagent). Standard densitometry 

measurements have been used to assess the intensity of the bands (Schmidt et al., 

1987). Using a second method, FPLC can be used to separate unPEGylated from 

PEGylated proteins where UV absorbance measurements are used to determine the 

amount of protein in each fraction. Similarly, the FPLC trace used to separate the 

larger molecular weight PEG reaction mixtures  and are visually representative of the 

extent of reaction.  The FPLC separated fractions can be analysed by SDS PAGE 

where PEGylation can be confirmed by (i) the shift in molecular weight and (ii) a 

reaction with the PEG specific dyes..  

 

4.2.1.2 Summary of key findings 

 Using BCX as a model protein, maleimide conjugated to 2KDa PEG or 20KDa 

PEG is highly reactive at an optimum pH of 7. 

 The reactivity of maleimide-PEG with the target protein is optimal if the 

reducing agent TCEP is removed before the addition of the maleimide PEG for 

conjugation. After comparing the range of methodologies, I used immobilized 

TCEP resin to reduce the target cysteine as this could be efficiently removed 

from the target protein or peptide.  

 The reaction of BCX S22C with Maleimide-2KDa PEG leads to multi-PEGylation 

of the target protein suggesting a reaction with non-cysteine amino acids. 

 Maleimide-20KDa PEG efficiently reacts with BCX S22C to generate one 

PEGylated product detected by FPLC and SDS PAGE.  
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4.2.1.3 Results 

4.2.1.3.1 BCX S22C Controls with TCEP 

The free cysteine residue in the mutated protein facilitates disulphide bridge 

formation and therefore dimer formation. BCX S22C monomer and dimers can be 

detected in a sample of purified BCX S22C using FPLC and a non-reducing SDS PAGE. 

By FPLC analysis, the peaks of absorbance are predicted to equate to the monomer 

and dimer of the protein (figure 4.2.1.3.1). The protein is stored and run through the 

FPLC at pH4, the BCX S22C monomer elutes off the column at about 40% buffer B 

(20mM NaOAc, 1mM EDTA, 1M NaCl) and the dimer at about 50% buffer B; that is 

400mM and 500mM NaCl respectively.  

 

Figure 4.2.1.3.1 – BCX Controls 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.1.3.1(A) –0.5mg of BCX S22C was run through the FPLC with a linear salt gradient 

from 0 – 1M NaCl. (A) You see two distinct peaks which equate to the monomer and dimer 

which the protein naturally forms due to the cysteine residues. 
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In order to break the disulphide bond and allow the thiol group on the cysteine 

residue free for conjugation, the protein must be reduced. The target protein is 

incubated with a molar excess of a reducing agent TCEP. In this case, 1.7 molar 

equivalents of TCEP (1 hour at ambient room temperature) was used to reduce BCX 

S22C. The reduction of the protein is clearly seen in figure 4.2.1.3.1 (B), where there 

is a shift and an increase in the amount of monomer to dimer. It could be considered 

that in the time taken to get the mixture onto the FPLC and the running of the 

mixture through the FPLC, a certain amount of reoxidation could have taken place.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.1.3.1 (B) After the 0.5mg of BCXS22C is incubated with TCEP solution (1.7 molar 

equivalents) for 60 minutes you see a shift in the peaks and the amount of monomer 

increases relative to the dimer. The small peaks seen eluted off the column before the 

protein are probably minor impurities, they were not detected on an SDS PAGE and there 

absorbance value detected via the FPLC meant they were negligible. 

(B) Solution containing BCX incubated with TCEP for 1 hour 
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4.2.1.3.2 Reactivity of BCX S22C with maleimide 2KDa PEG 

In a series of control experiments, the reactivity of maleimide 2KDa PEG with BCX 

S22C was investigated by altering the pH and reducing conditions.  

 

I compared the amount of monoPEGylation in the continued presence of TCEP 

(Method 2) versus removing TCEP from the reaction before the addition of 

maleimide-PEG (Method 3). Also, varying the pH of the reaction to find its optimum 

was important as the optimum pH of the reaction is often dependent on the pH at 

which the protein is most stable. Leaving the TCEP in the solution (Method 2) as seen 

in figure 4.2.1.3.2(A & B) decreases the degree of protein PEGylation detected. 

Although a high amount of conjugation is seen, the presence of TCEP clearly has an 

effect with its optimum pH 5.5 only achieving 67 % ± 8.7 % (n = 3 ± S. E. M) 

conversion determined by densitometry measurements of SDS PAGE analysis. 

Unreacted and PEGylated protein were detected at the reaction pH 5.5 using 

Method 2 (4.2.1.3.2B, n=3) 

 

Next the effect of removing TCEP from the reaction mixture by using an immobilised 

TCEP resin (Method 3) was investigated. At all three pH’s tested the conversion rate 

was improved compared to Method 2. However, pH7 was its optimum achieved with 

86 % ± 4.8 % (n = 3 ± S. E. M) maleimide-PEG BCXS22C conjugation. However, SDS 

PAGE analysis reveals that BCX S22C is multiPEGylated under these reaction 

conditions (pH7, method 3) indicating non-specific binding to non-cysteine residues 

(figure 4.2.1.3.2C).  
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Figure 4.2.1.3.2 – BCX S22C and Maleimide 2KDa PEGs 

 

(A) Graph Displaying the Percent Conversion of Maleimide Conjugation with BCX S22C 
(mean±S.E.M), n=3 (independent samples) 

 

 

 

    (B) Method 2 – pH 5.5       (C) Method 3 – pH 7 

     

 

 

Figure 4.2.1.3.2 – A known concentration of BCX S22C was reacted with 5 equivalents of 

Mal-PEG at pH5.5, 7 and 8 using methods 1 and 2. (A) Shows the difference in extent of 

reaction, where method 3 is clearly favoured over leaving TCEP in the solution, mean ± 

S.E.M. (n=3 independent samples). (B) shows an example of the SDS PAGE using the 

optimum pH for method 2. (C) shows the high conversion rate using method 3 at its 

optimum pH, however, non-specific and multi-PEGylation is also seen at this pH.   

 

0 

20 

40 

60 

80 

100 

5.5 7 8 

pH 

Method 2 Method 3 

%
 C

o
n

versio
n

 

24 

33 

24 

33 

KDa 

Non-specific/ 
MultiPEGylation 

KDa 

Unreacted 
Protein  

Unreacted 
Protein  

PEGylated 
Protein  

PEGylated 
Protein  

Protein 
Ladder 

Method 3 
Reaction 

Method 2 
Reaction 

Protein 
Ladder 



60 

 

4.2.1.3.3 BCX S22C and maleimide 20KDa PEG 

 

For the PEG attached to have an effect on a protein’s pharmacokinetic properties it 

must increase the protein’s molecular weight substantially (Jevesar et al., 2010). By 

attaching a 20KDa PEG the overall weight of a BCX S22C and Mal-PEG conjugate 

would be approximately 42KDa; however, the migration of the PEG through the SDS 

PAGE means it does not fall at exactly this molecular weight.  

 

In the presence of TCEP (Method 2), the majority of protein is PEGylated, visually 

determined by the lack of unreacted BCX S22C (seen on the SDS PAGE gel, figure 

4.2.1.3.3.1B). However, the PEGylated species is eluting in various places along the 

salt gradient (figure 4.2.1.3.3.1A).  

 

Figure 4.2.1.3.3.1 - BCX S22C and Maleimide 20KDa PEG – Method  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The SDS PAGE gel highlights that all the PEGylated species are of the same molecular 

weight (figure 4.2.1.3.3.1B), indicating the attachment of one PEG molecule. 
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Figure 4.2.1.3.3.1 – BCX S22C was reduced at 2mg/mL with 1.7 molar equivalents TCEP for 2 

hours at pH7. It was then reacted with 2 equivalents of Maleimide P20K overnight. (A)  FPLC 

Trace obtained from the reaction mixture. (B) reducing gel of FPLC fractions ranging over all 

peaks from the FPLC. There is unusual separation of PEGylated fractions seen, perhaps 

suggesting non-specific PEGylation.  

 

 

As seen with the lower molecular weight PEGs, the presence of TCEP may be having 

an effect on the PEGylation process. After investigation into TCEPs presence in the 

reaction, another method where TCEP is removed was developed (method 3). A vast 

improvement is noted in PEGylation efficiency (Figure 4.2.1.3.3.2).    

72 

55 

100 

40 

24 
33 

KDa 

   

B C D 
A 

Where 
unreacted 
protein should 
resolve  

PEGylated 
Protein  

(B) SDS PAGE of fractions obtained from FPLC, gel also 

stained with PEG Dye 



62 

 

Figure 4.2.1.3.3.2 – BCX S22C and Maleimide 20KDa PEG – Method 3 
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Figure 4.2.1.3.3.2 – BCX S22C was reduced at 2mg/mL equivalent volumes of 

TCEP resin for 1 hour. The TCEP resin was spun down and the reduced 

protein added to 2 molar equivalents of Maleimide P20K and left to react 

overnight. (A)  FPLC Trace obtained from the reaction mixture. (B) reducing 

gel of FPLC fractions ranging over all peaks from the FPLC. 
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4.2.2 sCT 

4.2.2.1 Introduction 

Although sCT only shares 50% sequence homology with human calcitonin, it is the 

mostly widely used source of calcitonin used for clinical therapy (Chesnut et al., 

2008). This is because sCT exhibits more potency and analgesic properties then 

human calcitonin in most biological assays (Houssami et al., 1995; Breimer et al., 

1988). sCT’s variety of clinical uses make it a desirable target for processes which 

increase its therapeutic potential in the body. Established as one of the first 

antiresorptive osteoporosis therapies, sCT has exhibited efficacy and a positive 

safety profile over the last thirty years. It is currently used to treat metabolic bone 

disease such as osteoporosis and Paget’s disease and also indications into treatment 

of osteoarthritis (Chesnut III C. et al., 2008). 

 

Various efforts towards increasing its therapeutic potential and efficacy have been 

investigated. Cetin et al. (2008), successfully biotinylated sCT and evaluated its 

hypocalcemic effects in rats. They noted an increase in sCT permeability through 

Caco-2 cell monolayers and the consequent sustained reduction of calcium ions in 

the blood plasma. These data indicate the oral bioavailability of conjugated sCT and 

the potential clinical application.   

 

Similarly, conjugating sCT to maleimide PEGs has previously been attempted. The 

sCT was multi-PEGylated at both cysteine resides (position 1 and 7) and again at 

either lysine residue 11 or 17 (Cheng & Ling, 2009). When comparing the different 

conjugates, increased peptide PEGylation was found to correlate with increased 

stability in rodent intestinal fluids. However, when injected into the rat, the 

extensively PEGylated conjugate exhibited no enhanced efficacy (or was inactive) 

when compared to just one Mal-PEG attached to sCT. This indicated that the 

hormones hypocalcemic activity was not enhanced with its increased stability in the 

rodent intestinal fluid.   
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In conclusion, while PEG groups can be successfully attached to sCT to generate a 

therapeutic there are potential issues with multi-PEGylation using the maleimide 

technology. My first aim was to functionalise sCT with the maleimide PEG to assess 

the level of PEGylation under different reaction conditions.  

 

4.2.2.2 Summary of key findings 

 The reaction between maleimide 20KDa PEG and sCT is complete in 30 

minutes.  

 The reaction with Mal 20KDa PEGs produce the mono- and di- PEGylated 

species, due to a predicted attachment to free thiol groups on cysteine 

residue 1 and 7. However, on closer analysis, the crude reaction mixture 

shows multiple PEGylated species indicating off-target, non-specific 

PEGylation. 

 

4.2.2.3 Results 

4.2.2.3.1 Reaction Conditions 

Ellman’s reagent was used as described in Methods to determine an optimum 

reduction time for the small peptide. At 30 minutes, the absorbance value no longer 

increased indicating that it had reached its maximum extent of thiol reduction, both 

with method 2 and method 3. At 2mg/mL the peptide was reduced (using either 

method 2 or method 3) for 30 minutes.  The resulting peptide solution was then 

reacted with 2 molar equivalents of Maleimide 20KDa PEG overnight on a shaker at 

ambient room temperature. The 20 KDa PEG conjugate was analysed by FPLC and 

SDS PAGE as described in the following sections (Section 4.2.2.3.2).  

 

Attempts were also made to attach a 2KDa PEG to sCT however the total predicted 

molecular weight of sCT-2KDa PEG was 3.4KDa and were not easily resolved with an 

SDS PAGE. 
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4.2.2.3.2 sCT and Maleimide 20KDa PEG 

 

Maleimide 20KDa PEG (2 molar equivalents) was reacted with sCT as previously 

described using method 2. The products of the reaction were separated by FPLC 

using Reaction Buffer A and B as explained in the Methods section. The FPLC 

separated products were then analysed by SDS PAGE and the molecular weight 

compared to the unreacted sCT control (figure 4.2.2.3.2). 

 

When maleimide 20KDa PEG with sCT you would expect a molecular weight of 

approximately 3200 + 20,000 Da = 23,200Da if one PEG molecule attaches to one 

cysteine; or 3200 + 40,000 Da = 43,200 Da if it attaches to the two available cysteines 

(residue 1 and 7). However, it has been noted that due to the size and migration of 

the PEG molecule through the polyacrylamide gel, the molecular weight associated 

with the protein ladder is not accurate (Kurfust M. M., 1992). Therefore, with the 

assumption made that only a thiol specific conjugation takes place with maleimide 

and therefore only the two cysteine residues are PEGylated, the mono- and di- 

PEGylated species of sCT can be seen in figure 4.2.2.3.2B in samples A and B.  

 

Both the absorbance peaks on the FPLC and bands on the SDS PAGE are of 

comparable intensity, indicating that the preference of one cysteine over the other is 

not a factor (Figure 4.2.2.3.2). If one cysteine was being sterically hindered in some 

way the maleimide PEG molecule would only be able to access the other cysteine. 

You would therefore get more of the mono-PEGylated species, rather than the di-

PEGylated form. It is also important to mention here that the bands detected with 

the PEG dye corresponds with Coomassie Brilliant Blue R-250 protein staining on the 

SDS PAGE, indicating the presence of peptide-conjugated PEG groups resolved by 

SDS PAGE.  
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Figure 4.2.2.3.2 – sCT and Malemide 20KDa PEGs – Method 3 

 

 

 

                

 

 

 

Figure 4.2.2.3.2 - 1mg of sCT was reduced for 30 minutes and reacted with two molar equivalents of linker overnight. The FPLC trace (A) exhibits multiple 

peaks, only two of which show up on the SDS PAGE (B) where distinct PEGd protein can be detected at two different molecular weights. Prior to staining 

with the PEG dye these areas on the SDS PAGE were stained with coommassie, indicating that both PEG and protein are present and stressing that it is not 

just unreacted PEG.   
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4.2.2.3.3 Maleimide Crude Reactions 

The PEG maleimide sCT reactions products separated via FPLC have a low 

absorbance value (≤10 mAU), and the samples are diluted as they are eluted from 

the column. In addition, I could not detect CB or PEG labelling in samples C-F 

collected from the FPLC separation (Figure 4.2.2.3.2). To ensure that no reaction 

product is lost or diluted to a level below detection during FPLC purification, the total 

crude reaction was analysed by SDS PAGE to determine the content of the whole 

reaction (figure 4.2.2.3.3). Not only are the two dominant PEGylated species present 

(i.e. A and B) but also multi and non-specific PEGylation can be identified where PEG 

bands can be seen at higher molecular weights.      

 

Figure 4.2.2.3.3 – Crude Reaction Mixture of sCT and Maleimide 20KDa PEG 

Method 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.2.3.3 – Crude reaction of maleimide 20KDa PEG and sCT. sCT reacted at 2mg/mL 

with two molar equivalents of PEG. Non-specific PEGylated bands detected, indicating that 

the maleimide linker is not only reacting with the cysteine residue. 

Non-specific PEGylation 

Di-PEGylated 

Mono-PEGylated 

72 

135 

55 

100 

40 

24 

33 

17 

KDa 



68 

 

4.3 Discussion 

4.3.1 Protein Expression 

Expression of the BCX mutant which was modified for direct expression in E.coli by 

Sung et al., (1993), produced high yields of the enzyme - up to 300mg/L. On average, 

each litre of BCX S22C mutant culture produced only about 4mg of BCX S22C. Clearly, 

this is not to the same level of yield as the original mutant produced. However, our 

mutant contained a modified cysteine residue which can form a disulphide bridge 

and therefore dimers during production (Sigman et al., 2003). This could have 

lowered the yield as the protein may have formed aggregates. Similarly, the 

concentration coefficient was not corrected for the potential introduction of 

disulphides (Wakarchuk et al., 1994), possibly affecting the UV absorbance reading.   

 

Addition of a polyhistidine tag in this BCX S22C mutant allowed purification through 

a nickel column which has been proven in its efficiency of isolation of recombinant 

proteins (Cao & Lin, 2009). The initial stage of purifying the protein through the 

nickel column and an imidazole gradient allowed a notable clearance of unwanted 

proteins produced alongside the BCX S22C. The protein eluted from the nickel 

column was then concentrated in the knowledge that it contained the purified target 

product. As the future use of the purified protein required precise, known 

concentrations of the reactants it was essential that the product contained no 

contaminants. This is why it was necessary to further purify the protein by ion 

exchange chromatography.  

 

4.3.2 BCX and Maleimide Conjugation 

It is clear that TCEP present in the solution has an effect on the extent of reaction 

with both the 2KDa and 20KDa Mal-PEG conjugates. When using the TCEP resin and 

therefore its removal from the solution, the extent of conjugation increases 

significantly (p<0.05) at pH 7. This result suggested a potentiation of the reaction 

between TCEP and maleimide that has previously been reported by Shafer et al., 

(2000) under certain conditions. Therefore by leaving TCEP in solution, especially in 

excess of the protein and of similar molar equivalents of the PEG, it is likely that 
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there was an ongoing side reaction between the linker and TCEP. By effectively 

removing the linker-PEG from solution it is no longer available for conjugation to the 

free thiol on the protein, hence its low conjugation efficiency.  

 

The next key question would be why, when using the resin and therefore removing 

the TCEP from solution, the reaction does not go on to 100% conversion. From the 

graph, pH7 appears the optimum pH for this reaction but the mean value of 

conversion is only at about 86%. It is probable that during setting up these small 

scale reactions, that some protein will be reoxidised. The stage where the reduced 

protein is removed from the TCEP resin allows for this reoxidation, this is because 

particular care is required when removing the solution from the top of the resin. The 

potential of reoxidation of the free thiol increases as the time to remove the protein 

from the resin increases. If the reduced thiol group reoxidises, the linker cannot 

react with the protein. Similarly, it is assumed that the protein has correctly refolded 

and therefore the thiol group is available for both reduction and reaction with the 

linker-PEG. This could be determined with enzymatic activity assays.  

 

To overcome these technical problems, an improved method of reducing the protein 

with the resin needs to be formulated particularly upon scale up for the commercial 

generation of therapeutics.  The production of biologics is likely to occur on a larger 

scale that would facilitate the use of TCEP-resin columns under nitrogen to enable 

the efficient loading of reactants on and off the column with minimal reoxidation.   

 

4.3.3 sCT and Maleimide Conjugation 

The distinct separation of the two PEGylated species in the sCT and Mal-20KDa PEG 

reaction leads to the assumption that the two cysteine residues have been targeted 

by this thiol specific linker. The reason for the linker preference of one cysteine 

versus the other is unclear as there is double the molar equivalents of Mal-PEG to  

react with sCT – both the reduced cysteines have the potential and availability to 

react with Mal-PEG. However, steric hindrance created by one 20KDa PEG molecule 

once attached may prevent consequent conjugation to the other available thiol 
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group. On looking at the crude reaction on an SDS PAGE (Figure 4.2.2.3.3) it can be 

seen that there are other sites of conjugation which may also play a role in this.  

 

It took several attempts to optimize the sCT peptide concentration required to 

detect it by FPLC and SDS PAGE. However, by separating out the reaction mixture by 

FPLC, all samples are diluted on the SDS PAGE and are therefore difficult to detect. 

The crude reaction, not separated by FPLC, were run directly on SDS PAGE for 

additional analysis (Figure 4.2.2.3.3). Interestingly, the maleimide reaction mixture 

exhibited other PEG bands at higher molecular weights. This indicated other 

PEGylation sites on the sCT peptide than just the cysteine residues, even though 

maleimide is supposed to be thiol specific. It has been noted before that maleimide 

can react with lysine residues (Roberts et al., 2002), which are also present on the 

peptide. 

 

In subsequent experiments when this crude reaction of maleimide-PEG is run next to 

another thiol-specific PEG-linker (PermaLink), this non-specific PEGylation is not seen 

(chapter 5 & 6). Malemide is an extremely reactive linker but its disadvantages 

become apparent with respect to specificity; it is also seen to react with amino 

groups on lysine residues which are common on a protein surface (Sharpless & 

Flavin, 1966),. In the next series of experiments, I compared a new generation 

cysteine reactive linker with the specificity and reactivity of Maleimide PEG as the 

commercial standard.      
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Chapter 5.0 Characterisation of PermaLink 

5.1 Evaluation of the rate of reaction for different classes of 

nonfunctionalised PermaLink 

 

5.1.1 Introduction 

In the development of PermaLinkTM technology, the inital phase of the project 

investigated the rate of cysteine reactivity for different classes of PermaLink 

compounds.  Initially, the rate of reaction was determined using the linker alone (no 

PEG attached), this way the effect of attaching a PEG molecule to the linker can also 

be observed at a later stage. 

 

In these experiments, glutathione was used as a substrate for unfunctionalised 

PermaLink as this peptide contains only one free thiol group to react with. The rate 

can be analysed by determining the speed at which the vinyl peaks disappear, which 

is equivalent to the rate at which the thio-ether bond is formed between the thiol 

and the vinyl group.  

 

The pKa of each linker was also determined by titration experiments. This is 

important in helping to determine the potential optimum pH for the reaction. 

However, this also has to be a balance between the optimum for the linker-PEG and 

the thiol group/protein; with the stability of the protein being taken into account.  

 

5.1.2 Summary of Results 

The reactivity of the linker has improved as the groups attached to the central vinyl 

pyridine have been modified and moved around. The movement of the vinyl group 

from position 2 to 4 on the pyridine ring as well as the addition of the methyl group 

at position 1 helped the electron flow around the ring, making the vinyl group more 

attractive to attack from the reduced thiol.  
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5.1.3 Results 

5.1.3.1 Linker Development   

The development of linkers by Glythera Ltd. has been an ongoing process, figure 

5.1.3.1(A) depicts the linkers 7, 11, and 12 which are used throughout these 

experiments.  

 

Figure 5.1.3.1 (A) – Linkers 

 

             

 

 

Figure 5.1.3.1 – The Glythera linkers used throughout this work are depicted in figure 

5.1.3.1. (A), i.e. linkers 7, 11 and 12. The vinyl groups (i) are where the linker covalently 

attaches to the reduced thiol group on the protein. The OMe group (ii) is where the PEG 

molecule is attached to the linker.   

 

The aim in the development of these linkers has been to make the vinyl group as 

susceptible as possible to the attacking thiol group on the protein. This is achieved by 

increasing electron flow around the pyridine ring and drawing electrons away from 

the vinyl group. Attachment of various groups such as CF3 were tried in linker 7 to 

improve this property. Similarly, it was found that keeping the PEG molecule away 

from the vinyl ring helped with reactivity, as can be seen between linker 7 and linker 

11. Finally, between linker 11 and 12, the addition of the methyl group was found to 

improve reactivity. 

 

5.2 Linker Optimisation 

5.2.1 Introduction 

PermaLinkTM technologies have been developed by Glythera limited in attempts to 

improve thiol specific PEGylation chemistry. It consists of a vinyl-pyridine ring 

structure with a PEG group attached at various positions of the ring, depending on 

Linker 7 Linker 11 
Linker 12 

Linker 12 

(i) 

(i) (i) 
(ii) 

(ii) 
(ii) 
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the linker (see figure 5.1.3.1). The PEG is attached to the protein by a thio-ether 

bond; that is by nucleophilic attack of the thiol to the vinyl group. This technology is 

stable to biological and chemical degradation with predicted improved cysteine-

selectivity over maleimide technology.  

 

The exact methodology of conjugation with PermaLinkTM PEGs to proteins/peptides 

needs to be established. In order to comprehensively analyse PermaLink technology 

and directly compare it to maleimide chemistry, pH, ionic strength of reaction buffer 

and the length of reaction time have been tested. The pKa of these PermaLink 

structures vary such that a range of reaction conditions with different pH values have 

been tested.  

 

Alongside this, whilst testing the range of developing linkers, various methods of 

reduction were investigated, with TCEP being the main compound used for 

reduction. TCEP has been found to have advantages over other reducing agents such 

as DTT, although choice tends to be application specific (Getz et al., 1999). The basis 

of alternating methods of reduction is to determine whether the presence of TCEP in 

solution is necessary and feasible. Ideally, the presence of TCEP in the solution would 

allow for a maintained reduced state of the thiol group, however, as was found in 

the study by Gertx et al., (1999), although labelling is more efficient without the 

reductant present. In this study: removing TCEP by dialysis (method 1), leaving TCEP 

in the solution (method 2) and using TCEP immobilised resin (method 3) was 

investigated.   

 

5.2.2 Summary of Results 

 Highest conversion rates are seen with maleimide PEG using method 1 and 2.  

 Leaving TCEP in solution had an overall decrease in PEGylation with all 4 

linkers 

 TCEP was found to directly react with the PermaLink linkers. 
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5.2.3 Results 

5.2.3.1 Conjugation of Various Linkers using method 1 and 2 

Conjugation is detected by SDS PAGE on all four linkers (maleimide; and PermaLink ™ 

7, 11 and 12) when TCEP is removed by dialysis (figure 5.2.3.1) at pH 5.5. However, 

maleimide shows the most extensive conversion with approximately 79(±3.1)% 

PEGylated protein by densitometry analysis, compared to 62(±4.2)% for linker 12 

(n=3). When looking at the non-reducing side of the SDS PAGE, the dimer of BCX 

S22C is seen at double the molecular weight of the unreacted protein in lanes 

depicting reactions with PermaLink ™ linker 7, 11 and 12. This shows that during the 

course of the reaction, in this case overnight, the dimer is slowly being reformed. 

This is not seen in the lane with the maleimide reaction however, and its presence is 

less dominant in the PermaLink ™ linkers which have been more recently developed. 

 

Figure 5.2.3.1 BCX S2C Conjugation – Method 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.3.1  - 5mg/mL BCX S22C was set up using method 1 (see methods section). The 

resultant reaction mixtures were added to protein loading dye (reducing and non-reducing) 

and run for 50 minutes at 180V. 
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Similarly using method 2, leaving TCEP in the solution, conjugation is seen with all 

four linkers. Again, maleimide shows the highest conversion rate of 67 (±8.7)% at 

pH5.5 (n=3); compared to 24.66(±6.4)% for linker 7, 38.24(±5.25)% for linker 11 and 

43.44(±6.2)% for linker 12 (figure 5.2.3.3). These values are lower then what is seen 

when TCEP is removed by dialysis which was an unexpected result as the presence of 

TCEP, helping to maintain the protein in a reduced state, was intended to help 

conjugation. Alongside this, dimer formation is still detected on the non-reducing 

side of the SDS PAGE which should not be case when TCEP is present. Notably, when 

comparing this dimer formation to Method 1, the reverse is seen in amount of dimer 

formation correlated to the more recently developed linker.  

 

Figure 5.2.3.2 – BCS X22C Conjugation – Method 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.3.2 – The SDS PAGE shows the resulting reaction mixtures from the following 

experiment. 2mg/mL BCX S22C was reduced for 2 hours with 1.7molar equivalents of TCEP in 

20mM NaOAc + 1mM EDTA, pH7. Five molar equivalents of the various linkers were then 

added to the protein solution and the reaction was left to shake overnight. 10ul of reaction 

mixture was added to 10ul of both reducing (boiled) and non-reducing SDS loading dye and 

loaded onto the acrylimide gel. The gel was then run for 50 minutes at 180V. 

 

(A) – SDS PAGE showing the reaction mixtures of BCX S22C conjugation when TCEP is left in solution  
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Figure 5.2.3.3 – Quantative comparison of extent of PEGylation using method 2 at    
variable pH  

Figure 5.2.3.3 – Densitometry analysis of protein conversion to PEGylated state using various 

linker-2KDa PEGs, mean±S.E.M, pH 5.5 and 7 (n=3) and pH8 (n=2), independent samples. 

Maleimide linker clearly shows highest % conversion; however, the extent of conversion is 

still not at its optimum. 

 

This result with method 2, suggests that TCEP in the reaction decreases Permalink 

linker reactivity with the thiol group. When TCEP was removed from the reaction a 

higher conversion rate was seen.  

 

5.2.3.2 Direct TCEP reaction with PermaLink in the absence of a protein/peptide   

thiol 

In light of results from reactions where TCEP was left in solution, investigation into 

TCEP reactivity with various components of the reaction was undertaken. Reactions 

were set up between the linker and TCEP and monitored by NMR. As seen in figure 

5.2.3.4, the peaks which equate to the vinyl group of the linker disappear over time. 

This indicates that they are being consumed or degraded by an unexpected side 

reaction with TCEP. Alongside this, a new peak appears which could equate to the 

new product. A potential product was hypothesised and later confirmed by the 

chemists of Glythera Ltd (see Figure 5.3.2.4.A). It can be concluded that TCEP directly 

reacts with the Permalink linker and therefore inhibiting the conjugation to the 

actual target cysteine. 
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Figure 5.3.2.4 – Investigating TCEP  

 

 

 

 

 

 

 

 

Figure 5.3.2.4 – Data produced and supplied by Terrence Kantner of Glythera Ltd. A reaction with 

TCEP and the linker was set up in10mM NaOAc at pH7 and was monitored by NMR (B). Here the 

peaks which equate to the vinyl group of the link disappear over time (seconds), exhibiting some kind 

of degradation or side reaction. Simultaneously, a new peak appears, highlighting the new potential 

product (A). 

(A) – Reaction between vinyl pyridine linker and TCEP with possible product. 

(B) – The disappearance of the vinyl peaks through NMR analysis 
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5.2.3.3 Instigation of Method 3 

An immobilised TCEP resin would enable the efficient removal of TCEP from the 

reaction mix prior to the addition Permalink. Based on the results demonstrating a 

direct reaction of TCEP with Permalink molecules I evaluated Permalink reactivity 

following reduction using immobilised TCEP.  

 

At pH7, the SDS PAGE comparing all four linkers shows a much improved conjugation 

results when compared to the other methods (figure 5.2.3.5). As also shown in figure 

5.2.3.6A, maleimide and PermaLink™ linker 12, shows near on complete conversion 

with 86 (±4.8)% and 76 (±7.9)% PEGylated respectively (n=3). At pH5, to directly 

compare the other methods in this instance, the results were not as good 83 (±2.9)% 

and 47 (±7.8)% respectively – pH7 was found to be optimum for PermaLink™ 

technology.  

 

Figure 5.2.3.5 BCX S22C Conjugation – Method 3 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.3.5 – 4mg/mL BCX S22C was set up using method 3 (as outlined in the methods 

section). 10ul of reaction mixture was added to 10ul of both reducing (boiled) and non-

reducing SDS loading dye and loaded onto the acrylimide gel. The gel was then run for 50 

minutes at 180V 
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5.2.3.4 Comparison of extent PEGylated between method 2 and 3 

As well as visually represented in the SDS PAGE, densitometry analysis shows an 

improvement in extent of PEGylation between method 2 and 3 (Figure 5.2.3.6B) for 

both PermaLink and maleimide-PEG reactions at pH7. Both maleimide-PEG and 

Linker 12 show significant improvement in their conversion rate (p<0.05); 85 (±4.8)% 

and 75 (±7.6)% respectively. Linker 7 shows an even further improved conversion 

rate – from 22 (±1.5)% to 44 (±2.5)%, p<0005, n=3, which is surprising considering 

the low reactivity of the linker.  

 

Figure 5.2.3.6 – Quantative analysis of extent of PEGylation using Method 3 

 

 

 

Figure 5.2.3.6 – (A) Densitometry analysis of protein conversion to PEGylated state using 

various linker-2KDa PEGs, mean±S.E.M (n=3, independent samples). Maleimide linker clearly 

shows highest % conversion; with pH 7 being optimum for all four linkers. 
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(B) – Average % PEGylated Comparing Method 2 and 3 

 

 

Figure 5.2.3.6 – (B) shows the comparison of method 2 and 3, mean±S.E.M (n=3, 

independent samples), where a significant increase is seen between conversion rate of each 

linker using the two methods (paired t-test - *p<0.05 and **p<0.005).  

 

5.3 Discussion 

5.2.1 PermaLink Optimisation 

The method development process for conjugating PermaLink-PEGs to a protein was 

an important step in ensuring optimisation of the reaction. Similarly, comparing 

these various stages of development to maleimide-PEG reactivity was helpful in 

highlighting the differences in PermaLink technology. 

 

5.2.2 Method 1  

Method 1, removing TCEP by dialysis, was a time consuming protocol, harbouring 

little benefit for PermaLink technology. Maleimide reacted with the reduced thiol on 

the protein to show a promising conversion rate; 79(±3.1)% PEGylated for maleimide 

PEG, compared to 62% (±4.2)% for linker 12-PEG (n=3) at pH5.5. A distinct protein 

band indicating the BCX S22C dimer is also seen in the SDS PAGE (figure 5.2.3.1), in 

lanes for linker 7, 11 and 12. This suggests that over the course of the reaction, the 
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reduced thiol group is becoming reoxidised and forming a disulphide bridge with 

other free thiol groups on other protein molecules. The speed at which this takes 

place is indicative of the speed of the linker-thiol reactions; with maleimide reacting 

with the free thiol at a faster rate than PermaLink structures and therefore no dimer 

formation is detected.  

 

Both the native and reduced sides of the SDS PAGE in figure 5.2.3.1, shows a faint 

protein band above the main PEGylated protein in the maleimide lane. This indicates 

that more than one maleimide-PEG molecule has attached to some of the reduced 

BCX S22C molecules, exhibiting non-specific conjugation. The addition of the mono- 

and multi-PEGylated BCX S22C maleimide species would highlight a much higher 

conversion rate. Therefore, It is also worth noting, that the protein was fully reduced 

at the beginning of the reaction and available for conjugation; further highlighting 

that the PermaLink-PEGs were distinctly slower than maleimide-PEGs to react.    

 

5.2.3 Method 2 

The concept behind leaving TCEP in solution was to maintain the protein in a 

reduced state, therefore making it continuously available to the linker-PEGs 

throughout the course of the reaction. However, both maleimide-PEG and PermLink-

PEG structures struggled to achieve the predicted high conversion rate: 67 (±8.7)% at 

pH5.5 (n=3); compared to 24.66(±6.4)% for linker 7, 38.24(±5.25)% for linker 11 and 

43.44(±6.2)% for linker 12 (figure 5.2.3.3). An increased amount of dimer formation 

is also seen in the SDS PAGE compared to method 1 for all three PermaLink 

structures and maleimide. This is contradictory to the objective of having TCEP 

present in the reaction mixture; why was TCEP not reducing the protein? This 

surprising result began the research into TCEP being used in these reactions.  

 

5.2.5 TCEP Investigation 

TCEP has long been used as a convenient phosphine for reduction of disulphides in 

water (Burns et al., 1990). It was successfully reducing the BCX S22C, as discussed 

and seen in section 4.2.1.3.1, therefore the logical assumption was that the TCEP 
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was somehow reacting with the linkers. The NMR analysis of the TCEP and vinyl 

pyridine reaction clearly showed the consumption of the vinyl peaks and the 

generation of a new product; this was determined in line with a study done by Shafer 

et al.,(2000).   

 

Although the TCEP was incubated with the protein prior to addition of the PEG-

linkers, the TCEP is consumed via its side reaction with the linker-PEG. With the free 

TCEP being mopped up by the molar excess PEG-PermaLink, the protein had little 

chance of maintaining a reduced state and therefore reacting with any PEG-linkers 

which were available. This was an important result to have obtained and was 

essential in attempting to conjugate larger PEG molecules and eventually, 

therapeutic proteins.  

 

5.2.3.4 Instigation of Method 3 

The immobilised TCEP resin was a helpful alternative in the reduction of BCX S22C. 

The TCEP reduced the protein, but immbolization on a resin allowed removal (which 

was now known to be essential) to happen much more easily than method 1. The 

entire reaction could be set up in just over an hour. The results of the reactions are 

indicative of this; maleimide and PermaLink™ linker 12 show near complete 

conversion with 86 (±4.8)% and 76 (±7.9)% PEGylated respectively (n=3). As seen 

with method 1 however, with the maleimide-PEG being in its optimum conditions, 

multi-PEGylation is detected. At pH7, the determined optimum for the PermaLink 

structures, this is not seen indicating a higher thiol specificity for Permalink 

compared to maleimide compounds.   
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Chapter 6.0 Higher Molecular Weight PEGs for Therapeutics 

6.1 Model Protein – BCX S22C 

 

6.1.1 Introduction 

Increasing the size of the molecular weight PEG attached to the therapeutic protein 

will have beneficial effects on its therapeutic availability. A large PEG molecule will 

firstly prevent clearance through kidney ultrafiltration, not only by increasing its 

overall size but also by masking its charge and chemical composition (Caliceti & 

Veronese, 2003). The molecular weight cut off for kidney ultrafiltration is 70KDa, 

however, if proteins are of a higher molecular weight (or heavily glycosylated for 

example) they are removed via other pathways like liver uptake and proteolytic 

digestion. Therefore therapeutic proteins are often designed to be below 70KDa to 

prevent rapid clearance by these other mechanisms.  

 

As mentioned previously, BCX S22C is an ideal model protein as it is well 

characterised, both its function and structure (Wakarchuk, 1994). It is also of similar 

molecular size to most cytokines, a commonly manufactured therapeutic. In these 

experiments, PermaLink structure PL-LK-12 (figure 5.1.3.1(A)) with a 20KDa PEG is 

used (PermaLink12-P20K), being the most developed linker available from Glythera 

Ltd. at that time.    

  

6.1.2 Summary of Results 

 PermaLink12-P20K successfully conjugates to BCX S22C using method 3 

 PermaLink12-P20K is less reactive with BCX S22C than PermaLink12-P2K 

 

6.1.3 Results 

6.1.3.1 BCX S22C and PermaLink12-P20K and P2K 

 

Method 3, the immobilised TCEP resin, was concluded to be the best approach to 

reduce BCX S22C protein prior to reaction with Permalink Linkers (see chapter 5). 

However, a clear difference is seen between the extent of PEGylation when the size 
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of the PEG molecule is increased (figure 6.1.3.1 and 6.1.3.2). With the 20 KDa PEG 

attached to Permalink 12, FPLC analysis of the reaction shows three distinct peaks, 

highlighting 3 different components within the reaction mixture (figure 6.1.3.1A). 

SDS PAGE and coomassie staining demonstrates that the first peak contains 

PEGylated protein as there is a shift in molecular mass; that is 21KDa of the BCX S22C 

protein and 20KDa for the PEG. The protein band itself however, falls just under the 

72KDa molecular weight marker of the protein ladder; as previously mentioned, due 

to the migration of the PEG molecule through the polyacrylimide gel, it does not fall 

at its accurate molecular weight (Kurfust M. M., 1992). Both the second and third 

peak contain unreacted protein (figure 6.1.3.1B), with the third peak being the dimer 

of BCX S22C, which had been reduced prior to running on the SDS PAGE.  

  

When this result is compared to the same reaction with PermaLink12-P2K, a stark 

contrast is seen (figure 6.1.3.2) with the extent of reaction. The FPLC trace (figure 

6.1.3.2A) shows a peak eluting off the column, and when analysed by SDS PAGE 

(figure 6.1.3.2B), this contains the 2KDa PEGylated protein when compared to the 

BCX S22C control. These results indicate that the reaction has gone to completion, 

with unreacted protein being undetectable.         
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Figure 6.1.3.1BCX S22C and PermaLink 12-P20K 

 

     

 

 

Figure 6.1.3.1 – BCX S22C and PermaLink12-P20K. 1mg of BCX S22C was reduced for 2 hours using an immobilised TCEP resin (method 3) and then reacted 

with 2 molar equivalents of PermaLink 12-P20K PEG and left to react overnight. (A) shows the FPLC trace for the reaction, with three distinct peaks 

detected. Analysis of the fractions within these peaks by SDS PAGE (B) shows they equate to a PEGylated product, the monomer and the dimer.  

 

 

 

(A) FPLC trace of overnight reactions mixture of BCX S22C and PermaLink 12-P20K (B) SDS PAGE of fractions from FPLC of the reaction 
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Figure 6.1.3.2 - BCX S22C and PermaLink 12-P2K 

 

                          

 

 

 

Figure 6.1.3.2 - BCX S22C and PermaLink 12-P2K. 1mg of BCX S22C was reduced for 2 hours using an immobilised TCEP resin (method 3) and reacted with 2 

equivalents of PermaLink 12-P2K and left overnight. (A) shows the FPLC trace at the end of the reaction, with only one peak detected. The SDS PAGE in (B) 

confirms that this one peak is the PEGylated form of BCX S22C, when compared to the control. 

(A) FPLC trace of overnight reactions mixture of BCX S22C and PermaLink 12-P2K (B) SDS PAGE of fractions from FPLC of the reaction 
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6.2 Therapeutic Peptide – sCT 

6.2.1 Introduction 

Salmon calcitonin (sCT) is the most widely used source of calcitonin for clinical use 

because of its increased potency and improved analgesic properties (Chesnut et al., 

2008). It is commercially available in an injectable form or as a nasal spray; 

formulations of sCT which would be orally available are also being developed. Low 

molecular weight peptides such as sCT can show more improved pharmacokinetic 

properties when PEGylated than proteins.  This is because their half life is 

substantially increased after PEGylation, because usually, they are subject to rapid 

elimination by renal clearance (Youn et al., 2007). sCT does not require the 

disulphide bridge to be bioactive (Orlowski et al., 1987), which means that the two 

cysteine residues 1 and 7 can be targeted for PEGylation for thiol specific 

conjugation. sCT has previously been PEGylated by maleimide PEG conjugates at 

both cysteine 1 and 7 (Cheng et al., 2006).  

 

In these experiments, 20 KDa PermaLink12 PEGs are attached to sCT using method 3. 

Due to the size of the peptide, coomassie staining is not detected on an SDS PAGE 

very well and therefore PEG dye has been used. It is worth noting here that 

coomassie staining which was detected did correspond to where the PEG dye stained 

the SDS PAGE.   

 

6.2.2 Summary of Results 

 sCT reacts with PermaLink12-P20K to produce two different PEGylated 

species of sCT 

 PermaLink structures are more specific to cysteine residues than maleimide 

linkers.  

 MonoPEGylated product of sCT and PermaLink12-P20K is formed within 30 

minutes, however, the diPEGylated form increases over time. 
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6.2.3 Results 

6.2.3.1 sCT and PermaLink12-P20K and P2K reactions 

 

sCT reacts with PermaLink12-P20K to produce two different PEGylated species of 

sCT. This correlates to the two cysteine residues present available for conjugation, 

and therefore the mono- and di- PEGylated form of sCT.  The FPLC trace of this 

reaction can be seen in figure 6.2.3.1A where both the mono- and di-PEGylated 

forms are present in the same UV peak in the FPLC trace. The resultant molecular 

weights of the products of the reaction would be 3.2 KDa + 20 KDa = 23.2 KDa for 

mono-PEGylated; and 3.2 KDa and 40 KDa = 43.2 KDa for di-PEGylated. However, 

analysing the FPLC fractions by SDS PAGE and staining with a PEG dye (figure 

6.2.3.1B) shows the bands falling at about 55 KDa and 100 KDa. This is to be 

expected however, due to how PEGs migrate through an SDS PAGE.  

 

sCT and PermaLink12-P2K react well as can be seen when analysed by FPLC (figure 

6.2.3.2A). The content of the FPLC fractions from this reaction were very hard to 

detect on SDS PAGE due to the size of the conjugates. However, a faint PEGylated 

band at approximately 15KDa can be seen (figure 6.2.3.2B). In terms of the extent of 

PEGylation when comparing conjugation of P20K and P2K reactions, quantifying it by 

SDS PAGE is not practical. The absorbance value can be looked at as an alternative, 

the reaction with the P2K reaches 30 mAU and the P20K only reaches 10 mAU. 

Similarly, the observed ratio between PEGylated and non-PEGylated species appears 

equal with the P20K reaction (figure 6.2.3.1A).  
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Figure 6.2.3.1 sCT and Permalink12-P20K 

  

                             

 

 

Figure 6.2.3.1 sCT and Permalink12-P20K. 1mg of sCT was reduced for 30 minutes and then reacted with 2 molar equivalents of PermaLink12-P20K and left 

overnight. There are 2 peaks detected through FPLC analysis (A) and through analysis on SDS PAGE (B) and staining with PEG dye, they equate to PEGylated 

and non-PEGylated sCT. Within the PEGylated fractions, two PEGylated species are detected (B).  

 

 

 

 

(A) FPLC trace of overnight reactions mixture of sCT and PermaLink12-P20K (B) PEG stained SDS PAGE of fractions from FPLC of the reaction  
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Figure 6.2.3.2 – sCT and Permalink12-P2K 

 

 

                  

 

 

 

Figure 6.2.3.2 – sCT and Permalink12-P2K. 1mg of sCT was reduced for 30 minutes and reacted with 2 molar equivalents of Permalink 12-P20K. FPLC 

analysis of the reaction can be seen in (A), where two peaks are detected. Analysis by SDS PAGE and staining with a PEG dye shows a faint band at 

approximately 12 KDa (B) , indicating the larger peak is the PEGylated species.   
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6.2.3.3.1 - sCT and PermaLink 12-P20K and Maleimide 20K Crude reactions and sCT 

and PermaLink 12-P20K Time Course 

 

To analyse the complete reaction mixture without it being diluted by FPLC, the crude 

reaction was run on an SDS PAGE (figure 6.2.3.3A). Here the two bands, which are 

seen in the reactions separated by FPLC, are detected by the PEG dye at the same 

molecular weights as seen previously in these reactions (figure 6.2.3.1B) for 

PermaLink12-P20K. This reaction is directly compared to Maleimide-P20K and there 

is clear evidence for non-specific and multi-PEGylation with Maleimide chemistry. 

Several bands of very high molecular weight are detected in the lane with the 

Maleimide-P20K reaction, none of which are seen with PermaLink12-P20K. 

 

Figure 6.2.3.3 - sCT and PermaLink 12-P20K and Maleimide 20K Crude reactions 

and sCT and PermaLink 12-P20K Time Course 

 

 

 

Figure 6.2.3.3 Crude reactions (not separated by FPLC) were run on an SDS PAGE and stained 

with PEG dye (A). Maleimide-P20K reaction (lane 1) clearly shows non-specific PEGylation, 

whereas PermaLink 12-P20K and sCT (lane 2) does not. 
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The speed of the reaction between sCT and PermaLink12-P20K was briefly 

investigated (figure 6.2.3.3B). It can be seen that after 30 minutes the mono-

PEGylated species appears to have reached its maximum levels, with the intensity of 

the band remaining the same even at the longer time points. However, the intensity 

of the di-PEGylated species increases over time.  

 

 

 

 

Figure 6.2.3.3(B) A time course looking at PermaLink 12-P20K speed of reaction was 

conducted and samples were run on an SDS PAGE (B), it can be seen the reaction occurs 

within 30 minutes, but more of the di-PEGylated species is formed over time.  
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6.3 Discussion 

6.3.1 PermaLink12-P20K reactions with model protein 

By analysing the reaction of PermaLink12-P20K with BCX S22C, an idea of the 

conjugation efficacy can be seen when reacting with therapeutic proteins. When 

comparing the reactions to those with the P2K PEG attached, it can be inferred that 

the larger PEG effects the reactivity of the linker as stated in Roberts et al., (2002). 

These experiments with PermaLink12 had been repeated at least 3 times, however, 

accurate quantification was not achieved using FPLC analysis. This can be improved 

upon, potentially by looking at the area under the curve. The structure of this 

product could also be looked at using mass spectrometry to ensure that the protein-

PEG ratio was 1:1. 

 

6.3.2 sCT and PermaLink12 Reactions 

sCT acted as a good model peptide to determine PEGylation efficacy with the 

PermaLink structures. It reacted very quickly with PermaLink12-P20K to form two 

different PEGylated species, the mono- and di- PEGylated sCT. This was seen with 

both the 2K and 20K PermaLink structures, however, analysis of the P20K reaction 

was more relevant to its potential commercial application.  

 

As seen in the figure 6.2.3.1 (A) there is still unreacted peptide within the reaction 

mix. Although the reaction was faster with the peptide than with the model protein 

BCX S22C, it perhaps is still not fast enough to react with the peptide before re-

oxidation. The two free cysteines reform the disulphide bridge and therefore do not 

allow further PEGylation. Although accurate quantification needs to be established, 

the amount of non-PEGylated to PEGylated sCT appears to be greater with the P20K 

reactions. This could indicate that access to the free cysteine residues is being 

hindered by the large PEG molecule.  

 

6.3.3 PermaLink P20K and Maleimide P20K Crude Reactions 

A direct comparison of Maleimide P20K and PermaLink12 P20K was difficult using 

FPLC analysis which diluted samples and allowed experimental variation. A crude 
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reaction mix of PermaLink12-P20K and Maleimide-P20K and sCT was run directly on 

an SDS PAGE (figure 6.2.2.3(A)). A pure reaction mix of both mono- and di- PEGylated 

product can be seen with PermaLink12-P20K when compared to multiple PEGylated 

species detected in the Maleimide reaction. This is in keeping with Sharpless & Flavin 

(1966) who determined Maleimide can also react with lysine residues on a protein 

surface, like sCT (Niall et al., 1969). Maleimide has previously been seen to react with 

these lysine residues (Youn et al., 2006); in this case, non-specific PEGylation 

highlights PermaLink benefits in a commercial setting.  
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7.0 Conclusions 

Overall conclusions drawn from these data are as follows –  

1. Permalink Technologies target cysteines more specifically than maleimide 

linkers in conjugation reactions 

As seen in figure 4.2.2.3.3 the crude total reaction mixture of therapeutic peptide 

sCT and maleimide 20KDa PEG results in multiple PEGylated species being 

created in the reaction. This demonstrates maleimide’s lack of specificity for 

cysteine residues when compared to the same reaction but with Permalink12-

P20K reaction seen in figure 6.2.3.3, where only the mono- and di- PEGylated 

species are detected. This is a desirable property of Permalink technology in 

regards to commercial conjugation chemistry. 

 

2. Increasing the size of the PEG molecule affects the rate and extent of reaction 

Chapter 6 highlights the difference in reactivity of the Permalink linkers when the 

size of the PEG molecule is increased. Extent and speed of reaction is reduced 

overall, the latter of which can be inferred by the amount of dimer which has 

reformed by the end of the reaction. Commercially viable PEGd therapeutics 

need to be at least 20KDa in size to improve the pharmacokinetic properties of 

the therapeutic. If the reactivity of PermaLink structures are affected by the 

larger sized PEG molecules then the benefits of specificity are redundant. 

 

3. Further method development is required to improve the conjugation with 

Permalink Technologies to make them more viable for use in a commercial 

setting. 

a) Protein purification 

There are various stages in these experiments where potential for loss of protein or 

linker-PEG needs to be reduced, as well as more accurate ways of quantifying results. 

Firstly, in protein production and purification, a substantial loss of protein is very 

probable due to extensive concentration which is required after FPLC purification. 

Perhaps protein precipitation as outlined in Gräslund S., et al. (2008) would be a 

faster and more effective way of purifying proteins. Running the precipitated protein 
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through the FPLC would only have to happen once, reducing the number of times 

the protein would have to be filtered and concentrated.  

 

b) Reduction of the protein  

As in method 2, the ability to have accurately measured the amount of protein in the 

reaction and not have to move it around or change holding vessels would have been 

beneficial to reduce protein loss. Unfortunately as it was not plausible to leave TCEP 

in the solution when attempting conjugation because of TCEP reacting with PermLink 

structures, a TCEP resin was employed so the protein can be separated from the 

reducing agent. This was an inaccurate procedure as real care had to be taken to 

ensure none of the TCEP resin was taken up when removing the protein. I would 

suggest that more precision could be achieved if this was done on a larger scale, as 

both visually and practically this would have been easier.  

 

c) Quantification of results 

i) With more accurate knowledge of the amount of protein in a reaction, 

more precise methods for determining the extent of PEGylation can be 

calculated. ELISAs designed for PEGylated protein could be a very useful tool. 

ii) Similarly, characterisation of the product from the conjugation reaction 

could help find more ways to quantify the results. Tandem Mass Spectometry 

(MS/MS) could be used to determine the site at which the PEG has attached; 

a method used to determine the site of glycosylation in carbohydrate 

chemistry (Domon & Costello, 1998). 

iii) Activity assays would also be helpful in establishing whether the protein 

was still active, even with large PEGs attached.   

 

Overall, PermaLink technologies have benefits of specificity for thiol groups on 

proteins when compared to maleimide. The efficiency and speed of reaction will 

undoubtedly be improved with further linker development.   
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