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Abstract 

For users away from the office or home, there is an increasing demand for mobile  

solutions that offer effective collaborative facilities on the move.  The mobile 

cellular device, or “smart phone”, can offer a ubiquitous platform to deliver such 

services, provided that its many physical and technological constraints can be 

overcome. 

In an effort to better support mobile collaboration, this thesis presents a 

contributing Mobile Exchange Architecture (MEA) designed to improve upon 

the capabilities provided by mobile devices to enable synchronous exchange of 

digital media during a phone conversation using wireless networks and cellular 

devices.  This research includes the design and development of one such MEA in 

the form of a fully functional Photo-conferencing service, supporting shared 

remote interaction techniques, simultaneous voice communication and seamless 

digital media exchange between remote and collocated mobile users. 

Furthermore, through systematic design, experimental evaluations and field 

studies we evaluate the effects of different shared remote interaction techniques – 

„pointing‟, „scaling‟, „mixed‟ and „hybrid‟ – assessing the task effort required by 

users when interacting around shared images across resource constrained mobile 

devices. 

This thesis presents a direction for the future development of technologies and 

methods to enable a new era of scalable always-to-hand mobile collaborative 

environments. 
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Chapter 1 

Introduction  

“Any sufficiently advanced technology is indistinguishable from magic” Arthur C. Clarke 

1.1 Introduction 

Today, there are 1.5 billion television sets in use around the world.  1 billion people are 

on the Internet.  But nearly 3 billion people have a mobile phone, making it one of the 

world's most successful consumer products.  April 3, 2008 marked the 35th anniversary 

of the first public telephone call placed on a portable cellular phone.  Martin Cooper (now 

chairman, CEO, and co-founder of Array Comm Inc) placed that call on April 3, 1973, 

while general manager of Motorola's Communications Systems Division. 

It was the incarnation of his vision for personal wireless communications, distinct from 

cellular car phones.  That first call, placed to Cooper‟s rival at AT&T‟s Bell Labs from 

the streets of New York City, caused a fundamental technology and communications 

market shift toward the person and away from the place. 

"People want to talk to other people - not a house, or an office, or a car.  

Given a choice, people will demand the freedom to communicate wherever 

they are, unfettered by the infamous copper wire." Martin Cooper. 

There has since been a worldwide boom in the penetration of mobile telephony devices 

that have had a profound effect on the global technologies landscape.  Far-reaching 

cellular voice networks provide the potential for people to make themselves available for 

phone calls with any person, at any time.  Mobile data networks have become more 

practical in coverage and bandwidth, fostering improvements in offerings that seek to 

bring the successful communication modalities of the fixed Internet (e-mail, instant 

messaging and social networks) to the mobile domain. 
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The efficiencies mobile technologies bring have also boosted development in poorer 

countries.  Developing nations now make up 58% of handset subscribers worldwide.  In 

rural communities in Uganda, South Africa, Senegal and Kenya mobile phones are 

helping traders get better prices, ensure less waste and are selling their goods faster 

(according to the United Nations Conference on Trade and Development: UNCTAD). 

Advances in mobile hardware have kept pace with that of the mobile infrastructure.  

Modern handsets ship with high-resolution colour displays, processing power on a par 

with lower-end personal digital assistants, stereo sound, and most notably an increase in 

the number of devices supporting integrated digital cameras.  According to forecasts from 

Gartner Inc, worldwide sales of camera phones, which have almost tripled since 2004, 

will reach 460 million units in 2006, an increase of 43 percent from 2005, and account for 

48 percent of total worldwide mobile phone sales.  This trend is set to continue, leading to 

sales of one billion camera phones by 2010 [Gartner 2006]. 

While the telecommunications industry has been in the business of connecting people for 

nearly a century, the contribution of new services such as SMS to operators‟ main 

revenue stream in addition to the traditional voice capabilities has not only taken 

operators by surprise but has also put them on the lookout for additional revenue 

opportunities such as those offered by 3G networks and Multi Media Messaging (MMS). 

Figure 1.1 Mobiles are helping some nations leapfrog older 

technologies. 
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Evidence however shows that despite heavy investments in 3G networks to drive new 

services such as MMS, the MMS service has been described as “a flop” [Economist 

2006] and SMS still remains the dominant collaborative service globally for 2006, 

accounting for 56% of end user spending on mobile data services [IDC 2006]. 

Through “social shaping” [MacKenzie and Wajcman 1985] it is possible to argue that 

MMS‟s picture sending capabilities as opposed to SMS‟s texting capabilities, fails to 

meet user needs.  An emerging body of research on cameraphone use [Kindberg, et al. 

2005, Van House and Davis 2005] indicates that people want to share images, however 

image sharing is itself a complex research space, and mobile users are often frustrated 

when trying to share images remotely and interactively [Aoki et al. 2005]. 

1.2 Problem Statement and Research Goals  

Private and business communication and collaboration is increasingly being freed from 

temporal and spatial constraints.  Many traditional ways of interacting which required 

temporal or spatial coordination have given way to much more flexible and adaptive 

distributed and mobile interaction styles among businesses and people.  More and more 

users are searching the Internet from their phones, and the phone itself is evolving into a 

computer platform.  In the future, there may be no desktop or laptop computers; instead, 

the only computer you use could be the mobile phone. 

The need for continuous collaboration irrespective of physical location and organizational 

boundaries is becoming a typical setting which produces new complex scenarios that 

have to be supported by technologies combining paradigms from a multiplicity of 

research areas, such as distributed systems, CSCW, mobile data management, databases, 

knowledge management and software engineering. 

Independently of the business domain, private collaboration has become a hot issue.  

Virtual communities and so-called “social networks” have enjoyed a tremendous 

popularity recently and are starting to require functionalities for collaboration in the 

broadest sense similar to those in business environments.  The widespread availability of 

mobile devices makes support for mobility a rising topic across these domains. 

Although mobile devices free users from a socket and cable, mobility brings about a new 

level of challenge, including time-varying wireless channels and dynamic topology and 

connectivity. 
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Weiser introduced the notion of ubiquitous computing in 1991 [Wieser 1991]:   

“The most profound technologies are those that disappear.  They weave 

themselves into the fabric of everyday life until they are indistinguishable 

from it.”  Mark Weiser. 

The heterogeneity of networks, hardware, software, services and information makes it a 

challenging task to provide a transparent computing system from the user point of view.  

Mobility means that some of the assumptions of how to create distributed systems are 

challenged.  Wireless network connections are intermittent with varying bandwidth and 

quality.  Mobile devices are resource-weak to allow them to slip into one‟s pocket and to 

operate on battery power. 

This dissertation is motivated by the difficulties mobile users have in sharing media 

remotely and interactively with others.  The research question this thesis addresses is 

“How can we better design systems to support interactive media exchange across 

resource constrained mobile cellular devices?”. 

1.3 Contribution and significance 

Mobile cooperative services are an emerging field of research in providing always-at-

hand communication capabilities to users on the go.  In an effort to contribute to our 

understanding of and improve upon the capabilities provided by mobile devices to 

exchange rich media content between remote participants, this work provides a novel 

combination of robust mobile systems engineering with an investigation of related user 

interaction techniques, contributing to the design, implementation and evaluation of 

digital media sharing solutions in the mobile domain. 

A review of the literature on media sharing on mobile phone based devices suggests a 

need for rich interactivity that simply doesn’t exist with current mobile services.  

Adopting an architecture led investigation into mobile media sharing we developed a 

complete mobile exchange architecture and functioning end to end system that works 

across all 3G mobile cellular networks to support the unique properties of cellular mobile 

environments. 

We have also demonstrated the instantiation of this system as a mobile photo-sharing 

application.  Although this is an important example of the kind of applications that can be 

supported, we intend the underlying architecture and its interaction techniques to be more 

generically applicable across a range of mobile activities and services. 
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A robust distributed co-ordination engine is responsible for the  management of all active 

cooperative sessions and supports scenarios from simple media- and location-sharing 

services to distributed gaming utilising an extensible plug-in systems architecture.   The 

dissertation goes on to provide a comparative evaluation of remote interaction techniques, 

“Pointing”, “Scaling”, “Mixed” and “Hybrid”, assessing their impact on users‟ actual 

performance and perceptions, helping to advance and inform the design of systems to 

support digital media exchange across mobile devices. 

Unlike much of the previous work in this area, which has largely focused upon desktop 

based cooperative environments, our solution was designed and built from the ground up 

and evaluated across resource limited mobile cellular devices.  Inspired by rich real-time 

interactions, we designed and iteratively prototyped a fully functional mobile architecture 

which supports real time digital media exchange and interactions across collocated and 

remote mobile cellular devices with the simultaneous use of an active phone call.  This 

dissertation presents the ideation, conceptual architecture, high-fidelity prototyping, 

evaluation and iterative prototyping of the mobile architecture, engendering new 

directions for future work in this area. 

1.4 Organization of Dissertation  

The goal of this dissertation is to investigate how best to support mobile digital media 

exchange and to design and build an architecture to enable the creation of such mobile 

services.  There are therefore two distinct strands of research that are intertwined in this 

dissertation.  Figure 1.2 summarises how the different chapters of the dissertation relate to 

each other. 

 Chapter 2 discusses related literature.  We start with a structured review of 

computer mediated communication, CSCW, groupware and relevant projects 

exploring software design and interaction techniques for collaborative 

environments.  We then conclude by covering themes in mobile media exchange 

practices, their key challenges and design principles.  This chapter informs our 

ensuing discussions and investigations into mobile media exchange and the 

development of such cooperative solutions. 

 Chapter 3 investigates the cellular landscape.  As this thesis is primarily about 

supporting digital media exchange across mobile cellular devices supported by an 

active voice channel, this chapter is devoted to providing a brief overview of the 

GSM data networks, their constraints and the challenges each entails in order to 

facilitate mobile media exchange over cellular networks and devices. 
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 Chapter 4 builds upon chapter 3, reporting on the design of a layered mobile 

exchange architecture that provides a bespoke Session Management Engine, 

Distributed Coordination Engine, Distributed Exchange Engine, Adaptive 

Throttling Mechanism and development APIs.  The outcome of this chapter is a 

robust mobile architecture on which we can build fully functional mobile 

solutions that work over existing 3G cellular networks as outlined in the next 

chapter. 

 Chapter 5 builds upon chapters 3 and 4.  Here we present a fully functional 

instantiation of the mobile exchange architecture presented in chapter 4 in the 

form of a Photo-Conferencing service.  We outline the procedure by which the 

system was built on commodity mobile hardware, describe design decisions and 

introduce remote gestural interactions that we evaluate at length in the following 

chapter. 

 Chapter 6 builds upon chapter 5.  This chapter describes four specific interaction 

additions to the mobile exchange architecture.  The first study provides an 

evaluation of the remote interaction techniques offered by a photo-conferencing 

instantiation of our mobile exchange architecture, evaluating differences between 

remote pointing, scaling and mixed interaction techniques.  The second study 

evaluates a new hybrid interaction technique developed by combining the most 

successful characteristics of the interaction techniques found in our first study.  A 

third, field-based, study evaluates user engagement with the photo-conferencing 

service and reports implications for the design of such mobile collaborative 

services. 

 Finally, Chapter 7 concludes this dissertation with remarks related to the original 

research question and how it has been addressed.  This chapter also addresses the 

limitations of this work, discussing potential extensions and future avenues for 

related work. 
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Figure 1.2 Organization of the Dissertation. 
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Chapter 2 

Background 

& Related Work 

“The ecosystem is the computer and collaboration is its operating system” Marten 

Mickos 

2.1 Introduction 

Groupware applications typically enable a group of people involved in a common task to 

manipulate shared objects, and modify them in a coherent manner [Sun et al. 1998].  

These systems often incorporate a range of visual and auditory modalities to help groups 

communicate, cooperate, coordinate, solve problems, compete, negotiate and achieve 

their goals.   

There are many collaborative activities that may be amenable to technological support; 

examples include telephony, electronic conferencing, knowledge management, 

distributed communication, media sharing in social settings and collaborations between 

field- and office-based colleagues. 

The objective of this literature review is to provide a background to the various threads of 

research which are important for framing the research questions and the experiments that 

constitute the core of this thesis. This chapter covers the role of video mediate 

communications, mobile media exchange and the issues that brought researchers to 

design numerous technologies to support remote communication.  The goal of this 

chapter is to help inform our ensuing discussions and investigations concerned with 

media sharing on mobile devices and the development of mobile cooperative solutions. 
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Table 2.1. Space and time taxonomy for computer-supported cooperative 

work, with example applications [Ellis, et al. 1991]. Participants may be in 

the same place or different places, and may interact synchronously or 

asynchronously with each other. 

 

Space 

Same Different 

Time 

Same 
 

 Face-to-Face 

(Presentation Support) 

 

Synchronous Distributed 

(Videophone) 

Different 
 

Asynchronous 

(Physical Notice Board) 

 

Asynchronous Distributed  

(E-mail) 

2.2 Collaboration 

In the broadest definition collaboration refers to any activities that a pair of individuals or 

a group of people perform together.  However, it can be helpful to define collaboration 

more precisely.  Roschelle and Teasley [1994] define collaboration as a  

coordinated, synchronous activity that is the result of a continued attempt to 

construct and maintain a shared conception of a problem.   

Roschelle and Teasley [1994] also provide a definition of the difference between 

cooperation and collaboration: 

Cooperative work is accomplished by the division of labour among 

participants, as an activity where each person is responsible for a portion of 

the problem solving.  We focus on collaboration as the mutual engagement of 

participants in a coordinated effort to solve the problem together. 

Furthermore within Computer-Supported Co-operative Work (CSCW), collaboration 

stresses the idea of co-construction of knowledge and mutual engagement of participants.  

In this sense, collaboration can be considered as a special form of interaction, with 

CSCW collaborative applications falling into one of four groups (see Table 2.1), 

depending on whether the participants are in the same place or different places, and 
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whether they interact in real-time or through a series of disconnected events [Ellis et al. 

1991]. 

Although it is tempting to think that the goal of a system for synchronous remote 

collaboration should be purely to imitate a face-to-face conversation, this may not always 

be the case as outlined in the next section and there may be more effective ways to 

support many types of collaborative tasks, which may also exploit more effectively the 

strengths of the electronic medium [Hollan and Stornetta 1992].    

2.3 Video-Mediated Communication 

Video-mediated communication (VMC) refers to the tools and technologies that provide 

collaborators with visual and auditory access to remote spaces.  Early video-mediated 

communication has been around since the late 1920s and it has undergone many 

sequential technological shifts influenced by the latest hardware advancements and the 

rapid growth in Internet connectivity that have enabled new forms of remote 

collaboration, conferencing and distance learning [Finn et al. 1997]. 

Two streams of VMC research have emerged in parallel, both supporting synchronous 

communication between participants.  The earliest work focused on the replication of 

face-to-face communication through the use of the communication links to transmit facial 

images (a.k.a. talking heads), providing what Buxton [1992] calls personal space.  The 

second shifted the focus away from facial images and utilised the communication links to 

transmit information or video of the task being undertaken: „task space‟ (Figure 2.1). 

 

Figure 2.1: Person space versus task space: (left) a personal space is 

provided by a video link directly between two users; (right) a task space  

is a new domain in which the users can collaborate. 

Understanding the relevance of video communication for different tasks provides a better 

understanding to why early services such as the „Picturephone‟ described in the next 

section failed to take off and prevent such mistakes from being made to future mobile 

collaborative services. 
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In the next section we provide a brief overview of past VMC research aimed at sustaining 

collaborative work at a distance through video-mediated-communication.  This section 

provides a comparison between the use of VMC across personal and task space that is 

relevant to our research on mobile collaboration.  A more through overview of this area is 

provided by Finn et al. [1997] and by Kirk [2006]. 

2.3.1 Personal Space: Video-as-Presence 

As early as 1926, scientists at Bell demonstrated a telephone that transmitted a video 

image along with the audio.  Termed the Picturephone, this contraption was considered 

the logical next step for communication technologies; seeing as well as hearing the person 

you were talking to would bring the experience closer to being face-to-face and was 

“premised on the hypothesis that the more closely they mimic face-to-face 

communication, the more effective the communication that will take place” [O'Conaill et 

al. 1993; p. 391]. 

The Picturephone was introduced publicly at the 1964 World Fair (see Figure 2.2).  Its 

intuitive appeal fuelled positive forecasts of wide-scale adoption [Egido 1988] that lead to 

predictions that it would replace the existing voice-only telephone by the early 1970s.  

AT&T‟s Picturephone was a prime example of the use of video to create a sense of 

presence (commonly referred to as Video-as-Presence) by transmitting images of a 

person‟s face and shoulders.  Video-as-Presence is still in use today and can be seen in 

such internet applications as Apple‟s iChat (see Figure 2.3) and Microsoft Live 

Messenger. 

Products incorporating video-as-presence, such as AT&T‟s Picturephone have, however, 

been unsuccessful in attracting consumers and have displayed only a gradual growth 

among business customers [Whittaker 1995].  While often the goal of implementing 

video-as-presence is to improve communication and to reduce or eliminate employee 

travel, the results are often disappointing. 

A number of recent studies attempting to understand the reasons for its relative lack of 

success [e.g. Dourish et al. 1996, Finn, et al. 1997, Gaver et al. 1993, Heath and Luff 

1991, Sellen 1995, Tang 1992, Whittaker 2003] have shown that there is generally a 

preference among users for richer communication that includes video [Anderson et al. 

2000, Fish et al. 1992, Tang and Isaacs 1992], but current devices are often hampered by 

important limitations that can introduce negative artefacts that can compromise the 

interaction. 

 



34 
 

 

 

Figure 2.2: AT&T's Picturephone, unveiled at the 1964 World's Fair. 

 

Figure 2.3: Apple‟s iChat software. 



35 
 

There are, however, modest indications that video-as-presence enhances social and 

emotional aspects of communication, creating stronger feelings of connectedness between 

participants [Short et al.].  Further benefits provided by video-as-presence include the 

availability of nonverbal feedback and attitude cues, and access to a gestural modality for 

emphasis and elaboration [Anderson et al. 1997, Isaacs and Tang 1994, Isaacs and Tang 

1997]. 

Further, when there are lapses in the audio channel, the visual channel shows what is 

happening on the other side, providing important context for interpreting the pause 

[Isaacs and Tang 1994].  This ability to continually validate attitude and attention may be 

the reason why video-as-presence has been shown to particularly benefit social tasks, 

involving negotiation, bargaining and conflict resolution [Anderson, et al. 2000, 

Whittaker 1995, Williams 1977]. 

Isaacs and Tang [1992] have also found that incorporating video in remote interactions 

may support non-verbal communication and the mechanics of conversation, such as turn 

taking, monitoring understanding and adjusting to reactions.  People are also more willing 

to hold delicate discussions over video than over the phone, and for many, being able to 

establish the identity of the remote partner is important [Isaacs and Tang 1997].   

Groups that use video-as-presence tend to like each other better than those using audio 

only [Whittaker and O'Conaill 1997], though systems often fail to properly provide cues 

to the social context of the interaction, such as whether a conversation is public or private 

(you cannot see who is in the room outside the view of the camera), preventing users 

from framing their interactive behaviours [Lee et al. 1997]. 

Additionally many important limitations of VMC prevent it from achieving the full 

benefits of face-to-face.  Turn-taking and floor management is difficult in groups because 

it relies on being able to judge exact gaze direction, something that most video-as-

presence systems don‟t support [Isaacs and Tang 1994, Whittaker and O'Conaill 1997].  

Judging a collaborator‟s exact focus of attention when observing or helping with a task is 

difficult for the same reason [Neale et al. 1998].  Side conversations cannot take place 

and any informal communications have been shown to be extremely difficult to support 

[Nardi and Whittaker 2002].  Pointing and manipulation of actual shared objects is 

troublesome [Isaacs and Tang 1994, Neale, et al. 1998].  

Further, a number of variations on the classic video conferencing system have been 

developed, each attempting to address some of the limitations mentioned above.  For 

instance, to provide correct gaze cues, Sellen et al. [1992] developed a Hydra prototype 

(see Figure 2.4) in which a camera, display, microphone, and speaker are integrated.  The 

displays are small and the cameras positioned to maintain eye contact. 
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Figure 2.4: The Hydra four-way teleconferencing system. 

There are also social and practical barriers to the use of video telephony. Social barriers 

relate to people‟s concerns about privacy and a  reduced ability to control presentation of 

the self with video (though long term experiments with media suggest some of these 

concerns may disappear as video mediated relationships develop with time and in 

appropriate cultural contexts, [e.g. Dourish, et al. 1996].  Practical barriers to use in 

organisational contexts include the need to plan calls too far in advance, technical 

difficulties of setup and the need to use special equipment in dedicated rooms [Hirsh et 

al. 2005].  If the required effort is too high, people resort to the simpler and more widely 

available audio telephony [e.g. Martin and Rouncefield 2003, Tang 1992]. 

For tasks that primarily involve information exchange or simple problem solving the 

benefits of adding video have been investigated and it has been found that comparisons of 

video-as-presence and audio-only have generally not shown any benefits of video over 

audio-only communication [Anderson, et al. 2000, Tang and Isaacs 1992].  There is 

however demonstrable value of video to visually share objects in support of conversation 

between remote participants, rather than simply to share „talking heads‟ [e.g. Kraut et al. 

2002, Whittaker 2003].  Studies of the effects on communication in mediated 

environments have shown that sharing the same visual space (task-space) is an important 

aspect of communication [Sellen 1995, Stefik et al. 1987]. 
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2.3.2 Task Space: Video-as-Data 

The field of video mediated communication has long examined the effects of providing 

visual information to aid people in collaboration over distances; recent research shows 

however that not all forms of visual information is sufficient to aid in the communication 

process.  Examples such as the introduction of video telephony in the 1960s followed 

confident predictions that it would eventually replace voice only telephony but, as history 

and the benefit of hindsight has revealed, those predictions didn‟t bear out but eventually 

lead to several market failures [Harper and Taylor 2005]. 

A number of parallel studies of video mediated communication through “personal spaces” 

have investigated the additional utility of the technology to create “task spaces”, where 

images of the work objects themselves are transmitted between participants [Anderson, et 

al. 2000, Fussell et al. 2000, Gaver, et al. 1993, Nardi et al. 1993].  These studies were in 

response to a growing body of evidence that questions the importance of personal space 

in providing video as the form of presence (e.g. talking heads).  Whittaker [1995] argued 

that the research into the use of video has focused too much on supporting non-verbal 

communication and has neglected functions such as using visual information to initiate 

communication or depicting shared work objects. 

Early research on task spaces was conducted by Krauss and Fussel [1990, 1991] 

concerning the development of mutual knowledge and the construction of shared 

communicative environments for increasing communicative effectiveness.  They utilised 

an experimental design aimed at exploring the process of achieving grounded 

conversations through the design of different communication technologies. 

Rochelle and Teasley for instance, demonstrated that collaboration requires the 

construction and maintenance of a shared representation of the problem and stressed the 

role of shared understanding, and wrote that collaboration is “a coordinated, synchronous 

activity that is the result of a continued attempt to construct and maintain a shared 

conception of a problem” [1994; p. 70]. 

The research has demonstrated that collaboration requires the construction and 

maintenance of a shared representation of the problem [1994], that including a shared 

task space is important [Buxton 1992] and for tasks other than negotiation a task space is 

more useful than a personal space [Anderson, et al. 2000].  Shared task spaces were also 

found to be fundamental for coordinating awareness, through the “understanding of the 

activities of others” [Dourish and Bellotti 1992], which in turn provides a “context for 

your own activity” [Dourish and Bellotti 1992: 107]. 

Further, in collaboration, grounding is part of a refinement process through which actors 

refine what they mean, becoming more and more exact over time [Baker 1995].  They 
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increase their common ground when they add new related information.  This is done 

through the tools, the goal, the setting, or the individuals themselves [Baker et al. 1999] 

and that the constraints on achieving common ground, and the costs of doing so, change 

in the collaborative situation depending on the tools being used.  Task space was found to  

facilitate the negotiation  of „common ground‟ and a level of shared understanding of 

what is being discussed in a conversation between two or more parties [Clark 1992, 

Fussell, et al. 2000].  In an effort to explain this finding, later work [Gergle et al. 2004] 

demonstrated through sequential analysis how visual actions within a shared space can be 

used to replace elements of dialogue that would be necessary in the absence of visual 

feedback. 

Kraut, Gergle, and Fussell in their experimental setup (see Figure 2.5) demonstrated that 

the presence of a shared visual space significantly improved performance on the 

collaborative puzzle task [Kraut, et al. 2002].  The authors controlled whether the helper 

could see the space of the worker and could refer to the objects by the mean of „deictic 

expressions‟.  The puzzle based approach was taken to allow systematic manipulations to 

be made to the shared visual environments such that various parameters of their 

construction could be empirically compared. 

Through their experimental analyses Krauss and Fussell [1990] began to understand how 

task-focussed language evolved during the collaborative tasks.  The evolution of referring 

expressions and the developing awareness of common referents was shown to be 

significantly affected by the resources used to establish communication.  If a shared 

visual environment was enabled it was often observed to be of significant support to the 

smooth establishment of such critical communicative processes.  In their early work on 

the subject [Gergle et al. 2004, Kraut, et al. 2002], they demonstrated that the presence of 

the shared visual space significantly improved performance on the collaborative puzzle 

task and that interactional references further enhanced remote collaboration [Kraut et al. 

1996]. 

Gergle, Millen, Kraut and Fussell [2004] extended this finding by demonstrating that 

when the talk in collaborative tasks is mediated by text-based chat (such as Instant 

Messaging), persistence of the text messages improves task performance but less so than 

access to a shared visual space.  Through a series of sequential analysis techniques 

[Bakeman and Gottman 1997, Bakeman and Quera 1995, Fienberg and NetLibrary 1980, 

Fussell et al. 2004] they also demonstrated how action can replace explicit verbal 

instruction in a shared visual workspace.  They revealed that pairs with a shared 

workspace were less likely to explicitly verify their actions with speech.  Rather, they 

relied on visual information to provide the necessary communicative and coordinative 

cues. 
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Figure 2.5: The collaborative puzzle task. The Worker‟s view (left) and the 

Helper‟s view (right) from Gergle (2006) The Worker‟s screen consists  

of a staging area on the right hand side in which the puzzle pieces  

are shown, and a work area on the left hand side in which  

she constructs the puzzle. 

Recent research has shown that sharing a 2D visual space improves instruction in 

computer-based tasks [Karsenty 1999, Kraut, et al. 2002].  Other research has suggested 

the value of workspace oriented video systems for 3D tasks [e.g. MacWhinney 2000, 

Nardi, et al. 1993].  These studies suggest the importance of shared views of the 

workspace for remote collaboration on physical tasks and suggest that video systems 

which provide views of the work area are likely to be more useful in supporting 

awareness and grounding during collaborative physical tasks. 

2.4 Towards Mobile Collaboration 

An important emerging aspect is that people are mobile and do much of their work away 

from their office.  In response, Bellotti & Bly [1996] suggest that systems for 

collaborative work should be designed to support mobile collaborators.  In this section we 

examine the current drivers of mobile collaboration and the limitations imposed by the 

technology and usability that has to date limited its widespread adoption.   

The mobile phone initially started out as a hardware centric device and what you did with 

it was very limited, but making it small, cheap and sleek were key factors in its ever 

rising success.  Mobiles are now converging to become software driven devices.  That is 

not to say that the hardware is no longer important but the balance of what makes it useful 

and attractive is shifting to the software.  Companies such as Apple, Google, Nokia, RIM 

and Microsoft are depending more on the added value afforded by software to create 

more compelling consumer solutions.  Mobiles now account for a third of the top three 
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items people carry with them whenever they leave home in addition to keys and wallet 

[Ichikawa et al. 2005].  

Although mobile services that have collaborative elements have long been provided by 

mobile phone companies in the form of voice calls, text messages and more recently 3G 

multimedia messaging (MMS).  Their collaborative capabilities have been limited to the 

use of one channel at a time, with voice communication still the only real-time 

collaborative service available on cellular devices today. 

In an effort to contribute to mobile phone based collaborative architectures, we sought to 

improve upon the capabilities provided by mobile devices to exchange rich media content 

between remote participants.  The following literature review on media sharing across 

mobile cellular devices suggests a need for collaborative interactivity that simply doesn‟t 

exist with current mobile services. 

2.5 Mobile Media Exchange 

There has been a worldwide boom in the penetration of mobile telephony devices that 

have had a profound effect on the global technology landscape.  Far-reaching cellular 

voice networks provide the potential for people to make themselves available for phone 

calls with any person, at any time.  Consumer mobile data networks have become more 

practical in coverage and bandwidth, fostering improvements in offerings that seek to 

bring the successful communication modalities of the fixed Internet (e-mail, instant 

messaging and social networks) to the mobile domain. 

Advances in mobile hardware have kept pace with those of the mobile infrastructure.  

Modern handsets ship with high-resolution colour displays, processing power on a par 

with lower-end personal digital assistants, stereo sound, and most notably an increase in 

the number of devices supporting integrated digital cameras.  According to forecasts from 

Gartner Inc, worldwide sales of camera phones, which have almost tripled since 2004, 

will reach 460 million units in 2006, an increase of 43 percent from 2005 and account for 

48 percent of total worldwide mobile phone sales.  This trend is set to continue, leading to 

sales of one billion camera phones by 2010 [Gartner 2006]. 

While the telecommunications industry has been in the business of connecting people for 

nearly a century, the proliferation of new services such as SMS and their impact on 

operators‟ main revenue stream in addition to the traditional voice capabilities has not 

only taken operators by surprise but has also put them on the lookout for additional 

revenue opportunities such as 3G networks and Multi Media Messaging (MMS). 
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With more and more people capturing photos on the move, camera phones account for a 

large number of the photos we carry around with us.  Research suggests that technologies 

are becoming increasingly suitable for supporting collaboration around photos, and may 

potentially offer new forms of expression [Lindley and Monk 2008].  Evidence however 

shows that despite heavy investments into 3G networks to drive new services such as 

MMS, there has been relatively little use.  The MMS service has been described as “a 

flop” [Economist 2006] and SMS remained the dominant collaborative application 

globally for 2006, accounting for 56% of end user spending on mobile data services [IDC 

2006]. 

Through “social shaping” [MacKenzie and Wajcman 1985] it‟s possible to argue MMS‟s 

picture sending capabilities, as opposed to SMS‟s texting capabilities, fails to meet user 

needs.  An emerging body of research on cameraphone use [Kindberg, et al. 2005, Van 

House and Davis 2005] indicates that people want to share images, however image 

sharing is itself a complex research space, and mobile users are typically frustrated when 

trying to share images remotely and interactively [Aoki, et al. 2005]. 

2.6 Mobile Capture Culture 

Studies of cameraphone use paint a picture of successful adoption and creative 

appropriation, e.g. teasing [Kurvinen 2003], collaborative storytelling [Koskinen et al. 

2002] or the mundane “elevated to a photographic object” [Okabe and Ito 2003].  It 

appears that as relationships get more intimate, shared messages tend to get even more 

mundane.  While friends and acquaintances tend to capture and share moments, events 

and observations that are at least minimally interesting for the recipient, couples tended to 

share pictures and sounds about almost anything they happen to see or hear just to 

maintain a state of closeness through “visual co-presence” [Ito 2005]. 

Most intriguing, perhaps, are the breadth of ways that users have appropriated 

photographs in computer-mediated communication technologies.  Mäkelä et al. noted that 

photos were used for joking, expressing emotion, and sharing art [Mäkelä et al. 2000].  

Ling and Julsrud [2004] identified six genres of use including documentation of work-

related objects, visualization of details and project status, snap shots, postcards, greetings 

and chain messages. 

Investigating emergent practice of camera phone use in Japan, Okabe employed 

ethnographic diary studies of camera phone usage patterns and identified three social 

usages of cameraphones: archiving, intimate sharing, and peer-to-peer news and reporting 

[Okabe 2005].  Kindberg et al. [2005] conducted a study into how and why people used 

cameraphones in both the UK and US in which they proposed a taxonomy of image 
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capture (see Table 2.2) that categorised images based on their social or individual uses 

and whether they were of an affective or functional nature. 

Van House also focused on identifying classes of pictures taken and shared by 

cameraphone users [Van House and Davis 2005].  Reporting on a 60-person study 

conducted over 10 months of an experimental Mobile Media Metadata (MMM2) system, 

Van House and Davis pinpointed four pre-existing practices from traditional photography 

that their participants adapted for cameraphone use: creating and maintaining social 

relationships, constructing personal and group memory, self-presentation and self-

expression.  In addition they identify two emerging categories: social commentary, e.g. 

journalistic shots, and functional uses, e.g. scanning written information. 

Voida and Mynatt [Voida and Mynatt 2005] noted that nearly two-thirds of the photos 

captured by their participants were that of the classic Kodak Culture [Chalfen 1987] and 

by at large, mobile multimedia seems to continue this tradition of ordinary snapshot 

photography, but makes it even more ad hoc in terms of what people choose to shoot 

[Koskinen, et al. 2002].  Cooley follows a similar theme in which she proposes that 

imaging with cameraphones is informed by an autobiographical impulse and, thereby, 

belongs to a long tradition of first-person forms of documentation [Cooley 2005]. 

Taylor and Harper adopt an anthropological and social view of cameraphone sharing in 

terms of the age old practices of „gift-giving‟ which they note as simply “great 

recurrences of ordinary society” and that “successful technologies are ones that afford the 

accomplishment of particular enduring cultural practices” [Taylor and Harper 2002]. 

Table 2.2. A taxonomy of image capture, showing numbers and 

 proportions of images by category [Kindberg et al. 2005].  
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Maia Garau identified seven classes in which shared pictures could be categorised, based 

on observations of users‟ emerging cameraphone social practices with „Radar‟ [Maia 

Garau 2006], a system designed to enable visual conversations between close friends.  

Based on this classification a shared museum picture could be categorised as a contextual 

photo. 

 Context: Location | Activity | Food | Time/Temperature 

 Portrait: Self | Friends | Animals 

 Visual interest: Scenery | Architecture | Poetic | Art shot 

 Media: Logo | Advertisement | Book | TV/film | Website 

 Humour: Amusing shot | In-joke | Running joke 

 Event: Mundane | Special 

 Travel: Information (e.g. boarding card) | Tourist shot 

Rivière argues that the act of sharing may be just about communication “Being 

multimedia tools, they increasingly use intimate play context, which have no rational 

purpose but rather aim at sensations, and in which the search for immediately shared 

pleasure is more and more visible” [Rivière 2005]. 

Koskinen describes cameraphone pictures as merely focusing on immediate life and it is 

this complexity of immediate life that has lead to many interpretations of use [Koskinen 

2007].  He continues to state what people see as important may result from years of 

symbolic and imaginary work, e.g. while “Paris” may be a sign on the map for one 

person, for another it may be an elaborate, exciting experience created over years of being 

there [Battarbee and Koskinen 2005].  In addition messages may be designed using 

complex constructs.  For example, people often take advantage of genres they find from 

media and culture, including documents, snapshots, postcards, greetings, and chain 

messages that are sometimes downloaded from the Web [Ling et al. 2005]. 

The breadth of this research on the uses of mobile image capture and sharing highlights 

the complexities involved, in which any intentions can be defined though several 

categories at once, for example Barthes talks about a portrait-photograph of himself as 

related to four versions of himself: the person he thinks he is, who he wants others to 

think he is, who the photographer thinks he is, and the person the photographer makes use 

of to exhibit his or her art [Barthes 1981].  In the next section we define a sharper focus 

for our research here on the digital media exchange capabilities afforded by the mobile 

capture and share technologies. 
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2.7 Mobile Sharing Limitations 

The recent literature around digital photography often remarks upon two trends.  First, 

there is the desire to move beyond the individual‟s taking, organising and storing photos 

to more social practices of sharing images and jointly constructing albums or archival 

collections [Frohlich et al. 2002].  Secondly, there is the increasing use of mobile phone 

cameras [Ito 2005] to provide opportunistic, spur-of-the-moment capture [Okabe and Ito 

2003, Van House and Davis 2005] and to enable the creation of “life documents” 

[Plummer 2001]. 

Whether increasingly capable camera phones will precipitate the demise of the consumer 

digital camera market or fuel it by introducing more people to the joys of digital 

photography is currently an open question.  What is clear, however, is that the sheer 

number of camera phones in use and their closeness to hand for their typical user makes 

the camera phone an increasingly common source of the images that people wish to share.  

However, the very ubiquity of the camera phone and the spontaneous capture of images 

in a wide variety of settings mean that in many of these settings the user has no access to 

other devices with which to display and share the captured photos.  Hence, moving from 

capture to sharing can involve the sharers huddling around the camera phone‟s screen 

[Kindberg, et al. 2005] or the photo taker posting it to an online archiving service.  The 

former approach has the advantage of maintaining the spontaneity of the photo capture 

and sharing in the moment.  The latter approach has the advantage of providing the 

sharers with copies, their own displays, tools etc at the expense of spontaneity. 

This has led to much research [Aoki, et al. 2005, Ito 2005, Kindberg et al. 2004, Maia 

Garau 2006, e.g. Okabe 2005, Van House 2007] into the limitations of camera phones 

and services for sharing images, such as MMS which currently remains relatively unused 

and under developed [Economist 2006].  Subsequent research has been dedicated to 

overcoming these difficulties [Van House and Davis 2005].  Solutions such as MMM2 

[Davis et al. 2005] sought to improve on several limitations of MMS, overcoming the 

size constraints imposed on MMS and streamlining the sharing process.  However, the 

MMM2 system didn‟t lead to an increase in mobile-to-mobile sharing.  Van House 

describes this as partly due to poor usability of the MMM2 phone interface and partly due 

to technical difficulties [Van House 2006].  Radar by Maia Garau et al [Maia Garau 

2006] was also designed to overcome the limitations of MMS mobile sharing.  Similarly 

to MMM2, Radar provides a mechanism to upload images directly to a web-based 

archiving solution for sharing images, differing only in its chronological representation 

and commenting capabilities. 

Okabe [2005] reports the “one channel at a time” interaction paradigm of MMS as 

causing many mobile users to be “frustrated when trying to share images remotely and 

interactively”.   
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Recent research points to participants needing richer capabilities to connect in the 

moment, undergoing the effort of using multiple devices to achieve ongoing 

conversations while sharing images [Kindberg, et al. 2005].  Similarly, mobile users have 

been observed transferring mobile images to instant messaging clients to enable 

conversation [Van House 2006].  This need for interactivity when sharing photographs 

has also been traced back to earlier ethnographic studies of collocated domestic 

photography by Chalfen, who argued that “[domestic photographs] are meant to be 

shared, and they are meant to prompt interaction” [Chalfen 1998]. 

Frohlich et al. [2002] proposed “Photo-Conferencing” as a service that could overcome 

these restrictions and provide a means by which users could engage in interactive 

computer-mediated photo-sharing practices, supported by a simultaneous telephone 

conversation, minimising collaborative effort [Clark and Brennan 1991].  However, 

current mobile devices and cellular networks present serious challenges to enabling this 

and previously no mobile cellular photo-conferencing service has been created.   

In this dissertation we report on the first such mobile photo-conferencing service.  The 

service we present here allows collocated and distributed 3G cellular users 

simultaneously to share, interact and converse in a real-time cooperative photo-

conferencing session through a single application. 

2.8 Chapter Summary 

In this chapter we started with an overview of the various strands of research relating to 

collaboration and the relevance of video communication for different tasks, and covered 

how face-to-face interaction provides people with many contextual cues such as facial 

expressions, body postures and  gestures that guide them as they interpret others‟ 

communication and interact with them [Goffman 1959].  We also saw that in distributed 

collaboration; depending on which medium is used, some or all of these cues disappear.  

Still, research has demonstrated that collaborators often find it more important to have a 

shared view of the work than to see each other [Anderson, et al. 2000, Buxton 1992, 

Gaver, et al. 1993, Kraut, et al. 2002, 1994].  However, if the team members are not 

sharing the same native language, video is especially important: the visual link supports 

them in showing their understanding through facial expressions and gestures [Veinott et 

al. 1999]. 

In the latter half of this chapter we presented the notion that the proliferation of small 

portable mobile devices may one day allow for new anywhere, any time collaborative 

capabilities that don‟t exist today.  Although there has been a growing body of work 

relating to the impact of video mediated communication on users and desktop 
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environments [e.g. Anderson, et al. 1997, Sellen 1995, Whittaker and O'Conaill 1997], 

very little research to date has investigated those effects across resource restricted mobile 

cellular devices that are rapidly becoming the most common form of user facing 

computing device. 

Mobile users are “frustrated when trying to share images remotely and interactively” 

[Okabe 2005] and the need for interactivity and interaction among participants is not fully 

met by current mobile and MMS practices. 

Our research is motivated by the difficulties mobile phone users have in sharing and 

engaging with media synchronously and interactively with others.  The goal is to explore 

how we can better design mobile systems to support such sharing and engagement in both 

collocated and remote settings using resource constrained mobile cellular devices. 

These devices also present unique research challenges for enabling those services across 

limited mobile hardware specifications, restrictive screen sizes and varying cellular 

networks that are susceptible to signal loss and network outages. 

The service we seek to demonstrate will allow both collocated and remote 3G cellular 

users simultaneously to share, interact and converse in a real-time cooperative session, 

providing mechanisms through which users can indicate focus [Turner and Kraut 1992] 

during a digital media session and construct what Crabtree et al. [Crabtree et al. 2004] 

describe as “a host of fine grained grammatical distinctions”. 

In the following chapters we report on the first such mobile phone based solution.  This 

project entailed a multifaceted challenge that required [1] an understanding of existing 

mobile technologies; [2] the creation of a mobile exchange architecture that supports the 

sharing of different forms of digital media (data types) between mobile devices; [3] the 

development of a mobile media-sharing solution; and [4] the evaluation of interaction 

techniques to support effective communication through this solution. 
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Chapter 3.   

GSM Cellular  

Architecture  

“The Mobile Web Initiative is important - information must be made seamlessly available 

on any device” Tim Berners-Lee 

3.1 Introduction 

The increased need for people and organizations to stay connected whilst changing 

physical location and crossing organizational boundaries has resulted in a wave of new 

portable devices, and generated interest in tackling some of the difficult research issues 

arising in developing technologies for such context. 

Mobile cellular devices and the networks on which they operate present new challenges 

in the forms of bandwidth constraints, intermittent connectivity issues and signal loss that 

sets them apart from traditional fixed networks.  These mobile cellular networks also 

present many opportunities to utilise the existing infrastructures to provide new services 

that harness the potential available in today‟s networks. 

This chapter provides the background to the mobile cellular landscape, looking at the 

existing infrastructure and deployed technologies, outlining limitations to existing 

technologies and important issues that need to be addressed in an effort to enable rich 

media exchange across mobile devices and networks.  The work reported in the rest of the 

thesis sets out to overcome many of these limitations and challenges.  
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3.2 Mobile Communication Systems 

The origins of mobile telephony date back to the 1920s, initially used with maritime 

vessels and not particularly suited to on-land communication.  The equipment was 

extremely bulky, the radio technology did not deal very well with buildings and other 

obstacles found in cities.  Further progress was made in the 1930s with the development 

of frequency modulation (FM), which helped in battlefield communications during the 

Second World War.  These developments were carried over to peacetime, and limited 

mobile telephony service became available in the 1940s.  Such systems were of limited 

capacity, however, and it took many years for mobile telephony to become a viable 

commercial product. 

Mobile communications as we know it today started in the late 1970s with the 

introduction of the first generation wireless systems, characterized by voice only 

(analogue) communication, with limited support for user mobility.  The analogue services 

provided methods of modulating radio signals so that they can carry information such as 

voice or data.  Analogue cellular phones worked like a FM radio, the receiver and 

transmitter are tuned to the same frequency, and the voice transmitted is varied within a 

small band to create a pattern that the receiver can reconstruct.  This limited the number 

of channels that can be used. 

Digital communications technology was introduced with second generation (2G) mobile 

systems in the 1990s.  In digital, the analogue voice signal is converted into binary code 

and transmitted as a series of on and off transmissions.  The second generation systems 

are characterized by the provision of better quality voice services available to the mass 

market and the introduction of the cellular concept in which scarce radio resources can be 

used simultaneously by several mobile users. 

Many of the early mobile communication systems utilised various standards, leading to 

incompatibilities across different countries and regions of the world.  It wasn‟t until the 

introduction of GSM that a true global mobile standard emerged.  This has driven a much 

tighter international cooperation around cellular technologies than for the earlier 

generations, resulting in economies of scale. 

GSM is the most used mobile communication system today and has been a major 

breakthrough in the domain of mobile communications.  GSM is currently the only digital 

technology that provides data services such as email, fax, internet browsing, and 

intranet/LAN wireless access, and it‟s also the only service that permits users to place a 

call from either North America or Europe. 
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This section provides important background to the various elements composing a typical 

GSM network and covers significant milestones in the evolution of its data transport 

capabilities, which will play an important role in the design of mobile cooperative 

environments.  Milestones covered in this section include the introduction of General 

Packet Radio Service (GPRS) to 2G networks, enhancements brought by 3G data 

networks and the evolution to Internet Protocol data networks.  This section concludes 

with an overview of GSM networks and their role in facilitating future mobile 

collaborative solutions. 

3.3 The GSM Architecture 

 

Figure 3.1: GSM Architecture. 

The mobile GSM technology was first launched in Finland in 1991.  Its growth has since 

exploded surpassing 100 million subscribers by 1999, to a billion by 2004 and over 3 

billion in 2008 [GSMA].  Given the widespread adoption of GSM a basic understanding 

is a prerequisite to the deployment of any new cellular technology.  The basic service of 

all GSM telephone networks is to provide a connection between two people, a caller and 

the called person.  To provide this service, the network must be able to set up and 

maintain a call, which involves a number of tasks: identifying the called person, 

determining the location, routing the call, and ensuring that the connection is sustained as 

long as the conversation lasts. 

In a fixed telephone network, providing and managing connections is a relatively easy 

process, because telephones are connected by wires to the network and their location is 

permanent from the network‟s point of view.  In a mobile network, however, the 

establishment of a call is a far more complex task, as the wireless (radio) connection 

enables the users to move at their own free will, providing they stay within the network‟s 

service area.  In practice, the network has to find solutions to three problems before it can 

even set up a call: 
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 Where is the subscriber? 

 Who is the subscriber? 

 What does the subscriber want? 

In other words, the subscriber has to be located and identified to provide him/her with the 

requested services. In order to understand how GSM is able to serve the subscribers, it is 

necessary to identify the main interfaces, the subsystems and network elements in the 

GSM network, as well as their functions. 

The main elements of the GSM architecture [3GPP-23.002] are shown in Figure 3.1.  The 

GSM network is composed of three subsystems: the base station subsystem (BSS), the 

network subsystem (NSS) and the operation subsystem (OSS) that allows the 

administration of the mobile network.  The main elements comprising this architecture 

and their roles are outlined in Appendix B.1. 

3.3.1 Early Mobile 2G Data Networks (GPRS)  

  

Figure 3.2: Second Generation GSM Architecture. 

An important evolution of the GSM architecture is the introduction of the data networks.  

The primary data services introduced in 2G were text messaging (SMS) and circuit-

switched data services enabling e-mail and other data applications.  The peak data rates in 

2G were initially 9.6 kbps.  Higher data rates were introduced later in evolved 2G systems 

by assigning multiple time slots to a user and by modified coding schemes. 
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Packet data over cellular systems became a reality during the second half of the 1990s, 

with General Packet Radio Services (GPRS) introduced in GSM and packet data also 

added to other cellular technologies such as the Japanese PDC standard.  These 

technologies are often referred to as 2.5G.  The success of the wireless data service iMode 

in Japan gave a very clear indication of the potential for applications over packet data in 

mobile systems, in spite of the fairly low data rates supported at the time. 

The infrastructure of 2G networks (see Figure 3.2) is in many ways very similar to that of 

the initial GSM architecture (see Figure 3.1), with two main additions in the form of the 

SGSN and GGSN added to the core network to provide internet connectivity. 

The introduction of simple data access to cellular devices in 2G networks marked an 

important transition in the evolution of mobile cellular networks supporting voice only 

communication among connected clients, into a platform capable of supporting rich data 

exchange, e-mail downloads and web-surfing whilst on the go.  The main elements 

comprising this architecture and their roles are outlined in Appendix B.2. 

3.3.2 Existing Mobile 3G Data Networks (UMTS) 

  

Figure 3.3: Third Generation GSM Architecture. 

Universal Mobile Telecommunications System (UMTS) marked the third evolutionary 

milestone in the history of the mobile cellular landscape.  3G networks brought improved 

speech quality and advanced data and information services. The primary data services 

introduced in 3G were multimedia messaging (MMS), access to e-mail and the internet 

and the ability to send and receive full-motion video. 
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The peak data rates in 3G were extended up to 2Mbit/s.  UMTS was designed as a true 

global system, comprising both terrestrial and satellite components and can be operated 

alongside GSM/GPRS networks. 

3G systems use different frequency bands, so mobiles won‟t interfere with each other.  

The General Packet Radio System (GPRS) outlined previously was designed to facilitate 

the transition from phase 2 GSM networks to 3G UMTS networks.  GPRS supplemented 

GSM networks by enabling packet switching and allowing direct access to external 

packet data networks. 

The 2G architecture optimized the „core network‟ for the transition to higher data rates.  

Therefore, the 2G architecture was an important prerequisite for the introduction of 3G 

UMTS networks.  For 3G networks to achieve higher data rates, the base station 

subsystems of earlier 2G networks are enhanced in the form of Radio Network 

Controllers (RNC) that makes up a UTRAN network, between the user equipment and the 

UMTS core network (see Figure 3.3).  The main elements comprising this architecture 

and their roles are outlined in Appendix B.3. 

3.3.3 Next Generation Mobile IP-Data Networks (IMS) 

  

Figure 3.4: IMS (IP Multimedia Subsystem) Architecture. 

The Internet Protocol Multimedia Subsystem (IMS) [Camarillo and García-Martín 2004] 

is an architectural framework for delivering the next-generation internet protocol (IP) 

voice and multimedia communications across mobile networks.  It was originally 

designed by the wireless standards body 3rd Generation Partnership Project (3GPP), and 

is part of the vision for evolving mobile networks beyond GSM. 
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Figure 3.5: IMS (IP Multimedia Subsystem) Layers.  

Unlike earlier 2G/3G networks that marked incremental updates to the data capabilities 

and bandwidth provided to cellular devices, IMS is designed to fill the gap between the 

existing traditional telecommunications technology and internet technology, enabling the 

convergence of data, speech and mobile network technology over an IP-based 

infrastructure that increased bandwidth alone will not provide. 

IMS was specifically architected to enable and enhance real time, multimedia mobile 

services such as rich voice services, video telephony, messaging, conferencing, and push 

services.  IMS enables these user-to-user communication services via a number of key 

mechanisms including session negotiation and management, Quality of Service (QoS) 

and mobility management over rich IP based protocols. 

IMS is specified as an incremental add-on to existing mobile 2G (see Figure 3.2), 3G (see 

Figure 3.3), wireless and fixed networks rather than a radical replacement.  In that sense 

IMS shares many of the existing technologies throughout its Subsystems and Core 

Network layers (see Figure 3.4).  IMS integrates at the GGSN gateway node enabling 

direct terminal connections using Internet Protocol (IP) over IPv6/IPv4 and Session 

Initiation Protocol (SIP) [Handley et al. 1999].  The main elements comprising this 

architecture and their roles are outlined in Appendix B.4. 

IMS differs from previous network architectures in that it provides an open framework 

designed on the success of the Internet and the IP-based services to deliver point to point 

connections.  IMS uses the SIP protocol (Session Initiation Protocol) for multimedia 

session negotiation and session management.  IMS is essentially a mobile SIP network 

designed to support this functionality, where IMS provides routing, network location, and 

addressing facilities. 

IMS systems are based on the four layer architecture (see Figure 3.5).  The bottom-most 

IMS access layer works with legacy circuit-switched networks along with the latest cable, 

packet and wireless networks, allowing IMS to function across access technologies.  IMS 
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also specifies an applications layer that supports a broad range of voice, video and 

multimedia applications.  The final two layers: control and transport provide the 

signalling and connectivity between users and their applications.   

3.4 Chapter Summary 

  

Figure 3.6: Network Agnostic Architecture. 

This chapter has thus far presented a detailed description of the GSM architecture, its 

global presence providing economies of scale to mobile operators and its current 

infrastructure and capabilities which are important for understanding and framing the 

work that is presented in the rest of this thesis.  Here we summarise those capabilities and 

limitations as they relate to rich mobile media exchange. 

 2G: Although 2G networks paved the way for data transfer to mobile devices, 

there were many inherent limitations in its early architecture.  Specifically the 

incorporation of device „classes‟ directly influenced the way in which mobile 

device stations (MSs) maintained voice and data connectivity.  As a cost 

reduction measure, the majority of mobile operators and device manufacturers 

opted to sell „Class B‟ rather than „Class A‟ GPRS devices.  Class B devices were 

limited to serve up voice or data to end-users but not both at the same time, which 

limits the communication functionality of 2G networks to a single 

communication channel. Additionally, slow data speeds, restricted services and 

inadequate software further limited communication functionality throughout early 

2G networks. 
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Figure 3.7: The TCP/IP and associated protocol OSI layers. 

Early 2G data services provided a giant leap forward in the ideas and visions that 

would shape future mobile services, but were limited both in capabilities and 

infrastructure.  Despite these limitations, simple mobile collaborative 

environments would have still been possible across 2G networks, albeit restricted 

to a single communications channel and limited in their real time interaction 

capabilities to the semi-real time exchange of small data packets. 

 3G: In contrast to earlier 2G and 2.5G networks, 3G networks presented the first 

evolutionary step towards the integration of mobile data and voice 

communication infrastructures, enabling new avenues of communication.  The 

main advantage of 3G networks lies in its simultaneous data and voice 

capabilities, unlike earlier 2G systems (see section 3.3.1).  3G enables users to 

talk on the phone (voice traffic) while simultaneously surfing the web, checking 

email or using applications such as Maps (data traffic). 

However, to enable mobile-to-mobile sessions, 3G networks would require the 

means to connect multiple participants.  Session Initiation Protocol (SIP) 

[Handley, et al. 1999] is one such IETF signalling mechanism used in the 

establishment, modification and termination of networked sessions between fixed 

network devices.  Though SIP works over fixed networks, it currently provides 

no support for ensuring delivery of data packets between mobile participants that 
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roam between different sub-networks, or any support for determining the location 

of a mobile host at session set-up time.  And because 3G networks borrow 

heavily from earlier 2G GSM architectural designs (see section 3.3.2), it too lacks 

the IP addressability needed to allow SIP‟s session management protocols to 

operate, establish the required connections and make use of UDP/TCP protocols 

to route data back and forth between connected devices. 

 IMS: The IMS application layers are a huge departure from traditional GSM 

architectures that consist of various proprietary protocols and silo applications, 

e.g. MMS that varied across different operators and networks.  This unified 

application layer introduces transparency to previously ungoverned operator 

network filtering and firewall restrictions, ensuring applications can receive and 

re-direct data packets along dynamic paths to their final destinations. 

The IMS upper layer applications approach is borrowed from the traditional 

networking model, and would be familiar to anyone who has come across the 

seven layer OSI model (see Figure 3.7).  This separation of software, hardware 

and underlying transport mechanisms reduces the reliance on a specific set of 

hardware or networking standards, allowing for the creation of network agnostic 

application services out of the box. 

Of the GSM networks presented, IMS offers the most potential to facilitate mobile 

exchange architectures (MEAs).  However, despite the many advantages IMS may one 

day deliver, it currently stands in sharp contrast to the commercially available 2G/3G 

cellular networks and still remains a far-away prototype that‟s yet to achieve commercial 

availability, currently limiting IMS‟s capabilities and applicability to reduced lab based 

scenarios.  Though this might change in the future, IMS‟s fluctuating roadmap has 

already resulted in many sceptics of the technology [Waclawsky 2005] and only time will 

tell whether IMS will truly live up to its goals and evolve from a mere prototype to a next 

generation mobile network. 

Therefore it would be more beneficial to facilitate mobile media exchange over existing 

2G/3G networks.  2G networks are however limited to a single communications channel 

and restricted bandwidth that would also limit their capabilities to support such features.  

By a process of elimination this leaves 3G networks as the only remaining cellular 

candidate to facilitate rich mobile media exchange.  However, unlike traditional fixed 

networks that support TCP/IP communication, in 3G networks there‟s no support for 

shared sessions or even direct mobile to mobile communication outside of voice only 

connectivity. 

Taking into account the lack of SIP capabilities in 2G/3G mobile networks and that it‟s 

common practice for mobile operators to heavily utilise firewall systems and ingress 
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filtering mechanisms to further prevent inbound data connections to mobile devices, the 

challenge then becomes how to enable SIP functionality over current IP-less 3G cellular 

networks.  In the next chapter we will look at how such an SIP layer can be incorporated 

into the creation of a mobile exchange architecture that can work across existing 3G 

networks. 
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Chapter 4.   

Mobile Exchange  

Architecture 

“It is the framework which changes with each new technology and not just the picture 

within the frame” Marshall McLuhan 

4.1 Introduction 

Our previous chapters have examined the need for mobile media exchange solutions to 

assist with our ever increasing nomadic lifestyles and have sought insight from the 

existing literature and state of the art to understand the current limitations and 

requirements to providing such services across the mobile domain.  In this chapter, as part 

of our efforts to further understand how we can better design and build systems to support 

digital media exchange across 3G mobile devices, we report the development of an end-

to-end mobile exchange architecture to create the foundation for future work that will 

allow users to communicate and exchange digital media across remote and co-located 

mobile cellular devices. 

This chapter describes the design of the mobile exchange architecture [Yousef and 

O'Neill 2007, Yousef and O'Neill 2008] to support the  sharing of different forms of 

digital media data types between mobile devices.  The chapter builds upon the GSM 

networks outlined in the previous chapter and provides technical insight into the 

implementation of a mobile exchange architecture that is vital to enabling rich mobile 

media exchange capabilities. 
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4.2 Mobile Exchange Architecture 

The mobile exchange architecture (MEA) is a set of contributing technologies targeted 

specifically at resource restricted mobile phone based cellular devices.  The architecture 

allows users to engage in digital media sharing during a mobile phone call, allowing the 

utilisation of the voice channel.  It uses a 3G internet connection to exchange data 

between participants and plain old telephone service (POTS) to exchange voice data. 

The architecture is designed to achieve these goals and overcome the limitations of 

existing mobile cellular networks.  The mobile exchange architecture presented here is 

device, network and operator independent.  This means that the MEA will work across 

most mobile phones and allow users to freely switch between operators that provide 

cheaper services or better coverage. 

The mobile exchange architecture is designed to cater to real-time applications (e.g. 

games) that require small amounts of data to be updated relatively frequently with low 

delay, and push-based applications that need to exchange large amounts of data (e.g. 

media packages) with minimum delay, and applications supporting both.  As such the 

mobile exchange architecture supports the mechanic of collaborations [Gutwin and 

Greenberg 2000], through the following requirements: 

[f1]  Communication: To establish local and remote sessions, the underlying 

infrastructure provides the ability to find other users in the network and then 

to establish a session with that user. 

[f2] Coordination: To enable real time interactions and the creation of 

shared interaction spaces among all connected participants. 

[f3] Transfer: Supporting data exchange between participants,    

encompassing the transfer and distribution of all media between 

participants.  Such media may include audio, video and messages. 

To realize these goals, we developed a complete bespoke person-to-person mobile 

exchange architecture, designed from the ground up to work over existing GSM 3G and 

future networks.  The following section outlines the components of this MEA, its 

functionality and the operation of the underlying protocols. 
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4.3 Architecture Overview 

The mobile exchange architecture consists of a number of components that integrate with 

existing GSM communication systems.  Figure 4.1 provides an overview of these 

components, with a more detailed overview provided in Figure 4.4.  

Mobile Node PSYNC MediatorCellular Network / WiFi Wired Node

internet internet

 

Figure 4.1: Mobile exchange architectural overview. 

 Mobile/Wired Node: Consist of devices running a highly optimized multi-

threaded layer of Push-Sync (PSYNC) protocols wrapped in a custom application 

software interface.  The application software is separated from the PSYNC 

protocols by a set of APIs enabling different applications to be developed for 

different consumer and business scenarios that benefit from the underling packet 

transmission, compression and encryption methods encompassed in the PSYNC 

layers. 

 The client based software automatically establishes a connection to the PSYNC 

Mediator upon initiation to report status, receive data and join or establish session 

requests.  Based on the type of application used and security level, the client 

software will connect to the PSYNC Mediator using either HTTP or secure 

HTTPS protocols for added privacy. 

 PSYNC Mediator: The Push-Sync (PSYNC) Mediator lies at the heart of the 

service and is responsible for registration, authentication, routing of data between 

connected clients and the maintenance of all active sessions among connected 

clients. 

 The PSYNC Mediator consists of four modular components: the session 

manager, consumption manager, upload manager and state manager.  This 

division of labour ensures failure resilience, scaling and load balancing to support 

an arbitrary number of connected clients across multiple sessions. 
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 The PSYNC Mediator constantly monitors all active clients and any associated 

sessions.  It delivers required data and notifications to connected peers, ensuring 

real time communication, stability and data integrity.  The PSYNC Mediator can 

support multiple clients (mobile and wired) connected to the same session, 

multiple sessions or distributed across separate sessions, maintaining state 

information across all connected clients. 

 Network Interface: PSYNC services are network agnostic, supporting Code 

Division Access (CDMA), General Packet Radio Service (GPRS), 1x Evolution-

Data Optimized (1xEV-DO), Universal Mobile Telecommunications System 

(UMTS), Wi-Fi (IEEE 802.11) and WiMax (IEEE 802.16), in addition to existing 

cellular and wireless networks as well as future networks supporting web access 

and voice communication. 

4.4 Extensibility 

The mobile exchange architecture is built on an extensible infrastructure similar to IMS 

and the seven layer OSI model (see Figure 3.5, 3.7), to enable a rich set of applications to 

be deployed upon a single extensible robust mobile exchange architecture. 

The MEA protocol stack is shown in Figure 4.2 opposite the Open Systems Interconnect 

(OSI) standard reference model.  The OSI model provides the basis for connecting open 

systems for distributed applications and is the basis of all IP communications.  To meet 

the requirements [f1-3], it is desirable to ensure maximum independence among the 

various software and hardware elements of the system to facilitate intercommunication 

among disparate elements; and to eliminate the “ripple effect” when there is a 

modification to one software element that may affect other elements. 

In the OSI model the lowest layers include the physical connection and the data link 

layer.  Examples are a local area network, a dial-up link, or a wireless network.  This link 

layer can be quite complicated (including different message formats and control 

mechanisms), but it is simply used to transfer content or payload from one link endpoint 

to another.  Built on top of this layer are additional protocols, such as TCP and IP, used to 

route payload from one network node to another in a network that can be extremely large 

(e.g. the Internet). 
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Figure 4.2: OSI seven layer model and MEA model. 

As a web-based mobile protocol, the MEA is designed to allow mobile nodes to 

communicate with one another.  It is transmitted using protocols (5, 6 and 7) higher in the 

protocol stack. 

However, this OSI mapping is a highly simplified view of what actually takes place in 

networking environments today.  In reality, nominally lower-layer protocols are often 

layered on top of nominally higher-layer protocols.  To take an example, suppose we are 

looking at web traffic.  The typical protocol stack would be, from the bottom up: Ethernet 

/ IP / TCP / HTTP.  This is the OSI model that textbooks describe for IP networks, in 

simplified form.  The physical layer is at the very bottom, but goes without mention, and 

there is no session layer or presentation layer between TCP and HTTP. 

Although many systems rely on such simple four layer architectures that follow the OSI 

model, in reality many architectures are far more complex.  In 3G operators‟ networks for 

instance, web traffic looks like this: Ethernet / IP / UDP / GTP / IP / TCP / HTTP.  The 

application is the same, but the transport network is different because the operator tunnels 

traffic over the GPRS Tunneling Protocol (GTP).  Notice that IP appears twice in this 

stack: once directly on top of Ethernet, where the OSI model says it belongs, but once 

higher up than UDP. 

In this case the OSI model takes on the form of a directed graph, where each node in the 

graph represents a protocol and each directed link between nodes would allow a second 

protocol to be layered on top of the first.  Graph layering introduces added complexity 
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compared to linear stacks, though a combination of both helps the mobile exchange 

architecture to decompose the problem into more manageable parts and provide a 

standard architecture to enable collaboration tasks.   

4.5 Layered Architecture 

  

Figure 4.3: MEA extensible architecture. 

The MEA‟s main modules are composed of linear layers using the lowest protocols (5, 6 

and 7) of the OSI protocol stack (see Figure 4.3), with the interconnections between 

layers on the mobile node taking on a graph representation (see Figure 4.4).  Details of 

the layered architectures are described below: 

 

Figure 4.4: MEA detailed architectural overview. 

 Application Layer:  The application layer consists of solutions designed to make 

use of the mobile exchange architecture and makes up the lowest layer of the 

exchange architecture (OSI layer 1).  An important role of the application layer, 

especially in the MEA model, is to allow for clear separation between solutions 

and application logic built on top of the MEA and the underlying routines, 

procedures and protocols required to establish mobile sessions and maintain 

active data connections between mobile nodes. 
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This approach enables a slew of new applications to be created that make use of 

the MEA‟s cooperative capabilities, without requiring in-depth knowledge of 

mobile communication protocols, file transfer coding schemes and session 

management procedures that are handled by the upper layers of the MEA.  This 

facilitates modular interfaces to incorporate new services and a set of application 

protocols that allow the creation of solutions that can utilise the underlying 

architecture.  

 Exchange APIs: The application programming interfaces (API) layer provides the 

means for application processes to access the MEA and to ensure a common data 

representation is maintained.  The API layer provides the link between the 

application layer comprising of solutions that want to access and make use of 

distributed mobile nodes and lower layer communication protocols that facilitate 

the communication and connectivity that take place between distributed mobile 

nodes.  This enables intercommunication among disparate elements, that‟s 

scalable to support multiple devices connecting simultaneously to one another, 

whilst providing sufficient quality-of-service and fault tolerance in spite of 

intermittent mobile connections  

 Communication „PSYNC‟ Layer: The push-sync mediator occupies the core of 

the mobile exchange architecture, facilitating session establishment and data 

control between mobile nodes in the system.  The MEA messages are typically 

conveyed using HTTP or HTTPS (i.e. HTTP secured by SSL/TLS).  However, 

they can also be conveyed using other protocols, such as e-mail or Short Message 

Service (SMS) text messaging.  The mobile exchange architectures „PSYNC‟ 

communication specification defines how these messages are exchanged and 

describes in detail how the two should work together and offer an interoperable, 

agnostic, rich communication experience. 

In the following sub-sections we look at each of these layers individually starting with the 

highest layer: the Communication „PSYNC‟ Layer.  Here we provide a detailed overview 

of its key components, communication protocols and functionality required to establish 

group sessions, facilitate interaction, and enable data exchange between mobile nodes.  

The next layer covered is the collaboration APIs that shield application developers from 

the complex inner workings of the PSYNC layer through elevated functions that provide 

unified easy access to the rich media exchange functionality of the system.  The final 

section covers the highest layer of the MEA in which the applications reside, “the 

Application layer”, and provides an overview of recommended elements for rendering 

visual components between connected nodes. 
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4.5.1 Communication „Push-Sync‟ Layer 

The Push-Sync mediator makes up the heart of the mobile exchange architecture, 

consisting of four modular components: a session management engine, a distributed 

coordination engine, a distributed exchange engine and a session management engine.  In 

addition to these core modules an underlying adaptive throttling mechanism is employed 

throughout all layers of the push-sync mediator to ensure optimum response times (see 

Figure 4.7). 

 

Figure 4.5: Mobile Exchange Server architectural detail. 

 

The communication „PSYNC‟ layer makes up the highest of the OSI layers (Layer 5, see 

Figure 4.5, 4.2).  It provides the establishment and control of the message packets 

between mobile nodes and is the only layer that‟s shared across the mobile node and 

push-sync mediator (see Figure 4.6). 

 

Figure 4.6: MEA detailed architectural overview, 

 with highlighted push-sync layer. 

In order to perform its role, the push-sync layer is made of four core components as 

outlined below.  More in-depth details are provided on each of these components in the 

next section; see Figure 4.7: 
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Figure 4.7: Push-Sync Mediator modules. 

 

 Session Management Engine: The session management engine (S|ME) facilitates 

the signalling protocol used to establish communication between mobile nodes 

and enables the creation, modification and termination of multicast sessions. 

 Distributed Coordination Engine: The distributed coordination engine (D|CE) is 

responsible for the maintenance of a shared visual space, real time monitoring of 

session based state changes, ownership of resources and the distribution of state 

updates to connected nodes. 

 Distributed Exchange Engine: The distributed engine (D|EE) is responsible for 

enabling the exchange of resources among connected nodes and monitoring the 

consumption of such resources. 

 Adaptive Throttling Mechanism: Adaptive throttling is a client side technology 

responsible for ensuring a minimal level of performance and responsiveness 

across client nodes during an active session. 
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4.5.1.1 Session Management Engine 

The session management engine (S|ME) is responsible for coordinating presence, 

initiating a connection between two cooperative nodes in the network, the addition of 

supplementary nodes to a shared session and the management and termination of all 

session based connections. The session initiation process is outlined in Figure 4.8 and 

discussed further in 4.5.1.1.2. 

PSYNC Mediator

Create Session/Re-spawn

ACK

Subscription Status

STATUS

Session

Initiation
Call & Session 

Manager

Invite/Conference-in

ACK

Session

Expansion

Collaborating Node

 

Figure 4.8: Session creation process overview diagram, 

see protocols 4.5.1.1.2-6 for additional information. 

The process of establishing a shared session is initiated client side on the user‟s device.  

The process has been specifically designed to resemble the familiar process of creating a 

voice call in which the user selects a contact, dials the number and initiates a 

conversation. 

4.5.1.1.1 Seamless Session Creation 

A shared session differs significantly to mobile video conferencing [O'Hara et al. 2006] 

in a number of key usability areas.  The current process of mobile video-conferencing 

requires the user to pre-emptively engage in a video-conferencing call or a voice call 

prior to dialling the intended recipient. 
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Idle

Incoming Call Outgoing Call HangUp

InCall

InCall 

operation

InCall 2-X

Request Results

Wait

  

Figure 4.9: Stages of a call lifecycle. 

This has two major drawbacks; first, it reduces the opportunity for spontaneous 

interactions: A user initiating the voice call cannot seamlessly switch to video 

conferencing without hanging up and redialling.  Secondly, a user initiated video-

conference call can‟t switch over to a voice only call when video is no longer required. 

There has been ample research into the advantages and disadvantages of video as 

presence compared to video as data [Kraut, et al. 2002, Whittaker and O'Conaill 1997], 

however a more important focus of the session initiation process was to allow for 

spontaneous sharing [Cooley 2005] as exists in real life.  For that to occur, seamless 

switching between conferencing (Voice + Interaction + Data) and non-conferencing 

(Voice only) needs to be supported. 

Our process of establishing a session has therefore been designed to occur before the call 

(idle), during the call (in-call) and to persist after the call (hang-up) encompassing all 

major stages of the call‟s life cycle; see figure 4.9. 
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4.5.1.1.2 Session Initiation Protocols 

Communications between the Connected Node (CN) and the Push-Sync Mediator (PM) 

are covered in the dialogue based representation below, providing insight into the 

information exchanged between both parties and their roles in the session initiation 

process.  Only the dialogue between a single connected client and the Push-Sync 

mediator is highlighted, however the process applies to all connected clients.  In 

circumstances where the presence of additional connected session nodes affect the logic 

of the operation being discussed (CN~) is used to represent these changes. 

4.5.1.1.3 Session initiation „dialling‟ process 

PSYNC Mediator S|ME

Create Session

ACK

Session

Initiation

dialling
Call Manager

Collaborating Node

Token

 

Figure 4.10: Session initiation „dialling‟ process. 

CN: The initiating user starts by selecting the intended recipient the user wishes to engage 

with in a shared session from the phone‟s built in address book or contact list.  This is 

similar to the process of creating a voice call.  The user then initiates the connection 

which commences the „dialling‟ process.  The dialling process identifies both parties and 

creates a session request by transmitting a token to the PM‟s call manager, see Figure 

4.10. 

PM: The token is received by the call manager, checked to insure correct formatting, 

header checksums and recipient validity before returning an acknowledgement of 

delivery to the initiating node.  The received token contains a number of user attributes 

that serves to identify both parties (the source and target) of the shared session.  The 

attributes pertain to two unique key values the first relevant to the user: which defaults to 

the users preferred phone number and the latter is specific to the connected device: which 

in the cellular device scenario defaults to the cellular devices unique identifier IMEI 

(International Mobile Equipment Identity) number.  In a PC scenario the unique identifier 

can be configured to use the MAC (Media Access Control) address or similar unique 

identifying attribute. 
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These attributes ensure subscribers maintain a universal accessible identifier at the 

PSYNC Mediator that is globally addressable at a user and device level.  This allows 

addressability over IP-less 3G cellular networks and across firewall restricted 

connections. 

The dual addressability also serves an important role in ensuring the system is scalable to 

support a multitude of devices (mobiles, laptops, PCs .etc) that a user may wish to engage 

through in the future and that the system can target the recipient at both a device level and 

a broader user level independent of the user‟s device. 

4.5.1.1.4 Session initiation „ringing‟ process 

PSYNC Mediator S|ME

Subscription Status?

Accepted
Session

Initiation

ringing

Session Manager

Collaborating Node

Engaged

Un-available

Token

 

Figure 4.11: Session initiation „ringing‟ process. 

 

CN: Upon receiving the PM‟s acknowledgment of message delivery the connected node 

enters „ringing‟ stage, in which it enters a blocking mode and waits for the newly created 

session to be accepted by the remote user, see figure 4.11. 

PM: As soon as the CN enters ringing mode, the call manager automatically hands over 

operations to the session manager, freeing up the call manager to focus on validating new 

incoming session creation requests.  Sessions are managed using a subscription system in 

which one or more nodes can join a session by subscribing to its synchronisation queue. 

The role of the session manager is to act as a broker allowing users to subscribe to 

new/existing sessions, keep track of session subscription and manage associated users.  In 

the ringing process, the role of the call manager is to broker a new session subscription 

contract between connecting parties.  This is achieved by forwarding the session requests 

to all intended participants and returning one of three responses to the initiating node: 
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 Accepted: This notifies both parties that the session has been accepted, that both 

parties are now subscribed to the session and are ready to communicate. 

 Engaged: This status identifies the target node as being aware of the incoming 

session request but is currently engaged in another shared session or pre-occupied 

with another task and does not wish to participate in the new session. 

 Unavailable: Differs from engaged in that unavailable denotes that the target user 

is currently inaccessible or out of range.  This status is more specific to mobile 

clients, which are more susceptible to signal loss and network outages. 

CN: The session subscription status request is returned to the connected node.  When 

„engaged‟ or „unavailable‟ is received the connected node discontinues the session 

request and notifies the initiating user.  The „accepted‟ status session request response 

differs from the previous two status requests in that the accepted request contains both a 

status response „accepted‟ and a verified session invitation token, see Figure 4.12. 

 

PSYNC Mediator S|ME

Session Invitation
Session

Initiation
Session Manager

Collaborating Node

Token

 

Figure 4.12: Session invitation token. 

 

PM: The verified session initiation token is returned to the connected node with an 

„accepted‟ session request status.  The session invitation token contains the session 

information and verification codes required to establish a data-channel between both 

nodes to converse and exchange data. 

CN: Upon receiving a session invitation token, the session initiation process ends and 

both nodes enter into a shared session 
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4.5.1.1.5 Session expansion process 

PSYNC Mediator S|ME

Session Invitation

ACK

Session

Expansion
Call Manager

Collaborating Node

Token

  

Figure 4.13: Session expansion process. 

CN~: During an active session new users can be invited to participate in the already 

active session by issuing a session invitation token to another participant from the user‟s 

address book or contact list, see Figure 4.13.  This process differs from that of a newly 

created session between two participants in that a non blocking „ringing‟ process is 

utilised to allow the active session to continue without acknowledgement from the 

inviting party.  The use of a non blocking „ringing‟ process allows the current ongoing 

shared session to commence as usual without any interruptions (i.e. participants don‟t 

need to wait for the new party to join before resuming the session).  The invited recipient 

upon accepting the session invitation will be sent the latest state update of the active 

session, allowing the participant to catch-up with the latest session information. 

PM: The session invitation process is similar to that of session creation, in which the call 

manager hands over verified requests to the session manager for acceptance status 

confirmation and distribution of invitation codes to authorised nodes.  In addition the 

session expansion invitation packets contain additional information to inform new nodes 

on the number of active clients and latest session information. 

4.5.1.1.6 Session terminating process 

PSYNC Mediator S|ME
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Figure 4.14: Session contraction process. 
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CN~: During an active session any user can join or leave a session at will, this differs 

from unplanned disconnects caused by mobile networks in which the participating nodes 

are subject to a grace period in which the client based software will attempt to reconnect 

and catch-up with the latest session information. 

The process of terminating a session can occur in two situations.  The first is linked to the 

client that initiated the connection.  Initiating clients can transmit an „end session‟ token 

to notify all active users connected to the session that the session is terminating, see 

Figure 4.14. 

The other scenario in which an „end session‟ is transmitted occurs automatically by the 

PSYNC manager when the number of clients in the system drops below an acceptable 

threshold (currently set to 2 active users), due to nodes leaving the session (clean 

disconnect) or when clients drop from the session (unplanned disconnects) caused by 

signal loss and a suitable time-out being reached. 

PM: Upon receiving the end session token, the PSYNC manager ceases updates to the 

session state and informs all active clients that the session in which they were connected 

has been terminated.  The termination of any session involves the session manager un-

subscribing the connected nodes from the session update stream and returning them to 

their previous state. 

4.5.1.2 Distributed Coordination Engine  

The distributed coordination engine (D|CE) is responsible for the maintenance of a shared 

visual space, real time monitoring of session based state changes, ownership of resources 

and the distribution of state updates to connected nodes.  The state management process is 

outlined in Figure 4.15 and discussed further in 4.5.1.2.2. 

Publish

ACK Timestamp

Subscribe

State Snapshot

State

Exchange
Distributed 

Coordination Engine

PSYNC MediatorCollaborating Node

  

Figure 4.15: Distributed coordination process overview diagram, 

see protocols 4.5.1.2.2-4 for addition information. 
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In the previous section we discussed the session management engine and its role in the 

session creation process.  The distributed coordination engine is initiated immediately 

after the session initiation process has completed, and is responsible for the ongoing 

maintenance of all active sessions until their termination. 

4.5.1.2.1 Exchanging „state‟ information 

In order to enable mobile media exchange, two primary forms of information need to be 

exchanged between mobile clients: smaller control packets that manage the distributed 

nodes and larger media packets, e.g. files, videos and images that are exchanged between 

connected nodes (see Figure 4.16).  In a typical networking scenario it would suffice to 

propagate each control packet across the network, e.g. pan left, pan right, zoom in, etc.  

However, mobile clients are more susceptible to disruptions in connectivity, which can 

lead to packet loss and render some or all remote clients out of sync. 

To overcome this problem, the distributed coordination engine was adapted to exchange 

“state” information rather than “event” data.  State information consists of significant 

attributes pertaining to active components, e.g. the displayed components‟ dimensions 

and x,y co-ordinates, etc.  This allows the system to be far more resilient to packet loss 

and out-of-order events. 

 

Figure 4.16: Data types comparison bit-rate/delay. 

The drawback to this approach is that in comparison to single event transmission, state 

transmission packets are larger, incurring additional data overhead.  However, by 
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adopting state transmission, the need for delivery acknowledgment packets can be 

eliminated, as lost packets can be discarded in favour of new incoming data carrying the 

latest state information.  Avoiding the associated overhead of checking whether every 

packet actually arrives in an interactive conferencing system is made even more 

important when slower mechanisms such as HTTP requests are required to traverse 

firewalls. 

4.5.1.2.2 State Coordination Protocols 

Adopting the same notations, communications between the Connected Node (CN) and the 

Push-Sync Mediator (PM) are covered in the dialogue based representation below, 

providing insight into the information exchanged between both parties and their roles in 

the session initiation process.  Only the dialogue between a single connected client and 

the Push-Sync mediator is highlighted, however the process applies to all connected 

clients.  Adopting the same symbols used in the previous section (CN~) denotes 

circumstances where the presence of additional connected session nodes affects the logic 

of the operation being discussed. 

4.5.1.2.3 State exchange „publish‟ process 

PSYNC Mediator D|CE

Transmit  State

ACK Timestamp

State

Exchange

publish
State Manager

Collaborating Node

Token

  

Figure 4.17: State update process. 

CN~: Nodes in a shared session maintain both an „active‟ and „passive‟ status.  In passive 

state nodes update their visual space to reflect changes made by other nodes during the 

shared session.  In the active state nodes participate and contribute (publish) changes 

made to the shared session, see Figure 4.17. 

CN: A node primarily becomes active in response to user input e.g. the pressing of a key 

or the use of a menu function which affects the shared space.  The results of these actions 

are packaged into a state publisher token with the session identifier and transmitted to the 

state manager. 
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PM: The token is received by the state manager, checked to insure correct formatting, 

header checksums and recipient validity prior to distributing the update to all relevant 

connected nodes in the shared session. 

4.5.1.2.4 State exchange „subscribe‟ process 

PSYNC Mediator D|CE

State Status?

State Snapshot

State

Exchange

subscribe
State Manager

Collaborating Node

Token

  

Figure 4.18: State request process. 

CN~: All nodes are automatically subscribed to the session state manager during the 

session initiation process (see previous section). 

PM: To maintain a shared space the state manager can issue state update requests to 

connected nodes.  Each node in the shared session is tuned to a state synchronisation 

clock (see Figure 4.18).  On each beat of the clock client states are synchronised to the 

shared session state. 

In a cellular network over 180 state update requests can be issued by the state manager 

every minute, approximately one update every 300 milliseconds based on network 

coverage and signal strength.  This enables our system to maintain a highly dynamic 

shared space between connected devices, for multiple devices to simultaneously tune to a 

single state synchronisation clock and for new clients to join an existing session by 

subscribing to the session‟s existing state synchronisation clock. 

Before a state update request is issued to the connected node the state manager compares 

the global session state queue to the node‟s state queue.  If the state of the connected node 

differs from the global session state, an update „state snapshot‟ is transmitted to the 

connected node, see Figure 4.18. 

CN: The connected node receives the state update and refreshes the local shared space to 

mimic that of the global shared space.  Because constant user interface and state updates 

can drastically affect node performance if not governed correctly, user interface updates 

in addition to incoming state updates are governed by a throttling process (see Adaptive 

Throttling Mechanism 4.5.1.4) to manage this process. 
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4.5.1.2.5 Coping with „jitter‟ effects  

Jitter is a common side effect to any state based synchronisation approach, in which 

roundtrip network delays can extenuate subtle differences between local state information 

and that of the global state.  This can be observed in the following scenario: 

SYNC

Client n

Client n+1

State information

300ms CLOCK

State Information

Pan Right

Pan Down

300ms CLOCK

JITTER

State BSource State AState A

Synchronised 
Cycle State

Shared Space

SYNC SYNC

I II III

  

Figure 4.19: Distributed Coordination Mechanism. 

SYNC-I 

PM: Previous SYNC cycle has already occurred, state updates were distributed. 

CN: Client is in its initial „Source‟ state, as seen in the fourth row of Figure 4.19.  

SYNC-II 

CN: Client submits a status update „pan right‟ at approx 20ms into the sync-ii cycle.  

Client‟s local state = „State A‟, as seen in the fourth row of Figure 4.19. 

PM: Due to network delays the state update is received late approx 150ms into the sync-ii 

cycle, validated by the state manager and queued for distribution in sync-ii. Global state = 

„State A‟. 

CN: Client submits an additional state update „pan down‟ at approx 180ms into the sync-

ii cycle.  Clients local state = „State B‟, as seen in the fourth row of Figure 4.19. 

PM: Due to network delays this packet is not received during the current sync cycle.  

Global state = „State A‟. 

In this situation the local client state differs from that of the global state, causing the local 

state „State B‟ to be forcefully updated to an outdated global state „State A‟ during sync-ii. 
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SYNC-III 

PM: The state update from the client finally arrives=, approx 30ms into sync-iii cycle, 

validated by the state manager and queued for distribution in sync-iii.  Global state = 

„State B‟ state. 

PM: During sync-iii client is reverted back to its correct local state „State B‟ causing a 

jitter effect to occur. 

Given the nature of mobile cellular connectivity, network delays naturally occur, resulting 

in an observed jitter effect.  To overcome this issue, the state synchronisation approach is 

augmented with a time stamp UTC (Universal Coordinate Time) that gets attached to 

each state packet. 

The UTC time stamp can then be used by client side logic Kalman filters [Chui and Chen 

1987, Harvey 1990] to compare incoming state data against previously submitted state 

data, allowing older state packets to be removed and to eliminate jitter effects.  

Performing this action client side rather than on the server reduces bandwidth as local 

state data doesn‟t need to be updated as frequently, introduces self managed nodes and 

results in the infrastructure being more resilient to network outages. 

4.5.1.3 Distributed Exchange Engine 

The distributed exchange engine (D|EE) is responsible for enabling the exchange of 

resources among connected nodes and monitoring the consumption of such resources.  

The exchange process (i.e. the upload and download) of resources comprise the core of 

the distributed exchange engine and provides a unified transfer mechanism to all 

connected nodes.  The distributed exchange engine is outlined in Figure 4.20 and 

discussed further in 4.5.1.3.3. 

Resource Exchange

SYNC

Resource Verifier

SYNC

Data

Transfer
Distributed

Exchange Engine

PSYNC MediatorCollaborating Node

  

Figure 4.20: Distributed Exchange Engine overview diagram, 

see protocols 4.5.1.3.3-5 for additional information. 
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The distributed exchange engine is also responsible for the monitoring of resource 

consumption across connected nodes.  The management of resource consumption assists 

in the maintenance of resources among nodes during a shared session by providing proof 

of resource delivery and return to sender information ensuring quality-of-service and fault 

tolerance in spite of intermittent connections across cellular networks. 

4.5.1.3.1 Store and forward process  

Mobile data networks can suffer from intermittent connectivity issues, signal loss and 

times when their users may not wish to be disturbed.  As such there needs to be a set of 

procedures to handle communication between participants if one is actively unavailable 

or out of signal range. 

The Mobile Exchange Architecture therefore offers a store-and-forward (S&F) function, 

in which if the message cannot be delivered to the receiver straight away, the original 

message will be stored at the PSYNC Mediator unaltered, which will then be forwarded 

the intended recipients when they become available. 

This is similar to that of a traditional postal service, in which a mail carrier will attempt to 

re-deliver a registered message if the intended recipient was not at the premises or 

otherwise engaged during the first attempted delivery. 

This comprises basic functionality, but future expansions to the PSYNC Mediator S&F 

functionality could be enhanced to include the use of live presence information to better 

inform the scheduling of forwarded messages. 

4.5.1.3.2 Security and Encryption  

The MEA supports Certificate Authority (CA) root certificates issued by various 

companies.  A CA root certificate provides a trusted third party to verify the ownership of 

SSL certificates issued to companies and websites.  When communicating over SSL, the 

root certificate on the PSYNC Mediator must match a trusted root certificate on the 

mobile node in order for the synchronisation to take place. 

For secure shared sessions it is not recommended to enable data exchange without having 

a matching set of root certificates on the PSYNC Mediator and mobile node.  If the root 

certificate on the PSYNC Mediator does not exist in the list of trusted root certificates on 

the mobile node, the communication will not commence unless the certificate is installed 

or updated by the user. 
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4.5.1.3.3 Data Exchange Protocols 

Similarly communications between the Connected Node (CN) and the Push-Sync 

Mediator (PM) are covered in the dialogue based representation below, providing insight 

into the information exchanged between both parties and their roles in the data exchange 

process.  Only the dialogue between a single connected client and the Push-Sync 

mediator is highlighted, however the process applies to all connected clients.  (CN~) 

denotes the circumstances where the presence of additional connected session nodes 

effect the data exchange process being discussed.   

4.5.1.3.4 Resource „transfer‟ process 

PSYNC Mediator D|EE

ACK

   Retransmit

Content Manager

Collaborating Node

Upload Resource

Stream

Resource

Exchange

transfer

  

Figure 4.21: Media Exchange Engine. 

CN~: Media data is exchanged less frequently than state information during an active 

session, but amounts to substantially more data being transmitted.  Media transmission is 

lossless with no compression or scaling conducted at the D|EE level e.g. A JPEG image 

will be transmitted in the original resolution at which the image was captured prior to 

transmission.  This ensures the quality of the media is maintained among connected nodes 

in the shared session and, if required, application specific compression and scaling can 

occur at a higher API level prior to hand over, see Figure 4.21. 

CN: The resource transfer process consists of a HTTP transfer stream between the 

connected node and the content manager. 

PM: The data stream is received by the content manager, checked to insure correct 

formatting, header checksums and recipient validity before returning one of two 

responses to the initiating node: 

 ACK: This status acknowledges the transfer of resources and data delivery to the 

initiating node. 
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 Retransmit: This status occurs during a transmission error, caused by user 

interruption, checksum errors or loss of connectivity. 

CN: If „ack‟ (acknowledgement) status is received the transfer process concludes and the 

node is free to transmit another resource to the active session. 

4.5.1.3.5 Resource „verifier‟ process 

PSYNC Mediator D|EE
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Token

Resource

Exchange

verifier

  

Figure 4.22: Media Exchange Engine. 

CN: The connected node submits a consumption verifier token to the consumption 

manager to confirm the delivery or consumption of a resource, see Figure 4.22. 

PM: The token data is received by the consumption manager, checked to insure correct 

formatting, header checksums and recipient validity before returning one of three 

responses to the initiating node: 

 Consumed: The status denoted that the resource was consumed correctly by the 

targeted node. 

 In-Transit: A retuned „in-transit‟ status means that the resource has not yet been 

consumed, but is currently in the process of being transferred to the targeted 

nodes. 

 Failed: The target node, did not receive the transferred resource. 
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4.5.1.4 Adaptive Throttling Mechanism  

In a shared session users can typically perform several interactions at once during the 

simultaneous transmission or retrieval of media content, which can overextend the 

device‟s capabilities.  To overcome this, in addition to optimising the on-screen effects 

and re-sampling of onscreen components, data throttling mechanisms are needed 

throughout all networking activities, to provide prioritisation to immediate user 

interactions and enable content retrieval with minimum disruption to interface elements. 

On the server side this is used to manage access to resources, provide a level of server 

reliability, and fall over.  Adaptive throttling provides queuing and prioritisation of 

messages as needed, minimising the need for each mobile node to perform these services.  

An application specific implementation of the client side (Mobile Node) is covered in 

more detail in the next chapter. 

4.5.2 Collaboration APIs 

The APIs comprise the middle layer of the mobile exchange architecture (see Figure 

4.23).  The application programming interface (API) provides a set of implemented 

libraries and a structured programming model that minimises the need for deployed 

applications to directly access the inner workings of the PSYNC layer, reducing the 

complexity of building mobile media exchange applications. 

  

Figure 4.23. Mobile collaboration API layer. 

From a development standpoint the APIs provide a set of elevated peer-to-peer primitives 

that provide unified access to the rich communication functionality of the MEA.  This in 

term allows developers writing to the MEA to focus more on the scenarios they wish to 

deploy and less on the technical aspects of such services, such as how to send data or 
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establish peer-to-peer sessions.  The APIs are made up of publish-subscribe [Eugster, 

Felber et al. 2003] and session event modules, with each action forming one of three 

events (see Figure 4.24). 

 

Figure 4.24. MEA application programming interface. 

4.5.2.1 Session Management  

The session management module enables the creation of peer-to-peer sessions between 

two or more mobile devices.  This is also the first step that an application needs to take in 

order to engage in communication with another mobile device (mobile node).  In order to 

create a session, the application requests a session creation method and passes a single 

argument specifying the target destination (the mobile node they wish to connect to), the 

module then handles the process of establishing a session (see PSYNC session creation 

process) and returns either an okay or fail status to the user.   

The session manager can establish an unlimited number of sessions to other devices at the 

same time.  This allows the creation of a single session then the invitation of other users 

to join the active session.  Session termination is also accommodated by a call to this 

module passing the parameter of target device, which can be circular (the current device) 

or a target device that was invited into the session by the user. 

4.5.2.2 Resource Publisher 

The resource publisher performs the role of the outgoing mailbox in mobile nodes and 

enables the efficient transmission of data to other devices in the session.  The resource 

publisher supports an arbitrary number of data types through a pluggable architecture and 

is optimised for the transmission of prioritised control packets (usually textual in nature:  

for informing other clients of status updates and the activities of other clients) and the 
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much larger binary packets (that comprises the rich data files, music, pictures or movies 

that clients may wish to exchange with one another). 

There is currently no restriction on the file types or sizes that can be transferred to other 

participants during a shared session using the publishing module.  The file transfer 

capabilities have been tested with 700Mb multimedia files transfers over WiFi and 

200Mb over 3G cellular connections.  The transfer function supports error correction, 

with the maximum transfer limits being arbitrary based on the bandwidth available on the 

given network. 

4.5.2.3 Resource Subscriber 

In addition to sending files, applications can also subscribe to files sent to them by other 

mobile nodes.  Rather than setting up a subscription to a specific node, this module adopts 

a self subscription model in which mobile nodes subscribe to files for which they are the 

target.  This simplifies the process and allows client side filtering of received files. 

4.6 Chapter Summary 

Communication in a static network differs significantly from that of synchronous 

communication in a mobile network.  In static networks, one implicitly assumes that all 

user devices have stable connectivity while this isn‟t the case in a mobile environment.  

Because mobile networks suffer from weak and intermittent connectivity, a user might 

become temporarily unavailable even though he or she is still engaged in the shared 

session. 

In this chapter we have presented a new mobile-to-mobile architecture that we believe 

overcomes the problems inherent in today‟s mobile networks.  Our architecture offers 

rich interactional mobile-to-mobile capabilities that can operate throughout existing 3G 

networks and demonstrates the capabilities available within existing mobile networks to 

communicate, control and exchange data between remote mobile devices. 

The architecture consists of a suite of bespoke client and server based components and 

protocols to enable rich cooperative services amongst mobile clients.  This combination 

has a number of advantages in the mobile environment.  It (1) enhances performance by 

vastly reducing unnecessary data exchange, (2) maximises bandwidth through built in 

compression and throttling mechanisms, and (3) enables support for disconnected 

operations and loss of connectivity. 
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The mobile exchange server‟s mid-range hardware (2 x 1.8 GHZ Intel Core 2 Duo, 512 

MB RAM, 80 GB SATA Hard Disk, Apache/2.2.11 (Unix), mod_ssl/2.2.11, 

OpenSSL/0.9.8i, DAV/2, mod_auth_passthrough/2.1, mod_bwlimited/1.4: running on a 

shared hosting server in Colorado, USA) was tested with a load of fifty concurrent 

connections, originating from the UK.  The server load presented as user load time (see 

Figure 4.25, left) and bandwidth usage (see Figure 4.25, right).  For the peer-to-peer load 

testing a total of 2,969 random session requests was performed over a 30 minute period.  

The server load delay in seconds was 4.45 for 10 concurrent clients, 3.98 for 20 clients, 

3.78 for 30 clients, 3.83 for 40 clients and 3.69 for 50 concurrent clients.  The bandwidth 

usage in kbits was 482 for 10 concurrent clients, 901 for 20 clients, 1338 for 30 clients, 

1849 for 40 clients and 2312 for 50 concurrent clients. The overall server load (i.e. 

cpu/memory/bandwidth) for this period was under 10% providing resources for additional 

concurrent connections.  Furthermore the use of open web standards and Apache (for data 

exchange) allows the photo-conferencing service to scale using existing industry standard 

load balancing and server replication techniques. 

 

Figure 4.25. User load time (left) and Bandwidth usage (right), 

for fifty concurrent user sessions. 

The creation of a robust distributed co-ordination engine facilitates the management of all 

active cooperative sessions and supports scenarios from simple media- and location-

sharing services to distributed gaming utilising an extensible systems architecture.   The 

system demonstrates rich interactional P2P capabilities that can operate throughout 

existing 3G mobile networks.   

Some of the possible usage scenarios of this architecture extend to multimedia data 

sharing, DIY assistance, e.g. “which button should I press – look, they all seem to be red” 

and to professional field engineers, e.g. “just sent you the latest schematics, let‟s look at 

them and let me talk you through the new alterations before you start repairs” and 

cooperative map sharing to assist with selecting meeting points.  In the next chapter we 

demonstrate one such application that‟s built directly on top of the mobile exchange 

architecture. 
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Chapter 5. 

Mobile Photo- 

Conferencing Service  

“The technologies which have had the most profound effects on human life are usually 

simple” Freeman Dyson 

5.1 Introduction 

Research has demonstrated that the “one channel at a time” interaction paradigm of MMS 

causes many mobile users to be “frustrated when trying to share images remotely and 

interactively” and that participants need richer capabilities to connect in the moment, 

undergoing the effort of using multiple devices to achieve ongoing conversations while 

sharing images [Kindberg, et al. 2005].  Frohlich et al. [2002]  suggested “Photo-

Conferencing” as a service that could overcome these restrictions and provide a means by 

which users could engage in interactive computer-mediated photo-sharing practices, 

supported by a simultaneous telephone conversation, minimising collaborative effort 

[Clark and Brennan 1991]. 

In this chapter we present a Photo-conferencing service [Yousef and O'Neill 2007] we 

have named „Ripple‟ that builds upon the exchange architecture reported in Chapter 5 to 

deliver the first rich media sharing service to realise the photo-conferencing vision across 

mobile devices.  Although other instantiations were also possible with the technology we 

chose to pursue Ripple as it covered many of the fundamental concepts of mobile to 

mobile interactions.  Here we provide an overview of the user interface design of our 

photo-conferencing application (Ripple) and describe its many features and functionality 

that enable rich interactive photo-conferencing. 
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5.2 Implementation - Application Layer 

 

Figure 5.1: MEA application layer components. 

Through our work reported in Chapter 5, we developed a complete mobile media 

exchange system comprising remote mobile to mobile session initiation protocols, 

client/server based software and application programming interfaces (see previous 

chapter).  In this chapter we report one instantiation of the mobile exchange architecture 

in the form of a Photo-Conferencing service that resides in the application layer of the 

MEA (see Figure 5.1). 

The requirements for photo-conferencing necessitate the creation of application modules 

that are beneficial to the process of sharing and manipulating photos among distributed 

mobile nodes.  Taking into account the resource restrictions of mobile devices requires 

that the core image manipulation modules are highly optimised and any inefficient, 

replicated or bloated functionality reduced to the bare minimum.  To this end the Photo-

Conferencing application layer consists of four core elements: 

 Graphical User Interface (GUI): Comprises the high level visual elements that the 

users of the system will see and interact through when using the mobile photo-

conferencing service. 

 Rendering and Compositing Engine: Comprises the low level optimised 

encoding, animation, thumbnail creation, image caching, compositing and alpha 

blending functionality that support higher level GUI elements. 

 Interaction Logic: Comprises the primitive subroutines, branching and decision 

making rules for handling incoming/outgoing data and interactions during the 

photo-conferencing session. 
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 Adaptive Throttling Mechanisms: Comprises techniques for enhancing 

bandwidth, processor utilisation and the maintenance of an acceptable quality of 

service (QOS) among connected nodes during shared sessions. 

5.2.1 Graphical User Interface 

Good user interface design can transform an unruly cluster of confusing features into a 

structured, understandable experience [Donald 2008].  Uday presented „Experiential 

Aesthetics‟ a Framework for Beautiful Experience (see Figure 5.2), that places emphases 

on creating simplicity in interface design, as users shouldn‟t need to know about 

complicated back-end and architectures to get their work done [Uday 2008].  Simple, 

effective and aesthetically pleasing interface design is particularly important on mobile 

phones, where users are obliged to interact through very limited physical interfaces. 

 

Figure 5.2: Experiential Aesthetics:  A Framework for  

Beautiful Experience [Uday 2008]. 

As such experiential aesthetics were core to the development of the photo-conferencing 

service.  Each interaction task and subsequent interface screen was created from the 

ground up with attention to detail extending to even the smallest pixel level.  Every 

screen, selection indicator, load sequence, activity indicator, icons, colour scheme, page 

titles, input methods etc were carefully scrutinised and iterated many times during the 

development process to ensure a simple, unique and coherent aesthetic experience 

throughout. 

Research suggests that many everyday tasks aren‟t planned but are opportunistic, with 

people simply deciding to use something when they think about it [Norman and Collyer 

2002].  The user interface was therefore built to support both Sovereign and Transient 

states [Cooper and Reimann 2004].  Sovereign states are typically designed to 
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monopolise users‟ attention for long periods of time.  They are optimised for full screen 

use and to direct the user‟s attention to the task at hand, e.g. word processors, 

spreadsheets and e-mail applications.  Transient applications, on the other hand, come and 

go as needed.  They are typically invoked only when required and then disappear, 

allowing users to continue with their normal activities.  In designing Ripple we provided 

support for both sovereign states to maximise screen use during media exchange sessions 

and transient states in which the application can become active or inactive when the user 

needs to perform other tasks on the mobile device. 

5.2.1.1 Main Task Screen 

 

Figure 5.3: Main interface task selection. 
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Figure 5.4: Main task selection menu: Start session (top left), Archive viewer 

(top right), Account settings (bottom left), Exit client (bottom right). 

Ripple was designed to enable mobile photo-conferencing between collocated and remote 

participants.  The main application screen provides a clean user interface to simplify this 

process using task based interactions [Seedhouse 1999, Skehan 2003].  The main 

application screen (as with the rest of the mobile client) utilises a bespoke user interface 

designed specifically to support mobile photo-conferencing.  The main interface supports 

four main tasks (see Figure 5.3, 5.4):  

 Start session: This item is used to create a new „empty‟ session.  When it is 

selected users are presented with a list of contacts from the phone‟s built in 

address book.  Once a target contact is selected the new session is initiated 

between the two devices, see section 5.2.1.3. 

 Archive viewer: The archive viewer is a chronological data store of all previous 

sessions created or joined by the current user.  All sessions are automatically 

stored in the archive viewer and presented in chronological order, see 5.2.1.2. 
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 Account Settings: The settings screen allows the modification of key networking 

and account management configurations for the user, see section 5.2.1.5. 

 Exit Client:  Simple option that terminates the application and removes all traces 

from the mobile‟s memory prior to exiting Ripple.  This option is also available 

throughout all sub-screens, through the context menu for quick access. 

5.2.1.2 Archive Viewer 

 

Figure 5.5: Archive viewer interface (left) and real  

time rendering process (right). 
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Figure 5.6: Archive viewer real-time overlay process. 

The archive viewer can be selected from the main navigation screen and is designed to 

provide access to previously stored sessions, facilitate the re-spawning of past sessions 

(e.g. so that they can be re-used in a future session) and to provide users with a visual log 

of past mobile photo-conferencing sessions from one simple view. 

The archive viewer is comprised of a list based representation of sessions, in reverse 

chronological order with the latest session information and initial picture displayed at the 

top (see Figure 5.5).  The archive viewer utilises a list view representation which provides 

a flexible set of features and the ability to condense a large amount of data into a 

representation familiar to most web-browser and operating system users. 

Our initial session archives interface utilised the built-in „ListView‟ component available 

as part of the Windows Mobile Compact framework (see Figure 5.5, Left: Standard 

ListView).  However, research suggests that menus constructed of a mixed format (text 

and icons) result in the fewest number of incorrect selections by users [Kacmar and Carey 

1991, Rogers 1987].   
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Figure 5.7: Main interface with four options and exit buttons, 

Standard list view (left), Ripple interface (right). 

As part of the iterative interaction design process we sought to improve upon the built in 

ListView control to provide an enhanced visual representation of past sessions which can 

more clearly convey past session information and their associated time-stamps (see 

Figure 5.5 right, 5.6).  In addition to the standard controls, recent mobile development 

tools such as the dot net compact framework provide additional levels of customisation 

over the creation of user interface control elements.  These typically consist of three 

control levels: 

 User controls:  Are the simplest type of control.  They are most often available 

through a drag-and-drop visual editor (e.g. Visual Studio), and inherit from the 

System.Windows.Forms.UserControl class. 

 Inherited controls: Are generally more flexible than user controls.  With an 

inherited control, an existing control that closely matches the intended use is 

selected to derive a custom class that typically overrides or adds properties and 

methods to the base control. 

 Owner-drawn controls: Are the most flexible control class.  They generally use 

GDI+ drawing routines to generate their interfaces from scratch.  Because of this, 

they tend to inherit from a base class like System.Windows.Forms.Control.  

Owner-drawn controls require the most work and provide the most customizable 

user interface. 
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To create the required aesthetic interaction (see Figure 5.7) a bespoke Owner-Drawn 

ListView control was created specifically for the photo-conferencing application.  In 

contrast to a typical drag-and-drop (e.g. from Visual Studio) „ListView‟ control, owner-

drawn controls provide the most customisation over the visual elements, the process in 

which they are drawn and precise pixel placement of those elements. 

Due to memory limitations that affected device stability (see Rendering and Compositing 

Engine 6.2.2) a special image pipeline was created to assist with the creation and caching 

of thumbnail images.  Thumbnails are automatically generated (via the Rendering and 

Compositing Engine pipeline) for each session and cached to substantially speed up 

loading times, minimise memory usage and prevent flicker.  This pipeline was extended 

into a complete rendering and compositing engine (see Rendering and Compositing 

Engine 6.2.2) that is used throughout the application to improve performance and 

minimise memory use when handling multimedia content. 

This technique overrides the „OnPaint(PaintEventArgs)‟ method and substitutes our own 

custom user interface rendering code instead.  Though this requires a lot of work it 

provides a lot of flexibility in the drawing of on screen elements and the optimisation of 

their loading sequence.  See Figure 5.5 (right) for the five stage rendering process. 

 

Figure 5.8: Main interface with four options and exit buttons. 

Also we need to consider aspects such as: when using a laptop or desktop computer, 

chances are that you‟re in a controlled environment; lighting is good, you sit a 

comfortable distance from the monitor, and using a mouse or track pad to control a screen 

cursor is a simple task.  In contrast, mobile devices may be used in unpredictable 

situations; outdoors in very bright light, in the course of another activity or while in 

constant motion which makes coordinated movements difficult to perform.  By making 

the clickable area of an action large, many of these issues are resolved.  Additionally 
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when highlighted by a contrasting background colour, important actions are more easily 

seen and targeted even when overall screen contrast is poor.  Most important of all, a 

large click area requires less precision and effort to activate [MacKenzie 1992].   

Ripple utilises a number of these techniques e.g. by varying font size, weight, colour and 

style, its able to discretely communicate additional information without excessive  

labelling.  Menus are hidden by default (see Figure 4.8) to emphasise the media, therefore 

most interactions have been designed without menus in mind, e.g. selecting a specific 

session requires only a right gesture on the arrow key, while returning to the previous 

screen requires a simple left gesture.   

5.2.1.3 Session Initiation Process 

 

Figure 5.9: Session initiation process in action. 
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The session initiation process occurs after the “Start session” button is selected via the 

main interface screen (see Figure 5.3), the user is then presented with a list of contacts 

that are extracted from the mobile phone‟s built in address book (see Figure 5.9). 

Upon selection of a targeted user for the shared session an “Initiating Connection” screen 

(see Figure 5.9, right) is presented.  This screen animates a waiting state to the user as the 

underling networking engine determines the existing settings, optimal configuration and 

whether a new networking connection can be established to the remote target based on 

the user‟s current location, network setup and signal strength. 

After the connection has been made, a new session is created and the user is presented 

with a blank shared interaction “Media Space”, to which new content can be added by 

either party engaged in the shared session.  Additionally from the Media Space screen, at 

any point in the session users are able to conference-in additional participants, extending 

the number of users that are currently taking part in the shared session. 

5.2.1.4 Media-Space Screen 

The Media-Space is the main interaction space for sharing and interacting with images 

among all users in the shared session.  Thus, the media space is comprised of many 

modular components that can be drawn and manipulated on the screen as needed.  This 

enables users to maintain sessions, share images, interact, e.g. Pan/Zoom, and propagate 

state changes from a single flexible interface (see Figure 5.10). 

At the bottom of the media space lies the image contribution and selection indicator bar 

(see Figure 5.11, 5.12).  This bar provides quick access to all the images shared in the 

open session so that users can move between multiple shared images (see Figure 5.11).  

The image contribution indicator presents a unique colour to each participant (computed 

by multiplying each-user id against RGB colour values), allowing users to determine 

which image or groups of images were sent from a specific person (see Figure 5.12). 

Again due to the large number of on screen images (visible in the centre of the screen and 

below in the contribution bar), caching and thumbnail generation techniques were used to 

minimise the application‟s memory and processing footprints (using the central 

Rendering and Compositing Engine).  Similar to the rest of the user interface minimalist 

design, advanced options, controls and user customisable configuration settings (see 

Figure 5.13) are hidden from the user to maximise screen utilisation but can be called 

upon with a single click on the phones soft keys for quick access. 



99 
 

 

 Figure 5.10: Main Conferencing Interface. 
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Figure 5.11: Image Contribution and Selection indicator bar:  

Image selection process. 

 

Figure 5.12: Image Contribution and Selection indicator bar:  

Image Contribution indicator. 

 

Figure 5.13: Media space advanced options, controls and  

user customisable configuration settings. 



101 
 

5.2.1.5 Application Settings 

 

Figure 5.14: Application Settings Screen. 

The last Ripple screen comprises of the settings screen which allows the modification of 

key networking and account management configurations by the user (see Figure 5.14).  

The account id can be any unique number or character string unique to a user in the MEA 

network (e.g. this is typically set to the phone number of the mobile device) for easy 

address book access to mobile nodes.  Proxy settings are optional and are only needed 

when corporate access (e.g. WiFi) restrictions are in place at the organization or network 
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the user wishes to connect to.  This built in support for direct proxy configuration ensures 

network agnostic connections can be maintained even in strict corporate environments. 

Finally the data connection options provide additional management of the SIP (Session 

Initiation Process).  When auto-start is enabled, the user is always available to partake in 

a shared session (though users can ignore an incoming request).  This can be disabled 

when users don‟t wish to have this functionality, for example when roaming or travelling 

abroad.  The auto-manage WiFi option puts preference on free WiFi based connectivity 

(when available) over 3G connections to reduce costs or improve data connectivity. 

5.2.1.6 User Input Controls    

Smartphones were selected over the more powerful PDAs (portable digital assistants) due 

to their popular compact form factor and because they account for the vast majority of 

mobile devices currently sold worldwide.  Keypads on a smartphones usually have twelve 

keys, digits 0-9 plus the star and the hash key.  In addition, there are typically a number of 

keys that are referred to as the soft keys.  The soft keys are used to navigate and interact 

within the user interface of the phone and often include a joystick or a set of directional 

keys. 

The Ripple user interface has been primarily designed for single handed use (see Figure 

5.15) and facilitates the selection of on screen elements or moving around images during 

a shared session.  Devices that accommodate single-handed interaction can offer a 

significant benefit to users by freeing a hand for the host of physical and mental demands 

common to mobile activities [Karlson et al. 2006].  For example in a moving subway 

while clutching a hand strap, the ergonomics involved in non single handed mobile 

interactions can be very frustrating e.g. trying to control a stylus from moving around a 

slippery surface. 

The input options were designed to take into account three groups of possible users: 

beginners, intermediates, and advanced.  Each has different needs [Cooper and Reimann 

2004].  By designing the interface to meet these needs, all these groups will be more 

satisfied than if it was designed primarily for one group or the other.  Also to cater for 

perpetual intermediates [Cooper and Reimann 2004], the user interface simplifies the 

interaction to primary use cases, allowing users to perform the main tasks required to 

establish and interact in a shared session.  In addition hidden menus can be quickly 

revealed to cater for advanced users.  This allows users to quickly get the hang of basic 

functionality then transition to the advanced functionality when needed or after a period 

of familiarisation. 
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Figure 5.15: User interface input controls. 
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5.2.2 Rendering and Compositing Engine  

The rendering and compositing engine makes up the backbone of the photo-conferencing 

service.  It‟s tasked with performing the grunt work needed to ensure the smooth 

interactions and operations of all on screen components (visible and hidden) during a 

shared session.  Many of the components presented here have been heavily optimised and 

in many cases are embedded deeply throughout all elements of the photo-conferencing 

interface. 

Given the limited screen space available on the latest mobile devices and the ever 

increasing availability of high-resolution images (see Figure 5.16) a key prerequisite for 

any photo-conferencing service is the creation of a group of robust components that can 

present, manipulate and rapidly animate images on resource restricted mobile devices. 

  

Figure 5.16: Media Exchange relative to screen size.  

These requirements were even more important due to the limited processing capabilities 

of the devices that were available to us (HTC S710: 185Mhz, see Appendix A.1) and also 

operating system (Windows Mobile 6) restrictions.  Windows Mobile 6 (WM6) treats 

every on screen image as a bitmap; therefore an 800K jpeg image would quickly become 

10-50 times bigger in terms of memory required when presented on screen.  This issue is 

further exacerbated by the fact that WM6 operates on top of Windows CE 5 (CE) that 

severely limits all running applications (including OS total memory use) to 32 MB of 

virtual RAM. 

For example trying to display a 2048x1536 jpeg image (which is about 200Kb in size) 

which has to be converted by the operating system to a bitmap representation (in memory 

for display) would result in the 200Kb jpeg image becoming approx 10 MB, resulting in 

an out of memory exception due to the 32 MB virtual RAM limitation (partly occupied by 

the OS).  We therefore employed a set of bespoke image scaling and robust manipulation 

functions to support effective photo-conferencing.   
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5.2.2.1 Scaling & Animation Engine     

 

Figure 5.17: Animated zooming during a shared session. 

In desktop systems a typical design problem occurs when interacting with detailed 

datasets such as map based and network diagram representations in which the available 

display space is often smaller than the area populated with data.  In these scenarios 

zooming functionality is commonly added to the interface to allow users to navigate 

around the data space at differing levels of granularity (see Figure 5.17). 

Similarly in a mobile photo-conferencing application, the images displayed on the screens 

usually contain much more additional (pixel) data then can be represented in a single 

view.  Two separate engines were created to assist with these scenarios.  The first is a 

bespoke scaling engine that employs bicubic interpolation and  progressive rendering to 

minimise the memory footprint of on screen items.  This allows a zoomed out image (see 

Figure 5.17 Left) to be optimised to incur a similar small memory footprint to a zoomed 

in image (see Figure 5.17 Right) by only rendering the required pixels. 

In addition a complete animation engine works alongside the scaling engine to assist in 

performing transitions of on screen components such as performing smooth Panning and 

Zooming gestural effects.  Both engines have been heavily optimised and throttled (using 

rapid Input and animation tweening to limit the number of successive input events that 

generate key states over a pre-defined period, see section 5.2.3.2) to minimise the mobile 

device‟s CPU utilisation as much as possible and to free up resources for handling the 

outgoing and incoming networking packets that are essential to maintaining a shared 

communication session between mobile nodes. 
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5.2.2.2 Compositing Engine     

The conferencing solution consists of a rich user interface that can be initiated at any 

point during an active voice conversation to enable instant media exchange, and when 

idle to view prior sessions.  The user interface has been designed to support conferencing 

“What You See Is What I See” (WYSIWIS) functionality, in which media content and 

gestural interactions are replicated across all connected devices. 

 

Figure 5.18: Sharing and gesturing as it occurs during face-to-face 

collaboration [Crabtree, et al. 2004] (top), and during a remote mobile  

photo-conferencing session (bottom). 

The interface currently supports a number of remote media gesturing techniques, Pointing 

and Zooming (see Figure 5.18), which have been shown to improve performance when 

working across a large space [Bederson and Hollan 1994, Johnson 1995, Kaptelinin 

1995].  These provide the mechanisms through which users can indicate focus during a 

conferencing session and construct what Crabtree et al. [Crabtree, et al. 2004] describe as 

“a host of fine grained grammatical distinctions”. 

Remote gesturing is achieved through an on screen visual pointer (see Figure 5.19) that 

resembles the working of similar pointing devices found on most desktop computers, with 

a number of enhancements.  The first is the utilisation of a visual pointer hand attached to 

a selection box to encompass an area of the media providing a sense of reference and 
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focus, and the ability to enlarge and compress the selection area, using similar photo 

panning and zooming techniques to provide fine grain control over the focus zone. 

  

Figure 5.19: RGB (left), RGBA (middle) and  

RGBA with alpha compositing (right).  

 

Figure 5.20: Cropped: RGB (left), RGBA (middle) and RGBA  

with alpha compositing (right).  

Because the .net compact framework (the programming layer for the Windows Mobile 6 

operating system) on which the system is based lacked support for alpha transparency, we 

had to create an alpha compositing engine that could take an RGB image and construct an 

RGBA alpha composited blend that simulates transparency on the pointer. 

Alpha compositing is the process of combining an image with a background to create the 

appearance of partial transparency.  Image elements are rendered in separate passes and 

then combined.  The pointer consists of an alpha composited hand (see Figure 5.19, 5.20), 

that enables direct selection and media focus without obscuring the underlying image.  

Performance was a major hurdle when creating the alpha composited effect, especially 

due to the fact that the alpha transparent layer (the pointer) doesn‟t remain stationary but 

animates under normal usage conditions, as it moves and resizes over the main image.  
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This work therefore required many development iterations to achieve satisfactory 

performance results. 

5.2.2.3 Content Adaptation Techniques     

Enabling mobile to mobile connections, creating shared interaction spaces and careful 

optimization of the client software has allowed us to extend the photo-conferencing 

capabilities across a large number of mobile devices currently available on the market, 

from low-end Smartphones to more powerful Pocket PC devices. 

In today‟s mobile market consumers are presented with a greater choice of devices, form 

factors and screen resolutions to meet their individual needs (see Figure 5.21).  These 

variations present new challenges to the maintenance of deictic referencing that mobile 

photo-conferencing services need to overcome in order to succeed. 

 HP iPAQ 200 

320x240

480x640

Motorola Q9HTC S710

240x320

 

Figure 5.21: Illustrative example of variations in screen resolution and 

orientation across a number of available Windows Mobile devices. 

 

Existing mobile photo-sharing solutions such as MMS services have suffered from 

interoperability issues in which messages created by some devices were not compatible 

with the capabilities of recipient devices [Bodic 2003, Coulombe and Grassel 2004, 

Daniel Ralph 2003].  Although MMS interoperability issues still exist today, mobile 

operators were quick to learn from their mistakes and introduced dynamic content 

adaptation techniques such as MMSC [Daniel Ralph 2003] to rectify initial user 

experiences and encourage the adoption of MMS services.  Key to the photo-

conferencing solution developed in this research is the maintenance of a shared visual 

space and deictic referencing, through which the mechanics of collaboration [Gutwin and 

Greenberg 2000] can be supported. 

 

For such a solution to succeed, it needs to overcome such interoperability issues.  Support 

for content adaptation is therefore provided by the photo-conferencing interface.  In the 
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following section we present four preliminary techniques: “content transformation”, 

“content framing”, “content peripheral framing” and “content peripheral t-framing” that 

enable cross-device content adaptation during photo-conferencing sessions. 

5.2.2.3.1 Content Transformation 

Content transformation is a technique in which the source (shared) image is modified to 

accompany variations in the target device‟s screen orientation and resolution whilst 

maintaining deictic referencing (see Figure 5.22).  The transformation consists of varying 

the image‟s dimensions and aspect ratio in order to apply stretching across the available 

display space on each device. 

 

Figure 5.22: The effects of content transformation, as it would appear on a 

mobile device‟s display (yellow area). The top illustration consists of the 

source image and the lower illustrates the target output. 

The top half of Figure 5.22 illustrates the shared visual space as it would appear on the 

screen of a 240x320 (Portrait QVGA) display, with the bottom half illustrating how it 
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would appear on a 320x240 (Landscape QVGA) display.  These are two common screen 

resolutions, found on many of the latest mobile devices such as the HTC S730 and the 

Motorola Q9 (see Figure 5.21) respectively.  The transformation is applied by 

manipulating the image‟s horizontal and vertical aspect ratios according to the target 

display on which it is being presented. 

Suppose Ʀ, Ω are the aspect ratios of the current and targeted displays‟ resolutions 

respectively, Cw the current displayed image width and Ch the height.  We calculate the 

target image width Tw and height Th by:  Tw  =  (Cw . Ω),  Th = (Ch . Ʀ).  

 

 

Figure 5.23: Content transformation, across four devices: S730 (source 

device), Motorola Q9, HP iPAQ 200 and Apples iPhone.  Across four 

common screen resolutions from left to right 240x320, 320x340, 480x640 

and 480x320. 

The advantage of content transformation is that it utilizes all of the mobile device‟s 

screen real-estate, whilst maintaining an acceptable level of support for deictic 

referencing, in which a question such as “What colour is the flag in the bottom right?” 

would return the same answer with both display resolutions (see Figure 5.22, top/bottom).  

Additionally, when performing transformations to displays which are variant 

multiplications of the source display, for example displaying the content from a 240x320 

(QVGA) device to a 480x640 (VGA) display found on many Pocket PCs such as the 
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iPAQ 200 (see Figure 5.21), no image skewing occurs during transformation, providing 

identical experiences as both screens share the same aspect ratio (see Figure 5.23). 

5.2.2.3.2 Content Framing 

Content framing uses subtraction method A ∩ B+n (see Figure 5.24, 5.26 second column), 

in which both screens permit shared content to be viewed, shading out areas not viewable 

on both devices.  This technique provides an alternative to content transformations and is 

more suitable for sharing textual and schematic contents across mobile devices as no 

transformation or skewing is applied to the original image, with horizontal and vertical 

aspect ratios being maintained. 

 

 

Figure 5.24: Content framing, across four devices: S730 (source device), 

Motorola Q9, HP iPAQ 200 and Apples iPhone.  Across four common 

screen resolutions from left to right 240x320, 320x340,  

480x640 and 480x320. 

Content framing in effect creates blank space at the screens‟ edges, similar to that 

observed when viewing widescreen movies on non-widescreen televisions.  This allows 

both participants to interact around an identical shared visual space, without incurring any 

distortions. In comparison to content transformation, content framing doesn‟t make the 
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most of the entire pixel repertoire provided by the mobile device.  This is even more 

evident when working between low and higher resolution devices (see Figure 5.24: HP 

iPAQ 200 and Apple iPhone), in which devices with larger displays are underutilised 

despite the additional screen real-estate available to them. 

5.2.2.3.3 Content Peripheral Framing 

Peripheral framing is an enhancement to the content transformation technique used with 

textual and schematic data, the disadvantage of the earlier approach (content framing) 

being a reduction in the overall use of available screen space. 

 

 

Figure 5.25: Content peripheral framing, across four devices: S730 (source 

device), Motorola Q9, HP iPAQ 200 and Apples iPhone.  Across four 

common screen resolutions from left to right 240x320, 320x340,  

480x640 and 480x320. 

Peripheral framing adapts techniques from peripheral vision [Rayner 1998] (the part of 

vision that occurs outside the very centre of gaze).  Humans process vision through the 

receptors on their retina.  There are more receptors in the centre of the eye than there are 

at the periphery therefore vision is better when you are looking directly at an object than 

when you are using your peripheral vision. 
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Figure 5.26: An example of content transformation (left) in comparison to 

content framing (middle) and content peripheral framing (right).   

Across three screen resolutions from top to bottom:  

240x320, 320x340 and 480x640. 

In a photo-conferencing scenario, the shared interaction space between all participants 

constitutes the main point of gaze, whereas the non-shared interaction space can in a 

similar way to peripheral vision create a paracentral vision adjacent to the centre of gaze, 

without distracting from the main focus.  Content peripheral framing uses the subtraction 
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method A ∩ B principle, shading out areas not viewable on both devices in a similar way 

to content framing.  This allows both participants to interact around shared content, but 

unlike content framing the applied shading consists of a matt transparency layer that 

enables peripheral vision to make use of the entire pixel space provided by the mobile 

device (see Figure 5.25, 5.26 third column). 

5.2.2.3.4 Content Peripheral t-Framing 

The strength of any photo-conferencing content adaptation method lies in its ability to 

maintain a shared visual space whilst maintaining acceptable deictic referencing.  We 

have thus far presented three approaches (content transformation, content framing and 

content peripheral framing) to enable content adaptation during a photo-conferencing 

session.   

 

 

Figure 5.27: Content peripheral t-framing, across four devices: S730 

(source device), Motorola Q9, HP iPAQ 200 and Apples iPhone.  Across 

four common screen resolutions from left to right 240x320, 320x340, 

480x640 and 480x320. 

 



115 
 

There is however one more approach that should be considered, in which the unique 

attributes of previous methods can be combined to maximise display usage.  Peripheral t-

framing is a combination of the best characteristics of content transformation and 

peripheral framing to further enhance overall screen utilisation.   

In this approach content transformation is applied to stretch the shared visual content, 

filling the available display space without altering the contents‟ original aspect ratios (see 

Figure 5.27).  Subsequently peripheral framing can be applied to define focus and identify 

content inside the periphery of the shared space.  Using this approach with our previous 

example (see Figure 5.28, last row), mixed adaptation can be applied to further reduce the 

need for outsized transparency frames when using peripheral framing, enlarging the 

shared visual space and further enhancing utilisation of the devices‟ available screen 

space. 

5.2.2.4 Content Adaptation User Survey  

We conducted an environment independent subjective usability survey [Wynekoop et al. 

1992] in which we asked participants to rate the above content-adaptation techniques to 

determine the most suitable adaptation methods.  The survey presented users with two 

prototype display screens.  The first presented a standard image (see Figure 5.28), the 

second presented a textual-schematic data (see Figure 5.29), each presented across four 

common device resolutions by condition: Stretching, Framing, Peripheral Framing, and 

Peripheral t-Framing (similar to Figure 5.28, 5.29). 

We ran 23 participants.  Participants were selected at random from students at the 

University of Bath.  The average participant age was 26 and 43% of participants were 

female.  The users were asked to rate the adaptation method they most preferred based on 

their subjective preferences, see Appendix C.1.  To minimise influence participants were 

not informed as to the nature of the results we wished to collect, e.g. quality of output, 

readability or distortion between the adaptation methods. 
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Figure 5.28: An example of image-content transformation (top-row) in 

comparison to content framing (second-row), peripheral framing (third-row) 

and peripheral t-framing (bottom-row), across four common screen 

resolutions 240x320, 320x340, 480x640 and 480x320.
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Figure 5.29: Schematic- content transformation (top-row) in comparison to 

content framing (second-row), peripheral framing (third-row) and 

peripheral t-framing (bottom-row), across four common screen resolutions 

240x320, 320x340, 480x640 and 480x320. 
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Results for the image based adaptation survey indicated the majority of users (73.91%) 

preferred Peripheral t-Framing.  The remaining (26.08%) preferred transformation and 

none (0.0%) preferred framing or peripheral framing.  A one-way ANOVA across the 

four conditions found a significant effect on user preference (f3,88 = 27.716, p ≤ .002).  

Post hoc pairwise two-tailed, independent t-tests found a significant difference between 

transformation and framing (t44 = 2.78, p ≤ .002), transformation and peripheral framing 

(t44 = -2.78, p ≤ .002), transformation and peripheral t-framing (t44 = -3.61, p ≤ .002), 

framing and peripheral t-framing (t44 = -7.89, p ≤ .002) and between peripheral framing 

and peripheral t-framing (t44 = -7.89, p ≤ .002).  No significant difference was found 

between framing and peripheral framing (t44 = 0, n.s.). 

Users‟ feedback suggests they preferred the “internal proportion of a shared photo remain 

the same” and they “don‟t want someone else to crop/stretch images” for them.  The 

wasted screen space under content Framing was regarded as a restricting factor given the 

already limited pixel range and screen resolutions available on most mobile devices. 

Results for the textual-schematic based adaptation indicated the majority of users 

(65.21%) also preferred Peripheral t-Framing.  Of the remaining users, (21.73%) 

preferred Peripheral Framing, (13.04%) preferred Stretching and none (0.0%) preferred 

framing.  A one-way ANOVA across the four conditions found a significant effect on 

user preference (f3,88 = 5.511, p ≤ .002).  Post hoc pairwise two-tailed, independent t-tests 

found a significant difference between transformation and peripheral t-framing (t44 = -

4.19, p ≤ .002), framing and peripheral framing (t44 = -2.47, p ≤ .05), framing and 

peripheral t-framing (t44 = -6.42, p ≤ .002) and between peripheral framing and peripheral 

t-framing (t44 = -3.23, p ≤ .002).  No significant difference was found between 

transformation and framing (t44 = 1.81, n.s.) and transformation and peripheral framing 

(t44 = -7.66, n.s.).  Users‟ feedback suggests that this approach “contains a greater level of 

detail”.   

 

Figure 5.30: Content transformation applied to schematic data containing 

textual content.  240x320 (right) and transformed aspect ratio 320x340 

(left), the textual content in the  transformed output becomes harder to read. 



119 
 

From the results Peripheral t-Framing consistently provided a suitable representation of 

data across device resolutions.  In contrast not all images were suitable to undergo content 

transformations in which skewing occurred.  Schematic and textual content can become 

much harder to read after content transformation has been applied (see Figure 5.30).  

Individual preferences and perceptions can also be affected by content transformation that 

results in skewing, in which, for example, the display of loved ones in a stretched aspect 

ratio can be disconcerting. 

5.2.3 Adaptive Throttling Mechanisms  

  

Figure 5.31: Adaptive Throttling Mechanism. 

Multimedia streaming over wireless networks is becoming increasingly popular [Harper, 

et al. 2007].  Adaptive solutions are proposed to compensate for high fluctuations in the 

available bandwidth to increase communication quality.  Throttling is proposed as a 

client/server technology responsible for ensuring a consistent level of performance, 

responsiveness and usability during a shared session. 

In a shared session users can typically perform several interactions at once during the 

simultaneous transmission or retrieval of media content (see Figure 5.31).  If not managed 

correctly, these rapid transactions can often overextend the bandwidth available on 

mobile networks and the processing capabilities of the mobile nodes to analyse such 

packets. 

To overcome this, in addition to optimising user interface components (e.g. display 

creation, animation effects and re-sampling of onscreen components) to minimize 

processor and memory loads, data throttling mechanisms are needed throughout all 

networking activities, to provide prioritisation to immediate user interactions and enable 

content retrieval with minimum disruption to interface elements. 
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The adaptive throttling mechanisms outlined in this section perform the automatic 

queuing and prioritisation of incoming messages as needed, saving each of the connected 

nodes (which have limited resources) from having to perform these services. 

5.2.3.1 Consistency Maintenance Algorithms  

Latency is the time required to transmit a message between mobile nodes.  Here it is 

defined as the time between a „PSYNC‟ message leaving one mobile node and arriving at 

its destination mobile node.  Network latency is largely unpredictable, particularly across 

mobile, heterogeneous and wide area networks such as the internet.  There are many 

possible sources of latency in such networks, including the traffic generated by the 

connected nodes themselves [Dutta-Roy 2000]. 

As a result of this, latency is rarely constant throughout execution and rich mobile 

communication is difficult to achieve, regardless of the communication protocols used 

(e.g.  802.11  protocol  family,  or  wide  area  wireless  communication  protocols  such  

as GSM,  CDMA,  and  UMTS).  Wireless data connections provide modest bandwidth 

that fluctuates based on operator coverage and active cell-tower bandwidth.  The „best 

effort‟ approach adopted by mobile operators places no guarantees on available 

bandwidth or packet delivery.  These limitations can result in limited connectivity 

dependent on bandwidth availability and network congestion that can severely affect the 

exchange of packets between connected participants.  

Direct migration from traditional (desktop based) synchronous communication 

environments is therefore difficult and doesn‟t result in the same degree of interactivity to 

connected users.  Adaptive throttling is a novel technique to help alleviate these 

variations in connectivity, speed and signal loss across mobile nodes. 

The Consistency Maintenance Algorithms are used to monitor and sense the delay in 

transmitted packets to dynamically throttle local lag [Mauve et al. 2004].  For example by 

varying the rate (up: faster or down: slower) at which individual shared interaction spaces 

are updated, we can minimise inconsistencies across distributed mobile nodes.  This can 

be observed in the following scenario, in which a „pan right‟ event is handled differently 

by a sending and receiving client: 
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Figure 5.32: Catch-up Coordination Mechanism. 

 

Figure 5.33: Adaptive Throttling Coordination Mechanism. 

 

Here we can see the animation effects used across the shared interaction space for 

pointing, panning and zooming served two important purposes.  The first and most 

obvious was in providing visual feedback on changes to the shared visual space, similar 

for example to Google maps [Google] without cluttering the user interface with obtrusive 

textual event indicators. 

The second more novel approach to the utilisation of animation lies in the subtle 

distractions that can be used to minimise the effects of networking delays between client 

devices (see Figure 5.32, 5.33).  In this approach, when a user pans an image or zooms in 

on it, the system invokes a 400 millisecond animation transition between the previous 

state and the target state.  During that animation sequence the state data is transmitted for 

distribution to other clients that animate to the new target state, but at the much faster rate 

of 200 milliseconds.  These variations in animation speeds create a buffer that allows 

remote connected clients to be perceived as more responsive than they actually are, 

enhancing the conferencing experience. 
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5.2.3.2 Rapid Input & Animation Tweening 

  

Figure 5.34: Animation Tweening process. 

In synchronous communication users can often perform multiple consecutive actions to 

adjust the shared view or indicate focus to other participants in the shared session. 

Sending or even receiving rapid inputs puts stress on both the mobile devices and the 

networks on which they operate. 

Rapid input algorithms help reduce network load by only propagating required „key‟ state 

changes throughout the network to other mobile nodes.  Key states are defined here as the 

target state of the interaction in which no subsequent commands proceed within an input 

threshold.  For example if the user changes the state of the shared space by moving 

around a shared item (e.g. an image) through rapid successive events <300 milliseconds 

(selected based on informal testing of interaction performance e.g. pan left, pan down, 

zoom in, pan right on the  HTC S710 hardware utilised throughout our testing).  The 

rapid input algorithm will only transfer a portion of the event queue, such as initial 

interaction and the final destination, see Figure 5.34 right.  This cuts down network load 

and processing requirements on receiving nodes. 

However, this introduces jagged flickering state transitions that cause an on screen item 

(e.g. an image) to bounce around the screen before reaching its final state.  This is where 

the Animation Tweening algorithm comes into play.  It complements the rapid input 

algorithm by smoothing incoming transitions on remote nodes, removing flickering and 

allowing the seamless movement from the different image states that are received by the 

mobile nodes (see Figure 5.34). 
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Figure 5.35: Animation Tweening transition. 

Tweening is the animation process of moving from an initial state to a target state and is a 

process supported by the majority of modern animation software packages.  Most ways of 

creating animation involve something called „tweens‟.  The word tween is short for in-

between.  When creating a tween you specify a starting point and an ending point of an 

animation, and the animation engine does all the work of creating the animation frames 

in-between (see Figure 5.35). 

This allows for the creation of complex animations very quickly by doing the work in the 

background.  There are several different types of tweens: Shape tweens, Motion tweens, 

Armature teens or Bone tweens.  The Animation Tweening algorithm employed by the 

photo-conferencing service employs a mixture of shape and motion tweens.  Tweens 

work by specifying key-points of an animation (e.g. start state and desired end state) at 

which point a carefully crafted animation engine (see Scaling & Animation Engine 

5.2.2.1) is responsible for computing all frames in between. 

Shape tweens are essentially morph animations.  By setting the start and end location the 

engine creates a smooth morph effect automatically (e.g. used by the Zooming 

interaction).  Motion tweens allow the animation of objects along a path that the motion 

tween follows (e.g. used by the Pointing interaction).  Tweening can be combined with 

the rapid input algorithm to cut down on network load, but can also be used on its own to 

help mobile nodes better cope with data loss.  The tweening algorithm can allow a swift 

transition between the last transmitted event and the latest received event, without the 

need to reproduce intermittent (lost) events. 
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5.2.3.3 Unicast & Group Messaging 

  

Figure 5.36: Catch-up Coordination Mechanism. 

Unicast transmission is employed to ensure that information packets are only sent to the 

required mobile nodes and not broadcast to all nodes (see Figure 5.36), further reducing 

network load.  An example scenario where this functionality is used is in the elimination 

of „echo‟ in the network.  Echo can commonly occur when a status update is broadcast by 

a mobile node to other nodes in the network.  The initiating client as part of the broadcast 

will also receive the message it transmits to others. 

Unicast and select messaging prevents this scenario from occurring by allowing clients to 

target specific nodes or groups of node in the mobile network (excluding themselves in 

the process).  Target packets bring many advantages such as optimised bandwidth, in 

which clients only receive the packets destined for them, and reduced processing 

requirements as no additional filtering is needed client side to ignore echo messages.  

Additionally the built in support for unicast messaging improves the security and integrity 

of the MEA network by ensuring the transmitted packets are only delivered to authorised 

mobile nodes during an active session. 
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5.2.3.4  Sequencing & Time Synchronisation 

  

Figure 5.37: Synchronisation Mechanism. 

The sequences in which messages are received play an important role in synchronous 

communication.  When using non-fault tolerant networks, packets can be lost in the 

network or arrive at targeted nodes out of sequence.  Both situations are harmful when 

attempting to maintain a shared view.  Lost packets result in jumps in state updates 

(which the Tweening engine helps alleviate) and delayed packets can result in a déja vu 

scenario in which unintended past events affect a future system state. 

By employing a global, millisecond precision (needed for rapid input) shared time across 

all connected mobile nodes, clients can analyse the time-stamp associated with incoming 

packets against the time-stamps of previously received and transmitted packets to assess 

correct ordering.  For example if a packet delay occurs, upon receiving the delayed packet 

the client will be able to identify the time-stamp as being older than a more recent 

received packet or packet recently submitted by the client, in which case the packet can 

be discarded in favour of a more up-to-date event thereby avoiding such situations (See 

Figure 5.37). 

To achieve millisecond precision, server side time synchronisation is used over client side 

time synchronisation.  This reduces the need for clients to continuously synchronise their 

internal clocks or share time zones. 
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5.3 Chapter Summary 

The photo-conferencing service represents our initial instantiation of a mobile media 

exchange service built on the Mobile Exchange Architecture presented in Chapter 4.  

Although simple in nature, it tackles three fundamental obstacles of mobile cooperative 

services: (1) establishing mobile-to-mobile sessions, (2) exchanging large amounts of 

data, and (3) maintaining a shared visual space among remote cellular devices.   

The system supports two working modes, synchronous and asynchronous: one in which 

real time interactions are shared with all participants and the other in which users can 

join, leave and catch up later at any time.  Scalability was a core part of the architectural 

design.  The photo-conferencing service demonstrates rich interactional P2P capabilities 

that can operate throughout existing 3G mobile networks and addresses the important 

issue of mobile content adaptation.  Content transformation, content framing, content 

peripheral framing and content peripheral t-framing techniques are all demonstrated to 

enable rich media sharing across mobile devices, adapting to variations in screen 

resolution. 

The photo-conferencing interactions enable remote or collocated mobile users to interact 

with visual media using two shared interaction techniques: „pointing‟ which consists of a 

pointer cursor that simultaneously moves on both devices, and „scaling‟ which 

simultaneously enlarges or shrinks the viewable area on both devices.   

Pointing and scaling on each device can be controlled independently or simultaneously 

(i.e. synchronously across the devices) using dedicated hardware buttons.  These facilities 

provide a shared visual space that can lead to more efficient communication [Gergle 

2005, Kraut, et al. 2002], providing the mechanisms through which users can indicate 

focus during a collaborative session [Bederson and Hollan 1994, Johnson 1995, 

Kaptelinin 1995, Turner and Kraut 1992] and construct what Crabtree et al. [2004] 

describe as “a host of fine grained grammatical distinctions”.   

In scenarios when users are distributed, the photo-conferencing system supports 

simultaneous voice calls amongst the users.  This is not, of course, to claim that there will 

be no differences between collocated (face-to-face) and distributed interactions but, 

uniquely, our mobile system offers users the ability to use the same mobile device and 

services with full voice communication across both collocated and distributed settings. 
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This chapter has provided an initial prototype of a new form of mobile-to-mobile media 

sharing service that is spontaneous, dynamic and can occur during an active phone 

conversation.  In the next chapter we focus on the interaction techniques used with this 

service and through a series of user studies assess the impact of these interaction 

techniques throughout a shared communication session. 

 

 

. 
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Chapter 6. 

Remote Interaction  

Techniques   

“The medium, or process, of our time - electric technology is reshaping and restructuring 

patterns of social interdependence and every aspect of our personal life.  It is forcing us 

to reconsider and re-evaluate practically every thought, every action” Marshall 

McLuhan 

6.1 Introduction 

In this chapter we extend our previous work to evaluate a series of remote mobile 

interaction techniques afforded by our novel MEA photo-conferencing service.  Although 

the mobile exchange architecture‟s instantiation explicitly supports remote photo-

conferencing, its interaction techniques have more general application.  Our aim here was 

to understand the effects of the remote gestural techniques on mobile media exchange.  In 

particular, we were interested in their effect on the collaborative effort [Clark and 

Brennan 1991] required by participants to perform their joint activity. 

We report two lab-based user studies of our mobile exchange architecture.  The first 

experimental study evaluates differences between remote „Pointing‟, „Scaling‟ and 

„Mixed‟ interaction techniques.  The second experimental study evaluates a „Hybrid‟ 

interaction technique created by combining the most successful characteristics found in 

our first study.  The studies assess the impact of remote mobile interaction techniques on 

users‟ actual performance and perceptions, assessing the individual merits of each 

requirement to help advance and inform the design of systems to support co-present and 

remote mobile interactions.  Accordingly, the main focus of this chapter is to contribute 

to the basic understanding of the effects of remote gesturing techniques on mobile 

interactions. 
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In addition we report a third, field-based, study which evaluated user engagement with 

the MEA and suggested implications for the design of such mobile services. 

6.2 Grounding Communications 

Establishing mutual understanding, or „common ground‟, is required for effective 

communication.  This is referred to as the „process of grounding‟ [Clark and Schaefer 

1989, Clark and Wilkes-Gibbs 1986].  Grounding is a collaborative, interactive process, 

which ensures that participants have understood a previous utterance, to a level sufficient 

for their current purposes. 

The process of grounding can be affected by several factors.  Clark and Schaefer [1989] 

suggest that different conversational purposes impact on grounding, so task related 

conversations might require stronger evidence of understanding than social dialogues.  It 

has also been proposed that the process of grounding changes with communicative 

context [Clark and Brennan 1991].  This is because contexts vary in the number of 

channels of communication they support, and hence the range of „grounding constraints‟ 

(ways of constraining the many possible interpretations of utterances or messages) 

afforded by the communicative context.  Some methods of grounding appear to require 

very little effort in communicatively rich contexts, but using the same grounding 

constraints in another context may take considerably more effort.  For example, while it is 

easy to use non-verbal behaviour to show agreement and understanding in face-to-face 

communication, this is not so easily achieved during a videoconference, where the visual 

channel is often impoverished. 

The effort required to maintain the process of grounding will therefore vary dramatically 

with communicative context [Clark and Brennan 1991].  For example, in video-mediated 

communication (VMC), attenuation of visual signals can make it difficult to time the 

effective use of non-verbal signals to show understanding. 

Similarly users of MEA systems should use the grounding constraints that require the 

least collaborative effort.  The question being addressed in this section is the extent to 

which the gestural interactions provided by our MEA to support this.  Although there 

have been a number of studies of the impact of VMC on users [e.g. Anderson, et al. 1997, 

Sellen 1995, Whittaker and O'Conaill 1997], very little research has investigated those 

effects across resource restricted (form factors, networks and services .etc) mobile 

cellular devices. 
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6.3 Pilot Studies - Interaction Techniques 

Recent research points to participants needing richer capabilities to connect in the 

moment and the need for interactivity when sharing photographs: “[domestic 

photographs] are meant to be shared, and they are meant to prompt interaction” (Chalfen 

1998).  We therefore developed a complete photo-conferencing system (see Chapter 5), 

and added support for two interaction techniques „pointing‟ and „scaling‟ that could be 

used in combination to achieve such interactivity. 

6.3.1 Pointing:  

 

Figure 6.1. „Pointing interaction. 

The photo-conferencing system needed a means to facilitate deictic referencing during a 

shared session.  Area pointing (pointing) was added as it forms a natural interaction and is 

familiar to using a pointer on a computer screen to indicate areas of focus [English et al. 

1967]. 

This is also demonstrated in studies collaborating around collections of photographs 

[Crabtree, et al. 2004] in which users are observed pointing.  Crabtree identifies 
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„pointing‟ as “a gloss on a host of embodied interactional gestures that enable persons 

using photographs to establish mutual orientations, to furnish topics and to make a host of 

what might, following the later Wittgenstein [Wittgenstein and Anscombe 1953], be 

called fine-grained „grammatical‟ distinctions that provide for the meaningful use 

photographs and the practical achievement of „sharing”. 

6.3.2 Scaling 

  

Figure 6.2. Scaling interaction. 

In addition to pointing based interaction, a scaling interaction was added to aid the 

display of the details of a given shared photograph due to the inherent limitations of 

mobile devices‟ screens (i.e. minimal size and resolution).  Most if not all images 

captured by the cameras built into current mobile devices offer a minimum of two 

megapixels resolution images (1600x1200) that greatly exceed the QVGA (320x240) 

resolutions provided by the majority of mobile device screens. 

The act of scaling in and out of an image to indicate detail or focus on a specific subject 

has been shown to improve performance when working across a large space [Bederson 

and Hollan 1994, Johnson 1995, Kaptelinin 1995] and can complement the pointing 

interaction during the collaborative image sharing session, providing the mechanisms 

through which users can indicate focus during a conferencing session and construct what 

Crabtree et al. [2004] describe as “a host of fine grained grammatical distinctions”. 



132 
 

6.4 Study 1 – Pointing And Scaling 

This first study was motivated by early prototype observations in which we noticed 

substantial variations in the time required by users to effectively reference on-screen 

items using the initial interaction techniques offered by the mobile photo-conferencing 

service.  The goal of this study was to examine how the effects of the three interaction 

techniques that we originally offered (pointing, scaling, and a mixture of both pointing 

and scaling) affected users‟ actual and perceived performance with the mobile photo-

conferencing service, testing our initial hypothesis: 

 [H1]  Providing multiple mobile interaction techniques through our „mixed‟ 

condition would result in better performance, since it offered users a free 

choice of the two mechanisms to indicate and share focus. 

The study investigated three interface conditions: pointing, scaling and a mixed condition.  

The „pointing‟ interaction consists of a cursor that simultaneously moves on both devices, 

whereas the „scaling‟ interaction simultaneously enlarges or shrinks the viewable content 

on both devices (see Figure 6.3).  The mixed condition offered both facilities and the 

ability to switch freely between them.  The pointing and scaling interactions are designed 

to be controlled independently or simultaneously on each device (i.e. synchronously 

across the devices) using dedicated hardware buttons designed for primarily one-handed 

smartphone usage. 

 

Figure 6.3.  „Pointing‟ (left) and „scaling‟ (right). 
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6.4.1 Study Methodology 

6.4.1.1 Design 

The experiment was conducted using a between participants design, which manipulated 

one independent variable, communication method, consisting of three levels („pointing‟, 

„scaling‟ and „mixed‟) accompanied by an audio channel to support voice 

communication.  

The dependent variables included: task completion time, number of words spoken, 

number of input events that took place, error rates and a subjective rating of mental 

workload by the participants.  The experimental hypothesis was that the mixed condition 

would result in better performance measurements, since it offered users a free choice of 

two mechanisms to indicate and share focus [Turner and Kraut 1992]. 

6.4.1.2 Interaction Techniques 

Study 1 investigated three interface conditions: pointing, scaling and a mixed condition.  

The pointing and scaling interactions were designed to be controlled independently or 

simultaneously on each device (i.e. synchronously by any participant across all devices) 

using dedicated hardware buttons on the mobile keypad. 

 In the „pointing‟ condition, the participants were provided with only the pointing 

facility of the mobile media exchange service (see Figure 6.4.c).  The „pointing‟ 

interaction consists of a cursor with an attached selection area that simultaneously 

moves on both devices (see Figure 6.3 and 6.4b).  In this condition the pointer 

can be positioned anywhere on the screen using a combination of six buttons: 

directional-pad (up, down, left, right) for pointer positioning, enter-button to 

shrink the pointer‟s selection area and back-button to enlarge the selection area 

(up to three levels in either direction).  Moving the pointer on one device‟s screen 

made it move synchronously on the other device‟s screen. 

The animation speed at which the pointer moves on user input was set to 500 

milliseconds to provide smooth transitioning (due to processor limitations) and 

covers a movement area equivalent to the size of the pointer‟s selection box (e.g. 

115x65 pixels at level 2 on a 320x240 display). 
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 In the „scaling‟ condition, participants were provided with only the scaling 

facility (see Figure 6.4.ba and 6.4.bb).  The „scaling‟ interaction uses a 

progressive zooming technique (employing bicubic interpolation) to 

simultaneously enlarge or shrink the viewable content on both devices (see 

Figure 6.3 and 6.4a-ab).  In this condition images can be positioned anywhere on 

the screen and scaled using a combination of six buttons: directional-pad (up, 

down, left, right) for image positioning, enter-button to scale into the viewable 

area and back-button to scale out of the viewable area.  Scaling on one device‟s 

screen made the same scaling occur synchronously on the other device‟s screen. 

The scaling interaction is dynamic based on the original image‟s resolution 

(pixel/aspect ratio) which limits zoom to 1:1 of the original image size e.g. a 

960x 720 image would support three degrees of zooming from its original 

zoomed out view (on a 320x240 display). 

Similar to „pointing‟, the scaling interaction used in the experiment was restricted 

to three degrees of scaling (each doubling the image size).  The animation speed 

at which the scaling occurs from start to finish on user input was also set to 500 

milliseconds due to processor limitations (see Appendix A.1). 

 The „mixed‟ condition offered both the pointing and scaling interaction 

techniques (see Figure 6.3), and participants were encouraged to use whichever 

they preferred at any time.  The pointing and scaling interactions are designed to 

be controlled independently or simultaneously on each device (i.e. synchronously 

by any participant across the devices) using dedicated hardware buttons on the 

mobile T9 keypad. 

In this condition a toggle-key (hash-button) was added to allow users to switch 

between the pointing and scaling input mechanisms.  An event (pointing or 

scaling) on one device‟s screen made the same event occur synchronously on the 

other device‟s screen. 
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Figure 6.4. Extract from a complex visual image with multiple points of 

focus (a): Michelangelo‟s Last Judgement; (ab) after 1 degree of scaling;  

(b) with cursor indicator. 

6.4.1.3 Experimental Task 

Study 1 tested the following hypothesis: 

[H1]  Providing multiple mobile interaction techniques through our „mixed‟ 

condition would result in better performance, since it offered users a free 

choice of two mechanisms to indicate and share focus. 

We wanted an experimental task which tested users‟ ability to navigate around shared 

images on the (small) mobile display and to identify focus points and the connections 

between them [Crabtree, et al. 2004].  Previous research on referential communication 

has often utilized experimental situations that create communication challenges for 

participants in a more condensed way than they typically occur spontaneously [Clark 

1996, Clark and Schober 1989, Clark and Wilkes-Gibbs 1990, Kraut et al. 2002, Kraut et 

al. 2002]. 

Therefore, in testing the hypothesis we abstracted away from the details of any particular 

shared image while controlling the complexity of the task.  Following Dillon [Dillon et 

al. 1990] and Kabbash [Kabbash et al. 1994], the experimental task utilised a puzzle 
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paradigm which required a Helper to guide the actions of a Worker in the completion of a 

“connect the dots” diagram. 

This was chosen as it represents a generic object-focused task and is comparable to tasks 

used in previous work [e.g. Clark and Brennan 1991, Zanella and Greenberg 2001], 

allowing for precise control over the number of referential points used by participants and 

the level of task difficulty.  The dots used in the experimental task represent focus points 

and the connections represent relations between those focus points (see Figure 6.5). 

 

 

Figure 6.5. Michelangelo‟s Last Judgement, example image with multiple 

referential points and connections showing one possible relation diagram. 

To complete the task a participant was required to connect a series of dots constructing a unique 

shape known only to the other participant.  Connecting the dots provided a large number of 

unique permutations (see figure 6.6) to be created, and the Worker relied completely on 

instruction from the Helper.  The task consists of connecting a series of nodes (dots) 

together; there was only one restriction outlined: “as a minimum each node must at least 

connect to one other node”.  However, there was no limit on the number of connections to 
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or from a single node, i.e. a node can connect to multiple other nodes or just one (see 

figure 6.7). 

We measured speed and accuracy of target selection from a standard starting position.  In 

order to extend generalisability beyond simple images, the dots (targets) used in the task 

differed in position and size and were distributed in an irregular pattern across the screen 

in order to limit the participant‟s ability to verbally identify objects directly using 

physical characteristics alone.  This approach was selected to stress users beyond that of 

simple image sharing and simulate scenarios in which mobile users may interact not only 

with visually rich images (e.g. Figure 6.5) but also other complex representations such as 

schematics (e.g. engineering diagrams) or map based representations (e.g. GPS based 

navigation aids) that may contain many referential points. 

Additionally, three different puzzle layouts (see Figure 6.6, Appendix D.4) were utilised 

across all conditions to counter potential confounding variables or learning bias due to a 

specific puzzle composition. 

 

Figure 6.6. Diagram layouts used across conditions and counterbalanced across 

participating pairs.  Rule defines that each node in the diagram mus connect  

to at least on other node for successful completion.  Design allows for a  

large number of possible permutations to deter random selection. 

 

 

Figure 6.7: Connection examples.  Each node must connect to at least one 

other node.  A and B fulfil the connection rule.  C does not. 
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6.4.1.4   Procedure  

Participants were divided into random pairs, 12 pairs per condition.  Each pair was guided 

separately into the usability lab (see figure 6.9).  Prior to the study, the participants were 

each provided with a copy of the consent form to sign and filled out a background 

questionnaire.  Any queries relating to the form were answered at this stage.  If it was 

established that participants had never met before, participants were introduced to one 

another. 

The participants were then provided with a copy of the task instructions and asked to read 

through the instructions as a pair to ensure they were well understood (see Appendices 

D.1, D.2).  The experimenter then proceeded to read aloud the instructions.  The study 

design was between participants (to prevent task familiarisation) with 3 conditions.  In the 

„pointing‟ condition, the participants were provided with only the pointing interaction 

technique (see Figure 6.3 and 6.4b).  In the „scaling‟ condition, participants were 

provided with only the scaling interaction technique (see Figure 6.3 and 6.4a-ab).  In the 

„mixed‟ condition, participants were provided with both interaction techniques and 

encouraged to use whichever they preferred at any time. 

The participants were sat down initially at a shared desk, presented with the mobile 

equipment and given training in the use of the mobile media exchange service (both as 

helper and worker), allowing ample time for familiarisation.  During the experiment 

participants occupied the same usability lab with a divider set up to prevent visual 

communication by means other than the mobile device provided (see figure 6.8). 

Participants were randomly assigned roles (Helper or Worker), and asked to 

collaboratively complete the puzzle.  The Helper was provided with diagrammatic 

instruction in both printed form and visually on the Helper‟s mobile display containing 

the final puzzle state, so that the helper could guide the actions of the Worker in 

completing the „connect the dots‟ puzzle.  The Worker activities (with no initial 

knowledge of the final puzzle state) were to receive instructions from the Helper, 

collaborate through the mobile device and sketch the correct final diagram using the pen 

and paper materials provided.  

In addition, Workers were instructed that they were not allowed to see the Helper‟s 

instructions.  Both participants were instructed that they could talk at all times, were 

provided a maximum of 10 minutes to complete the task and asked to complete the task 

as quickly as possible (most pairs completed in less than 5 minutes).  Post task 

completion, the participants provided subjective feedback on the condition just used and 

completed a NASA TLX workload assessment (see Appendices D.5-D.7). 
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6.4.1.5 Participants 

We ran 72 participants (36 pairs), 24 participants for each of the three conditions.   

Participants were recruited from undergraduate and postgraduate students at the 

University of Bath Department of Computer Science.  The average participant age was 

23; eight participants were female.  Post-experiment questionnaires indicate that all 

participants were well versed in the use of mobile telephony devices, with an average of 

over four years of mobile phone usage. 

Participants were recruited due to their familiarity with existing mobile devices, services 

(e.g. text messaging and MMS) and willingness to adopt new technologies [Divitini et al. 

2002], in an effort to reduce possible confounding effects that might arise from the use of 

mobile devices (input mechanisms and functions) throughout the experiments as opposed 

to the communication conditions that were being assessed. 

There is of course an argument that a broader range of ages and technological familiarity, 

and more gender balance, would provide a sample more representative of the general 

population.  However a lack of (or significant variation in) familiarity with smart phone 

technology would introduce confounding factors in a study of this sort.  And, despite the 

best efforts of the telecoms industry, young males remain most likely to have the 

necessary technophilia. 

Figure 6.8. Collaborative study Helper/Worker set-up. 
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6.4.1.6 Apparatus 

The physical set up of the study was similar to that in Figure 6.8.  Each participant was 

provided with a Smartphone mobile device, a HTC S730s supporting the following 

specifications: the Windows Mobile 6.1 Standard operating system, a 2.4 inch TFT 

display with 240x320 pixels and an internal 802.11g wireless module which was used 

throughout the experiments to establish communication between the devices. 

Smartphone (non-touch screen) mobile devices were used throughout the experiments 

enabling one or two handed input using the directional keypad and the built-in T9 input 

keys.  Each mobile device was pre-loaded with a custom built stand-alone Windows 

Mobile Photo-Conferencing client (see Chapter 5), that established communication 

between the two mobile devices, creating a shared visual space in which a number of 

communication conditions could be utilised. 

The application was always run in full screen mode to ensure the only interface displayed 

and accessible to the user would be the puzzle task.  The devices used in the experiment 

were identical in make and model and both fully charged to eliminate any processor 

throttling effect on transmission speeds. 

The desk chairs provided were height adjustable, each participant‟s desk was shielded by 

a tall divider to prevent direct visual communication between participants, and verbal 

communication was allowed.  The experimenter observation desk occupied a separate 

room adjacent to the participants‟ room, in which the experiment was monitored and 

recorded. 

The experimenter had access to an Apple Macbook laptop computer [MBPRO 

12/2.33/3G/160/SD/MDM/AP/BT GBR] displaying real-time session information and log 

data for the active experiment to assist with monitoring and observational note taking. 

The experiment‟s progress was monitored by two cameras in the participant‟s room that 

fed through a monitor providing a real-time image to the experimenter.  Also in the 

participants‟ room a MiniDV video camera (Sony Handycam DCR-HC22E) mounted on 

a height and angle adjustable tripod was used to record the experiments for future 

analysis. 
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Figure 6.9. Experiment setup with divider to prevent visual  

communication (a).  Participants (bottom row): Helper on 

the left (b) and Worker on the right (c). 
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6.4.1.7 Materials 

Both participants were each provided with a copy of the instruction sheet that was read 

out prior to commencing the experiment (see Appendix D.1) and provided on a single 

side of A4 paper on the participants‟ desks for further reference.  An additional copy was 

also used by the experimenter.  The Helper was also provided with a copy of the final 

puzzle diagram and a mobile key-pad reference diagram (see Appendix D.4 and Figure 

6.1.5) to provide a quick reference and reminder to the input keys used for the particular 

experiment, pointing, scaling or mixed.  The worker was provided with a copy of the 

unfinished puzzle diagram (see Appendix D.3) and a pen to draw in the relevant diagram. 

In addition to task based material, participants were also provided with A4 paper consent 

forms to sign, questionnaire materials including NASA TLX for subjective assessment of 

mental workloads (including both the subscales and the paired-comparisons forms) and a 

bespoke evaluation questionnaire (see Appendices D.5-D.9). 

6.4.1.8 Problems encountered  

No major task completion problems were encountered.  Some entry errors were observed, 

e.g. a mis-pressed button during a selection or a transmission procedure.  As such entry 

errors are part of standard mobile use, these input errors were allowed. 

Mobile phone based recording software was initially used in pilot studies, but the 

performance impact was found to be inconsistent and was removed because the inability 

to precisely control and measure its overall impact on the task performance outweighed 

its usefulness.  Instead, server side (pass through) logging software was used, in which 

each transmitted command was logged. 

During one of the experiments, WiFi connectivity (supplied by the university) was lost 

due to a minor outage.  Although this didn‟t directly impact the system which resumed 

after the outage, task completion time (a measurable result) was affected and these results 

were removed. 
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6.4.2 Statistical Analysis  

We compared a range of performance measurements across the three conditions, 

including task completion time, number of words used by the participants, number of 

key-presses, error rates, and a measure of cognitive workload. 

6.4.2.1 Task completion time 

The mean task completion time for each condition is presented in Table 6.1 (first row).  A 

one-way ANOVA across the three conditions found a significant effect on task 

completion time (f2,33 = 14.172, p ≤ .002).  Post hoc pairwise two-tailed, independent t-

tests found a significant difference between pointing and scaling (t22 = 5.53, p ≤ .05), and 

between the scaling and mixed conditions (t22 = -4.91, p ≤ .005).  No significant 

difference was found between the pointing and mixed conditions (t22 = 0.23, n.s.). 

Table 6.1: Mean (and SDs in parentheses) performance of collaborating 

pairs across conditions (Time: in seconds, Errors: average per experiment). 

 Pointing Scaling Mixed 

Time 141.00 

(41.4) 

71.08 

(14.12) 

140.58 

(46.92) 

Errors 0.33 

(.49) 

0.25 

(.45) 

0.17 

(.39) 

 

The pointing and mixed conditions produced almost identical completion time results (see 

Table 6.1, first row).  A bivariate analysis found strong linear correlation between the 

pointing and mixed conditions (p ≥ .81).  This may be attributed to participant‟s 

preferential use of pointing rather than scaling at a ratio of 63:37 in the mixed condition. 

Log records indicate that most participants were experimental in their interaction choice 

and on average alternated between pointing and scaling up to five times during a typical 

session even though they preferred pointing interactions.  
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Figure 6.10: Mean task completion time, in seconds across conditions. 

 

Results for task completion time indicate that the scaling only condition (see Figure 6.10) 

enabled participants to complete the task in approximately half the time of the pointing 

and mixed conditions. 

6.4.2.2 Error Rates 

We performed post-trial analyses of error rates (Table 6.1, bottom row).  Error rates are a 

representation of the number of incorrectly connected nodes from each “connect the dots” 

puzzle task.  A one-way ANOVA across the three conditions found no significant effect 

on the number of errors made across conditions (f2,33 = .41, n.s.).  

  

Figure 6.11: Mean number of error rates across conditions. 
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Although the error rates suggest that a mixed condition could lead to 50% reduction (see 

Figure 6.11) in error rates compared to the pointing only condition, no significant 

difference was found, perhaps due to the overall low error count. 

6.4.2.3 Conversation Analysis 

The number of words used by the participants was taken as a measure of task workload.  

Transcripts were created from video recordings of the experimental trials and the total 

number of words used by each Helper/Worker pair was calculated for each session (see 

Figure 6.12).  The mean number of words used by the pairs in each condition is presented 

in Table 6.2.  

  

Figure 6.12: Mean number of words spoken across conditions. 

 

Table 6.2: Mean (and SDs in parentheses) performance of collaborating 

pairs across conditions (Words: number of words). 

 Pointing Scaling Mixed 

Words 208.08 

(61.87) 

154.58 

(38.27) 

200.58 

(39.16) 
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A one-way ANOVA found a significant difference in the number of words used across 

the conditions (f2,33 = 4.42, p ≤ .02).  Post hoc pairwise two-tailed, independent measures 

t-tests found significant differences between pointing and scaling (t22 = 2.54, p ≤ .02), and 

between the scaling and mixed conditions (t22 = -2.91, p ≤ .02).  No significant difference 

was found between the pointing and mixed conditions (t22 = .35, n.s.).  

In addition to this quantitative analysis of the participants‟ dialogues, we performed an 

informal analysis of participant comments.  Comparing the pointing and scaling methods, 

we observe that whereas in the pointing excerpt the Worker is obliged to verify every 

single Helper instruction, with each object being identified and clarified one at a time, in 

the scaling condition the Helper is more directive, with many objects being identified at 

the same time, with the Worker not needing to respond to every action. 

Users of scaling tended to adopt a „relative referencing‟ approach in which multiple 

onscreen objects were identified en bloc with no intervening backchannel, e.g. “The three 

ones at the top are connected and that‟s the top one with the left one and the middle left 

one with the right middle one.”.  In contrast, users of pointing adopted a „precision 

referencing‟ approach of identifying each object one at a time sequentially “This one is 

the first one (.) connect it with this one”, despite their ability to utilise relative referencing 

in which pointing at a single object could have been used to identify surrounding objects. 

 

6.4.2.4 Event Analysis 

Event-logs recorded during the experimental trials provided data on the number of key-

presses utilised during each trial (see Figure 6.13).  The data were collected using the 

photo-conferencing service‟s built-in event logger, which was active throughout all 

sessions.  The results of the event-log can be seen in Table 6.3 (first row). 

  

Figure 6.13: Mean number of key presses across conditions. 
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A one-way ANOVA across the three conditions found a significant effect on the number 

of key-presses required to complete the task (f2,33 = 14.44, p ≤ .002).  Post hoc pairwise 

two-tailed, independent measures t-tests found a significant difference between pointing 

and scaling (t22 = 5.73, p ≤ .002), and between the scaling and mixed conditions (t22 = -

3.85, p ≤ .001).  No significant difference was found between the pointing and mixed 

conditions (t22 = 1.55, n.s.). 

Table 6.3: Mean (and SDs in parentheses) performance of collaborating 

pairs across conditions (Events: number of key presses, Workload: NASA 

TLX).  

 Pointing Scaling Mixed 

Events 31.33 

(10.47) 

12.00 

(5.15) 

24.75 

(10.23) 

6.4.2.5 Workload Analysis 

Post-trial analyses of mental workload were performed by administering the NASA TLX 

using both sections of the assessment, the sub-group scales and the paired comparisons 

section.  This weighted measure gave a score out of 20 (see Table 6.4, Figure 6.14), with 

20 representing the highest possible level of mental workload.  For completeness [Byers 

et al. 1989] unweighted measures are also presented; see Figure 6.15.  

A one-way ANOVA across the three conditions for each sub-scale found a significant 

effect on temporal demand (f2,33 = 7.45, p ≤ .002), with no significant effect on mental 

demand (f2,33 = 2.51, n.s.), physical demand (f2,33 = .85, n.s.), performance (f2,33 = 1.32, 

n.s.), effort  (f2,33 = .29, n.s.) or frustration  (f2,33 = 2.41, n.s.).  Post hoc pairwise two-

tailed, independent measures t-tests found a significant difference in temporal demand 

between pointing and scaling (t22 = -34.9, p ≤ .005), and between scaling and mixed (t22 = 

3.94, p ≤ .005).  No significant difference was found between the pointing and mixed 

conditions (t22 = -.68, n.s.). 

These results indicate a higher perceived temporal demand for scaling in comparison to 

pointing, contradicting to some extent our findings on task completion times (see Table 

6.1, first row).   
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Figure 6.14. Workload: Mean weighted (NASA TLX both sections)  

mental workload sub-scales across conditions. 

 

 

Table 6.4: Workload: Mean weighted (NASA TLX both sections) mental 

workload sub-scales across conditions: Pointing, Scaling and Mixed.  SDs in 

parentheses.  

 Pointing Scaling Mixed 

Mental demand 4.19 

(1.55) 

3.68 

(2.76) 

2.36 

(2.09) 

Physical demand 0.48 

(.57) 

0.06 

(.03) 

0.00 

(.) 

Temporal demand 2.08 

(1.32) 

4.63 

(1.09) 

3.38 

(1.85) 

Performance 

      

2.07 

(1.72) 

2.22 

(.93) 

1.51 

(.3) 

Effort 

        

2.91 

(1.94) 

2.37 

(1.56) 

2.05 

(1.75) 

Frustration 

    

2.19 

(1.91) 

1.80 

(1.18) 

2.46 

(1.65) 
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Figure 6.15. Workload: Mean unweighted (NASA TLX first  

section only) mental workload sub-scales. 

 

  

Figure 6.16. Scaling (left), Pointing (right) Helper/Worker un-weighted  

mental workload sub-scales comparison.  

Further analysis of participant workload compared helper/worker pairs in the scaling and 

pointing condition (see Figure 6.16, 6.17).  Differences indicate that the higher temporal 

demand was perceived primarily by the helper.  A post hoc pairwise two-tailed, repeated 

measures t-test found significant difference in temporal demand (t24 = 9.17, p ≤ .002) and 

performance (t24 = -2.6, p ≤ .05), in the scaling only condition. 
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The results also indicate the contradiction between helper/worker pairs in the scaling only 

condition, by which helpers in the scaling only condition perceived a negative impact: 

higher temporal demand and reduced performance (see Figure 6.18).  However, the 

accompanying workers perceived a positive impact: significantly lower temporal demand 

(see Figure 6.18 Temporal demand) and improved performance (see Figure 6.18 

Performance) in the same task.  This is in contrast to the pointing only condition in which 

helper/worker pairs shared similar perceptions of task performance (see Figure 6.17 

Performance). 

From the results in the pointing only and mixed conditions we can observe on average, 

both helper and workers pairs perceived similar workloads (see Figure 6.17, 6.19).  

However, in the scaling only condition helper and workers pairs have more varying 

perceptions (see Figure 6.18). 

Finally, a finding consistent across all conditions is that the helper always perceived a 

higher temporal demand than the worker, which may be attributed to the nature of the 

task in which the helper is responsible for guiding the actions of the worker to ensure the 

task is completed as quickly as possible. 

 

Figure 6.17. Workload: Mean „Pointing‟ unweighted Helper/ 

Worker workload sub-scales comparison. 
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Figure 6.18. Workload: Mean „Scaling‟ unweighted Helper/ 

Worker workload sub-scales comparison. 

  

Figure 6.19. Workload: Mean „Mixed‟ unweighted Helper/ 

Worker workload sub-scales comparison. 

 

6.4.3 Subjective Feedback 

Participants‟ qualitative feedback was collected through a 6-point Likert scale gauging 

mobile phone experience (based on number of phone calls they make, use of the camera 

phone facilities, text messaging and multimedia messaging services during a typical day) 

and a questionnaire on the condition they had just used, see Appendix D.8-D.9.   

An interesting finding with respect to the logged data was found in the scaling only 

feedback. When asked “what feature if added would enhance the collaborative 
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performance?”, many participants indicated their desire for a cursor as a precision 

pointing mechanism in addition to the scaling mechanism provided. 

6.4.4 Discussion 

The scaling only condition enabled participants to complete the task in almost half the 

time of the pointing only and the mixed conditions.  This finding suggests that the use of 

scaling can accelerate the process of achieving conversational grounding [Clark and 

Wilkes-Gibbs 1986] in this kind of mobile collaborative setting.  According to the 

principle of least collaborative effort [Clark and Wilkes-Gibbs 1986], people should try to 

ground with as little combined effort as possible and change their communicative 

strategies based on certain costs of the communication medium [Clark and Brennan 

1991]. 

With scaling only we observed a reduction in combined frustration taking place (Table 

6.5, sixth row).  These results are corroborated by findings in the event analysis that show 

far fewer interaction events are required when using scaling in comparison to the pointing 

and mixed conditions (Table 6.4). 

However, a side effect of scaling only can be seen in the subscale comparison of mental 

workload, in which a much higher temporal demand (Table 6.5, third row) indicated that 

participants perceived that faster results could have been possible, despite completing the 

task in almost half the time of the pointing only and mixed conditions (Table 6.1, first 

row).  This contradiction between user‟s perception and measured results highlights the 

importance in studies of this nature of collecting both quantitative and qualitative 

feedback to completely understand the user‟s experience. 

Additionally in their post-trial feedback, users in the scaling only condition – where no 

pointer was present – explicitly requested a pointing “cursor” as a means to simplify 

performance of the task.  The high proportion of pointing used in comparison to scaling 

(63:37) in the mixed condition supports the suggestion that, given a choice of pointing or 

scaling, users prefer pointing. 

Our informal analysis indicates that the relative referencing afforded by the scaling 

method can better support remote mobile media exchange, accelerating grounding and 

supporting the principle of least collaborative effort.  Although participants preferred the 

precision referencing afforded by a pointer, the combination of relative referencing with 

precision referencing in the „mixed‟ condition did little to enhance performance, faring 

only slightly better than the pointing only condition and much worse than the scaling only 

condition (see Table 6.1). 



153 
 

Though the users‟ expressed desire for precision pointing may be attributable simply to 

first time use of the system after long experience with pointer-based interfaces, or its 

similarity to the real world physical interaction of pointing with one‟s finger that is also 

observed in studies of remote virtual interactions [Robertson 2000], it does highlight the 

need to take into account familiar input mechanisms when designing for usability of 

remote mobile interactions.  

Finally, the initial hypothesis [H1] was not supported, as the mixed condition did not 

offer the best of both worlds as we had predicted, but saw most users going with their 

preference for pointing, contributing to the strong correlation between the mixed and 

pointing results. 
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6.5 Study 2 – Hybrid Technique 

In this second study we drew on the most successful characteristics (derived from relative 

referencing „scaling‟ and precision pointing „pointing‟) found in our first study to design 

a new „Hybrid‟ interaction technique.  The new interaction combines in one technique 

relative and precision referencing to further enhance performance and attempt to further 

reduce task effort [Clark and Wilkes-Gibbs 1986]. 

In further experimental evaluations we used this „Hybrid‟ condition to test a second 

hypothesis based on our findings from the first study, reported above: 

[H2] An enhancement to the relative referencing interaction provided by the 

scaling mechanism and the integration of a complementary precision 

referencing facility (rather than simple juxtaposition of pointing and scaling 

techniques) would further improve the mobile collaborative performance 

measurements (task completion time, number of words used by the 

participants, number of key-presses, error rates and measure of cognitive 

workload), minimising collaborative effort [Clark and Wilkes-Gibbs 1986]. 

6.5.1 Study Methodology 

6.5.1.1 Design 

The experiment builds on Study 1 and introduces a new independent variable to the 

between participants design.  The original study manipulated one independent variable, 

communication method, consisting of the original three levels, „pointing‟, „scaling‟ and 

„mixed‟ accompanied by an audio channel.  Here we present a new fourth „hybrid‟ 

interaction technique that is also accompanied by an audio channel.  In the new „hybrid‟ 

condition, the participants are provided with only the hybrid facility of the mobile photo-

conferencing service. 
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6.5.1.2 Hybrid Interaction Technique 

A new interface was constructed for the hybrid condition (see Figures 6.22 and 6.23ca-

cb) that was motivated by our earlier findings and informal participant comments.  The 

new interface combines the characteristics of relative and precision referencing to form a 

new coherent design that attempts to further reduce task workload. 

The „hybrid‟ design incorporates H2 through a grid layout that divides up the screen 

space with semi-transparent visible segmentation (grid lines), providing a co-ordinate 

reference scheme (regions 1-9) and the ability to scale through selection to further 

enhance relative referencing and instantly reduce the available search space, similar to the 

scaling condition‟s facility to drill down to a specific view.  Precision referencing was 

also integrated through the use of a pointing mechanism, consisting of a semi-transparent 

red-highlight selection area (see Figures 6.22 and 6.23ca-cb).  This pointer is locked to 

the relative referencing grid, indicating areas of immediate focus and also enabling 

relative referencing of surrounding areas. 

  

Figure 6.20. Picture which does not use the rule of third (left),  

Picture that use the rule of thirds (right). 

 

Figure 6.21. Scene framing and alignment grid, a common  

feature on most digital cameras. 
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A 3x3 grid segmentation was used (as opposed to a 2x2 or 5x5 grid etc) to provide a 

similar coverage area to the pointer based interaction and to draw on familiar 

characteristics adopted by consumer digital photography products (see Figure 6.21) and 

techniques such as the rule of third (see Figure 6.20). 

The rule of thirds is an important aspect of photographic composition [Houston 2000].  It 

is a guideline to create a well balanced picture and has also been used by painters for 

centuries.  Based on this rule the centre part of a given picture is not the best place for the 

eye, so to apply this rule, users imagine the camera‟s view finder is etched with grid lines 

(see Figure 6.20, 6.21) and the subject is placed at the intersection of the grid lines.  By 

using this method, it is easier to compose a well balanced picture (see Figure 6.20 Right). 

Our hybrid interaction technique approach draws on already established photography 

techniques to facilitate both relative and precision referencing, whilst maintaining 

minimal on-screen clutter from excessive grid lines that could overwhelm a mobile 

device‟s small display.  With this approach relative and precision mechanisms can 

facilitate the hybrid interaction and provide the means by which participants can 

coordinate language, maintain a common vocabulary, e.g. “top left” or “grid number 3”, 

and establish common ground in an attempt to reduce overall collaborative effort [Kraut, 

et al. 2002]. 

 

Figure 6.22. Pointing, Scaling, Mixed and Hybrid interaction conditions.   

Blue arrows  indicate panning actions and green  

arrows indicate scaling action. 



157 
 

 

Figure 6.23. Hybrid interface (ca); Hybrid interface  

after 1 degree of scaling (cb). 

6.5.1.3 Interaction Technique 

In the hybrid interaction technique, keypad input is performed using a combination of six 

buttons: the directional-pad (up, down, left, right) for co-ordinate selection, the enter-

button to scale into the selected co-ordinate area and the back-button to scale out of the 

selected co-ordinate area.  The animation speed at which all actions occur on user input 

was set to 500 milliseconds from start to finish due to processor limitations.  Any event 

occurring on one device‟s screen made the same event occur synchronously on the other 

device‟s screen. 

6.5.1.4 Experimental Task 

Study 2 repeated the puzzle based task paradigm which required a Helper to guide the 

actions of a Worker in the completion of a "connect the dots" diagram. 
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Figure 6.24. Experiment setup/participants, Helpers on 

the left and Workers on the right. 

6.5.1.5 Procedure 

Participants were divided into random pairs, 8 pairs in total.  Each pair was guided 

separately into the usability lab (see figure 6.24).  Prior to the study, the participants were 

each provided with a copy of the consent form to sign and filled out a background 

questionnaire.  Any queries relating to the form were answered at this stage.  If it was 

established that participants had never met before, participants were introduced to one 

another. 

Participants were then provided with a copy of the task instructions and asked to read 

through the instructions as a pair to ensure they were well understood (see Appendix 

D.1).  The experimenter then proceeded to read aloud the instructions. 

The study repeated the puzzle based task paradigm which required a Helper to guide the 

actions of a Worker in the completion of a "connect the dots" diagram.  The procedure 
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was identical to that of the previous study but participants were provided with only the 

hybrid interaction technique (see Figures 6.23 and 6.22ca-cb). 

6.5.1.6 Participants 

We ran a group of 16 participants (8 pairs, not used in Study 1), again recruited from 

undergraduate and postgraduate students at the University of Bath.  The average age of 

participants was 25, four participants were female, and all participants were well versed 

in the use of mobile devices with an average of over four years‟ mobile phone use. 

6.5.1.7 Apparatus 

The apparatus was identical to the first study and the same mobile devices and study 

setup were used to enable direct comparison.  In this hybrid interaction technique 

condition, keypad input is performed using a combination of six buttons: the directional-

pad (up, down, left, right) for co-ordinate selection, the enter-button to scale into the 

viewable co-ordinate area and the back-button to scale out of the viewable co-ordinate 

area.  Any event occurring on one device‟s screen made the same event occur 

synchronously on the other device‟s screen. 

We recorded a range of performance measurements, including task completion time, 

number of words used by the participants, number of key-presses, error rates, and a 

measure of cognitive workload. 

6.5.1.8 Materials 

Both participants were each provided with a copy of the instruction sheet that was read 

out prior to commencing the experiment on a single side of A4 (see Appendix D.1) and 

provided on participants desks for further reference.  An additional copy was also used by 

the experimenter.  The Helper was also provided with a copy of the final puzzle diagram 

to create expert status and a mobile key-pad reference diagram (see Appendix D.4 and 

Figure 6.1.5) to provide a quick reference and reminder to the input keys used for the 

hybrid experiment.  The worker was provided with a copy of the unfinished puzzle 

diagram (see Appendix D.3) and a pen to draw the relevant diagram.   
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In addition to task based materials, participants were also provided with A4 paper consent 

forms to sign, questionnaire materials including NASA TLX for subjective assessment of 

mental workloads (including both the subscales and the paired-comparisons forms) and a 

bespoke evaluation questionnaire (see Appendices D.5-C9). 

6.5.1.9 Problems encountered  

No major task completion problems were encountered.  Some entry errors were observed, 

e.g. a mis-pressed button during a selection or a transmission procedure.  As such entry 

errors are part of standard mobile use, these input errors were allowed. 

6.5.2 Statistical Analysis  

We analysed a range of performance measurements, including task completion time, 

number of words used by the participants, number of key-presses, error rates, and a 

measure of cognitive workload.  Results from this study of the hybrid interaction 

technique were compared with these results from the pointing, scaling and mixed 

conditions evaluated in Study 1. 

  

Figure 6.25: Mean task completion time, 

 in seconds across conditions. 
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6.5.2.1 Task completion time 

We performed the same analysis as in our first study, accounting for the lower number of 

participants (harmonic mean statistical methods provides by the SPSS v16 statistical 

package) in the new, fourth condition provided by the hybrid interaction technique.  Table 

6.6 (first row, fourth column) shows the timing results.  A one-way ANOVA across the 

hybrid and the previous three conditions (pointing, scaling, mixed) found a significant 

effect on task completion time (f3,40 = 18.31, p ≤ .002).  Mean comparison (see Table 6.5: 

top row) suggested that the hybrid was almost twice as fast as the scaling only condition, 

with post hoc pairwise two-tailed, independent t-tests indicating a significant difference 

between hybrid and scaling (t18 = 2.46, p ≤ .05). 

These results indicate that in terms of completion time, an integrated combination of 

relative referencing and precision referencing can lead to improved measurements 

compared to pointing only (see Figure 6.25), the simple offering of both pointing and 

scaling in the mixed condition, and to the previously best performing scaling only 

condition.   

Table 6.5: Mean (and SDs in parentheses) performance of collaborating 

pairs across conditions (Time: in seconds, Errors: average per experiment). 

 Pointing Scaling Mixed Hybrid 

Time 141.00 

(41.4) 

71.08 

(14.12) 

140.58 

(46.92) 

37.58 

(11.26) 

Errors 0.33 

(.49) 

0.25 

(.45) 

0.17 

(.39) 

0 

(0) 

6.5.2.2 Error Rates 

Error rates were calculated based on the same kind of analysis as in study 1.  There were 

no errors in the hybrid condition (see Table 6.5, second row, forth column).  A one-way 

ANOVA across the hybrid and three previous conditions found no significant effect on 

the number of errors made (f3,40 = 1.16, n.s.), probably due to the overall low error rates 

(see Figure 6.26). 
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Figure 6.26: Mean number of error rates across conditions. 

6.5.2.3 Conversation Analysis  

The mean number of words used by the pairs in each condition is presented in Table 6.6 

(third row, fourth column).  A one-way ANOVA found a significant difference between 

the number of words used across the hybrid and three previous conditions (f3,40 = 12.28, p 

≤ .002). 

Table 6.6: Mean (and SDs in parentheses) performance of collaborating 

pairs across conditions (Words: number of words).  

 Pointing Scaling Mixed Hybrid 

Words 208.08 

(61.87) 

154.58 

(38.27) 

200.58 

(39.16) 

98.75 

(20.85) 

A post hoc pairwise two-tailed, independent measures t-test comparison against scaling 

(the most effective interaction in our previous study) found a significant difference 

between hybrid and scaling (t18 = 3.7, p ≤ .001), with the mean word counts indicating 

better performance in the hybrid condition (see Figure 6.27), again supporting H2. 

From informal analysis of participant comments we observed a variation of relative 

referencing, “the dot that is between 2 and 5”, and precision referencing, “this one”, 

taking place in the hybrid interaction.  Although this is somewhat similar to observations 

from the mixed condition, a much higher proportion (82:12) of relative referencing 

occurred in the hybrid condition. 



163 
 

 

  

Figure 6.27: Mean number of words spoken across conditions. 

 

6.5.2.4 Event Analysis 

Event logs were recorded in the same manner as study 1 and can be seen in Table 6.7.  A 

one-way ANOVA across the four conditions found a significant effect on the number of 

key-presses required to complete the task (f3,40 = 20.22, p ≤ .002).  Post hoc pairwise two-

tailed independent measures t-tests found a significant difference in the number of key-

press events in the hybrid condition compared to the scaling only condition (t18 = 3.1, p ≤ 

.006), with the mean scores indicating better performance in the hybrid condition, again 

supporting H2.  

The results also suggested a significant reduction in key-presses in the hybrid condition 

compared to the mixed condition (see Figure 6.28) in which pointing was chosen over 

scaling by a ratio of 63:37.   

Table 6.7: Mean (and SDs in parentheses) performance of collaborating 

pairs across conditions (Events: number of key presses).  

 Pointing Scaling Mixed Hybrid 

Events 31.33 

(10.47) 

12.00 

(5.15) 

24.75 

(10.23) 

6.00  

(3.42) 
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Figure 6.28: Mean number of key presses across conditions. 

6.5.2.5 Workload Analyses 

Post-trial analysis of mental workload was again performed by administering the NASA 

TLX as in the previous study.  Weighted results are presented in Table 6.8 (fourth 

column) and Figure 6.29.  For completeness [Byers, et al. 1989], unweighted measures 

are also presented; see Figure 6.30.   

A one-way ANOVA for each sub-scale across the four conditions found a significant 

effect on mental demand (f3,40 = 3.6, p ≤ .02), temporal demand (f3,40 = 8.20, p ≤ .001), 

performance (f3,40 = 3.67, p ≤ .02) and frustration (f3,40 = 3.51, p ≤ .02).  No significant 

difference was found in physical demand (f3,40 = .98, n.s.) or effort (f3,40 = .82, n.s.).  A 

post hoc pairwise two-tailed, independent measures t-test comparison of hybrid against 

scaling only (the most effective interaction in study 1) found a significant difference in 

mental demand (t18 = 2.06, p ≤ .05), temporal demand (t18 = 7.3, p ≤ .005) and 

performance (t18 = 3.5, p ≤ .005).  But no significant difference was found in frustration 

(t18 = 1.54, n.s.).   
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Figure 6.29. Workload: Mean weighted (NASA TLX both sections)  

mental workload sub-scales across communication conditions:  

Pointing, Scaling, Mixed and Hybrid. 

Table 6.8: Workload: Mean weighted (NASA TLX both sections) mental 

workload sub-scales across conditions: Pointing, Scaling and Mixed.  SDs in 

parentheses. 

 Pointing Scaling Mixed Hybrid 

Mental demand 4.19 

(1.55) 

3.68 

(2.76) 

2.36 

(2.09) 

1.25 

(1.62) 

Physical demand 0.48 

(.57) 

0.06 

(.03) 

0.00 

(.) 

0.25 

(.39) 

Temporal demand 2.08 

(1.32) 

4.63 

(1.09) 

3.38 

(1.85) 

1.37 

(1.36) 

Performance 

      

2.07 

(1.72) 

2.22 

(.93) 

1.51 

(.3) 

0.51 

(.54) 

Effort 

        

2.91 

(1.94) 

2.37 

(1.56) 

2.05 

(1.75) 

0.99 

(.91) 

Frustration 

  

2.19 

(1.91) 

1.80 

(1.18) 

2.46 

(1.65) 

0.58 

(.5) 
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Figure 6.30. Workload: Mean unweighted (NASA TLX first section  

only) mental workload sub-scales across communication  

conditions: Pointing, Scaling, Mixed and Hybrid. 

 

  

Figure 6.31. Workload: Mean „hybrid‟ unweighted Helper/ 

Worker workload sub-scales comparison. 
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In comparison to the findings from Study 1, in which the actual and perceived 

performances of the scaling only condition differed (fastest in Study 1, see Figure 6.18), 

we can observe that the hybrid condition on average, both helper and workers pairs 

perceived similar workloads (see Figure 6.31).  Additionally, a finding consistent across 

all conditions in the previous study and also in the hybrid condition is that the helper 

always perceives a higher temporal demand than the worker.  This may be attributed to 

the nature of the task in which the helper is responsible for guiding the actions of the 

worker to ensure the task is completed as quickly as possible. 

6.5.3 Subjective Feedback 

Qualitative feedback was collected in an identical method to Study 1, see Appendix D.8-

D.9.  When asked “what feature if added would enhance the collaborative performance?” 

no common response was provided, with most participants indicating positive satisfaction 

with the hybrid interaction condition.  

6.5.4 Discussion 

Although our initial hypothesis (H1) reflected an assumption that more is better, i.e. 

providing both scaling and pointing interaction techniques would enhance usability, the 

actual effects have proved more subtle.  Offering the two together in the first study 

certainly wasn‟t more useful than providing one or the other alone.  However, the new 

hybrid interaction technique that we developed to offer an integration of the best features 

of each technique led to significant gains, as predicted in H2.   

The „Hybrid‟ results showed a significant reduction, compared to the scaling only, 

pointing only and mixed conditions, in users‟ overall collaborative effort [Clark and 

Brennan 1991] as measured by task completion times, conversation, event and workload 

required to complete the shared task. 

The hybrid condition saw an increase in the ratio of relative referencing (of surrounding 

items) to precision referencing (pointing with an area box) compared to our findings for 

the mixed condition, corroborating earlier findings from the scaling only condition in 

which an increased use of relative referencing saw a significant reduction in the amount 

of backchannel that took place and accelerated the process of conversational grounding, 

with the nonverbal communication interactions helping to provide the context for the 

spoken communication [Tan 1992].  An observation relating to the low error rates across 

conditions (cf. Table 6.6) suggests that when the probability of referential ambiguity is 
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high, additional costs such as time, number of words spoken or alternative techniques are 

used to reduce the ambiguity.  

The hybrid condition also enhanced users‟ perception of workload, providing participants 

with a more realistic perception of task completion time (low temporal demand), and 

performance perceptions (see Figure 6.31 Performance) that were more in line with actual 

measured performance results.  This is in contrast to our findings from the scaling only 

condition in which perceived (subjective) and actual performance results contradicted 

each other. 

6.6 Study 3 – Field-Based Observations 

Experiments by their very nature are tightly constrained in order to evaluate specific 

attributes of an environment or interaction technique and have varying ecological 

validity.  Field-based or observational studies are a useful complement to the more 

straitened studies of the kind reported in the preceding sections of this chapter. 

To better understand the issues associated with the mobile media exchange we performed 

field-based observations and interviews.  The aim of these field-based observations was 

to capture rich contextual information regarding the use of mobile media exchange 

environments to further gauge end user feedback, reactions and criticisms of such MEA 

services in a more natural (non-lab based) setting.  The field-based observation presented 

the MEA photo-conferencing instantiation to a broader audience, removing previous lab 

based constraints and allowing users to explore all aspects of the system.  The MEA 

photo-conferencing service was deployed in an active conference environment in which 

real world constraints such as network load, packet loss, user preferences etc directly 

affected user‟s experience with and perceptions of the mobile services. 

6.6.1 Study Methodology 

6.6.1.1 Design 

The field-based study involved groups of 2 to 3 participants who were recruited during 

the special demo reception at the ACM 2008 Conference on Computer Supported 

Cooperative Work.  Each group was in the same vicinity (verbally collocated) and 

provided with devices to interact and share images using the MEA photo-conferencing 

service.  Data collection was performed through direct observation and activity (server 
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based pass through) logs.  These were conducted at a group and individual participant 

level. 

 

6.6.1.2 Interaction Techniques  

Participants were provided with the four previously reported interaction techniques, 

pointing, scaling, mixed and hybrid conditions, and with a further two interactions: the 

ability to capture and share new or existing images on the device and the ability to switch 

between shared images (see Figure 5.15, 5.10 and 5.11).  All interactions were designed 

to be controlled independently on each device (i.e. synchronously by any participant 

across all devices) using dedicated hardware buttons on the mobile keypad.  The keypad 

layout was modified (see Figure 6.32) to accommodate the additional interactions, using a 

combination of ten buttons comprising: the hash key, directional pad (up, down, left, 

right, enter, back) and the number keys 1, 2 and 3. 

The hash key was used to toggle between the different interaction modes. 

 Pointing: Indicated by the presence of a pointer on the screen. 

 Hybrid: Indicated by the presence of a grid layout on the screen. 

 Scaling: Indicated by no on-screen elements. 

 Mixed: The use of the toggle key enables the mixed condition by 

allowing users to toggle freely between the Pointing and Scaling 

interaction techniques. 

The directional-pad (up, down, left, right, enter, back) was contextual, based on the type 

of input mode selected:  

 Pointing: The direction pad moves the pointer so that it can be positioned 

anywhere on the screen.  The enter-key shrinks the pointer‟s selection area 

and the back-key enlarges the selection area. 

 Scaling: The direction pad moves the active image so that it can be 

positioned anywhere on the screen.  The enter-key scales into the viewable 

area and the back-key scales out of the viewable area. 

 Hybrid: The direction pad allows for co-ordinate selection.  The enter-key 

scales into the active co-ordinate area and the back-key scales out of the 

selected co-ordinate area. 
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Figure 6.32: User interface input controls. 
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Figure 6.33. Image selection (top), capture (middle)  

and collaborative distribution (bottom). 

Participants were also able to switch between images in the shared session using the keys 

1 and 3.  The first navigates the user to the previous image in the thumbnail list and the 

latter navigates to the next image in the thumbnail list (see Figure 6.33 Bottom and 5.11). 

Also, multiple images could be added to the shared session (depicted by a thumbnail list) 

through the use of the number 2-key.  After which users are presented with a list of all 

images (see Figure 6.32 top) and an option to select either an existing image from the 
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user‟s device or to use the built-in camera to capture a new image for sharing (see Figure 

6.32 Middle and Bottom). 

Similarly to the lab based studies, the animation speed at which all actions occur on user 

input was set to 500 milliseconds from start to finish due to processor limitations, and any 

event occurring on one device‟s screen made the same event occur synchronously on the 

other device‟s screen. 

6.6.1.3 Procedure 

The study consisted of observations of participants interacting using the MEA photo-

conferencing service, followed by a questionnaire.  Throughout the study, there were 

three main categories for data collection: (1) An evaluation of the initial user experience; 

(2) Engagement with the MEA Photo-conferencing service; (3) Participants‟ reactions to 

the MEA service, particularly feedback and future directions. 

The system was presented to users as an early showcase of the use of everyday mobile 

devices as viable alternatives to fixed desktop based cooperative solutions when users are 

on the go.  This allowed us to frame a much broader picture for the technology and gain 

additional feedback.  For the field observations the following structure was used: 

 Two to three participants were provided with the MEA mobile handset. 

 An interactive media exchange session was automatically initiated. 

 Participants were provided with a brief demonstration of the technology 

and an overview of the input keys used during the interactions. 

 Participants were allowed to engage freely with one another using the 

MEA photo-conferencing and its remote gestural interaction mechanisms. 

During the interaction each group was shadowed and observed, after which each 

participant was individually interviewed, normally following their shared engagement.  In 

the interviews we discussed participants‟ use of the MEA photo-conferencing service and 

some of the more interesting observations from the shadowing.  Finally, each participant 

was asked to complete a quick survey to gauge their mobile phone use, experience and 

feedback regarding the photo-conferencing service. 
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6.6.1.4 Participants 

We ran 21 participants who took part in groups of 2 to 3 users at a time.  The field-based 

observations involved inviting groups of participants to take part in a photo-conferencing 

session.  Participants were randomly recruited from those attending the Computer 

Supported Cooperative Work conference and, despite an attempt in random selection, the 

majority of groups comprised users that previously knew each other.  This offered the 

advantage of allowing the participants to be at ease during their interactions, with many 

offering each other assistance during the photo-conferencing session. 

All the participants volunteered to be observed during their interactions and take part in a 

small questionnaire to gauge their previous phone use and feedback.  Four participants 

were female and post-study questionnaires indicate that all participants were well versed 

in the use of mobile telephony devices, with the majority rating over five years of mobile 

phone usage. 

6.6.1.5 Apparatus  

Similar to the previous lab based studies, smartphone (non-touch screen) mobile devices 

were used throughout the experiments enabling one or two handed input using the 

directional keypad and the built-in T9 input keys.  Also each mobile device was pre-

loaded with a custom built stand-alone Windows Mobile Photo-Conferencing client (see 

Chapter 5), that established communication between the two mobile devices, creating a 

shared visual space in which a number of communication conditions could be utilised. 

Differing from the lab based studies, the Photo-Conferencing client allowed users to 

explore the full range of communication capabilities, including all four remote interaction 

techniques “Pointing”, “Scaling”, “Mixed” and “Hybrid” and the facility to capture new 

photos and instantly share them with group members in addition to sharing any existing 

photos on the device itself and the ability to switch between shared images. 

The six devices used in the experiment were all windows mobile based with similar 

specifications, the application was always run in full screen mode and the devices were 

fully charged where possible to reduce any processor throttling effect on transmission 

speeds. 

In addition to providing each user with a hands-on demonstration of the technology, a 

laptop was set-up to provide a brief pre-recorded video presentation that could be 
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displayed repeatedly to passersby.  The video was itself concise (less than two minutes in 

length) and covered an introduction to the MEA photo-conferencing service and a 

demonstration of the system and devices. 

6.6.1.6 Problems Encountered  

No major problems were encountered with the hardware or software, although very high 

network latency and bandwidth fluctuations were frequently observed.  This was 

primarily due to the conference environment and the limited bandwidth available at the 

venue in which the conference took place.  However, despite the network latency the 

MEA was still able to facilitate communication between the participants and was able to 

distribute the image successfully albeit at a slower rate. 

6.6.2 Analysis 

Several types of quantitative and qualitative data were gathered.  Server side pass-through 

logging was instrumented to log time-stamped records of all interactions, including 

events related to the type of interaction method used and the number of photos shared.  

All groups were observed by the experimenter and notes were taken throughout.  Finally, 

after using the system all participants completed a questionnaire containing both Likert-

scale [Williges 1996] and free-form questions.  The questionnaire incorporated a 5-point 

Likert scale, and the participants selected a response to each statement that ranged from 

„strongly agree‟ to „strongly disagree‟. 

6.6.2.1 Timing Analysis 

Analysis of the server logs provided insight into the interaction techniques used most by 

the participants (see Figure 6.34).  We categorised interactions according to six distinct 

groups, based on the facilities provided by the MEA Photo-conferencing system:  

 Sx01: In combination with participant observations this defines the percentage 

time users spent looking or talking about an image or photo being shared during a 

shared session.  This can more specifically be defined as the amount of time 

when no interface interaction took place, i.e. no other interaction such as 

pointing, scaling or switching etc were being performed. 
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Figure 6.34. Photo-conferencing functionality categorised 

by participant use during a collaborative session,  

displayed as percentage. 

 Cx01: Defines the amount of time users were engaged in the process of adding 

new images to the shared session.  This includes images captured through the 

camera or from the phone‟s built in memory card. 

 Sx02: Defines the amount of time users were engaged in the process of switching 

between the different images captured during the shared session.  This includes 

the time spent navigating back and forth between the different images added to 

the shared session. 

 Px01: Defines the amount of time users were engaged in the pointing interaction 

condition.  This includes time related to positioning the pointer on the screen, in 

addition to shrinking and enlarging the pointer selection area. 

 Sx03: Defines the amount of time users were engaged in the scaling interaction 

condition.  This includes time related to positioning the image on the screen, in 

addition to scaling into and out of the viewable image area. 

 Hx01: Defines the amount of time users were engaged in the hybrid interaction 

condition.  This includes time related to co-ordinate selection, in addition to 

scaling into and out of an active co-ordinate area. 

Findings in relation to observations indicate that the main portion of time spent during a 

shared session (39%) was dedicated to viewing and conversing over the images being 

shared.  This was followed by the act of navigating between the different images being 

shared (28%), the act of sharing new images (19%), performing hybrid interactions (5%), 

performing pointing interactions (5%) and finally performing scaling interactions (4%). 
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These results demonstrate the differences between lab-based studies and that of a typical 

mobile cooperative session.  In our previous lab based studies we observed that the 

gestural interactions accounted for the dominant portion of time throughout the shared 

session (see Table 6.1).  This was due to the nature of the task involved, i.e. the puzzle 

based task in which participants were provided with an elevated situation that wouldn‟t 

typically occur except under the most demanding mobile cooperative scenarios and were 

asked to perform the task in as little time as possible. 

The field study results are reassuring and highlight the nature of media exchange, in 

which, as observed, the content of the shared interaction space plays a key role in the 

shared communication session and, although very useful, the remote gestural interaction 

techniques are secondary. 

6.6.2.2 Conversation Analysis 

Field-based observations and note taking were used to gather information on the verbal 

queues employed by participants.  These observations identified a number of general 

strategies users adopted to support their shared interactions, verbal framing being the 

most common.  When users exchanged photos they often took advantage of the limited 

screen size to frame the image and refer to the elements using the screen itself as a co-

ordinate system, e.g. “look at the top right of your screen”. 

  

Figure 6.35. Screen size and referential awareness. 

These results are similar to earlier findings in which positioning elements in the shared 

workspace allowed users to better convey deictic referencing (see 6.4.2.3).  They also 

suggest that the limited screen size afforded by most common cellular devices may 
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actually benefit deictic referencing across mobile devices.  Images on mobile cellular 

devices occupy the largest proportion of the available screen space including the edges of 

the screen.  This allows the borders of the mobile screen to form natural identifiers for 

referential awareness between users which would not typically be the case on desktop 

computers in which image content may only occupy a small portion of the screen (see 

figure 6.35). 

Although it would have also been beneficial to gather data on the use of verbal queues in 

correspondence with the exact inputs being conducted on the mobile keypad to better 

assess „photo talk‟ [Frohlich, et al. 2002], environmental noise and limitations in the 

logging mechanisms available to us in the field setting prevented the accurate collection 

of such data. 

6.6.2.3 Event Analysis 

Similar to previous work, the event-logs recorded during the observations provided data 

on the number of key-presses utilised during each observation (see Figure 6.36).  The 

data was collected using the photo-conferencing service‟s built-in event logger which was 

active throughout all sessions.  The results of the event log can be seen in Table 6.9 (first 

row). 

  

Figure 6.36. Mean number of key presses across conditions. 

The participants in the field-based observations were not restricted to a single interaction 

method.  Results (see Table 6.11) and observations indicated that participants didn‟t 

adopt a specific remote interaction technique during the shared sessions but used the 

available techniques interchangeably.  A one-way ANOVA across the three conditions 

found no significant effect on the number of key-presses used during the task (f2,33 = 7.38, 
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n.s.).  The results also suggested no significant preference for a particular interaction 

method, with pointing accounting for 34% participant usage, scaling 30.4% participant 

usage and Hybrid 35.6% participant usage. 

Observations also highlighted two distinct classes of users.  Those that adopted an 

exploratory approach in which each interaction was used in turn, before settling on a 

preferred method and those that only used the first interaction method they came across 

and adapted their interactions accordingly.  Although the majority of the participants were 

well versed in the use of mobile devices, these results highlight the need to design 

systems to cater to varying usage scenarios [Cooper and Reimann 2004].   

Table 6.9: Mean (and SDs in parentheses) performance of collaborating 

pairs across conditions (Events: number of key presses).  

 Pointing Scaling Hybrid 

Events 7.08 

(3.09) 

6.33 

(2.50) 

7.42 

(2.15) 

6.6.2.4 Subjective Feedback 

User satisfaction is often used as an aggregate of the subjective measure [Olaniran 1995].  

A five-point Likert scale was used to measure satisfaction; the characteristics of this scale 

include a statement with a five-point rating scale, a horizontal and continuous scale with 

five labelled anchors, and equivalent intervals between anchors.  The anchors were 

“strongly agree” (weight equal to five), “agree” (weight equal to four), “neither agree nor 

disagree” (weight equal to three), “disagree” (weight equal to two), and “strongly 

disagree” (weight equal to one). 

After using the photo-conferencing service we asked participants a number of questions 

to gauge feedback and satisfaction levels.  The results for the post-study questionnaire 

based on the five-point Likert scale can be seen in Table 6.10.  The overall results were 

very positive.  Participants found collaboration using the Photo-conferencing system easy 

(mean = 4.09; SD = 0.76); that the interaction methods didn‟t hinder collaboration (mean 

= 3.80; SD = 0.81); and they found the interaction methods useful (mean = 4.14; SD = 

0.57). 
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Table 6.10: The mean responses to the Likert-scale questions completed by 

each of the participants from 1 = strongly disagree to 5 = strongly agree.  

   Mean 

I found it easy to collaborate this way 4.09 

 

I was not constrained by the interaction method 3.80 

 

I enjoyed using collaborative service 4.61 

 

I found the interaction methods useful 4.14 

 

I felt satisfied with the facilities available for 

sharing images 
4.38 

 

 

In terms of the overall use of the Photo-conferencing service, participants were positive 

about the facilities provided by the system, e.g. image sharing, capturing, switching and 

gestural interactions (mean = 4.38; SD = 0.66) and, just as importantly, they highly 

enjoyed using the collaborative service (mean = 4.61; SD = 0.49). 

The participants were able to quickly learn and then successfully perform each of the 

remote interaction techniques.  In general, participants seemed able to quickly learn to use 

the Photo-conferencing service and switch between its interactions without any noticeable 

trouble. 

Overall reactions to the MEA Photo-conferencing service were very positive with many 

keen to try out the technology.  Furthermore, after the questionnaire many of the 

participants stayed behind to discuss several possible additions to the system and also 

suggested several new directions for future research.  These have been summarised at the 

end of the chapter. 
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6.7 Chapter Summary 

In the scaling condition, which showed the second best performance overall, participants 

tended to use relative referencing (of surrounding items).  In contrast, users of pointing 

(with an area box) tended to use precision referencing.  Relative referencing dominated in 

the hybrid condition, which showed the best performance.  Thus, the type of interaction 

techniques offered to mobile users can have a strong impact on their communication 

strategy and in the case of the hybrid interaction technique can essentially direct users 

into employing an optimal communication scheme. 

The interaction techniques‟ support for relative and precision referencing, rather than the 

specific interaction mechanisms per se, may underlie the differences in the results.  Users 

of pointing tended to use precision referencing.  In contrast, in the scaling only condition, 

which showed the second best performance overall, participants tended to use relative 

referencing.  Relative referencing again dominated in the hybrid condition, which showed 

the best performance overall.  Thus, users‟ preferential use of pointing when given a 

straight choice between pointing and scaling (in the mixed condition) may have led them 

to use a less effective form of referencing. 

The Hybrid results show a reduction in task completion time compared to previous 

relative referencing (scaling only condition), precision referencing (pointing only 

condition) and the simple offering of both relative and precision referencing (mixed 

condition) findings.  Results further indicate that the hybrid approach led to a significant 

reduction in task completion time, number of words required and the number of events 

needed to complete the shared task, minimising collaborative effort [Clark and Brennan 

1991].  Durkheim [1938] wrote that “whenever certain elements combine and thereby 

produce, by the fact of their combination, new phenomena, it is plain that these new 

phenomena reside not in the original elements but in the totality formed by their union”.  

In our “hybrid” interaction technique, the synthesis of the best relative and precision 

referencing characteristics produced a new interaction that enhanced our overall results 

and supported H2: 

[H2] An enhancement to the relative referencing interaction provided by the 

scaling mechanism and the integration of a complementary precision 

referencing facility (rather than simple juxtaposition of pointing and scaling 

techniques) would further improve the mobile collaborative performance 

measurements (task completion time, number of words used by the 

participants, number of key-presses, error rates and measure of cognitive 

workload), minimising collaborative effort [Clark and Wilkes-Gibbs 1986]. 
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Findings from our field-based observations identified several enhancements that could be 

made to the MEA photo-conferencing system: 

 Expanded annotation and drawing support to further enhance the playfulness of 

the interaction, e.g. for drawing moustaches, glasses, horns etc. 

 A text based conversation channel: this was suggested as being useful for 

scenarios in which verbal communication could not take place, e.g. in quiet zones 

such as libraries or during conference talks. 

 Photo Ringtones: in which for example a photo “captured during a night out” 

could be pushed to a recipient device to be displayed during the ringing process, 

making for an interesting conversation starter. 

In addition the field-based observations identified several directions for future mobile 

collaborative research, including: 

 Collaborative editing: Allowing multiple fixed and mobile users to edit and work 

with shared resources including documents, files and media.  Variations on this 

theme include version control and track editing features. 

 Network Play: Given the existing demand for basic gaming with mobile devices, 

it is not difficult to see why the advent of interactive mobile collaborative gaming 

sessions between players from around the world was a popular talking point and 

suggestion. 

 Social Communication: The popularity of social networks raises the question of 

possible integration strategies with existing social networking services such as 

Facebook, Flickr and MySpace to provide real time status and activity 

notifications. 

Throughout the studies reported in this chapter, we observed an enthusiasm and high 

level of demand for the technology.  Many of the ideas for future research came directly 

from user suggestions and are highlighted in the next chapter as targets for further 

exploration. 
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 Chapter 7. 

Summary  

& Future Work 

“. . . the moment man first picked up a stone or a branch to use as a tool, he altered 

irrevocably the balance between him and his environment.  From this point on, the way in 

which the world around him changed was different.  It was no longer regular or 

predictable.  New objects appeared that were not recognizable as a mutation of 

something that had existed before, and as each one emerged it altered the environment 

not for a season but forever.  While the number of these tools remained small, their effect 

took a long time to spread and to cause change.  But as they increased, so did their 

effects: the more the tools, the faster the rate of change” James Burke, Connections 

7.1 Summary 

In this research we have extended the state of the art in mobile cellular interactions and 

vastly expanded the richness afforded to remote mobile users beyond those capabilities 

presented to date in the commercial and research fields.  We have progressively 

transitioned from a review of the literature, to the creation of a comprehensive 

functioning mobile digital media exchange system, through the design and development 

of an exemplar application and its evaluation and subsequent enhancements to develop 

improved remote mobile interaction techniques. 

Our research presents a fully functional MEA supporting shared remote interaction 

techniques and simultaneous voice communication across cellular devices.  The MEA 

supports services such as a mobile photo-conferencing service in which real time 

interactive media sharing can occur between mobile users during an active phone call.  

This instantiation enables mobile cellular users to talk, exchange and manipulate photos 

synchronously in a single application.  It works effectively across a diverse range of 

mobile devices with highly constrained displays, keypads and processing power. 
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The system based on an architecture led investigation into mobile media sharing supports 

two working modes, synchronous and asynchronous: one in which real time interactions 

are shared with all participants and the other in which users can join, leave and catch up 

later at any time.  Scalability was a core part of the architectural design.  The system 

currently supports multiple users and separate sessions (see Figure 7.1), enabling simple 

one-to-one shared sessions through to large-sessions comprising many connected users, 

all sharing and participating in shared spaces across their mobile cellular devices.  A 

robust distributed co-ordination engine is responsible for the management of all active 

cooperative sessions and supports scenarios from simple media- and location-sharing 

services to distributed gaming utilising an extensible plug-in systems architecture. 

 

Figure 7.1: Support for multiple concurrent mobile cooperative  

sessions across cellular networks. 

We have reported experimental evaluations and a field study investigating different 

interaction techniques designed to support communication across highly resource 

constrained mobile devices.  Specifically, we investigated the effects of these interaction 

techniques on the collaborative effort required by users, their actual and perceived 

performance.  We have demonstrated that rich mobile communication can be achieved 

through the use of effective remote interaction techniques [Yousef and O'Neill 2008].  

Our refinements of these techniques have provided improvements to both user perceived 

and actual performance metrics. 
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7.2 Further Work 

We consciously ran our studies on standard mobile phones with built-in keypads, 

relatively small displays and less powerful processors due to their popularity and massive 

worldwide sale volumes.  This research could have taken the simpler route of using 

laptop computers, which are also commonly referred to as “mobile” devices.  However, 

laptops are often bulky and battery-hungry, making them suitable only for “pause 

workers” who can grab 10 minutes at a table somewhere. 

Further research could extend our mobile phone findings and investigate the use of 

alternative mobile interface techniques that are beginning to become popular, such as 

touchscreens.  Issues include designing and evaluating potentially different interaction 

mechanisms for alternative physical interfaces, investigating the relationships between 

relative and precision referencing and the specific features of different mobile interaction 

techniques, and investigating how multiple devices with an even greater diversity of form 

factors and interaction techniques can support users interacting in the same session. 

Architecture load tests of fifty simultaneous users were performed on the photo-

conferencing instantiation and although the results indicated that a greater number of 

simultaneous sessions could have been supported on the mid-range server hardware used.  

Further research into the scalability of such mobile infrastructures and the use of more 

finely tuned load balancing techniques could better facilitate such mobile services in 

supporting a greater number of simultaneous users across separate and shared sessions. 

From our user studies, on average the lowest recorded task completion time was 45 

seconds (for the scaling condition), compared to the highest recorded 4 minutes (for the 

mixed condition).  Added to the initial training time, the average hands-on use of the 

photo-conferencing system by the first time participants was less than 15 minutes.  It 

would, of course, be very interesting to run further studies based on extended use, 

particularly in more natural settings and with a range of photos and other visual content 

that users chose to share. 

Future designs could incorporate mechanisms for conflict resolution between connected 

peers, e.g. using accelerometers to detect users shaking their screens to enforce floor 

control.  Although haptic feedback was implemented through the phones‟ built in 

vibration mechanisms, we could not effectively evaluate its use due to the technical 

limitations of the devices used in our studies.  The phones, in common with similar 
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devices, had difficulty performing additional I/O (input output) operations such as 

vibration during periods of dedicated CPU utilisation, e.g. image manipulation (scaling, 

pointing) or heavy networking activities.  The advent of mobile GPUs (Graphical 

Processing Units), higher processing speeds and multiple cores in upcoming devices will 

overcome many of these limitations and allow for greater interactional richness during 

mobile media exchange sessions. 

 

Figure 7.2:  Access to mobile sensory data, location information  

and environmental readings will define future MEAs. 

As cell phone technologies continue their rapid evolution, mobiles may come to resemble 

mini-computers more than pocket telephones.  The rate at which this technology appears 

to be developing is astounding, as today‟s high-end mobiles are fast becoming 

tomorrow‟s obsolete bricks.  Present day Britain houses around 50 million mobile phone 

users, compared with 25 million in 2000.  This figure looks set to carry on rising as 

mobile phone companies continue to make phones and phone contracts increasingly 

affordable. 

The rapid evolution of processing functionality combined with the latest sensory 

capabilities that are included with the latest cellular handsets will greatly benefit future 

mobile collaboration architectures (see Figure 7.2).  We are going to see more sensors 

such as GPS and environmental monitoring data being readily available for sharing in 

shared sessions among users. 

Mobile exchange architectures will enable new opportunities such as real-time context 

sharing among users; enabling future devices to adapt not only to their users activities but 

to the activities of their friends as well.  With the advent of sensory technologies into the 

mix, people may no longer have to ask a person they are calling “how‟s the weather?” but 

will have ready access to such ambient information directly at their finger tips.  Such 

cooperative mobile  architectures, especially involving large groups of users, could lead 

to interesting research questions on the impact of augmented conversations, storytelling 

and social interaction across people synchronously connected by their mobile devices. 

We predict that mobile collaboration in the future will play many roles in personal 

communication.  As the medium becomes increasingly available in our hands and 

pockets, people will evolve new ways of using it.  Integration with existing fixed 

computing environments, sensor networks and novel user interactions will present new 
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opportunities to enable a range of innovative scenarios and communication modalities.  

We believe the research reported in this thesis to be part of the first phase of a new era in 

scalable always-to-hand mobile collaborative solutions.  We must continue the work, 

exemplified in this thesis, both on building the technical capabilities and on 

understanding how people can better interact and communicate to realize the full 

potential of this new medium. 

7.3 Conclusion  

This thesis has set out to advance the field of mobile-to-mobile communication, by asking 

a simple question: “How can we better design systems to support interactive media 

exchange across resource constrained mobile cellular devices?” 

This resulted in the design, construction and creation of a complete Mobile Exchange 

Architecture based on requirements derived from the literature, an in depth knowledge of 

mobile networks, distributed cellular interactions and mobile user-interface development.  

Additionally a series of lab-based and field-based studies was conducted, in which the 

utility of mobile media exchange was investigated, both qualitatively examining its 

cooperative function and quantitatively exploring its impact on facets of task 

performance.  The system evaluation was designed as a feedback loop in which new 

knowledge and requirements could be used to enhance mobile media exchange and 

further its capabilities to exchange rich media across mobile devices.  To draw this thesis 

to a close, the key contributions of the research will be summarised. 

1.  Advances the field of mobile communication and presents an architecture lead 

investigation in to the design and development of mobile exchange architectures (MEAs) 

in which local and remote mobile users can share, synchronously interact and converse 

during an active phone conversation. 

2.  Presents a new complete mobile exchange architecture, client software and adaptation 

techniques that enable users to establish mobile-to-mobile sessions, exchanging large 

amounts of data and maintaining a shared visual space amongst collocated and remote 

cellular devices. 

3.  Presents an iterative experimental evaluation of mobile gestural interaction techniques, 

Scaling, Pointing, Mixed and Hybrid for mobile-to-mobile media exchange, assessing 

their impact on collaborative effort [Clark and Brennan 1991]. 
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7.4 Closing Remarks  

If we look back at the rapid evolution of mobile cellular networks and devices, the 

number of services that have defined the way in which we communicate today can be 

counted on a single hand: Voice, Text Messaging, Multi Media Messaging and more 

recently the Internet.  Amongst these, voice still remains to date the only synchronous 

service between mobile devices.  In this thesis we have demonstrated that not only are 

richer solutions possible over existing 3G networks, but that they can both augment 

existing services such as voice and enable the next generation of mobile communication 

capabilities and connectedness. 

While further work remains in order to comprehensively explore the field of Mobile 

Exchange Architectures (MEAs) and the interaction techniques they will present, this 

thesis provides a step forward as well as a direction for the future development of 

complementary technologies to better enable mobile collaboration.  As these mobile 

technologies and capabilities evolve, so too will user needs and what they will come to 

expect from their mobile devices.  To date the field of Mobile Collaboration remains in 

its infancy.  As research progresses the future will present greater opportunities that will 

delight, inspire and challenge our notions of what is achievable on the once very limited 

devices that we carry in our hands, pockets and bags as we journey onwards to new 

destinations. 
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Appendix A. 

Companion to Chapter 2 

Appendix A.1: HTC-S710 Device Specifications  

  

Release Date: April, 2007  

Software Environment 
Operating System: Windows Mobile 6 Standard  

Microprocessor 

CPU: 32bit Texas Instruments OMAP 850  

CPU Clock: 201 MHz 

Memory, Storage capacity 

ROM capacity: 128 MB (accessible: 63.4MB) 

RAM capacity: 64 MB (accessible: 49.6MB) 

Display 

Display Type: color transflective TFT , 65536 scales 

Display Resolution: 240 x 320 

Display Diagonal: 2.4 "  
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Cellular Phone 

Cellular Networks: GSM850, GSM900, GSM1800, GSM1900  

Cellular Data Link: CSD, GPRS, EDGE  

Call Alert: 64 -chord melody 

Vibrating Alert: Supported  

Control Peripherals 

Primary Keyboard: Slide-out QWERTY-type keyboard, 37 keys 

Secondary Keyboard: Built-in numeric phone keyboard, 18 keys 

Directional Pad: 5 -way block 

Interfaces 

Expansion Slots: microSD, microSDHC, TransFlash, SDIO  

Serial: RS-232 , 115200bit/s 

USB: USB 2.0 client, 480Mbit/s , USB Series Mini-B (mini-USB) connector 

Bluetooth: Bluetooth 2.0  

Wireless LAN: 802.11b, 802.11g  

Built-in Digital Camera 

Main Camera: CMOS sensor, 1.9MP 

Built-in Flash: Not supported 

Power Supply 

Battery: Lithium-ion , removable 

Battery Capacity: 1050 mAh 
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Appendix B. 

Companion to Chapter 3 

Appendix B.1: GSM Architecture 

 

 Mobile Station (MS): The MS is a combination of terminal equipment and 

subscriber data.  The terminal equipment is called ME (Mobile Equipment) and 

the subscriber‟s data is stored in a separate module called SIM (Subscriber 

Identity Module).  A mobile station can be a basic mobile handset or a more 

complex Personal Digital Assistant (PDA).  When the user is moving (i.e. while 

driving), network control of MS connections is switched over from cell site to 

cell site to support MS mobility through a process called handover. 

 Base Transceiver Station (BTS): The BTS implements the air communications 

interface with all active MSs located under its coverage area (cell site).  This 

includes signal modulation/demodulation, signal equalizing and error coding.  

Several BTSs are connected to a single Base Station Controller (BSC).  In the 

United Kingdom, the number of GSM BTSs is estimated at around several 

thousand.  Cell radii range from 10 to 200 m for the smallest cells to several 

kilometres for the largest cells.  A BTS is typically capable of handling 20–40 

simultaneous communications. 
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 Base Station Controller (BSC): The BSC supplies a set of functions for managing 

connections of BTSs under its control.  Functions enable operations such as 

handover, cell site configuration, management of radio resources and tuning of 

BTS radio frequency power levels.  In addition, the BSC realises a first 

concentration of circuits towards the MSC.  In a typical GSM network, the BSC 

controls over 70 BTSs. 

 Mobile Switching Centre (MSC): The MSC performs the communications 

switching functions of the system and is responsible for call set-up, release and 

routing.  It also provides functions for service billing and for interfacing other 

networks. 

 The Visitor Location Register (VLR): The VLR contains dynamic information 

about users who are attached to the mobile network including the user‟s 

geographical location.  The VLR is usually integrated to the MSC.  Through the 

MSC, the mobile network communicates with other networks such as the Public 

Switched Telephone Network (PSTN), Integrated Services Digital Network 

(ISDN), Circuit Switched Public Data Network (CSPDN) and Packet Switched 

Public Data Network (PSPDN). 

 Home Location Register (HLR): The HLR is a network element containing 

subscription details for each subscriber.  A HLR is typically capable of managing 

information for hundreds of thousands of subscribers. 

 

Appendix B.2: Second Generation GSM Architecture 

 

 Mobile Station (MS): The MS is a combination of terminal equipment and 

subscriber data and is similar to that of the earlier GSM systems.  However, 
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updates to the MS to support data connectivity have resulted in three different 

operating modes [3GPP-22.060] to the BTS: 

Class A: The mobile station supports simultaneous use of GSM and GPRS 

services (e.g. attachment, activation, monitoring, and transmission) and may 

establish or receive calls on the two services simultaneously.  There are very few 

mobiles supporting this class on the market as these devices requires lots of CPU 

bandwidth which would make them more expensive. 

Class B: The mobile station is attached to both GSM and GPRS services.  

However, the mobile station can only operate in one of the two services at a time.   

 

Once the voice call has terminated, the data service can be resumed.  Most 

phones on the market are currently of this class. 

Class C: The mobile station is attached to either the GSM service or the GPRS 

service but is not attached to both services at the same time.  Prior to establishing 

or receiving a call on one of the two services, the mobile station has to be 

explicitly attached to the desired service.  This class is generally used by GPRS 

modems which are not used for voice calls. 

 Serving GPRS Support Node (SGSN): The SGSN is connected to one or more 

base station subsystems.  It operates as a router for data packets for all mobile 

stations present in a given geographical area.  It also keeps track of the location 

of mobile stations and performs security functions and access control. 

 Gateway GPRS Support Node (GGSN): The GGSN ensures interactions between 

the GPRS core network and external packet-switched networks such as the 

Internet.  For this purpose, it encapsulates data packets received from external 

networks and routes them toward the SGSN.  
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Appendix B.3: Third Generation GSM Architecture 

 

 User Equipment (UE): The UE is the same as the Mobile Station (MS), usually 

provided to the subscriber in the form of a handset composed of Mobile 

Equipment (ME) and a UMTS Subscriber Identity Module (USIM).  The ME 

contains the radio transceiver, the display and digital signal processors.  The 

USIM is a 3G application on an UMTS IC card (UICC) which holds the 

subscriber identity, authentication algorithms and other subscriber-related 

information. 

 UTRAN Network: The UTRAN is composed of nodes B and Radio Network 

Controllers (RNCs). The node B is responsible for the transmission of 

information in one or more cells, to and from UEs.  It also participates partly in 

the system resource management.  The node B interconnects with the RNC via 

the Iub interface.  The RNC controls resources in the system and interfaces the 

core network. 

 UMTS Core Network: The first phase UMTS core network is based on an 

evolved GSM network sub-system (circuit-switched domain) and a GPRS core 

network (packet-switched domain).  Consequently, the UMTS core network is 

composed of the HLR, the MSC/VLR and the GMSC (to manage circuit-

switched connections) and the SGSN and GGSN (to manage packet-based 

connections). 

 Second Phase UMTS: The initial UMTS architecture presented in this chapter is 

based on evolved GSM and GPRS core networks (providing support for circuit-

switched and packet-switched domains, respectively).  The objective of this 

initial architecture is to allow mobile network operators to rapidly roll out UMTS 

networks on the basis of existing GSM and GPRS networks.  
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Appendix B.4: IMS (IP Multimedia Subsystem) Architecture. 

 

 Proxy Call Session Control Function (P-CSCF): The P-CSCF is a SIP proxy that 

is the first point of contact for the IMS terminal.  It can be located either in the 

visited network (in full IMS networks) or in the home network (when the visited 

network isn't IMS compliant yet).  The terminal discovers its P-CSCF with either 

DHCP, or it is assigned in the PDP Context in General Packet Radio Service 

(GPRS). 

The P-CSCF authenticates the user, establishes an internet protocol security 

association with the IMS terminal, preventing spoofing attacks and replay 

attacks, and protects the privacy of the user.  Other nodes trust the P-CSCF, and 

do not have to authenticate the user again. 

 Interrogating Call Session Control (I-CSCF): The I-CSCF is another SIP function 

located at the edge of an administrative domain.  Its IP address is published in the 

Domain Name System (DNS) of the domain (using NAPTR and SRV type of 

DNS records), so that remote servers can find it, and use it as a forwarding point 

(e.g. registering) for SIP packets to this domain.  The I-CSCF queries the HSS 

using the Diameter Cx interface to retrieve the user location (Dx interface is used 

from I-CSCF to SLF to locate the needed HSS only), and then routes the SIP 

request to its assigned S-CSCF. 

 Serving Call Session Control (S-CSCF): The S-CSCF is the central node of the 

signalling plane.  It is a SIP server, but performs session control too. It is always 

located in the home network.  It uses Diameter Cx and Dx interfaces to the HSS 

to download and upload user profiles and has no local storage of the user.  All 

necessary information is loaded from the HSS. 
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 Application Server (AS): AS host and execute services, and interface with the S-

CSCF using Session Initiation Protocol (SIP).  An example of an application 

server that is being developed in 3GPP is the Voice call continuity Function 

(VCC Server).  Depending on the actual service, the AS can operate in SIP proxy 

mode, SIP UA (user agent) mode or SIP B2BUA (back-to-back user agent) 

mode.  An AS can be located in the home network or in an external third-party 

network. 

 Subscription Locator Function (SLF): The purpose of the SLF function is to 

locate the HSS and S-CSCF assigned to a particular subscriber. This is an 

indexing function, mapping the user identity to the S-CSCF/HSS according to 

registration.  When the P-CSCF needs to route a request for a subscriber session 

to the appropriate S-CSCF, the P-CSCF would access this function to determine 

which S-CSCF has been assigned to the subscriber. Other devices may need to 

access this function as well, such as an application server supporting services to 

the subscriber. 

 Home Subscriber Server (HSS): The HSS is similar in function to the GSM 

Home Location Register (HLR) and Authentication Centre (AUC).  The HSS is a 

master user database that supports the IMS network entities that actually handle 

calls.  It contains the subscription-related information (user profiles), performs 

authentication and authorization of the user, and can provide information about 

the user's physical location. 

 Breakout Gateway Control Function (BGCF): The BGCF is a SIP server that 

includes routing functionality based on telephone numbers. It is only used when 

calling from the IMS to a phone in a circuit switched network, such as the Public 

Switched Telephone Network (PSTN) or the Public land mobile network 

(PLMN). 

 Media Gateway Control Function (MGCF): The MGCF handles call control 

protocol conversion between SIP and ISUP and interfaces with the SGW over 

SCTP. It also controls the resources in a Media Gateway (MGW) across an H.248 

interface. 

 Media Resource Function Controller (MRFC): The MRFC is a signalling plane 

node that acts as a SIP User Agent to the S-CSCF, and which controls the MRFP 

across an H.248 interface. 

  Media resource function processor (MRFP): The MRFP is a media plane node 

that implements all media-related functions.  The MRFP delivers IP Audio and 

Video Media processing features as a shared re-usable resource for the numerous 

multimedia services hosted by the application servers in the IMS. 
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Appendix C. 

Companion to Chapter 5 

Appendix C.1: Participant Survey 
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Appendix D. 

Companion to Chapter 6 

Appendix D.1: Participant Consent Form 
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Appendix D.2: Participant Information Sheet 
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Appendix D.3: Participant Worker Diagram 
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Appendix D.4: Participant Helper Diagrams. 
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Appendix D.5: Participant post-questionnaire  
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Appendix D.6: Participant post-questionnaire NASA TLX subscales sheet 
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Appendix D.7: Participant post-questionnaire NASA TLX paired-comparisons sheet 
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Appendix D.8: Participant Evaluation Questionnaire   
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Appendix D.9: Participant Evaluation Questionnaire   
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Appendix D.10: Mobile collaboration: Workload Analysis 

Table D.10: Mean (and SDs in parentheses) un-weighted mental workload 

sub-scales by interaction condition: Pointing, Scaling and Mixed.   

 Pointing Scaling Mixed 

Mental demand 16.67 

(4.56) 

14.25 

(7.84) 

10.92 

(6.08) 

Physical demand 6.58 

(3.12) 

5.08 

(2.31) 

4.83 

(4.78) 

Temporal demand 14.25 

 (8.14) 

23.00 

(2.98) 

16.17 

(5.2) 

Performance 

      

8.83 

(6.67) 

11.25 

(8.05) 

7.08 

(3.15) 

Effort 

        

14.33 

(6.04) 

13.67 

(8.06) 

12.33 

(5.02) 

Frustration 

    

15.92 

(8.03) 

10.33 

(5.37) 

11.67 

(5.79) 

 

 

Appendix D.11: Weighted subscale by communication condition. 
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Appendix D.12 Study 1 – Pointing Results (Timing, Words, Events) 

# Timing Words Events 

1 146 227 40 

2 131 233 11 

3 128 148 50 

4 245 319 45 

5 109 176 28 

6 113 147 25 

7 105 95 35 

8 121 292 33 

9 111 213 29 

10 136 202 32 

11 149 231 23 

12 198 214 25 

Sum: 1692 2497 376 

Mean: 141.00 208.08 31.33 

StdDev: (41.4) (61.87) (10.47) 

 

Appendix D.13 Study 1 – Pointing Results Workload Analysis: Mental Demand 

 Mental Demand 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 

1 4.00 19.00 5.07 2.00 4.00 0.53 23.00 5.60 

2 4.00 20.00 5.33 2.00 5.00 0.67 25.00 6.00 

3 3.00 12.00 2.40 4.00 1.00 0.27 13.00 2.67 

4 3.00 12.00 2.40 4.00 1.00 0.27 13.00 2.67 

5 5.00 15.00 5.00 2.00 5.00 0.67 20.00 5.67 

6 5.00 13.00 4.33 2.00 4.00 0.53 17.00 4.87 

7 4.00 5.00 1.33 2.00 10.00 1.33 15.00 2.67 

8 4.00 4.00 1.07 2.00 7.00 0.93 11.00 2.00 

9 5.00 15.00 5.00 4.00 5.00 1.33 20.00 6.33 

10 5.00 13.00 4.33 2.00 4.00 0.53 17.00 4.87 

11 4.00 5.00 1.33 4.00 10.00 2.67 15.00 4.00 

12 4.00 4.00 1.07 4.00 7.00 1.87 11.00 2.93 
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Sum: 50.00 137.00 38.67 34.00 63.00 11.60 200.00 50.27 

Mean: 4.17 11.42 3.22 2.83 5.25 0.97 16.67 4.19 

StdDev: (.72) (5.68) (1.77) (1.03) (2.9) (.72) (4.56) (1.55) 

 

Appendix D.14 Study 1 – Pointing Results Workload Analysis: Physical Demand 

 Physical Demand 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 

1 0.00 2.00 0.00 2.00 4.00 0.53 6.00 0.53 

2 0.00 2.00 0.00 2.00 1.00 0.13 3.00 0.13 

3 0.00 3.00 0.00 0.00 1.00 0.00 4.00 0.00 

4 0.00 3.00 0.00 0.00 1.00 0.00 4.00 0.00 

5 2.00 7.00 0.93 0.00 2.00 0.00 9.00 0.93 

6 2.00 11.00 1.47 0.00 1.00 0.00 12.00 1.47 

7 1.00 1.00 0.07 0.00 4.00 0.00 5.00 0.07 

8 1.00 1.00 0.07 0.00 4.00 0.00 5.00 0.07 

9 2.00 7.00 0.93 0.00 2.00 0.00 9.00 0.93 

10 2.00 11.00 1.47 0.00 1.00 0.00 12.00 1.47 

11 1.00 1.00 0.07 0.00 4.00 0.00 5.00 0.07 

12 2.00 1.00 0.13 0.00 4.00 0.00 5.00 0.13 

Sum: 13.00 50.00 5.13 4.00 29.00 0.67 79.00 5.80 

Mean: 1.08 4.17 0.43 0.33 2.42 0.06 6.58 0.48 

StdDev: (.9) (3.83) (.59) (.78) (1.44) (.16) (3.12) (.57) 

 

Appendix D.15 Study 1 – Pointing Results Workload Analysis: Temporal Demand 

 Temporal demand 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 

1 1.00 9.00 0.60 2.00 15.00 2.00 24.00 2.60 

2 1.00 1.00 0.07 2.00 1.00 0.13 2.00 0.20 

3 3.00 8.00 1.60 4.00 1.00 0.27 9.00 1.87 

4 3.00 7.00 1.40 4.00 1.00 0.27 8.00 1.67 

5 2.00 8.00 1.07 1.00 13.00 0.87 21.00 1.93 

6 2.00 11.00 1.47 1.00 4.00 0.27 15.00 1.73 
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7 3.00 1.00 0.20 3.00 4.00 0.80 5.00 1.00 

8 3.00 15.00 3.00 3.00 8.00 1.60 23.00 4.60 

9 2.00 8.00 1.07 1.00 13.00 0.87 21.00 1.93 

10 2.00 11.00 1.47 1.00 4.00 0.27 15.00 1.73 

11 4.00 1.00 0.27 3.00 4.00 0.80 5.00 1.07 

12 3.00 15.00 3.00 3.00 8.00 1.60 23.00 4.60 

Sum: 29.00 95.00 15.20 28.00 76.00 9.73 171.00 24.93 

Mean: 2.42 7.92 1.27 2.33 6.33 0.81 14.25 2.08 

StdDev: (.9) (4.91) (.97) (1.15) (5.02) (.63) (8.14) (1.32) 

 

Appendix D.16 Study 1 – Pointing Results Workload Analysis: Performance 

 Performance 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 

1 3.00 2.00 0.40 4.00 1.00 0.27 3.00 0.67 

2 3.00 3.00 0.60 4.00 1.00 0.27 4.00 0.87 

3 5.00 2.00 0.67 4.00 1.00 0.27 3.00 0.93 

4 5.00 0.00 0.00 4.00 1.00 0.27 1.00 0.27 

5 3.00 11.00 2.20 3.00 7.00 1.40 18.00 3.60 

6 3.00 3.00 0.60 3.00 3.00 0.60 6.00 1.20 

7 4.00 3.00 0.80 4.00 15.00 4.00 18.00 4.80 

8 4.00 15.00 4.00 4.00 6.00 1.60 21.00 5.60 

9 3.00 2.00 0.40 3.00 4.00 0.80 6.00 1.20 

10 2.00 4.00 0.53 3.00 3.00 0.60 7.00 1.13 

11 3.00 3.00 0.60 4.00 6.00 1.60 9.00 2.20 

12 3.00 5.00 1.00 4.00 5.00 1.33 10.00 2.33 

Sum: 41.00 53.00 11.80 44.00 53.00 13.00 106.00 24.80 

Mean: 3.42 4.42 0.98 3.67 4.42 1.08 8.83 2.07 

StdDev: (.9) (4.27) (1.09) (.49) (3.99) (1.06) (6.67) (1.72) 

 

Appendix D.17 Study 1 – Pointing Results Workload Analysis: Effort 

 Effort 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 
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1 2.00 9.00 1.20 5.00 15.00 5.00 24.00 6.20 

2 2.00 10.00 1.33 5.00 1.00 0.33 11.00 1.67 

3 1.00 4.00 0.27 2.00 3.00 0.40 7.00 0.67 

4 1.00 5.00 0.33 2.00 2.00 0.27 7.00 0.60 

5 3.00 10.00 2.00 4.00 16.00 4.27 26.00 6.27 

6 3.00 8.00 1.60 4.00 2.00 0.53 10.00 2.13 

7 2.00 5.00 0.67 5.00 10.00 3.33 15.00 4.00 

8 2.00 5.00 0.67 5.00 12.00 4.00 17.00 4.67 

9 1.00 10.00 0.67 2.00 8.00 1.07 18.00 1.73 

10 3.00 8.00 1.60 4.00 4.00 1.07 12.00 2.67 

11 2.00 5.00 0.67 3.00 8.00 1.60 13.00 2.27 

12 2.00 5.00 0.67 3.00 7.00 1.40 12.00 2.07 

Sum: 24.00 84.00 11.67 44.00 88.00 23.27 172.00 34.93 

Mean: 2.00 7.00 0.97 3.67 7.33 1.94 14.33 2.91 

StdDev: (.74) (2.37) (.56) (1.23) (5.14) (1.72) (6.04) (1.94) 

 

Appendix D.18 Study 1 – Pointing Results Workload Analysis: Frustration 

 Frustration 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 

1 5.00 5.00 1.67 0.00 5.00 0.00 10.00 1.67 

2 5.00 3.00 1.00 0.00 5.00 0.00 8.00 1.00 

3 3.00 9.00 1.80 1.00 2.00 0.13 11.00 1.93 

4 3.00 4.00 0.80 1.00 2.00 0.13 6.00 0.93 

5 0.00 8.00 0.00 5.00 17.00 5.67 25.00 5.67 

6 0.00 5.00 0.00 5.00 3.00 1.00 8.00 1.00 

7 1.00 15.00 1.00 1.00 5.00 0.33 20.00 1.33 

8 1.00 14.00 0.93 1.00 11.00 0.73 25.00 1.67 

9 2.00 8.00 1.07 5.00 17.00 5.67 25.00 6.73 

10 1.00 5.00 0.33 5.00 3.00 1.00 8.00 1.33 

11 1.00 15.00 1.00 1.00 5.00 0.33 20.00 1.33 

12 1.00 14.00 0.93 1.00 11.00 0.73 25.00 1.67 

Sum: 23.00 105.00 10.53 26.00 86.00 15.73 191.00 26.27 

Mean: 1.92 8.75 0.88 2.17 7.17 1.31 15.92 2.19 

StdDev: (1.73) (4.59) (.56) (2.12) (5.47) (2.07) (8.03) (1.91) 
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Appendix D.19 Study 1 – Scaling Results (Timing, Words, Events) 

# Timing Words Events 

2 86 183 6 

2 54 126 12 

2 69 166 3 

2 59 147 13 

2 89 183 16 

2 53 98 8 

2 78 213 10 

2 48 97 16 

2 77 152 16 

2 83 197 21 

2 81 175 15 

2 76 118 8 

Sum: 853 1855 144 

Mean: 71.08 154.58 12.00 

StdDev: (14.12) (38.27) (5.15) 

 

Appendix D.20 Study 1 – Scaling Results Workload Analysis: Mental Demand 

 Mental Demand 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 

1 4.00 13.00 3.47 3.00 4.00 0.80 17.00 4.27 

2 4.00 3.00 0.80 3.00 5.00 1.00 8.00 1.80 

3 5.00 12.00 4.00 4.00 11.00 2.93 23.00 6.93 

4 5.00 14.00 4.67 4.00 7.00 1.87 21.00 6.53 

5 4.00 3.00 0.80 5.00 4.00 1.33 7.00 2.13 

6 4.00 10.00 2.67 5.00 15.00 5.00 25.00 7.67 

7 2.00 3.00 0.40 2.00 11.00 1.47 14.00 1.87 

8 2.00 3.00 0.40 2.00 2.00 0.27 5.00 0.67 

9 4.00 3.00 0.80 5.00 4.00 1.33 7.00 2.13 

10 4.00 10.00 2.67 5.00 15.00 5.00 25.00 7.67 

11 2.00 3.00 0.40 2.00 11.00 1.47 14.00 1.87 

12 2.00 3.00 0.40 2.00 2.00 0.27 5.00 0.67 

Sum: 42.00 80.00 21.47 42.00 91.00 22.73 171.00 44.20 
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Mean: 3.50 6.67 1.79 3.50 7.58 1.89 14.25 3.68 

StdDev: (1.17) (4.66) (1.6) (1.31) (4.8) (1.61) (7.84) (2.76) 

 

Appendix D.21 Study 1 – Scaling Results Workload Analysis: Physical Demand 

 Physical Demand 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 

1 1.00 1.00 0.07 0.00 3.00 0.00 4.00 0.07 

2 1.00 1.00 0.07 0.00 3.00 0.00 4.00 0.07 

3 0.00 4.00 0.00 0.00 2.00 0.00 6.00 0.00 

4 0.00 3.00 0.00 0.00 4.00 0.00 7.00 0.00 

5 1.00 1.00 0.07 0.00 1.00 0.00 2.00 0.07 

6 1.00 1.00 0.07 0.00 3.00 0.00 4.00 0.07 

7 1.00 1.00 0.07 0.00 8.00 0.00 9.00 0.07 

8 1.00 1.00 0.07 0.00 4.00 0.00 5.00 0.07 

9 1.00 1.00 0.07 0.00 1.00 0.00 2.00 0.07 

10 1.00 1.00 0.07 0.00 3.00 0.00 4.00 0.07 

11 1.00 1.00 0.07 0.00 8.00 0.00 9.00 0.07 

12 1.00 1.00 0.07 0.00 4.00 0.00 5.00 0.07 

Sum: 10.00 17.00 0.67 0.00 44.00 0.00 61.00 0.67 

Mean: 0.83 1.42 0.06 0.00 3.67 0.00 5.08 0.06 

StdDev: (.39) (1.) (.03) (.) (2.27) (.) (2.31) (.03) 

 

Appendix D.22 Study 1 – Scaling Results Workload Analysis: Temporal Demand 

 Temporal demand 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 

1 3.00 5.00 1.00 5.00 14.00 4.67 19.00 5.67 

2 3.00 7.00 1.40 5.00 11.00 3.67 18.00 5.07 

3 1.00 13.00 0.87 2.00 12.00 1.60 25.00 2.47 

4 1.00 14.00 0.93 2.00 12.00 1.60 26.00 2.53 

5 3.00 18.00 3.60 2.00 9.00 1.20 27.00 4.80 

6 3.00 17.00 3.40 2.00 7.00 0.93 24.00 4.33 

7 4.00 17.00 4.53 3.00 4.00 0.80 21.00 5.33 
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8 4.00 16.00 4.27 3.00 6.00 1.20 22.00 5.47 

9 3.00 18.00 3.60 2.00 9.00 1.20 27.00 4.80 

10 3.00 17.00 3.40 2.00 7.00 0.93 24.00 4.33 

11 4.00 17.00 4.53 3.00 4.00 0.80 21.00 5.33 

12 4.00 16.00 4.27 3.00 6.00 1.20 22.00 5.47 

Sum: 36.00 175.00 35.80 34.00 101.00 19.80 276.00 55.60 

Mean: 3.00 14.58 2.98 2.83 8.42 1.65 23.00 4.63 

StdDev: (1.04) (4.29) (1.49) (1.11) (3.29) (1.22) (2.98) (1.09) 

 

Appendix D.23 Study 1 – Scaling Results Workload Analysis: Performance 

 Performance 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 

1 2.00 3.00 0.40 4.00 10.00 2.67 13.00 3.07 

2 2.00 2.00 0.27 4.00 7.00 1.87 9.00 2.13 

3 2.00 1.00 0.13 5.00 7.00 2.33 8.00 2.47 

4 2.00 3.00 0.40 5.00 6.00 2.00 9.00 2.40 

5 2.00 1.00 0.13 2.00 6.00 0.80 7.00 0.93 

6 2.00 13.00 1.73 2.00 15.00 2.00 28.00 3.73 

7 5.00 1.00 0.33 4.00 6.00 1.60 7.00 1.93 

8 5.00 1.00 0.33 4.00 5.00 1.33 6.00 1.67 

9 2.00 1.00 0.13 2.00 6.00 0.80 7.00 0.93 

10 2.00 13.00 1.73 2.00 15.00 2.00 28.00 3.73 

11 5.00 1.00 0.33 4.00 6.00 1.60 7.00 1.93 

12 5.00 1.00 0.33 4.00 5.00 1.33 6.00 1.67 

Sum: 36.00 41.00 6.27 42.00 94.00 20.33 135.00 26.60 

Mean: 3.00 3.42 0.52 3.50 7.83 1.69 11.25 2.22 

StdDev: (1.48) (4.54) (.57) (1.17) (3.59) (.57) (8.05) (.93) 

 

Appendix D.24 Study 1 – Scaling Results Workload Analysis: Mental Demand 

 Effort 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 
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1 2.00 8.00 1.07 2.00 6.00 0.80 14.00 1.87 

2 2.00 5.00 0.67 2.00 10.00 1.33 15.00 2.00 

3 3.00 15.00 3.00 3.00 11.00 2.20 26.00 5.20 

4 3.00 14.00 2.80 3.00 13.00 2.60 27.00 5.40 

5 1.00 2.00 0.13 3.00 6.00 1.20 8.00 1.33 

6 1.00 7.00 0.47 3.00 15.00 3.00 22.00 3.47 

7 3.00 2.00 0.40 3.00 2.00 0.40 4.00 0.80 

8 3.00 5.00 1.00 3.00 4.00 0.80 9.00 1.80 

9 1.00 2.00 0.13 3.00 6.00 1.20 8.00 1.33 

10 1.00 7.00 0.47 3.00 11.00 2.20 18.00 2.67 

11 3.00 2.00 0.40 3.00 2.00 0.40 4.00 0.80 

12 3.00 5.00 1.00 3.00 4.00 0.80 9.00 1.80 

Sum: 26.00 74.00 11.53 34.00 90.00 16.93 164.00 28.47 

Mean: 2.17 6.17 0.96 2.83 7.50 1.41 13.67 2.37 

StdDev: (.94) (4.45) (.96) (.39) (4.36) (.88) (8.06) (1.56) 

 

Appendix D.25 Study 1 – Scaling Results Workload Analysis: Frustration 

 Frustration 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 

1 3.00 1.00 0.20 1.00 10.00 0.67 11.00 0.87 

2 3.00 4.00 0.80 1.00 5.00 0.33 9.00 1.13 

3 4.00 10.00 2.67 1.00 9.00 0.60 19.00 3.27 

4 4.00 4.00 1.07 1.00 3.00 0.20 7.00 1.27 

5 4.00 1.00 0.27 3.00 15.00 3.00 16.00 3.27 

6 4.00 1.00 0.27 3.00 13.00 2.60 14.00 2.87 

7 0.00 1.00 0.00 3.00 3.00 0.60 4.00 0.60 

8 0.00 1.00 0.00 3.00 4.00 0.80 5.00 0.80 

9 4.00 1.00 0.27 3.00 15.00 3.00 16.00 3.27 

10 4.00 1.00 0.27 3.00 13.00 2.60 14.00 2.87 

11 0.00 1.00 0.00 3.00 3.00 0.60 4.00 0.60 

12 0.00 1.00 0.00 3.00 4.00 0.80 5.00 0.80 

Sum: 30.00 27.00 5.80 28.00 97.00 15.80 124.00 21.60 

Mean: 2.50 2.25 0.48 2.33 8.08 1.32 10.33 1.80 

StdDev: (1.88) (2.7) (.76) (.98) (4.94) (1.11) (5.37) (1.18) 
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Appendix D.26 Study 1 – Mixed Results (Timing, Words, Events) 

# Timing Words Events 

3 86 111 11 

3 131 156 33 

3 128 230 30 

3 245 228 42 

3 162 241 18 

3 113 194 36 

3 105 230 33 

3 121 184 26 

3 106 245 12 

3 110 187 20 

3 180 189 23 

3 200 212 13 

Sum: 1687 2407 297 

Mean: 140.58 200.58 24.75 

StdDev: (46.92) (39.16) (10.23) 

 

Appendix D.27 Study 1 – Mixed Results Workload Analysis: Mental Demand 

 Mental Demand 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 

1 5.00 9.00 3.00 4.00 14.00 3.73 23.00 6.73 

2 5.00 11.00 3.67 4.00 11.00 2.93 22.00 6.60 

3 2.00 10.00 1.33 1.00 4.00 0.27 14.00 1.60 

4 2.00 9.00 1.20 1.00 3.00 0.20 12.00 1.40 

5 3.00 4.00 0.80 5.00 5.00 1.67 9.00 2.47 

6 3.00 3.00 0.60 5.00 6.00 2.00 9.00 2.60 

7 2.00 4.00 0.53 3.00 4.00 0.80 8.00 1.33 

8 2.00 2.00 0.27 3.00 2.00 0.40 4.00 0.67 

9 3.00 4.00 0.80 2.00 5.00 0.67 9.00 1.47 

10 3.00 3.00 0.60 2.00 6.00 0.80 9.00 1.40 

11 2.00 4.00 0.53 3.00 4.00 0.80 8.00 1.33 

12 2.00 2.00 0.27 3.00 2.00 0.40 4.00 0.67 
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Sum: 34.00 65.00 13.60 36.00 66.00 14.67 131.00 28.27 

Mean: 2.83 5.42 1.13 3.00 5.50 1.22 10.92 2.36 

StdDev: (1.11) (3.32) (1.09) (1.35) (3.58) (1.14) (6.08) (2.09) 

 

Appendix D.28 Study 1 – Mixed Results Workload Analysis: Physical Demand 

 Physical Demand 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 

1 0.00 1.00 0.00 0.00 2.00 0.00 3.00 0.00 

2 0.00 1.00 0.00 0.00 3.00 0.00 4.00 0.00 

3 0.00 11.00 0.00 0.00 4.00 0.00 15.00 0.00 

4 0.00 11.00 0.00 0.00 3.00 0.00 14.00 0.00 

5 0.00 1.00 0.00 0.00 3.00 0.00 4.00 0.00 

6 0.00 3.00 0.00 0.00 2.00 0.00 5.00 0.00 

7 0.00 1.00 0.00 1.00 0.00 0.00 1.00 0.00 

8 0.00 1.00 0.00 1.00 0.00 0.00 1.00 0.00 

9 0.00 1.00 0.00 0.00 3.00 0.00 4.00 0.00 

10 0.00 3.00 0.00 0.00 2.00 0.00 5.00 0.00 

11 0.00 1.00 0.00 1.00 0.00 0.00 1.00 0.00 

12 0.00 1.00 0.00 1.00 0.00 0.00 1.00 0.00 

Sum: 0.00 36.00 0.00 4.00 22.00 0.00 58.00 0.00 

Mean: 0.00 3.00 0.00 0.33 1.83 0.00 4.83 0.00 

StdDev: (.) (3.81) (.) (.49) (1.47) (.) (4.78) (.) 

 

Appendix D.29 Study 1 – Mixed Results Workload Analysis: Temporal Demand 

 Temporal demand 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 

1 1.00 4.00 0.27 1.00 3.00 0.20 7.00 0.47 

2 1.00 7.00 0.47 1.00 3.00 0.20 10.00 0.67 

3 5.00 12.00 4.00 2.00 13.00 1.73 25.00 5.73 

4 5.00 10.00 3.33 2.00 14.00 1.87 24.00 5.20 

5 4.00 16.00 4.27 4.00 3.00 0.80 19.00 5.07 

6 4.00 15.00 4.00 4.00 2.00 0.53 17.00 4.53 
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7 4.00 4.00 1.07 2.00 10.00 1.33 14.00 2.40 

8 4.00 3.00 0.80 2.00 11.00 1.47 14.00 2.27 

9 4.00 16.00 4.27 4.00 3.00 0.80 19.00 5.07 

10 4.00 15.00 4.00 4.00 2.00 0.53 17.00 4.53 

11 4.00 4.00 1.07 2.00 10.00 1.33 14.00 2.40 

12 4.00 3.00 0.80 2.00 11.00 1.47 14.00 2.27 

Sum: 44.00 109.00 28.33 30.00 85.00 12.27 194.00 40.60 

Mean: 3.67 9.08 2.36 2.50 7.08 1.02 16.17 3.38 

StdDev: (1.3) (5.48) (1.72) (1.17) (4.76) (.58) (5.2) (1.85) 

 

Appendix D.30 Study 1 – Mixed Results Workload Analysis: Performance 

 Performance 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 

1 2.00 6.00 0.80 2.00 2.00 0.27 8.00 1.07 

2 2.00 11.00 1.47 2.00 5.00 0.67 16.00 2.13 

3 1.00 4.00 0.27 5.00 3.00 1.00 7.00 1.27 

4 1.00 5.00 0.33 5.00 3.00 1.00 8.00 1.33 

5 5.00 5.00 1.67 1.00 2.00 0.13 7.00 1.80 

6 5.00 4.00 1.33 1.00 3.00 0.20 7.00 1.53 

7 4.00 2.00 0.53 5.00 3.00 1.00 5.00 1.53 

8 4.00 1.00 0.27 5.00 3.00 1.00 4.00 1.27 

9 5.00 5.00 1.67 1.00 2.00 0.13 7.00 1.80 

10 5.00 4.00 1.33 1.00 3.00 0.20 7.00 1.53 

11 4.00 2.00 0.53 5.00 3.00 1.00 5.00 1.53 

12 4.00 1.00 0.27 5.00 3.00 1.00 4.00 1.27 

Sum: 42.00 50.00 10.47 38.00 35.00 7.60 85.00 18.07 

Mean: 3.50 4.17 0.87 3.17 2.92 0.63 7.08 1.51 

StdDev: (1.57) (2.72) (.58) (1.95) (.79) (.41) (3.15) (.3) 

 

Appendix D.31 Study 1 – Mixed Results Workload Analysis: Mental Demand 

 Effort 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 
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1 4.00 6.00 1.60 3.00 8.00 1.60 14.00 3.20 

2 4.00 11.00 2.93 3.00 14.00 2.80 25.00 5.73 

3 5.00 11.00 3.67 4.00 4.00 1.07 15.00 4.73 

4 3.00 10.00 2.00 4.00 4.00 1.07 14.00 3.07 

5 2.00 6.00 0.80 2.00 3.00 0.40 9.00 1.20 

6 2.00 3.00 0.40 2.00 3.00 0.40 6.00 0.80 

7 4.00 2.00 0.53 0.00 10.00 0.00 12.00 0.53 

8 4.00 3.00 0.80 0.00 10.00 0.00 13.00 0.80 

9 2.00 6.00 0.80 5.00 3.00 1.00 9.00 1.80 

10 2.00 3.00 0.40 5.00 3.00 1.00 6.00 1.40 

11 4.00 2.00 0.53 0.00 10.00 0.00 12.00 0.53 

12 4.00 3.00 0.80 0.00 10.00 0.00 13.00 0.80 

Sum: 40.00 66.00 15.27 28.00 82.00 9.33 148.00 24.60 

Mean: 3.33 5.50 1.27 2.33 6.83 0.78 12.33 2.05 

StdDev: (1.07) (3.45) (1.07) (1.97) (3.9) (.84) (5.02) (1.75) 

 

Appendix D.32 Study 1 – Mixed Results Workload Analysis: Frustration 

 Frustration 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 

1 3.00 1.00 0.20 5.00 12.00 4.00 13.00 4.20 

2 3.00 8.00 1.60 5.00 13.00 4.33 21.00 5.93 

3 2.00 14.00 1.87 3.00 1.00 0.20 15.00 2.07 

4 4.00 11.00 2.93 3.00 2.00 0.40 13.00 3.33 

5 1.00 3.00 0.20 3.00 5.00 1.00 8.00 1.20 

6 1.00 3.00 0.20 3.00 4.00 0.80 7.00 1.00 

7 1.00 7.00 0.47 4.00 12.00 3.20 19.00 3.67 

8 1.00 1.00 0.07 4.00 4.00 1.07 5.00 1.13 

9 1.00 3.00 0.20 3.00 5.00 1.00 8.00 1.20 

10 1.00 3.00 0.20 3.00 4.00 0.80 7.00 1.00 

11 1.00 7.00 0.47 4.00 12.00 3.20 19.00 3.67 

12 1.00 1.00 0.07 4.00 4.00 1.07 5.00 1.13 

Sum: 20.00 62.00 8.47 44.00 78.00 21.07 140.00 29.53 

Mean: 1.67 5.17 0.71 3.67 6.50 1.76 11.67 2.46 

StdDev: (1.07) (4.24) (.92) (.78) (4.4) (1.48) (5.79) (1.65) 
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Appendix D.33 Study 2 – Hybrid Results (Timing, Words, Events) 

# Timing Words Events 

4 45 82 2 

4 60 111 4 

4 48 79 9 

4 78 141 12 

4 55 85 4 

4 45 110 6 

4 65 90 8 

4 55 92 3 

Sum: 451 790 48 

Mean: 56.38 98.75 6.00 

StdDev: (11.26) (20.85) (3.42) 

 

Appendix D.34 Study 2 – Hybrid Results Workload Analysis: Mental Demand 

 Mental Demand 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 

1 2.00 2.00 0.27 2.00 1.00 0.13 3.00 0.40 

2 4.00 4.00 1.07 0.00 4.00 0.00 8.00 1.07 

3 3.00 3.00 0.60 4.00 2.00 0.53 5.00 1.13 

4 3.00 8.00 1.60 5.00 12.00 4.00 20.00 5.60 

5 3.00 3.00 0.60 3.00 5.00 1.00 8.00 1.60 

6 4.00 4.00 1.07 5.00 4.00 1.33 8.00 2.40 

7 5.00 3.00 1.00 3.00 6.00 1.20 9.00 2.20 

8 3.00 3.00 0.60 0.00 2.00 0.00 5.00 0.60 

Sum: 27.00 30.00 6.80 22.00 36.00 8.20 66.00 15.00 

Mean: 3.38 3.75 0.85 2.75 4.50 1.03 5.50 1.25 

StdDev: (.92) (1.83) (.42) (1.98) (3.46) (1.32) (5.18) (1.66) 
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Appendix D.35 Study 2 – Hybrid Results Workload Analysis: Physical Demand 

 Physical Demand 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 

1 0.00 2.00 0.00 0.00 1.00 0.00 3.00 0.00 

2 0.00 2.00 0.00 5.00 4.00 1.33 6.00 1.33 

3 0.00 1.00 0.00 2.00 1.00 0.13 2.00 0.13 

4 1.00 4.00 0.27 0.00 1.00 0.00 5.00 0.27 

5 0.00 3.00 0.00 1.00 1.00 0.07 4.00 0.07 

6 1.00 4.00 0.27 2.00 2.00 0.27 6.00 0.53 

7 1.00 2.00 0.13 3.00 2.00 0.40 4.00 0.53 

8 1.00 2.00 0.13 0.00 2.00 0.00 4.00 0.13 

Sum: 4.00 20.00 0.80 13.00 14.00 2.20 34.00 3.00 

Mean: 0.50 2.50 0.10 1.63 1.75 0.28 2.83 0.25 

StdDev: (.53) (1.07) (.12) (1.77) (1.04) (.45) (1.39) (.44) 

 

Appendix D.36 Study 2 – Hybrid Results Workload Analysis: Temporal Demand 

 Temporal demand 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 

1 3.00 4.00 0.80 2.00 2.00 0.27 6.00 1.07 

2 3.00 6.00 1.20 1.00 8.00 0.53 14.00 1.73 

3 3.00 9.00 1.80 0.00 3.00 0.00 12.00 1.80 

4 4.00 14.00 3.73 3.00 5.00 1.00 19.00 4.73 

5 3.00 8.00 1.60 2.00 4.00 0.53 12.00 2.13 

6 4.00 5.00 1.33 2.00 5.00 0.67 10.00 2.00 

7 2.00 6.00 0.80 2.00 6.00 0.80 12.00 1.60 

8 3.00 5.00 1.00 2.00 3.00 0.40 8.00 1.40 

Sum: 25.00 57.00 12.27 14.00 36.00 4.20 93.00 16.47 

Mean: 3.13 7.13 1.53 1.75 4.50 0.53 7.75 1.37 

StdDev: (.64) (3.23) (.96) (.89) (1.93) (.31) (3.93) (1.13) 
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Appendix D.37 Study 2 – Hybrid Results Workload Analysis: Performance 

 Performance 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 

1 5.00 1.00 0.33 5.00 1.00 0.33 2.00 0.67 

2 5.00 5.00 1.67 2.00 1.00 0.13 6.00 1.80 

3 5.00 1.00 0.33 5.00 1.00 0.33 2.00 0.67 

4 5.00 1.00 0.33 4.00 1.00 0.27 2.00 0.60 

5 5.00 1.00 0.33 4.00 1.00 0.27 2.00 0.60 

6 3.00 1.00 0.20 2.00 1.00 0.13 2.00 0.33 

7 2.00 1.00 0.13 3.00 1.00 0.20 2.00 0.33 

8 4.00 3.00 0.80 5.00 1.00 0.33 4.00 1.13 

Sum: 34.00 14.00 4.13 30.00 8.00 2.00 22.00 6.13 

Mean: 4.25 1.75 0.52 3.75 1.00 0.25 1.83 0.51 

StdDev: (1.16) (1.49) (.5) (1.28) (.) (.09) (1.49) (.49) 

 

Appendix D.38 Study 2 – Hybrid Results Workload Analysis: Effort 

 Effort 

 Helper Worker Combined 

# Weight Rating W/R Weight Rating W/R Rating W/R 

1 1.00 2.00 0.13 4.00 2.00 0.53 4.00 0.67 

2 2.00 4.00 0.53 4.00 3.00 0.80 7.00 1.33 

3 3.00 6.00 1.20 1.00 2.00 0.13 8.00 1.33 

4 2.00 12.00 1.60 1.00 12.00 0.80 24.00 2.40 

5 3.00 6.00 1.20 2.00 5.00 0.67 11.00 1.87 

6 2.00 5.00 0.67 2.00 4.00 0.53 9.00 1.20 

7 3.00 7.00 1.40 3.00 5.00 1.00 12.00 2.40 

8 1.00 3.00 0.20 4.00 2.00 0.53 5.00 0.73 

Sum: 17.00 45.00 6.93 21.00 35.00 5.00 80.00 11.93 

Mean: 2.13 5.63 0.87 2.63 4.38 0.63 6.67 0.99 

StdDev: (.83) (3.07) (.56) (1.3) (3.34) (.26) (6.28) (.67) 
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Appendix D.39 Study 2 – Hybrid Results Workload Analysis: Frustration 

Frustration 

Helper Worker Combined 

Weight Rating W/R Weight Rating W/R Rating W/R 

4.00 2.00 0.53 2.00 1.00 0.13 3.00 0.67 

1.00 5.00 0.33 3.00 5.00 1.00 10.00 1.33 

1.00 3.00 0.20 3.00 2.00 0.40 5.00 0.60 

0.00 8.00 0.00 2.00 5.00 0.67 13.00 0.67 

1.00 4.00 0.27 3.00 3.00 0.60 7.00 0.87 

1.00 5.00 0.33 2.00 4.00 0.53 9.00 0.87 

2.00 3.00 0.40 1.00 3.00 0.20 6.00 0.60 

3.00 3.00 0.60 4.00 3.00 0.80 6.00 1.40 

13.00 33.00 2.67 20.00 26.00 4.33 59.00 7.00 

1.63 4.13 0.33 2.50 3.25 0.54 4.92 0.58 

(1.3) (1.89) (.19) (.93) (1.39) (.29) (3.16) (.32) 

 

 

  

 


