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Abstract

This PhD thesis focuses on quantifying the impact of oscillator phase noise on the
design of MMW CW radar systems with the goal of optimising the system to achieve
better target detection and tracking. Phase noise in the transmitters of radar sys-
tems is known to distort the target response by broadening the linewidth and raising
the noise floor of radar systems when a strong scatterer is present in the scene, hence
degrading the detection and tracking performance. The situation is worse when mul-
tiple large scatterers are present, as the noise sidebands of all scatterers superimpose
causing small targets, like pedestrians, to disappear in the phase noise sidebands.
Some of the phase noise is cancelled at short ranges in coherent radars but the
cancellation is not effective at long ranges.

This research presents the design of phase noise reduction techniques. Phase
noise modelling at the system level is presented to elaborate the methods of min-
imising the impact of phase noise. After developing a phase noise theory, practical
measurements from a triangular corner reflector and a moving vehicle are presented
to validate the theory. It will be shown that the frequency synthesiser is the most
significant phase noise contributor. The design and implementation of a low phase
noise signal source is presented. Both linear and non-linear phase noise models are
used and developed further in order to meet the radar optimisation goals. An elab-
orate relationship of the phase spectrum with the RF spectrum of an oscillator is
presented. The idea of coherence time is used as a tool for the selection of radar
signal sources, and a novel derivation of the minimum bound on the transmitter
phase noise level presented to prevent excessive distortion of target spectra.

A new phase noise model is developed for the analog-to-digital conversion process
using an independent sampling clock. The case of a sampling clock derived from the
transmitter’s reference oscillator will also be discussed. The models aid the selection
of an appropriate sampling clock for a given radar application. A novel method of
characterising the phase noise statistics using the integer and the fractional Brownian
motion models will be presented. Models for the lineshape and the linewidth of
the RF spectrum are dealt with in detail by reviewing the existing models in the
literature. These analyses aid in assessing the fundamental resolution capability of
radar systems in terms of the phase noise processes. A novel analysis of the RF
spectrum of a signal impaired with random-walk phase noise is detailed, and it is
shown that the RF spectrum exhibits time-dispersion and satellite peaks.

It is shown that the success of the proposed work depends on techniques for
careful measurement, analysis, and mitigation of the various noise processes.
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Chapter 1

Introduction

Radar systems, originally developed for the detection and tracking of targets, have

found a wide variety of applications in the past few decades. These include Se-

curity/Surveillance, Industrial Automation, Level measuring systems, Automatic

Cruise Control (ACC), highways traffic monitoring, traffic incident detection, and

debris detection on airport runways, just to mention a few. Millimetre wave (MMW)

radars have gained popularity in recent years, with the legislation permitting the

use of the MMW band for radar applications in all of the above-mentioned areas.

Automotive radars and fixed roadside radars (for the purposes of speed monitoring

and automatic incident detection (AID), among others) have also occupied primar-

ily the 76-77 GHz frequency band. Due to this shared use of the radio spectrum, all

76-77 GHz technology is licensed by the European Telecommunications Standards

Institute (ETSI) and mandated to coexist safely (ETSI standard 301-091 [1]).

1.1 The Long-Range Sensor Project

The research work in the present thesis is based on a Knowledge Transfer Partner-

ship (KTP) project between the University of Bath and Navtech Radar Ltd., UK.

Navtech’s radar systems operate in the 76-77 GHz frequency band, and have applica-

tions in Industrial Automation, highways monitoring, and perimeter/infrastructure

security. Prior to the KTP project, Navtech’s security sensors were limited in range

for the detection of pedestrians up to 1 km in relatively light clutter environments

(like on tarmac). For heavily cluttered environments like grass and vegetation, the

maximum detection range was reduced to 750 m. The goal of the KTP project was

to design a long-range radar sensor (LRS ) with the capability to detect pedestrians

up to 2 km in strongly cluttered environments. This type of radar has applications

in security/surveillance, drone detection, foreign object debris (FOD) detection, and
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airport surface movement applications.

The design of the LRS required a full system optimisation to be carried out.

The integration of a higher power transmitter, the design of a more complex data

processing unit and a larger bandwidth data transfer unit were central to the success

of the LRS project. All of the above features were to be designed in a pragmatic

and cost-effective way to achieve a commercial solution. At the time of writing,

the project has concluded successfully and the performance goals have been met.

The project has resulted in a new line of radar systems for Navtech, known as

the HDR300 series of radars. Further details of the LRS project can be found in

Appendix B.

One of the main problems in using high-power signals for detection at longer

ranges is that the phase noise sidebands around any strong reflector (like a road-

sign, a wall of a large building, or even a windsock on an airfield) lead to a raised

noise floor, which in turn leads to very poor detection performance in the masked

region. Phase noise shows up as a streaking effect in radar displays, which leads

to a loss of definition in the scene. To solve this problem, the fundamental limits

on the detection performance under phase noise need to be studied. Another effect

of phase noise (actually frequency noise) is that the target peaks (or linewidths)

broaden, leading to the degradation of the resolution of radars. Incorrect selection of

the transmitting source in terms of phase noise can worsen these problems. Various

subsystems of a radar contribute phase noise that a designer needs to be aware of

to mitigate their effect. The basis of the present PhD Thesis lies in the scientific

work carried out in the context of Phase Noise.

1.2 Types of Noise

Electronic noise limits the performance of most modern electronic systems including,

but not limited to, communication systems, radar systems, spectroscopic system,

meteorological systems, and electronic warfare systems. In order to design any

high-performance electronic system, the internal and the external noise mechanisms

must be understood and minimised.

Noise in electronic systems can be classified as follows:

• Natural (random) Noises

– Additive amplitude noise

Includes Thermal noise and Shot noise. Also known as White-Phase

Noise as their frequency spectrum is flat.

2
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– Multiplicative amplitude noise

Also called Amplitude Modulation (AM) Noise

– Phase noise

Also called Phase Modulation (PM) Noise, or coloured-noise as ex-

plained below.

• Man-Made (Systematic) Interference

– Internal System Interference

∗ Conducted Noise, e.g. Switch-mode power-supply noise

∗ Capacitively or Magnetically Coupled Noise

∗ Radiative Noise (EMI)

∗ Noise due to inappropriate grounding.

– External Interference

∗ Power-line noise

∗ Conducted or Radiated Interference from nearby systems.

• Radar-Specific External Interference

– Interference from other radar systems operating in the same frequency

band, which can lead to the appearance of ghost targets [2].

– Clutter from the operating environment, including land clutter (e.g. veg-

etation, trees, hedges), sea clutter, and atmospheric clutter (e.g. precip-

itation, rain, fog) [3–6].

For the design under consideration, an engineer may face any or all of the above-

mentioned noises. An understanding of the noise mechanisms is key to adopt design

methods to combat them. These noises can couple onto the desired signal at any

point in the circuits and systems, and care should be taken in the design process to

minimise their effect. Phase noise is arguably the most important source of noise

at present, and appears in various forms in electronic and non-electronic systems.

Noise processes similar to phase noise have also been observed in many natural

phenomena [7]. As mentioned earlier, the present Thesis focuses exclusively on

combating the internal phase noise in radar systems.
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(a) Measurement of SRF (f) (b) Measurement setup for Sφ(f)

Figure 1.1: Measurement setups for (a) the RF Spectrum and (b) the spectral
density of phase fluctuations of an Oscillator.

1.3 Phase Noise

In the following, a basic model of phase noise will be presented. Consider a general

signal x(t) produced by an oscillator,

x(t) = A(t) cos(ω0t+ φ(t)), (1.1)

where ω0 = 2πν0 represents the steady-state radian oscillation frequency of the

oscillator, and A(t) and φ(t) represent respectively the amplitude modulation (AM)

and the phase modulation (PM) of the cosinusoidal carrier signal. The AM and

PM can be intentional or due to instabilities and thermal noise phenomena in the

system. When the PM is due to random noise phenomena, φ(t) is called the Phase

Noise Process or simply Phase Noise. Phase noise causes a random modulation of

the phase of a noiseless signal. In the following discussion on phase noise the AM

noise will be considered negligible.

It is well-known that phase noise appears as phase-modulation sidebands around

a carrier’s spectrum when the spectrum is measured directly using, for example, a

spectrum analyser or a Fabry-Perot Interferometer. Fig. 1.1a shows the measure-

ment setup for direct spectrum measurement, while Fig. 1.2 shows the measured

spectrum which we will term SRF (f). Mathematically,

SRF (f) = |F [x(t)] |2 = F [Rx (τ)] , (1.2)

where F denotes the Fourier Transform and Rx (τ) is the autocorrelation function of

x(t). The central carrier peak can be noticed in Fig. 1.2, along with the phase noise

sidebands. Phase noise around the carrier signal is measured as a ratio of the power

in the noise sidebands, per Hz, relative to the power in the carrier, and is specified

in dBc/Hz (decibels relative to the carrier per Hertz). The 3-dB linewidth of the

carrier peak has been marked in Fig. 1.2 and the sidebands have been divided into
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Figure 1.2: Illustration of the RF Spectrum of an oscillator

Figure 1.3: A generic plot of the Spectral Density of Phase Fluctuations [8].
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the near-carrier phase noise and the far-from-carrier phase noise regions: these will

be explained in a later chapter.

One problem in using the RF spectrum is that it is not possible to distinguish

between the phase noise and the AM noise in the carrier signal, as both appear

as sidebands in the RF spectrum. Therefore, phase noise is most popularly char-

acterised using the Spectral Density of Phase Fluctuation Sφ(f), also called the

baseband spectrum of phase fluctuation. It has been noted that Sφ(f) is a com-

plete model of phase noise: in particular SRF (f) is not useful in characterising

low-frequency phase noise processes [9] (also called the frequency noise processes).

The complete relationship between Sφ(f) and SRF (f) will be discussed later under

the discussion on oscillator linewidth where the frequency points fα and fc will also

be clarified. Fig. 1.1b shows the measurement setup to measure Sφ(f): the idea is

to use a phase-lock loop (PLL) to keep in step with the frequency variations in the

oscillator under test (OUT) while measuring the baseband phase process φ(t). This

setup has the inherent capability to reject AM noise. Mathematically,

Sφ(f) = |F [φ(t)] |2 = F [Rφ (τ)] , (1.3)

where Rφ (τ) is the autocorrelation function of φ(t). While using the measurement

setup of Fig. 1.1b, the imperfections introduced by the VCO and the filtering stages

need to be calibrated out for the reliable measurement of Sφ(f).

Fig. 1.3 shows a generic plot of Sφ(f) [8, 10], where the power-law nature is

apparent. The power-law components of phase noise are classified as follows:

• Random Phase Noise

– White Phase (1/f 0) noise

– Flicker Phase (1/f) noise

– White frequency (1/f 2) noise

– Flicker Frequency (1/f 3) noise

– Random-Walk Frequency (1/f 4) noise

– Flicker-Walk Frequency (1/f 5) noise

Conventionally a colour is associated with each of the power-law components of

phase noise as shown in Table 1.1. The term coloured noise is used for Phase noise

because it has a non-flat frequency spectrum as shown in Fig. 1.3.

In addition to the random phase noise, systematic phase noise components can

also be present in an oscillator that are classified as follows:
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Table 1.1: Random Phase Noise Processes

Type of Noise Power Law Colour
White Phase 1/f 0 Purple/Violet
Flicker Phase 1/f Blue
White frequency (or Random-Walk Phase) 1/f 2 White
Flicker Frequency (or Flicker Walk Phase) 1/f 3 Pink
Random-Walk Frequency 1/f 4 Brown/Red
Flicker Walk (Random Run) Frequency 1/f 5 Infrared

• Systematic Phase Noise

– Linear Frequency Drift

– Quadratic Frequency Drift

– Cubic Frequency Drift.

We will not deal with systematic phase noise in this Thesis.

The phase noise processes φβ(t) corresponding to each power-law component are

usually treated as being independent of each other [11,12] although some researchers

have pointed out that the underlying mechanisms may be related. In the present

analysis φβ(t) will be assumed to be independent, so that the phase noise process

φ(t) having K power-law components can be written as,

φ(t) =
K∑
i=0

φβ(t). (1.4)

Therefore, Rφφ(τ) can be written as,

Rφφ(τ) =
K∑
i=0

Rφβ(τ), (1.5)

where Rφβ(τ) is the autocorrelation function of φβ(t). Finally, Sφ(f) can be written

as,

Sφ(f) =
K∑
i=0

Sφβ(f). (1.6)

1.4 The Radar Noise Problem: Reduce the noise

sidebands

The Fourier Transform of an ideal finite-duration sinewave is a narrow peak of width

inversely proportional to the observation time, and having a sideband structure that
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Figure 1.4: Illustration of the phase-noise sidebands around a strong target that
make weaker targets difficult to detect.

depends on the type of window/weighting function used. Phase noise causes the

energy of sinewaves to spread, and gives rise to broader spectral peaks and sideband

spectra defined by the phase noise shaping in the signal generator circuits. As such

the weighting function no longer defines the sideband spectra.

Fig. 1.4 shows the Fourier Transform of the IF signal of a real FMCW1 radar

system when the radar scene contains a large triangular corner reflector target in

the scene. The narrow peak can be observed at the target’s range along with noise

sidebands due to phase instabilities in the transmitter. Thus, phase noise appears as

phase-modulation sidebands around a carrier’s spectrum. For radar systems having

a high dynamic range this causes the noise-floor to increase around large targets

making the detection and tracking of small targets difficult if not impossible in the

region of the raised noise-floor. Large targets are said to mask small targets nearby.

This effect is only visible in high-performance radars where thermal noise has been

reduced to a level where the phase noise can show up. This problem has been

reported in earlier works as well [13].

Reduction of phase noise, therefore, is a prime challenge to improve the detec-

tion and tracking performance of radars. Phase Noise reduction techniques will be

presented in this Thesis. In addition to a reduction in tracking performance, the en-

ergy from the main spike is being wasted in the noise sidebands. Reduction in phase

1Frequency Modulated Continuous Wave

8



CHAPTER 1. INTRODUCTION

noise, therefore, would make the target response sharper resulting in an increase in

the SNR.

Almost every component in the radar transmitter chain contributes to the total

phase noise in the transmitted signal. The success in achieving low phase-noise lies

in identifying the subsystems and components having the largest contribution to

the overall phase noise. Additional effects, like the cancellation of phase noise at

shorter ranges in coherent radars, will also taken up in this work. Phase noise can

also be visualised as phase jitter, i.e. the random fluctuations of the zero-crossings

of a periodic waveform [14]. The idea of phase jitter is useful to analyse the transfer

of phase noise from a sampling clock to the sampled signal.

1.5 Objectives of the research

The objective of the present Thesis is to study the fundamental phase noise limita-

tions of millimetre wave (MMW) continuous wave (CW) radar systems and to design

generalised methods to optimise their performance by reducing the phase noise. The

mechanisms of Phase Noise will be studied throughout this work and methods to op-

timise the SNR (signal-to-noise ratio) performance will be detailed. Optimising the

performance of radars on these lines results in better target tracking performance,

better discrimination of targets from clutter, an increased dynamic range resulting

in the detection of weak targets nearby strong targets, and a potential increase in

the detection range.

Some of the results presented in this Thesis have direct applications in commer-

cial requirements analysis. For example, while it is apparent that using low-phase

noise circuits and techniques results in low-noise system performance, what is gen-

erally not known is how low the phase noise needs to be to achieve the desired

performance. Not knowing ones requirement can lead to a design that solves the

problem but is not commercially viable due to the high cost. As will be seen in the

next chapters, quantitative bounds for the required noise performance have been

derived where appropriate.

The methods for high-performance and low-noise circuits and systems design are

scattered over various sources in the literature as evidenced by the references at the

end of this Thesis. In this work these methods will collected and specialised for the

phase noise optimisation of radar system. Numerous examples will be given in the

forthcoming chapters.

Phase noise is known to have a profound effect on the performance of modern

electronic systems. Yet some of the most fundamental problems in phase noise re-

main unsolved. While a large body of work on oscillator phase noise is available,

9
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there is a dearth of work on how to accurately relate phase noise processes to the

spectral dispersion in RF signal sources. Phase noise on the system-level in the

context of FMCW radars has not received much attention. Phase noise analysis of

analog-to-digital converters (ADC) with a focus on radars is not available, includ-

ing how the phase noise transfer-function of ADCs compares with that of frequency

mixers and frequency multipliers. The idea of oscillator linewidth is important to

define the fundamental resolution capability of FMCW radar systems, but has re-

ceived less attention in this context, although some work has been done on oscillator

linewidths in the other areas of science, including Quantum electronics, lasers, and

time metrology. The present Thesis will address these problems.

1.5.1 Summary of Objectives

The following list summarises the objectives of this research:

1. Development of phase noise models of the sub-systems inside an FMCW radar.

• Optimisation of the important parts of the system including frequency

multipliers, amplifiers, filters, frequency mixers, etc., to achieve low-phase

noise performance.

• Design of low-noise frequency synthesisers: architecture selection, stabil-

ity, and phase-noise requirements.

• Demonstration of the reductions in phase noise through practical design

implementation and measurements.

• Decorrelation of phase noise in coherent radar systems resulting in a non-

linear range-dependence of the observed noise sidebands.

• Derivation of a new fundamental limit on the maximum allowable phase

noise level in radar sources to prevent incoherent spectral broadening.

• Derivation of an equation to estimate the coherence time in radars.

2. Development of a model for the phase noise introduced by the analog-to-digital

conversion process.

• Development of a model relating the phase noise in the sampled signal

to the phase noise in the demodulated radar signals and the jitter in the

sampling clock.

3. Development of the quantitative bounds on the phase measurement process in

FMCW radar systems.

10
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• A demonstration that dual I/Q channels are not necessarily needed for

phase measurement in FMCW radar systems.

4. Analyse the idea of Oscillator Linewidth, its relationship with the phase noise

processes, and its application to radar systems.

5. Development of a Generalised Brownian Motion model of phase noise to relate

the phase and frequency noise processes to the integer and fractional Brownian

processes, in order to model the RF spectral dispersion in oscillator signal.

As mentioned before, the central theme behind these objectives is to optimise

the performance of MMW CW radar systems.

1.6 Original Contributions of This Work

The following are the original contributions of this work:

1. A new maximum bound on the frequency synthesiser’s phase noise to preserve

coherence in radar systems.

This bound leads to a selection criterion for radar signal sources. The

troubles caused by non-conformity to this bound show up at either very long-

ranges or for very high frequency radars (e.g. sub-millimetre wave radars).

2. Development of the relationship between the phase noise spectrum and the

RF spectrum of oscillators

- Graphical illustration of the relationship

- Integer and fractional Brownian motion based model of phase noise

- Oscillator linewidth model

3. Derivation of a new equation for an optimistic estimate of the coherence time

of radar systems based on the integrated phase noise in the transmitter.

4. A new proof comparing the phase noise in the baseband FMCW signal and

the phase noise in the sampling clock.

This leads a radar designer to make an informed decision on the selection

of a sampling clock for the radar design at hand.

These contributions have led to the publication of the journal and conference

papers mentioned at the start of this Thesis.

11



CHAPTER 1. INTRODUCTION

1.7 Organisation of the Thesis

The present Thesis has been written in a way to integrate the research papers written

by the Author in a coherent fashion with the flow of the material presented. A list

of the Author’s research papers appears at the beginning of this Thesis, along with

their stage of publication at the time of writing. The papers have been referenced

at the start of the relevant chapters. The research papers already published by the

Author have been included in this Thesis with the permission of the IEEE.

The Thesis is organised as follows. Chapter 2 will give the broad background

to the present research, as well as the general literature survey. The relevant and

important works related to phase noise have been highlighted, and the gaps in the

literature have been pointed out that will be filled in by this work. Phase noise

modelling of FMCW radar subsystems is presented in Chapter 3 which leads to the

design of an alternative low-phase noise frequency synthesiser. Chapter 4 extends

the system-level phase noise analysis to derive a new bound on the maximum al-

lowable phase noise sideband level in radar transmitter to preserve phase coherence.

Also derived is a new equation to estimate the coherence time of radar systems.

The reduction in the phase noise sidebands is demonstrated through the practical

measurement results of a low-phase noise signal source. Chapter 5 details the devel-

opment of models of the phase noise transfer from a sampling clock to the sampled

radar signal under the process of analog-to-digital conversion. The quantitative de-

sign equations have been worked out to select a sampling clock of the appropriate

phase noise/jitter for the design at hand.

Chapter 6 demonstrates that a single-channel phase measurement system could

be used reliably under certain widely met conditions, instead of a dual I/Q receiver.

This information can be used to decide whether or not a dual I/Q receiver systems

is needed for an application at hand, and leads to a simplified receiver design for

FMCW radar systems. Chapter 7 pulls together our works on phase noise and RF

spectra presented in the previous chapters, and presents the unifying role of the

integer and the fractional Brownian motion processes to describe the RF spectral

dispersion due to phase noise. Chapter 8 reviews the relationship between an oscil-

lator’s RF spectrum and its phase noise spectrum. A detailed review of the works

from other branches of science on the oscillator linewidth is included. Chapter 9

presents the Conclusion to the Thesis and the proposed future work.

In Appendix A a relation for the covariance of integral Brownian motion has been

derived. Appendix B presents the highlights of some of the development work done in

the long-range sensor (LRS) project. Appendix C introduces some alternative phase

noise modelling methods. The references are included at the end of the Thesis.
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Chapter 2

Background and Literature Survey

2.1 Radars

Historically the word RADAR was used as an acronym for Radio Detection and

Ranging. A radar is an electronic system that transmits an electromagnetic (EM)

wave (or signal) in a desired region, receives the waves reflected off objects, and

processes the received waves to extract useful information about those objects. The

desired return signals are called target echoes and the undesired signals are called

clutter. It can be aptly said that “One man’s clutter is another man’s target” [15].

Radars have long been classified based on the type of waveform being used in

the transmitters. Pulsed radar use modulated pulses (generally having a defined

pulse repetition frequency or PRF ) as the transmit waveform. Continuous-wave

(CW) radars use continuously modulated signals (generally having a defined sweep

repetition frequency or SRF ). Similarly, Noise Radars use pseudo-random (PN)

coded sequences of pulses or continuous waveforms, and so on. Radars have been

designed all over the Electromagnetic frequency spectrum in different forms. In

this work the major focus is on Frequency Modulated Continuous Wave (FMCW)

radars designed in the millimetre-wave (MMW) frequency band. FMCW radar

systems have some specific feature that will be explained shortly.

The Radar Range Equation (2.1) calculates the maximum detection range achiev-

able by a radar for a given level of transmit power Pt, antenna gains Gt, Gr, the

carrier wavelength λ, the target’s radar cross-section σtgt, and the minimum power

detectable by the radar Pr(min):

Rmax = 4

√
PtGtσtgtλ2Gr

(4π)3 Pr(min)
. (2.1)

An inspection of (2.1) reveals that to double the detection range, one needs to
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Figure 2.1: Block diagram of a generic FMCW radar system

increase the transmit power 16 times (or 12 dB). Increasing the power by 6 dB

increases the range by 41%. One should note, however, that increased power has its

associated challenges.

2.2 FMCW Radars

Fig. 2.1 shows a block diagram of a MMW FMCW radar1. The FMCW Generator

generates a linear FMCW waveform: shown in Fig. 2.2 are the in-phase (I) and the

quadrature (Q) channel linear FMCW signals. Some radars use only one of these

waveforms while others use dual I/Q waveforms for transmission. It is interesting to

note that the RMS value (or average power) of an LFM waveform is exactly the same

as a single sinewave: however the energy is spread over the swept frequency band.

The generated LFM waveform is then either frequency mixed or frequency multiplied

up to the transmit frequency (the latter case is shown in Fig. 2.1). A portion of

the transmitted signal makes up the local oscillator (LO) signal which demodulates

the received signal to the IF (intermediate frequency). The demodulated signal is

digitised after filtering and amplification.

The filter stage in Fig. 2.1 serves a few purposes. First of all, it is a low-pass

anti-aliasing stage for the A/D converter. Secondly, it usually incorporates a DC

block stage to filter out the very close-in reflections from the leakage paths inside

an FMCW radar. Third, the filter can have a shaped profile according to the R4

power law in (2.1): in this case it is called a Sensitivity Time Control (STC) filter.

The in-band gain of this filter must be optimised for the best linear dynamic range.

As the transmitted signal’s frequency increases linearly with time, it can be

1PA=Power Amplifier, LNA=Low Noise Amplifier, A/D=Analog-to-Digital Converter,
IF=Intermediate Frequency, LX=Phase Noise at point X

14
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Figure 2.2: The Linear FMCW Waveform

represented conveniently on a frequency vs. time plot as shown in Fig. 2.3. The

transmitted signal sweeps a bandwidth of BS Hz in sweep time TS. There is a time

difference as well as an instantaneous frequency difference between the transmit

(Tx) & receive (Rx) signals proportional to the target’s range as illustrated. The

homodyne mixer in Fig. 2.1, therefore, produces a sinewave corresponding to the

frequency difference ∆F between the Tx & the Rx,

∆F = BS ×
τd
TS
, (2.2)

where τd is the round-trip delay time of the Tx signal given by τd = 2R/c, R

being the target’s range and c being the speed of light. The Fourier Transform

of this sinewave is normally expected to be a narrow peak at the frequency ∆F

corresponding to the target’s range, with a sideband structure defined by the type

of window/weighting function used for spectral estimation. However, in reality the

situation is complicated due to the presence of phase noise in the transmitted signal.
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Figure 2.3: Time Vs. Frequency plot of a linear frequency modulated (LFM) wave-
form.

16



CHAPTER 2. BACKGROUND AND LITERATURE SURVEY

2.3 Features of FMCW Radars

FMCW radars have some benefits that make them suitable for commercial applica-

tions. Some of the major benefits are mentioned below.

Smaller Component Dimensions

Occupying the frequency band between the Microwave and the far-infra-red bands,

MMW circuits and components make use of the design knowledge from both Mi-

crowave Engineering and Optics. It is known from Microwave Engineering that the

physical dimensions of circuits shrink according to the wavelength of electromagnetic

signals. MMW signals have frequencies roughly 10 times larger than Microwave sig-

nals. So the circuits are roughly 10 times smaller than Microwave circuits.

Finer Angular-Resolution

One of the performance metrics of high-performance radars is their resolution defined

as the ability of a radar to discriminate between two targets close by in range and

azimuth for ground- and sea-based radars (and also elevation for airborne radars).

While the range-resolution is independent of the radar’s carrier frequency (and de-

pends solely on the waveform bandwidth), the azimuth- and elevation-resolutions,

collectively called angular-resolution, depend directly on the carrier’s wavelength

and the dimensions of the antenna being used.

θaz(el) =
kaλ

Daz(el)

, (2.3)

where θaz(el) is the beamwidth or the 3 dB angular width of the antenna’s beam,

λ is the carrier’s wavelength, Daz(el) is the length of the antenna in the azimuth

(or elevation) dimension, and ka is a parameter depending on the antenna’s de-

sign. Equation (2.3) shows that for the same antenna dimensions a MMW radar’s

beamwidth will be a fraction of a Microwave radar and, therefore, will achieve finer

angular resolution. This is a significant advantage of MMW antennas.

Lower Clutter

Area clutter, like ground and sea clutter, occupy the full antenna beam compared

with other targets like humans that in general occupy only a fraction of the beam.

Finer resolution also means that the clutter power decreases proportionally to the

decrease in beamwidths. This idea can be used to increase the signal-to-clutter ratio
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(SCR) which is the ultimate performance metric for ground- and sea-based radars.

MMW radars benefit from the high transmit frequency again.

Finer Doppler Measurement

Finer Doppler measurements are possible with MMW radars as the Doppler fre-

quency induced in the carrier signals due to the motion of targets is proportional to

the carrier’s frequency,

fDoppler =
2fcVr
c

, (2.4)

where fc is the carrier frequency, Vr is the radial velocity of the target with respect

to the radar, and c is the speed of light.

Lower Peak Transmit Power

One advantage of using CW radars over pulsed radars is that CW radars can use

a lower peak transmit power to achieve the same maximum detection range. This

is because CW radars spread the power over the complete sweep instead of concen-

trating them in narrow pulses. This simplifies the design of radar transmitters as

lower power levels can be handled easily by solid-state transmitters and the linearity

of the power amplifier stages in the transmitter is less of an issue.

Lower IF/Baseband Bandwidth

FMCW radars have a lower IF bandwidth than pulsed radar systems. One way

of looking at this is that in pulsed radars, the range resolution is defined by the

pulse width, which stays almost the same at RF or baseband. On the other hand,

in FMCW radars the range resolution is defined by the swept bandwidth, while

the range is defined by the difference frequency between the transmitted and the

received signal. Depending on the transmitted power and the desired maximum

range, the IF signal can be low-pass filtered to limit the bandwidth.

As an example, consider a pulsed radar with a range resolution of 15 cm. The

pulsed width has to be 1 ns (ignoring any broadening), and so a baseband bandwidth

of 1 GHz is needed even for short ranges. Sampling this signal at above 2 GHz will

require a costly ADC. The FMCW counterpart will also need to sweep 1 GHz of

bandwidth to achieve 15 cm range resolution. However, if the sweep time is, say, 1

ms and the desired maximum range is 5 km, then using (2.2) the maximum beat

frequency is 33.3 MHz. So the ADC needs to sample at above 66.6 MHz - a huge

saving compared with pulsed radars.
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Figure 2.4: Illustration of the harmonics of the beat frequency of a target. The odd
harmonics are prominent due to saturation in the IF/baseband chain.

Range Harmonics Under Saturation

If the mixer diodes or the IF/baseband chain in an FMCW radar saturates due to

large return power from a target, the harmonics of the beat frequency are produced.

This effect is illustrated in Fig. 2.4. This feature of FMCW radar systems does

not have a counterpart in pulsed radars, and is a cause of false target indications.

The same target will indeed saturate an equivalent pulsed radar too, however the

baseband pulse saturation does not cause any harmonics.

Transmit/Receive Isolation

In CW/FMCW systems, the transmitter is on all the time, so special measures are

needed to minimise the leakage power coupling from the transmitter to the receiver

when they are co-located (e.g. in monostatic radars). The leakage power couples

through the receive mixer, directly from the transmit antenna to the receive antenna,

or through reflections from the metal work and the radome. As a design guideline,

the total leakage power must be less than the thermal noise figure of a designed

radar (which should also be low).

In pulsed radar systems, once the pulse is transmitted the transmitter is turned

off. So there is no leakage power to combat. However, the transmitted pulses have

a much larger peak power than FMCW systems, so the receiver has to be turned

off for that duration. This means that pulsed radars in most cases come with a

mandatory blind spot around the radar. For a 100 ns pulse, the blind spot will be

15 m. Properly calibrated FMCW systems do not have such a blind spot.
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2.4 Literature Survey

This section gives a brief literature survey related to the area of the present work

and the gaps therein. The specific literature review for each topic taken up in the

forthcoming chapters can be found in the respective chapters.

2.4.1 General Overview

Noise in engineering systems is an old subject. The long-term drift phenomenon

(modelled as Random-Walks in modern systems), for example, was known to horol-

ogists in the 18th Century. The landmark development of John Harrison’s precision

marine chronometer in the early 18th Century can be viewed as the development of

a system to combat the natural forces causing frequency drifts in pendulum clocks.

The history of electrical circuits can be traced back to the experiments by Michael

Faraday and his contemporaries. The development of modern electronic circuits

and systems can be traced back to the development of transistor in 1947 by John

Bardeen, Walter Brattain, and William Shockley, followed by Jack Kilby’s develop-

ment of the first integrated circuit at Texas Instruments in 1958.

Electronic amplitude and phase noises have been studied since early 20th Cen-

tury, notably by Walter Schottky at Siemens Research Labs and J. B. Johnson at

Bell Labs. Thermal noise was originally reported by Schottky in [16, 17] where he

measured a flat (white) noise spectrum. In an attempt to reproduce Schottky’s ex-

perimental results, Johnson found that the noise was not white at low frequencies and

reported his measurements in [18]. Schottky studied this Flicker Effect further and

came up with a Lorentzian spectrum (not named so in his paper) for the observed

noise [19]. Thermal noise was studied further in [20–22], and set the foundation

of noise theory as we know it today. It is interesting to note that the Boltzmann

Constant from Gas Laws also describes thermal electronic noise phenomena.

2.4.2 Phase noise in Radar Systems

The IEEE Proceedings of 1966, vol. 54, no. 2, appears to be the first issue where

the whole issue is dedicated to phase noise in oscillators and systems. This issue

followed the NASA-IEEE Symposium on Short-Term Stability in 1964. Phase noise

has received a lot of attention ever since. It is still an active area of research. In the

present thesis, some of the fundamental problems related to phase noise in FMCW

radar systems will be addressed. Phase (1/f) noise is also recognised by one school

of thought (led by Dr Peter Handel, at the University of Missouri) as a fundamental

Quantum-Mechanical phenomenon [23].
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From the perspective of phase noise in radar systems, the NASA-IEEE Sympo-

sium on Short-Term Stability (in 1964) included foundational papers by Leeson [24]

and Raven [25] among others. One significant work in understanding the effects

on phase noise in radar systems is the book by Goldman [26]. The book details a

system-level phase noise analysis methodology which has been successfully applied

by us, with some extensions, to analysing phase noise in FMCW radar system [27]

where the phase noise contribution of various building blocks in radar systems have

been detailed. This leads to a method of estimating the total phase noise in radar

displays. However, in the above-mentioned works the focus has generally been on

the white-phase and flicker-phase noise processes. This thesis will also discuss the ef-

fects of the frequency noise processes (i.e. the white-frequency, the flicker-frequency,

and the random walk-frequency noise processes).

2.4.3 Jitter Transfer in ADCs

How does the sampling clock’s phase jitter affect the overall phase noise in radar

systems? There are two aspects of this question:

• What factors affect the noise floor of the radar, and what is the contribution

of the sampling clock to the noise floor?

• What is the contribution of the clock’s phase jitter to the phase noise sidebands

in the digitised radar returns?

The effect of phase jitter in sampling clocks has been addressed before as con-

tributing to the overall system noise floor [28–30], and as the clock’s noise spectrum

being transferred to a noise-less signal under the sampling process [29,31]. However,

the case of sampling a signal corrupted with phase noise by a clock having its own

phase jitter, and their relative contribution to the total phase noise in the sampled

signal has not yet been taken up. In [32] the total phase noise in the sampled signal

is accurately estimated using an iterative optimisation-based approach. In [33] the

problem of the transfer of the sampling clock’s noise to a generic input signal has

been addressed. However these approaches do not give insight into the phase jitter

requirements of the ADC clock or how the clock jitter compares with the received

signal’s phase noise. Ultra-low phase noise oscillators and sampling clocks are ex-

pensive, so an estimation of the phase noise requirement is imperative to select the

oscillator meeting the phase noise requirement with the lowest cost.
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2.4.4 Frequency synthesiser architectures for radar systems

Frequency synthesisers have been studied extensively and numerous books are avail-

able on the subject. Recent works on the subject include [34–37]. Choosing the right

architecture for the frequency synthesiser is important for the following reasons:

• It must be capable of generating the desired signals for the application at

hand.

• It governs the phase noise generated at source: reducing phase noise in the

frequency synthesiser means a dB-for-dB reduction in phase noise in the radar

display.

Following are the major frequency synthesisers being studied in the present work:

1. Phase-lock loops (PLL), including conventional PLLs and the charge-pump

(CP)/phase-frequency detector (PFD) based PLLs [38]:

• Pros: The CP/PFD-based PLLs have been very popular recently. Their

prime advantage is the automatic phase and frequency acquisition feature

inside a single IC. They can be used to generate a wide range of waveforms

with high precisions.

• Cons: The downside of these PLLs, as pointed out in later chapters, is

that the in-band phase noise in these PLLs is limited by the PFD noise

and not the reference oscillator [27]. In high dynamic-range applications

like radar systems this causes the phase noise sidebands to raise the noise

floor around large targets as will be seen in Chapter 3. This makes the

optimisation process difficult because selecting a lower-noise reference

oscillator does not help reduce the in-band noise due to the added PFD

noise. Alternative synthesisers need to be explored for the design of low-

noise radars.

2. Direct Digital Synthesisers (DDS) [35,36]:

• Pros: Modern DDS have ultra-low phase noise and can be used to design

a lower-noise radar solution. The phase noise in DDS synthesisers is lower

than in PLLs.

• Cons: One downside is that the DDS chips cost much more than TCXOs

and PLL Chips. Another downside is that the DDS chips, and the mixers

used in the frequency synthesisers, generate spurii which can cause signif-

icant intermodulation distortion if the analysis and design is not carried
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out carefully. The spurious-free dynamic range is limited (e.g. 80 dB)

compared with PLLs. Finally, their power consumption is much higher

than PLLs.

3. Some other synthesiser architectures based on extensions of the above two are

as follows:

• Heterodyne Phase Locking [37].

• Frequency lock loops (FLL) [38].

• Offset Phase Lock Loops [39,40].

• Super-Nyquist frequency synthesis [41].

2.4.5 Signal processing techniques to reduce phase noise

Signal processing techniques have also been used to reduce the effects of phase noise

in radars and FMCW radars. In this work, Signal Processing techniques will be used

as a secondary phase noise reduction method, the primary being low-noise electronic

design as detailed above. Signal processing techniques become the major focus if the

desired improvements in noise and phase noise cannot be achieved using low-noise

electronics alone.

Averaging

Signal averaging is known to improve the SNR in radars [3], [5]. In the presence of

phase noise one question is the effectiveness of coherent and non-coherent averaging

techniques in radars. Non-coherent averaging operates on the detected signal |y[m]|
that does not contain phase information. It can be written as 1

M
ΣM |y[m]|2, where

|y[m]|2 = |yI [m]|2 for a single channel radar and |y[m]|2 = y2I [m] + y2Q[m] for an

I/Q based radar receiver. Coherent averaging on the other hand takes the phase

information into account as well. Usually coherent averaging is performed using

the Fast Fourier Transform (FFT). The detected (displayed) signal after coherent

integration can be written as | 1
M

ΣMy[m]|2. Note that y[m] also contains additive

thermal noise.

As noted in [42], the phase noise in FMCW radars is uncorrelated from one

sweep to the next. This effect can be used to improve the signal-to-noise sideband

ratio (SNSR) through averaging. Statistical modelling of the phase noise and taking

into account the radar signal processing operations allows us to model the statistics

of the phase noise in the radar’s display. Afterwards the effects of coherent and

non-coherent averaging can be studied as a post-processing operation.

Following are the models for coherent and non-coherent averaging.
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Non-coherent averaging model

First of all, notice that the non-coherent averaging statistic of the noise V [m] in

the sampled signal y[m] can be written as σ2

M
ΣM

|V |2
σ2 for convenience. Suppose V [m]

follows the Normal Distribution as N (0, σ2). Then |V [m]|2/σ2 follows the Exponen-

tial Distribution as Exp(1/2). Now ΣM |V [m]|2/σ2 follows the Erlang Distribution

Erlang(k, λ) having mean = k/λ = 2M and variance = k/λ2 = 4M . Finally, the

non-coherent average statistic z[m] = σ2

M
ΣM |V [m]|2/σ2 follows the Erlang Distribu-

tion with mean = 2σ2 and variance = 4
M

(σ2)2.

The effect of non-coherent averaging is apparent immediately from this result.

As M increases the mean stays the same while the variance goes down by M .

Coherent averaging model

Suppose again that V [m] follows the Normal Distribution asN (0, σ2). Then 1
M

ΣMV [m]

follows the Normal Distribution as N (0, σ2/M). Finally, the coherent average statis-

tic z[m] = | 1
M

ΣMV [m]|2 follows the Exponential Distribution with mean = 2σ2/M

and variance = 4
M2 (σ2)2.

From this result it can be seen that coherent averaging reduces the mean as well

as the variance of the noise sidebands. This result has been verified later in this

Thesis.

2.5 Conclusion

This chapter presented some general background knowledge on FMCW radar sys-

tems, followed by a broad literature survey for the present Thesis. The section on

the features of FMCW radars draws a contrast with pulsed radars and highlights ar-

eas where FMCW radars gives superior performance. The literature review started

with a review of noise and phase noise, and then discussed some previous works

on phase noise in radar systems, sampling clocks, and frequency synthesisers. The

research problems to be taken up in this Thesis were also highlighted. The chapter

ended with the signal processing models of non-coherent and coherent averaging

techniques, that are helpful to reduce thermal noise and thermal plus phase noise

respectively.

The next chapters detail the research carried out in this work. The specific

literature review for each subsequent chapter will be included at the start of each

chapter.
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Chapter 3

Phase Noise Analysis in FMCW

Radar Systems1

3.1 Summary

Phase noise in radar transmitters is known to raise the noise floor around large tar-

gets, making impossible the detection & tracking of small targets nearby. This chap-

ter presents phase-noise modelling techniques, with a focus on homodyne FMCW

radars, to accurately predict the level of phase noise expected in the radar display.

Phase noise models of the sub-systems inside a typical radar are presented. We

also discuss the cancellation of phase noise in coherent radar systems for short-

ranges and analyse the situation for longer ranges. Practical measurements from a

millimetre-wave radar system are presented to validate the theoretical modelling.

3.2 Introduction

Almost every component in the radar transmitter chain contributes to the total

phase noise in the transmitted signal. The success in achieving low phase-noise lies

in identifying the subsystems and components having the largest contribution to

the overall phase noise. Phase noise is defined as one half of the spectral density of

phase fluctuations [8]. Phase noise around a carrier signal is measured as a ratio of

the power in the noise sidebands, per Hz, relative to the power in the carrier, and

is specified in dBc/Hz. Phase noise appears as phase-modulation sidebands around

a carrier’s spectrum. For radar systems having a high dynamic range this causes

1Some of the contents of this chapter have been published in [27].
c© 2015 IEEE. Reprinted, with permission, from K Siddiq et al, “Phase Noise Analysis in FMCW
Radar Systems”, 2015 European Radar Conference (EuRAD), Sept. 2015.
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Figure 3.1: Block diagram showing phase noise propagation in a radar system.

the clutter-floor to increase around large targets making the detection and tracking

of small targets impossible in the region of raised clutter-floor [13]. Decreasing the

overall phase-noise, therefore, is a prime challenge in high-performance radars. In

FMCW radars the phase noise appears as noise-sidebands in range around each

target [43], unlike pulse Doppler radars where the phase noise sidebands appear

in the velocity spectrum. In coherent radars the phase noise is cancelled for short

ranges but the cancellation is not effective for long ranges.

This chapter will present our research on achieving low phase-noise in homodyne

FMCW radar systems. The chapter will start by presenting phase-noise analysis of

all the major parts of a general radar system to enable the designer to select the

appropriate components and system architecture to design a low-noise radar suitable

for a given application. Afterwards the analysis will be specialised to homodyne

FMCW radars. Finally, practical results and measurements from a millimetre-wave

(MMW) FMCW radar system are presented to support the modelling.

3.3 System description

Fig. 3.1 shows a block diagram of a general radar system. The Frequency Synthesiser

block generates a signal synthesised using a suitable frequency synthesis scheme. The

synthesised signal is up-converted or frequency-multiplied to the transmit frequency

by the Transceiver block. The backscatter from the target is received by the receive-

antenna and passed on to the transceiver which down-converts or demodulates the

signal to an intermediate-frequency (IF). The IF signal is digitised after filtering

and amplification. Digital processing follows and makes up what is displayed on the

radar screen. Although two antennas as in a bistatic radar are shown in the figure,

the analysis presented applies equally to monostatic radars.

Fig. 3.1 is labelled to represent the phase noise at various points in the system

using the standard symbol Lsub(fm), where sub is the subscript showing the phase

noise measurement point in the system, and fm is the frequency offset from the

carrier frequency at which the phase noise is being measured.
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3.4 Modelling the phase noise in radar systems

In the following, the steps to systematically model the phase noise in a given radar

system are presented. Although phase noise is usually measured in dBc/Hz, it should

be noted that the equations in this chapter are presented in the linear format (not

logarithmic). We have chosen so to keep the equations compact with no loss of the

insight given by the equations.

3.4.1 Phase noise in the frequency synthesiser

The first step in modelling the phase noise of a radar is to model the phase noise in

the primary frequency synthesiser taking into account the phase noise contributions

of all components of the synthesiser [44]. We will denote the phase noise in the

synthesiser’s output as LSynth(fm). The overall phase noise can be modelled using

a simulation software tool that models the phase noise of all the components in the

synthesiser. An example is presented in Section 3.5. Another methods is to measure

the phase noise at the output of a frequency synthesiser using a suitable instrument

like a signal source analyser.

3.4.2 Phase noise under frequency translation

The synthesiser’s output can be translated to the desired transmit frequency band

using frequency-multiplication or frequency-mixing.

Frequency Multiplication

For MMW radars, the synthesiser output is usually multiplied up to the desired

MMW transmit frequency as shown in Fig. 3.2a (The coherent receiver part is also

shown which will be explained in Section 3.4.3). During frequency multiplication

two phenomena happen:

i) The bandwidth of the MMW signal is N times the bandwidth of the synthesiser

output, where N is the ratio of the transmit frequency to the synthesiser’s output

frequency. This has a benefit that the bandwidth requirement on the synthesised

source is N times less than the bandwidth actually needed for the transmitted signal.

ii) The phase noise sidebands increase by a factor of N2. So the phase noise

sidebands measured at the synthesiser’s output will increase by 20 log10N dB [26].

Thus, the phase noise in the transmitted signal, LTx(fm) under frequency mul-

tiplication is computed as,

LTx(fm) = N2 × LSynth(fm). (3.1)
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(a) Frequency multiplication. The coherent
receiver is also shown.

(b) Frequency mixing.

Figure 3.2: Illustration of the two popular methods of generating the transmitted
signal.

Frequency Mixing

Frequency mixing is illustrated in Fig. 3.2b. Unlike frequency multiplication, the

phase noise on the synthesised source is not increased by the any factor in frequency

mixing. Instead the phase noise power in the two signals being mixed add up [38].

Therefore, if the two signals have the same phase noise, the output signal’s phase

noise will be 3 dB higher than the inputs. If one of the inputs has a phase noise 10

dB higher than the other, the output signal’s phase noise will roughly be the same

as the input having higher phase noise. There are two important considerations in

frequency mixing:

i) A highly stable and clean local oscillator (LO) should be used to mix the

synthesised signal up to the desired frequency band. If this is not the case, the

phase noise on the LO will dominate the output phase noise.

ii) The bandwidth requirement for synthesised sources is the same as the band-

width needed for the transmitted signal. This means that, in general, the bandwidth

requirements on mixed sources are more stringent than on multiplied sources. This

is especially true for radar applications where the range resolution ∆R is inversely

proportional to the waveform bandwidth BS, the exact relation being ∆R = c/2BS,

where c is the speed of light.

Thus, for the case of frequency mixing, the phase noise in the transmitted signal

is computed according to,

LTx(fm) = LSynth(fm) + LLOTx(fm). (3.2)

If more than one mixing stage is used in the transmit chain then (3.2) should be

applied to every stage. Using the guidelines presented in this section a designer can
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select whether to use frequency multiplication or frequency mixing for a given radar

design to minimise the overall phase noise.

3.4.3 Phase noise in the received and the down-converted

signal

The target scatter measured by a radar is a delayed and attenuated replica of the

transmitted signal. So the phase noise in the received signal, LRx(fm), is simply

a delayed version of the phase noise in the transmitter. Let τd represent the delay

time where τd = 2R/c, R being the target’s range.

All radar receivers use a mixer on the receiver side to down-convert and demod-

ulate the received signal to produce the IF signal. In coherent radars the oscillator

signal used for down-converting/ demodulating the received signal is derived from

the transmitted signal, as shown in Fig. 3.2a. The phase noise in the output of the

mixer in this case is given by [26],

LIF (fm) = LTx(fm)× 2(1− cos(2πfmτd))

LIF (fm) = LTx(fm)× 4 sin2(πfmτd).
(3.3)

An inspection of the above equations reveals for closer ranges (smaller τd) a coherent

radar receiver cancels the phase noise at a rate of 20 dB/decade - the shorter the

range the larger the cancellation for a given fm. However, this is not true for longer

ranges (larger τd). Detailed analysis of phase noise cancellation can be found in [26].

For non-coherent receivers the local oscillator signal used for down-converting/

demodulating the received signal is independent of the transmitted signal. The IF

phase noise in this case is given by,

LIF (fm) = LTx(fm) + LLORx(fm). (3.4)

Therefore, there is no phase-noise cancellation, resulting in noise sidebands inde-

pendent of range. The actual level of the sidebands can be found using (3.4).

3.4.4 Phase noise in the processed signal

The final step in phase-noise modelling is to compute the effect of analog-to-digital

conversion and signal processing on the IF signal. Some effects of the jitter transfer

characteristics of analog-to-digital converters (ADC) can be found in [30]. A plethora

of signal processing schemes is employed to extract useful information from radar

signals, and their effect on the display phase-noise must be computed individually.
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Some signal processing techniques are actually used to reduce the effects of phase

noise. Here we only consider the effect of the Fast Fourier Transform (FFT) which is

a common method of spectrum estimation. The resolution of the FFT is set by the

time for which the signal is observed, TObs (for example, in FMCW radars this will

be the sweep interval). If the ADC produces M samples during TObs at a sampling

rate FS, then TObs = M/FS. The FFT integrates the spectral data in the “FFT

bandwidth”, BFFT , to compute one FFT point, where,

BFFT =
1

TObs
=
FS
M
. (3.5)

So the FFT bandwidth should be multiplied (added in dB-Hz) to the sidebands to

get the final level of phase noise on the radar display.

LDisplay(fm) = LIF (fm)×BFFT . (3.6)

The units of LDisplay(fm) are dBc (the /Hz drops due to multiplication with BFFT ).

Equation (3.6) shows that lowering BFFT (increasing TObs) reduces the integrated

phase-noise sidebands.

Equations (3.3), (3.4) and (3.6) are valid for computing the noise-sidebands on

a single target. They can be extended to generate the response of multiple targets

by adding the IF response of each target after scaling and shifting according to the

corresponding target cross-sections and ranges.

3.4.5 Noise Analysis

Once the phase noise has been modelled for the complete radar, one can perform

phase-noise measurements at various points in the system. Mismatches between

theory and measurements will give an idea of the additional noise produced by

different sections of the system. If the noise level in any section is too high than

predicted by the simulations, the design of that section should be investigated.

Filters and amplifiers also degrade the phase noise of the signal. However the

effect of well designed filters and amplifiers is usually far less than the other stages

mentioned above. If phase noise measurements don’t conform to the theoretical

prediction then the added phase-noise of filters and amplifiers should also be consid-

ered. AM noise and noise due to AM-PM conversion also appear as noise sidebands

and must be measured and modelled if needed.

Once the phase noise inside a radar system has been characterised, the additional

phase modulations introduced by the outside world (targets, atmosphere, etc.) can

be measured and studied.
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Figure 3.3: Phase noise modelling of the PLL showing contribution of the PLL’s
components, and the overall synthesiser phase noise LSynth(fm) (simulated using
ADISimPLL software [45]).

3.5 Application of phase noise modelling to a MMW

FMCW radar

We have applied the phase noise modelling method presented above successfully

to model the phase noise on a 77 GHz MMW FMCW radar system for security

applications. The synthesised radar signal is frequency multiplied to the transmit

band, causing an increase in the transmitter’s noise sidebands. A coherent receiver

is implemented and FFT bin-size corresponding to 25 cm resolution.

3.5.1 Phase noise modelling for the frequency synthesiser

The radar system under consideration employed a phase-frequency detector (PFD)

based phase-lock loop (PLL) synthesiser. Fig. 3.3 shows a phase-noise plot of a 9.5
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GHz synthesiser produced using Analog Devices’ ADISimPLL software [45]. The

phase noise curves of the reference crystal oscillator, the voltage controlled oscillator

(VCO), the loop filter, and the synthesiser chip are plotted (all multiplied up to 9.5

GHz). It can be noted from Fig. 3.3 that the PFD chip’s phase noise is higher than

both the multiplied-up crystal oscillator and the VCO, and, therefore, dominates

a large portion of the in-band as well as the out-of-band phase noise causing an

increase in the noise sidebands. From this modelling process we can see that, unlike

a conventional PLL where the in-band noise is limited by the reference oscillator,

the in-band noise in this case is limited by the PFD noise. Using a cleaner reference

will not help to get better noise performance. Another thing to note with regard to

the actual sidebands as measured on a spectrum analyser is that thermal noise will

add to the phase noise.

3.5.2 Relation for phase noise sidebands versus target range

An interesting relationship can be derived for the ratio of the close-in phase noise-

sidebands on two targets at ranges R1 and R2, corresponding to time delays τd1 and

τd2, with phase noises LDisplay(fm)|τd1 and LDisplay(fm)|τd2 respectively. Using (3.6)

and (3.3), and cancelling the common terms, we can write,

LDisplay(fm)|τd1
LDisplay(fm)|τd2

=
LIF (fm)|τd1
LIF (fm)|τd2

=
sin2(πfmτd1)

sin2(πfmτd2)
. (3.7)

For close-to-carrier offsets, fm is small and the approximation sin(θ) ≈ θ can be

used. For example, a target at 600 m has τd = 4µs, and an offset as large as fm=50

kHz will make πfmτd = 0.2π, making the approximation valid. Therefore,

LDisplay(fm)|τd1
LDisplay(fm)|τd2

=
(πfmτd1)

2

(πfmτd2)2
=

(
τd1
τd2

)2

=

(
R1

R2

)2

. (3.8)

For example, for two point targets at 170 m and 770 m respectively, computing (3.8)

we get, (
R1

R2

)2

=

(
170

770

)2

= 0.05 = −13 dB. (3.9)

Reading in context, the noise sidebands on the 170 m target will be approxi-

mately 13 dB lower than the sidebands on the 770 m target. Although (3.8) is an

approximation, it conforms to the measurements presented in the next section.
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3.5.3 Coherent cancellation of phase noise

The equations shown in the previous section were modelled for a 77 GHz MMW

radar system employing the frequency synthesiser modelled in Fig. 3.3. Fig. 3.4

shows the modelled phase noise response curves for point targets at ranges from 10 m

up to 200 m. The main highlight of this figure is the level of phase noise cancellation

due to coherent mixing in the receiver. At 10 m, the cancellation results in a peak

sideband level of -68 dBc, which results in a huge improvement in detection and

tracking. At 100 m, the peak sideband level is around -48 dBc, which degrades to

-42 dBc for a target at 200 m. Phase noise cancellation happens only to the left of

the dotted vertical line shown in the figure. It can thus be seen that the region of

phase noise cancellation shrinks with increasing range.

Fig. 3.5 plots the peak level of phase noise from Fig. 3.4 versus target range.

It can be noticed that phase noise level at 50 m is 12 dB better than at 200 m.

This definitely helps with target detection. However, we note that this level of

improvement does not solve the phase noise problem entirely for, say, a radar having

100 dB of dynamic range. Beyond 200 m the phase noise cancellation starts levelling

off. The phase noise level at 200 m is only 3 dB better than at 300 m. In practical

terms this does not represent a significant improvement. The horizontal dashed line

in Fig. 3.5 shows the phase noise level at the transmitter. Therefore, a target at 300

m will be expected to have the same peak phase noise level as the in-band phase

noise level at the transmitter.

3.6 Practical Measurements of Phase Noise Side-

bands using a Triangular Corner Reflector

The theoretical results of the previous section were validated using practical mea-

surements presented in this section. Fig. 3.6 shows a 25 m2 triangular corner

reflector (referred to as the corner cube) on a tripod stand that was used for these

measurements. As evident from Fig. 3.6, grass and hedges etc. are also present in

the scene and cause unwanted backscatter.

Fig. 3.7 to Fig. 3.12 show the measured responses of the corner cube placed at

distances of 35 m, 85 m, 101 m, 120 m, 173 m, and 203 m from the radar. 50 averages

were used to reduce the thermal noise in the display. The remaining variations in

the scene are due to the clutter response. The peak phase noise sideband response

of the corner cube can be estimated from these figures as -50 dBc, -45 dBc, -44 dBc,

-44 dBc, -41 dBc and -38 dBc respectively.

It can be noted that the measured results are not exactly equal to the theoretical
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Figure 3.4: Calculated target responses at various ranges. The phase noise decorre-
lation patterns can be seen. The blue overlay is the expected phase noise without
taking decorrelation into account.
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Figure 3.5: Plot of the peak phase noise level versus target range. The horizontal
dashed line is the transmitter’s peak phase noise level.

Figure 3.6: Triangular corner reflector placed in the scene being measured.
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Figure 3.7: Target response of a triangular corner reflector placed at 35 m.
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Figure 3.8: Target response of a triangular corner reflector placed at 85 m.
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Figure 3.9: Target response of a triangular corner reflector placed at 101 m.
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Figure 3.10: Target response of a triangular corner reflector placed at 120 m.
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Figure 3.11: Target response of a triangular corner reflector placed at 173 m.
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Figure 3.12: Target response of a triangular corner reflector placed at 203 m.
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prediction of Fig. 3.5. However, it can be concluded that they are reasonably close

considering that some level of clutter is also present.

3.7 Target Response of a Moving Vehicle

Fig. 3.13 illustrates the decrease in phase noise cancellation with increasing range

for a moving vehicle. The plots (a)-(e) display measurements done in a tunnel

environment. The abscissa shows range in meters, and the ordinate shows the

relative power levels as a percentage. Due to the native radar format, 1% ≈ 1.28

dB on the ordinate. Clutter-map averaging was used to reduce the variability in the

scene to get a better idea of the phase noise levels.

In Fig. 3.13a, the double-arrow marks the phase noise sidebands on a vehicle

at 170 m. The size of the sidebands can be estimated as roughly 32 % = -41 dBc.

In Fig. 3.13b-e, the vehicle moves from around 240 m to 300 m: it can be noticed

that there is very little change in the sideband response. The sidebands are at

approximately 26 % = -33 dBc. This implies that the phase noise response of the

vehicle at 170 m is around 7 dB lower. This result clearly indicates our hypothesis

that phase noise cancellation in coherent radars is ineffective beyond a few hundred

meters.

3.8 An Alternative Low Phase Noise Frequency

Synthesiser

The system-level noise analysis based on Fig. 3.3 reveals that the source phase-

noise in the PLL frequency synthesiser did not meet the phase noise requirement of

the LRS system. The phase noise sidebands raise the noise floor in a large region.

In Fig. 3.3, the reference clock’s phase noise has been reduced to a level where

its contribution to the overall phase noise curve is insignificant. Therefore, it is

apparent that the frequency synthesiser’s architecture has to be changed to achieve

the desired level of phase noise improvement. The potential alternatives explored in

this work were mentioned in Section 2.4.4.

Fig. 3.14 shows the simulated phase noise plot of the final solution that was

actually implemented in the LRS system is described. The measured phase noise of

the PLL synthesiser is also included for comparison. It can be seen that a remarkable

improvement of more than 30 dB was expected in the critical portion of the phase

noise spectrum (10 kHz to 100 kHz) using this technology.
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Figure 3.13: Illustration of the phase noise sidebands around a moving target.
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Figure 3.14: Comparison of Phase Noise in the new low phase noise Synthesiser
(bottom) with the PLL Synthesiser.
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Figure 3.15: Block diagram of the DDS/DRO Frequency Synthesiser

3.8.1 The DDS-Based Frequency Synthesiser

Fig. 3.15 shows a block diagram of the designed frequency synthesiser that uses a

10-GHz DRO acting as the carrier signal. A DDS is used to synthesise the transmit

waveform: a swept bandwidth of 120 MHz centred at 440 MHz. The DRO, through

a divide-by-4 frequency divider, generates the clock signal for the DDS. The DDS

signal is then mixed with the carrier to generate the X-band signal which is fil-

tered and amplified to generate the final waveform. (Although not shown here, the

generated waveform was multiplied by 8 to generate the 77 GHz radar signal.)

3.8.2 Phase noise analysis of the DDS solution

Fig. 3.16 shows a phase noise plot showing the phase noise contribution of the

major components of the synthesiser. The phase noise contribution of the frequency

divider, the mixer, the filter, and the amplifier are not shown as their contribution

was much lower than the DDS and DRO themselves. It can be seen that a remarkable

improvement of around 35 dB was expected using this technology in the critical

portion of the phase noise spectrum (i.e. at the 100 kHz offset). A microwave

system simulation was done to finalise the selection of the RF components for this

design, followed by the schematic capture and the layout of the microwave PCB.

The final microwave PCB has been successfully implemented in the LRS system.

The said improvement in the phase noise was then validated through the practical

measurements appearing in Chapter 4.

3.9 Conclusion

This chapter presented phase noise modelling for FMCW radar systems. Detailed

guidelines for the phase noise modelling of various components and sub-systems

were presented followed by techniques to reduce phase noise at each level. The
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Figure 3.16: Comparison of Phase Noise in the new low phase noise synthesiser with
the PLL synthesiser.

modelling was validated using practical measurements from a MMW FMCW radar

system. The measurements were done on a triangular corner reflector, and a moving

vehicle. Phase noise measurements combined with phase noise modelling help in the

system-optimisation process. A relation for the relative sideband levels for targets

at different ranges was also derived and validated. The analysis demonstrated that

PLL-based frequency synthesisers cannot meet the phase noise requirements of high-

dynamic range long-range radar systems. Therefore, the analysis of a low phase noise

frequency synthesiser was presented that has the potential to solve the phase noise

problem. The measurement results presented were in reasonable conformance with

the theoretical calculations. Although the presented method of phase-noise analysis

focused on FMCW radars, the developed insight is also useful for other types of

radar as well.
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Chapter 4

Phase Noise in FMCW Radar

Systems1

4.1 Summary

Phase noise is one of the fundamental performance parameters in modern radar,

communication, spectroscopic, and meteorological systems. In this chapter a phase

noise theory has been developed for FMCW radar systems. A new design equa-

tion has been derived to specify the maximum bound on the allowable source phase

noise level in radar systems. The non-linear phase noise decorrelation function due

to coherent mixing has been analysed for propagation delays less than the coherence

time of the reference oscillator, and the spectral broadening of target responses has

been discussed for delay times greater than the coherence time. The effects of the

subsystems in the transceiver chain are presented and a new model of phase noise

in ADCs is discussed. Phase noise modelling techniques are presented, followed by

a comparison of a PLL frequency synthesiser with a low-noise frequency synthesiser

to demonstrate the reduction of phase noise sidebands for improved detection and

tracking performance. Practical measurements from two millimetre wave FMCW

radar systems utilising the two frequency synthesisers have been presented to vali-

date the developed theory.

4.2 Introduction

A perfect monochromatic sinewave is an idealisation available only in textbooks.

All natural and man-made oscillators (whether optical, electronic, acoustic, atomic,

or any other) exhibit phase and frequency instabilities collectively known as Phase

1A large part of this chapter has been submitted for publication in [46].
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Noise. These instabilities are related to the materials making up the oscillator,

the architectural design of the oscillator, and the random noise phenomena in the

oscillator. The present chapter deals with the analysis of phase and frequency in-

stabilities in the oscillators used in frequency modulated continuous wave (FMCW)

radar systems

It is well-known that the short-term frequency instability in oscillators, described

by the phase noise, manifests itself as phase modulation sidebands in oscillator

spectra [24,47,48]. Linear phase noise analysis [13,26,43,49] deals with the analysis

of the low-noise sidebands only in the RF spectrum of an oscillator [26, 27, 43].

However the phase noise processes also give rise to a nonlinear near-carrier spectrum

[11, 50–52], a phase noise floor, and broadening of the linewidth of the oscillator

signal’s RF spectrum [51, 53, 54]. A complete phase noise analysis must include all

portions of the RF spectrum.

Excessive phase noise in an oscillator (greater than 1 rad2) leads to severe dis-

tortion in the RF spectrum in the form of a widened central peak and distorted

sidebands. A designed coherent radar system should have an integrated phase noise

much less than 1 rad2. An analysis will be presented in this chapter as the phase

noise in a signal approaches this limit under frequency multiplication and new results

will be presented for the allowable noise-sideband level in the transmitted signal to

comply with this limit. The noise sideband response produced by radar systems is

a function of the target’s range (i.e. time delay) [26] and even if a low-phase noise

master oscillator is employed in a radar, the demodulated return signal loses coher-

ence with the transmitted signal due to the frequency drift processes present in the

oscillator. Therefore, a coherent radar should operate well within the coherence time

of the oscillator [53, 55] to avoid excessive broadening of the demodulated signal’s

spectrum.

The problem of phase noise in pulsed radar systems has been addressed ex-

tensively in the literature. Detailed phase noise analysis is available for MTI and

pulse Doppler radars [56,57], digital phased array radars [58], distributed synthetic

aperture radars (SAR) [59], interferometric SAR [60], efficient simulation of phase

noise [61] and AM/FM noise measurement [62]. Phase noise in FMCW radars has

not received such a detailed attention. The present chapter attempts to fill in some

of this void.

From the systems aspect, phase noise in FMCW radars has been addressed from

various aspects in [42,43,63,64]. In [43] the fundamentals of FMCW system design

have been presented including some noise aspects. In [42] the impact of coherent

integration on phase noise has been addressed. In [63] the impact of oscillator

noise parameters like the noise figure and the corner frequency on the phase noise
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performance has been analysed. In [43] and [64] the impact of the internal noise

leakage through the receiver’s mixer has been analysed in detail. An important

aspect of the present work is the demonstration of how to accurately relate the

source phase noise to the phase noise in the IF signal’s spectrum by quantifying the

phase noise introduced by the various stage of a typical FMCW radar system, and

the demonstration of the reduction in phase noise by utilising a properly designed

radar source. Using those guidelines one can work back to determine the source

phase noise level required to achieve a given specification of dynamic range.

The contributions of this chapter are as follows:

1. Development of the phase noise models of the subsystems to present a phase

noise modelling methodology for FMCW radar systems.

2. Demonstrate the application of the modelling methodology for the accurate

modelling of phase noise in a practical radar system..

3. Demonstrate the benefits of using a low-phase noise frequency synthesiser to

achieve high dynamic range target discrimination.

4. Present new results on phase jitter cancellation in analog-to-digital converters

5. Derivation of a novel design equation to prevent excessive demodulated phase

noise due to the source phase noise and/or frequency multiplication in the

transmitter.

4.3 Characterisation of Phase Noise in the RF

Spectra

Phase noise in oscillators is most popularly characterised by the spectral density of

phase fluctuations Sφ(f) that normally has power law frequency components [8]. On

the other hand, practical radio, radar, and spectroscopic systems, to name a few,

use the RF spectrum of the oscillator SRF (f) as the working spectrum during their

operation, and will be the focus in the foregoing discussion. Fig. 4.1a illustrates the

RF spectrum SRF (f) of a general oscillator. When the sidebands in SRF (f) are due

to phase modulation (PM) noise they are referred to as Phase noise sidebands, are

denoted by L(f) = SRF (f)/P (where P is the total power in the measured oscillator

signal), and have the units of decibels relative to the carrier per Hertz (dBc/Hz).

As shown in Fig. 4.1a the frequency offset fα divides the phase noise portion of

the spectrum into two part, i.e., the near-carrier phase noise and the far-from-carrier
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(a) RF spectrum of a general oscillator.

(b) RF spectrum of a synthesised signal source,
including the noise pedestal’s parameters.

Figure 4.1: Illustration of the RF spectra of radar sources.

phase noise. The IEEE Standard 1139-1999 [8] defines phase noise as,

L(f) =
Sφ(f)

2
. (4.1)

The L(f) in this definition is related to SRF (f) only in the far-from-carrier region,

i.e., for all f ≥ fα such that, ∫ ∞
fα

Sφ(f)df = 0.1 rad2. (4.2)

Below fα, SRF (f) is nonlinearly related to Sφ(f). A nonlinear relationship be-

tween Sφ(f) and the normalised two-sided baseband RF spectrum SbRF (f) is given

in [11,50,51] as,

SbRF (f) = e−σ
2
φ

[
δ(f) + Sφ(f) +

1

2!
Sφ(f) ∗ Sφ(f) + ...

]
, (4.3)

where σ2
φ is the variance of the phase noise process φ(t), or equivalently,

σ2
φ =

∫ ∞
−∞

Sφ(f)df, (4.4)

and is assumed to be finite. Equation (4.3) can be used to model the near-carrier

phase noise as well as the far-from-carrier phase noise, although in the latter case

(4.1) is easier to use. In (4.3) the carrier has been modelled as a Delta function: in

practice SRF (f) has a finite linewidth and a defined lineshape that are a function of

the frequency noise processes in the oscillator. These are dealt with in [51,53].
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Fig. 4.1b illustrates a typical target spectrum displayed by a radar system em-

ploying a synthesised signal source. The phase noise pedestal can originate due to a

phase locked loop (PLL) based synthesiser having a finite loop bandwidth, or due to

the finite bandwidth of the frequency multiplier chain being employed in the system

to frequency multiply, say, a crystal reference oscillator to higher frequencies. A de-

tailed analysis of the behaviour of the noise pedestal under frequency multiplication

can be found in [51, 65, 66] where measurements of the noise sidebands have been

presented.

Equation (4.3) can also be written as,

SbRF (f) = ScRF (f) + SpRF (f), (4.5)

where ScRF (f) is the RF spectral density of the central carrier peak and SpRF (f) is

the RF spectral density of the phase noise pedestal. For linear phase noise analysis

one has to invoke the low-phase noise condition, σ2
φ � 1. Under this condition (4.3)

simplifies to:

SbRF (f) ≈ e−σ
2
φ [δ(f) + Sφ(f)] . (4.6)

The phase noise pedestal shown in Fig. 4.1b can be modelled by a modified

Lorentzian function as follows:

SpRF (f) =
Lp

1 +
(
|f |

0.5Wp

)k , (4.7)

where SpRF (f) is the double-sided RF spectral density of the noise pedestal, Lp is

the flat-top level of the pedestal (in dB-rad2/Hz)2, Wp is the 3-dB width of the noise

pedestal in Hz, and k is the order of the roll-off and is generally between 2 and

4 for microwave frequencies. Under the low-phase noise condition, σ2
φ can also be

computed from SpRF (f) as,

σ2
φ =

∫ ∞
−∞

SpRF (f)df. (4.8)

The assumption of finite σ2
φ in (4.3) is only valid for a finite observation time

Tobs (or measurement time) for the oscillator signal [49, 67–69], which in fact is

equivalent to defining a non-zero low-frequency cutoff at 1/Tobs for the phase noise

spectrum [68]. For excessively large measurement times, the flicker frequency and

random-walk frequency components of phase noise cause excessive broadening of the

measured RF spectrum [68–71].

Phase noise can be equivalently defined by the timing jitter in oscillators. The

2These units are numerically equal to Watts/Hz
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Figure 4.2: Block diagram of a general FMCW radar system. The phase noise L(f)
at various points in the system is marked.

RMS timing jitter σt in a signal having a nominal radian frequency of ω0 = 2πν0 is

related to σ2
φ as [38],

σt = ω0 σφ. (4.9)

The timing jitter formulation of phase noise is especially helpful when analysing

phase noise in ADCs.

4.4 Phase noise in the Electronic Subsystems

Fig. 4.2 shows a block diagram of the system under consideration which is a basic

homodyne FMCW radar system. The FMCW Signal Generation block synthesises

the FMCW waveform which is frequency multiplied up to the transmit frequency

band using the×N frequency multiplier. The received signal is frequency mixed with

the transmitted signal using a mixer: the difference frequency between the transmit

and the receive is proportional to the target’s range [43] and is called the intermediate

frequency (IF) signal. The IF signal is digitised using an analog-to-digital converter

(ADC or A/D). Complex Fast Fourier Transform (FFT) processing is then used to

extract the information about targets like range, phase, signal strength, etc. In the

following the phase noise contribution of these electronic subsystems is discussed.

4.4.1 Frequency Synthesisers

Indirect and direct frequency synthesisers [34,36,38] are used to generate the desired

transmit waveform in radar systems. Popular examples include Phase Lock Loops

(PLL), Direct Digital Synthesisers (DDS), and variants based on these.

In PLL based frequency synthesis it is well-known that inside the loop filter’s

bandwidth, the reference oscillator’s phase noise dominates, while outside the loop

bandwidth the voltage controlled oscillator’s (VCO) phase noise dominates [38].
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Modern phase-frequency detector (PFD) based PLL’s are versatile in that they

perform automatic phase and frequency locking [38]. However for high dynamic

range radar applications the phase noise performance of PFDs may not be acceptable

[27] leading to high levels of in-band phase noise. The PLL-synthesised signal has a

spectrum of the type shown in Fig. 4.1b which shows a noise pedestal around the

carrier frequency.

To reduce the noise pedestal one could play with the loop parameters of the

PLL. However, in the Type-2 PLL scheme [38] commonly employed, the synthesised

waveform sets a limit on the modulation bandwidth needed from the PLL. In the

case of FMCW radars this is the bandwidth required to correctly synthesise the

ramping waveform: incorrect loop parameters can cause ringing and cycle slipping

in the transient response of PLLs. PLL synthesisers have been discussed in [72–74]

in the context of FMCW radar systems.

Offset PLLs [39, 40, 75] have been used successfully to improve the phase noise

performance over conventional PLLs. Offset PLLs combine frequency mixing with

frequency division in the feedback path to reduce the overall frequency multiplication

factor inside the loop. The overall architecture is complicated by the use of DDS

sources for frequency sweeping and the spurii generated by the DDS and the mixer

have to be filtered. State-of-the-art DDS synthesisers have better phase noise than

PLL synthesisers although they are costlier, and they suffer from spurii problems

[36]. The DDS output usually needs to be frequency mixed to the desired frequency

band, and mixers produce their own spurii.

Parasitic nonlinearities in the linear FMCW waveform due to, for example, non-

linear tuning curves of voltage controlled oscillators (VCO), also lead to spectral

broadening but are considered systematic noise [75–78] as opposed to phase noise

that is random in nature. The influence of sweep linearity on FMCW radar system

performance has been addressed in [75, 76]. A combination of VCOs and frequency

multipliers is commonly used in FMCW radar systems to reduce the effects of the

VCO’s non-linear tuning characteristic [79].

4.4.2 Frequency Multipliers

Fig. 4.3a shows the propagation of phase noise through a frequency multiplier [38].

The timing jitter is preserved during the frequency multiplication process while the

RMS phase noise increases by N , where N is the frequency multiplication factor.

Frequency multipliers are used in conjunction with frequency synthesisers to increase

the FM modulation index of the transmitted signal to combat VCO non-linearities

[79]. It is well-known that the phase noise sidebands increase as 20 log10N dB under
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(a) Frequency Multiplier
(b) Mixer

Figure 4.3: Phase noise propagation through electronic subsystems.

frequency multiplication (so that the phase SNR degrades by 20 log10N dB: however,

it is important to note that this increase happens only when the small phase noise

approximation is valid, even after frequency multiplication. Special results have

been derived for frequency multiplication of the type of spectrum shown in Fig.

4.1b.

In [51, 65, 66] it has been demonstrated using theoretical analysis and practical

measurements that if σ2
φ � 1 then under frequency multiplication byN , Wp stays the

same while Lp increases as 20 log10(N), as expected. However, between 0.1 < σ2
φ < 1,

the increase in the phase noise sidebands does not remain linear with N but slows

down. Beyond σ2
φ > 1 the carrier starts broadening3 and so does the noise pedestal

width Wp. For radar systems this phenomenon results in the target response being

broader so that it is spread over a larger number of range bins, which is undesirable.

The carrier’s 3-dB linewidth also increases under the process of frequency mul-

tiplication [53]. In general the linewidth increases N2-times if the radar signal has

white frequency noise, N -times if it has flicker-frequency noise, and N2/3-times if it

has random-walk frequency noise [51,53]. However for short time delays, the phase

noise processes decorrelate (explained shortly) which leads to a narrower linewidth

than predicted [80].

4.4.3 Mixers

Fig. 4.3b shows the propagation of phase noise through a mixer [38]. In a radar

context, the inputs are the transmitted and received signals, while the output of the

mixer is the IF signal. Mixers add or subtract the phase noise in the input signals:

suppression of phase noise happens when the two input signal are coherent, i.e. they

have a defined phase relationship with each other (or in other words, are derived

from the same reference source). It has been shown that in radar systems the mixing

of the time-delayed transmitted signal with itself causes phase noise decorrelation

3This can be understood by noting that for σ2
φ > 1, the signal transitions from being phase

modulated to frequency modulated. The FM deviation of any signal increases under frequency
multiplication, hence the frequency support of the carrier will stretch.
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as follows [25,26,43,81]:

LIF (f) = LTx(f)× 4 sin2(πfτd), (4.10)

where τd is the round-trip time-delay to the target. This relationship will be analysed

in detail later in this section. Equation (4.10) implies that the integrated (RMS)

phase noise at the IF stage in Fig. 4.2 is:

σ2
φIF

=

∫ ∞
0

2LTx(f)× 4 sin2(πfτd) df. (4.11)

In general if τd is small, σ2
φIF

will be small and vice versa.

If on the other hand the two inputs to the mixer are uncorrelated, the integrated

output phase noise will be the sum of the individual phase noises:

σ2
φo = σ2

φi1 + σ2
φi2 = ω2

1σ
2
ti1 + ω2

2σ
2
ti2, (4.12)

Even for the difference frequency signal the phase noises will add. If the two signals

have roughly the same frequency and phase noise we get,

σ2
φo = ω2

oσ
2
to ≈ 2σ2

φi = 2ω2
i σ

2
ti. (4.13)

The above result shows that for incoherent inputs the IF signal’s phase noise is

twice that of the transmitted signal: however the relationship for timing jitter is

more interesting. Equation (4.13) can be rearranged as follows:

σ2
to ≈ 2

ω2
i

ω2
o

σ2
ti, (4.14)

or using the radar terminology,

σ2
tIF
≈ 2

ω2
RF

ω2
IF

σ2
tRF
, (4.15)

which implies that the timing jitter in the IF signal is much larger than the timing

jitter in the RF signal because generally ωRF � ωIF . This result will be used in the

next subsection.

4.4.4 Analog-to-Digital Converter

The subject of phase jitter/noise in ADCs has been dealt with in [28–30, 32, 33,

82]. As shown in Fig. 4.4, from the noise perspective the ADC can be thought of

as a time-modulator or a time-mixer. Extending the argument of coherent phase
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Figure 4.4: Phase noise propagation through an Analog-to-Digital Converter

noise cancellation in mixer, we propose that if the input signal is coherent with the

sampling clock, the jitter in the sampled signal is time-decorrelated in the same way

as the inputs to a mixer are phase-decorrelated. The decorrelation will be dependent

on the time-delay between the signal being sampled and the clock signal, and most

importantly how close the time jitters on the two are.

If the radar’s transmitted signal and the sampling clock are derived from the

same reference source, then their time jitters can be close to each other. However,

as noted in (4.15) the IF signal being sampled has a time jitter greater than the

received RF signal by a large factor. So the time jitter cancellation is less effective

in this case. Nevertheless, as a guideline the transmitted signal’s phase jitter is

related to the reference oscillator’s phase jitter through the transfer function of the

frequency synthesiser being employed. For example, for a PLL synthesiser the in-

band phase jitter at the output of the PLL is equal to the phase jitter in the reference

oscillator, while beyond the loop bandwidth the phase jitter at the input and the

output of the PLL are uncorrelated. In this case the ADC’s sampling clock can be

used to partially cancel the in-band phase jitter (according to the time delay) while

there will be no noise cancellation for frequency offsets outside the loop bandwidth.

For the non-coherent case the jitter in the sampling clock adds to the jitter in

the input signal. Therefore the integrated phase noise in the sampled signal is,

σ2
φo = ω2

oσ
2
to = ω2

i

[
σ2
ti + σ2

t clk

]
= σ2

φi +
ω2
i

ω2
clk

σ2
φ clk. (4.16)

Due to the term ω2
i /ω

2
clk a higher frequency input signal experiences a larger

phase noise transferred from the sampling clock. A detailed analysis of (4.16) in the

context of radars is presented in [82].
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4.4.5 FFT Processing

The FFT is the most common method of spectrum estimation. From the phase

noise perspective an important parameter is the FFT Bandwidth defined as,

BFFT =
1

Tobs
, (4.17)

where Tobs is the time for which the signal was observed. In FMCW radars Tobs ≈ TS,

i.e. the sweep time. The phase noise sideband level (in dBc) at the output of an

FFT processor is,

LDISP (f) = LIN(f) + 10 log10 (BFFT ) . (4.18)

It is important to note that the FFT noise integration is not a frequency multi-

plication operation and does not affect parameters like noise pedestal width or the

fundamental carrier linewidth. Nevertheless, the finite observation time does limit

the least measurable carrier linewidth to 1/Tobs: if the linewidth is less than the

FFT bandwidth it will not be measured. On the other hand, if the linewidth of the

demodulated IF signal is larger than 1/Tobs then it can span many FFT frequency

bins.

4.4.6 Phase noise decorrelation

As noted above, LIF (f) is related to LTx(f) by,

LIF (f) = LTx(f)× 4 sin2(πfτd). (4.19)

The phase noise decorrelation factor in (4.19) is 4 sin2(πfτd) and is plotted for a

few values of τd in Fig. 4.5. As can be seen in the plot for Range = 150 m, the

decorrelation factor has a value of less than 0 dB for small frequency offsets and

results in reduction/cancellation of phase noise. The critical value in (4.19) is the

frequency offset of fτd = 1/6 for which LIF (f) = LTx(f). This works out at f = 167

kHz for τd = 1 µs corresponding to R = 150 m. Beyond this frequency offset no

further phase noise cancellation happens: in fact LTx(f) and LRx(f) add in-phase

so that LIF (f) starts increasing. The following points can be noted:

• Coherent phase noise cancellation happens for frequency offsets f ≤ 1/6τd

• At fτd = 1/4, LIF (f) = 2LTx(f).

• Finally for f = 1/(2τd), LIF (f) = 4LTx(f).
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Figure 4.5: Plots of the Delay Function for targets at various ranges
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The last point implies that due to coherent mixing the resultant phase noise can

be up to 6 dB larger than the transmitter’s phase noise as shown in Fig. 4.5. It

can be noted in Fig. 4.5 that as the range to the target increases, the phase noise

cancellation region shrinks. Depending on BFFT one can estimate the maximum

range after which coherent mixing does not result in any improvement.

The above discussion is valid for delay times less that the coherence time of the

oscillator [53, 55]. As pointed out earlier, for excessively large measurement times

(or measurements at very long ranges in the case of radar systems), the frequency

noise processes in the oscillators cause excessive broadening of the measured RF

spectrum [68–71]. An analysis of how the power shifts between the carrier portion

and the sideband portion of the spectrum as a function of the delay time τd is given

in [69,80].

As a final comment, if non-coherent frequency mixing is used in a radar system,

no cancellation of phase noise will happen at any range. In fact, the IF phase noise

will just be the sum of the transmitter’s phase noise and the LO’s phase noise. No

coherent ripples will be observed. The linewidth of target response will also be

broader compared with a coherent radar.

4.5 The maximum bound on the pedestal height

Lp

Having discussed the troubles σ2
φ > 1 can cause it is imperative to analyse this

condition further for typical radar sources. Fig. 4.1b shows the phase noise pedestal

in the RF spectrum centred at the carrier frequency ν0 along with the central carrier

peak. A double-sided baseband model for the phase noise pedestal is the generalised

Lorentzian function described in (4.7) but repeated here for convenience,

SpRF (f) =
Lp

1 +
[
|f |

0.5Wp

]k , (4.20)

where Lp (rad2/Hz)4 and Wp (Hz) are indicated in Fig. 4.1b, and k is the order of

the roll-off of the pedestal.

We will now derive the maximum bound on Lp for a given Wp in order to meet

the condition σ2
φ < 1 for k ≥ 2. Note that the noise pedestal obviously does not

include the central carrier peak and the phase noise floor. If σ2
φ < 1 then σ2

φ is

approximately equal to the RMS noise power in the pedestal and can be computed

4or equivalently Watts/Hz
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Table 4.1: Maximum allowable Lp for various values of k.

k σ2
φ (rad2) Max Lp

(rad2/Hz)
Max Lp for

Wp = 200 kHz

2 π
2
WpLp 0.64/Wp −58 dBc/Hz

2.5 1.32 WpLp 0.76/Wp −57.2 dBc/Hz

3 1.12 WpLp 0.89/Wp −56.5 dBc/Hz

4 1.11 WpLp 0.9/Wp −56.5 dBc/Hz

12 1.01 WpLp 0.99/Wp −56.1 dBc/Hz

as:

σ2
φ =

∫ ∞
−∞

SpRF (f)df. (4.21)

The above integral was solved for various value of k: the results are shown in Table

4.1. The second column shows that the integral converges to σ2
φ = WpLp in the limit

of large k. The third column shows the maximum bound for Lp as a function of Wp

for each k.

Also shown in Table 4.1 (fourth column) are computed Lp’s for Wp/2 = 100 kHz

(this value of Wp is used in the plots in the next section). Note that 3-dB is to be

subtracted from the value of Lp in dB-rad2/Hz to compute the single-sideband level

of Lp in dBc/Hz: the latter will be the representative value for Lp measured on a

spectrum analyser centred at the carrier frequency ν0.

Table 4.1 shows an interesting result that the maximum bound on Lp does not

change significantly with k. The maximum value of the integral is at k = 2 and

gives the tightest bound on Lp. Therefore, to ensure σ2
φ < 1 we need,

Lp <
2

πWp

. (4.22)

The beauty of (4.22) is that this result does not depend on the actual operating

frequency of the radar or the multiplication factor. The radar’s transmitter only

needs to comply with this limit as a minimum to be an acceptable radar signal

source. If Lp and Wp are even lower, the radar source will remain coherent with

itself (or self-coherent) to a much larger range than a radar source having larger Lp

and Wp.
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A change in Wp would directly affect the bound on Lp. For example, if a noise

bandwidth of 10 kHz was sufficient for the PLL employed in the transmitter then

Wp = 20 kHz and the maximum allowable Lp = -48 dBc/Hz to ensure σ2
φ < 1.

Therefore, by reducing Wp the bound on Lp has been relaxed. The model developed

here closely conforms to the measurements in [51] which also happen to be at 9.5

GHz: with a single-sided bandwidth of 60 kHz (i.e. Wp = 120 kHz), the reported

Lp(max) is close to -52 dBc/Hz.

Finally we emphasise that the bound on Lp has been stated in the units of

dBc/Hz (i.e. normalised to the integration bandwidth) and should be used as such,

or with the proper scaling factors if other units are to be used.

4.6 An Optimistic Estimate for the Coherence Time

of Radars

In this section we highlight another aspect of phase noise, that a source with larger

phase noise will lose coherence faster with delay time compared with a source having

low phase noise. In our work [82], an important relationship has been derived for

the integrated phase noise in signal sources. Assuming the Lorentzian model for the

phase noise pedestal, it was shown in [82] that,

σ2
φ = Rφ(0) = K

[
1− e−πWpτd

]
, (4.23)

where K = 2πN2LpWp and τd is the delay time to the target. Setting σ2
φ = 1 and

inverting the equation one can find the coherence time for a given source as,

τc =
1

πWp

ln

(
K

K − 1

)
. (4.24)

There are two caveats in using (4.24). First, (4.24) is an optimistic estimate of

τc because the low phase noise condition has been assumed in its derivation. It is

therefore expected that τc will be smaller/shorter than predicted by (4.24). Secondly,

the exact Lorentzian spectrum (power of 2) is assumed in deriving (4.24), instead

of k as in (4.20), due to analytical convenience. However, the error introduced will

be small (a maximum of 1.5 dB for k = 4) if the roll-off is > 2, as evidenced in the

previous section. As a final comment, we believe that (4.24) is applicable to any

coherent radar system.
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Table 4.2: Parameters of the FMCW radar being studied.

Parameters MMW Radar

Carrier Frequency, ν 76.5 GHz

Swept Bandwidth, BS 660 MHz

Sweep Time, TS 1.25 ms

FFT Bandwidth, 1/TS 800 Hz

Freq. Multiplication Factor, N 8

PLL Loop Bandwidth, BL 100 kHz

PLL In-band noise level, L1 -88 dBc/Hz

4.7 Application of Phase Noise Modelling to a

MMW FMCW Radar System

The phase noise modelling methodology was applied to a MMW FMCW radar

system having subsystems as in Fig. 4.2. The parameters of the radar system are

shown in Table 4.2. First, a PLL-based radar source will be used to measure the

target response of trihedral corner reflectors. The phase noise sidebands will be

visible in this measurement. Next a low phase noise source will be used for the same

measurement to demonstrate the performance improvement.

4.7.1 Phase noise modelling of a PLL based system

The radar used for measurements initially employed a PLL/VCO scheme to generate

the X-band signal that was frequency multiplied to 76.5 GHz. Fig. 4.6 show a

spectrum analyser display of centred at the carrier frequency. The phase noise

sidebands are visible: for example, at 100 kHz the phase noise is around -88 dBc/Hz.

In Fig. 4.7 (lower plot) one phase noise sideband from the spectrum in Fig. 4.6 has

been modelled and the expected phase noise level at 77.6 GHz has been displayed

using a frequency multiplication factor of N = 8. Also shown for reference (top

dashed plot) is the expected IF phase noise due to the noise integration done by

the FFT (BFFT = 800 Hz) without taking into account the effects of phase noise

decorrelation, due to which the actual peak sideband level will be 6 dB higher.
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Figure 4.6: Measured RF Spectrum of an X-band PLL synthesised oscillator.

A spectrum measurement of the transmitted signal at 76.5 GHz was performed

(but not included here) which confirmed that there was no change in the width

of the noise pedestal, and the pedestal height did go up by 20 logN = 18 dB.

This conforms to the theory presented in the last section: the noise pedestal height

Lp = −88 dBc/Hz is much less than the maximum bound suggested by Table 4.1.

Fig. 4.8 shows the final simulated single sideband target response at various

target ranges taking into account the effects of phase noise decorrelation using (4.19).

This type of simulation model is extremely useful in predicting the expected target

response to analyse the phase noise performance of radar systems. The simulated

target response is 6 dB higher at the peak of the coherent ripples as expected. The

critical frequency offset fcrit = 1/6τd (converted to range bin values) is plotted as a

vertical dotted line: it can be seen that beyond this point the phase noise sideband

increases up to 6 dB beyond the transmitter’s integrated phase noise level, and there

is no further phase noise cancellation other than the troughs of the ripples.

The simulated target response at 150 m has a peak phase noise level of -45 dBc,

while the simulated target response at 750 m has a peak phase noise level of -33

dBc. These values are to be compared with the measurement results of the next

subsection. Due to the large difference between the operating RF frequency (76.5

GHz) and the IF frequency (up to 7 MHz) the computed effect of the ADC jitter
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Figure 4.7: Single-sideband phase noise plots (bottom to top) at the X-band syn-
thesiser (measured), at the 76.5 GHz transmitter with N=8 (calculated), and at the
FFT output (BFFT = 800 Hz) (calculated).
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Figure 4.8: Plots of the simulated target response (single-sideband) at various
ranges. Coherent phase noise cancellation gives an improvement (reduction) in
phase noise in the region to the left of the vertical dotted line. The blue overlay is
the top plot in Fig. 4.7.

was minimal and had minimal effect on the measurements.

4.7.2 Measurement results from the PLL based radar

Fig. 4.9 displays the radar measurement of two corner reflector targets placed at

173 m and 770 m respectively. This is the same scene reported in Chapter 3, but the

data has been subjected to new analysis. The measurements were done using a CTS

radar system developed by Navtech Radar Ltd. having the parameters displayed

in Table 4.2. It can be seen that thermal noise is superimposed on the phase noise

sidebands, so the average noise level should be taken as the representative value of

phase noise. The phase noise sideband levels have been marked with double-arrows,

and the lower arrow is placed at the expected average noise level. Comparing with

Fig. 4.8 it can be seen that these measurements are compatible with the theoretical

modelling: the measured target response at 173 m has an average phase noise level
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Figure 4.9: Targets at 173m and 770m. Range bins are 25 cm each.

close to -45 dBc, while the measured target response at 770 m has an average phase

noise level close to -33 dBc.

4.7.3 Discussion on the measurements from the PLL based

radar

The modulation loop bandwidth of 100 kHz causes the PLL to have a large noise

bandwidth (or noise pedestal width) of 200 kHz. The upshot is that both targets

in Fig. 4.9 have large shoulder-like sidebands superimposed on them. This phe-

nomenon causing severe difficulties in the detection and tracking of the objects in

the region having a raised noise floor: the detection of all targets is degraded and

small target can disappear in this noise floor.

To gain a better understanding of the artefacts of phase noise, we used a higher

power radar with 17.5 cm range bins. Fig. 4.10 displays the measured target re-

sponse of the 770 m corner reflector. Averaging was turned on to reduce the thermal

noise in the display. The coherent sideband structure is much more visible in this

plot along with other small targets (grass at shorter-ranges and trees at longer

ranges). The coherent ripples can be compared with the top-right inset in Fig. 4.8.

It can be noticed that the measured sideband level is now at -30 dBc instead of -33

dBc because this particular radar uses a tighter loop bandwidth, causing an increase

in the in-band phase noise. However this does not affect the width of the coherent

ripples.

It is worth noting that the coherent ripples in Fig. 4.10 were only visible after

the systematic noise was mitigated in the frequency synthesiser [34]. The presence

of systematic noises can smear the sideband structure and also cause a raised noise

floor. We will not dwell further on systematic noise.
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Figure 4.10: The 770 m target’s response produced by a higher power radar em-
ploying a PLL-based source. The coherent ripples in the phase noise sidebands can
be seen.

4.7.4 Improved phase noise design

To lower the phase noise sidebands we designed a low-phase noise frequency synthe-

siser detailed in Chapter 3. A spectrum analyser display of the synthesiser’s output

is shown is Fig. 4.11. A comparison with Fig. 4.6 shows that the new synthesiser

is indeed a very low phase noise source. At the 100 kHz offset the measured phase

noise is -111.8 dBc/Hz which is at least 23 dB better than the PLL-based source (as

this measurement is close to the spectrum analyser’s noise floor the improvement is

even greater, as detailed below). The effects of decorrelation in the new low-noise

synthesiser can be worked out using plots similar to Fig. 4.5.

Fig. 4.12 shows the same scene as in Fig. 4.10, viewed with the higher-power

radar system employing the new low-noise frequency synthesiser. A remarkable im-

provement in the phase noise sidebands of around 30 dB can be seen, significantly

improving the definition in the scene. The grassy patch before the target and the

trees after the target are clearly visible now. In addition, a hedge right behind the

corner reflector has now been revealed that was completely hidden in Fig. 4.10.

Therefore, any small targets near this large target can now be detected with preci-

sion. Potential applications of this type of improvement are in perimeter security

systems where an intruder is walking right next to a large building: a conventional
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Figure 4.11: Measured RF Spectrum of the low phase noise source.

radar sensor will fail to pick up the intruder due to the spread of the phase noise

sidebands around the building’s large radar response. However an improved radar

system based on low-phase noise technology will indeed be able to detect the intruder

and raise an alarm.

4.8 Conclusion

There are many causes of spectral broadening of the target responses in FMCW

radar systems including internal factors like phase noise, unfocused lenses, and

parasitic nonlinearities due to VCO tuning curves, and external factors like cross-

demodulated radar interference signals [2], environmental precipitation, and dis-

tributed targets. This chapter exclusively focused on the spectral broadening of

radar targets due to phase noise. A complete phase noise analysis methodology was

described to model the phase noise at various stages of a complete radar system.

New models of phase noise in ADCs and of phase noise pedestals were presented and

applied to modelling phase noise in radar systems. Factors effecting the linewidth

of the demodulated signal were discussed. Measurements were presented that are

in very good agreement with the developed theory. Finally, the use of a low-phase

noise frequency synthesiser was described to reduce the phase noise sidebands by 30

dB, significantly improving the detection and tracking performance of the radar.
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Figure 4.12: The 770 m target displayed by a higher power radar with the low phase
noise source. The phase noise sidebands have been largely eliminated.
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Chapter 5

Analysis of Sampling Clock Phase

Noise in Homodyne FMCW

Radar Systems1

5.1 Summary

In many contemporary electronic systems, phase noise sets the bound on the achiev-

able performance. Radar systems are no exception, with the actual radar signals

carrying significant amounts of phase noise due to the high transmit frequencies.

In coherent radars, some of the phase noise sidebands on the received signal are

cancelled due to mixing in the receiver. The sampling clock used to sample the

intermediate frequency (IF) signals also introduces phase noise/jitter. This chapter

focuses on the contribution of the sampling clock’s phase noise to the overall phase

noise in the sampled signal in coherent homodyne FMCW radar systems. A model

will be developed to relate the phase noise in the sampled signal to the phase noise

in the radar signals and the jitter in the sampling clock. The developed analysis is

applied to example FMCW radar systems. The derived model can be used to work

out the phase noise requirement on the sampling clock for a given phase noise level

in radar signals.

1The contents of this chapter have been published in [82].
c© 2016 IEEE. Reprinted, with permission, from K Siddiq et al, “Analysis of Sampling Clock Phase
Noise in Homodyne FMCW Radar Systems”, 2016 IEEE Radar Conference, May 2016.
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5.2 Introduction

Phase noise in the frequency domain, written as L(f), is defined as one half of

the spectral density of phase fluctuations Sθ(f) having units of rad2/Hz [8]. The

conventional definition of phase noise around a carrier signal is the ratio of the power

in the noise sidebands per Hz relative to the power in the carrier, and is specified

in dBc/Hz on a plot of the power spectrum. The latter definition is only valid for

signals having small phase noise and negligible AM noise [10].

Phase noise appears as phase-modulation sidebands around a carrier’s spectrum.

For radar systems having a high dynamic range this causes the clutter-floor to

increase around large targets, making the detection and tracking of small targets

impossible in the region of raised clutter-floor [13]. Decreasing the overall phase-

noise, therefore, is a prime challenge in high-performance radars. In FMCW radars

the phase noise appears as noise-sidebands in range around each target [43]. An

additional effect in coherent radars is the cancellation of phase noise at shorter

ranges due to coherence.

The effect of phase jitter in sampling clocks has been addressed before as con-

tributing to the overall system noise floor [28–30], and as the clock’s noise spectrum

being transferred to a noise-less signal under the sampling process [29,31]. However,

the case of sampling a signal corrupted with phase noise using a clock having its own

phase jitter, and their relative contribution to the total phase noise in the sampled

signal has been mentioned rarely. In [32] the total phase noise in the sampled signal

is accurately estimated using an iterative optimization-based approach. However

this approach does not give insight into the phase jitter requirements of the ADC

clock or how the clock jitter compares with the received signal’s phase noise. In [33]

the problem of the transfer of the sampling clock’s noise to a generic input signal

has been addressed. However, the relative contributions of the input’s phase noise

and the clock’s phase noise has not been addressed. Ultra-low phase noise oscillators

and sampling clocks are expensive, so an estimation of the phase noise requirement

is imperative to select the oscillator meeting the requirement with the lowest cost.

In this chapter an analysis of the effect of the phase jitter in the analog-to-

digital converter’s (ADC) sampling clock on the sampled radar signals having their

own phase noise is presented. Building on our previous work [27] the total phase

noise in the demodulated radar signal will be computed taking into account the

effect of coherent phase noise cancellation in the radar receiver. Afterwards a model

for the total phase noise in the sampled radar signal as a function of the phase noise

in the demodulated radar signal and the phase noise in the sampling clock will be
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Figure 5.1: Block diagram showing phase noise propagation in a FMCW radar
system.

developed. A generalised analysis will be presented first followed by application to

two FMCW radar systems.

5.3 System description

Fig. 5.1 shows a block diagram of the 77 GHz radar system being studied. The

Frequency Synthesiser block generates a signal synthesised using a phase-frequency

detector (PFD)-based phase lock loop (PLL). The synthesised signal is frequency-

multiplied to the transmit frequency by the Transceiver block. The backscatter

from the target is received by the receive-antenna and passed on to the transceiver

which demodulates the signal to an intermediate-frequency (IF). The IF signal is

digitised after filtering and amplification. Fig. 5.1 shows the phase noise at various

points in the system using the symbol Lsub(f), where sub is the subscript showing

the phase noise measurement point in the system.

The phase noise in the sampling clock LCLK(f) and the IF signal LIF (f) are

shown. Next a relationship will be derived for the total phase noise in the sampled

signal as a function of LCLK(f) and LIF (f).

5.4 Noise analysis

As discussed earlier, the IF signal corrupted with phase noise is sampled using a

clock signal having its own phase noise. Let x(t) be the IF signal and y(mT ) be

the sampled signal, m being the sample number and T being the inverse of the

sampling rate. Using a Taylor Series approximation, it was shown in [33] that the

autocorrelation function of y(mT ) can be written as,

ry(mT ) = rx(mT )− r′′x(mT ) · rtj(mT ), (5.1)
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where rtj is the autocorrelation of the time jitter process on the ADC sampling clock

and rx is the autocorrelation of x(t). The essential conditions for (5.1) to hold are

that x(t) be smooth enough for the existence of a local derivative and the RMS time

jitter in the sampling clock, σtj, be much less than the reciprocal of the maximum

signal frequency in x(t), or,

σtj �
1

FSigmax
. (5.2)

We propose that under the same condition, (5.1) can be extended to the case

where x(t) is corrupted by phase noise. This is especially true for sinewaves. Phase

jitter essentially causes randomness in the zero-crossings of the waveform [14]. So

on the time-scale of phase jitter, the signal’s level and its derivatives do not change

significantly for a sufficiently smooth function. The same argument holds for a sum

of sinewaves, as in the IF signal of a real FMCW radar - if (5.2) could be satisfied,

(5.1) would still hold.

With this in mind, (5.1) can be used for a signal x(t) having phase noise that is

sampled with a sampling clock having its own phase noise/jitter. The total signal

plus noise power in the sampled signal is given by,

ry(0) = rx(0)− r′′x(0) · rtj(0). (5.3)

Note that rtj(0) can either be measured using a suitable instrument, or representative

values can be read directly off oscillator datasheets where the RMS jitter σtj =√
rtj(0) is specified. So in this analysis the sampling clock’s frequency spectrum is

not needed to work out the total RMS jitter. In the following expressions for rx(0)

and r
′′
x(0) are derived.

5.4.1 Phase noise in the IF signal

The Frequency Synthesiser block in Fig. 5.1 generates a 9.5 GHz signal using a

PFD-based PLL. Fig. 5.2 shows a generic phase noise plot of this type of frequency

synthesisers. It can be seen that the noise below the loop bandwidth BL is dominated

by the PFD (and not the reference oscillator [31], [27]) at a level L1 dBc/Hz, whereas

outside BL it is dominated by the VCO. Assuming a 20 dB/decade roll-off on the

VCO phase noise, a simplified expression for this phase noise plot is [31],

LSynth(f) =
10L1/10

1 +
(

f
BL

)2 . (5.4)
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Figure 5.2: Phase Noise at the output of a generic PLL synthesiser.

Due to frequency multiplication by N , the transmitter phase noise can be written

as,

LTx(f) = N2 × LSynth(f). (5.5)

The signal scattered by the target at range R is received at the radar after a delay

τd = 2R/c, c being the speed of light. The phase noise at the output of the homodyne

mixer is given by [26],

LIF (f) = LTx(f)× 4 sin2(πfτd). (5.6)

For small τd some of the phase noise is cancelled due to coherence. Using (5.4) and

(5.5) we can write,

LIF (f) =
4N210L1/10 × sin2(πfτd)

1 +
(

f
BL

)2 . (5.7)

5.4.2 Signal model for the noisy IF signal

The IF radar signal x(t) is a sinewave having the phase noise in (5.7) and can be

written as,

x(t) = A0 sin(ω0t+ θ(t)), (5.8)
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where θ(t) is the zero-mean phase noise process. Assuming θ(t) � 1, (5.8) can be

written as,

x(t) ≈ A0 sin(ω0t) + A0θ(t) cos(ω0t). (5.9)

The autocorrelation function of x(t) is,

rx(τ) = E [x(t)x(t+ τ)] . (5.10)

Inserting (5.9) we get,

rx(τ) = E[(A0 sin(ω0t) + A0θ(t) cos(ω0t))×

(A0 sin(ω0(t+ τ)) + A0θ(t+ τ) cos(ω0(t+ τ)))]. (5.11)

The expected value of the cross terms are zero, as can be verified. Expanding and

computing the expectation we get,

rx(τ) =
A2

0

2
cos(ω0τ)(1 +Rθ(τ)), (5.12)

where Rθ(τ) = E[θ(t)θ(t+ τ)] is the autocorrelation of the phase noise process θ(t).

It follows that,

rx(0) =
A2

0

2
(1 +Rθ(0)). (5.13)

The phase noise in the IF signal, LIF (f), is given by (5.7). So the spectral density

of θ(t) is SθIF (f) = 2LIF (f). Computing the inverse Fourier Transform of SθIF (f)

we get,

Rθ(τ) = K

[
e−2πBL|τ | − 1

2

(
e−2πBL|τ−τd| + e−2πBL|τ+τd|

)]
, (5.14)

where K = 4πN210L1/10BL. Therefore,

Rθ(0) = K
[
1− e−2πBLτd|

]
. (5.15)

Using (5.12) one may verify that,

r
′′

x(0) =
A2

0

2

[
−ω2

0 − ω2
0Rθ(0) +R

′′

θ (0)
]
. (5.16)

That is, to compute (5.16) one needs to compute R
′′

θ (0). From (5.14) one can verify

that,

R
′′

θ (0) = (2πBL)2Rθ(0). (5.17)
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Therefore,

r
′′

x(0) =
A2

0

2

[
−ω2

0 − ω2
0Rθ(0) + (2πBL)2Rθ(0)

]
. (5.18)

The second term in (5.18) is negligible compared with the first assuming Rθ(0)� 1.

So we can write,

r
′′

x(0) ≈ A2
0

2

[
−ω2

0 + (2πBL)2Rθ(0)
]
. (5.19)

Finally, note that the IF signal’s frequency ω0 = 2πf0 is related to the propagation

delay time τd as,

f0 = τd
BS

TS
, (5.20)

where BS and TS are the swept bandwidth and the sweep time respectively in

an FMCW radar. For BS in the range of 100’s of MHz and TS in the range of

milliseconds, f0 can range from fractions of a kHz to 10’s of MHz.

5.4.3 Total noise in the sampled signal

Inserting (5.13) and (5.19) in (5.3) we get,

ry(0) =
A2

0

2
(1 +Rθ(0))− A2

0

2

(
−ω2

0 + (2πBL)2Rθ(0)
)
rtj(0)

⇒ ry(0) ≈ A2
0

2
+
A2

0

2
Rθ(0) +

A2
0

2
ω2
0rtj(0). (5.21)

The first term in (5.21) is the signal power. The second term is the noise power due to

phase noise in the IF radar signal, which is termed PθIF . The third term is the noise

power due to the sampling clock, and conforms to a well-known result [30,31,83]. As

can be noticed, the fourth term has been ignored because σtj for clocks is specified

in pico- or femto-seconds. Computing rtj(0) = σ2
tj will make this term minuscule

compared with the second term in (5.21). Equation (5.21) is an important and

powerful result appealing to intuition - the total phase noise is the sum of the phase

noise in the IF signal and the phase jitter in the sampling clock scaled by ω2
0. It can

be concluded from (5.21) that in order to see the effect of sampling clock jitter on

the total phase noise, the two noise terms need to be compared. Fig. 5.3 illustrates

the signal and the phase noise transfer under analog-to-digital conversion.
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Figure 5.3: Illustration of how the clock jitter adds to the IF signal’s phase noise.

Table 5.1: Parameters of the FMCW radars being studied

Parameters MMW Radar MW Radar

Swept Bandwidth, BS 600 MHz 500 MHz

Sweep Time, TS 1 ms 0.5 ms

Loop Bandwidth, BL 100 kHz 50 kHz

Freq. Multiplication Factor, N 8 1

In-band noise level, L1 -90 dBc/Hz -120 dBc/Hz

5.5 Application to FMCW Radar Systems

In this section the total phase noise in the sampled signal in two example FMCW

radar systems working at 77 GHz and 5 GHz respectively will be analysed. Due

to the difficulty in synthesising a low-noise source at 77 GHz the noise in the IF

signal is much higher than in the 5 GHz Microwave (MW) radar. The goal here

is to ascertain which of the noise terms in (5.21) dominates the overall noise in

the sampled signal. The noise terms vary with τd, i.e., the target range, so it is

appropriate to compute them as a function of τd (and parametrized by Rtj(0)).

The system parameters of the two radar systems are shown in Table 5.1. Using

those parameters the noise terms for the two radars can be computed as follows:

The 77 GHz Radar

Rθ(0) = 0.0804
(

1− e−2π105τd
)
, (5.22)
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ω2
0rtj(0) = 1.42× 1025τ 2d × rtj(0). (5.23)

The 5 GHz Radar

Rθ(0) = 6.28× 10−7
(

1− e−2π104τd
)
, (5.24)

ω2
0rtj(0) = 3.95× 1025τ 2d × rtj(0). (5.25)

Note that (5.22) and (5.24) imply that Rθ(0) � 1 for all τd as assumed in the

previous section to ignore the second term in (5.18). Table 5.2 summarizes the noise

terms versus target range. We have considered three sampling clocks as follows:

1. σtj1 =
√
rtj1(0) = 1 ps (representing a low-phase noise clock source)

2. σtj2 =
√
rtj2(0) = 10 ps

3. σtj3 =
√
rtj3(0) = 100 ps (representing the equivalent of a modern FPGA-

based clock source).

In the case of the 77 GHz radar it can be seen that all sampling clocks have

a negligible noise contribution compared with the IF signal’s inherent phase noise.

This result makes the selection of the sampling clock much easy (and cheap). For the

5 GHz radar, however, it can be seen that Clock 1 has lower noise contribution than

the IF signal, Clock 2 is comparable, and Clock 3 has a higher noise contribution

than the IF signal. It should be noted that for a given radar the noise terms depend

directly on the noise parameters in Table 5.1, and not directly on the actual operating

frequency of a radar.

From (5.21) it can be concluded that, as a figure-of-merit, one noise term dom-

inates the other if it is at least 10 times larger. So the sampling clock’s noise

contribution must be 10 times less than the radar signal’s phase noise to have a

minimal effect.

5.6 Conclusion

In this chapter we analysed the effect of jitter in the sampling clock on radar signals

having their own phase noise. An intuitive and powerful equation for the total phase

noise in the sampled radar signal was derived. In summary, to select a sampling

clock for a given radar system one needs to compare the intrinsic phase noise in

the IF radar signal with the phase noise transferred from the sampling clock to

the IF signal. A detailed analysis of a higher-noise MMW radar and a lower-noise

Microwave radar showed that a lower-cost sampling clock may be adequate for a
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MMW radar having a noisy IF signal, while a more expensive clock will be needed

for a radar with a relatively low-noise IF signal. The analysis can be extended easily

to radars operating in other frequency bands.
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Chapter 6

On Phase Measurement in FMCW

Radar Systems 1

6.1 Summary

Unlike AM and PM systems, FM systems do not necessarily require the use of a dual

I/Q receiver for unambiguous phase measurement. In this chapter this phenomenon

is described in detail and work out the conditions when single-channel phase mea-

surements can be used for the reliable measurement of the phase and the Doppler

frequency of targets in FMCW radars systems. The developed theory is applied

to surveillance and automotive radar systems to determine the velocity bounds for

the unambiguous measurement of phase. The influence of phase noise in the same

context is discussed. Results of coherent averaging on the data acquired using a

single-channel radar system are presented to validate the theory.

6.2 Introduction

Accurate measurements of frequency and phase is central to the working of modern

radar systems and are directly related to the accurate measurement of parameters

like range, bearing, and velocity that are fundamental to the successful detection,

tracking, and imaging, etc. of the targets of interest. This chapter focuses on the

fundamental systems engineering problem of analysing simple system architectures

for the reliable measurement of the phase in target returns using homodyne FMCW

radar systems.

1The contents of this chapter have been submitted for publication in [84]
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Figure 6.1: Block diagram for time-domain phase measurement using an FMCW
radar

Fig. 6.1 shows a homodyne FMCW architecture employing in-phase (I) and

quadrature (Q) mixers to demodulate the received radar signal. The instantaneous

time-domain amplitude and phase can be extracted by employing this scheme. Fig.

6.2 shows a simpler architecture utilising a single mixer to demodulate the received

signal which is then digitised and operated on by complex Fast Fourier Transform

(FFT) processing. Although this method cannot be used to obtain the instantaneous

phase of the received signal, we note that this is not required for many radar appli-

cations. Post-FFT phase measurement can prove sufficient for the desired targets,

and it is the purpose of this chapter to analyse the conditions under which no am-

biguity will occur in the phase measurement when using the system in Fig. 6.2. An

application of this type of system in coherent averaging will also be demonstrated.

When the system in Fig. 6.2 is used, it results in a significant saving in costly

hardware and engineering effort especially at microwave and millimetre wave fre-

quencies. However this system cannot measure the negative frequency portion of

the spectrum. Therefore, the system shown in Fig. 6.2 will measure the phase

unambiguously only if the demodulated frequency spectrum is confined to one side-

band. After down-conversion, the spectra of AM (amplitude-modulated) and PM

(phase-modulated) signals are zero-centred which means that half of the modulation
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Figure 6.2: Block diagram for frequency-domain phase measurement using an
FMCW radar

spectrum lies in the negative frequency region. Therefore, the I/Q demodulation

scheme of Fig. 6.1 becomes necessary to extract the full (amplitude and phase) spec-

trum. In contrast FM (frequency-modulated) spectra are centred at an offset fm

from the carrier. Therefore after demodulation the baseband spectrum having band-

width B is centred around the baseband modulation frequency fm. If |fm|−B/2 > 0

then all the modulation power lies in only one side of the origin and the system in

Fig. 6.2 can be used to extract the phase information in the signal unambiguously.

The only cost is that the thermal noise from the image sideband will always be

present, so the noise floor will be 3 dB higher than could be achieved using I/Q

mixers. In the following this phenomenon is analysed for FMCW radars.

6.3 General analysis of modulated signals

In this section a mathematical analysis of AM, PM and FM signals is presented. Our

analysis is motivated by [85]. Let the AM, PM and FM carrier signals be defined

as below:

SAM (t) = A1 [1 +ma (t)] cos (ω0t+ θ0) (6.1)

SPM (t) = A2cos (ω0t+mθ(t) + θ0) ; |mθ| < 1 (6.2)

SFM (t) = A3cos ([ω0 − ωm] t+ θ0) , (6.3)

where θ0 represents an unknown phase shift relative to the local oscillator (LO)

signal. In (6.3) we have considered frequency modulation resulting in a frequency

translation by ωm. Now consider the demodulation of these signals with a LO at

the carrier frequency ω0 as illustrated in Fig. 6.3. The signal components in the
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Figure 6.3: Illustration of the demodulation scheme for all three types of modulation.

baseband will be as follows:

S ′AM (t) = A′1ma (t) cos (θ0) (6.4)

S ′PM (t) ≈ A′2mθ (t) sin (θ0) (6.5)

S ′FM (t) = A′3cos (ωmt− θ0) . (6.6)

Note that S ′AM(t) is scaled by cos(θ0) that scales the amplitude from maximum

(for θ0 = 0) to zero (for θ0 = π/2). We also notice that in S ′PM(t) the sin(θ0) term

scales the message signal from maximum (for θ0 = π/2) to zero (for θ0 = 0). In

practice θ0 varies randomly [86]. Hence, for the faithful reproduction of the AM and

PM signals the quadrature channel needs to employed.

In contrast, it can be noted that S ′FM(t) is immune to any amplitude or phase

ambiguities even in the case of employing a single channel detector. The reason

is that instead of residing around the carrier (as in the case of AM and PM sig-

nals), the FM signal resides at an offset from the carrier. In other words, while the

spectrum of the demodulated AM and PM signals are centred at zero frequency,

the spectrum of FM signals is centred at the offset frequency ωm. Therefore, the

full phase information can be extracted from FM signals using various signal post

processing techniques, most notably the complex FFT.

In practice instead of a signal tone (ωm in (6.3)) the demodulated FM signal may

contain a band of frequencies, due to signal components (like multiple targets) or

due to noise components (like phase noise around a single target). For unambiguous

phase measurement using a single-channel receiver, therefore, all signal and noise

components must remain at a frequency offset from the carrier.
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Figure 6.4: Illustration of the swept frequency vs time for a stationary, an approach-
ing, and a receding target. The beat frequency is positive in all cases.

6.4 Analysis of FMCW radar signals

FMCW radars use various types of waveforms and corresponding signal processing

schemes to extract the range and Doppler information of the targets of interest [87].

In this section the linear up-ramp signal will be used bearing in mind that the result

can be extended to other linear ramp waveforms.

Fig. 6.4 shows the transmit ramp as well as the receive ramps for a stationary,

an approaching, and a receding target. BS and TS are the swept-bandwidth and

sweep-time respectively. τd is the round trip time delay due to a target at range R.

The beat signal due to the stationary target can be written as,

SIF (t) = A0cos (2πfb0t− θ0) , (6.7)
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where,

|fb0| =
BS

TS
τd. (6.8)

Note the similarity between (6.6) and (6.7). The Doppler shift due to an ap-

proaching target at R causes the instantaneous received frequency to be larger than

that for a stationary target. The beat frequency decreases correspondingly. For a

fast enough target, the Doppler shift could be large enough so that the received

signal’s instantaneous frequency is larger than the instantaneous transmit frequency

as shown in the top plot in Fig. 6.4. The beat frequency will be positive in this

case. One can easily extend the same arguments for a down-ramp: in that case the

beat frequencies will normally be positive except for a rapidly receding target.

6.4.1 Phase measurement in the absence of Doppler

The rapid-approaching situation in Fig. 6.4 cannot happen for stationary targets.

Therefore it is reasonable to conclude that for stationary target detection applica-

tions, like foreign object debris (FOD) detection, the full phase spectrum can be

measured unambiguously using the system in Fig. 6.2.

6.4.2 Phase measurement for moving targets

Let the beat (IF) frequency produced by the stationary target at range R be −fb0.
The beat frequency for an approaching target at the same range will be −fb0 + fD.

It follows from Fig. 6.4 that the beat frequency will always remain negative if

fD < |fb0| (assuming an up-chirp). Therefore, for a given set of radar parameters, a

relationship can be derived for the maximum allowable target velocity ν that does

not change the sign of the beat frequency as follows:

fD =
2ν

λ
<
BS

TS
τd ⇒ ν <

λBSR

cTS
, (6.9)

where λ is the carrier’s wavelength and c is the speed of light. For down-ramps,

(6.9) also sets the bound on the maximum velocity receding targets could have

without changing the sign of the beat frequency. Thus for triangular sweeps (6.9)

sets the dynamic range of allowable velocities that would result in unambiguous

phase measurement.

From (6.9) it is apparent that the velocity dynamic range can be increased by

reducing the Doppler frequency relative to the beat frequency of a given target. This

can be done by increasing λ and/or increasing the sweep rate BS/TS.
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Figure 6.5: Phase noise leakage in the negative frequency region.

6.4.3 The effect of phase noise

Phase noise appears as noise sidebands on the target response. When the target is

very close in range some of the noise sidebands can spread into the negative frequency

region. When using the single-channel receiver of Fig. 6.2 the negative frequency

portion of the target spectrum would wrap around and appear as increased noise in

the positive frequency region. This is illustrated in Fig. 6.5.

However it is known that for close ranges the phase noise decorrelates heavily

so that the noise sidebands are minimised [27]. For short ranges, the phase noise

is decorrelated as 20 dB/decade [27], so if the target’s spectrum is steeper than -20

dB/decade there will be residual phase noise that can spill-over and then fold-over.

This can happen when a large target is close to the radar.

This effect can be even more pronounced when the target is at a farther range

but the target peak appears at a lower frequency due to Doppler shift. The phase

noise decorrelation (i.e. the difference in the transmitted and received phase noise

processes) will essentially be according to the target’s actual range. Detailed calcu-

lations of the effect must be carried out using the detailed phase noise spectra. This

problem can also be alleviated if λ and/or the sweep rate is increased as explained

above.

87



CHAPTER 6. ON PHASE MEASUREMENT IN FMCW RADAR SYSTEMS

Table 6.1: Parameters of example radars

Parameters Surveillance Automotive

Carrier Frequency 76.5 GHz 24 GHz

Carrier Wavelength 3.9216 mm 12.5 mm

Sweep Time TS 2 ms 1 ms

Coherent Processing Interval (CPI) 2 ms 64 ms

Doppler Resolution, 1/CPI 500 Hz 15.625 Hz

Velocity Resolution, λ/(2CPI) 0.98 m/s 0.0977 m/s

Swept Bandwidth BS 600 MHz 150 MHz

Doppler Shift at 1 m/s 510 Hz 160 Hz

6.5 Application to FMCW radar systems

6.5.1 Maximum velocity calculations

The application of (6.9) to radar systems is straightforward. Table 6.1 shows the

parameters of a surveillance radar and an automotive radar. Table 6.2 shows the

maximum permitted velocities calculated using (6.9) for targets at various ranges.

It is apparent that in most practical situations the target velocities are under these

limits. This is a strong result that suggests that a single-channel demodulator fol-

lowed by complex FFT processing can be used for coherent processing and phase

measurement in a wide variety of situations. For lower carrier frequencies the re-

quirement for the maximum velocities is even more relaxed as evidenced by this

example.

6.5.2 Effect on Range-Doppler algorithms

FMCW radars employ various waveforms to extract the true range and Doppler

information from radar signals. These include triangular sweeps, the chirp sequence

waveform, the multiple FSK waveform, and the intertwined chirp sequence waveform

[87]. In general the triangular sweep will have the Doppler limit of (6.9) on both the
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Table 6.2: Maximum velocity for unambiguous phase measurement

Range Surveillance Automotive

m/s mph m/s mph

1 m 3.92 8.77 6.25 14

10 m 39.2 87.7 62.5 140

100 m 392 877 625 1400

up-sweep and the down-sweep (i.e. approaching as well as receding targets). Other

waveforms employing only the up-ramp or the down-ramp respectively will have the

Doppler limit for approaching or receding targets only.

6.6 Measurement results from a practical FMCW

radar system

This section presents the results of coherent averaging performed on signals mea-

sured using the 76.5 GHz surveillance radar system of Table 6.1 based on Fig. 6.2.

If the phase is measured faithfully using the system in Fig. 6.2 then coherent aver-

aging should result in M -times improvement in the SNR, where M is the number

of signal records being averaged [88].

A raw display of the scene being analysed is shown in Fig. 6.6. Three target

peaks can be seen along with the raised noise floor due to phase noise around them.

The bins displayed in the abscissa are 25 cm each. The ordinate is normalised to the

highest signal in the scene. The dB units are arbitrary in that they are not relative

to any common reference (this is a common way of displaying range-profiles in radar

systems).

50 sweeps of complex radar data from this scene were recorded and the coherent

average was computed. First the phase noise bins shown in Fig. 6.6 were analysed.

The dotted line in Fig. 6.7 shows the decrease in noise power versus an increasing

number of averages by varying M from 1 to 50. The result has been normalised to

the noise power when M = 1. The solid line is a plot of the function 1/M on the

semi-log scale. The result shows an agreement with the theoretical prediction of the

improvement in SNR.

89



CHAPTER 6. ON PHASE MEASUREMENT IN FMCW RADAR SYSTEMS

Figure 6.6: Radar scene display from a single FMCW sweep. Three target peaks
are visible. The bin size is 25 cm.

Figure 6.7: Variation of noise power with averaging
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Figure 6.8: Improvement in SNR due to coherently averaging 50 sweeps. The mean
noise level before averaging is also displayed for comparison.

In Fig. 6.8 the coherently averaged data using 50 sweeps has been plotted, along

with the mean noise level from Fig. 6.6 (i.e. the incoherent average). The improve-

ment in SNR as well as the phase noise sidebands of around 17 dB is apparent,

which is compatible with Fig. 6.7. This leads to better definition in the scene.

6.7 Conclusion

In this work the effectiveness of the FMCW radar architecture employing only a

single channel detector followed by complex FFT processing to extract the phase

information was analysed. A mathematical analysis of various modulation schemes

was presented to give the idea a strong theoretical foundation. It was found that

the said radar architecture successfully measures the phase information for static

targets. For moving targets a maximum velocity condition was derived for unam-

biguous phase measurement. Practical examples demonstrated that this condition

is easily met in a wide variety of applications. Coherent averaging performed on

measurements from a surveillance FMCW radar system shows an improvement in

SNR according to the theoretical prediction, signifying reliable phase measurement.

91



Chapter 7

A Generalised Brownian Motion

Model of RF Spectral Dispersion

due to Phase Noise1

7.1 Summary

In this chapter a unified Brownian motion-based model for the dispersion in the

RF spectrum of oscillators due to the phase and frequency noise processes will be

presented. A novel analysis of the spectral dispersion due to random-walk frequency

noise will be presented that shows the possibility of the existence of satellite peaks

around the mainlobe of the RF spectrum along with time-varying spectral broad-

ening. Fourier Transform based models will be used for the even-order phase noise

process while fractional calculus based models will be used for the odd-order flicker

phase and frequency processes. The generalised Gaussian function (GGF) is shown

to be an appropriate model for the RF autocorrelation function in all cases.

7.2 Introduction

Phase noise is a physical process that causes the RF spectra of sinewaves to broaden.

This results in various problems including reduced resolution in radar and spectro-

scopic systems and adjacent channel power leakage in communication systems. A

large body of literature exists for the characterisation and measurement of phase

noise. However a relatively small literature exists that relates exactly the spec-

tral dispersion in the RF spectrum of a sinusoidal signal impaired with the phase

1The contents of this chapter have been submitted for publication in [89].
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and frequency noise processes. Our interest in this work is in terms of predicting

the ultimate target resolution capability of FMCW radar systems, where the range

resolution is defined by the phase noise in the transmitted RF signal [27, 43].

Previous attempts at relating the phase spectrum to the RF spectrum of a signal

include [70, 90–92]. In this chapter a clear association of each constituent phase

noise process with a Brownian motion process will be introduced. The power-law

spectral coefficients of the phase spectral density will be related to the variances

of the individual Brownian motion processes. Based on existing results the RF

spectral dispersion due to the white and flicker phase and frequency processes will

be analysed. A novel RF spectrum of a signal impaired with random-walk frequency

noise will be presented that suggests the possibility of the existence of satellite peaks

in the RF spectrum. The application of the generalised Gaussian function (GGF)

to model the autocorrelation function of an RF signal impaired with the phase and

frequency noise processes will also be presented.

7.3 Theoretical Background

Consider the unity amplitude RF signal,

x(t) = sin (2πf0t+ φ(t)) , (7.1)

where φ(t) represents the phase noise processes, and f0 is the carrier (or ‘steady-

state’) frequency that is really defined under the small phase noise condition σ2
φ � 1

which is valid only for short measurement times. The amplitude noise is assumed

to be negligible.

7.3.1 Spectral density of phase fluctuations

φ(t) can be written in terms of its constituent phase noise processes as,

φ(t) =
4∑

β=0

φβ(t), (7.2)

where each of the φβ(t) are independent zero-mean Gaussian random processes with

different covariances, and can be identified by their colour [91]. Each of the φβ(t)

can be described by a type of Brownian motion as summarised in Table 7.1. This

association implies that all the phase noise processes can be treated using the math-

ematical tools developed for Brownian motion processes. We note that the white
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Table 7.1: The Phase Noise Processes Identified with the Corresponding Brownian
Motion of Phase

φ0(t) White Phase Noise differential Brownian motion

φ1(t) Flicker Phase Noise fractional Gaussian noise

φ2(t) White Frequency Noise ordinary Brownian motion

φ3(t) Flicker Frequency Noise fractional Brownian motion

φ4(t) Random-walk Frequency Noise integral Brownian motion

and the flicker phase processes are stationary random processes: however, the three

frequency noise processes are non-stationary.

The spectral density of φ(t) is defined as follows [8],

Sφ(f) =
4∑

β=0

Sφβ(f) =
4∑

β=0

hβ
fβ
. (7.3)

Sφ(f) is the Spectral Density of Phase Fluctuations or the one-sided phase PSD.

7.3.2 The autocorrelation of the RF signal

We use the analytic form of (7.1) as follows:

x̂(t) = ej[2πf0t+φ(t)]. (7.4)

As noted above, the frequency noise processes in general are non-stationary. There-

fore the covariance of x̂(t) is given as

Rx̂(t1, t2) = E [x̂∗(t1)x̂(t2)]

= E
[
ej[φ(t2)−φ(t1)]

]
. (7.5)

Therefore, for the autocorrelation Rx̂(τ) = Rx̂(t2 − t1) to exist, the phase noise

processes don’t need to be stationary but do need to be first-difference stationary.

It has been shown that for Gaussian phase noise processes (stationary or other-
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wise) the above expectation can be evaluated as [92]:

Rx̂(t1, t2) = exp

(
−1

2
[Rφ(t1, t1) +Rφ(t2, t2)− 2Rφ(t1, t2)]

)
, (7.6)

where Rφ(ti, tj) = E[φ(ti)φ(tj)]. Therefore, in order to compute the covariance of

the RF signal the covariance of φ(t) is required.

7.3.3 The covariance and spectrum of φ(t)

Assuming all φβ(t) being independent of each other one can write using (7.2),

Rφ(t1, t2) = E

[
4∑

β=0

φβ(t1)
4∑
l=0

φl(t2)

]

=
4∑

β=0

4∑
l=0

E [φβ(t1)φl(t2)]

Rφ(t1, t2) =
4∑

β=0

E[φβ(t1)φβ(t2)] =
4∑

β=0

CβRφβ(t1, t2). (7.7)

That is, the covariance Rφ is a linear superposition of the covariance of the indi-

vidual phase noise processes. The Cβ are constant multipliers of the normalised

autocorrelation functions Rφβ(t1, t2). We note that Rφ(t1, t2) = Rφ(τ) for β = 0 and

2, where τ = t2 − t1. The Fourier Transform of Rφ(τ) is Sφ(2πf), i.e.,

Sφ(2πf) = F [Rφ(τ)]. (7.8)

Inserting (7.7) we get,

4∑
β=0

(2π)βhβ
(2πf)β

= F

[
4∑

β=0

Cβ ×Rφβ(τ)

]

⇒ Cβ ×F [Rφβ(τ)] =
(2π)βhβ
ωβ

. (7.9)

For β = 0 and 2, (7.9) can be solved as shown in Table 7.2. For odd β the

φβ(t) are fractional noise processes and as such direct Fourier Transformation is not

the correct tool for analysing them. The covariance of fractional Brownian motion
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Table 7.2: The autocorrelation of even-order Phase Noise Processes

β = 0 Rφ0(τ) = δ(τ) C0 = h0

β = 2 Rφ2(τ) = |τ | C2 = −1
2
(2π)2h2

(fBm) noise can be derived using fractional calculus, and is given by [93]:

RfBm(t1, t2) =
σ2
2H+1

2

[
|t1|2H + |t2|2H − |t1 − t2|2H

]
, (7.10)

where 0 < H ≤ 1 is the Hurst exponent and σ2
2H+1 is the coefficient of drift variance

(the subscript 2H + 1 has been chosen to comply with the notation used in this

chapter). The variance of a fBm process can be computed by setting t1 = t2 = t:

σ2
fBm = σ2

2H+1|t|2H , (7.11)

which shows that the variance grows with time. H = 1 corresponds to true flicker

frequency noise.

As shown in Table 7.1 the flicker phase noise can be modelled as a fractional

Gaussian noise. The derivative of fractional Brownian motion would be fractional

Gaussian noise (fGn) by analogy with the derivative of ordinary Brownian motion

being white Gaussian noise. Unfortunately the derivative of fBm does not exist

[92, 94]. However the difference does exist and fGn has been analysed successfully

as a discrete stationary random process [92,93]. The covariance between samples 0

and m of the fGn sequence is given by [93]:

RfGn(m) =
σ2
fGn

2

[
|m+ 1|2H − 2|m|2H + |m− 1|2H

]
, (7.12)

where 0 < H ≤ 1 is again the Hurst exponent. Interestingly σ2
fGn is not a function

of H. H = 1/2 corresponds to the white noise case and H = 1 corresponds to the

flicker phase noise case. The approximate spectrum of fGn is given by,

SfGn(f) ≈ σ2
fGnC

2(H)|f |1−2H . (7.13)

It is evident that the spectrum approaches h1/f as H → 1 and one can identify

h1 = σ2
fGnC

2(H). An expression for C2(H) can be found in [93].
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7.3.4 The Generalised Gaussian Function

The generalised Gaussian function (GGF) in its normalised form is defined as follows

[95]:

gnorm(x) =
ζ

2αΓ(1/ζ)
e−(|x|/α)

ζ

. (7.14)

For reasons to be apparent soon, the following non-normalised version of the

generalised Gaussian function (GGF) will be considered:

g(t) = e−α|t|
ζ

. (7.15)

Using this definition, ζ = 1 results in the Laplacian function and its Fourier Trans-

form is the Lorentzian spectrum:

e−α|t| ←→ 2α

α2 + f 2
=

2/α

1 + f2

α2

. (7.16)

At t = 1/α the Laplacian function decreases to 1/e of its peak value.

ζ = 2 results in the usual Gaussian function and being an eigen-function of the

Fourier transform, the spectrum is also Gaussian:

e−α|t|
2 ←→

√
π

α
e−ω

2/4α. (7.17)

The variance of the Gaussian spectrum is 2α.

The case of ζ = 3 is also important for the present work and will be discussed

in Section 7.4.3.

7.4 The RF Spectrum of a signal with phase noise

In this section the phase and frequency noise processes will be related to the RF

spectrum of the RF signal that consists of a central peak and the noise sidebands.

7.4.1 White and Flicker Phase Noise

Both white and flicker phase noise contribute to the RF noise sideband power with

slope zero and 1/f respectively. White noise do not contribute to the central peak

of the RF spectrum. The variance of the white noise process is given by σ2
0 = h0. A

detailed analysis of the RF spectrum due to flicker phase noise is given in [91] using

Correlation Theory and in [92] by treating it as fractional Gaussian noise.
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The analysis in [92] suggests that the translation of 1/f phase noise to 1/f RF

sideband spectrum is valid even for large phase noise conditions with σ2
φ only just

under 1. Based on this analysis it appears that 1/f noise does not contribute much

to the central peak. Both [91] and [92] conclude that at very close offsets (only

visible at very long measurement times), the RF spectrum deviates from 1/f and

levels off.

We note that a measurement of this type of levelling off is not possible in practice

due to the frequency noise processes that contribute largely to the central peak of

the RF spectrum.

7.4.2 White and Flicker Frequency Noise

Oscillators perform phase-to-frequency conversion due to the fact that they lock

onto the frequency point for which the total phase shift around the oscillator loop

is zero [96]. Therefore the white and flicker phase noise processes give rise to the

white and flicker frequency processes with phase spectrum slopes of 1/f 2 and 1/f 3

respectively. These also contribute to the overall lineshape of the central peak of

the RF spectrum.

It is well-known that the white frequency noise gives rise to a random-walk

phase noise that that can be modelled as ordinary Brownian motion (Bm) with non-

stationary variance σ2
2|t|. The coefficient of variance can be identified as σ2

2 = 4π2h2.

Analysis of an RF signal impaired with white frequency noise leads to an exponential

autocorrelation and Lorentzian spectrum as follows:

Rx̂2(τ) = e−4π
2h2|τ |/2 ←→ 4π2h2

(2π2h2)2 + ω2

=
1/π2h2

1 + ( ω
2π2h2

)2
. (7.18)

It can be seen that the slope of the RF sideband spectrum approaches 1/f 2. The

autocorrelation is clearly a GGF with β = 1.

For flicker frequency noise, using (7.10) and (7.6) it has been shown in [92] that

the covariance of an RF signal with fractional Brownian phase noise is:

Rx̂3(t1, t2) = exp
(
−σ2

2H+1|t2 − t1|2H/2
)
, (7.19)

which shows that the RF signal impaired with fBm phase noise is stationary in the

autocorrelation even though the fBm noise is non-stationary itself. Therefore for
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exact flicker frequency one can write,

lim
H→1

Rx̂3(τ) = e−Kh3|τ |
2/2 ←→

√
2π

Kh3
e−ω

2/2Kh3 . (7.20)

Thus, flicker frequency noise gives rise to a time-invariant Gaussian RF spectrum.

The autocorrelation is clearly a GGF with β = 2.

7.4.3 Random-Walk Frequency Noise

Noting that random-walk frequency noise causes integral Brownian motion (iBm)

of phase, it is shown in Appendix A that the covariance of φ4(t) is given by,

Rφ4 (t1, t2) = σ2
4t

2
1

(
t2
2
− t1

6

)
, (7.21)

for t2 ≥ t1. The variance of a random-walk frequency noise process is given by

σ2
4|t|3/3 : σ2

4 is the coefficient of drift variance and can be identified as 16π4h4.

Inserting (A.1), (A.3) and (A.4) into (7.6) and simplifying the terms we get,

Rx̂4 (t, τ) = exp

(
−σ

2
4

2

[
|τ |3

3
+ tτ 2

])
; t ≥ 0

⇒ Rx̂4 (t, τ) = exp

(
−σ

2
4|τ |3

6

)
exp

(
−σ

2
4t

2
τ 2
)
. (7.22)

Equation (7.22) shows that the covariance, and hence the RF spectrum, of a

signal impaired with iBm noise is non-stationary and has a non-Gaussian spectral

shape. The first term in (7.22) is time-invariant while the second term is a time-

dispersing Gaussian function. Both of these terms can be identified as Generalised

Gaussian Functions with β = 3 and β = 2 respectively.

Further analysis of the second (Gaussian) term shows that as time t increases,

the spread (or variance) of this term decreases. Due to its multiplicative effect,

the covariance also decreases. This shows that as the spectral spread in the RF

spectrum increases with time without a bound. Such dispersion has been report in

the measurements shown in [70]. For short observation times, however, the Gaussian

term will be very large so that its spectrum will be closer to δ(f) and the spectrum

of the first term will dominate the overall spectrum.

A closed-form Fourier Transform of the first term i.e., F
(

exp
[
−σ2

4 |τ |3
6

])
does

not appear to be available in the literature. In the absence of that one can first

compute the Fourier Transform of F
(

exp
[
− |τ |

3

6

])
numerically, as shown in Fig.

7.1 which reveals that in addition to the central peak, two sets of satellite peaks can

99



CHAPTER 7. A GENERALISED BROWNIAN MOTION MODEL OF RF
SPECTRAL DISPERSION DUE TO PHASE NOISE

Figure 7.1: Non-Gaussian part of the spectrum of an oscillator having random-walk
frequency noise.
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be observed. Using the Scaling Property of Fourier Transforms it is apparent that

the spectrum F
(

exp
[
−σ2

4 |τ |3
6

])
will be a stretched version of that in Fig 7.1.

The existence of satellite peaks has been reported in the measurements con-

ducted in [97–99]. Our analysis provides a rigorous framework for analysing such

phenomena.

7.5 Conclusion

In this chapter the RF spectral dispersion of signals due to phase noise processes

modelled using the Brownian motion processes was analysed. The variances of the

individual Brownian motion processes were found to be related to the power-law

spectral coefficients of the phase spectrum. The RF signal spectrum under white

and flicker phase and frequency noises was analysed. A novel RF spectrum of a

signal impaired with random-walk frequency noise was presented that highlighted

the possibility of the existence of satellite peaks in the RF spectrum. The autocorre-

lation of the RF signal in each case was successfully modelled using the generalised

Gaussian function (GGF). The model developed here can be used to predict the

expected lineshape and sideband power of practical oscillators.
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Chapter 8

The Linewidth of Oscillators with

Power-Law Phase Noise1

8.1 Summary

Oscillator linewidth is an important parameter that defines the resolution capability

of radar and spectroscopic systems. In this chapter the existing models for the

linewidth of the RF spectra of oscillators having power-law phase noise will be

reviewed and a new model for the linewidth due to random-walk frequency instability

will be developed. The dependence on measurement time of the linewidth due to

the flicker frequency process has also been addressed. It will be shown that the

RF spectrum of an oscillator having random-walk frequency noise can have a much

more complicated shape than the Gaussian shape reported in other works. The

effect of frequency multiplication on the linewidth for each type of phase noise

will be discussed. Correction factors have been worked out for each frequency noise

process to correct for the artefacts introduced by the linewidth measurement system.

The chapter ends with a discussion on how the oscillator linewidth defines range

resolution in FMCW radar systems.

8.2 Introduction

The characterisation of an oscillator’s phase and frequency stability and drift phe-

nomena is done using the spectral density of phase fluctuations Sφ(f), which is a

composite of various phase noise processes [9]. Practical radio systems like radars,

1A research paper based on some of the contents of this chapter has been submitted for publi-
cation in [100] and is currently under review.
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communication systems, and meteorological systems measure and process the RF

spectrum SRF (f) of the received signals. Due to the importance of these two quan-

tities, they have received much attention in the literature where the characteristics

of each and their inter-relationship has been explored [11, 49, 101]. It is well-known

that, within a scaling factor, the two quantities are equal when the phase noise is

small, which is essentially at the frequency offsets far from the carrier, and mod-

els the short-term frequency instability of the oscillator. Further it is also known

that the low-frequency phase noise processes in Sφ(f) model the medium-term and

long-term frequency instability. In addition the low-frequency noise processes have

a relationship with the line-shape of SRF (f) and the linewidth which is a very im-

portant quantity for high-resolution radio systems.

Halford [53], over 40 years ago, presented a heuristic model to compute the

linewidth of oscillators having power-law phase noise based on a generalised Lorentzian

spectrum which has been widely used to estimate oscillator linewidths. Since that

time, researchers have investigated the relationship between SRF (f) and Sφ(f) for

low frequency offsets [11, 49, 53, 90, 91, 102]. However an improved model of oscil-

lator linewidth for power-law noise processes has not been presented. Our interest

in oscillator linewidths is due to the fact that they define the range resolution in

coherent as well as non-coherent FMCW radar systems.

This chapter addresses the problem of computing the linewidth of the RF spec-

tra SRF (f) as a function of the low-frequency phase noise processes in oscillators

specified by Sφ(f). An attempt will be made to consolidate the existing models for

SRF (f) proposed over the recent years and analyse their effectiveness in predicting

oscillator linewidths by discussing their pros and cons. The derived results will be

compared with Halford’s heuristic model for oscillator linewidth [53] and in doing

so the need for better linewidth models for flicker frequency noise and random-walk

frequency noise will become apparent. In theory, the RF spectrum of an oscilla-

tor having pure flicker frequency noise does not exist because the noise process is

non-stationary. After analysing a few models that diverge for pure flicker frequency

noise, alternative models will be discussed that include the effect of finite measure-

ment time and measurement bandwidth, resulting in expressions for finite measured

oscillator linewidths. The latter models are more useful in practice. Afterwards a

new model for the SRF (f) for the random-walk frequency case will be discussed and

the oscillator linewidth will be worked out from that model. The effect of frequency

multiplication on the linewidth for each noise type will also be discussed.

The organisation of this chapter is as follows. Section III introduces the precise

relationship between various regions of SRF (f) and Sφ(f). Section IV introduces
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(a) Measurement of SRF (f) (b) Measurement setup for Sφ(f)

Figure 8.1: Measurement setups for (a) the RF Spectrum and (b) the spectral
density of phase fluctuations of an Oscillator.

two popular linewidth measurement systems. In Section V an analysis of oscillator

linewidths for each type of phase noise is presented separately along with the effects

of frequency multiplication in each case. In addition to a critical analysis of existing

models, a new model for linewidth due to the random-walk frequency noise will be

presented. The section will conclude with a discussion on computing the overall

linewidth. Section VI discusses the relationship of oscillator linewidth with radar

range resolution for sub-coherence time delays (i.e. short ranges) as well as longer

ranges. Section VII contains the conclusion.

8.3 The RF Spectrum and the Spectral Density

of Phase Fluctuations

The RF Spectrum SRF (f) of an oscillator and the Spectral Density of Phase Fluc-

tuations Sφ(f) of an oscillator are distinct quantities that are related to each other

in a rather complicated way. Fig. 8.1a shows the setup to measure SRF (f): this is

also called direct spectrum measurement. A spectrum analyser can be used to mea-

sure SRF (f) at microwave and millimetre wave frequencies. A scanning Fabry-Pérot

interferometer can be used at optical frequencies to measure the RF spectrum [68].

Fig. 8.2 shows an illustration of a typical plot displayed using this setup for an

oscillator having a nominal frequency ν0. The labelling highlights some common

terms used in the literature in connection with phase noise.

Fig. 8.1b shows the set up to measure Sφ(f). This scheme is commonly used

in signal source analysers where the actual implementation in some modern signal

source analysers use a digital PLL followed by FFT and correlation processing. Fig.

8.3 shows an illustration of a typical plot displayed using this set up. The labelling

highlights the common phase noise processes in oscillators [8].
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Figure 8.2: Illustration of the RF Spectrum of an oscillator

Figure 8.3: A generic plot of the Spectral Density of Phase Fluctuations [8].
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The IEEE Standard 1139-1999 [8] defines the relationship between SRF (f) and

Sφ(f) at large frequency offsets as follows. The phase noise L(f) measured from

SRF (f) in dBc/Hz is equal to one-half of Sφ(f) for all frequencies greater than fα

defined as [9], [8]: ∫ ∞
fα

Sφ(f)df = 0.1 rad2. (8.1)

Below fα there exists another frequency fc, called the coherence frequency of the

oscillator, defined as: ∫ ∞
fc

Sφ(f)df = 1 rad2. (8.2)

fc defines the 3-dB linewidth of SRF (f) [53], [55] which is the main focus of this

chapter. fc and fα are notionally shown in Fig. 8.3. In addition to defining the

3-dB linewidth fc also defines the coherence time τc = 1/2πfc, which is the time lag

after which an oscillator signal becomes 1 rad2 RMS out of phase with itself (due

to phase noise). Below fc the RF line shape of an oscillator is a function of the

low-frequency portion of Sφ(f) [53,91,102]. Note that the white-phase (f 0) portion

of Sφ(f) is not used in computing fc and fα because the integrals would diverge.

The portion of SRF (f) between fc and fα defines the near-carrier phase noise. In

this region, SRF (f) is nonlinearly related to Sφ(f) [101], [102], [51]. Some authors

also use interpolation as an approximation of the RF spectrum between fc and fα

instead of using the non-linear relationship.

From the preceding discussion it is clear that SRF (f) and Sφ(f) are related to

each other in a complicated but distinctive way. For low to moderate phase noise

sidebands, the phase noise measured using SRF (f) is always less than 0 dBc . On

the other hand, for a low-enough frequency offset, Sφ(f) can indeed be greater than

0 dB-rad2/Hz for typical oscillators: even when the phase noise sidebands are very

low. In fact measurements have not shown any upper limit for Sφ(f) [103]. As a

final note, an attempt must not be made to compute fc and fα using SRF (f). The

reason is that the
∫∞
−∞ SRF (f)df is equal to the power P in the RF signal: so fc and

fα computed using SRF (f) will be a function of P which does not make sense. One

could argue that one could estimate fc and fα using SRF (f)/P , i.e., the normalised

RF spectrum. However, note that
∫∞
−∞ [SRF (f)/P ] df = 1 so that fc = −∞, which

doesn’t make sense again. Also fα computed using SRF (f) would be incorrect if

AM noise is present in addition to phase noise . We conclude that fc and fα must

be computed from Sφ(f). Once computed, they can be used to identify the three

regions of SRF (f).
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Figure 8.4: Delayed self-heterodyne setup for linewidth measurement

8.4 Measurement of the linewidth

Direct spectrum measurement has been used for the measurement of the linewidth

of highly stable lasers at low resolutions [68]. While using direct linewidth measure-

ment the measurement time τm sets the lower frequency limit in the measurement:

frequency variations slower than 1/τm will have no contribution in the measured

SRF (f).

However, in general, fine resolution measurement of the linewidth of noisy os-

cillators on a spectrum analyser may not be possible due to the frequency noise

processes causing the spectrum to drift over the analyser’s display. The drifting RF

spectrum makes it impossible to use averaging over multiple measurements to reduce

the display noise. Also, an attempt to lower the resolution bandwidth (RBW) of the

spectrum analyser (to measure the linewidth accurately) would require longer sweep

times. Therefore, the power in a single measurement may not remain confined in

a single frequency point due to the frequency drift. This will give rise to distorted

measured spectra.

Reference [104] reviews several measurement setups that have been devised to

measure the linewidth of oscillators with high resolution. Of those, a commonly

used setup is the delayed self-heterodyne system [105] shown in Fig. 8.4. In the

top branch the oscillator signal is passed through a delay-line having a length such

that the time-delay τd is greater than the coherence time τc of the oscillator so that

the two inputs to the mixer are effectively uncorrelated. In the lower branch the

oscillator signal is frequency translated by fb which is usually much smaller than

the oscillator’s nominal RF frequency ν0 but needs to be larger than the spectral

spread being measured. The mixer produces a signal at the beat frequency fb and

a spectrum analyser is used to measure the linewidth.

The phase noise in the beat signal produced by the mixer is φ(t) − φ(t − τd).
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This implies that the low-frequency FM noise processes cancel out for all f < 1/τd.

Therefore τd in this setup has the same effect as τm in direct spectrum measure-

ment [71]. The measurement system of Fig. 8.4 modifies the actual linewidth of the

oscillator: the measured linewidth needs to be corrected by a factor depending on

the type of power-law phase noise in order to compute the correct linewidth. For

the delayed self-heterodyne system it has been shown that the measured Lorentzian

linewidth (for the white-frequency case) is twice the original linewidth and the mea-

sured Gaussian linewidth (for the flicker frequency case) is
√

2 times the original [69].

We will discuss the increase in the linewidth for the Random-Walk Frequency process

in Section 8.5.5.

It should be noted that the above-mentioned increase in the measured linewidth

is only valid when τd > τc. When τd < τc, the difference phase term φ(t) − φ(t −
τd) causes the noise processes to decorrelate, which results in measured linewidths

narrower that those stated above [69,80].

It has been shown that the measured linewidth is also a slow function of the

measurement time, and increases indefinitely in the limit of increasing measurement

time [68,69,71]. The excess increase in the measured linewidth is attributed to the

flicker frequency noise process.

As a final note, the effects of the dispersion in the delay-line being used in the

measurement setup must be characterised to estimate any linewidth broadening due

to the dispersive effects [106].

8.5 Theoretical analysis of oscillator linewidth

In this section models of the oscillator linewidth are presented based on the models

of SRF (f) for each phase noise process separately. Expressions for the increase in

the linewidth under frequency multiplication for each case will also be derived.

Sφ(f) has the following well-known form [8]

Sφ(f) = h0 +
h1
f

+
h2
f 2

+
h3
f 3

+
h4
f 4
, (8.3)

so that the general form is Sφ(f) =
∑
hβ/f

β. Under frequency multiplication by

N , it is well-known that all the coefficients hβ are multiplied by N2. Therefore, the

multiplied up phase spectrum is,

Ŝφ(f) = N2h0 +
N2h1
f

+
N2h2
f 2

+
N2h3
f 3

+
N2h4
f 4

. (8.4)
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In the following the notation Sβ(f) will be used for the oscillator’s RF spectrum

due to the β-th phase noise process, Wβ for the respective linewidth, and Ŵβ for

the multiplied up linewidth.

8.5.1 White Phase Noise

White phase noise has a flat frequency spectrum. Theoretically an oscillator signal

in white phase noise will have a linewidth of zero. Practically the linewidth will be

defined by the measurement time, τm, as follows:

W0 = 1/τm. (8.5)

It is interesting to note that the residual FM deviation in this case is zero, so

a frequency multiplier will not have any effect on the linewidth. Therefore, the

linewidth after frequency multiplication will be,

Ŵ0 = W0. (8.6)

In other words the coefficient k0 defines the level of white phase noise in the oscil-

lator’s sideband spectrum.

8.5.2 Flicker PM Noise

Flicker PM noise arises due to parametric fluctuations in the oscillator (such as

changes in the gain and noise figure of the amplifier, and the resonator Q-factor in

the oscillator’s loop [24]) and are fundamentally non-stationary. One runs into severe

mathematical difficulties while analysing flicker noise. For example, the Fourier

Transforms do not converge when applied to flicker noise [11], [107].

Chorti [91] derived the exact RF spectrum of oscillators having phase noise of the

form 1/f 1+δ. The model diverges for flicker PM noise (i.e. when δ = 0) as expected

due to the noise being non-stationary. Demir [108] derived an expression for the RF

spectrum of oscillators with flicker PM noise by assuming a low-frequency cut-off

for the RF spectrum,

S1(f) =
1

|f |
− 4

2πf
tan−1

(
γc

2πf

)
, (8.7)

where γc is related to the corner frequency. One may be tempted to define the 3-dB

linewidth by normalising (8.7) by S(0) = 4/γc and equating that to 1/2. It can be
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shown that,

f3dB
?
= 0.527γc. (8.8)

However, we believe that this is an incorrect result because the the total power

in (8.7) is,

P =

∫ ∞
−∞

S(f)df =∞, (8.9)

which is not possible physically. To define phase noise the RF spectrum needs to

be normalised by the total power. This problem has also been pointed out in [103].

The reason for the infinite result in this model (or any other O(1/f) model) is that

the power spectrum does not decrease fast enough with frequency for the integral

to converge. In this case the oscillator linewidth cannot be defined.

Inspired by the Lorentzian spectrum, consider the simplified general model for

the RF spectrum of an oscillator with flicker phase noise as follows,

S1(f) =
A0

1 +
(
|f |

1
2
W1

)k . (8.10)

It can be shown that the total power in (8.10) is finite only if k > 1 while it is

infinite for 0 ≤ k ≤ 1.

Thus it can be concluded that the flicker noise processes having power greater

than 1 have some contribution to the oscillator linewidth. The model proposed

by Chorti [91] can be used to estimate the effect on the linewidth in this case.

Restricting to integer powers it is apparent that pure flicker-phase noise does not

contribute to the linewidth, as also noted by Halford [53].

8.5.3 White Frequency Noise

The RF spectrum of the oscillator having white frequency noise has a well-known

Lorentzian shape [53],

S2(f) =
A0

1 +
[

f
W2/2

]2 , (8.11)

where A0 = 2P/(πW2), W2 is the linewidth, and P is the total RF power P =∫∞
−∞ S2(f)df . At large offset frequencies this spectrum should be equal to the power-

law phase noise spectrum as,

S2(f)|f�W2 = A0

(
W2

2

)2

f−2 = P
1

2
h2f

−2, (8.12)
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which implies that,

W2 = πh2. (8.13)

The linewidth after frequency multiplication by N will be,

Ŵ2 = πN2h2 = N2W2. (8.14)

The oscillator linewidth due to white frequency noise does not depend on the mea-

surement time τm because the frequency drift due to the white frequency noise

process is always confined around the nominal frequency ν0.

8.5.4 Flicker Frequency Noise

According to Halford’s model, the linewidth due to flicker frequency noise is [53],

W3 = 2.2
√
h3, (8.15)

and the multiplied up linewidth due to frequency multiplication by N is,

Ŵ3 = 2.2
√
N2h3 = 2.2N

√
h3 = NW3. (8.16)

Therefore, the oscillator linewidth increases N−times (instead of N2 as for the

white frequency case). In [90, 102] Klimovitch has derived the exact RF spectrum

of oscillators having phase noise of the form 1/f δ+2 where δ = 1 corresponds to the

case of flicker frequency noise. The model shows that close to the carrier, the RF

spectrum has a Gaussian shape,

S3(ω) ≈
√

2π

σ
exp

[
− ω2

2σ2

]
. (8.17)

For δ ≈ 1 Klimovitch has shown that,

σ =

[
2h3

1− δ

] 1
1+δ

. (8.18)

The linewidth of the oscillator can be defined using the formula for the full width

at half maximum (FWHM) for a Gaussian function,

W3 = 2
√

2 ln 2
σ

2π
=

2.355

2π

[
2h3

1− δ

] 1
1+δ

. (8.19)
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As δ → 1 the predicted linewidth becomes excessively large and diverges at δ = 1.

While correct for a true non-stationary flicker frequency noise process, this gives us

limited information about the RF spectrum of an oscillator having a finite bandwidth

measured over a finite observation time. However, the increase in the linewidth under

frequency multiplication by N can be derived as follows:

σ̂ =

[
2N2h3
1− δ

] 1
1+δ

= N
2

1+δσ, (8.20)

so that,

Ŵ3 = N
2

1+δW3. (8.21)

For exact flicker frequency noise δ = 1, which implies that Ŵ3 = NW3. This

result is in agreement with (8.16).

The Gaussian spectrum for the flicker frequency noise process has also been

derived by Herzel [109] by modelling the noise process as an Ornstein–Uhlenbeck

process. The approximate autocorrelation function is,

R3(τ) = exp
[
−σ2τ 2

]
, (8.22)

where σ is the variance of the VCO controlling voltage. While the Gaussian shape

is confirmed by this model, unfortunately it is not possible to link σ to h3 to derive

an expression for the linewidth.

A useful relationship of the S3(f) was developed by O’Mahony et al. [68]. Using

the scanning Fabry-Pérot interferometer as the measuring instrument it was noted

that the finite measurement bandwidth sets an upper limit Fu and the finite mea-

surement time τm sets a lower limit Fl = 1/τm on the measured spectrum. In the

notation used in this chapter, the derived RF spectrum is [68],

S3(f) = C0 exp

[
− f 2

4h3 ln (Fu/Fl)

]
, (8.23)

where C0 is a constant. Therefore, the 3-dB linewidth is,

W3 = 2.355×
√

2h3 ln (τmFu), (8.24)

which verifies the dependence of W3 on
√
h3 as predicted by (8.15). The linewidth

is seen to be nonlinearly related to the measurement time and has been verified

using measurements [68]. For infinite measurement time or infinite measurement

bandwidth (8.24) predicts an infinite linewidth as expected because the oscillator
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RF spectrum due to the flicker frequency noise is non-stationary (as the noise process

itself).

Another useful model has been worked out by Mercer [69]. The reported rela-

tionship for the linewidth is,

W3 = 2.355× 1

2π

√√√√h3
π

[
1 + ln

(
τm

√
h3
2π3

)]
. (8.25)

The
√
h3 dependence can be seen, as well as the dependence on τm. Mercer also

used the delayed self-heterodyne measurement system to measure the linewidth.

The Gaussian line-shape has been confirmed in [69] having a linewidth of,

W3(meas) = 2.355× 1

2π

√
h3
π

(
4.3 + ln

4.3h3τ 2.1d

π

)
, (8.26)

for h3τ
2
d/π � 1. For a fixed delay time τd, the linewidth is still roughly proportional

to
√
h3 (along with an additional weak logarithm dependence). The linewidth is

related in a more complicated way to τd due to the operation of the delayed self-

heterodyne system and due to the fact that the flicker frequency noise is never

entirely uncorrelated even for very long delay times due to its low-frequency nature

[69].

From the preceding discussion it is clear that the line-shape of the S3(f) is

Gaussian near the carrier when the flicker frequency noise is dominant. Away from

the carrier the RF spectrum approaches one half of h3/f
3: however in many cases

the RF spectrum in that region is dominated by the 1/f 2 portion of the white-

frequency noise spectrum due to its relatively gradual slope [69]. Finally note that

Halford’s heuristic formula (8.15) gives no information about the dependence of W3

on measurement time or measurement bandwidth.

8.5.5 Random Walk Frequency Noise

According to Halford’s model, the linewidth due to random walk frequency noise

is [53],

W4 = 2.08 3
√
h4, (8.27)

and the multiplied up linewidth is,

Ŵ4 = 2.08 3
√
N2h4 = 2.08N2/3 3

√
h4 = N2/3W4. (8.28)
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Chorti [91] has proposed a model of the oscillator spectrum having random walk

frequency noise by assuming a low-frequency cutoff for the frequency noise spectrum

Sν4(ω) as follows:

Sν4(ω) =
16π4h4
ρ2 + ω2

, (8.29)

where ρ is the corner frequency. Using the above model, the near-carrier RF spec-

trum turns out to be [91],

S4(ω) =

√
ρ

2π
√
πh4

exp

[
− ρω2

16π4h4

]
. (8.30)

The ‘variance’ of the Gaussian spectrum can be identified as σ2
ω = 8π4h4/ρ. There-

fore, one can attempt to define the linewidth using the FWHM relation as follows,

W4 = 2.355× σω/2π Hz

?
= 2.355×

√
2π2h4
ρ

. (8.31)

However, it appears that a measurement of a lower corner frequency ρ has not been

reported anywhere in the literature. Further, in analogy with the white-frequency

Lorentzian spectrum, if it is assumed that ρ = 8π4h4 then the linewidth becomes

independent of the coefficient h4, which does not seem plausible. Lastly, if ρ is

assumed to be a cutoff independent of h4 then the linewidth W4 ∝
√
h4 which is the

same order of variation as the flicker frequency noise.

Vannicola [12] has worked out a relationship for the autocorrelation function of

an oscillator’s signal for the random-walk frequency case based on the method of

stationary independent increments [11] as follows:

R4(τ) = exp

[
−σ

2
4(3C4|τ |2 + |τ |3)

6

]
, (8.32)

where σ2
4 = E{φ2

4(t)} is the drift variance of the random-walk frequency process

having units of rad2/s3, and C4 being an arbitrary constant multiplier having units

of seconds. Incidentally h4 = σ2
4 [12]. Vannicola numerically evaluated this model

to plot the total S4(f). In the following this model is analysed in detail and an

expression for the linewidth is worked out.

In Appendix A the covariance of random-walk frequency noise modelled as in-

tegral Brownian motion has been derived. Using that result we have computed the
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RF autocorrelation as follows:

R4(τ) = exp

[
−h4(3t|τ |

2 + |τ |3)
6

]
= exp

[
−h4t|τ |

2

2

]
exp

[
−h4|τ |

3

6

]
. (8.33)

Therefore, we have found the RF autocorrelation function to be non-stationary. C4

in (8.32) is actually the running time variable. Our analysis shows that R4(τ) is actu-

ally a dispersing function of time. It is apparent from (8.33) that the RF spectrum

S4(f) is a convolution of a dispersing Gaussian function with F
(

exp
[
−h4|τ |3

6

])
,

where F (.) denotes the Fourier Transform.

For short observation times the term 3t|τ |2 will be negligible compared with |τ |3.
That is, the dispersive effect appears only for relatively long observation times. To

evaluate the Fourier Transform of the non-Gaussian part, i.e., F
(

exp
[
−h4|τ |3

6

])
,

we first computed the Fourier Transform F
(

exp
[
− |τ |

3

6

])
numerically, as shown in

Fig. 8.5. In addition to the central peak, two sets of satellite peaks can be observed.

The 3-dB line is also displayed and we can estimate the 3-dB linewidth as 0.33 Hz.

Now, using the Scaling Property of the Fourier Transforms, we can conclude that the

3-dB linewidth of F
(

exp

[
− |h

1/3
4 τ |3
6

])
is 0.33 × h1/34 . Except for the scaling factor

this relation for the oscillator linewidth is identical to that in (8.27). Therefore

we conclude that under frequency multiplication the short-term spectral linewidth

increases as N2/3.

The existence of satellite peaks has been confirmed by the measurements con-

ducted in [97–99, 110]. The reason for their existence could be partially coherent

feedback, or relaxation phenomena in the resonator lattice. The existence of satellite

peaks might appear peculiar to some readers because it is well-known from Wood-

ward’s Theorem that the spectrum of the FM waveform is Gaussian in shape for

high modulation indices [70]. We note that phase modulation due to random-walk

frequency noise might constitutes low modulation indices which could explain the

non-Gaussian spectral shape observed here.

As a sidenote, another phenomenon giving rise to satellite peaks is the non-

Gaussian nature of the underlying phase noise statistics. In [111] it has been proved

that non-Gaussian modulation processes can give rise to non-Gaussian spectra. Ex-

perimental observation of non-Gaussian spectra are reported in [112]. We emphasise

however that the existence of satellite peaks in our analysis is due to random-walk

frequency modulation having Gaussian statistics, as explained in Chapter 7.

We will now analyse (8.33) in detail for a medium-term observation time of 1
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Figure 8.5: Non-Gaussian part of the spectrum of an oscillator having random-walk
frequency noise. The 3-dB linewidth is marked with a double-arrow.

second. Setting t = C4 = 1 (sec) we can write,

R4(τ) = exp

[
−h4|τ |

2

2

]
exp

[
−h4|τ |

3

6

]
. (8.34)

For the Gaussian part the Fourier Transform is,

F
(

exp

[
−h4|τ |

2

2

])
=

√
2π

h4
exp

[
− ω2

2h4

]
, (8.35)

so that the variance is σ2
ω = h4 and the 3-dB width of this component of the spectrum

is,

W4Gaussian = 2.355× σω/2π Hz

= 2.355×
√
h4

2π
= 0.375

√
h4. (8.36)

To our knowledge, the closed-form solution to the convolution of the Gaussian

and non-Gaussian parts is not available in the literature. In theory one only requires

to compute the total linewidth of the convolved function and we have taken this up

as future work. An approximation to the 3-dB width of the resulting spectrum is the

square root of the sum of squares of the linewidths of the two symmetric functions
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Figure 8.6: Comparison of the linewidth due to random-walk frequency noise pre-
dicted using Halford’s model (top) and our model (bottom).

being convolved. Therefore, the final expression for the linewidth of an oscillator

having random-walk frequency instability is,

W4 =

√(
0.375

√
h4

)2
+
(

0.33× h1/34

)2
=

√
0.14 h4 + 0.11 h

2/3
4 . (8.37)

From (8.37) it can be noted that for h4 = 1 both components of the linewidth

are roughly equal. For smaller h4 the non-Gaussian part will mostly determine the

linewidth while for large h4 the Gaussian part will dominate. The total spectral

shape due to random-walk frequency noise will similarly depend on the level of the

noise: for low h4 the spectrum will resemble Fig. 8.5 while for high values of h4 it

will be Gaussian in shape.

Fig. 8.6 shows a comparison of Halford’s linewidth (8.27) with (8.37). As can be

witnessed, Halford’s model overestimates the linewidth. From (8.37) it is apparent
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Figure 8.7: Comparison of the multiplied up linewidths due to random-walk fre-
quency noise for N = 8

that under frequency multiplication by N the the linewidth becomes:

Ŵ4 =
√

0.14 N2h4 + 0.11 (N2h4)2/3

=

√
0.14 N2h4 + 0.11 N4/3h

2/3
4 . (8.38)

Therefore, the linewidth is related to N and h4 in a non-linear fashion, so a direct

comparison with Halford’s model is not possible: fixing one parameter allows to

compare both for the other parameter. Assuming a frequency multiplication by

N = 8 we get,

Ŵ4 =

√
9h4 + 1.76h

2/3
4 . (8.39)

A comparison of (8.39) with Halford’s linewidth for N = 8 (Ŵ4 = 8.32h
1/3
4 ) is pre-

sented in Fig. 8.7. The plot shows that Halford’s model overestimates the linewidth

for small h4 and underestimates the linewidth for large h4.

Finally we note that if the linewidth is measured using a delayed self-heterodyne

system then the phase noise processes at the two inputs of the mixer add (assuming

τd > τc so that the two are uncorrelated). So h4 in (8.37) is to be replaced by 2h4.
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The resulting measured linewidth is,

W4(meas) =

√(
0.375

√
2h4

)2
+ (0.33× (2h4)1/3)

2

=

√
0.28 h4 + 0.173 h

2/3
4 . (8.40)

Therefore, the Gaussian part increases by
√

2 while the non-Gaussian part in-

creases by 3
√

2. Using (8.37) and (8.40) the overall increase in the measured linewidth

should be computed numerically as W4(meas)/W4.

In deriving (8.40), we assumed an observation time of 1 second. The general

linewidth for t = τm can also be seen in Table 8.1. The linewidth is therefore

proportional to
√
τm. For measurement time much less or much greater than 1

second, the multiplied up linewidth will be different from Fig. 8.7.

8.5.6 The total linewidth

Table 8.1 summarises the relations for oscillator linewidth. The composite linewidth

of an oscillator will be a function of the linewidths due to each frequency noise

process. If the hβ for a given noise process is low then the RF spectrum due to that

component of noise will be closer to a delta function [69] and will contribute less to

the overall linewidth. Assuming the phase noise processes as being independent of

each other, an approximation to the total SRF (f) can be found by convolving the

individual power spectra [69,91]. The overall linewidth, therefore, will be the square

root of the sum of squares of the individual 3-dB linewidths [68]. That is,

Wtotal ≈
√
W 2

2 +W 2
3 +W 2

4 . (8.41)

8.6 Oscillator linewidth as a measure of range res-

olution

In FMCW radar systems, the range profile is computed by computing the Fourier

Transform of the IF signal measured over a finite observation time. The range reso-

lution, therefore, is defined by the oscillator linewidth, Wtotal. In general, the range

resolution is inversely proportional to both the frequency noise and the measurement

time.

In coherent radars, the local oscillator signal is derived from the transmitted

signal. An important thing to note is that all the phase and frequency noise processes
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decorrelate with range. Therefore, the actual measured linewidth will be much

smaller than that predicted by the above results. In particular, all the frequency

noise coefficients will have to be reduced by the decorrelation factor 4 sin2(πfτd) to

get the correct resolution. Further work on this idea is still needed and is a part of

our future work.

For non-coherent radar, the LO is independent of the transmitted/received sig-

nal. As such there is no phase coherence between the two, and the phase noise

processes will not decorrelate with time delay. Therefore, even for short observa-

tion times the target spectrum will be broader, and will be defined by the sum of

the linewidths on both signals due to white frequency noise. The resulting spectral

shape is expected to be the convolution of two Lorentzian functions. For longer ob-

servation time, on the time-scale where the higher-order frequency noise processes

can play their role, the target spectrum will be broader and be a function of the

measurement time as well. The Allan Variance can be used to compute the aforesaid

time-scales. Further work on this idea is also a part of our future work.

8.7 Conclusion

In this chapter the relationship of the linewidth of RF oscillators with the phase noise

processes having power-law spectra was discussed. The relations for each phase noise

process were dealt with individually along with the effect of frequency multiplica-

tion on the RF spectrum. The existing models of the RF spectra of oscillators were

compared and their effectiveness in computing the linewidth was analysed. We de-

veloped a new model to compute the oscillator linewidth for the case of random-walk

frequency noise. A comparison of the new model with Halford’s classic method of

estimating oscillator linewidth was presented at the source frequency as well as for

the frequency multiplied signal. The linewidth due to the flicker frequency noise

and random-walk frequency noise was found to increase with increasing measure-

ment time. In the random-walk frequency case it was shown that the shape of the

spectrum in addition to its width depends on h4. The results presented here are also

useful to predict the lineshape and width at the output of a PLL synthesiser em-

ploying frequency multiplication in the loop. Finally the relationship of oscillator

linewidth with FMCW range resolution was discussed for the coherent and non-

coherent radars. It was shown that in general the range resolution degrades with

increasing frequency noise and increasing measurement time. Measurement results

could not be presented due to the unavailability of expensive oscillator linewidth

measurement equipment.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

The present PhD Thesis focused on quantifying the impact of oscillator phase noise

on the design of MMW CW radar systems. We have demonstrated how phase noise

impacts the performance of radar systems using analysis, design of circuits, and data

visualisation.

In a nutshell, this Thesis first presented phase noise modelling techniques for the

whole radar system, and then focused on the detailed phase noise modelling of the

important parts of a general radar system, including the frequency synthesiser, the

analog-to-digital converter, and the phase measurement processor. Afterwards, the

relationship of the oscillator linewidth with the phase noise processes was developed

and analysed. The Thesis concluded with the presentation of a new generalised

Brownian motion phase noise model for the RF spectrum of oscillators.

The system-level phase noise modelling provided guidelines on choosing the ap-

propriate components to minimise the impact of phase noise for a given radar system

design at hand. Techniques for modelling phase noise at various points in the system

were presented. In Chapter 3 a relationship was derived to relate the phase noise

sideband levels of two targets at different ranges. The relationship was validated

through practical measurements obtained by a MMW FMCW radar system.

The frequency synthesiser was shown to be the most significant phase noise con-

tributor. The inadequacy of modern PLL-based frequency synthesisers was demon-

strated in the measurements, as they lead to raised phase noise sidebands around

large targets, thus decreasing the signal-to-noise margin for weak target detection.

A new low phase noise signal source was designed and implemented successfully in

a commercial radar system. The results showed a huge improvement of 30 dB in
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the phase noise sidebands, effectively solving the phase noise problem for the radar

system under consideration. The effects of phase noise decorrelation with range were

also studied in detail. The variation in the coherent sideband ripples was analysed

and verified in the practical measurements presented in Chapter 4. The conclusion

is that phase noise cancellation by the receiver’s mixing process is a decreasing func-

tion of range. For a target at 50 meters, for example, the phase noise at the 100

kHz offset is 13.6 dB lower than at the transmitter. For a target at a range of 200

m, the cancellation is only 1.8 dB. The cancellation is exactly 0 dB for a target at

250 m. These calculation can be extended to other frequency offsets. This clearly

shows that after a few hundred meters, the phase noise cancellation offers no help,

and the radar designer must resort to reducing the phase noise in other parts of the

system.

In addition to utilising linear phase noise models, the Thesis proceeded on to

quantifying the non-linear phase noise effects. A phase noise model separating the

carrier lineshape and the phase noise pedestal was described in Chapter 4. The mod-

ified Lorentzian function was presented as a new model of the phase noise pedestal.

The idea of coherence time was used as a tool for the selection of radar signal sources

and a novel equation was derived that gives an optimistic estimate of the coherence

time for radar systems. Also, a novel minimum bound on the transmitter phase

noise level was derived to prevent excessive distortion of target spectra.

New phase noise models were developed for the analog-to-digital conversion

(ADC) process. The ADC process was shown to time-decorrelate the sampled signal

when the sampling clock was locked to the reference oscillator of the transmitted

signal. In the case of an independent sampling clock, a novel equation was derived

for the jitter transfer from the sampling clock to the sampled radar signal. The

effects of phase noise decorrelation were also taken into account in the developed

model. A comparison method was developed to aid the selection of an appropriate

sampling clock for a given radar application. The result of this modelling process

was invaluable: it was shown that for a MMW radar having inherently high lev-

els of phase noise, a relatively cheaper sampling clock can be employed in the radar

system without an increase in the overall phase noise. For low-GHz (and even lower-

frequency) radar systems, one needs to be more careful about the selection of the

sampling clock: a cheap sampling clock might become the dominant phase noise

contributor in the system. These design guidelines have been detailed in Chapter 5.

A significant contribution of this Thesis is the derivation of the mathematical

bounds under which a single-channel radar system can measure the signal’s phase

unambiguously. Compared with an I/Q receiver, one-half of the hardware is saved
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when a single-channel receiver is employed, which results in thousands to hundreds

of thousands of pounds worth of savings depending on the scale at which a given

radar system is employed. The bounds derived in Chapter 6 are really upper bounds

on the target velocities, and are easily met in a wide variety of radar applications.

Chapter 7 presented a novel method of characterising the phase noise statistics

using the integer and the fractional Brownian motion models. This constitutes a

method alternative to the Correlation Theory method used by various authors [54,

90,91,102], and new results were derived for the phase noise spectra. In particular,

a novel analysis of the RF spectrum due to random-walk phase noise was presented:

it was found that the RF spectrum is non-Gaussian in shape, and exhibits non-

stationary time-dispersion in addition to satellite peaks. We believe that these results

are in agreement with measured oscillator RF spectra. These results depart from the

conventional predictions of the Correlation Theory of the Gaussian spectral shape.

Continuing the non-linear analysis, a novel division of the phase spectrum in

terms of the coherence frequency, the intermediate region, and the linear phase noise

regime, was presented in Chapter 8. The three regions of the phase spectrum were

related to the linewidth, the non-linear phase noise region, and the linear phase noise

regions of the RF spectrum respectively. This relationship provides a clear insight

into which phase noise processes affect which part of the RF spectrum. A review of

the existing models of oscillator linewidth was presented and the effect of frequency

multiplication on the linewidth was discussed for each phase noise process.

All of the above ideas helped to optimise the performance of the long-range radar

system (LRS) designed by the Author for Navtech Radar Ltd. during the course

of this work. The new results and techniques presented in this Thesis helped to

maximise the performance of a market leading commercial radar sensor through

better detection and tracking of weak targets.

9.2 Future Work

Several theoretical developments can be identified from the work in this Thesis that

will be taken up as future work. Some of the research problems are as follows.

9.2.1 A real-exponent phase noise model

The integer power-law phase noise model was utilised throughout this thesis. In

practice phase noise spectra appear frequently with non-integer exponents. A con-

ventional analysis would decompose a non-integer exponent spectrum into two in-
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teger power-law spectral components as follows. For a real exponent a between

integers β and β + 1 one can write,

ha
fa

=
hβ
fβ

+
hβ+1

fβ+1
, (9.1)

where ha would be available through a practical measurement while hβ and hβ+1

would be obtained using, for example, least-squares curve fitting. However, through

the work in this Thesis we can envisage an alternative real-exponent phase noise

model for oscillators. An outline is given as follows.

As shown in Chapters 7 and 8, white and flicker phase noise processes only

contribute to sideband spectra. It was shown in Chapter 8 that for a general real

exponent > 1 the modified Lorentzian spectrum converged, implying that any real

exponent phase noise having power > 1 (i.e. greater than flicker phase noise) con-

tributes to the linewidth of oscillators. Also, in Chapter 7 it was shown that the

RF spectrum of oscillators is stationary for powers up to 3, and that the RF spec-

trum due to flicker frequency noise is independent of time. The analysis in Chapter

8, on the other hand, shows that the oscillator linewidth is indeed a function of

time. This could be explained by noting that the RF spectrum in Chapter 7 is

for the phase noise coefficient being just under exact flicker frequency noise. The

linewidth broadening in Chapter 8 then must be for the phase noise coefficient being

just over exact flicker frequency noise (i.e. exponent > 3). An evidence support

this hypothesis is the fact that the linewidth due to random-walk frequency noise

indeed broadens with time, so one can conclude that the phase noise processes with

power 1/f 3+ causes time-varying linewidth broadening. These observations can be

used and developed further into a more complete model of phase noise. The devel-

oped models did not take into account any correlation between the individual phase

noise processes. As a future work, this model can be extended to account for these

correlations. A quantitative analysis of the origin of such correlations also seems

appropriate in this regard.

9.2.2 Infrared Catastrophe

The statistical models of flicker phase and frequency noises are known to blow up

at the origin (i.e. zero offset from the carrier). This is referred to as Infrared

Catastrophe in the phase noise literature. It is noted that this phenomenon is in

direct disagreement with practically measured oscillator spectra that always have a

finite power level at the carrier frequency.

In this thesis, two methods of estimating the RF spectrum of oscillators were ex-
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plored, namely, Correlation Theory (Chapter 8), and the Brownian motion models

(Chapter 7). Chorti’s analysis in [54, 91] shows that when using Correlation The-

ory, Infrared Catastrophe can only be avoided if both a lower and a higher cutoff

frequency is assumed for the flicker noises. However either of the cutoffs do not

have any physical justification or experimental validation to support them. Nossen-

son’s analysis in [92] shows a Gaussian spectrum for near flicker of frequency noise,

which is in agreement with Correlation Theory, but again blows up for exact flicker

frequency. In addition Nossenson’s model does not explain the 1/f 3 sideband spec-

trum (instead the short-term spectrum comes out as 1/f 2 using that analysis). The

sideband spectrum for flicker phase noise is indeed 1/f , however that model also

blows up at the origin. Therefore, these two theories cannot satisfactorily solve the

problem of Infrared Catastrophe.

We note that the finite carrier power must be due to the laws governing the

oscillator, in particular the Law of Conservation of Energy. Therefore, an analysis

of the oscillator’s RF spectrum based on the Law of Conservation of Energy seems

imperative. Non-linear models giving rise to Jump Hysteresis will be explored as

a future work to model the flicker phase and frequency processes [113, 114]. Ig-

noring the amplitude noise and AM-FM coupling has hitherto been a widely used

approximation in the phase noise literature. It has been pointed out in [113] that

amplitude-frequency dependence, however small, cannot be ignored to successfully

model the flicker noises.

9.2.3 Estimation of the Coherence Time

The idea of Coherence Time appeared in this Thesis as an important parameter

defining the maximum range until a radar’s transmitter remains self-coherent. As a

future work the detailed relationship of the coherence frequency fc with the phase

noise processes will be derived. An outline is given as follows. fc is defined by the

equation: ∫ ∞
fc

Sφ(f)df = 1 rad2, (9.2)

where we note that the white-phase noise process is not considered in evaluating the

integral. Depending on the level of the power distribution between the carrier and

the sidebands in the RF spectrum, some of the phase noise processes are considered

in the evaluation of (9.2) and others are not. Following is a general guideline on the

inclusion of the phase noise processes.

First the integral in (9.2) should be computed using the flicker phase (1/f)
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component only. If the integral is ≥ 1 then fc can be estimated. However, if the

integral turns out to be < 1 then the white frequency (1/f 2) component should also

be considered in the integral. Repeat this procedure by adding the higher-order

phase noise processes until the integral is equal to 1.

9.2.4 Estimation of the true range resolution

It is well-known that the fundamental range resolution in radar systems can be

calculated as ∆R = c/2B, where c is the speed of light and B is the spectral

bandwidth of the transmitted waveform. The range resolution on the other is defined

using the Rayleigh criterion, i.e. the minimum of one target’s response being at

the maximum (or peak) of an adjacent target’s response. A measure of the range

resolution is the 3-dB points of a target’s response, which is conveniently described

as the 3-dB linewidth of the transmitting oscillator. This has been the rationale

behind our work on oscillator linewidth.

The phase noise processes cause spectral broadening, so the actual resolution

of FMCW radar systems is less (i.e. coarser) than c/2B. As a future work, the

correct relationship between the range resolution (or equivalently the linewidth) and

the phase noise processes will be established. We have proven that the frequency

noise processes contribute to the linewidth. However we note that the problem

of Infrared Catastrophe mentioned in Section 9.2.2 needs to be solved before an

accurate relationship can be derived. Nevertheless, a reduction in frequency noise

in general does lead to sharper peaks in the radar response.

As mentioned earlier, a detailed future work on FMCW radar range resolution

should include the effects of decorrelation and sub-coherence time delays in coherent

radars, and also an estimation of the time-scale of flicker frequency and random-walk

frequency noises using the idea of Allan Variance.

9.2.5 Signal averaging under frequency noise

Coherent integration was shown to improve the signal to phase noise performance in

FMCW radar systems. However, practical experience has shown that in the limit of

very large averages (thousands or more) the improvement in SNR slows down and

then flattens off. Two causes of this phenomenon are worth further consideration:

1. When the sampling clock employed in the system is independent of the trans-

mitted signal, it will inevitably drift with respect to the received/IF signal.

So the points on the sinewaves being sampled will vary with time. For larger
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observation times, the sampling clock will be sampling the signal with a time-

varying frequency drift. These effects will render the averaging less effective.

2. The Allan Variance is a good way of visualising how the variance of an oscil-

lator’s signal changes with observation time. The variance drops for the white

& flicker phase processes and the white frequency noise process. However, the

two-sample Allan Variance plot flattens off for the case of flicker frequency

noise. This gives an idea that further averaging will not decrease the vari-

ance/noise power of the signal. The Allan Variance curve then rolls up for

the random-walk frequency case. This tends to suggest that averaging on this

time-scale will actually result in degraded performance.
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Appendix A

The Covariance of Integral

Brownian Motion1

Integral Brownian Motion (iBm) can be modelled as follows [93,115]. Consider zero-

mean white phase noise with variance σ2 and covariance σ2δ(t). The integral of white

phase noise is the ordinary Brownian motion, Bm(t) (Wiener process) with zero-

mean, variance σ2|t| and covariance σ2 min(t, t + τ). The integral of the Brownian

motion process is the zero-mean integral Brownian motion process φ4(t) = iBm(t)

with variance,

var [iBm(t)] = var

[∫ t

0

Bm(t)dt

]
=

∫ t

0

∫ s

0

var [Bm(ζ)] dζ dt

= σ2|t|3/3. (A.1)

For t2 > t1 > 0 the covariance of φ4(t) = iBm(t) is,

Rφ4 (t1, t2) = E

[∫ t1

0

Bm(ζ)dζ

∫ t2

0

Bm(ξ)dξ

]
=

∫ t2

0

∫ t1

0

E [Bm(ζ)Bm(ξ)] dζ dξ

=

∫ t2

0

∫ t1

0

σ2min(ζ, ξ)dζ dξ

= σ2t21

(
t2
2
− t1

6

)
. (A.2)

1The contents of this Appendix have been submitted for publication in [89].
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Substituting t1 = t and t2 = t1 + τ (τ > 0) and we get,

Rφ4 (t, t+ τ) = σ2

(
t3

3
− τt2

2

)
. (A.3)

For τ = 0 (A.3) reduces to (A.1) as expected. Finally for t1 = t2 = t+ τ we get,

Rφ4 (t+ τ, t+ τ) = σ2 (t+ τ)3

3
. (A.4)
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Appendix B

Development of the Long-Range

System

As mentioned in Chapter 1, the research work in the thesis is based on the work done

in developing a MMW long-range radar sensor (LRS) system under a collaboration

between University of Bath and Navtech Radar Ltd.1 The collaboration was funded

in part by Innovate UK (formerly the Technology Strategy Board, UK) under the

KTP2 number 9308.

The KTP project has been a significant step in the understanding of the low-

noise electronic design of radar systems. The LRS is envisaged to make accessible

a large share of the European as well as the non-European market for long-range

radars in the millimetre wave (MMW) frequency band3. An objective of the design

work was to make the research relevant in the industrial-context, i.e., a theoretically

optimum solution designed to achieve the goals of mass-production, reasonable cost,

tight power budget, and compact form factor.

A fully working prototype of the long-range radar system (LRS) was developed

earlier on during the present work. At the time of writing, production models of

this system - the HDR300 series of radars - are being prepared to be shipped. A

photograph of the HDR300 product is shown in Fig. B.1, which has been built as

an extension of Navtech’s AGS1600 products. The LRS project was about extended

the operating range of the system beyond 1 km in strongly clutter environments.

This required a higher-power transmitter as well as the signal processing hardware

that could handle the increased data throughput for the extended range. Field trials

1Contact: Navtech Radar Ltd., Home Farm, Ardington, Wantage, OX12 8PD, UK.
2Knowledge Transfer Partnership
3The term long-range radar (LRR) in the context of MMW radar systems has recently been

used for radar systems with a detection range of up to and beyond 250 meters.
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Figure B.1: The HDR330 Long-Range Radar Sensor Product
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Figure B.2: PPI display of the radar using the PLL/VCO Synthesiser

of the developed radar system were been done at the White Waltham Airfield near

London and the Abingdon Airfield in Oxfordshire. The maximum detection range

for pedestrians (i.e. small targets) has been progressively increased up to 1.8 km

over grass (i.e. strong clutter). This is a significant improvement over Navtech’s

AGS1600 product. In benign environments the new HDR330 systems can work up

to 3 km.

A new low phase noise frequency synthesiser was developed for the LRS to reduce

the phase noise sidebands that were originally raised further due to the high power

transmitter being used. Fig. B.2 shows a PPI display of a part of Abindgon Airfield

with the conventional PLL-based frequency synthesiser. The streaking is visible

in the scene. Fig. B.3 shows a PPI display of a part of Abindgon Airfield with

the low phase noise frequency synthesiser. As can be observed, the streaking has

been reduced and the scene has better definition. This has led to better tracking

performance for Navtech’s radar systems.

In the following, a couple of features developed during the project are detailed

that were also helpful in the research in this Thesis.
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Figure B.3: PPI display of the radar using the low phase noise Synthesiser

B.1 Simulation software for generating target re-

sponses

A major step in modelling the phase noise in radar systems was the development

of a simulation model in SciLab. Fig. B.4 shows screen shots of the software. The

software takes the phase noise data of the VCO and the reference oscillator used

in the frequency synthesiser, and compares both at the desired output frequency

(9.5 GHz) in this case as shown in Fig. B.4a (top-left inset). Note the cross-over

frequency which is the optimum loop bandwidth to minimise the overall phase noise.

The loop bandwidth can be chosen to simulate the phase noise at the output of the

synthesiser. The signal is passed through the transceiver chain, which in this case

includes frequency multiplication on the transmitter side and homodyne mixing on

the receiver side. Finally the FFT bandwidth is added to simulate the signal on

the radar’s display. Fig. B.4b shows another feature of the designed software that

generates phase noise masks for the VCO and the reference oscillator to comply

with.
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(a) Main software

(b) Spec Simulation

Figure B.4: Phase Noise Simulation Software c©Kashif Siddiq
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B.2 ADC data logging function

For the present work an additional software mode was developed for the LRS that

allowed the ADC data to be stored directly on a hard-drive instead of being pro-

cessed. Using this feature the raw data sampled by the ADC was used to test signal

processing algorithms. Some of the plots in this thesis have utilised this functional-

ity. The radar’s processing chain was also modelled in SciLab so that the processed

data produced by the radar system could be simulated.
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Alternative Phase Noise

Modelling Methodologies

The power-law phase noise model is only one of a large number of modelling method-

ologies used by researchers. Although the power-law model along with the RF spec-

tral model has been used in the present thesis, it is appropriate to mention some of

the important alternative phase noise models:

1. Time-domain Models: These methods apply novel statistical techniques

to the time-domain data to extract information about the short- and long-

term phase noise processes. These include the Allan Variance [107, 116], the

phase and frequency Structure Functions [50, 67], the Multivariance Method

[117,118], and Lowest-Mode Estimator [119,120].

2. Models utilising oscillator topology: These models use the circuit pa-

rameters of oscillator like the Quality Factor (Q) and the oscillator’s topol-

ogy [24,102,121–125].

3. Models utilising oscillator material parameters: These models use ma-

terial parameters like carrier density, carrier mobility, relaxation phenomena,

etc. to model quantum phase noise in lasers [23,99,126,127].

4. Time-series model: In these, the oscillator signal is modelled using one of

the conventional signal-processing models like the ARMA, ARIMA, ARFIMA,

and Wiener Models [128, 129]. These techniques can be helpful for cancelling

phase noise on a per-sweep basis (as opposed to averaging). In [61] a multi-

rate filter model is presented for the generation of radar pulses having phase

noise.

137



APPENDIX C. ALTERNATIVE PHASE NOISE MODELLING
METHODOLOGIES

5. Nonlinear Dynamical Models: The models perform a Phase Plane Anal-

ysis on dynamical oscillator models based on the Fokker-Planck equation and

the Langevin equation [14,47,108,130,131].

6. Linear Time-Varying models These models again use the Phase Plane

Analysis but apply to the restricted class of linear time-varying (LTV) oscil-

lators. An example is the Impulse Sensitivity Function model [48].

7. Fractal Models The multifractal model is described in [132]. It is interesting

to note that the power-law model has also been used in other branches of

science [7] including the science of turbulence, heart rates, and finance [132,

133]. An example is the Mandelbrot-Zipf’s law used in linguistics [134].

8. Signal Processing Techniques Following are some of the signal processing

methods available in the literature to reduce the effects of phase noise.

• The Polynomial Phase transform (PPT) [135]

• The Generalised Ambiguity Function (GAF) [136],

• The Generalised Chirp Transform (GCT) [137],

• The Extended Generalised Chirp Transform (EGCT) [138].

In [139] a performance comparison has been made for the above-mentioned

algorithms when applied to various applications (including radar).
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