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Abstract

This thesis covers two main areas which are related to the mapping and examina-
tion of the ionosphere. The first examines the performance and specific nuances of
various state-of-the-art interpolation methods with specific application to mapping the
ionosphere. This work forms the most widely scoped examination of interpolation
technique for ionospheric imaging to date, and includes the introduction of normalised
convolution techniques to geophysical data. In this study, adaptive-normalised convo-
lution was found to perform well in ionospheric electron content mapping, and the
popular technique, kriging was found to have problems which limit its usefulness.

The second, is the development and examination of automatic data-driven motion es-
timation methods for use on ionospheric electron content data. Particular emphasis
is given to storm events, during which characteristic shapes appear and move across
the North Pole. This is a particular challenge, as images covering this region tend to
have a very-low resolution. Several motion estimation methods are developed and ap-
plied to such data, including methods based on optical flow, correlation and boundary-
correspondence. Correlation and relaxation labelling based methods are found to per-
form reasonably, and boundary based methods based on shape-context matching are
found to perform well, when coupled with a regularisation stage.

Overall, the techniques examined and developed here will help advance the process
of examining the features and morphology of the ionosphere, both during storms and
quiet times.
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Chapter 1

Introduction

Many fields benefit from the introduction of ideas and techniques from other areas, and
a great number of advances arise in the gaps between areas of work. One of the aims of
this thesis is bridging the gap between image processing, computer vision techniques
and atmospheric research, specifically in the creation and application ionospheric total
electron content (TEC) maps. These maps show the distribution of electrons in the
ionosphere, and are used in a wide range of applications, from propagation forecasting
and nowcasting1, to calibration of satellite navigation systems, through to scientific
analysis of space weather events.

This work aims to aid some of these applications by introducing the state-of-the-art in
interpolation and motion estimation to TEC mapping. To this end, work contained here
pertains to the production of accurate TEC maps from sparse data, and the automated
tracking of image-derived ionospheric features.

As the ionosphere is the medium on which the majority of this work is based, this intro-
ductory chapters describes the ionosphere and its storms, considers global positioning
system (GPS) based approaches to imaging, and modern motion estimation techniques
for sensing its activity during geomagnetic storms.

The introduction concludes with a chapter-by-chapter summary of the remainder of the
thesis.

1See, for example JPL’s real-time TEC mapping page: http://iono.jpl.nasa.gov/latest_rti_
global.html
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1.1. THE IONOSPHERE

1.1 The Ionosphere

The ionosphere is the region of the atmosphere extending from an altitude of approxi-
mately 50 km to over 1000 km. In this region, free electrons can exist for short periods
of time and form an electrically conducting plasma. These electrons are liberated when
extreme ultra-violet (EUV) light from the Sun ionises neutral atoms in the atmosphere.
The resulting plasma has various effects on electromagnetic waves, including delaying
or blocking their propagation at certain frequencies.

The process of electron liberation by EUV ionisation is known as photoionisation, and
is counteracted by two main processes, both of which act to reduce ionisation. In both
of these cases, the rate of recombination is controlled by the number of available neutral
atoms, and so varies with altitude. The two process are outlined below.

• The first process is the recombination of electrons and ions to form neutral atoms.
There are two forms of recombination known as radiative and dissociative.

– Radiative recombination is most common, and occurs when an electron and
an ion recombine directly.

– Dissociative recombination is less common, and involves a more efficient, two
stage, process. In the first stage, positive ions interact with various neutral
molecules replacing one of the atoms in the molecule. In the second stage,
electrons combine with the positively charged molecule just created.

• The second is attachment, which occurs at lower altitudes where there are more
neutral atoms. This process involves electrons combining with neutral atoms to
form negative ions.

Several factors, acting in synchrony, cause the electron density of the ionosphere to
vary with altitude. These include the density of neutral atoms decreasing with altitude
and the fact the intensities of various EUV wavelengths differ across altitudes. The
change of electron density with height is known as the vertical electron density profile,
and contains several distinct layers, known as D, E, F1 and F2, in increasing altitude.
During the day high levels of photoionisation ensure that all four layers are present.
However, at night, recombination dominates, and the D, E and F1 layers are almost
entirely depleted leaving only the F2 layer. These layers are illustrated in Fig. 1.1, which
shows that the F2 region is the only layer present at night, and has the highest electron
density.

Radio waves propagating through the ionosphere are affected because they cause exci-
tation of plasma. If the wave frequency is less than the plasma frequency – the frequency
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Figure 1.1: Day and night example electron density profiles, generated using IRI2001, for 30 June 2008 at
noon and midnight.

at which the electrons and ions in a slab of plasma will oscillate when perturbed – the
wave will be re-radiated, otherwise it will be pass through. The plasma frequency is
given by fN =

√
80.5N , where N is the electron density. The critical frequency of a layer

is the maximum frequency which can be reflected by the layer at vertical incidence. The
critical frequency of a layer is given by fc ≈ 9× 10−6

√
Nm, where Nm is the maximum

electron density of the layer (in electrons per m3). Critical frequencies in the various
layers (which are described below) are denoted foE, f0F1 and f0F2, and such terms
are regularly seen in literature pertaining to the ionosphere. In addition to reflection
effects, radio waves also experience Faraday rotation when passing through ionised re-
gions. This is equivalent to a time delay which is proportional to the level of ionisation,
and inversely proportional to the square of the signal frequency.

1.1.1 Ionospheric Storms

Much of the behaviour of the ionosphere is governed by how the Earth’s magnetosphere
and the Interplanetary Magnetic Field (IMF) interact and connect. The Earth’s magneto-
sphere is a region of the atmosphere, linked to the top of the ionosphere, which contains
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1.1. THE IONOSPHERE

a mix of ions and electrons, held in place by the Earth’s goemagnetic field and the solar
wind. It consists of a long tail, about 70,000 km long, facing away from the Sun, which
is swept out by the solar wind. The outer edge of the magnetosphere is known as the
magnetopause. Outside of this is an area called the magnetosheath, which is bounded by
the bow shock. This is a region where the solar wind velocity drops suddenly, and the
magnetic field lines are highly compressed. Fig. 1.2 shows the positions of these regions
schematically. Most high energy particles are prevented from entering lower parts of
atmosphere by the magnetosphere, making its shielding effects very important for all
life on Earth.

Bo
w

 S
ho

ck

M
ag

ne
to

pa
us

e

Magnetotail

Reconnection

Reconnection

Solar wind

Figure 1.2: A schematic illustrating the Earth’s magnetosphere. The solid lines represent magnetic field lines.

The IMF is formed by the steady outflow of solar wind from the Sun carrying the Sun’s
magnetic field. The Sun’s rotation causes the IMF to be shaped like an Archimedean
spiral2. Intense variation in the Sun’s surface magnetic field due to sunspots means that
the orientation of the IMF varies with time. The magnitude of the ‘vertical’ component
of the IMF is known as Bz , and its orientation determines whether solar wind plasma
can enter the ionosphere. Regions of open magnetic-field lines, known as polar cusps,
form between the sunward and tailward areas of the geomagnetic field. In the northern
polar cusp, the magnetic field is directed towards Earth, and in the southern cusp, the
magnetic field lines point away.

When the orientation of IMF is southward, it is able to link with the Earth’s field
at the polar cusps. As a result, solar wind plasma can be accelerated through the
magnetosphere, into the upper ionosphere. When southward Bz coincides with the Sun
ejecting very large numbers of particles, due to a solar flare or coronal mass ejection

2called the Parker spiral, after Eugene Parker who predicted the Solar wind in the 1950s
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(CME), large geomagnetic storms can result. These storms can cause large auroral
displays and disrupt power distribution and communications, making monitoring and
predicting their occurrence and effects very important.

Geomagnetic storms can result in large quantities of electrons and ions which increase
the electron density of the ionosphere. Often, during large storms in the northern
hemisphere, regions of enhanced electron density form in patches at mid-latitudes,
these then travel across the northern polar cap towards the night-side of the globe in
a convective pattern known as a tongue of ionisation (TOI). The path taken across the
polar cap depends on the direction of the IMF, with various different convection patters
forming under different conditions. These complex convective patterns are the subject
of various scientific studies [Foster et al., 2005, Stolle et al., 2005], and make the analysis
of the motion of the TOI an interesting and important problem.

Several such large geomagnetic storm events occurred around Halloween of 2003, after
several large solar flares. During these events, which were some of the largest ever
recorded there were various radiation and geomagnetic effects. These included damage
to some 26 satellites and the destruction of two; problems with long range communica-
tions and navigation; power outages and cancellation of airline operations. This makes
knowledge of the behaviour of geomagnetic storms very important.

1.1.2 Imaging the Ionosphere

Because of the many and varied effects of the ionosphere, knowledge of its morphology
and behaviour are of interest to both scientists and engineers. One way of analysing
these properties is imaging, or mapping, which provides image maps of the distribution
of electrons. These maps can be created using several methods, the most common of
which make use of data derived from GPS satellites and receivers. These data are then
interpolated or inverted to provided full 2- or 3-D fields. Incoherent scatter radars,
such as EISCAT can also be used to provided electron density profiles, although spatial
coverage is much more limited than with GPS, which can in theory, image the entire
ionosphere [e.g., Foster et al., 2005].

1.1.3 The Global Positioning System

The GPS is a timing and positioning system run by the US Department of Defense. The
system is divided into three segments; known as the control, space and user segments.
The control segment consists of various tracking stations around the world, with the
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main control centre at Schriever Air Force Base, Colorado, USA. These stations combine
measured satellite position data with models in order to precisely compute their posi-
tions (ephemeris), and necessary clock corrections. These data are then uploaded to the
satellites, for inclusion in navigational signals (NS), which are sent to receiver units.

The space segment consists of at least 24 satellites (currently 31) configured such that
there are four satellites in six orbital planes, each inclined at 55° to the equatorial plane.
This means that at least six satellites are always visible from most places on the surface
of the Earth.

Each of the satellites transmits its own NS, containing information on the satellite, clock
corrections, ephemeris and other information. This signal is created and then added
to a pseudorandom-noise (PRN) code known as the coarse coarse acquisition (C/A)
code. The resulting code is modulated on to carrier wave, known as L1, creating a
spread-spectrum signal which can be used for ranging. A second spread spectrum
signal known as L2 is also transmitted.

Both L1 and L2 are modulated by a code known as the precision- (P-) code. A crypto-
graphic key is required to allow use of the P-code. However, many modern receivers
make use of L2 code without decrypting the P-code to improve ranging performance
(see below).

The user segment consists of GPS receivers and their associated operators, or users.
GPS receivers require signals from four satellites in order to compute position in three-
dimensions, and time.

The receiver creates a replica C/A code which it correlates with the received signal
in order to find the correct time shift for the receivers clock. The receiver clock offset
is known as the time of arrival (TOA), or the pseudorange. Once the correct offset is
known, the received signal can be despread, and the NS demodulated.

GPS Positioning

By combining the ephemeris data from a given satellite with the pseudorange derived
from the C/A, the receiver can fix its position to the surface of a sphere surrounding
the satellite. By combining four such measurements, it is possible to fix the position to
one unique point – the intersection of the four spheres.

During this process, the receiver’s local clock must be continually adjusted, as clock
skew can severely bias position measurements. This is done by examining the imaginary
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1.1. THE IONOSPHERE

Figure 1.3: A schematic diagram of the GPS constellation created within Google Earth. After http://flickr.
com/photos/alexandervandijk/324479060/ (creative commons licensed).

sphere intersections for systematic bias, and altering the clock according to the bias
distance. Successive measurements from many satellites can reduce the clock error to
negligible amounts.

Error Sources

There are several sources of ranging errors in the GPS. However, the influence of the
ionosphere is the largest in magnitude. The ionosphere causes a frequency dependent
delay in propagation of L-band signals. This delay varies according to electron concen-
tration along the ray-path, and is typically at a minimum when the satellite is directly
overhead. Current GPS handsets are able to reduce ionospheric errors to approximately
10 metres, by using models to estimate range corrections, which (assuming a maximum
total electron content of 1018 e/m), could be as high as 26 metres for the L2 band, and
16 metres for L1 [pp. 294–307 Leick, 1995]. As the delay is frequency dependant, it
is possible to make use of a linear combination of both L1 and L2’s pseudoranges to
further reduce the effect of ionospheric delays.

1.1.4 Constructing TEC Maps from GPS Data

A great many fixed position GPS receivers are located around the world, collecting po-
sitional data. This can then used for myriad applications, including monitoring tectonic
shift and crust strain, as well as for cartography, civil engineering and precision timing.
The data recorded by these receivers can also sometimes be used to analyse the delays
caused by the ionosphere and other atmospheric regions. Although measurements can
be made of many different atmospheric regions and variables, in the case of ionospheric
electron density, the delays can be used to derive information on electron concentration.
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1.1. THE IONOSPHERE

GPS receivers are mainly situated in areas where population density is high, and as
the cost of running stations can be very high, they tend to be found concentrated in
more affluent countries. These factors mean that the distribution of receivers is largely
random, with a considerably higher measurement density in the Northern hemisphere.
The polar regions and oceans are particularly sparsely covered, making it difficult to
produce TEC maps over these areas.

The two main methods of constructing maps of ionospheric TEC are tomography [e.g.,
Mitchell and Spencer, 2003] and interpolation [e.g., Arikan et al., 2007, Meggs et al.,
2002].

Tomographic methods use ray-tracing to project path measurements onto a grid of
voxels. Non-linear inversion techniques can then be used to reconstruct the electron
content data at each voxel. Basis functions and model based interpolation can be also
used to help improve output quality. Generally, tomographic inversions can provide
high resolution 3-D imagery, but require large amounts of data to do so. This means
that in cases when tomography fails, such in historic data and over oceans and polar
regions, standard interpolation methods must be employed. Unsurprisingly, there is a
very large body of literature surrounding inverse problems and tomography.

In order to use standard 2-D interpolation methods, TEC data must first be converted
from path measurements to spot values on a fixed height shell. This is known as the
thin shell model (TSM) approach, and models the ionosphere as an infinitesimally thin
shell at a given height, normally between 300 and 400 km [Hoffmann-Wellenhof et al.,
2001, pp. 102]. The disadvantage of this approach is that information on the vertical
structure is completely lost. However, it has the potential to be computationally simple
(depending on the interpolation method used, and especially in comparison to large
matrix inversions) and allows for analysis of data which are too sparse for other methods
to reconstruct. Various methods have been developed for extracting TEC information
from the amplitude and phase of GPS signals, e.g., Warnant and Pottiaux [2000], Arikan
et al. [2007].

Following initial processing, each path’s TEC values were projected onto an infinitesimal
shell at a fixed height by calculating the ray’s intersection with the shell. With reference
to Fig. 1.4, the function which maps from slant to vertical TEC is then given by

F (z) =
(

1− Re cos(90− z)
Re +H

)−0.5

, (1.1)

where z is the satellite elevation angle (in degrees), H is the height of the shell (400 km
in this case) and Re is the radius of the Earth. Paths with elevation angles <20° were
removed because of high levels of error associated with low angles [Mannucci et al.,
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z

Figure 1.4: Thin Shell IonosphereModel. Re is the radius of the Earth, z is the elevation angle from the ground
station to the satellite, x is the point at which the path between the satellite and ground station intersects the
shell, and H is the height of the shell.

1999].

Some projected TEC values at 3 hourly intervals over a 12 hour period of the ‘Halloween’
2003 storm are shown in Fig. 1.5. Ionospheric storms events, mentioned previously, are
caused by Solar interaction and can have wide reaching consequences to communica-
tions systems both on Earth and satellite based. These data are typical of the type
which are interpolated, or inverted in order to produce TEC maps. These maps may
then be used to examine the behaviour of the ionosphere, and are of particular interest
during storms.

As the number of paths between GPS ground stations and satellites is relatively low,
producing TEC maps is an exercise in reconstruction from sparse data. Recent research
has mainly focused on methods such as tomography that provide time-dependent volu-
metric reconstructions [Mitchell and Spencer, 2003, Pallares et al., 2005]. However, when
the data points are too sparsely distributed, these techniques are under-constrained and
do not produce meaningful results. In ionospheric studies, problems relating to sparsity
are especially prevalent in historic data-sets. For example, in 1992 there were only 25
receiver sites operated by the International GNSS Service (IGS) in the USA [Brockmann
and Gurtner, 1996], by 1996 there were over 75, and now there are over 500. Therefore,
whilst the issues due to undersampling have largely disappeared for TEC imaging sys-
tems utilising modern GPS data, they still remain for older data, and regularly arise in
other geoscience applications [Liao et al., July 2007, Gianinetto and Villa, Oct. 2007].
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Figure 1.5: Example TEC input data for the cross-validation test in Section 3.3.2. All data are from October
30th, 2003 for the time periods (a) 1200-1215 UT, (b) 1600-1615 UT, (c) 2000-2015 UT and (d) 0000-0015
UT on the 31st.

1.1.5 Interpolation

For the reasons described above, interpolation methods still have an important role to
play in ionospheric studies. The most commonly used interpolation technique for TEC
mapping studies is kriging [Blanch et al., 2002, Stanislawska et al., 2002, Wielgosz et al.,
2003]. Although these studies have generally found kriging to perform satisfactorily,
in other geophysical applications numerous problems with the kriging method have
been reported [e.g., Philip and Watson, 1986]. In addition, there are many other inter-
polation methods for geophysical data that have received little recent attention from
the ionospheric imaging community. Also, and perhaps more importantly, the relative
performances of the different interpolation methods have not been assessed.
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1.1.6 Tracking Storm Features

During storms, TEC maps can be considered to be composed of three main components:
regions of high-electron density, noise and artefacts corresponding to other maxima (and
minima), and the remainder of the image which can be considered background. This
allows TEC maps to be used for the the examination of changes in electron density
during geomagnetic storms: The most obvious high-valued feature of note during large
storms is the TOI. Tracking and analysing its motion allows the effects of a given storm
to be evaluated, and helps to improve scientists’ understanding of the behaviour of
the Earth’s atmosphere and magnetic field under varying conditions. Whilst features
are known to move across the pole, automated empirical tracking which is not driven by
models is an advancement not previously applied to TEC mapping.

In addition, tomography based literature is rich in information with large spatial extent
and good representations of morphology, with only limited qualitative descriptions of
TOI motion during storms. In contrast, data from sources such as superDARN [Green-
wald et al., 1995], provides accurate quantitative motion vectors for specific patches of
plasma, with a limited spatial extent. However, these two approaches seldom supply
information on both electron density, along with vectors.

The automated tracking methods shown here attempt to bridge the gap between these
two fields by using tomographic or interpolation based imagery to provide quantitative
motion analyses with a large spatial extent. As this method is based on TEC data,
electron content information is also available, removing a major limitation relative to
previous techniques.

This thesis presents the results of applying several different motion estimation methods
(described in Chapter 5), for the first time, to ionospheric TEC data in Chapter 6.

1.2 Thesis Overview

The following three chapters of this thesis deal with interpolation, including an intro-
duction to various methods, and two ways of evaluating performance.

Chapter 2 describes sparsity, and then introduces various interpolation methods, includ-
ing normalised convolution (NC), triangulation based techniques, radial basis function
interpolation and kriging.

Chapter 3 deals with how the relative performance of different interpolation methods
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can be examined in a quantitative fashion, some of these methods are then applied. The
methodologies used in this chapter include simulation-validation, for evaluating inter-
polation on simulated data-fields, and cross-validation, for evaluation using real data.
The cross-validation method is applied to TEC data collected during the geomagnetic
storm event that occurred on Halloween of 2003.

Chapter 4 moves on to analysing interpolation methods in a more qualitative fashion. It
examines the various artefacts produced by different methods and discusses how error
distributions can be examined to provide a wealth of information on how interpolation
methods perform in specific cases.

The remaining chapters consider motion estimation techniques, starting with a descrip-
tion of the data used, in Chapter 5. These data consist of TEC maps of the northern
polar ionosphere which were created from data collected during the 2003 Halloween
Storm. It then discusses methods of motion estimation, including differential analysis,
optical flow, template matching, correlation-relaxation labelling and boundary tracking.
This chapter also introduces attribute mathematical morphology.

Chapter 6 is an initial study on the use of optical flow, template matching and correlation-
relaxation labelling based motion estimation to track the motion of an area of enhanced
electron density as it moves during the storm event.

Chapter 7 discusses the use of shape boundaries to infer motion. This chapter charts the
development of a two-stage approach which makes use of mathematical morphology
(MM) for segmentation, and shape context (SC) matching for motion estimation.

1.3 Main Contributions

The aims of this thesis are twofold:

1. Examine the performance and specific nuances of various state-of-the-art inter-
polation methods, with specific application to mapping the ionosphere. To this
end, interpolation methods are compared using a simulation methodology and a
cross-validation based approach which operates using real data. This work forms
the most widely scoped examination of interpolation techniques for TEC mapping
to date, and the first application of normalised convolution to geophysical data.

2. Develop and examine automated data-drivenmotion estimation methods for use on
TEC data. To this end, the results of applying several motion estimation methods

12
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to low-resolution TEC images are presented, including optical-flow, template-
matching and boundary-correspondence based techniques. Where relevant, field
entropy values are specified and reference is made to visual correspondence. This
is the first in-depth examination of automated tracking techniques to ionospheric
storm features.
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Chapter 2

Interpolation of Scattered Data

Scattered-data interpolation has been studied for many years and in many fields –
because of this it has been given many names. The term scattered, for example, is
also referred to as ‘spatial’, or ‘multivariate’, and the term interpolation is often called
‘reconstruction’ or, less formally, ‘approximation’. An interesting history of interpolation
from ancient times is provided by Meijering [2002]. Although its fundamental concepts
do not differ, scattered data interpolation is a more recent development. In their study
of the mathematical development of multivariate interpolation up to the second half
of the 20th century, Gasca and Sauer cite the first modern literature on multivariate
interpolation as the works of Borchardt and Kronecker, that appeared in 1860 and 1865
respectively [Gasca and Sauer, 2000].

This chapter considers techniques for interpolating scattered data. A great many dif-
ferent solutions to this fundamentally ill-posed problem have been proposed, and are
routinely used. Although the only condition is that the fitted surface passes through
the data points, all of these use weighted combinations of the input data to construct
output values, Methods of weighting can range from the very simple to the highly
elaborate, depending on the technique.

An example of a simple case is nearest-neighbour interpolation, which chooses the closest
input datum as the output for any given point (essentially setting a weight of one to
the nearest input datum, and zero for all others). Fig. 2.1 shows an example field
of simulated data, visualised as an elevation map. This field was downsampled by
randomly removing 99% of points, and then interpolated using nearest neighbour
interpolation. This figure clearly shows the faceted appearance produced by this kind
of interpolation. One of the main motivations for using and investigating different
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interpolation methods is improvement in output quality, and reduction of such artefacts.

Figure 2.1: An example of nearest neighbour interpolation, illustrating the highly faceted appearance of its’
outputs.

Examples of more complex cases are weighing based on area of overlap between the
cells of Voronoi diagrams, as used by natural-neighbour interpolation and the use of
steered anisotropic Gaussian filters in sympathy with local image features to preserve
edge information, as is used by adaptive normalised convolution (ANC) [Pham and van
Vliet, 2003].

Interpolation methods differ in many other aspects, including:

• Philosophy: normalised convolution (NC) based techniques use the fact that the
absence of data and zero-valued data are very different situations to improve output
quality of convolution based interpolation methods. In contrast, geostatistical
methods such as kriging use the idea that data can be decomposed into a stochastic
part and an autocorrelated part, and estimate these during (or before) interpolation
[Cressie, 1990, Trauth, 2006].

• Complexity: methods range in complexity from simple convolution or filtering,
through triangulation and Voronoi diagram creation, to solving very large linear
systems.
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2.1. SCATTERED DATA

• Output quality: different methods rely on fitted curves and basis functions of
differing order, which leads to a range of different qualities of output. Output
quality is also heavily constrained by input sparsity.

• Continuity of derivatives: closely related to complexity and output quality is
the idea that interpolation methods can try to increase smoothness by ensuring
continuous derivatives to different levels. Higher levels of continuity increase
complexity and require more input data to compute.

• Intended use: methods which are designed to allow sensitive analysis should try
and minimise artefacts in the output, whereas methods designed for real-time
operation might cut corners in order to speed up operation.

Interpolation methods can be divided into two categories, local and global, depending
upon the locality of the points which are used to derive a given output point. Local
techniques make use of a definition of locality to compute output values; only data
which fall within a given point’s local neighbourhood are used to calculate output
values. Global techniques use a weighted sum of all data to compute output values
and for large numbers of input points an approximation is generally used. When a new
datum is added to a globally interpolated field the whole field must be re-calculated
whereas, for a locally interpolated field, only those positions within the neighbourhood
of the added datum need to be re-calculated. These two points tend to favour the use
of local techniques, especially for interactive use.

Before discussing different interpolation methods in more detail, the meaning of scat-
tered data and how they arise must first be explained. Section 2.1 discusses scattered
data and one very important property of scattered data which have been projected into
matrices: sparsity.

2.1 Scattered Data

Scattered data are data which are spread throughout an object or medium being mea-
sured, such that the data may not cover every part of the object evenly. Whilst scattered
data-sets often occur by design, it is far more common for them to arise when mea-
surements are made opportunistically, or by proxy. Such data-sets are common in
geoscientific research.

A good example of opportunistic measurements leading to scattered data is the use
of global positioning system (GPS) receivers to calculate electron content along paths
between receivers and satellites (see Section 1.1, [page 2]). The number of receivers is
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largely random (and depends on amongst other things, population density, affluence
and the presence of tectonic activity, such as fault-lines). This means that, at any given
moment, the number of available paths can differ greatly over different areas of the
globe, and that the positions of samples is by no means regular.

A good example of proxy measurements leading to scattered data is meteor radar mea-
surements of mesospheric winds. These systems use the movement of the trails of
ablating meteoroids as tracers for atmospheric motion. This leads to scattered measure-
ments of the motion, as the positions of meteors entering the atmosphere is essentially
random.

A good example of intentionally scattered data is the use of methods such as stratified
random sampling [Ripley, 2004]. Such schemes are used by scientists to help ease the
process of data collection. This technique leads to fields of data where samples are
randomly positioned throughout small areas, but the areas themselves are not random.
An example where this kind of measurement system might be employed is in the
measuring of tree growth [e.g., Ripley, 2004]. Other sampling methods are also available,
and a large body of work from the 1950s and 60s deals with the variances introduced
by these. See Ripley [2004], and references therein.

A specific case of scattered data considered in this thesis are measurements of electron
content made along ray paths between GPS receivers and satellites. Data derived from
such measurements can be used for mapping and profiling of the ionosphere.

2.1.1 Sparsity

In terms of a matrix, sparsity, or sparseness, is a measure of how empty it is. Input
data sparsity has a large effect on the fidelity of interpolated images. Karvanen and
Cichocki [2003] define sparseness as the `0 norm divided by the number of elements in
the data-set. This is simply the proportion of non-zero values, as the `0 is defined as:

||x||0 =
# {j, xj 6= 0}

N
(2.1)

where x is the matrix, with N elements, and # is a function which counts the number
of times its content evaluates to true. This definition leads to an entirely empty matrix
having a sparseness of zero and a full one having a sparseness of one. As this is in
opposition to the definition, this thesis uses 1−||x||0 instead, and uses the term sparsity,
as opposed to sparseness, for clarity.
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Sparsity is only defined for data in matrices, as the notion of ‘elements’ or ‘pixels’ does
not exist for scattered data. The sparsity of a given data-set is therefore related to the
resolution of the matrix into which it has been projected. Fig. 2.2 demonstrates how
changing the resolution of a matrix affects the sparsity, by showing the projection of a
small set of scattered data into matrices with various resolutions. The sparsity can be
seen to increase as the resolution of the matrix is increased.

Resolution 1: Sparsity 0.75 Resolution 3: Sparsity 0.958Resolution 2: Sparsity 0.931

Figure 2.2: The effect that projecting scattered data into different resolution matrices has on sparsity. The
small circles represent data points, and grey squares represent matrix elements which take the values of the
data.

The effect of sparsity on output errors is discussed in a detailed study applied to both
simulated and real data in Chapter 3.

The remainder of this chapter introduces various state-of-the-art and common methods
for interpolating scattered data. These include methods based on triangulation, radial
basis function (RBF) methods [Carr et al., 1997] and kriging [e.g., Cressie, 1990, Trauth,
2006], as well as a relatively new technique, known as normalised convolution (NC).
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2.2. TRIANGULATION BASED INTERPOLATION

2.2 Triangulation Based Interpolation

Triangulations are often used as the basis for interpolation of irregular data – the Delau-
nay triangulation in particular has some properties which make it particularly useful,
and so most triangulations are of this type [e.g., Sugihara et al., 2000].

The result of a Delaunay triangulation is a set of vertices and edges (a graph) which
conveniently defines the convex-hull of the data. It also gives a simple definition of
locality. The local neighbours of any given point are those which are connected to it by
triangulation edges.

The geometric dual of the Delaunay triangulation, known as the Voronoi diagram, also
has many useful properties. Its edges form cells around each point such that the area
within each cell is closest to the point at its centre. Cells at the edges of Voronoi
diagrams are unbounded. Voronoi edges are always perpendicular to Delaunay edges.

Figure 2.3: An example Delaunay triangulated data, showing how datummay be connected to multiple neigh-
bours.

Once a data-set has been triangulated, each point in the data-set will be connected to
several others by triangle vertices (see Fig. 2.3). Given the values of a triangle’s nodes
(fi, where i = 1, 2, 3), the interpolated value of any point within the triangle can be
found using

f(x, y) =
3∑
i=1

φi(x, y)fi (2.2)

where φi(x) is the interpolating basis function, which weights the contributions of the
inputs [Watson and Philip, 1984, 1987, Sambridge et al., 1995, Sugihara et al., 2000]. For
a simple case, linear interpolation, the basis function can be replaced by a simple first
order polynomial,

f(x, y) = c1x+ c2y + c3. (2.3)

The coefficients c = (c1, c2, c3) can then be found by solving Ac = f where f =
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2.3. NATURAL NEIGHBOUR INTERPOLATION

(f1, f2, f3)T and A is a 3 × 3 matrix of rows with the form (xi, yi, 1), where i is the
row number.

Higher (and lower) order basis functions can also be used, but require larger (or smaller)
numbers of input samples. Zero order triangulation-based interpolation is known as
nearest neighbour interpolation, and leads to regions of output values in direct re-
lation to Voronoi cells. Other commonly used schemes include quadratic and cubic
interpolation. This process can also be generalised to higher dimensions, and various
implementations are readily available [Barber et al., 1996].

2.3 Natural Neighbour Interpolation

Figure 2.4: Voronoi diagram showing new cell (dotted line) overlapping cells from the original tesselation.

Watson [1985] defines natural neighbours as

“points which share a common interface, or region, that is equally close to
each of the pair, and all other neighbours are no closer”

This means that if circles (or n-spheres in n dimensions) are drawn such that their
circumferences pass though n + 1 or more data points, no data points will be within
any of the n-spheres. This is related to the Delaunay triangulation which can be formed
by linking the data at points which are on the circumference of each n-sphere. The
Delaunay triangulation is not unique when more than n+ 1 points lie on a sphere edge
(i.e. when four or more points are coplanar in 2-D).
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2.4. RADIAL BASIS FUNCTION INTERPOLATION

Once the natural neighbours have been established, the interpolated output value at any
point can be determined using a weighted sum of the values at its neighbours. The way
in which the weights are determined is best described in terms of Voronoi tessellations,
the geometric dual of the Delaunay triangulation, see Fig. 2.4. This method was first
suggested by Sibson [1981] from the University of Bath, UK, and is sometimes known
as Sibson interpolation. Other useful references include Sambridge et al. [1995], Park
et al. [2006], Fan et al. [2005], Watson [1985].

For each point where a value is required:

1. Assume the data are already tessellated.

2. Re-tessellate the data to include the output point. This adds a new Voronoi cell
which overlaps the cells of the natural neighbours of the output point.

3. The contribution from each neighbour is given by the ratio of the area of overlap
to the total area of the new cell. These ratios form the basis function φi(x, y) in
(2.2).

In terms of the Delaunay triangulation, the basis function φi(x, y) is only non-zero
within the circum-circles which pass through the natural neighbour nodes. This means
that the operation is local, in the sense that only neighbouring values are used in the
interpolation.

2.4 Radial Basis Function Interpolation

RBF interpolation approximates a field of data using a weighted sum of radially sym-
metrical functions known as basis functions [e.g., Carr et al., 1997]. One basis function
is centred on each input sample, so that any given output point is composed of con-
tributions from each input point. RBF interpolation is therefore considered a global
technique. The output at any given point x is given by

f(x) = pm(x) +
N∑
j=1

λjφ(||x− xj ||) (2.4)

where pm is a low-order polynomial surface with coefficients c0, c1, · · · , cn which has
been fitted to the data and is only used during linear and thin-plate spline interpolation,
φ is the basis function whose form is fixed across the field and λi is the weight for input
xi. Many different basis functions can be used, with differing performance and order
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2.4. RADIAL BASIS FUNCTION INTERPOLATION

of continuity. Some common functions are shown in Table 2.1 [e.g., Light, 1992, Powell,
1990].

Table 2.1: Example Radial Basis Functions

Name Equation
Linear φ(r) = r

Thin-plate Spline φ(r) = r2 log r
Multiquadratic φ(r) = (r2 + c2)0.5

Inverse Multiquadratic φ(r) = (r2 + c2)−0.5

Gaussian φ(r) = e−ar
2

Biharmonic Spline φ(r) = |r|2(log |r| − 1)

To find values for the weights λ and coefficients c, the linear system[
A P

P T 0

][
λ

c

]
=

[
f

0

]
, (2.5)

must be solved, where A is a matrix composed of evaluated basis function values for
every possible pair of input values, P is a matrix of homogeneous input coordinates
(coordinates with leading ones),

P =


1 x1 y1

1 x2 y2

...
...

...
1 xn yn

 , (2.6)

and [λ c]T and f = (f1, f2, . . . , fn)T are column vectors of weights and input values
respectively.

When a polynomial is not being fitted, the output system reduces to

Aλ = f. (2.7)

The calculation of the matrix A and solving the linear system described by (2.5) are com-
putationally expensive operations and this has motivated work aimed at decreasing the
overall complexity, using techniques such as domain decomposition [e.g., Beatson et al.,
2001]. In addition to the basis functions given in Table 2.1, some other interpolation
methods can be formulated in terms of RBF interpolation. A well-known example is
biharmonic spline interpolation and this is described in more detail below.
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2.5. KRIGING

2.4.1 Biharmonic Spline Interpolation

A special case of RBF interpolation is biharmonic spline interpolation (BSI). This is
a method of finding the minimum curvature surface which passes through a set of
points [Sandwell, 1987]. In practice, this method produces results which are indistin-
guishable to RBF interpolation using thin plate spline (TPS). BSI can be numerically
unstable for large numbers of points and, like other cubic methods, has a tendency to
drastically overshoot when points are close together. This problem occurs because of
the imposed continuity in the derivatives of the surface, which makes smoothly varying
curves preferable around data points. Therefore, BSI is better suited to the interpolation
of highly sparse data. The phenomenon of overshooting is discussed in more detail in
Chapter 4.

2.5 Kriging

Kriging was first suggested in the 1960s by D. G. Krige, a South African mining engineer.
It was originally developed as a technique for estimating yields of ore deposits from
sparsely distributed core samples but has now been widely applied to many different
fields and scenarios (for example, mining, mathematics and classification [e.g., Boucher
et al., 2006]), as discussed in Cressie [1990]. One of the main attractions of kriging
is its ability to provide a variance estimate for each output point. Kriging and all
geostatistical methods operate under the assumption that a process being interpolated
or analysed consists of a stochastic part and an underlying trend [Matheron, 1973]. The
trend may consist of both local and global components. This is Matheron’s ‘Theory
of Regionalized Variables’ [Matheron, 1971]. The stochastic component is comprised of
both random and autocorrelated parts, where the degree of autocorrelation is a function
of distance. This means that points in close proximity are more closely correlated than
distant ones. The method considered here is known as ordinary kriging, and is designed
to work with Guassian data.

The first step in interpolation using kriging is the formation of a semivariogram [e.g.,
Omre, 1984, Cressie, 1991]. This is a diagram of the spatial dependence of samples and
is a function of all possible separations (or lags) and semivariance. The semivariance is
defined by

γ(h) = 0.5(f(x)− f(x + h))2, (2.8)

where f(x) contains the point values at a given location (x) and f(x + h) is the point
value at a point separated from x by the lag vector h. For the isotropic two-dimensional
case, it is simplest to calculate lags by using a distance metric between points. However,

23



2.5. KRIGING

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  20  40  60  80  100  120

γ 
(h

)

h

(a)

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0  10  20  30  40  50  60  70

γ 
(h

)

h

(b)

Figure 2.5: Semivariograms (+) and automatically fitted spherical model of (2.9) (dashed lines). (a) Simulated
correlated data demonstrating a good fit and (b) degenerate TEC data showing a poor fit.

the number of combinations of sample positions which must be compared quickly
becomes very large. For this reason, input coordinates are often binned to reduce the
total number of lags.

After the semivariogram has been created, a model must be fitted to it. One example,
the spherical semivariogram model is a curve of the form

γsph =

c
(

1.5
(
h
a

)
− 0.5

(
h
a

)3) for 0 ≤ h ≤ a

c for h > a,
(2.9)

where, in geostatistical parlance, c is the ‘sill’, the value that the semivariogram reaches
after its initial rise, and a is the ‘range’ or length of spatial dependency. This sill is
generally close to the variance of the input values. Details of this and other commonly
used models can be found in Cressie [1991] and Trauth [2006]. Fig. 2.5a shows a typical
semivariogram with a fitted spherical model.

The next, and final, step is the actual kriging process. Kriging uses a weighted average
of input points to estimate the value any given output point. The weights are found
by minimising the kriging variance – the difference between the estimate and the actual
input value. An output variance is also directly calculable. As it minimises the variance
of the output, kriging is often called the ‘best linear unbiased estimator’. However, the
variance which is minimised is relative to the semivariogram model, so the results will
only ever be as good as the model and, therefore, the semivariogram. For a good,
concise description of the kriging process, see Blanch et al. [2002]. It should also be
noted that other authors have heavily criticised some of the underlying assumptions
behind geostatistics and these issues should be borne in mind when using kriging and
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2.6. NORMALISED CONVOLUTION

related techniques [e.g., Philip and Watson, 1986].

2.6 Normalised Convolution

2.6.1 Introduction

NC techniques are a class of methods which make use of convolution operations for
the efficient interpolation and regularisation of image data; that is, data projected into
matrices. They differ from other techniques in the fact that they make an implicit
distinction between zero-valued and unavailable samples.

Since their initial proposal by Knutsson and Westin [1993], NC techniques have been
steadily gaining in popularity, and have been applied to medical imaging see [e.g.,
Estepar et al., 2003], tensor field regularisation [Westin and Knutsson, 2003], motion
compensation [Farneback, 2002], irregular-data fusion [Pham, 2006], and interpolation
[Pham and van Vliet, 2003]. This work represents the first foray into the application of
NC techniques to the reconstruction of geophysical data.

The most basic form of NC, known as zero-order NC, is described by the following
equation:

f =
fi ⊗ g
ci ⊗ g

(2.10)

where fi is the input data, ci is a binary map of input data positions – the ‘confidence
map’, g is a kernel function and ⊗ denotes the convolution operator. NC is therefore
implemented using simple filtering operations, and so can be very computationally
efficient. The term ‘normalised’ comes from the division by the denominator, which
serves to normalise the filtered input data.

2.6.2 Zero-order Normalised Convolution

Zero-order NC is similar in output to linear interpolation. The input image is convolved
with a suitably sized filter kernel, in order to determine the contribution to the output
by different input data. A confidence map, describing the positions of input points, is
then convolved with the same filter in order to give the contribution of the filter kernel
to each point in the filtered input. The filtered input is then divided by the filtered
confidence map, removing the contribution from the filter and leaving the interpolated
output.
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2.6. NORMALISED CONVOLUTION

An alternative explanation is that NC produces a local model of the input data using
projections onto a set of basis functions. The locality comes from the kernel at each
pixel, and the basis function is a polynomial whose order is generally less than two,
and is usually zero.

Filters used for NC are usually Gaussians [e.g., Pham and van Vliet, 2003, Pham, 2006],
although various other kernels have been used. For example, initial studies [Knutsson
and Westin, 1993] used a raised cosine.

Simple zero-order NC is highly efficient, only requiring operations that can be executed
extremely quickly with modern computing hardware. It is also intuitively simple, and
requires no triangulation or calculation of derivatives. However, filter sizes must be
chosen such that they are as small as possible whilst encompassing all input data, or
gaps will appear in the output. Using a filter which is larger than necessary will result in
over-smoothing in areas where data are closely spaced. In effect, this is discarding data,
a proposition which seems counter-intuitive when dealing with irregularly sampled
data.

In order to improve output quality of zero-order NC, the filter size can be adapted,
and a suitable filter size for each pixel chosen. The simplest possible adaptation of this
kind is to vary the filter radii so that the filter used at any given point is related to the
distance to the nearest sample. This and other adaptations are known as ANC.

2.6.3 Higher Order Normalised Convolution

So far, discussion has been limited to NC using constant bases. This section discusses
higher order NC, where projection onto higher order bases is carried out using matrix
inversions. Due to the irregularity of sample positions, inversions must be carried out
at every output position. For this reason, first- and higher-order NC methods are more
computationally expensive than zero-order NC.

First order NC is the simplest improvement over zero-order NC, and uses bi-quadratic
basis functions, where zero-order NC uses a constant. Nine convolutions are required
in all: six for the numerator and three for the denominator. The following equation
describes the process mathematically:

 f1

fx

fy

 =


 g g.x g.y

g · x g · x2 g · xy
g · y g · xy g · y2

⊗ ci

−1

×


 g

g · x
g · y

⊗ (ci · fi)

 , (2.11)
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where g, g ·x, g · y, g ·x2, g ·xy, and g · y2 are filter kernels (g) that have been multiplied
by surfaces of various orders, this can be seen in Fig. 2.6. The form of (2.11) is similar
to (2.10) but involves an inversion instead of a division because of the introduction
of multiple basis functions. It also outputs fx and fy, the first derivatives in the x-
and y-directions. The overall process of first-order NC is therefore one of fitting basis
functions and then normalising the output.

Orders of higher than one are possible, but are again more computationally expensive.
However, second-order NC would yield second derivatives, which could be useful in
some situations, such as edge detection methods using zero crossings.

(a) 1 (b) x (c) y

(d) x2 (e) y2 (f) x · y

Figure 2.6: Polynomial basis functions as used by first-order NC

First-order NC provides little improvement over zero-order NC, both of which exhibit
performance similar to linear interpolation (but without a faceted appearance) when
filters are sized such that there are no output gaps. The main advantage is the fact that
gradients are returned in addition to the interpolated image.

This and several of the following sections are illustrated using example images of a
dockside crane.

First order NC is more computationally expensive than zero-order NC because of the
use of multiple basis functions and matrix inversions. However, in general, first-order
NC is more sensitive to filter size than zero-order NC. This is illustrated in Fig. 2.9,
which shows the root mean square error (RMSE) associated with reconstructing the

27
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(a) (b)

Figure 2.7: (a) the original version of the image used in several examples. (b) a version of the crane image
sampled to ≈ 90% sparsity.

crane image (Fig. 2.8). A strong negative gradient is visible in the left-hand section of
Fig. 2.9b. This section coincides with small filter sizes, demonstrating its high sensitivity
to changes in the size of small filters.

2.6.4 Zero Order Adaptive Normalised Convolution

The most simple form of ANC, known as size adaptive NC, adapts the filters such that
the kernel standard deviation at any given point is specified by the Euclidean distance
transform [e.g., Hlavac et al., 1999] (or other distance transform) of the input samples.

Alternatively, a more computationally expensive scale-space based method can be used
[e.g., Pham, 2006]. This method makes use of a scale-space pyramid to allow estimation
of the filter dimension at which a given certainty constant (C) is found. The pyramid
is constructed by filtering the confidence map with non-normalised Gaussians of expo-
nentially increasing scales (σi = 2i, i = -1,0,1,2. . . ). Recursive Gaussian filtering [Young
and van Vliet, 1995] can be for high-speed operation. The pyramid values at each
scale will then increase quadratically, due to the non-normalised filters, and a quadratic
regression can be used to estimate the scale at which the desired certainty constant is
found. This scale is then used to set the filter sizes at each point, to minimise smoothing
effects.
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2.6. NORMALISED CONVOLUTION

(a) (b) (c)

Figure 2.8: (a) Small section of the crane image (shown in Fig. 2.7a). This was sampled to ≈ 90% sparsity
(as shown in Fig. 2.7b), and reconstructed using (b) zero-order NC, and (c) first-order NC.
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Figure 2.9: Graphs showing RMSE of reconstructions of the crane image from various sparsities and varying
filter dimension, using (a) zero- and (b) first-order NC.

Unfortunately, size adaptation alone does not provide much of an improvement over
simple zero-order NC, and in order to further boost performance, alternative methods
of adaptation are needed.

As well as adjusting the filter sizes in sympathy with input sample positions, the filters
can be adapted according to properties of the image being reconstructed. Using 2-
D Gaussians gives three variable parameters, the standard deviations along two axes
and filter orientation. By lining filters up with the edges and other features, the output
image should contain more similar properties to the input image. However, this requires
properties of the sampled image (specifically edge information) to be known, and in
non-simulated situations original input images are very rarely available.

For this reason, there are methods of gradient calculation which are based on NC, and
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are designed to proved edge information in irregularly sampled images. These are
described in the following section.

2.6.5 Sparse Data Gradient Estimation

Estimation of gradient in irregularly sampled images requires the image to be interpo-
lated and then differentiated, usually along both the x- and y-axes.

There are two NC based methods of estimating gradient. This first, first-order NC, was
described in Section 2.6.3, and produces gradients as a product of its normal process.
The second, differential of normalised convolution (DoNC), uses differentiated zero-order
NC and is described below.

Differential of Normalised Convolution

The DoNC method is formed by applying derivative operators to the NC equation
(2.10), in two directions. This gives the following equations for the x-axis [Westin and
Knutsson, 2003, Piroddi and Petrou, 2004]:

∆x

(
D(x, y)
N(x, y)

)
≡Dx(x, y)×N(x, y)−Nx(x, y)×D(x, y)

N2(x, y)
, (2.12)

where:
Dx(x, y) = x.g(x, y)⊗ fi(x, y), (2.13)

and:
Nx(x, y) = x.g(x, y)⊗ ci(x, y). (2.14)

In (2.13) and (2.14), x ·g(x, y) is an edge enhancement filter which could be any arbitrary
(normally Gaussian) filter multiplied by a variable x. This effectively tilts the filter
relative to the x-axis.

The same process is also extended to the y-axis, and both processes are applied to
sampled inputs, they can be used to provide the edge vector [∆x,∆y]

T .

As discussed above, the filters used for DoNC should be chosen such that there are
no gaps in the output, but whilst attempting to minimise over-smoothing. Fig. 2.10b
shows an example of DoNC and first order NC applied to an image sampled to ≈ 90%
sparsity, both used the same size Gaussian filters (11 with σ ≈ 3). For comparison, the
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Sobel operator has also been applied to the original image.

(a) (b) (c)

Figure 2.10: Images illustrating the difference between (a) Sobel edge detection on an unsampled original
image, (b) DoNC and (c) first-order NC. Both images were reconstructed using 11 filters with σ ≈ 3 from an
image from which 90% of samples had been removed.

Gradients from First-order NC

Gradients calculated using first-order NC are similar to those produced by DoNC, but
can be slightly more accurate for some images, such as those with a large amount of
high-frequency content [de Jong et al., 1998]. The lower computational complexity and
similar performance of DoNC suggest that it is a sensible choice in practical situations
where speed is important.

2.6.6 Adaptive Normalised Convolution

Once estimates of image gradients are available, they can be analysed in order to provide
information on image structure, including local energies, orientations and anisotropies.
These properties describe gradient, edge direction and how non-uniformly varying a
given image is.

These properties can then be used to set the size and orientation of the NC filters
in order to maintain features and high frequency detail, whilst ensuring that no gaps
appear in the output. This process has been used in the past by Nitzberg and Shiota
[1992], Almansa and Lindeberg [2000], and specifically adapted for use in ANC by Pham

31



2.6. NORMALISED CONVOLUTION

and van Vliet [2003].

Kass and Witkin [1987] describe that fact that anisotropy can be detected by examining
local power spectra and noting that high-frequency energy tends to lie perpendicular
to the direction of flow. It is then suggested that orientation-selective linear filters can
be used to detect this clustering energy, and hence the anisotropy of the local area. van
Vliet and Verbeek [1995] developed this idea by using smooth local-gradient measures
to form matrices known as gradient square tensors (GST), which are approximately
equivalent to covariance matrices of the gradients, and are given by:

GST =

[
g2
x gxy

gxy g2
y

]
. (2.15)

(a) λ1 (b) λ2 (c) A

Figure 2.11: Eigenvalues and anisotropy. (a) and (b) show the largest and smallest eigenvalues of the crane
image and (c) the anisotropy. Images were generated using smoothed gradient vectors from Sobel operators.

The effect of smoothing is the localisation of the matrix, so that when its eigenvectors
are calculated, they correspond to the local area. Each pixel will have an associated GST,
and calculating these gives the various pieces of information which are summarised in
Table 2.2.

The two most useful of these products are the anisotropy (A, see Table 2.2 and Fig. 2.11),
and ϕ2, the ‘local direction’, which is given by:

ϕ2 = tan−1

(
gxy

λ2 − g2
y

)
. (2.16)
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λ1 largest eigenvalue
λ2 smallest eigenvalue
A = 1− λ2

λ1
anisotropy (consistency of local orientation)

ϕ1 local gradient direction (direction associated with λ1)
ϕ2 local orientation (direction associated with λ2)
λ1 + λ2 local energy

Table 2.2: GST Products

These measures are then used to set the size of the filters at any given point using:

σu = C(1−A)ασa (2.17)

and
σv = C(1 +A)ασa (2.18)

where u and v denote filter axes, and σu and σv correspond to Gaussian standard
deviations along those axes. These three parameters (σu, σv, ϕ2) can then be used to set
the size and rotation of the filter used at any given output point. Fig. 2.12 shows how
these parameters relate to a rotated Gaussian kernel.

3σu

3σv

x

y

φ

Figure 2.12: A schematic diagram showing the shape and salient parameters of a rotated 2-D Gaussian. The
oval indicates 3σ confidence limits in each axis, which corresponds to a 99.7% confidence interval, and is a
good place to truncate filters.

The GST process can also be used to extract information on local curvature, which can
then be used to warp filters [van Ginkel et al., 1999].
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2.6.7 Implementation

Various points in the above processes require filtering with Gaussian kernels for either
smoothing or, in the case of NC, localisation of output contributions. Multiple filtering
stages can quickly lead to high computation times, making it prudent to investigate
methods of speeding up these processes.

Two types of filtering process are heavily used by ANC. These are isotropic and
anisotropic filtering, and both have their own sets of speed improvements. These are
dealt with separately below.

Isotropic Filtering

Generation of 2-D Gaussian filter kernels can be sped up appreciably by using the
property of separability, which allows symmetrical functions to be split down into or-
thogonal components. This is possible when a filter kernel can be written as the outer
product of two vectors. For example, consider the Sobel kernel: 1

2
1

[ −1 0 1
]

=

 −1 0 1
−2 0 2
−1 0 1

 (2.19)

Using this, one can quickly generate 2-D Gaussian filters by convolving two vectors:

g(u, v;σu, σv) =
1√

2πσu
exp

{
−1

2
u2

σ2
u

}
⊗ 1√

2πσv
exp

{
−1

2
v2

σ2
v

}
(2.20)

Alternatively, since convolution is associative, this property can be used to quickly filter
images by using two 1-D processes instead of a single 2-D process.

The image is first filtered in one dimension, using one kernel, to give an intermediate
image. This image is then filtered in the other dimension using the other kernel. The
output is exactly the same as if a more complex 2-D filtering process had been used,
but is much faster thanks to the lower complexity.

Complexity of filtering operations which can be decomposed drops from M2P 2 mul-
tiplies and additions to M2(2P ), where M is the image dimension, and P is the filter
dimension. Therefore, the relative speedup is a factor of P

2 .

34



2.6. NORMALISED CONVOLUTION

A great many filters can be separated into orthogonal components, using the following
algorithm:

1. Perform the singular value decomposition (SVD) of the filter kernel. This will
give three values: U (output basis vectors), S (singular values) and V (input basis
vectors). The can be recombined to reconstruct the original kernel using:

K = USV ∗ (2.21)

where ∗ denotes the conjugate matrix transpose.

2. Take the rank of the singular values. This corresponds to the number of indepen-
dent rows in S. If rank(S) = 1, then the filter kernel is separable.

3. To separate the kernel, two 1-D vectors are formed by multiplying U and V by
the square root of the non-zero value from S:

Ku = U
√
s,

Kv = V
√
s.

(2.22)

Gaussian filtering can also be carried out using recursive or infinite impulse response
(IIR) filters, for further speed improvements [Young and van Vliet, 1995].

Anisotropic Filtering

Filtering images using steered, anisotropic filters is a computationally expensive oper-
ation, as convolution with a different filter kernel is required at each output point. As
with isotropic filtering, speed improvements can be made to anisotropic filters by using
approximate filter separability, as described by Geusebroek et al. [2002].

This process uses two filtering stages, one parallel to the x-axis, and another along the
direction of rotation. The first filter stage uses the following filter:

gx(x, y) = wof(x, y) +
bN/2c∑
i=1

wi(f(x− i, y) + f(xi, y)) (2.23)

where N is the size of the Gaussian filter, whose weights are given by wo . . . wN . The
filter standard deviation is:

σx =
σuσv√

σ2
u cos2 θσ2

v sin2 θ
. (2.24)
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2.7. INTERPOLATING TEC DATA

In this equation, θ is the filter orientation and σu and σv are the standard deviations
of the filter before rotation. The second pass of the filter operates on the intermediate
output of the first, using linear interpolation to calculate off-grid values, and has the
following form:

gθ(x, y) = wogx(x, y)+
bM/2c∑
j=1

wj{a(gx(bx− j/µc, y − j)+

gx(bx+ j/µc, y + j)+
(1− a)(gx(bx− j/µc − 1, y − j)+
gx(bx+ j/µc+ 1, y + j))}

(2.25)

where µ = tanϕ is the direction along which this filtering operation occurs. This term
arises from the equation for the Gaussian standard deviation for this pass, which is:

σφ =
1

sinφ

√
σ2
u cos2 θσ2

v sin2 θ, (2.26)

ϕ (and µ) are found using:

µ = tanϕ =
σ2
u cos2 θσ2

v sin2 θ

(σ2
u − σ2

v) cos θ sin θ
. (2.27)

As is the case for other separable filters, the overall complexity depends on the size
of the filter being used. This process can also be extended to use recursive filters for
further speed increases [Geusebroek et al., 2002].

Fig. 2.13 diagrammatically shows the whole ANC process, including various filtering
stages which can be used in order to tune the process for different types of image.
Finally, Fig. 2.14 shows an example image, including before and after sampling, and
after reconstruction using ANC.

2.7 Interpolating TEC Data

This chapter has introduced various commonly used and state-of-the art interpolation
methods. These methods have ranged from ubiquitous triangulation based methods,
such as the cubic and linear methods, to more obscure methods such as natural neigh-
bour. It also included RBF interpolation, kriging and ANC.
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Figure 2.13: A Flow diagram showing the overall ANC process.

As discussed in Chapter 1.1, information on the electron content of the ionosphere
can be collected using the GPS, by examining the phase and amplitude changes which
occur in paths between transmitting satellites and ground based receivers. These data
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can then be processed in order to create maps of the ionospheric TEC.

Chapter 3 examines the performance of the algorithms described in this chapter, us-
ing both simulated and real data, and quantitative techniques known as simulation-
and cross-validation. This study forms the most complete examination of interpolation
methods for TEC mapping of its kind, and the first application of NC to geophysical
data.

The interpolation schemes evaluated represent a broad cross-section of those in common
use. Specifically they are:

• Triangulation based (nearest neighbour) — Section 2.2

• Natural neighbour — Section 2.3

• Radial basis function — Section 2.4

• Biharmonic spline — Section 2.4.1

• Ordinary kriging — Section 2.5.

Of the list above, only ordinary kriging, RBF interpolation and BSI are considered
truly global techniques. Natural neighbour, nearest neighbour and triangulation based
interpolation all use a neighbourhood defined by the Delaunay triangulation of the
input data coordinates.
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2.7. INTERPOLATING TEC DATA

(a) Input Image

(b) Sampled to ≈ 98% sparsity.

(c) ANC Output

Figure 2.14: A photograph of a dunnock (a), which has been randomly sampled to ≈ 98% (b), and then
reconstructed using ANC (c).
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Chapter 3

Performance Evaluation of
Interpolation Techniques for TEC

Mapping

3.1 Introduction

The overall aim of this chapter is to assess the performance of currently available mul-
tivariate interpolation techniques for ionospheric total electron content (TEC) mapping.
The need to establish the relative performance of scattered data interpolation schemes
has been recognised and partly addressed in the past, see for example Franke [1982].
However, only very specific case studies exist involving more up to date methods [Blanch
et al., 2002, Mahdian et al., 2001, Rauth, 1998]. This study considers, for the first time,
the specific application of such techniques to TEC mapping and presents the results of a
comprehensive quantitative evaluation, using both simulated data and real ionospheric
electron content measurements. Schemes evaluated include those previously used for
TEC mapping (e.g., kriging), interpolation methods commonly used in other fields (such
as interpolation based on Voronoi tessellations and radial basis functions), and schemes
in use for other geophysical applications (such as natural neighbour interpolation).
We further propose the application of adaptive normalised convolution (ANC) to the
problem of TEC mapping and quantify its performance in comparison with extant tech-
niques. ANC is a recently proposed interpolation scheme that has found application
to the reconstruction of data with varying spatial frequency content, orientation and
anisotropy. As these properties are also found in TEC images, their reconstruction us-
ing ANC appears an attractive proposition. The proposed objective evaluation scheme
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3.2. EVALUATION METHODOLOGIES

enables the benefits conferred by ANC to be quantitatively assessed.

The quantitative evaluation methodology is outlined in Section 3.3 and used to deter-
mine the performance of the interpolation schemes described in Chapter 2. Finally,
discussion and conclusions are presented in Section 3.4.

3.2 Evaluation Methodologies

The evaluation methodologies used here correspond loosely to the best practices given
by Thacker et al. [2008]. They suggest that greater understanding of algorithms will
allow the successful development of more generally-robust systems, which will then
help drive the algorithm’s expansion and acceptance into other fields.

The guidelines given are intended to help parameterise new algorithms, improve un-
derstanding of internal operation and reduce brittleness. This will improve ease of
integration into larger systems, such that it can be carried out without fear of failure,
and with knowledge of inherent limitations.

Whilst interpolation methods are not necessarily considered computer-vision algorithms.
The type of understanding and parameterisation is nevertheless extremely useful and
surprisingly underused.

Several key questions are given by Thacker et al. [2008] which can be used to assess the
current state of the test methodologies and best practices for algorithmic testing. These
are listed (reordered) and considered below, in the context of interpolation of sparse
ionospheric TEC data:

1. How is testing currently performed?

Testing of TEC mapping is generally simulation based, for example Meggs et al.
[2002] tests the accuracy of reconstructing a simple model ionosphere using thin-
shell and 3-D inversions. Whilst not strictly related to interpolation, this is the
generally accepted approach to assessing methods of TEC mapping.

Arikan et al. [2007] uses the IRI 2001 model to test a TEC mapping and reg-
ularisation method, which is essentially validating reconstructed real data with
semi-empirical model data.

Samardjiev et al. [1993], used the CCIR model to compare f0F2 results1. However,
in many cases modelled data are far smoother than the actual phenomena being

1The CCIR model is now part of the International Reference Ionosphere (IRI) model.
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modelled, which leads to anomalous results. In particular, results tend to be
biased towards favouring techniques which produce artificially smooth outputs.

2. Is there a data set for which the correct answers are known?

No standard set of real TEC slant measurements with associated correct recon-
structed outputs is available. Meggs et al. [2002] make comparisons between slant
TEC, path measurements, and simulated data. However there are no data-sets for
which ground truths are directly available.

Simulated data may be sampled and then reconstructed. The reconstructions may
then be compared with the original simulated data. This technique will be referred
to as simulation-validation, and discussed in more detail in Section 3.2.1.

Cross-validation [e.g., Chen et al., 2008, Blanch, 2003, Kohavi, 1995] is a methodology
which allows the partitioning of data into separate sets which can then be used
for both reconstruction and validation. Partitioning can be done using various
different block sizes, depending on data availability. This is discussed in more
detail in Section 3.2.2.

3. Are there any strawman algorithms?

There are no specifically agreed ‘strawman’ algorithms, although several of the
most commonly used methods, such as linear and cubic triangulation based in-
terpolation, would make obvious choices. Code implementing these and various
other methods is readily available (see Chapter 2).

4. What should we be measuring to quantify performance? What metrics are used?

Error values and associated statistics can be specified in either appropriate units,
or as a proportion of total values. Errors can also be bounded as appropriate.

5. Are there experiments which show algorithms are stable and work as expected?

Simulated data may be sampled and reconstructed, although exhaustive testing
may be impossible due to the ill-posed nature of the interpolation problem.

In addition some known pathological problems exist for certain algorithms, such
as overshooting in cubic and higher-order methods. Knowledge of these artefacts
and when they occur can help inform decisions regarding which method to use,
and when.

The distributions of error values gathered using simulation-validation (and less
easily, cross-validation) may be examined for biases and skewness. The estimation
and analysis of interpolation error distributions and artefacts is discussed in more
detail in Chapter 4.
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Figure 3.1: Normalised histograms of the two types of simulated correlated data described in section 3.3.1.
Multivariate (solid) and univariate (dashed).

3.2.1 Simulation-Validation

Simulation-validation is a method of analysing interpolation performance using simu-
lated data. In this geophysical case, it is reasonable to assume that data being interpo-
lated will exhibit smooth spatial variations, that is, there will be autocorrelation.

Simulated autocorrelated data can be created by following the methodology detailed
by Omre [1984], who describes the creation of two kinds of simulated field, designed
with testing Kriging in mind.

The first type may be produced by generating fields of normally-distributed random
data (by using a random-number-generator), which can then filtered using a pillbox
shaped kernel. The filtering process introduces autocorrelation with a lag distance
dependent on the filter radius. These data have a multivariate Gaussian distribution
which is considered ideal for ordinary kriging.

The second method generates univariate data with an approximately log-normal dis-
tribution by filtering fields of uniformly distributed random data. Multi-normality is
then removed by examining 5 × 5 neighbourhoods around each point, and randomly
selecting from the ten highest values. Finally, the natural logarithm of the each data
point is calculated. Histograms illustrating typical distributions generated by these two
methods can be seen in Fig. 3.1.

Innumerable other methods of generating simulated data exist, such as plasma fractals2.
However, for the sake of brevity, only the methods of Omre [1984] are used in the case
study below.

2See, for example: http://www.ic.sunysb.edu/Stu/jseyster/plasma/
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The validation part of this process consists of appropriately sampling the simulated
data, for example, by uniform random sampling to an appropriate level of sparsity.
The sampled field can then be reconstructed and the original and output images sub-
tracted. Error measures such as root mean square error (RMSE), peak signal-to-noise
ratio (PSNR) or sum of squared-differences (SSD) can then be calculated using the out-
put ‘difference’ image. Error measures can also be given as a proportion of the input
image values. The image can also be examined visually.

(a) (b) (c)

Figure 3.2: Example images demonstrating simulation validation. (a) shows a simulated autocorrelated field.
(b) shows the result of uniform down-sampling by 97.99%, and interpolating using linear triangulation based
interpolation. (c) shows the difference between (a) and (b). The RMSE (not including pixels outside of the
convex hull, shown in black) was 14.2.
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Figure 3.3: Error histogram calculated from Fig. 3.2c.

3.2.2 Cross-Validation

Cross-validation is a statistical technique designed to allow testing with the same data-
set that is used for some process or methodology. Typically, cross validation is used for
training classifiers, in which training data are divided into two classes, one of which is
then used for training, and the other testing, the classifier.
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3.2. EVALUATION METHODOLOGIES

The use of cross-validation for interpolation is very similar, although the generation of
many different data sparsities requires the data set to either be repeatedly divided, or
divided into into multiple classes (a process known as k-fold cross-validation [e.g., Chen
et al., 2008]).

Partitions

Permuted

etc...

Randomised

Reconstruction Points Validation Points

Figure 3.4: Permuting blocks for use in cross-validation.

To apply k-fold cross-validation to the evaluation of interpolation techniques, it is neces-
sary modify the method of class separation. This allows fields with different sparsities
to be created. In the case of scattered data, this can be done using the following algo-
rithm:

First, randomise the list of data and partition the list into several blocks with equal
sizes. Then:

1. Interpolate the data in the first block, using the methods being tested.

2. Calculate the sparsity of the image to which these data gives rise (see Section 2.1.1,
page 17).

3. Difference the output data with the data in the remaining blocks and compute
appropriate error measures (such as the RMSE).

4. Repeat this process using the first and second block, then the first, second and
third block, etc. until the desired range of sparsities has been examined, or no
blocks remain.

If multiple subsets of data are available, for example time slices in the case of TEC
data, this process can be repeated for each slice and the results averaged by binning the
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sparsity values. Partitions could also be chosen randomly, or permuted to generate more
results if necessary. However, it should be noted that using blocks for both simulation
and validation at very similar sparsities should be avoided where possible.

To ensure the significance of the results, validation results should only be used where
a reasonable number of validation positions are available. This can be aided by setting
the block size to at least 30 points, thus ensuring a sensible minimum.

3.3 Interpolation Performance Evaluation

The interpolation methods tested and examined in this study are a mixture of com-
monly available implementations and custom written code (see Chapter 2). From the
triangulation-based class of techniques, the nearest neighbour, linear and cubic interpo-
lation available in MATLAB 2007a’s griddata function were selected [The Mathworks,
Inc, 2007]. The natural neighbour interpolation code was that available from Sakov
[2005]. The radial basis function (RBF) interpolation of Carr et al. [1997] was imple-
mented using both linear and multiquadratic bases. No domain decomposition was
used due to its complexity and the fact that the fields being interpolated were rela-
tively small. The biharmonic spline algorithm used was the v4 algorithm in MATLAB’s
griddata, which uses the algorithm of Sandwell [1987]. The kriging method used is
known as ordinary kriging and works with isotropic, normally distributed data. The
implementation evaluated was based on code given in Trauth [2006], with some modi-
fications. In particular, a spherical model was chosen as it represents a good trade-off
between the complexity associated with models with a high degree of freedom and
the poor performance exhibited by simpler functions such as the linear model. In tests
the spherical model was found to perform well with both simulated and TEC data. To
enable the unsupervised reconstruction of TEC fields, the spherical model was automat-
ically fitted to the semivariogram using a least-squares method. The ANC interpolation
technique implemented was the zero-order scheme described in Section 2.6.6 (page 31).
The kernel used was a two-dimensional Gaussian, whose size and orientation were set
using (2.16)–(2.18). The gradient square tensors (GST) measures were constructed using
gradients obtained from normalised differential convolution (NDC). To reduce the com-
plexity, the efficient decomposition technique that provides a close approximation for
rotated Gaussians proposed by Geusebroek et al. [2002] was used in the final filtering
stage. The Euclidean distance was used for all techniques requiring a distance metric.

The techniques to be evaluated were applied to both simulated and real TEC data. As
simulated data provides ground truth values, it has the advantage of allowing analysis
of residual errors to be calculated at every point in the output field. In addition,
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parameters such as the input sparsity can be carefully controlled. However, it should
be noted, that the performance of any interpolation method can vary considerably with
the statistics of the input data, and therefore the results gained through simulation
are not necessarily indicative of the general performance. Therefore, the ultimate test
of reconstruction techniques remains their application to real data. To this end, the
interpolation methods are applied to TEC data from the much-studied October 2003
ionospheric storm.

3.3.1 Simulated-Validation Results

The interpolation techniques were used to reconstruct each type of the simulated data
from sparsities ranging from 95% to 99% in steps of 1%, and 99% to 99.9% in steps of
0.2%. The sampling was carried out by thresholding uniform pseudo-random numbers,
so the percentage of remaining samples is not necessarily the same as the requested
value. Plotted results show the actual sparsity obtained. Each generated data field
was sampled 30 times at each sparsity, and then reconstructed with each interpolation
method. The number of reconstructions was set to 30 to minimise computation time,
whilst ensuring the statistical significance of the results.

The RMSE between the original and reconstructed data outputs were calculated and
averaged over the 30 reconstructions, see Figs. 3.5 and 3.6. In both of these figures,
the RMSE values were normalised by dividing by the average value of the data be-
ing interpolated to give the RMSE as a proportion in which, for example, a value of
0.1 corresponds to a 10% error. For clarity, the results for the two worst performing
techniques, linear and nearest neighbour interpolation, were removed.

The RMSE performance of all interpolation techniques increases with sparsity for both
types of simulated data. Overall, the RMSE for the multivariate data increases from
around 10% at a sparsity of 95% to 25-30% at a sparsity of 99.6%. The performance for
the univariate data at the corresponding sparsities is better, increasing from approxi-
mately 7% to 15% at sparsities of 95% and 99.6% respectively.

The worst performing technique for both the univariate and multivariate simulated
data is biharmonic spline interpolation (BSI), which has a consistently higher RMSE
than other schemes. Although kriging is the best performer for many sparsities, its er-
ror is dramatically increased at sparsities > 99.3% and at certain other lower sparsities,
probably as a result of failing to correctly fit to the semivariogram. This is significant
as the errors in these cases are up to 4 times those of the other techniques. The ANC
performance at all sparsities is 1-2% worse than the best performing techniques. Cubic
interpolation generally performs well and the overall best performer is natural neigh-
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Figure 3.5: Proportional RMSE as a function of sparsity for simulated multivariate correlated data reconstruc-
tion.

bour interpolation, which exhibits no anomalous behaviour, whilst maintaining good
performance throughout.

This process described above was repeated whilst altering the size of the pillbox used to
impose auto-correlation of the simulated data from 10 to 50 in steps of 10. Overall, this
has little effect on the RMSE of the reconstructions, with the exception of kriging, whose
implicit assumptions about data auto-correlation are violated when the lag distance is
small. In both the univariate and multivariate cases natural neighbour interpolation
performed best with respect to changing radius of correlation (see Figs. 3.7 and Fig. 3.8).
This is because its performance is based on data position rather than value.

In addition to providing overall error values, simulated data allows for analysis of resid-
ual errors at every point in the field. In all cases the residual errors exhibited Gaussian
distributions with means very close to zero, showing the interpolation techniques have
negligible bias. A typical result of this type of analysis is shown in Fig. 3.3.
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Figure 3.6: Proportional RMSE as a function of sparsity for simulated univariate correlated data reconstruc-
tion.

3.3.2 TEC Cross-Validation Results

The sources of data used to test TEC reconstruction are approximately 80 global po-
sitioning system (GPS) measuring stations lying within 20–70° N and 70–130° W. This
corresponds to a coverage of most of North America. Whilst more sites were avail-
able at that time, not all sites were used, as the main aim of this chapter is to exam-
ine interpolation during high sparsity cases. The time period over which data were
drawn was from noon to midnight on October 30th, 2003 – the peak of the ‘Halloween
Storm’ [Hernandez-Pajares et al., 2005]. Data were considered stationary within 15
minute intervals, and projected onto a ‘thin shell’ for reconstruction. The thin shell
used covered the same area as the ground stations and had latitudinal and longitudinal
resolutions of 0.5°, giving rise to fields of size 101× 121 pixels. As each ground-based
receiver station can see approximately 6 satellites at any one time, there are around 500
paths associated with the 80 measuring stations.

Care was also taken to ensure that the average TEC values of the points used for
validation were similar in magnitude to those being used for the reconstructions, to
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Figure 3.7: Proportional RMSE as a function of filter radius (in pixels) for simulated multivariate correlated
data reconstruction.

avoid biasing the output values.

Fig. 3.9 shows the electron content results binned into 40 sections, and averaged across
each section for the interpolation techniques evaluated in the previous section. As
before, the RMSE has been divided by the average field value to produce proportional
RMSE results that are more directly comparable with the simulated results. The lower
sparsity limit of 0.9825% is higher than for the simulated data as this is the greatest
density that can be achieved with the available data points. Compared to the simulated
data, the increase in error with sparsity is less marked for all techniques.

Once again, BSI was the overall worst performing technique. The inconsistency of the
errors across the range of sparsities associated with kriging that was exhibited in the
simulated results is also evident. For example, at a sparsity of 99.3% its RMSE is over 4
times that of the best performing technique. Cubic interpolation performed consistently
with approximately average results.

Natural neighbour interpolation again performed well but, unlike the results for sim-
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Figure 3.8: Proportional RMSE as a function of filter radius (in pixels) for simulated univariate correlated data
reconstruction.

ulated data, its performance is matched by that of ANC. In fact, over the range of
sparsities the proportional RMSE produced by ANC is, on average, 0.08% less than
the equivalent natural neighbour results, and also showed a slightly lower variance. In
comparison, the average RMSE produced by cubic and kriging interpolation were 0.91%
and 1.57% worse than ANC, respectively. The inconsistency of kriging is reflected by a
variance approximately 10 times higher than the other techniques.

To illustrate the results produced by some of the different interpolation techniques,
Fig. 3.10 presents example reconstructions produced by ANC and kriging for two sets
of input data from Fig. 1.5c. The input data in each case was 25% of the available GPS
path signals, giving a sparsity of approximately 98.8%. For both sets of input data,
kriging and ANC have produced slightly different results. The proportional RMSE for
each reconstruction can be found using the remaining 75% of the data. For this case
the average proportional RMSE is 0.0524 TEC Units and the difference between the
kriging and ANC errors is less than 1%. Fig. 3.10 also shows that the set of input
data used produces more significant differences in the output fields than the choice
of interpolation method. This observation underlies the benefit of the cross-validation
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Figure 3.9: Proportional RMSE as a function of sparsity for TEC data from GPS path measurements. Errors
were calculated using the cross-validation method described in Section 3.2.2.

evaluation procedure which removes any sensitivity to choice of input data by the
averaging the results within a given range of sparsities.

3.4 Discussion and Conclusions

In the literature, kriging has been the interpolation method of choice for producing TEC
maps of the ionosphere, as well as for other geophysical applications Blanch [2003],
Stanislawska et al. [2002], Wielgosz et al. [2003]. However, to date there has been little
in the way of evidence to support its adoption over other interpolation schemes. This
chapter has sought to address this issue by performing a comprehensive quantitative
evaluation of kriging and a selection of other interpolation methods currently in use. To
this end, an evaluation methodology that uses both simulated and TEC data has been
proposed. With simulated data, error values can be calculated at all output points.
For TEC reconstructions this is not possible and, instead, an evaluation using cross-
validation was performed. Considering the overall performance for both simulated and
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Figure 3.10: Example output images produced by ANC and kriging using two sets of the input data from
Fig. 1.5c. Each set consisted of 25% of the available data (×) and the remaining data (+) used to calculated
the proportional RMSE. (a) and (b) Set 1 results (sparsity 98.94%) produced by ANC and kriging respectively.
(c) and (d) Set 2 results (sparsity 98.79%) produced by ANC and kriging respectively. The proportional RMSE
values are (a) 0.0640, (b) 0.0533, (c) 0.0503, and (d) 0.0421 TEC Units.

TEC data, the following remarks about the individual interpolation techniques can be
made.

Triangulation-based techniques are widely used in computer graphics applications. The
best performing of these, cubic interpolation, has a relatively low complexity and its
performance is, in many cases, reasonably close to that of the best performing, more
complex methods. Therefore, for ionospheric applications where a small loss in accuracy
can be sacrificed for a faster run-time, it is a reasonable choice of technique.

Although the kriging scheme used in this investigation performs well at many sparsities,
it exhibits a very large variance for both the simulated and TEC data. This variance
is due to spikes where the proportional RMSE is excessively high. Two main stages of
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3.4. DISCUSSION AND CONCLUSIONS

kriging-based interpolation are the construction of the semivariogram and the fitting of a
suitable model, and both of these are sensitive to the settings of their various parameters.
This is one of the main reasons why it is often recommended that kriging is implemented
as an interactive process, as opposed to an automatic one. When the semivarogram
model being used fails to accurately fit the experimental semivarigram, the output of
the interpolation will be poor. Fig. 2.5b shows an example, degenerate semivariogram
where the data have a high variance at all lags, a breach of the fundamental assumption
of high autocorrelation at low lags. In these cases the fitted model poorly matches the
actual data, resulting in an output field with a high error. Although, in theory, it may
be possible to automatically detect degenerate semivariograms and try to find a more
suitable one to fit to, the procedure is very complex and, for the tests performed here,
the level of sophistication required would be far beyond that required by the other
techniques being evaluated.

Natural neighbour interpolation performs well across all data types and sparsities. It is
the best performing method for both types of simulated data and is only surpassed by
ANC on the TEC data. The main drawback of natural neighbour interpolation is that
it is complicated to implement, and there are few modern reference implementations
available. However, if it were more widely known, and its performance recognised, this
situation could change.

While there are many performance features that are common for both the simulated
and TEC reconstructions there are also some significant differences, such as the change
in RMSE with sparsity, and the relative performance of individual interpolation tech-
niques. This suggests that, in testing interpolation methods, simulations should only be
used if they are demonstrably very similar to the real data to be interpolated. If this is
not the case, the data-driven cross-validation methodology demonstrated here is ideal
for testing the performance of interpolation schemes using only real data. The major
difference between the simulated and TEC data is that of anisotropy and this helps ex-
plain why the relative performance of ANC, a technique that copes well with anisotropy,
was dramatically improved for the TEC reconstruction. Indeed, given that ANC was
the best performing technique for the TEC data, these results suggest that ANC and
natural neighbour interpolation should be the methods of choice for ionospheric recon-
structions as they offer an error performance that is better and more consistent than
kriging.

The following chapter discusses the examination of interpolation error distributions and
biases, as mentioned in Section 3.2, above.
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Chapter 4

Interpolation Artefacts and Error
Distributions

The examination of artefacts and the measurement of error distributions are two ways
of sanity checking interpolation methods, and gathering knowledge of their specific nu-
ances. This idea was introduced in Section 3.2, (on page 41), and is further described
here, with examples.

4.1 Artefacts

Artefacts are a very interesting and important aspect of interpolation. They can differ
greatly across different methods, and appear in widely varying situations. This section
examines different methods with a view to identifying different artefacts, and examining
where and when they occur. Such knowledge can be very useful in a wide variety of
situations, such as when using sensitive analysis methods, or when closely examining
interpolated outputs.

From an alternative angle, knowledge of different artefacts can aid in gaining an intu-
itive understanding of how different interpolation methods work, and should therefore
help prospective users to choose the technique most suited to their data-sets, and ap-
plications.

In this case, the word artefact can refer to any characteristic of an interpolated output
field which has been introduced by the interpolation technique used to create it. Exam-
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4.1. ARTEFACTS

ples of artefacts commonly seen are peaks, concave slopes and overshooting edges. This
definition is deliberately loose, as interpolation is arguably the introduction of artefacts
around a sparse set of data points. As interpolation is ill-posed, there are an infinite
number of available outputs, all of which are interpolated versions of the input data,
the vast majority of which are completely inappropriate. Of the remaining (miniscule
fraction) of outputs deemed acceptable, only some will be appropriate in any given
case. For this reason, any specific notable feature of any interpolation method can be
considered an artefact, and so the following discussion will be kept fairly broad in scope.

Fig. 4.1 shows some example data from the Shuttle Radar Topography Mission. These
data have been downsampled by approximately 99% and then reconstructed using var-
ious interpolation methods. This figure illustrates artefacts produced, as well as giving
a general feel for the outputs produced by the different methods.

(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Example elevation data from the SRTM, shown as a false colour surface. (a) is the original input
data, which were sampled to ≈ 99% sparsity, and reconstructed by (b) was interpolated using linear triangu-
lation based interpolation and (c) were interpolated using linear RBF interpolation. (d) TPS RBF interpolation,
(e) NN interpolation, (f) ANC.

Fig. 4.2 shows an image of rice grains, and illustrates a small section which was sampled
and interpolated to produce Fig. 4.3. In this figure, various interpolated versions of (a)
(which was first randomly sampled to ≈ 99%) are shown. Whilst there are no major
differences between the surfaces, they do illustrate the subtle differences between the
different methods, particularly in the large flat regions.
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4.1. ARTEFACTS

Figure 4.2: A greyscale image of rice grains, displayed using false colour, with the single grain used in Fig. 4.3.

4.1.1 Triangulation Based Linear Interpolation

Linear triangulation based interpolation operates by fitting flat surfaces to Delaunay
triangulated x- and y-coordinates, with heights defined by the z-coordinates. For this
reason, data interpolated by this kind of interpolation can appear to be highly faceted,
especially when interpolating particularly sparse data.

Linear interpolation based on triangulation is analogous to fixing triangular plates to-
gether over a frame whose vertices are the data points, and with edges following those
of the triangles. There is not necessarily any continuity across any derivatives of the
edges, and therefore the surfaces can appear highly jagged. However, because no con-
tinuity of derivatives is enforced, all points in the interpolated output will lie within
the surfaces defined by the triangulation. This means that linear interpolation of this
kind never contains overshoots, which can be an advantage in some situations, and
absolutely essential in others. The main downside is the faceting effect introduced by
this method.

4.1.2 Linear RBF Interpolation

Linear radial basis function (RBF) interpolation uses a basis function which varies lin-
early with the distance from input data. This yields results which are similar to those
produced by linear triangulation-based interpolation, but which do not contain the
faceted appearance. The trade-off here is that RBF interpolation is a global interpola-
tion method, which means it is computationally expensive, especially when compared
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(a)

(b)

(c)

(d)

(e)

Figure 4.3: Examples of a section of an image of rice grains. The original image, displayed as a displacement
map (a) was sampled to a sparsity of ≈ 99%, and is followed by (b) linear, (c) RBF TPS,(d) NN and (e) ANC
interpolated versions of the sampled image.

to triangulation based methods. For small data-sets where overshoots and faceting
effects are undesirable, this interpolation method is ideal.

4.1.3 Cubic Interpolation

Cubic polynomial surfaces are very commonly used for interpolation. This is because
their surfaces are smooth and their creation is less computationally expensive and re-
quires less input datum than other higher order surfaces. These factors mean that cubic
interpolation methods are among the most commonly used of all interpolation methods,
and are the default in many software packages. This makes knowing about potential
artefacts all the more important.

Figs. 4.3c and 4.1d were interpolated using thin plate spline (TPS) RBF interpolation,
a cubic-order method which was introduced in Section 2.4, on page 21. This produces
results which are almost identical to biharmonic spline interpolation (BSI), and are char-
acterised by smooth, isotropic surfaces. A TPS is a kind of cubic spline, and as such
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4.1. ARTEFACTS

produces similar outputs to triangulation based cubic interpolation. These outputs are
all characterised by smooth surfaces, and a tendency to produce values which overshoot
around extrema. This is because cubic interpolation methods attempt to maintain con-
tinuous first and second derivatives at all points. Fig. 4.4 shows a minor example of the
kind of overshoot and undershoot that can be caused by cubic interpolation. The area
in the top left shows a small and steep peak, caused by the two close points after the
leading low valued point. On the right, a similar undershoot with a larger horizontal
extent appears for the same reason.

A good physical analogy to spline based interpolation is imagining the image having
been interpolated using metal sheets, which are able to bend a certain amount, and
whose joins with other plates must be continuous to at least the first derivative. This
physical analogy is the idea around which splines were originally designed.

Other interpolation methods such as the venerable Akima method [Akima, 1978, Ripley,
2004], also aim to reduce these overshoots 1 and succeed in suppressing them. How-
ever, algorithms such as this are no longer commonly used in modern software and
tend only to be used in applications where legacy code is heavily relied upon, such as
in the interpolation of precipitation information. Chen et al. [2008], for example, com-
pared three commonly used interpolation methods for interpolation global of rainfall
data. The methods tested include Shepard [1968], which is based on a modified in-
verse distance weighting function, designed when computational methods for irregular
interpolation were first being heavily investigated in the late 1960s.
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Figure 4.4: Examples of overshoot (and undershoot) in cubic interpolated data.
1which are themselves a well documented and analysed problem [see e.g., Fried and Zietz, 1973, Mae-

land, 1988]
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4.1.4 Natural Neighbour Interpolation

In common with many other methods, natural neighbour (NN) again uses the Delaunay
triangulation. However, it differs from all other methods in that it uses the ratio of
overlapping areas to determine the weighting of data points. This results in surfaces
which vary more smoothly than linear interpolation based on triangulation. The most
obvious artefact caused by NN is the fact that it tends to produce sharp points near
input data.

Physically, the surfaces produced by NN are similar in appearance to that of a heavy
rubber sheet, stretched over and attached to input points. The sheet is more heavily
stretched near input points.

Figure 4.5: Example interpolated pyramids, demonstrating the pointy effect that NN causes (bottom), along
with the same data interpolated with cubic interpolation based on triangulation (middle), and ANC with un-
dersized filters (top).
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4.1.5 Adaptive Normalised Convolution

The adaptive normalised convolution (ANC) method (see Section 2.6, page 25), uses
convolution with rotated and scaled filters to perform interpolation. It produces outputs
which take account of image anisotropy, and whose appearance is somewhere between
natural-neighbour and TPS interpolation. The main artefact that ANC produces is a
kind of stepping effect, which occurs when the filters used are too small to accurately
capture the spatial variation of the sampled image. In this case, the output images
appear similar to the topmost image of Fig. 4.5, which has a stepped appearance. This
kind of artefact can be prevented by increasing the minimum size of the filters used.
Errors such as this are fairly common in adaptive techniques where the adaptation
algorithm is unable to handle data whose properties do not match those for which it
was designed.

4.2 Interpolation Error Distributions

One very effective way of examining interpolation methods for possible problems is
to create a histogram of the errors between an interpolated output and a simulated
full-field input. This can also be attempted using a cross-validation style method (see
Chapter 3), although often this will not yield enough error measurements for the cre-
ation of a full histogram.

The histogram should describe an approximate Gaussian distribution centred on zero.
If the input data are reasonably dense, then the bins around zero will likely have
considerably higher values than would be expected in a standard Gaussian, due to large
numbers of zero (and close to zero) valued errors. Long tails are also fairly common in
real data due to noise which cannot be effectively interpolated.

Once the distribution of errors has been calculated, the first three statistical moments
of the distribution can be used to examine the output for biases and skewed output, as
well as the calculation confidence limits on the errors.

In ascending order the moments can be used as follows:

1. The first standardised moment of a distribution is its mean. If this is not zero,
then there is a systematic bias in the reconstruction being examined. These re-
sults should almost certainly be discarded. Fortunately, seriously biased interpo-
lated outputs only rarely occur in practice, making testing common interpolation
methods largely unnecessary.
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µ = x =
1
N

N∑
n=1

xi. (4.1)

2. The second standardised moment is the variance. This is useful for characterising
the spread of error values. Taking the value of the distribution at the positions
indicated by the standard deviation gives a 68.26% confidence limit. Confidence
limits are discussed in more detail below. Sample variance may be calculated
using:

σ2 =
1
N

N∑
n=1

(xi − x)2. (4.2)

3. The third moment describes the ‘skewness’, or asymmetry of the distribution. A
non zero skewness, is indicative of a tendency for the interpolation method to
under- or over-estimate the output values which do not lie on an input datum.
The sample skewness is estimated using:

γ1 =

1
N

N∑
n=1

(xi − x)3

(σ2)3/2
, (4.3)

where µ3 is the third moment about the mean and σ is the standard deviation.

4. The fourth moment is the ‘kurtosis’, which describes how outlier-prone a distribu-
tion is. Standard Gaussian distributions have a kurtosis of 3; distributions which
are more outlier prone have higher kurtosis values, and those which are less out-
lier prone have lower vales. Many definitions of kurtosis subtract 3 to make the
kurtosis of the normal distribution equal to zero. This is known as excess kurtosis.
High kurtosis values in error distributions are an indicator that there may be fairly
small numbers of large errors. If this is the case, an examination of confidence
bounds to ensure that the performance is acceptable may be carried out. Fig. 4.6
shows plots of three distributions: Gaussian, which has an excess kurtosis of 0,
Logistic, which has an excess kurtosis of 1.2, and Wigner semicircle which has an
excess kurtosis of -1. These curves show that the kurtosis measures how much of
the distribution lies close to the mean.

The sample excess kurtosis is given by:

γ2 =
1

N(σ2)2

N∑
n=1

(xi − x)4 − 3. (4.4)

62



4.2. INTERPOLATION ERROR DISTRIBUTIONS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-4 -2  0  2  4

Gaussian
Wigner Semicircle

Logistic Distribution

Figure 4.6: Various distributions with differing kurtosis values, including Gaussian (excess kurtosis 0), Logistic
(excess kurtosis 1.2) and Wigner semicircle (excess kurtosis -1).

4.2.1 An Error Skew Case Study

As a further example of the skew problem mentioned above in Point 3, Fig. 4.7 shows a
sample image (Fig. 4.2) and its reconstruction with kriging (a), the semivariogram (b),
and the error histogram (c). This histogram shows that the technique is slightly skewed
in this case, indicating that output values tend to be under-estimates.

To examine why this is, this section considers how kriging operates. Kriging works
in several stages, the first of which is the estimation of an experimental semivariogram,
which describes the spatial autocorrelation of the data being interpolated. This then
has a model fitted to it, which is then used as a basis function for a global interpolation.
In this case, the image has patches with high levels, followed closely by patches with
low levels (the patches are actually grains of rice). Because each grain of rice has a
different orientation, the level of autocorrelation in the image varies significantly across
the image, which is also highly anisotropic. This means that the semivariogram is
unable to fully capture the spatial variation of the image, which in turn leads to a
poorly fitting semivariogram model, which culminates in a poor interpolated output.
The main consequence of the poorly fitting model is that the basis function chosen
for the interpolation leads to concave surfaces in the output, which causes a large
proportion of the output positions to contain under-estimates than overestimates; this
is evidenced by the longer left hand tail in Fig. 4.7c. Problems with kriging are also
discussed in Section 3.4, page 52.
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Figure 4.7: (a) (top) a reconstructed version of the sampled image (bottom), (b) the semivariogram for the
sampled version of the bottom image in (a). The green line represents the fitted semivariogram model. (c) a
histogram showing the distribution of error values between the images in (a).

4.2.2 Confidence Limits

Error distributions can be used to calculate confidence limits on output errors. These
can be calculated using the standard distribution of errors or, as absolute error bounds
are probably more useful, the histogram of absolute errors could be used to calculate
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Table 4.1: Absolute error percentiles for 95% sparsity.

Percentile ANC Nat. Neigh Nearest Neigh. Linear Cubic BSI Kriging
50 0.0309 0.0274 0.0345 0.0276 0.0275 0.0268 0.0264
90 0.0872 0.0772 0.1038 0.0790 0.0785 0.0762 0.0748
95 0.1088 0.0961 0.1305 0.0990 0.0974 0.0951 0.0929
99 0.1546 0.1383 0.1861 0.1462 0.1413 0.1369 0.1319

the limits.

Fig. 4.8 shows an example normalised histogram with the 90, 95 and 99% confidence
limits plotted as vertical lines (from left to right). Other rank statistics such as the
median (the 50th percentile), can also be calculated if desired, and the process can also
be carried out using the normal error histogram, or histogram of other error measures,
such as root mean square error (RMSE) or sum squared error (SSE).
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Figure 4.8: An example normalised histogram of absolute errors, with 90, 95 and 99% confidence limits (left
to right)

Fig. 4.9 shows some example histograms, created by interpolating simulated data as
described and used in Section 3.3.1, on page 47. A single field generated in this way
was downsampled to various sparsities and then reconstructed using the interpolation
methods used in Section 3.3.1. Histograms were then greated by subtracting the input
and output data. These plots clearly show that the error histograms become wider as
sparsity increases, as one would expect. A single input field was used to ensure the
central limit theorem did not force the results to appear Gaussian, and for illustration.

Tables 4.1, 4.2, 4.3 and 4.4 show percentiles which were calculated from the absolute
value of the errors found in the simulation.

These tables and figures clearly show how the histograms widen with increasing spar-
sity. They also show that the performance of different techniques is comparable. In
Table 4.1, for example, the 99th percentile values for BSI, cubic and linear triangulation
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Figure 4.9: Error distributions calculated by interpolating downsampled simulated data, differencing the inputs
and output and creating histograms. The sparsities used to generate the histograms are below the graphs.

Table 4.2: Absolute error percentiles for 98% sparsity.

Percentile ANC Nat. Neigh Nearest Neigh. Linear Cubic BSI Kriging
50 0.0434 0.0394 0.0495 0.0406 0.0404 0.0389 0.0376
90 0.1160 0.1046 0.1483 0.1082 0.1088 0.1064 0.1018
95 0.1428 0.1285 0.1847 0.1323 0.1341 0.1309 0.1255
99 0.1952 0.1750 0.2598 0.1794 0.1822 0.1733 0.1666

Table 4.3: Absolute error percentiles for 99% sparsity.

Percentile ANC Nat. Neigh Nearest Neigh. Linear Cubic BSI Kriging
50 0.0608 0.0545 0.0652 0.0550 0.0537 0.0502 0.0527
90 0.1765 0.1511 0.1944 0.1626 0.1538 0.1274 0.1515
95 0.2181 0.1872 0.2326 0.2008 0.1887 0.1557 0.1876
99 0.3002 0.2463 0.3118 0.2627 0.2480 0.2147 0.2781

based interpolation and natural neighbour are all very similar. The worst performer
by far is nearest neighbour. Table 4.4 shows similar trends, although the performance
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Table 4.4: Absolute error percentiles for 99.8% sparsity.

Percentile ANC Nat. Neigh Nearest Neigh. Linear Cubic BSI Kriging
50 0.1164 0.0929 0.1110 0.0948 0.0962 0.0834 0.0919
90 0.3108 0.2523 0.2685 0.2400 0.2379 0.2167 0.2615
95 0.3700 0.3074 0.3217 0.2854 0.2854 0.2674 0.3224
99 0.4547 0.3978 0.4501 0.3623 0.3557 0.3327 0.4240

gap has narrowed, and ANC performs worst in terms of the 99th percentile. Examin-
ing Fig. 4.9d reveals that this is probably because the distribution of errors for nearest
neighbour has a low kurtosis, meaning that most errors are grouped around an approx-
imately zero mean. All of the plotted error distributions appear to be approximately
Gaussian and are centred close to zero, indicating that the methods work well on this
type of simulated data.

4.3 Conclusions

This chapter has described some of the artefacts which can occur when using various
interpolation methods. It has also showed how error distributions can be used to
examine the behaviour of these methods, and discussed and demonstrated the use of
percentiles to specify error performance.

The main conclusion that can be drawn from this chapter is that all of the interpolation
methods behave well and have symmetrical distributions which are centred on zero
(see Fig. 4.9). Simple tests done on the total electron content (TEC) data in Chapter 3
provided similar results.

The following chapters changes topic to the estimating the motion of a feature known
as a tongue of ionisation (TOI), which appears during ionospheric storms and moves
across the north polar region.
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Chapter 5

Tongue of Ionisation Motion
Estimation

This chapter describes several motion estimation techniques with a view to evaluating
their suitability to estimating motion in polar ionospheric total electron content (TEC)
data which contains storm features, such as tongue of ionisation (TOI).

First, in Section 5.1, the data being examined are described. Example frames and a
schematic diagram are presented to illustrate the spatial extent of the data. Section 5.4
then introduces some of the assumptions which are common to all motion estimation
techniques. Section 5.5 describes differential analysis, one of the most fundamental tech-
niques, and the precursor of the subject of Section 5.6, optical flow. Section 5.7 introduces
template matching and correlation-relaxation labelling, two related techniques. (These are
examined in more detail in Section 6.2.) Section 5.8 introduces correspondence based
motion estimation techniques. This includes tracking based on points of interest, as well
as boundary tracking which is discussed in more detail in Section 5.9. Finally, the ability
of the techniques to operate on TEC data is evaluated in Section 5.11.

5.1 Data Sources

The chief source of data considered in this and later chapters on motion estimation
(6 and 7), was gathered by global positioning system (GPS) receivers during the ‘Hal-
loween Storm’, which occurred during the 29–31 October 2003. This was a large geo-
magnetic storm, with peak activity that occurred between about 20:00 and 23:00 UTC,
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over North America. During this time, a large region of storm electron density (SED)
developed over mainland USA and moved northward over Canada and through the
polar region to the night-side of the Earth. This storm caused a great many oper-
ational problems and failures for satellites as well as many problems for land-based
communications and power systems.

The available data consist of images created using the Multi-Instrument Data Analysis
System (MIDAS) software from the Department of Electronic and Electrical Engineering,
at the University of Bath [Spencer and Mitchell, 2007]. These images were generated
by extracting integrated electron measurements from paths between GPS receivers and
satellites and performing a 4-D tomographic pseudo-inversion. The region covered by
the inversion is a 3-D grid extending radially in an approximate square of dimension
96◦ around the north geographic pole, such that the voxels have a horizontal resolution
of 4° and vertical resolution of 40 km, from an altitude of 100 to 1600 km. TEC maps
were created by taking radial line integrals through the grid, giving a 2-D image with a
resolution of 25× 25 pixels. Fig. 5.1 shows the extent and location of the mapped area,
as well as an example of actual data.

Fig. 5.2 shows some example frames of these data. The images displayed are false
colour contour maps, and thus represent highly upsampled image data. The actual
pixel positions are illustrated in Fig. 5.1. Other figures in this style (in the following
chapters) are visualised in the same manner.

The low resolution of this data is the chief source of difficulty in estimating the motion
of the TOI directly from image data. The images under examination contain data rang-
ing in value from close to zero to ≈ 250 TECU1, meaning that a compact representation
using 8-bit unsigned integers is possible. This is advantageous because many image
processing techniques such as mathematical morphology are able to operate more effi-
ciently on integer classes.

Also of note is the fact the motion occurring in the latter part of the sequence is confusing
and hard to ascertain by eye. This suggests that all motion-estimation techniques will
have difficulty analysing the motion in this section; what is hard for humans is likely
to be very hard for computer vision and image processing systems.

Previous studies of TOI motion using tomographic images have provided qualitative
descriptions from upsampled images, rather than vector fields. In contrast, systems such
as superDARN [Greenwald et al., 1995] provide vectors in small patches. The following
chapters aim to develop a methodology for providing quantitative descriptions of the
motion field, using tomographic images.

11 TECU or TEC unit, corresponds to an electron concentration of 1016 electrons per m2
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Figure 5.1: The physical location and coverage of the TEC data considered here. The dashed line marks
the TOI and various regions and countries are marked, along with the direction of incident solar radiation and
material.

5.2 Model Based Approaches

Traditionally, analysis of TOI motion has been carried out using models [e.g., Alexeev
et al., 2007], as opposed to making use of image-derived vectors. For example, Fig. 5.3
shows plots of the data being considered here with overlaid modelled E×B/B2 velocity
vectors. Here, E is the electric field, and B is the geomagnetic field [e.g., Ruohoniemi and
Baker, 1998]. These vectors were calculated using the Weimer [1995] electric field along
with By, Bz and solar wind velocity measurements from the Advanced Composition
Explorer satellite data2. These allow the electric field to be modelled with time, which
when combined with an estimate of the magnetic field allow plasma velocity estimates
to be made [Spencer and Mitchell, 2007].

Fig. 5.3 clearly shows a simple precessing two-cell convective pattern. Within this pat-
tern, the TOI moves through the centre of the two cells, which are surrounded by
concentric rings of vectors. Various different convection patterns can occur, depend-
ing on the orientation and strength of the components of the Interplanetary Magnetic
Field (IMF) [e.g., Cowley, 1998]. However, this pattern is one of the most common.

It is also interesting to note that in the latter part of the sequence, some vectors switch
direction as the convection pattern rotates with the direction of the Sun.

The vectors generated by this simple model are not necessarily indicative of the motion
2See: http://www.srl.caltech.edu/ACE/ASC/
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(a) 20:00 (b) 20:50

(c) 21:40 (d) 22:30

Figure 5.2: Example false-colour frames from the images sequence from Halloween 2003. Images (a)—(d)
are each separated in time by 50 minutes, and are up-sampled by two. The colour-scale is shown below.
These figures are vastly upsampled contour plots, for visualisation purposes.

of the TOI, since they model the electron drift velocity over a very large area.

Other methods of analysing TOI motion include model/assimilation methods, such
as described by Bust and Crowley [2007], although this method provides trajectories
rather than vector field, requires large amount of data to fuse, and being based on three
different assimilation and modelling stage is likely to be computationally expensive.
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(a) 20:00 UTC (b) 20:50 UTC

(c) 21:40 UTC (d) 22:30 UTC

Figure 5.3: Plots of modelled E×B vectors.

5.3 Aims and Objectives

The aim of the remainder of this chapter is to describe various motion estimation
methods, and examine their potential suitability for estimation the motion of features
within Section 5.1. The following chapters will then examine the performance of these
potential methods using the data.

Unlike clouds, which can be used to measure winds, the movement of the TOI is not
simply to be used as a tracer for measuring an underlying velocity field, but is itself the
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actual object of interest. This means that the modelled vectors, described above, have
limited utility for comparisons outside of the TOI.

Unfortunately, there are no ground truths available with which to validate the vector
outputs (a future extension of this work could be the use of vectors from superDARN,
although the availability of vectors during storms is low). This means that the overall
aim of this process is the extraction of vectors which show good visual correspondence with
the motion in the image sequence (see Appendix B). As examination of the sequence
reveals, and previous sections suggest, the motion is complex, particularly towards the
end.

Analysis of the motion of the TOI tends to rely on either vector data from radar, which
lacks information on electron content, or TEC images, which leads to analysis that is
heuristic and qualitative. The aim of this study is to bridge the gap between these two
areas by providing quantitative motion analysis based only on TEC maps.

5.4 Assumptions

As with most practical systems, assumptions must be made in order to allow object
motion to be estimated and analysed using images. The main assumptions made by
most motion estimation systems are given in Hlavac et al. [1999], and include:

• The motion of any given object does not exceed some maximum velocity. This
means that if the object’s position in one frame is known, it must be within a
circle of radius vm.dt, which is centred on the last known position, in the next.
Here vm is the maximum velocity of the object, and dt is the time between frames.

• The acceleration of objects is small.

• The motion of objects is similar, meaning that points belonging to one object move
similarly.

• There is mutual correspondence between object points in each frame. The main
exception is object occlusion, which can mean that parts of an object present in
one frame may not be present in following frames.

The third of these is known as the velocity smoothness constraint and is the cornerstone
of optical flow techniques. This means that object motion should vary smoothly across
an image: a very reasonable assumption (similar to the theory of regionalised variables,
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see Section 2.5) which arises from the fact that images tend to have regional autocor-
relation which may be characterised by measuring autocorrelation distance, or using a
semivariogram. If this autocorrelation is not present, an image is essentially random
noise. This condition does not necessarily hold where multiple objects are moving in
different directions, which would be expected to cause discontinuities in the motion
field.

It should be noted that the final two assumptions do not necessarily hold unless the
objects being analysed are rigid. Nevertheless, these are the fundamental assumptions
upon which techniques such as template matching (see below) are based.

The two main approaches to motion estimation are optical flow, of which differential
analysis is a precursor, and correspondence based methods, in which similarity met-
rics are used to identify objects across as they move across frames. Methods of this
type include template matching and boundary correspondence based techniques. The
remainder of this chapter discusses these methods, starting with differential analysis in
Section 5.5.

5.5 Differential Analysis

Subtracting images acquired at different times allows motion to be detected in a very
simple and direct fashion. Given two frames f1(x, y) and f2(x, y), motion between
them can be detected to give a binary image d(x, y), by subtracting the two images and
thresholding the result:

d(x, y) = 0 if|f1(x, y)− f2(x, y)| ≤ ε
= 1 otherwise.

(5.1)

Here ε is a small positive constant. This allows detection of any motion relative to the
background (provided images are registered correctly) but cannot distinguish between
different motion directions. Cumulative difference images (essentially moving averages)
can be used to acquire more information, but require a stationary ‘background’ to allow
for its proper removal.

Fig. 5.4 shows an example of differential motion applied to four frames of TEC data
(shown in Fig. 5.2). For purposes of illustration these have not had a threshold applied
and have a scaled colour map. In all of these cases, whilst some motion would be
detected, this method cannot accurately capture the motion of the TOI and gives the
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(a) 20:00 UTC (b) 20:50 UTC

(c) 21:40 UTC (d) 22:30 UTC

Figure 5.4: Absolute differences between frames at different times in the TEC data sequence.

highest values in regions outside of the areas where motion can most easily be seen.
This is because of the change in noise and background between the images is too high.
Similarly, there is a change in average value through the sequence, making a static
threshold ineffective.

This technique is commonly improved by detecting moving edges, [e.g., Nixon and
Aguado, 2008]. However, in this case edge detection operators, such as the Sobel op-
erator, which typically uses a 3× 3 (or larger) kernel, are too large relative to the scale
of the image to provide meaningful results. Applying a simple Sobel magnitude edge
detector to the early TEC frames results in two lines, each approximately half the width
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of the main features, running up either side. This is in contrast to the desired output,
which would ideally form a line around the feature. Edge detection is also problematic
as differential methods have a tendency to enhance noise.

The use of both spatial and temporal gradients allows differential analysis to reliably
detect slow moving edges and some weak edges. This is the conceptual leap used by
optical flow techniques, to allow motion estimation, rather than just detection. Optical
flow techniques are described in Section 5.6, below.

5.6 Optical Flow

An optical flow field is a velocity field which represents the motion of points across an
image. In this thesis, the term is used to denote a specific class of techniques which aim
to calculate motion fields by differentiating in time and space, and applying smoothness
constraints on the produced flow fields. The main additional assumption on which
optical flow computation is based is that an object point’s brightness is constant over
time. This is the constant brightness criterion. Optical flow’s derivation [see e.g., Nixon
and Aguado, 2008] uses this to give the motion constraint equation:

u∇x+ v∇x+∇t = 0 (5.2)

where ∇x = δP
δx , ∇y = δP

δy , ∇t = δP
δt , u and v are the horizontal and vertical optical flow

components, and P is an input image image.

This equation describes how an image changes in time or moves, and shows that ‘optical
flow’ or the motion of each pixel, plus the rate of spatial intensity, produce this effect
together. To extract the optical flow, this equation can be solved by estimating ∇x, ∇y
and ∇z using image derivatives. However, this problem is ill-posed, since many values
of u and v will satisfy (5.2).

Instead, solutions which minimise the error (ec) and the integral of the rate of change
of flow along both axes (es) must be sought. In addition, a smoothness constraint can
be applied to ec, because of the assumption that neighbouring points move with similar
velocities. This leads to the minimisation of:

e = λ× ec+ es (5.3)

where λ is a regularisation parameter, or smoothness constraint. This can then be
implemented in discrete form using first-order differences and solved in an iterative
process. Gradients can be calculated by examining 2×2 pixel, or larger, neighbourhoods
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(or using scale-space methods). However, in the context of these small images, larger
neighbourhood sizes will not be as effective. Also, using even-sized neighbourhoods
will result in a slight offset to the estimates.

Altering λ, the regularisation parameter, in (5.3) from small to large values increases
the weighting of the smoothness constraint over the brightness constraint. Tuning this
parameter can increase field smoothness, although care must be taken not to over-
smooth the output field, as this will remove detected motion. This is especially true in
cases where the motion is expected to be small. (5.3) can be modified to include other
terms as required.

There are many different approaches to optical flow motion estimation, for example
others based only on first derivatives, extensions using second derivatives, and vari-
ous modifications to the smoothness constraints. See [Barron et al., 1994] for a more
complete review, including evaluations of the methods’ performances.

5.7 Template Matching and Correlation-Relaxation Labelling

Where images are noisy, region based motion estimation methods may prove to be
more appropriate motion estimators than those based on image derivatives [Barron
et al., 1994]. In these cases region matching methods such as template matching may
be used instead.

Template and block matching arose from the need to find template images, or small
objects, in other images [Nixon and Aguado, 2008, Gonzalez and Woods, 2001].

This can by carried out by sliding the template image throughout the source and using
a similarity or dissimilarity measure [such as cross-correlation, or sum of squared-
differences (SSD)] to measure compatibility between the two. In a more general case,
rotation and scale must often also be considered, although in motion analysis these are
not usually necessary when the motion between frames is small.

As described above, template matching is a technique which may be used for estimating
motion between images by comparing blocks in one image, with blocks at various
different offsets in a second image. For the purpose of estimating motion, a block
is simply a square patch of pixels, and the offsets and comparisons are essentially
searching for patches of pixels in the second image which are similar to the block in
the first. Once this has been carried out, the motion estimate is simply the block-
offset which is deemed to most appropriately represent the apparent motion between
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Template Searched Image

Position in searched image

Figure 5.5: A schematic example of template matching

Image 1 Image 2

Search AreaImage 1 Block

Matched Block

Block Displacement Vector

Figure 5.6: The template matching process. Image two is ‘searched’ for values similar to those within the
current template in image one. The result is a vector describing the displacement necessary to shift the
template in image one to its position in image two.

the image. This is often simply the shift to the best matching block, but can also be
adjusted using some additional filtering or regularisation.

In this section, the first image will be referred to as the source image, and the second
will be known as the destination. Fig. 5.6 illustrates the (simplified) process of template
matching.
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5.7.1 Similarity and Dissimilarity Measures

Similarity measures establish the correspondence (or correlation) between source and
destination blocks. The choice of measure depends on computational cost, and perfor-
mance, and, as with most problems, some trade-offs must be made. The most common
similarity and dissimilarity measures are described below, in approximate order of com-
plexity:

• The sum of absolute value of differences (SAVD) is a dissimilarity measure, defined
as the sum of the absolute value of differences between corresponding pixels in a
source block f and destination block g.

SAV D(f, g) =
∑
i

∑
j

|f(i, j)− g(i, j)| (5.4)

SAVD can be made invariant to changes in average intensity, by subtracting the
mean of from each block before performing the subtraction.

• The SSD is also a dissimilarity measure, and is very similar to the SAVD. It is
defined as:

SSD(f, g) =
∑
i

∑
j

(f(i, j)− g(i, j))2 (5.5)

although the mean intensity is commonly subtracted, as described above.

• The normalised cross-correlation coefficient (CCC) is widely regarded as the most
effective measure, and is a similarity measure, returning 1 when blocks are iden-
tical, and −1 when they are orthonormal. The normalised CCC differs from the
standard cross-correlation in the subtraction of means, and division by variances.
This is advantageous as the resulting equation is invariant to changes in mean
intensity and standard-deviation and is fairly resistant to noise.

ρ(f, g) =

∑
i

∑
j

(
(f − f)× (g − g)

)
√(

f − f
)2 ×√(g − g)2

(5.6)

where f and g are the mean values of f and g respectively.

• Ordinal measures [Evans, 1999, 2000b, Bhat et al., 1998] are similarity metrics
based on relative rank of intensity values. They were not examined in this study,
as using CCC based template matching has been found to be more effective.
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After the searches and correlations have been performed for a given block, the output
will be a set of displacement vectors with a associated CCC for each vector. The most
simple systems use the vector associated with maximum CCC as the motion estimate
for a given block, a process known as the maximum cross-correlation (MCC) method.
However, when using additional smoothing stages, a more sophisticated approach is to
use the top n vectors. As an additional analysis step, the CCC values can be plotted
again the vector components as a 2-D surface. These correlation surfaces are often noisy,
multi-modal and have indistinct peaks, which can make choosing the best vectors diffi-
cult [Anandan, 1989, Evans, 2000a]. This is especially true when using remotely sensed
data which is characterised by a lack of texture and contrast, and a tendency to contain
non-rigid objects. Therefore, relaxation-labelling is used to regularise the motion fields
in this work.

5.7.2 Increasing Field Density

Template matching aims to find parts in a destination image which match a given
template from a source image. For the purposes of motion estimation, it is simple and
convenient for this template to be a square block of pixels in the source image which
are searched for in the second image. This process is known as block matching and is
a subset of the more general technique of template matching.

As described above, the block matching procedure aims to find matches between blocks
in two images. The are several ways of laying out the blocks in the source image,
including non-overlapping and overlapping blocks.

Performing motion estimation with non-overlapping blocks gives one motion vector for
each block. This can lead to a motion field with few vectors if the images being examined
are small, or the blocks large.

Denser motion fields can be estimated by either decreasing block sizes, or by overlapping
the image blocks instead of tiling them. A disadvantage of using smaller blocks is that
it increases the output noise in the vector field, as smaller blocks reduce the statistical
significance of matches. Blocks can be overlapped by shifting adjacent blocks by an
amount which is less than the block dimension, with the natural limit being a one pixel
shift. Using overlapping blocks gives more vectors and a smoother output field than the
non-overlapping case due to increased correlation between neighbouring blocks. The
disadvantage is a correspondingly higher computational cost due to a larger number of
comparisons.

The main weakness of correlation-based methods is their poor performance in situations
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where texture is lacking. This is a particular problem in the sequence being considered
here, as the vast majority of the area of the images corresponds to regions with very low
energy and texture. Additionally, a large proportion of each image is background noise.
As a result, a large proportion of the vectors are essentially useless. To help mitigate
this problem, threshold values can be applied to based on block statistics. By ignoring
blocks which do not meet specified conditions (such as variance), motion estimates can
be limited to being made in areas in which they are appropriate.

5.7.3 Sub-pixel Block Matching

Motion between frames does necessarily occur in integer pixel increments. This is be-
cause the images being examined are sampled representations of a continuous object
or area. For this reason, it is useful to be able to measure motion with sub-pixel accu-
racy. This is done by up-sampling the images being examined, before performing block
matching. However, up-sampling the images can result in the introduction of interpo-
lation artefacts. To reduce these, the up-sampling factor should be kept low (< 4, if
using bi-cubic interpolation). Care should also be taken when up-sampling to ensure
that the desired values lie on the same grid as the input samples. This will ensure that
the actual input values are included in the output. Additionally, there is no need to up-
sample the source frame, which can instead be padded with zeros. Fig. 5.7 shows the
process diagrammatically. The output of sub-pixel accuracte motion estimation systems
is a vector field where the vector-resolution is 1

S (where S is the up-sampling rate), and
where the maximum displacement is equal to the search radius.

Image 2 - Upsampled
Zero Pad Template

Image 1

Matched BlockBlock Displacement Vector

Figure 5.7: A diagram illustrating sub-pixel template matching
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Vector Set  Ω2JBlock J

Candidate Vector j
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Figure 5.8: Terms used in the relaxation labelling equations (5.7)—(5.10).

5.7.4 Relaxation Labelling

The MCC method has the tendency to produce noisy vector fields because the corre-
lation surfaces it returns are often multi-modal (as described above). To mitigate this
problem, additional smoothness constraints may be applied. This section introduces
an effective vector-regularisation method known as relaxation labelling (RL), which is
based on probabilistic scene labelling [see e.g., Hlavac et al., 1999].

Relaxation labelling, or probabilistic relaxation, is a method of regularising or smoothing
vector fields whilst ensuring spatial consistency. It is commonly used when examin-
ing remotely-sensed images of non-rigid physical phenomena and where inconsistently
moving fields would be unphysical [Evans, 2006, 2000a, Wu et al., 1997]. In video com-
pression for example, a smooth vector field compresses better than a disparate one,
because the entropy is lower. Similarly, when tracking clouds, a smooth vector field
may be more realistic than a noisy one, as small scale motion is often the result of
mismatched areas.

The relaxation process works as follows. Some of the terms used below are illustrated
graphically in Fig 5.8:

1. Each block (J) will have various vectors (j) associated with it, and each pair of
vectors will have an associated CCC. Vectors which have a low CCC should be
discarded.

2. The remaining vectors’ CCCs should be normalised, such that the sum across any
given block’s CCC values is one. These are now considered to be probabilities.
The initial probability for block J , and vector j, is denoted P (0)(J → j), and is
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calculated as follows:

P (0)(J → j) =
ρ(J → j)∑

λ∈Ω2J

ρ(J → λ)
(5.7)

where Ω2J is the set of all candidate vectors for a block J .

3. The probabilities are updated using the non-linear relaxation formula (5.8). This
formula uses several nested support functions to judge a given vector’s similarity
with its neighbours in an iterative fashion. These similarity measures are then
used to update the probability attached to each vector. The vector from each
block with the highest probability attached is chosen as the output.

P (n+1)(J → j) =
P (n)(J → j)Q(J → j)∑

λ∈Ω2J

P (n)(J → λ)Q(J → λ)
(5.8)

where Q(·) is the following compatibility measuring function, which judges a
vector j’s compatibility against those in neighbouring blocks.

Q(J → j) =
∏
I∈Gj

∑
i∈Ω2J

P (n)(I → I)R(I, J, i, j) (5.9)

The output from this will depend on both the probabilities of the neighbouring
block’s vectors. The output of the function R(·) is the mutual information measure,
which depends on vector similarity and has the following form:

R(I, J, i, j) = exp (−|∆xI,i −∆xJ,j |) · exp (−|∆yI,i −∆yJ,j |)D(I, J) (5.10)

where xI,i and xJ,j are the x-components of the displacement vectors i and j in
blocks I and J respectively. σ is a parameter that controls the convergence during
the iterative procedure of updating the probabilities. In practice, it is usually set
to 1. D(I, J) is a function which returns the relative distance between the blocks
I and J , given by:

D(I, J) = max (0, D0 −DI,J) . (5.11)

In (5.11), DI,J is the sum of the horizontal and vertical distances between the
blocks, normalised to the block dimension. The form used for (5.10) and (5.11)
is that of Evans [2000a]. Others may also be used, provided they measure vector
similarity in some way. Previous studies, such as Wu [1995], have used polar
comparison arguments in place of the Cartesian form used here.

4. This process is repeated until the probabilities are stable to within a given absolute
value, or for a given number of iterations.

The output field is then generated by choosing the vector with the highest attached
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probability from each block, and should be a fairly smooth and consistent field.

In some cases, it may be appropriate to add a ‘no-match’ category in the above process.
This is an additional label, indicating that no appropriate vector could be found in a
given neighbourhood. As RL aims to improve the smoothness of the field, and an empty
field is totally smooth, using a no-match category [see e.g., Wu, 1995] has a tendency to
cause mass migrations towards this label, especially with noisy geophysical data. For
this reason, using a conditional vector-median post filter may be more germane.

5.7.5 Vector-median Filtering

Vector-median filters remove vectors which the relaxation labelling stage could not
regularise, and work by switching vectors with the median of their local neighbours if
their magnitudes differ by more than a set amount.

As described by Astola et al. [1990], vector median filters have various useful properties
such as a zero impulse response, edge preservation, minimisation of blurring and no
introduction of new vector values.

The vector median is defined (following the nomenclature in Astola et al. [1990]) as

xvm ∈ xi|i = 1, . . . , N (5.12)

and for j = 1, . . . , N
N∑
i=1

||xvm − xi||2 ≤
N∑
i=1

||xj − xi||2 (5.13)

where xvm denotes the median of a vector x, and || · ||2 denotes the `2 norm. Other
norms could also be used instead. This can be computed simply by computing the
distance from each vector to every other, then summing. The vector which minimises
the distance to all others is then chosen as the vector median. If there is no unique
minimum value, any satisfying vector may be chosen.

5.7.6 Correlation-Relaxation Labelling

Correlation-relaxation labelling is the extension of template matching using the CCC
by the addition of a relaxation-labelling stage, as described above. The process may be
further augmented with a vector-median post-filter.
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The CCC has been shown to be particularly suitable for use with RL. For example, a
good comparison of (many of) the similarity measures in Section 5.7.1 was made by Wu
et al. [1997], who concluded that whilst the SSD and SAVD are much faster to compute
than the CCC, the CCC produces better quality vectors. If these vectors are to be used
in a relaxation labelling stage, the number of iterations necessary is lower than when
using other similarity measures, which results in faster processing times.

This type of motion estimation has found use in many diverse areas, especially in cases
where the temporal resolution between images is too low for optical flow techniques to
be effective. Template matching and correlation-relaxation labelling have been widely
applied for estimating the motion of non-rigid remotely sensed data. For example,
Dransfeld et al. [2006] applied maximum cross-correlation based motion estimation to
ocean surface imagery, and found that alone it was unable to provide locally consistent
fields which were representative of small-scale ocean currents. Bellerby [2006] used
template matching with a scaled correlation measure as the first stage in constructing
a mesh to represent a topological transformation. Evans [2006] applied correlation-
relaxation labelling to multichannel MSG cloud imagery and found that it gave locally
consistent dense vector fields. Evans [1999] also showed the effectiveness of relaxation
labelling when used to ordinal measures (based on rank-statistics). These previous
results suggest that template matching and correlation-relaxation labelling may be ef-
fectively applied to TEC images.

5.7.7 Vector Field Masking

When using the CCC to estimate image motion, areas of image which contain little
texture lead to bad matches. This is because flat or almost flat areas match one another
very well. Areas of this type contain little in the way of information, and can be
considered background. Using a suitable mask to disable such areas is an effective way
of mitigating the problems they cause whilst limiting motion estimates to areas in which
they are useful. One example of an effective masking procedure is the use of a variance
filter with a threshold. By tuning the threshold, it is possible to create a mask which
disables areas with low variances. These areas correspond to background regions.

5.8 Correspondence Based Techniques

Sparse velocity fields can be estimated by using the correspondence of points of interest.
The definition of points of interest is fairly broad, and includes both feature detector
outputs and object properties such as shape boundaries.
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The feature based process process works by detecting points of interest using operators
such as the Moravec operator or scale-invariant feature transform (SIFT) features [Lowe,
1999]. The points returned from two or more adjacent frames are then used to estimate
inter-frame motion, using, for example a probabilistic relaxation framework [e.g., Hlavac
et al., 1999], or rectangular assignment [Kuhn, 1955]. The result of this process will be
a set of correspondences between detected points of interest which can be converted
to motion vectors by simply subtracting the vectors. This class of techniques is useful
in large images where the time interval is too long for optical flow techniques to be
effective. Due to the fact that most feature detectors, such as SIFT, require multiple
filtering operations at different scales, this method is unsuitable for use on the small
images used in the studies in this thesis.

The object property based process may make use of various different feature properties,
such as object centroids or shape boundaries. The use of shape boundaries for motion
estimation is considered below.

5.9 Boundary Tracking

Boundary tracking is a broad class of techniques which aim to estimate motion by
segmenting object boundaries and then solving correspondences between boundary
points across frames. They typically require two stages, segmentation and boundary
matching or motion extraction. The segmentation stage extracts the shapes from which
boundaries will be traced, and the matching stage calculates correspondences between
points on shape boundaries. Subtracting these correspondences gives rise to motion
estimates, which can be further processed if necessary.

5.10 Snakes

Snakes, or active contours [Kass et al., 1988], are a method of iterativly finding objects
within an image. A common analogy is with the deflation of a balloon around an
object: once a certain amount of air has been let out of the balloon, its boundary will
describe a hull around the object [e.g., Nixon and Aguado, 2008]. Snakes model this
process mathematically, using a cost function (known as an energy functional) to try
and match image features, such as edge intensity and brightness, whilst minimising
length and curvature. Snakes are commonly used to find and track shape boundaries
and are usually represented as splines. Splines are good boundary descriptors, which
can be also used to infer motion. However, when applied to the TEC images used here,
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Method Suitable? Reasoning
Differential Detection This method cannot extract vector

directions, and instead detects the
presence of motion.

Optical Flow X Derivative based approaches can
be ineffective in low spatial / tem-
poral resolution images. Neverthe-
less, this method may prove rea-
sonably effective.

Correlation-Relaxation Labelling X Provided sufficient texture is
present region based techniques
should work fairly well. Relaxation
labelling will help smooth out-
put vectors, increasing resilience
against noise.

Feature extraction techniques Feature extraction methods are in-
effective in very low-resolution im-
ages, due to a lack of texture
and the inability to use multi-scale
methods.

Boundary Tracking X Provided boundaries can be accu-
rately extracted, they can be arbi-
trarily resampled, allowing high-
resolution vector estimates along
shape boundaries.

Table 5.1: Summary of suitability of motion estimation techniques for use on TEC data.

snakes were found to be unsuitable. This is because of the lack of texture in the images,
and their low resolution.

5.11 Summary and Suitability for TOI Motion Estimation

Of the methods presented above, several have been demonstrated to be unsuitable for
use on low resolution TEC images, and problems have been identified with others.
Table 5.1 summarises the described techniques, identifying those which are suitable for
use on TEC data, and which will be further examined.

The following chapters will examine these methods in turn, starting with optical flow
and correlation-relaxation labelling, in Chapter 6, then considering boundary matching
techniques in Chapter 7.
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Chapter 6

Motion Estimation using Optical
Flow and Correlation-Relaxation

Labelling

This chapter discusses the application of optical flow and template matching based
techniques to estimating the motion of the tongue of ionisation (TOI) in total electron
content (TEC) images. As these methods are data-driven, they are largely de-coupled
from the underlying physics and have the potential to provide a set of techniques
for analysing specific storm events that is not reliant on physical models, for example
[Weimer, 1995, Bilitza, 2001].

Optical flow was introduced in Section 5.6, on page 76 and template matching and
correlation-relaxation labelling were introduced in Section 5.7, on page 77. In the fol-
lowing case studies, field entropy values will be specified as a proxy for field smooth-
ness. These entropy values can be used to assess improvements made to the various
methods, and will allow their relative performances to be compared.

Entropy is given by:
H(x) = −

∑
p(x) log p(x), (6.1)

where p(x) represents the probability of a given symbol x from H occurring. The
entropy represents the amount of uncertainty, or the amount of information present, in a
signal (H). This means that a signal with less entropy is more predictable, and so more
highly compressible. In terms of vector fields, higher entropy implies more disordered
vectors, or less smoothness.
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6.1. MOTION ESTIMATION USING OPTICAL FLOW

(6.1) assumes that x is uncorrelated, and so cannot be used directly on vector fields,
which are correlated as a consequence of the velocity smoothness constraint.

Instead, entropy values may be estimated for the vector fields using the motion encoding
method of H.263. This gives the number of bits per vector needed for loss-less encoding,
as specified by Rijkse [1996]. This is a good estimate of the entropy of a a vector field,
and is referred to as field entropy from here onwards.

6.1 Motion Estimation Using Optical Flow

This section examines the application of simple gradient based optical flow (see Sec-
tion 5.6, page 76) to estimating the motion of ionospheric storm enhancements, as
described in Section 5.1, on page 68. It should be noted that the field of optical flow is
very large, and the reference implementation used here is not necessarily indicative of
all methods.

Input Image Motion 
Description

Optical Flow

Calculate 
Derivatives

Update flow 
estimates

Iterate

Figure 6.1: The processing pipeline for the optical flow process.

The implementation used in this chapter was based on a modified version of the Matlab
code given in Nixon and Aguado [2008] and as such these results are representative of
a modern optical-flow algorithm. Fig. 6.1 shows the optical flow process diagrammati-
cally.

6.1.1 Results

To examine the performance of the gradient based optical flow technique, the TEC image
sequence was processed using various regularisation parameters (λ), ranging from 0.1
to 10. Ten iterations were used in all cases to ensure stable results.

Figs. 6.2, 6.3, and 6.4 show the results from processing the images using regularisation
parameters of 0.1, 1 and 5 respectively. The main thing to note with regards to these
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6.1. MOTION ESTIMATION USING OPTICAL FLOW

images is their high degree of similarity.

(a) 20:00 UTC (b) 20:50 UTC

(c) 21:40 UTC (d) 22:30 UTC

Figure 6.2: Vectors produced using optical flow processing on the TEC image sequence, with λ = 0.1 and
ten iterations.

Table 6.1 shows the average vector entropy values for output fields with different regu-
larisation parameters. The first set shows the median, mean and standard deviations of
field entropy values and the second shows the result of masking the same vector field
using a thresholded standard deviation filter (σ = 4), as in Section 6.2 These values
are similar in magnitude to those in Table 6.2 (on page 99), although generally higher
in this case. This indicates that the vector fields generated are less smooth than those
produced by correlation-relaxation labelling.
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(a) 20:00 UTC (b) 20:50 UTC

(c) 21:40 UTC (d) 22:30 UTC

Figure 6.3: Vectors produced using optical flow processing on the TEC image sequence, with λ = 1 and ten
iterations.

As table 6.1 shows, changing the regularisation parameter has little effect on the entropy
values, and results in an increase in entropy of approximately 30% from the lowest to
the highest in the masked case, and less in the standard.

Masking the vector field decreases the entropy values by approximately 2.5 times and
decreases the standard deviations of the entropies by a factor of approximately 5. This
suggests that removing the ‘background’ regions is an effective addition to the tech-
nique.
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(a) 20:00 UTC (b) 20:50 UTC

(c) 21:40 UTC (d) 22:30 UTC

Figure 6.4: Vectors produced using optical flow processing on the TEC image sequence, with λ = 5 and ten
iterations.

Visual comparison of these results with Fig. 5.3 (on page 72) shows similar vectors at
the start of the sequence, although the vectors towards the end are somewhat confused.
Also notable is the fact that in the last frame of each set (d), the general direction of
flow is downwards. This is in contrast to the modelled vectors which show an upward
motion in that part of the frame.

The vector fields in Figs. 6.2, 6.3, and 6.4 all show a tendency towards over-smoothing,
even when the lowest regularisation parameter is used. Also notable is the propensity
for vectors to appear to spread outward around ‘bumps’. This can be seen in Fig. 6.3d,
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Table 6.1: Optical flow vector entropies

λ median H mean H σ

Standard

0.1 5.759 5.765 0.017
0.2 5.773 5.778 0.018
0.3 5.763 5.771 0.018
0.4 5.782 5.791 0.030
0.5 5.763 5.772 0.023
0.6 5.769 5.778 0.026
0.7 5.777 5.783 0.022
0.8 5.774 5.781 0.024
0.9 5.779 5.784 0.021
1.0 5.782 5.785 0.020
2.0 5.775 5.783 0.026
5.0 5.783 5.800 0.045
10.0 5.803 5.813 0.037

Masked

0.1 3.088 3.088 0.003
0.2 3.226 3.227 0.004
0.3 3.180 3.180 0.003
0.4 3.176 3.174 0.008
0.5 3.168 3.168 0.005
0.6 3.229 3.228 0.007
0.7 3.216 3.216 0.005
0.8 3.266 3.266 0.006
0.9 3.290 3.292 0.006
1.0 3.314 3.312 0.006
2.0 3.308 3.308 0.010
5.0 3.290 3.291 0.007
10.0 3.333 3.333 0.012

in the top-left of the image.

6.1.2 Optical Flow Conclusions

The gradient method of calculating optical flow has been shown to perform adequately
for estimating the motion of TEC enhancements. Unfortunately, the results for the last
section of the sequence have proven to be complex and lacking in consistency. This is
exemplified by Fig. 6.2d – 6.4d, and was discussed in Section 5.1 on page 68.

In general, the calculated entropy values are higher for optical flow than for the correlation-
relaxation labelling results (see Section 6.2). This suggests that the fields are less smooth,
something which visual comparisons corroborate. However, it should also be noted that
optical flow techniques produce vector fields with floating-point magnitudes, a factor
which will definitely increase entropy.
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Future work in this area would benefit from the application of more recent advance-
ments to optical flow techniques. This would allow the detection of larger displacements
which might more accurately capture the motion of the features in the end of the se-
quence. However, care would need to be taken not to use filters which were too large,
due to the small size of the images.

6.2 Motion Estimation Using Correlation-Relaxation Labelling

This section is concerned with the development of data-driven approaches to estimating
the motion of TOI within TEC maps, using template matching techniques. A schematic
outline of the process is shown below, in Fig. 6.5.

Input Image

Template Matching

Tile Image Compare Tiles

Relaxation Labelling

Initialise 
Probabilities Relax

Motion 
Description

Iterate

Figure 6.5: The processing pipeline for the correlation-relaxation labelling process.

Template matching (described in Section 5.7, on page 77) using the maximum cross-
correlation (MCC) method has been used widely to estimate motion in many geoscience
applications, for example deriving cloud motion vectors [Schmetz et al., 1993] and esti-
mating sea surface currents [Dransfeld et al., 2006].

To successfully apply MCC-based motion estimation techniques to ionospheric TEC
images, two main problems must first be overcome: (1) the non-rigid motion of the TOI
and (2) the low-resolution of the TEC images.

The low resolution TEC images are characterised by limited textural content. This is a
problem which manifests in smooth images which lack the high frequency information
that is requisite for successful template matching. Limited texture results in correlation
surfaces that are smooth and contain many similar cross-correlation coefficient (CCC)
values. These problems mean that accurately discriminating between the true motion
and anomalous matches is very difficult. Although the relaxation labelling process can
overcome this to some degree, when the quality of the input vectors is low it can only
select the least bad’ vector from the candidate set. To fully overcome this problem,
the application of a vector-median filter (VMF) to the relaxed motion field is proposed
[Astola et al., 1990].
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(a) 20:00 UTC (b) 20:50 UTC

(c) 21:40 UTC (d) 22:30 UTC

Figure 6.6: MCC motion vectors for non-overlapping 5× 5 blocks.

6.2.1 Experimental Results

The effectiveness of the various motion estimation methods was evaluated using the
TEC image sequence described in Section 5.1 (on page 68). All experiments used 5× 5
blocks and a search radius of 5 pixels. Motion vectors were found to a half-pixel accuracy
which gives rise to a spatial resolution of 1°. Templates in the image background were
not considered for matching, these were determined by thresholding the variance of
the templates, such that σ2 > 16. Finally, for display purposes, the vector fields were all
down-sampled by a factor of three, allowing easier comparisons to be made throughout,
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(a) 20:00 UTC (b) 20:50 UTC

(c) 21:40 UTC (d) 22:30 UTC

Figure 6.7: MCC motion vectors for overlapping 5× 5 blocks. For clarity, the vectors are subsampled before
displaying.

and between, the images in the sequences.

Fig. 6.6 shows the motion fields produced using the MCC method with non-overlapping
blocks on the four images from the TEC sequence shown in Fig. 5.2. The vectors
produced by this method are sparse and show some local inconsistencies. The sparsity
of the output can be reduced by applying the MCC method to overlapping blocks, see
Fig. 6.7. However, whilst this improves the visualisation of the motion of the TOI, there
are still many instances of locally inconsistent vectors which show a flow that is not
physically realisable. This clearly demonstrates that the MCC method alone is unable
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(a) 20:00 UTC (b) 20:50 UTC

(c) 21:40 UTC (d) 22:30 UTC

Figure 6.8: Motion vectors after relaxation labelling for overlapping blocks. For clarity, the vectors are sub-
sampled before displaying.

to accommodate the non-rigid motion of the TOI.

Applying relaxation labelling to the motion fields produces the smoothed fields shown
in Fig. 6.8. The candidate vector sets required for the relaxation labelling were generated
by thresholding the CCC at 0.2. This contrasts with previous studies (e.g., [Evans,
2006]) which used higher threshold values, as the smaller templates used here yield
fewer high-quality matches. Ten iterations of the relaxation labelling algorithm were
applied. The relaxed results are clearly an improvement on those produced by the
MCC method, particularly in the earlier part of the sequence. This can be seen by, for
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(a) 20:00 UTC (b) 20:50 UTC

(c) 21:40 UTC (d) 22:30 UTC

Figure 6.9: Motion vectors field after applying a VMF to the vectors of Fig. 6.8. For clarity, the vectors are
subsampled before displaying.

example, comparing the rightmost group of vectors in Figs. 6.7b and 6.8b, where the
latter are more locally consistent. Despite the improved smoothness relative to Fig. 6.7,
problems with large changes in direction are still prevalent towards the end of the
sequence, where the TOI extends and then splits into two regions of enhanced density
(see Fig. 6.8d).

The motion fields from Fig. 6.8 can be further smoothed by the application of a VMF,
as described in Section 5.7.5, on page 84. Fig. 6.9 presents results created by applying
a VMF using a 3 × 3 window to the vectors in Fig. 6.8. Comparing these vectors with
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the observable motion (in the sequence) shows good agreement in the earlier frames.
The results from approximately 21:40 UTC onwards prove problematic, especially along
the ridge towards the top-right. Nevertheless, they show a substantial improvement in
vector quality, especially when compared with Figs. 6.6 and 6.7.

In addition to comparing the motion fields with the observable motion in the TEC
sequences, an indication of the expected, underlying motion fields can be obtained
by running the E × B model provided by the MIDAS software package [Spencer and
Mitchell, 2007] for the storm event. Comparing Fig. 6.9 with the modelled vectors
shown in Fig. 5.3 shows some common features. For example, the early frames in
both sequences capture the TOI moving through the centre of the two-celled convection
pattern and the latter frames show a reversal in the motion direction around the edges
of the TOI.

Table 6.2: Vector entropy (bits/vector) statistics for various kinds of block based motion estimation.

Stage median H mean H σ

Standard 7.457 7.486 0.233
Masked Standard 4.691 4.781 0.544
Sub-pixel 2.924 2.891 0.164
Sub-pixel with RL 2.838 2.809 0.163
Masked Sub-pixel 2.924 2.891 0.164
Masked Sub-pixel with RL 2.838 2.809 0.163

Finally, field entropy values may be examined to show the improvements offered by each
additional stage of processing. As seen in Table 6.2 the entropy values were lowered
significantly by masking the output vector fields using block standard deviations, this
reflects the additional smoothness gained by this, as well as the fact that a large number
of the vectors are set to zero.1 The addition of relaxation labelling further decreases
the entropy values, although the savings are nowhere near as large as those afforded
by simply masking the vector fields.

6.2.2 Correlation-Relaxation Labelling Conclusions

The results presented here show that standard MCCmotion estimation does not produce
locally smooth motion fields that are consistent with the observable motion. However,
relaxation labelling gave improved, more consistent motion fields, particularly in the
early part of the sequence. The application of a vector-median post-filter further im-
proves the quality of the output fields. These methods all produce output fields that

1The masked entropy values were calculated by setting vector displacements in disabled blocks to zero,
and then calculating the entropy of the entire field. Averages were calculated using the number of vectors
in the mask.
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provide estimates of TOI motion directly from observed data. As such, the results sug-
gest that the proposed method is a viable alternative to the model-based approach for
TOI tracking during storm times.

The general conclusions are which may be made regarding template matching and
correlation-relaxation labelling are:

• Vector-field density can be increased by overlapping blocks in template matching

• Using sub-pixel motion estimation results in more accurate motion vectors

• Using a low correlation threshold for relaxation labelling increases output quality

• Masking vector fields by using by variance (or standard deviation) filtering input
images, and thresholding the output greatly reduces noise, and the incidence of
inaccurate vectors.

6.3 Conclusions

This chapter has investigated the application of optical flow and correlation-relaxation
labelling to the TEC images described in Section 5.1. Of these two techniques, correlation-
relaxation labelling using overlapping blocks and sub-pixel estimation produces fields
with the best agreement with the visible motion, modelled vectors and with lower
entropies than fields produced using optical flow. This suggests that the correlation-
relaxation labelling method is better suited to estimating the motion of non-rigid fea-
tures in low-resolution remotely sensed images.

Both methods used here would benefit from testing with more data, and data for which
ground truths are available would allow more useful performance evaluations to be
carried out.

Towards the end of the sequence the motion fields are still hard to interpret. However,
this is not unexpected as it difficult for human observers to track the TOI through
these frames when, due to a combination of electron recombination and large changes
in morphology, the inter-frame correspondences are very hard to discern. The next
chapter will describe a less traditional, two-stage segmentation and boundary tracking
approach to solving this problem. Of particular interest is the potential improvement to
be gained through the fusion of vectors acquired using multiple synergistic techniques.
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Chapter 7

Motion Estimation using Boundary
Matching

Chapter 5 introduced the problem of the estimating motion of storm enhancements
in low-resolution total electron content (TEC) imagery and presented various methods
which are typically used to do this. Chapter 6 then examined template matching and
correlation-relaxation labelling based methods, and also looked at optical flow tech-
niques. This chapter continues along the same vein, by examining how motion can be
estimated by matching shape boundaries. This somewhat less traditional approach has
various useful features, such as the ability to resample boundaries, giving more vec-
tors, thus increasing field resolution. One downside is the fact that vectors are estimated
along shape boundaries, a problem which can be mitigated by estimating warping trans-
forms by using interpolation or regularisation, both of which can increase vector field
density, by estimating displacements within the segmented regions.

Input Image

Segmentation

Morphological
Segmentation

Shape 
Description

Motion Extraction

Matching Post 
Processing

Motion 
Description

Temporal 
feedback

Figure 7.1: The processing pipeline for the curve matching process.

The motion estimation technique described here is based on a two stage approach,
illustrated in Fig. 7.1. These two stages consist of segmentation and motion extraction.
The segmentation stage aims to consistently and unambiguously extract first the objects
of interest, and then their boundaries. The motion extraction or boundary matching
stage aims to find a correspondence between the boundaries of shapes in adjacent frames
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Figure 7.2: Histograms showing the distribution of TEC values in the data. The peaks on the left represent
background data (low values), and the area on the right represents both noise and the TOI.

that is in some sense optimal. These two stages are introduced below.

7.1 TOI Segmentation

The TEC images can be considered to be composed of three main components: regions
of storm electron density (SED) corresponding to significant regional maxima [assumed
to be the tongue of ionisation (TOI)]; noise and artefacts corresponding to other maxima
(and minima), and the remainder of the image which can be considered background.
The aim of the segmentation stage is to correctly discriminate between the TOI and
the other image components. Once the images have been segmented, it is possible to
extract information about the enhancements, including their boundaries. These can
then be used for estimating the motion of the TOI, and hence studying its evolution.

A very large number of segmentation techniques exist, but are not suitable for the data
being considered here: for example, optimal thresholding, a simple technique for sepa-
rating objects from background or clutter [Nixon and Aguado, 2008]. This approach is
appropriate when the object of interest has a different range of values than the back-
ground, as is the case with the TOI. It is also designed for use on data with a bi-modal
intensity distribution. However, histograms of the TEC data for the four images from
Fig. 5.2 (on page 71), shown in Fig. 7.2, show that the TEC data are characterised by a
distribution with only a single peak, which corresponds to the background value. The
TEC values which correspond to the TOI occur in the tails (on the right hand side) of
the illustrated distributions. This, coupled with the presence of noise, and the fact that
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the maximum TEC value changes over time, means that simple thresholding is doomed
to failure. Other segmentation methods such as those based on image texture,s are also
inappropriate due to the low resolution and smoothness of the data.

7.1.1 Morphological Segmentation

This section describes the contents of the ‘segmentation’ box in Fig. 7.1. The overall aim
of the segmentation stage is to provide accurate descriptions of regions of interest with
the frames in order to allow the second motion extraction stage to proceed.

Segmentation can be carried out using various different methodologies, from simple
thresholding to more complex methods such as the watershed transform, or graph
connectivity [e.g., Soille, 2008], and new methods are continually being developed. The
main segmentation framework considered here is mathematical morphology and, more
specifically, attribute morphology, which is described below.

Mathematical morphology provides a robust toolkit for segmentation and feature ex-
traction based tasks. The extension of traditional morphology for processing greyscale
images and later into more general attribute morphology has paved the way for the
development of a great many different types of segmentation system. Greyscale mor-
phological operators, such as opening and closing by reconstruction, can be used with
marker image and thresholding to create simple, shape-preserving systems as-is, and
attribute morphology can be used for segmentation in situations where specific knowl-
edge about features being extracted (such as contrast, area or statistical moments) are
available. Morphological filters also have a number of advantages over traditional fil-
ters, most importantly shape preservation and idempotence – that is, they do not filter
what has already been filtered.

The field of mathematical morphology (MM) provides a number of tools for feature ex-
traction and segmentation and many of these have been applied to remotely sensed data.
For example, Soille and Pesaresi [2002] provide a topical review of MM applications in
remote sensing, ranging from segmentation to skeletonisation. Pesaresi and Benedikts-
son [2001] propose a morphological segmentation method using the derivative of the
morphological profile with residuals from opening and closing by reconstruction. This
method is extended to multiple scales by using increasingly large structuring elements.
More recently Akçay and Aksoy [2007, 2008] designed a hierarchical MM segmentation
technique for remotely sensed imagery. This method creates morphological profiles by
applying structuring elements of increasing size to each spectral band. Image patches
extracted at different scales are then merged to create meaningful objects using spectral
homogeneity and connectivity to optimise the groupings. Greyscale and attribute MM
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are described in more detail below.

The field of MM originated in the mid nineteen-sixties, in France, where it was initially
used to analyse the geometry of porous media. Initial work was completed by G.
Matheron and J. Serra, and the seminal work entitled: Eléments pour une théorie des
milieux poreux was published by Matheron in 1967. In this paper, he formalised various
concepts such as granulometries or morphological profiles which are still heavily used
today.

MM has its roots in geoscience and, interestingly, the Matheron mentioned here is the
very same person who was later credited with pioneering the field of Geostatistics,
mentioned in Section 2.5, on page 23.

Greyscale connected component morphology is a branch of mathematical morphology
[Soille, 2004, Hlavac et al., 1999, Acton, 2001] which operates on greyscale images, and
works by considering the connectivity of level-sets.

Connected Component GraphImage with labelled connected level-sets
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Figure 7.3: An example greyscale image cross-section with labelled connected level-sets, and connected
component graph showing the relationship between the various level-sets.

For example, imagine the grey-level of a greyscale image to be a vertical displacement.
A level-set is a horizontal slice through the image at a specific value. This means that
a given pixel value can be a member of several level-sets (up to 256 for a typical, 8-
bit greyscale image). Fig. 7.3 shows an example image cross-section, illustrating the
concepts of level-sets and local maxima. For example, in Fig. 7.3, the set A is a subset
(⊂) of D, which, in turn, is a subset of G, which is a subset of I , which, finally, is a
subset of J . The hierarchy of sets can conveniently be represented using a directed
graph structure, where the root set (J in this case) is the base node of the tree. As the
tree represents connectivity between sets, it is known as a connected component graph.
Formally, a set (C1) in a connected component graph is linked by an edge to another set
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(C2), only if C2 is a superset of C1 (written as C1 ⊂ C2). The direction of connectivity is
always towards the larger set. In this example, the edge (E(. . .)) between sets is written
as E(C1 → C2) [Meijster and Wilkinson, 2001, Salembier et al., 1998]. The right hand
panel of Fig. 7.3 shows the connected component graph for the example image on the
left.

This structure is useful in many situations, as the graph nodes can be used to represent
many different image components and properties. This could include lists of pixels
in the sets or measures such as area or contrast (see below), perimeter or moment of
inertia. One situation in which this structure is particularly useful is area morphology,
where the graph nodes (also known as vertices) relate to the areas of the level-sets.
The two main operators available in area morphology are closing and opening. These
modify an image by removing features based entirely on their area. This means that
(unlike traditional morphological operators) there is no structuring element, and so
none of the associated artefacts. As the parameter of interest is component area, area
morphology lends itself well to scale-space applications. [see e.g., Acton and Mukherjee,
2000, Mukherjee and Acton, 2002].

Area opening removes bright or ‘ascending’ objects which do not meet a specified
minimum area. Area closing removes ‘descending’ objects which do not meet the
specified criterion. Area opening is equivalent to moving down from the top of the
connected component graph until the area is exceeded, and area closing is the equivalent
to moving up from the bottom until the criterion is exceeded. Fig. 7.4 shows how an
area opening using an area of three would alter an example image and its connected
component graph. In the image, A, B, C, D, and F would be removed, as they all
correspond to components with areas of less than three.
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Figure 7.4: The example cross-sectional image from 7.3 showing the effect of an area closing with an area
of three (assuming the image depth is only one pixel).
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The connected component graph is also useful for describing and implementing contrast
morphology. This is similar to area morphology, except that instead of using the area
to decide what to remove (which is purely a property of a single level-set), it makes
uses of the set’s contrast. In the case of opening, the contrast is the difference between
the highest connected local maxima of which the set is a subset, and the set’s value.
Sets with contrasts below a certain threshold will be removed, whilst others will be left
intact. Fig. 7.5 shows how a contrast opening would alter an example image, and its
connected component graph. In this case, A, B, C, D, E and F would be removed, as
all of these are components whose contrasts are less than three.
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Figure 7.5: The example cross-sectional image from 7.3 showing the effect of an contrast closing with a
contrast of two.

Using contrast as the morphological attribute has several advantages over areas based
approaches in images where high gradients are present. Where the gradient is high, a
small range of areas can correspond to a large vertical extent, and in these cases using
contrast instead of area measures could be beneficial. This is illustrated in Fig. 7.6,
which shows how a large contrast can be found across an object which only has small
change in area across it.

7.1.2 Morphological TOI Segmentation

Whilst the segmentation schemes proposed in [Soille and Pesaresi, 2002, Pesaresi and
Benediktsson, 2001, Akçay and Aksoy, 2007, 2008] were developed for application to
very-high resolution (VHR) images, the images in this study are characterised by ex-
tremely low resolution. In these images, the lack of texture and small size mean that
multi-scale segmentation methods are unsuitable. To help overcome these problems a
segmentation scheme based on attribute morphology is proposed. Typical attributes in-
clude area (the most commonly used feature), moments, orientation, contrast and many
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Figure 7.6: The difference between contrast and area parameters. The area can be very insensitive to height,
leading to a small change in area consuming a large vertical section of image.

other measurable properties of image structure. In this case, attribute morphology is
advantageous when compared with standard morphology as it does not require the use
of structuring elements, all of which would be large when compared to the dimensions
of the images, and so introduce significant regions of noise. It also allows the filtering
action to be finely controlled by attributes other than shape and size, producing seg-
mentation results that can be tuned according to the properties of the features under
consideration. Another useful property is that of shape preservation, a property shared
with reconstruction based methods [e.g., Soille and Pesaresi, 2002]. Such methods are
interesting as they are able to completely remove specific features, whilst leaving other
entirely intact.

Contrast was chosen as the most suitable attribute for segmenting the TEC data due to
its low sensitivity to gradient relative to other attributes, such as area. Whilst the peak
SED value within the TOI shows considerable variation over the duration of the storm,
the background TEC value is much more stable. Performing an attribute closing with
a suitable contrast limit essentially flood-fills any basins with a contrast value less than
the chosen attribute limit.

In order to choose a suitable contrast value with which to operate the morphological
filter, ground-truths were generated by segmenting the images by hand. These were
necessary due to the noisy nature of the frames which meant that inter-frame differences
were not necessarily consistent and to sudden appearance and disappearance of small
features was common. This process gave rise to a set of binary images, one for each
frame, in which the salient regions were marked.

To find the contrast value for each frame which gave rise to the results most closely
matching the corresponding ground-truth images, the data were filtered using a range
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(a) Area Comparison
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(b) Correlation Comparison

Figure 7.7: Comparisons of area difference (a) and correlation (b) between frames segmented at various
contrasts, and hand segmented frames. The black plotted points show the lowest difference in area, and
highest correction values respectively. In both cases the contrast with the mean closest match to the hand
segmented frames was 33 TEC Units.

of contrasts, and the outputs compared to the ground truths. The optimal value found in
this fashion was then used as the starting point for the segmentations. Fig. 7.7 shows two
image maps illustrating the best contrast parameter for each frame, using two different
criteria – area (darker means a lower difference between the test and hand-segmented
frames), and correlation (brighter means a higher correlation coefficient between the test
and hand-segmented frames). In both cases, similar behaviour can be seen; on average,
the contrast value which gave rise to results closest to the hand-segmentations was 33
TEC units. Fig. 7.7 shows that the performance of the attribute-based segmentation is
relatively insensitive to the choice of contrast value. Therefore, although the contrast
value here was selected using hand-segmented TEC images, the availability of more
data would enable the starting contrast value to be estimated using training data with
little overall loss in performance.

To improve the temporal consistency of the segmentation results over the image se-
quence, a temporal feedback system was used, along with the ground-truth derived
contrast value. This system operated by performing an initial segmentation using a
contrast closure, followed by a small-scale area-opening to remove small peaks which
were considered clutter. This was then thresholded to give a binary mask identifying
the TOI. The feedback system operated by calculating the change in foreground area
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7.1. TOI SEGMENTATION

between each frame and the frame preceding it, and then increasing or decreasing (as
appropriate) the contrast level in small increments if the area differed by more than 10%.
If the contrast was altered, the image was re-segmented. This process was repeated in
an iterative fashion, until the segmented area was stable or until 10 iterations had oc-
curred. This helped ensure the correspondence of objects between frames, leading to
a smoother motion description. A flow diagram illustrating this process is shown in
Fig. 7.8.

Input

Contrast close

Area open

Label

Compare 
area

Output

Increase contrast Previous image Decrease contrast

10% < ?10%> ?

Figure 7.8: Segmentation process showing area based feedback.

The above process yielded results which are similar to the ground truth images whilst
maintaining area consistency between frames. However, in a few cases the segmen-
tation was too generous, meaning that some areas which were separated in the hand-
segmented images were left joined by the feedback process. This occurred when saddle-
shaped structures joined features which would otherwise be separate. To mitigate this
problem, a further stage was added to the process. By inverting the input images,
masked by the segmented images, and then applying the watershed transform, thin
saddle points joining areas were severed, as demonstrated in Fig. 7.9. The segmenta-
tion results for the images from Fig. 5.2 are shown in Fig 7.10. To obtain final TOI
representations in a form which is smoothed and can be re-sampled, the image bound-
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7.2. BOUNDARY MATCHING

(a) (b)

Figure 7.9: Reducing under-segmentation of SED islands using the watershed transform. Example TEC
image from 22:35 UTC on 30th August 2003 (a) before and (b) after watershed transform post-processing.

aries were traced and then converted to a smoothing-spline representation.

7.2 Boundary Matching

After boundaries have been extracted and described using a chain code or coordinates,
it is necessary to compute the correspondences between boundary points. It may also be
appropriate to resample them so that the number of points in each boundary is equal,
a process which can be made easier by converting the boundaries to a spline-based
representation. Splines are piecewise parametric polynomials which are an extremely
powerful tool for compactly and smoothly representing complex curves. Using splines
allows smoothing of shape boundaries as well as arbitrary resampling along the param-
eter of the boundary. These factors make splines ideal for describing object boundaries
in both low and high-resolution images.

Following appropriate resampling, methods such as shape context matching [Belongie
et al., 2002] or the alignment method of Sebastian et al. [2003]1 can be used to determine
how boundary points in each frame relate to one another. The coordinate of the corre-
sponding boundary points is then subtracted to give a set of motion vectors, describing
how one boundary can be warped into the other. Fig. 7.11 illustrates how boundary
correspondences can be used to extract motion estimates. Finally, vector density and
smoothness can be increased using interpolation or appropriate models. The shape
context method is discussed in more detail below.

1The latter is similar to the edit-distance for strings (a description of how many insertions, changes and
deletions are needed to convert from one string to another) [e.g., Klein et al., 2001].
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7.2. BOUNDARY MATCHING

(a) 20:00 UTC (b) 20:50 UTC

(c) 21:40 UTC (d) 22:30 UTC

Figure 7.10: Images from Fig. 5.2 segmented using morphological segmentation process described in the
text. The TOI boundary is indicated by the white line.

Shape Context Matching

The method known as shape context (SC) matching was developed by Belongie et al.
[2002] for measuring similarity between shape boundaries. This is done in three steps,
the first two of which can be used to estimate the relative motion of the two shapes.

Given boundary points for two shapes, the three steps required to measure their simi-
larity are:
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7.2. BOUNDARY MATCHING

Boundary 1 Boundary 2

Overlaid Boundaries

Boundary Motion 

Figure 7.11: A schematic illustrating motion estimation by boundary correspondences

1. Solve correspondences between points on their boundaries;

2. Use these to estimate a boundary alignment;

3. Sum matching errors to calculate similarity.

The output of step 2 is a permutation π(i) which maps points on the first shape to
corresponding points on second. Differencing the coordinates of these corresponding
points gives the vectors which are required to warp the boundary of the first shape into
that of the second. If both boundaries represent the same object, and the fundamental
assumption is that they do, then these vectors will represent the relative motion between
frames.

SC matching uses properties of shape boundaries known as contexts to calculate corre-
spondences between shapes’ boundaries. Further stages can then be used to calculate
similarity metrics if desired.

A shape context is histogram which describes the distribution of boundary points rel-
ative to an origin point (also part of the boundary). A shape context is created in the
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7.2. BOUNDARY MATCHING

following manner:

• choose an origin on the shape boundary;

• subtract the origin coordinates from the other boundary coordinates;

• convert the new coordinates into polar form to get r and θ;

• create a 2-D histogram by binning log(r) and θ (Belongie et al. [2002] uses five
bins for log(r) and 12 bins for θ).

In order to establish point correspondences between boundaries, shape contexts must
be created for every possible origin point for each shape. This allows a matching cost,
Cij = C(pi, pj) to be computed for every possible pair of points (pi, pj), where pi is a
point on the boundary of the first shape, and pj is a point on the second. The cost of
matching can be calculated using a variety of methods, such as the χ2 cost, which is
given by:

Cij ≡ χ2(pi, pj) =
1
2

K∑
k=1

[hi(k)− hj(k)]2

hi(k) + hj(k)
. (7.1)

As this only compares histogram bins with corresponding bins in the second histogram,
other methods, such as as the Earth mover’s distance (EMD) [Ling and Okada, 2007]
or diffusion distance (DD) [Ling and Okada, 2006] (a dissimilarity measure found to
be more robust and accurate than the EMD under certain conditions), can be used.
These metrics include cross-bin comparisons and so are more robust to problems such
as boundary occlusion and noise. The DD is particularly attractive due to its simplicity
(it makes use of a Gaussian pyramid and simple filtering operations).

The DD is defined by:

K(hi, hj) =
L∑
l=0

|dl(x)|, (7.2)

where,

d0(x) = h1(x)− h2(x) (7.3)

d1(x) = [dl−1 ∗ φ(x, σ)] ↓2 l = 1, . . . , L (7.4)

where l represents the current layer of the Gaussian pyramid with L layers, ↓2 denotes
downsampling to half-size. σ is the standard deviation of the Gaussian filter φ(. . .).

Once matching costs have been calculated — the result of which will be a cost matrix,
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7.2. BOUNDARY MATCHING

Cij — the task is to minimise the total cost of matching across the two boundaries,
given by:

H(π) =
∑
i

C(pi, pj), (7.5)

subject to π being a permutation. This means that a one-to-one match is required. This
problem is known as a weighted bipartite matching problem, which can be solved in a
variety of ways, such as the Hungarian/Munkres method, which attempts to find an
optimal path through the matrix [Kuhn, 1955].

The result of minimising (7.5) is a permutation π(i) describing the optimal mapping
between shape boundary points. Constraints and extras costs can be added to this
technique by modifying the cost matrix to include them as necessary. For example,
a distance weighting could be added to help ensure that the minimisation returns
points close to the boundary order. Metrics relating to image properties could also
be added, although finding suitable metrics is problematic as many, such as curvature,
can be very noisy and introduce ‘pits’, very low values, into the cost matrix. These
serve to pull the match towards them, which can give poor vectors as it can leads to
bad boundary correspondences. Fig. 7.12 shows an example cost matrix, created using
weighted diffusion distance. The weighting was done using the Euclidean distance
between boundary points.

Figure 7.12: An example cost matrix created using the diffusion distance histogram metric, weighted by the
distance between matching points. The axes correspond to boundary parameter values, and the scale is
normalised cost.

The permutation can then be used to calculate the distances between corresponding
boundary points on the two shapes, by subtracting the coordinates of the first shape’s
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boundary points from the corresponding points on the second shape. The result of this
will be the set of vectors required to warp the first shape into the second, that is their
relative motion.

7.2.1 Boundary Vector Transformations

An additional step which can be performed on estimated boundary vectors is estimating
the plane transformation required to warp one shape into the other. This can be done in
a variety of ways, and results in a 2-D warping transformation T which allows arbitrary
points from one shape to be mapped into the other. This processes allows denser vectors
fields to be estimated. For more detailed information on image warping, see Wolberg
[1994].

The two most commonly used methods of choosing T are least-squares fitting a standard
affine model, and the estimation of warping planes using radial basis function (RBF)
interpolation [Belongie et al., 2002]. This interpolation method is described in more
detail in Section 2.4. Regularisation can also be applied to smooth the warping planes
as needed, reducing the noise in the vectors.

Affine Model

The affine method attempts to fit a standard affine model of the form

T (x) = Ax + o, (7.6)

where A is a matrix describing rotation and scaling, and o is a translation vector. The
least squares solution is denoted T̂ = (Â, ô). ô can be found by taking the mean distance
between corresponding boundary points, and Â can be found using:

Â = (Q+P )t, (7.7)

P and Q contain the homogeneous coordinates of the boundaries described by p and
q, in the same form as (2.6). Q+ is the pseudo-inverse of Q. The outputs, Â and ô can
then be used in place of A and o in equation 7.6.

Typical fields produced by affine models and are characterised by an area where the
vectors are very small (an origin). Affine modelled fields tend to be have insufficient
degrees of freedom to accurately describe complex motion, such as that exhibited by
the TOI in the TEC images.
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RBF Fitting and Regularisation

Belongie et al. [2002] uses two separate thin plate spline (TPS) surfaces (one for the
x-axis mapping and one for the y-axis), fitted using RBF, giving a model of the form:

T (x, y) = (fx(x, y), fy(x, y)) . (7.8)

The fitting is carried out by considering the boundary positions of the first shape
pi = (xi, yi) as the input coordinates, and then taking the x-component second shape’s
coordinate as zi. RBF interpolation is then performed to give fx. The same process is
then performed using the y-component of the displacement to get fy.

If the coordinate mapping is considered noisy, it is possible to relax the interpolation
condition during the RBF fitting. This process is called regularisation, and allows a
smooth surface to be fitted to the data.

This is done by modifying A in equation 2.5, by replacing it with:

A+ λI (7.9)

where λ is a scale dependent regularisation parameter which controls the amount of
smoothing, and I is an identity matrix. Setting λ = 0 corresponds to interpolation, and
setting λ to large values creates outputs which are similar to those from a fitted affine
model.

The scale dependence can be removed by replacing λ with α2λ0, where α is the scale of
the inputs points, and λ0 is normalised λ. This can be estimated by taking the mean edge
length between input points. λ0 can now be varied between zero and approximately
one. This makes choosing a value for λ much easier.

7.2.2 Tracking TOI Boundaries

Applying SC based motion estimation to the segmented boundaries provides estimated
vectors at the shape boundaries in each frame. In general, this proved to be successful
and as shown in Fig. 7.13, it captured the motion in the beginning of the sequence
particularly well. In this section of the data-set, the motion is highly constrained, and
the TOI is easily distinguished from the background. However, at other points in the
sequence this is not always the case.

As described in Section 5.1, on page 68, the image sequence corresponds to a patch over
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(a) 20:00 UTC (b) 20:05 UTC

(c) 20:10 UTC (d) 20:15 UTC

Figure 7.13: Example false-colour frames from early in the sequence. Vectors are the raw outputs from the
segmentation and shape context matching method.

the polar cap. One consequence of this is that one side of the image is always in sunlight,
and one is in darkness. Because of the nature of the ionosphere, the side in sunlight
is continually injected with electrons and ions, and the side in darkness undergoes
depletion due to recombination effects. This results in the TOI being drained at its tip,
in a fashion similar to the snout of a glacier, where ice melts and drains away. If the
rate of melting increases, the snout will appear to retreat whilst water will always flow
away. If only the position of the snout was being measured, the glacier would appear
to be flowing backwards, which is clearly never the case. This effect is illustrated in
Fig. 7.14.
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a ab

Apparent Boundary Motion

Actual Flow Direction

Figure 7.14: A diagram showing how a change in depletion rate can alter the apparent direction of flow.

This problem occurs towards the end of the image sequence under examination. Fig. 7.15
shows an example of this problem occurring due to a slight drop in value at the very
tip of the TOI. Unfortunately, these retreating boundaries cannot be detected by simply
examining the vector directions relative to other vectors in the same frame, as frames
where this problem manifest itself tend to have very noisy vectors in general. For this
reason, several techniques to detect and replace these retreating vectors were evaluated
for suitability, and effectiveness.

Tested detection methods included:

• Marking vectors by thresholding the magnitude of the current frame’s vectors was
examined as a simple method of detecting anomalies. However, because no other
frames are examined it is unable to detect retreating vectors. For this reason it
was deemed unsuitable.

• Marking retreating vectors by first subtracting each given frame’s vectors from
the previous frame’s vectors. These are interpolated to the points at which the
current vectors lie. These new difference vectors are then filtered to remove those
outside of a 95% confidence limit (two standard deviations either side of the mean)
for magnitude, and finally thresholded. This method detects vectors which are
significantly different from those in the previous frame, but is very sensitive to
the threshold parameter chosen as the histograms of displacements vectors tend
to be very flat.

• Marking vectors in a manner similar to the above method, but making use of
angle instead of magnitude. This method was found to be unreliable because of
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(a) 21:25 UTC (b) 21:30 UTC

(c) 21:35 UTC (d) 21:30 UTC

Figure 7.15: Example frames illustrating the retreating snout problem. (a)–(c) Frames from before, during
and after the problem occurs, respectively, and (d) the result of detecting the depletion and replacing all the
vectors with vectors interpolated from those from the previous frame.

the wide variety of vector directions between frames.

• Marking entire frames based on the mean and standard deviation of the vectors
differenced with those from the previous frame. A combination of a mean value
of 5 and standard deviation of 3 was found to be effective.

Following detection of the retreating vectors, the selected vectors must be replaced.
Vector replacement methods which were tested included:
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• Replacing the marked vectors with the vector-median [Astola et al., 1990] of the
remaining vectors. As the frames containing the retreating boundary problem
tend to contain noisy vectors, this was found to be unpredictable.

• Replacing the detected vectors with new vectors generated using an affine model
of the previous frame’s vectors. Whilst this tends to give more suitable magnitudes
than the previous method, the affine fit often ends up with vectors which seem
to point wrong direction.

• Replacing the detected vectors with new vectors generated by interpolating the
previous frame’s vectors onto the marked vector positions. This was carried out
using both standard interpolation and regularisation. This gives good results
provided the previous frame’s vectors are reasonable. For this reason, processing
should be done on a frame by frame basis.

• Replacing all of the vectors in the frame with the previous frame’s interpolated
vectors. This is an effective way of getting smooth vectors over the entire boundary,
provided the previous frame’s vectors are smooth.

Of the detection and replacement methods tested, replacing all vectors based on mea-
suring vector magnitude statistics was found to be most effective due to the overall
smoothness of the output. From an aesthetic point of view, it is advantageous because
replacing the entire frame does not result in the discontinuities which are present in
the other partial replacement methods at the boundaries of regions where vectors are
being replaced.

Fig. 7.16 shows example frames with boundary motion vectors plotted at the boundary
points (where they were estimated). The next section discusses methods of increasing
the density and smoothness of the vector fields produced using this technique.

7.2.3 Increasing Vector Field Density

As an additional processing step, the output vectors can be interpolated to cover the
area within the boundaries (and extrapolated to cover the background, if necessary).
This could be very useful for interpretation, as large scale trends are easier to observe
than those occurring only on boundaries. This process is described in Section 7.2.1.

Fig. 7.17 shows some example frames from the TEC sequence which have been interpo-
lated using RBF TPS interpolation. Other interpolation methods cold also been used,
to similar effect, although using linear methods results in far less smooth outputs.
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(a) 20:00 UTC (b) 20:50 UTC

(c) 21:40 UTC (d) 22:30 UTC

Figure 7.16: Example false-colour frames from Fig. 5.2. Vectors are shown after post-processing by replacing
all vectors in frames with detected retreating areas.

Regularisation can also be used to smooth these vector fields, thus removing noisy and
inconsistent vectors. This is similar to the use of relaxation-labelling (see Section 5.7.4,
on page 82), although it does not pick from a discrete set of available vectors, but uses
fitted smooth surfaces. The regularisation is also part of the ‘interpolation’ method,
rather than a add-on step. Fig. 7.18 shows the how changing the scale-dependent
regularisation parameter λ changes the smoothness of a surface being reconstructed.
In this example, a sparsely sampled field has had an RBF surface fitted with various
different λ values, starting at zero and ending and one, in steps of 0.25. This shows
the effect that modifying the regularisation parameter has on the smoothness of the
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(a) 20:00 UTC (b) 20:50 UTC

(c) 21:40 UTC (d) 22:30 UTC

Figure 7.17: Frames from the TEC sequence showing vectors which have been interpolated throughout
segmented objects.

reconstructed field. Fig. 7.19 then shows the same frames as Fig. 7.17, but regularised
using a λ value of 0.5. This produces smoothed vectors, with a tendency for the field
to be less curved than in the non-regularised case.

Comparing Figs. 7.17 and 7.19 with Fig. 5.3 show similar results to the other tested
motion estimation techniques. In the beginning of the sequence the behaviours are
fairly similar, with a tendency for motion towards the top-right of the images. As the
sequence progresses, however, for the right-hand side of Fig. 5.3 feature to appears to
show clockwise rotation – a feature which can also be seen in both Figs. 7.17 and 7.19.
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Figure 7.18: The effect of adjusting the regularisation parameter (λ) in steps of 0.25, starting at zero (top),
and ending at one (bottom).

This suggests that this technique is well suited for capturing large-scale movement,
including rotation, something for which the other tested techniques (see Sections 6.2
and 5.6) have proven ill-equipped.

7.3 Conclusions

This chapter has presented a new method for estimating the motion of features in
TEC maps of the polar ionosphere. This method makes use of two stages – boundary
segmentation and boundary tracking – in order to derive vectors which are accurately
describe the motion of the TOI, whilst ignoring uninteresting regions. The segmentation
stage uses temporal feedback and morphological filtering based on image contrast to
enhance the stability of the motion vector. Finally, a regularisation method is used to
estimate smooth vectors throughout the TOI.

Various conclusions can be drawn regarding the techniques introduced in each stage of
the work in this chapter.

First, regarding segmentation, it was demonstrated that filters based on attribute mor-
phology, and especially contrast, can effectively segment low-resolution, noisy images.
It was also shown that the watershed transform may be used to effectively split regions
which are joined by thin saddle shaped areas.
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(a) 20:00 UTC (b) 20:50 UTC

(c) 21:40 UTC (d) 22:30 UTC

Figure 7.19: Frames from the TEC sequence showing vectors which have been in-filled throughout seg-
mented objects using regularisation, with λ = 0.5.

With regards to the conversion of segmented shapes, to boundary descriptions, the most
useful observation is that splines can be used to smooth and arbitrarily resample shape
boundaries, making them suitable for matching with shape contexts.

Finally, with regards to correspondence matching, this chapter has shown that shape
contexts can be applied to boundary matching, in order to extract motion estimates. For
this to work, correspondences between entire shapes must be known a priori. Diffusion
distance was found to be an effective histogram comparison metric for use with shape
context matching, and lastly, vector field density can be increased using regularised
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radial-basis functions, in order to get smooth dense motion fields.

Chapter 8 compares the different motion estimation techniques against one another, in
order to illustrate how they differ.
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Chapter 8

Comparisons of TEC Motion
Estimation Methods

This chapter briefly compares the motion estimation methods described in Chapters 6
and 7 with the modelled motion described in Section 5.1.

To this end, motion vectors from each method were aggregated, converted to magnitude
and subtracted from those of the other methods. Fig. 8.1 shows the difference between
vectors from the E×B model and relaxation labelling.

The aggregated values from each method were differenced, and values binned to create
histograms. These are shown in Figs. 8.4, 8.3, 8.4, and 8.5 respectively, and illustrate
the overall difference in vector magnitude between each of the methods. Examination
of these figures allows several conclusions to be drawn.

First, the magnitudes of the E × B, optical flow and boundary derived vectors are
all quite similar. This can be seen in the symmetrical zero-mode histograms of these
methods.

Second, the relaxation labelling vectors have larger magnitudes than the the other
methods. This is evidenced by the positive modes of the histograms in Fig. 8.4.

Table 8.1 shows some statistics confirming these observations. However, the table also
shows that the comparisons with the boundary generated vectors resulted in the highest
variances. This may be due to the boundary generated vectors being excessively smooth,
as they are generated using regularisation.
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Table 8.1: Motion field comparison statistics

Comparison Mode Mean Variance
ExB - Optical Flow 0 0.7615 3.0678
ExB - Relaxation Labelling -1.8 0.0597 3.8143
ExB - Boundary Vectors -0.02 0.4181 10.4442
Optical Flow - Relaxation Labelling -2 -1.5519 0.8721
Optical Flow - Boundary Vectors -0.2 -0.8607 7.0120
Relaxation Labelling - Boundary Vectors 1.6 0.5210 8.0967

(a) 20:00 (b) 20:50

(c) 21:40 (d) 22:30

Figure 8.1: Frames illustrating the difference between E×B and relaxation labelling vector fields.
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Figure 8.2: E×B vector magnitude comparisons.
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Figure 8.3: Optical flow vector magnitude comparisons.
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Figure 8.4: Relaxation labelling vector magnitude comparisons.
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Figure 8.5: Boundary vector magnitude comparisons.
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Chapter 9

Conclusions and Further Work

This chapter briefly outlines the contents and contributions of this thesis, with particular
emphasis on the conclusions from each chapter. Ideas for further work that could be
carried out are also listed.

9.1 Summary of Conclusions

Chapter 1 introduced the background upon which the remainder of this work is based:
the ionosphere. Ionospheric mapping methods and storms were introduced, providing
context for the work in later chapters.

Chapter 2 reviewed interpolation methods, with a particular emphasis on adaptive
normalised convolution (ANC). The implementation used here was was specifically
developed for interpolation of total electron content (TEC) data. This and other methods
were examined in the following chapter.

Chapter 3 discussed the evaluation of methods for interpolating sparsely sampled iono-
spheric TEC data. As this is an exercise in interpolation, the results and methodolo-
gies should be generally applicable. This chapter represents the first application of
normalised convolution (NC) and ANC to geosciences, and is (to the author’s knowl-
edge) the most broadly scoped evaluation of interpolation methodologies since Franke
[1982]. In this study, natural-neighbour interpolation was found to perform particularly
well, ANC performed well for the TEC data, and kriging was found to be somewhat
unstable.
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Overall, it was found that natural-neighbour and linear radial basis function (RBF)
interpolation work well in situations where stability and well-behaved outputs are im-
portant, and cubic triangulation based interpolation is a good staple technique. When
interpolating anisotropic data with high-frequency content, for example photographs,
or more obviously TEC data, ANC is a good choice.

In Chapter 3, on page 42 it was suggested that the stability of an interpolation method
can be assessed by examining error distributions, and through knowledge of artefacts
and when they occur. To this end, Chapter 4 (page 55) examined various methods
for artefacts, and presented some pathological cases which cause techniques to have
skewed error distributions. In summary, the main artefacts to consider are: overshoot
and undershoot in all cubic and higher order based techniques, faceting in low order
triangulation based techniques, spikes in natural-neighbour interpolated surfaces, and
fitting failures in kriging. It is also important to remember that interpolation outside
of the convex hull of a data set is not interpolation, but extrapolation. Overall, linear
RBF interpolation may be the best choice in cases where smoothly varying and largely
artefact free outputs are required.

Chapter 5 and onwards move to the problem of estimating the motion of specific iono-
spheric features in low-resolution, low-texture images. The features, known as tongue
of ionisation (TOI), appear during ionospheric storms, and move across the polar cap.
Tracking these features is hard, as the images in which they appear have low-resolutions,
low levels of texture, and a tendency for complex motion. After an initial survey of mo-
tion estimation methods in Chapter 5, the performance of optical flow and correlation-
relaxation labelling are examined in Chapter 6.

To compensate for the problems mentioned above, various adaptations were made to
correlation-relaxation labelling in order to allow for the low resolution and texture.
These changes included overlapping blocks, using sub-pixel motion estimation, and
the application of a vector-median-filter to the output vector fields. In addition, a low
correlation threshold was set in order to allow more candidate vectors to be entered
into the relaxation labelling stage. In the evaluations of both techniques, thresholding
based on variance filtering was used to suppress noisy vectors in ‘background’ regions.
In this study, optical flow was found to perform adequately, and correlation-relaxation
labelling was found to perform well, after the augmentations described above. Both
optical flow and correlation-relaxation labelling performed poorly during the end of
the sequence, which is characterised by confused and irregular motion.

In an attempt to improve the quality of the vector fields, Chapter 7 followed the design
and development of a two stage motion estimation process based on tracking using
shape boundaries. The two stages involved in this process were segmentation, using
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attribute mathematical morphology, and boundary tracking, using shape contexts. As
an addition step, the vector fields were fitted with regularised surface, in order to
increase their density, and ‘fill-in’ the shape boundaries. One particularly notable feature
of the segmentation method designed here is the use of temporal feedback, which
stabilises the area of the segmented objects by examining the properties of previous
frames. This technique was found to perform well, once several problems had been
overcome. The main problems were object joins, due to saddle points, and the retreating
boundary problem which manifests as a reversal in the direction of boundary motion.
The problems were solved using the watershed transform, and by selectively replacing
boundary vectors respectively.

Whilst these performance evaluations have been specifically applied to TEC data, most
of the conclusions are generalisable to other types of data. This chapter also demon-
strated that a well known shape recognition paradigm can be adapted to the estimation
of shape-motion.

9.2 Further Work

A by-product of any long term project must surely be a large list of unanswered ques-
tions. This section lists a few such questions, collected over the course of the work that
completes this document.

9.2.1 Interpolation and TEC Mapping

A large number of older interpolation methods exist which have not been tested in
recent studies [e.g., Akima, 1978, Shepard, 1968, Ripley, 2004]. Many of these are also
implemented in languages such as FORTRAN. Porting these methods to C or C++, or
making them available to MATLAB, and then including them in the studies in Chapter 3
would be a useful benchmark. It would show how well these methods can cope with
highly-sparse data (something which seems to have only been given attention recently),
as well as how well they compare to more modern methods.

Another useful advancement would be improving the speed of the RBF interpolation
methods by implementing domain decomposition. This was briefly mentioned in Chap-
ter 3. The result in Chapter 4 show that these methods are largely free from the artefacts
which manifest in triangulation based methods, meaning that a very fast implementa-
tion would be an excellent tool for day-to-day interpolation.
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Work on examining how sampling patterns alter interpolation outputs should also prove
very interesting and informative. This should concentrate on the spatial frequency
content that can be reconstructed for different sampling methods and sparsities, and
might pave the way for a universal description of the limits of reconstruction quality at
differing sparsities. A good sampling point for this work would be Ripley [2004] and
references therein.

Finally, with regards to TEC mapping: these maps do not necessarily need to be created
using interpolation. An evaluation of regularisation methods (such as those described
in Chapter 7) would be a useful evolution of the work on evaluating interpolation
performance. The resilience to noise would also be an excellent property of these
methods.

9.2.2 Motion Estimation

Future work in the area of motion estimation of storm enhancements should focus on the
extension of these techniques into an unsupervised system which does not require the
manual creation of ground truths. This will require more data which have been gathered
during storms. A suitable training set could then be created which would allow contrast
attributes to be chosen. Extending this to be proportional to the maximum data value
would be more general and allow the use of the same parameter on many different
storms.

Independent data sources such as vector data from the SuperDARN [Greenwald et al.,
1995] or EISCAT radars could also be used both for validation of results and, perhaps
more interestingly, the production of improved motion fields by combining them esti-
mates of boundary positions. Comparisons and validation with assimilation algorithms,
such AMIE (described by Bust and Crowley [2007]).

Implementation of a tracking system, using for example, a Kalman filter [Hlavac et al.,
1999], would be a useful extension of the work, which could allow for forecasting of
storms motion they progress. These results could also be of scientific interest.

Integration of motion estimation into real-time TEC mapping systems would be rela-
tively simple, and allow near-instant analysis of the motion of ionospheric features.

Exhaustive testing of the different motion estimation methods examined here could be
carried out by simulating data with known motion, thereby proving a ground truth.
This data would have to be generated in such a way as to ensure realism, whilst ensuring
confidence in the estimated vectors. Examining warping methods [e.g., Wolberg, 1994]

133



9.2. FURTHER WORK

which could be modified for image generation would be a good first-step towards
implementing this study, although it should be noted that simple warping models,
such as the affine model, can not appropriately capture the complex motion of the TOI.

Extension of the motion estimation methods to 3-D would allow feature tracking in full
tomographic image sequences. Boundary tracking based on shape contexts would be
a good starting point, although correspondence-based tracking would probably be less
computationally expensive.
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Publications by the Author

The following publications are the result of work contained within this thesis:

• M. P. Foster and A. N. Evans. An evaluation of interpolation techniques for
reconstructing ionospheric TEC maps. IEEE Transactions on Geoscience and Remote
Sensing, 46(7):2153–2164, July 2008. DOI: 10.1109/TGRS.2008.916642

• M. P. Foster and A. N. Evans. Tongue of Ionisation Motion Estimation from Polar
TEC Sequences. IEEE Geoscience and Remote Sensing Letters, July 2009. DOI:
10.1109/LGRS.2009.2019970

• M. P. Foster and A. N. Evans. Performance evaluation of multivariate interpo-
lation methods for scattered data in geoscience applications. Proceedings of the
IEEE Geoscience and Remote Sensing Symposium 2008, (4):565–568, July 2008. DOI:
10.1109/TGRS.2008.916642

• M. P. Foster and A. N. Evans. Segmentation and tracking of ionospheric storm
enhancements. Proceedings of the XIV Conference on Image and Signal Processing for
Remote Sensing, volume code 71090O. SPIE, 2008b. DOI: 10.1117/12.799806
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Appendix B

Polar TEC Data Sequence

This chapter contains the entirety of the image sequence use in the motion chapters.
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(a) 20:00 (b) 20:05

(c) 20:10 (d) 20:15

Figure B.1: The first four frames from the TEC image sequence
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(a) 20:20 (b) 20:25

(c) 20:30 (d) 20:35

Figure B.2: The second four frames from the TEC image sequence
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(a) 20:40 (b) 20:45

(c) 20:50 (d) 20:55

Figure B.3: The third four frames from the TEC image sequence
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(a) 21:00 (b) 21:05

(c) 21:10 (d) 21:15

Figure B.4: The fourth four frames from the TEC image sequence
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(a) 21:20 (b) 21:25

(c) 21:30 (d) 21:35

Figure B.5: The fifth four frames from the TEC image sequence
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(a) 21:40 (b) 21:45

(c) 21:50 (d) 21:55

Figure B.6: The sixth four frames from the TEC image sequence
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(a) 22:00 (b) 22:05

(c) 22:10 (d) 22:15

Figure B.7: The seventh four frames from the TEC image sequence
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(a) 22:20 (b) 22:25

(c) 22:30 (d) 22:35

Figure B.8: The eighth four frames from the TEC image sequence
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(a) 22:40 (b) 22:45

(c) 22:50

Figure B.9: The ninth four frames from the TEC image sequence

145



Appendix C

Software Used

A variety of both free and commercial software was used in the creation of this thesis.
Development was done on the Macintosh and linux platforms, using TextMate and vim,
the text editors, and PDFLATEX (from TexLive 2007/8 [http://texlive.org]).

The fonts used in the this theses are: TexGyre Heros for the section titles, and TexGyre
Pageela for the body.

Many graphs were created using gnuplot (http://gnuplot.info), and diagrams drawn
using OmniGraffle (http://omnigroup.com).

Data processing was done using Matlab (http://mathworks.com), and octave (http:
//octave.org), a free clone.

Git (http://git-scm.com) and subversion were used for version control.

Free software created by the author, including octave code for Kriging and RBF inter-
polation, and various TextMate bundles (e.g., for driving gnuplot) available at: http:

//github.com/mattfoster.
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