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Abstract 

In order for infrastructure owners to be able to properly assess the risk of slope failures 

within their network of assets it is essential that the hydrological processes within slopes can 

be accurately modelled. Hydrological modelling is, in turn, dependent on a fundamental 

understanding of soil physics and flow at the soil structure scale. 

 It is well known that flow within soils is strongly related to a soil’s physical structure 

and pore space architecture and is therefore affected by the presence and interconnectivity 

of macropores. However, macropore influence on governing flow has traditionally been hard 

to define within laboratory experiments, particularly on representative and undisturbed 

samples. Additionally, quantitative descriptions of the dynamic nature of soil pore 

architecture and the effects of saturation on altering internal pore networks have proven 

elusive. 

This thesis uses detailed numerical modelling of a case study infrastructure slope in 

conjunction with field data to assess the key influences on flow within infrastructure slopes. 

The results of this investigation reinforce the importance of determining how the hydraulic 

conductivity of clay soils varies with depth and with saturation, in order to be able to correctly 

model the hydrological response of earthworks to climate conditions. Determining the extent 

to which pore structure and connectivity influence hydraulic conductivity and the evolution 

of this pore architecture with changes in saturation and depth is therefore of great 

importance. 

This thesis builds on recent developments in X-ray computed tomography (CT) in 

order to progress the technique as a means of visualising and quantifying macropore 

characteristics in a non-intrusive manner. A microCT scanning technique which allows for 

the scanning of large undisturbed clay fill samples is developed, as well as an image analysis 

procedure that allows for the quantification of internal macropore architecture. It is shown 

that 100 mm diameter clay cores are at the limit of microCT capabilities as a result of 

achievable spatial resolution and phase contrast. The use of subsampling and image 

improvement techniques allows for the pores above 63 microns in size present within the 

samples to be visualized and quantified.  

A further novel development within this thesis is the assessment of the evolution of 

the internal macropore structure of undisturbed clay fill samples with saturation. Scans were 

conducted on 100 mm diameter clay fill samples at different states of saturation at microCT 
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resolution for the first time. It was found that the saturation procedure reduced overall 

measured total macroporosity as well as the number of macropores within the samples. 

Additionally, the saturation procedure was observed to decrease the size of largest 

macropores within the samples and to make the samples more uniform in structure 

throughout their height. 

MicroCT determined macropore property metrics of the clay fill samples were 

compared to saturated hydraulic conductivity tests of the samples. Saturated hydraulic 

conductivity was found to correlate strongly with microCT derived mean macropore length, 

which represents the connectivity of the macropores within the samples. The results also 

indicate that the length of the macropores within a sample has more influence on the 

saturated hydraulic conductivity than the quantity of macropores (total macroporosity). 
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1 Introduction 

The failure of infrastructure slopes poses a risk to the safety of transport users and can lead 

to delays, economic losses for industry, and the need for expensive remediation (Glendinning 

et al., 2014). The disruption caused by slope failures is exacerbated by the fact that the UK's 

transport infrastructure is one of the most heavily used in the world, often relying on old and 

poorly constructed earthworks (Briggs et al., 2017). Indeed, it is estimated that two-thirds of 

the transport network is supported by, or adjacent to, engineered slopes such as 

embankments and cuttings (Perry et al., 2003). Many of these slopes suffer from age-related 

deterioration and were constructed to standards considerably different to those used today 

and, as a result, suffer from high incidents of instability, which are becoming increasingly 

frequent (Loveridge et al., 2010). Although maintenance of such infrastructure is costly, the 

benefits of proactive works far outweigh the costs of remedial works after failure 

(Glendinning et al., 2015). Therefore, research which enables asset managers to better 

prioritise maintenance and investments is needed in order to help improve the resilience of 

the country’s transport network. Such advancements require an upgrading of the knowledge 

surrounding slope hydrology, instability, and modelling capability (Dijkstra et al., 2014). 

The hydrology of slopes is key to their structural behaviour.  Infiltration into a slope 

can reduce the negative pore water pressures (suctions) present within the soil which 

contribute to stabilising the slope. This can lead to a reduction in strength which may, in 

turn, result in failure (Fredlund et al., 2012). Cycles of pore water pressure and effective stress 

change have also been shown to lead to progressive failure of infrastructure slopes over 

several years (e.g. Potts et al., 1997). However, there are many potential causes of failure and 

many factors that influence the water flow within slopes and their response to climate, some 

of which we have a limited understanding of. 

To realise the development of a fundamental understanding of material and system 

behaviour it is necessary to integrate research across a range of spatial scales, including studies 

of soil fabric, whole slope modelling, and upscaling to transport networks (Glendinning et 

al., 2015). This involves an improved comprehension of flow within soils (particularly clay 

fills) and system behaviour at a slope scale.  

An enhanced understanding of the physical processes involved within slope systems 

and identification of key soil parameters from field and laboratory tests is required to facilitate 
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the development of robust models capable of predicting slope response to current and future 

climate conditions (Dijkstra and Dixon, 2010). 

One of the most important and lesser understood elements within slope systems that 

affects the flow of water is the role of macroporosity. Macropores are large pores created as 

a result of many processes, including soil fauna, decay of plant roots, wetting and drying 

cycles, freeze–thaw cycles, or the erosive action of subsurface flow (Beven and Germann, 

1982).   

Flow within soils is strongly dependent on a soil’s physical structure and pore space 

architecture and is therefore affected by the presence and interconnectivity of macropores 

(Beven and Germann, 2013). Macropores can result in non-equilibrium, or preferential, flow 

which does not obey the Darcy-Richard’s equations of flow on which the majority of 

saturated and unsaturated hydrological modelling is based (Jarvis, 2007). However, the 

influence of macropores is hard to define accurately because it is difficult to measure in a 

non-destructive manner (Weiler, 2017). Moreover, quantitative descriptions of the dynamic 

nature of soil pore architecture (i.e. macropore networks) and the evolution of internal pore 

structure with changes in saturation are still lacking.  

Recently, X-ray computed tomography has developed as a means for non-destructive 

observation and analysis of the internal pore space architecture of soil samples in three 

dimensions (Cnudde and Boone, 2013). This technique allows high resolution imaging of 

soil structure and macropore networks. The imaging data can then be used to provide 

quantitative estimates of many properties associated with the pore architecture including 

macroporosity and pore connectivity (Helliwell et al., 2013). It therefore offers the potential 

to link soil structure and pore architecture to flow and hydraulic conductivity, and to improve 

our understanding of flow within soils. 

This thesis uses detailed numerical modelling of a case study infrastructure slope in 

conjunction with field data to assess the assumptions regarding soil heterogeneity in the 

model and the key influences on flow within infrastructure slopes. Using a field 

representative model and sensitivity analysis, the influence of anisotropy of hydraulic 

conductivity, unsaturated soil behaviour characteristics, and hydraulic conductivity variation 

at the surface and at depth within the model are explored. This process informs the direction 

of the laboratory work carried out to subsequently understand the complex role of 

macropores. 
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Although quantitative measures of macropore networks calculated from X-ray 

tomography images can provide useful information on soil structure, they are dependent on 

the sample size, scanning procedure, image quality, and image processing methods used 

(Wildenschild and Sheppard, 2013). 

This thesis develops a microCT scanning and analysis procedure to investigate the 

use of computed tomography as a means to visualise and quantify macropore networks in 

large (100 mm) and relatively undisturbed clay fill cores from an embankment for the first 

time. 

 In a further novel development, clay fill cores of this size were scanned repeatedly 

at different water contents using the non-destructive nature of the microCT technique to 

investigate the evolution of macropore structure with increases in saturation.  

The work undertaken also explores variation in macroporosity with depth 

throughout the embankment and examines the influence of macropores on the saturated 

hydraulic conductivity of the samples using triaxial and oedometer permeability tests. The 

pore property metrics (total macroporosity, macropore density, mean macropore length, 

macropore surface area density, and mean volume of the largest pores) derived from the 

microCT image data which have the strongest relationship to saturated hydraulic 

conductivity are investigated.  
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1.1 Thesis aim 

The fundamental ambition of the work presented here is to help to progress research within 

this field towards achieving a complete picture of transient water movement within 

infrastructure slopes, based on a fundamental understanding of earthwork material and 

systems behaviour. Such an understanding could subsequently be used to create a more 

robust, resilient, and cost-effective transport network. 

1.2 Overall methodology  

To achieve the stated aim, the work presented within this thesis comprises several individual 

studies, at varying scales, to identify the key unknowns and to research methods which can 

further our knowledge of these aspects.  

Chronologically, the first of these investigations was a large-scale study of slope 

failures within the UK using the British Geological Survey landslide database in conjunction 

with climate data (see Appendix). During the course of this study it became apparent that 

site-specific heterogeneity in terms of soil structure, composition, and vegetation, mean that 

in order to achieve improved network-scale assessments of risk it is first necessary to explore 

modelling of site-specific cases and to examine the implications of the assumptions involved 

current modelling practice in terms of flow and unsaturated behaviour. 

To do this, a comprehensive modelling analysis using Darcy-Richard’s type flow 

equations was carried out on a clay cutting. This research uses clay as it comprises much of 

UK infrastructure (embankments and cuttings), has higher incidences of failure, and exhibits 

behaviour which is lesser understood than other soils. The propensity of clay earthworks for 

shrink-swell behaviour, desiccation cracking, and heterogeneity due to construction methods 

(particularly within embankments) mean that they can suffer from preferential flow. 

The theory and assumptions used within the model are discussed in the literature 

review in Chapters 2 and 3, whilst the inputs and results of the modelling processing are 

explored in Chapter 5. As a result of the learning outcomes from the modelling process it 

was found that models which use more physically-based flow theories are needed if we want 

to improve our modelling capability of slope hydrology. It is essential that the effects of 

macropores, their structural properties, and their interaction with the soil matrix can be 

properly described within models. However, this has historically been difficult to achieve due 

to the lack of non-destructive measurement techniques.  
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After researching potential solutions to this problem, it was found that microCT 

scanning represents a new technique which could be used to provide quantitative estimations 

of the physical properties of macropores within samples as well as the evolution of this 

structure over time (Chapter 4). 

To ensure that the macropore networks analysed were representative of the type of 

natural pore structures found within infrastructure slopes, relatively undisturbed, large clay 

fill samples were used for the experimental work in this thesis. 

As microCT scanning of clay fill has never been done before, several problems were 

encountered during this research. It was necessary to make sure that processing and analysing 

scan data, as well as the physical scans themselves, were as consistent and repeatable as 

possible. Two detailed studies were conducted, firstly to determine the optimal scan 

procedure for such large inhomogeneous samples (Chapter 6), and secondly to determine 

the optimal image data analysis procedure for these samples (Chapter 7).  

Having established the consistent procedures necessary to use microCT scanning to 

analyse large clay fill samples, this thesis finally examines the achievable results of scans of a 

series of different embankment samples (Chapter 8). The samples were scanned at different 

states of saturation which uses the repeatable nature of the technique to explore the dynamic 

changes within the soil macropore structure. The quantified macropore properties were also 

compared to hydraulic conductivity tests to take advantage of the non-destructive nature of 

CT and to examine the relationship between the quantity, size, and connectivity of 

macropores and flow. This provides a basis for improving our description of slope hydrology 

in the future. 
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1.3 Thesis objectives 

The specific objectives of this work were to: 

➢ Use a field representative slope-scale model to compare simulated pore water 

pressures and volumetric water contents with field measured data, in order to explore 

the implications of the assumptions regarding soil heterogeneity made within 

hydrological models.  

➢ Use the modelling process to determine the key parameters that affect slope 

hydrology and pore water pressures within models. Particularly, to examine the 

importance of hydraulic conductivity and the unsaturated soil behaviour 

characteristics. 

➢ Investigate the capabilities of microCT for geotechnical research and the non-

invasive imaging of macropore networks within large clay samples, with regards to 

sample size and image quality. From this investigation, to devise a microCT scanning 

method for scanning large undisturbed clay fill samples which allows for repeated 

scanning of samples. 

➢ Devise a consistent and repeatable image analysis procedure in order to quantify the 

macropore structure of large clay fill samples and compare results from multiple 

microCT scans. 

➢ Assess the change of macroporosity and macropore properties with depth 

throughout an embankment (between 1.5 - 6.5 m) and to comment on the 

heterogeneity of the macropores using the microCT technique. 

➢ Assess the evolution of the macropore structure within clay fill samples due to 

changes in saturation. 

➢ Investigate the relationship between the internal macropore structure of clay fill 

(measured using microCT derived macropore property metrics) and the saturated 

hydraulic conductivity of samples. 
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1.4 Thesis structure 

Firstly, in Chapter 2, this thesis gives an overview of some of the established theories 

describing water flow and storage within saturated and unsaturated soils which are commonly 

used within hydrological models.  

Chapter 3 describes the processes associated with slope hydrology, hydrological 

triggering of failures, the influence of climate and vegetation in relation to modelling slope 

hydrological behaviour, and observations of the influence of macroporosity.  

Chapter 4 explores the use of computed tomography within the geoscience research 

field for the non-invasive quantification of soil architecture. 

Chapter 5 discusses the detailed hydrological modelling of a roadside clay cutting 

conducted to explore the uncertainties involved in slope hydrology, with particular emphasis 

on the influence of hydraulic conductivity and the assumptions of continuum behaviour 

within hydrological models. 

Chapter 6 presents an investigation into the use of microCT to image large-scale clay 

fill samples from an embankment in order to establish microCT capabilities and scanning 

procedures.  

Chapter 7 presents an investigation into the detailed image analysis procedure 

required in order to accurately quantify the macropore structure present within 100mm 

diameter clay fill samples.  

Chapter 8 presents the results of a series of scans of clay fill samples from different 

depths within an embankment. The cores were scanned in partially saturated and saturated 

conditions using the repeatable method established in Chapters 6 and 7. The association 

between microCT derived pore property metrics and saturated hydraulic conductivity test 

results is examined to explore macropore influence on flow. 

Chapter 9 provides an overall discussion which integrates the findings from the 

different studies within this thesis and discusses the progress made towards the aim of this 

work. 

Finally, Chapter 10 presents the conclusions drawn from the work conducted and 

Chapter 11 identifies the areas of interest for future research. 
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2 Flow in soils 

2.1 Introduction 

This chapter presents an overview of some of the fundamental concepts involved in flow 

through saturated and unsaturated soils with a view to modelling the hydrology of slopes. 

Equations describing the flow of water, vapour, and heat are explored and estimations of 

hydraulic conductivity and soil water storage with changes in saturation are discussed. 

Additionally, this chapter explores the knowledge surrounding macropores and flow within 

them. Methods for measuring saturated hydraulic conductivity and pore size distributions 

are also discussed. The flow and unsaturated behaviour descriptions discussed here are the 

Darcy-Richard’s type flow equations which are most commonly used in hydrological 

modelling. They are presented here so that the assumptions and uncertainties associated with 

the modelling later in this thesis are evident (Chapter 5). 

2.2 Soil structure 

In essence, a soil is comprised of soil particles and the voids in between them. When all these 

voids are filled with water, a soil is described as being saturated. However, if a saturated soil 

is allowed to dry out, water evaporates from the surface leaving some voids filled with air. In 

this state, a soil is described as unsaturated (or partially saturated). In the case of an 

unsaturated soil, the soil structure can be thought of as having three phases: soil particles, 

air, and water (Figure 2.1). 

 

Figure 2.1 – Representation of an element of unsaturated soil with continuous air phase (Fredlund et 
al., 2012) 

Due to the hydrological cycle, within nature there usually exists a region at a depth below the 

ground’s surface in which the soil is completely saturated and the pore water pressure is 

positive. The upper surface of this region is known as the water table, although water is often 
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held within voids above this region at negative pressures (i.e. in the capillary fringe) (Figure 

2.2). 

 

Figure 2.2 – Diagram of the zones of saturation present within the ground showing the capillary rise 
above the water table and the makeup of phases within the soil (Barnes, (2010)) 

The rate at which water passes through a soil is not directly dependent on the amount of 

voids present within a soil. For example the porosity (the proportion of void within a soil) 

of a clay is usually greater than that of a sand despite the sand having a coefficient of 

permeability several degrees of magnitude larger (Hillel, 1998). 

Unsaturated soils display different hydrological properties than the same soils when 

saturated. This is because the air inside the pores interacts with infiltrating water, altering its 

path, and therefore the soil’s hydraulic conductivity (Gens 2010). An example of the 

increased resistance to flow is shown in Figure 2.3.  

A soil will begin to desaturate when exposed to the atmosphere at a value of negative 

pore water pressure (PWP) referred to as the air entry value. Once the air-entry value is 

exceeded, air enters the largest pores and the air-filled pores become non-conductive 

conduits to flow and increase the tortuosity of the flow path. As a result, the ability of the 

soil to transport water (the hydraulic conductivity) decreases. As the soil dries and more 

pores become air-filled, water will tend to retreat into the smallest pores and the hydraulic 

conductivity decreases further. 
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Figure 2.3 – The decrease in hydraulic conductivity due to the restriction of flow paths with 
desaturation  

Within a partially saturated soil, water molecules move between the liquid and vapour phases 

with changes in heat (Wilson, 1990). It is therefore necessary to consider liquid, water vapour 

and heat flow through the pores when describing overall flow in unsaturated soils. 

2.3 Phase relationships 

The division of soil structure into three phases gives rise to a series of fundamental 

relationships which can be used to characterise the state of the soil. If the volume of soil, 

water, and air within a unit volume of soil are defined as Vs, Vw, and Va respectively, then 

the water and air phases can also be combined as the volume of voids, Vv. 

The following five important relationships can be defined: 

1. Void ratio (e) is the ratio of the volume of voids to the volume of solids (soil 

particles)  

 
𝑒 =

𝑉𝑣

𝑉𝑠
 (1) 

 

2. Porosity (n) is the volume of voids per unit volume (total of voids and solids) 

 

 
𝑛 =

𝑉𝑣

𝑉𝑠 + 𝑉𝑣
=

𝑒

1 + 𝑒
 (2) 
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3. The degree of saturation (Sr) is the ratio of the volume of water to the volume of 

voids. It must be a value between zero and one, a fully saturated soil having an Sr 

of one, whilst a completely dry soil would have an Sr of zero 

 
𝑆𝑟 =

𝑉𝑤

𝑉𝑣
 (3) 

4. Gravimetric water (or moisture) content (w) is the ratio of the mass of water (mw) 

to the mass of solids (ms) 

 
𝑤 =

𝑚𝑤

𝑚𝑠
 (4) 

 

5. Volumetric water content (θ) is the ratio of the volume of water to the total volume 

within an element of soil. 

 

 
𝜃 =

𝑉𝑤

𝑉𝑡
=

𝑉𝑤

𝑉𝑣
×

𝑉𝑣

𝑉𝑡
= 𝑆𝑟𝑛 =

𝑤𝐺𝑠

1 + 𝑒
 (5) 

Where, Gs, the specific gravity, is the ratio of particle density to that of water 

2.4 Soil suction 

Within an unsaturated soil, pore water pressures exist at negative values relative to 

atmospheric pressure (suctions). Suction has been shown to increase the strength of soil and 

therefore maintain the stability of slopes (Leroueil, 2001). There are two primary constituents 

of soil suction, namely, matric and osmotic suction.  

Matric suction arises from the interaction between liquid and solid within a soil. 

Specifically, from the pressures generated by the capillary menisci and the adsorption forces 

on particle surfaces. Matric suction therefore can be thought of as having two components, 

a capillary component, and an adsorptive component. 

The capillary component is a result of the difference in water and air pressure caused 

by menisci which develop between solids due to surface tension and interface curvature 

(Gens, 2010). The difference in pressure generates inter-particle forces which are roughly 

aligned with the normal of the contact and therefore have a stabilising effect on the soil 

structure (Gens, 2010). The adsorptive component is a result of a combination of solid-water 

interactions by which soil particles acquire a layer of water molecules on their surface. These 
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include electrostatic and van der Waals forces, hydrogen bonding and surface-dipole 

attraction (Gili and Alonso, 2002) 

The relative importance of each component depends on the type of soil and the 

magnitude of suctions. Some research has shown that the adsorptive component will tend 

to predominate in fine-grained soils (Nitao and Bear, 1996). However, due to the intricate 

nature of the soil pore space architecture, matric suction has to be evaluated experimentally, 

and the distinction between the two components is largely conceptual. It is therefore possible 

to express matric suction as the difference between atmospheric and water pressures (ua-uw). 

Osmotic suction results from the effects of a semi-permeable membrane. If one 

solution has a higher concentration of solute than another on either side of a membrane then 

a hydrostatic pressure will be created due to diffusion. Due to their small pore sizes, clay soils 

may, in some cases, exhibit these type of membrane properties (Gens, 2010). Matric suction 

is usually considered the most important component of suction within soils. 

2.5 The capillary fringe 

The region immediately above a water table is known as the capillary zone or fringe (Figure 

2.2). In this region the soil may still be completely saturated as water is held within the voids 

due to surface tension (Aubertin et al., 2003). In the capillary zone, soil voids can sustain a 

negative pore water pressure without drawing in air. Above this region the water will start to 

recede and air will enter some of the pore space. At greater height above the water table only 

the finer capillaries can sustain water and the soil may be dry or the degree of saturation 

governed largely by surface effects (see Chapter 3). 

The height of the capillary fringe is related to the soil particle size. A finer-grained 

soil with more intricate pore space architecture will have a larger capillary zone than other 

soils (e.g. granular soils). This is because the air entry value is found to increase as the pore 

size of the soil decreases (Powrie, 2013). As a consequence of this, fine soils (silts and clays) 

may remain saturated several meters above the water table, with pore water pressures 

continuing to decrease until the air entry value is reached. If the groundwater is at rest, the 

pore water pressure will decrease approximately hydrostatically with height above the water 

table (Figure 2.4). However, in reality this is not a static condition. Flow through the capillary 

fringe and unsaturated zones may take place by infiltration and percolation of rainwater 

through the soil, changing PWPs. Evaporation and transpiration may also occur from the 

near-surface, altering PWPs in the unsaturated zone.                               



2. Flow in soils 

 

 
13 

 

 

Figure 2.4 – Pore water pressures in a fine soil above the water table (the suction shown in the 
unsaturated zone indicates uncertainty rather than actual values) (Powrie, 2013) 

2.6 Effective stress 

A fundamental concept in soil mechanics is that of effective stress (Equation (6)) (Terzaghi, 

1925). The effective stress represents the component of the total normal stress taken by the 

soil skeleton and controls the volumetric and strength behaviour of a soil. 

 𝜎′ = 𝜎 − 𝑢 (6) 

Where, σ' is the effective stress, σ is the total stress, and u is the gauge pore water pressure 

Above the water table, effective stresses are enhanced and can increase the stability of 

partially saturated soils (Bishop, 1960). 

2.7 Water flow in soils 

Water flow in soils is driven by differences in hydraulic head, which consist of pressure head, 

elevation head, and velocity head. Since the velocity of flow through soils is very low, velocity 

head is usually ignored (Smith, 2014). Therefore flow in soils is governed by differences in 

soil water pressure and elevation. 

2.7.1 Equations describing flow 

The flow of water in saturated soil is commonly calculated using Darcy’s law (Equation (7)). 

Darcy’s law states that the rate of water flow through a soil mass is proportional to the 

hydraulic head gradient.  

 𝑄

𝐴
= 𝑣 =  𝑘𝑖 (7) 
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Where, v = the discharge velocity of water (ms−1), k = the coefficient of permeability (ms−1), and i = the 

hydraulic head gradient (the ratio of head loss h over a distance l). The discharge velocity (v) is defined as the 

quantity of water Q percolating through a cross-sectional area A in unit time. 

 

The coefficient of permeability is dependent on the nature of voids and the properties of 

the permeating fluid. It is given by Equation (8): 

 
𝑘 =  𝐾

𝛾𝑤

𝜂
 (8) 

 

Where, k is the coefficient of permeability (m/s), γw = the unit weight of fluid (kN/m3), η = viscosity of fluid 

kNs/m2, and K = absolute or intrinsic permeability (not dependent on the properties of the permeating fluid) 

(m2) 

 

In this thesis the terms permeability and hydraulic conductivity are used interchangeably, 

however, it should be noted that when the permeating fluid is water, the coefficient of 

permeability (k) is more correctly termed the saturated hydraulic conductivity. The 

coefficient of permeability describes the special case of hydraulic conductivity when the soil 

is saturated, as hydraulic conductivity then decreases with increasing suction. As k is 

dependent on the viscosity of fluid (Equation (8)) it is conventional to report a k value 

measured at 20°C. 

If Darcy’s law is combined with laws of mass conservation, conservation of energy 

and the second law of thermodynamics, equations describing groundwater flow and 

consolidation in saturated soils can be obtained (Jacob 1950 cited: Freeze & Cherry (1977)): 

 

 
𝑘𝑥

𝜕2ℎ

𝜕𝑥2
+ 𝑘𝑦

𝜕2ℎ

𝜕𝑦2
= 𝑆𝑠

𝜕ℎ

𝜕𝑡
 (9) 

 

 

Where, kx and ky = Coefficient of hydraulic conductivity in the x and y directions respectively (ms−1), h = Total 

hydraulic head (m), and Ss = Specific storage (m−1). 
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Specific Storage (Ss) describes the change in the volume of water stored within a unit volume 

due to the expansion of water or compression of the soil matrix caused by a change in head 

Freeze & Cherry (1977): 

 𝑆𝑠 = 𝜌𝑔(𝛼 + 𝑛𝛽) (10) 

 

Where, ρ = Fluid density (kgm−3), α = Compressibility of porous medium (m2 N−1), n = Porosity (m3m−3), and 

β = Compressibility of the fluid (m2N−1). 

The flow of water in a compressible, saturated soil was presented as the ‘theory of one-

dimensional consolidation’ by Terzaghi (1943). Consolidation theory provides a differential 

equation governing the gradual reduction of volume of a fully saturated soil with time (one 

dimensional consolidation) as water is removed from pore space due to a dissipation of 

excess pore pressure (ue) (and a corresponding gradual increase in effective stress) (Terzaghi, 

1943a); 

 𝜕𝑢𝑒

𝜕𝑡
=  

𝑘

𝑚𝑣𝛾𝑤

𝜕2𝑢𝑒

𝜕𝑧2
= 𝑐𝑣

𝜕2𝑢𝑒

𝜕𝑧2
 (11) 

 

Where, cv is the coefficient of consolidation (m2/s), mv is the coefficient of compressibility (m2/kN), and k is 

the coefficient of permeability (m/s), and γw = the unit weight of pore fluid (kN/m3). 

The consolidation equation is a solution to Equation (9) where the rate of increase of 

effective stress is considered equal to the rate of dissipation of excess pore pressure 

(Domenico, 1972).  

Darcy's Law was originally derived for saturated soil, but later research has shown that 

it can also be applied to flow through unsaturated soil. In 1931, Richards combined Darcy’s 

law with an equation of continuity to derive a general equation for transient unsaturated 

water flow in soil (Equation (12)). This is based on the assumption of homogeneity, that 

unique values of water potential, water content, and hydraulic conductivity can adequately 

characterize a representative elementary volume at a given soil depth (Jarvis, 2007). 

The only difference between the unsaturated and saturated flow equations is that under 

conditions of unsaturated flow, the hydraulic conductivity (k) is no longer a constant, but 

varies with changes in soil water content and therefore pore-water pressure. In the case of 

heat flow, the thermal conductivity becomes a function of soil water, air and ice content; 
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while for vapour and gas flow the coefficient of diffusion becomes a function of degree of 

saturation (GEO-SLOPE, 2008). 

Since the hydraulic conductivity is no longer a constant and varies with changes in 

soil water content, the conservation equations must be altered to contain terms for both the 

rate of change of moisture content and the rate of change of soil water storage.   

Richards’ equation in terms of pressure head hψ in two dimensions (Richards, 1931): 

 𝜕

𝜕𝑥
[𝑘𝜑

𝜕ℎ𝜑

𝜕𝑥
] +  

𝜕

𝜕𝑦
[𝑘𝜑 (

𝜕ℎ𝜑

𝜕𝑦
+ 1)] = 𝐶𝜑

𝜕ℎ𝜑

𝜕𝑡
 (12) 

The solution to Richards’ equation requires knowledge of the characteristic curve relating 

hydraulic conductivity kψ to pressure head, and the characteristic curve relating specific 

moisture capacity Cψ to pressure head. Specific moisture capacity represents the unsaturated 

storage property of the soil and is derived from the slope of the Soil Water Retention Curve 

(SWRC), relating moisture content to pressure head. Equation (12) can be converted to one 

in terms of total hydraulic head h(x,y,t) through the relation h = hψ + z (where z is the 

elevation). 

Richards’ equation, considers only liquid phase transport and as mentioned 

previously, unsaturated soil descriptions must provide for water vapour and heat flow as well. 

Several researchers have formulated differential equations governing vapour, heat and liquid 

flow in unsaturated soils. (e.g. Dakshanamurthy and Fredlund, 1981). Wilson (1990) 

presented a flow model which comprised a modified Richards’ equation with vapour 

components and a heat flow equation. Under reducing assumptions (see Wilson 1990) it is: 

For moisture flow: 

 𝜕ℎ

𝜕𝑡
=  𝐶𝑤

1
𝜕

𝜕𝑦
[𝑘

𝜕ℎ

𝜕𝑦
] + 𝐶𝑤

2
𝜕

𝜕𝑦
[𝐷𝑣𝑎𝑝

𝜕𝑃𝑣𝑎𝑝

𝜕𝑦
] (13) 

For Heat flow: 

 
𝑐

𝜕𝑇

𝜕𝑡
=  

𝜕

𝜕𝑡
[𝜆

𝜕𝑇

𝜕𝑡
] − 𝐿𝑣 [

𝑃 + 𝑃𝑣𝑎𝑝

𝑃
]

𝜕

𝜕𝑦
[𝐷𝑣𝑎𝑝

𝜕𝑃𝑣𝑎𝑝

𝜕𝑦
] (14) 

Where, 

h = Hydraulic head (m), Cw
1 = Coefficient of consolidation with respect to liquid phase =(

1

𝜌𝑤𝑔𝑚2
𝑤), 

Cw
2 = Coefficient of consolidation with respect to vapour phase = (

𝑃+𝑃𝑣𝑎𝑝

𝑃(𝜌𝑤)2𝑔𝑚2
𝑤), m2

w = Slope of the soil water 

retention curve (1/kPa), k = Coefficient of permeability (ms−1), Dvap = Coefficient of diffusion for water vapour 
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through soil (kgm/kNs), P = Total pressure in the bulk air phase (kPa), Pvap = Partial pressure in the soil due 

to water vapour (kPa), c = Volumetric heat capacity (Jm−3 ◦C−1), T = Temperature (◦C), λ = Thermal 

conductivity (Wm−1◦C−1 ), Lv = Latent heat of vaporisation (Jkg−1) 

 

If Equation (13) is rewritten as a function of pressure rather than in terms of head it becomes: 

 1

𝜌

𝜕

𝜕𝑥
[𝐷𝑣𝑎𝑝

𝜕𝑃𝑣𝑎𝑝

𝜕𝑥
] +

1

𝜌

𝜕

𝜕𝑦
[𝐷𝑣𝑎𝑝

𝜕𝑃𝑣𝑎𝑝

𝜕𝑦
]

+  
𝜕

𝜕𝑥
[𝑘𝑥

𝜕 [
𝑃

𝜌𝑔 + 𝑦]

𝜕𝑥
] +

𝜕

𝜕𝑦
[𝑘𝑦

𝜕 [
𝑃

𝜌𝑔 + 𝑦]

𝜕𝑦
]

+ 𝑄 = 𝜆
𝜕𝑃

𝜕𝑡
 

(15) 

Where, 

mv= slope of the soil water retention function, kx= hydraulic conductivity in the x-direction, 

ky = hydraulic conductivity in the y-direction, Q = applied boundary flux, Dv = vapour diffusion coefficient as 

described by Wilson (1990), y = elevation head, ρ = density of water, g = acceleration due to gravity, and t = 

time. 

 

Similarly Equation (14) for heat flow becomes, 

 
𝐿𝑣

𝜕

𝜕𝑥
[𝐷𝑣𝑎𝑝

𝜕𝑃𝑣𝑎𝑝

𝜕𝑥
] + 𝐿𝑣

𝜕

𝜕𝑦
[𝐷𝑣𝑎𝑝

𝜕𝑃𝑣𝑎𝑝

𝜕𝑦
] +  

𝜕

𝜕𝑥
[𝑘𝑡𝑥

𝜕𝑇

𝜕𝑥
]

+  
𝜕

𝜕𝑦
[𝑘𝑡𝑦

𝜕𝑇

𝜕𝑦
] + 𝑄𝑡 + 𝜌𝑐𝑉𝑥

𝜕𝑇

𝜕𝑥
+ 𝜌𝑐𝑉𝑦

𝜕𝑇

𝜕𝑦
= 𝜆𝑡

𝜕𝑇

𝜕𝑡
 

(16) 

Where, 

ρ c = volumetric specific heat value, kx = thermal conductivity in the x-direction, ky = thermal conductivity in 

the y direction and assumed equal to ktx, Vxy = the Darcy water velocity in x and y directions and Qt = applied 

thermal boundary flux. 

 

The equations described above can be solved using a finite difference approach and validated 

using evaporation pan experiments (Wilson, 1990).  

These equations have been incorporated into a number of finite element programs 

including Vadose/W, which is used later in Chapter 5 of this thesis to model pore water 

pressures within a case study infrastructure slope. 
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Coupling heat and mass flow (Equations (13) and (14)) can be achieved by  

(Edlefsen et al. 1943 cited: GEO-SLOPE 2008): 

 
𝑃𝑣𝑎𝑝 =  𝑃𝑣𝑠𝑒

−
𝑃𝑤

𝜌𝑅𝑇 = 𝑃𝑣𝑠ℎ𝑟𝑎𝑖𝑟 (17) 

Reformed by (Joshi et al., 1993): 

 ∇𝑃𝑣𝑎𝑝 =  𝐷1∇(−𝑃) + 𝐷2∇𝑇 (18) 

Where, 

Dl = Dv(W/ρwRT)Pvap, D2 = Dv{hrδPvs/δT - PvapΨW/ρwRT2}, Dv = αβDvap (W/RT), 

β = the volumetric air content, α = the tortuosity factor, Pvs = saturated vapour pressure of pure free water, W 

= molecular mass of water vapour, R = universal gas constant, T = temperature (K) for the term in the 

exponent, hrair = relative humidity of air and Dvap is the coefficient of water vapour diffusion in free air. 

 

Wilson (1990) made several assumptions in order to reduce the complexity of Equations (13) 

and (14). Specifically, air and partial vapour pressure change due to changes in soil volume 

have been ignored. As a consequence of this, Wilson’s model may not represent clay soils 

undergoing rapid volume change such as high plasticity clays near the ground surface where 

high moisture gradients may exist.  

 

2.8 Measuring saturated hydraulic conductivity  

For a cohesive soil in a laboratory, the coefficient of permeability can be obtained from 

consolidation tests either in a oedometer or a triaxial cell from Terzaghi's (1943) theory of 

one-dimensional consolidation (Equation (11): 

 𝑘 = 𝑐𝑣𝑚𝑣𝛾𝑤 (19) 

 

Where, k = coefficient of permeability (m/s), cv = coefficient of consolidation (m2/s), mv = the coefficient of 

compressibility (m2/kN), and γw = the unit weight of water (kN/m3). 

Indeed, Terzaghi originally produced his theory for this purpose, as he noted that smear on 

the specimen boundaries greatly affected the measured soil permeability in his permeameter 

tests, and used an oedometer cell in order that all water flow would occur out of the sample. 

(Clayton et al., 1995) 
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The hydraulic conductivity of clays can be measured with a greater degree of accuracy 

using a constant head permeability test as described in (BS 1377:1990). This test can also be 

carried out either in a triaxial cell (Figure 2.5) or in an oedometer cell. 

 

Figure 2.5 – Diagram of a typical triaxial cell setup  

 

In a constant head permeability test, a 100 mm diameter sample is subjected to a total stress 

level approximating to that of the in-situ ground conditions, and a hydraulic gradient is 

applied across the height of the sample. The volume of water flowing through the sample is 

then measured over a timed period and it is possible to use Darcy’s law (Equation (7)) to 

calculate the saturated hydraulic conductivity of the sample. In this situation the accuracy of 

the test is very much affected by the differences in effective stress across the specimen. The 

applied pressure difference should be kept to less than 10 % of the average effective stress 

on the specimen (Krstelj, 1994). 

Changes of effective stress at the start of the test introduce consolidation or swelling 

(or both), and the test must therefore be run until steady flow is achieved.  The test should 

be carried out using de-aired water and a back pressure can be used to drive air into solution 

and achieve full saturation (Sivakumar et al., 2015). The test can include measurements of 

the incremental volume and moisture content (or density) changes of the specimen during 

the test, and the degree of saturation (B value). The measured k values should be corrected 

for any variation in the viscosity of water and for the rubber membrane edge effects 

depending on the sample size (Krstelj, 1994). 

σ3 > p1 > p2 

σ
3 
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Samples of 100 mm diameter size will contain some macropores networks but may 

not contain all the macrostructure present in the field. This may cause a discrepancy between 

laboratory and field measured values. A drawback of the test is that it only measures hydraulic 

conductivity in one direction, which is unlikely to occur in the field. Additionally, sample 

edge disturbance is unavoidable when loading the samples into the cell and the structure of 

the soil will therefore be altered. Lastly, the membrane surrounding the sample can trap air 

bubbles, reducing flow or providing a pathway for preferential flow, giving a false indication 

of the true hydraulic conductivity. 

2.9 Soil moisture retention curves and hydraulic conductivity 

functions 

To model water flow through unsaturated soils using the equations described above, it is 

necessary to define the ability of a soil to store water as it desaturates. This relationship can 

be described using a Soil Water Retention Curve (SWRC), also known as a Soil Water 

Characteristic Curve (SWCC), which along with a hydraulic conductivity function, forms a 

conceptual model for understanding unsaturated soil behaviour.  

A typical SWRC curve is presented in Figure 2.6. There are different curves 

associated with a soil depending on if it is currently subject to wetting or drying. It can be 

seen that each curve is comprised of four main components, the saturated water content θs, 

the air entry value, the gradient of the slope (slope function), and the residual water content 

θr.  

 

Figure 2.6 – The soil water retention curve (Fredlund and Xing, 1994) 
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The saturated water content is the amount of water in the soil when all voids are completely 

filled with water. The air-entry value is the suction at which air starts to enter the larger pores 

within the soil, and it begins to desaturate. The slope function is the gradient of the curve 

after the air entry value and is governed by the degree of uniformity of pore sizes within the 

soil (Fredlund and Xing, 1994). The residual water content is the amount of water at which 

an increase in suction produces no further reduction in water content within the soil. 

SWRC measurement methods are based on bringing the soil specimen to 

thermodynamic equilibrium with a reservoir of water at a known energy state (Barbour, 

1998). Methods include the pressure plate, the capillary potentiometer (high suction 

tensiometer) and osmotic desiccator (Gens, 2010). Different methods are suited to different 

ranges of suctions (Fredlund et al., 2012). SWRCs are usually plotted in terms of volumetric 

rather than gravimetric water content (Equation (5)). Although it has been observed that the 

density may vary at different suctions so Equation 5 may not hold for some samples. 

One key point to note with respect to soil water retention curves, is that it is not a 

unique relationship, it is actually hysteretic, as shown in Figure 2.7. Hysteresis is caused 

mainly by the variation in pore sizes. Hillel (1998) considers a large void connected to a 

smaller void such that they form the shape of an ink bottle. When the soil is drying, the 

surface tension of the water in the small void can maintain the water in the large void and 

can sustain higher suction.  

However, at the same moisture content, if the soil is wetting, the larger void will be 

filled first and the suction in the smaller void is not as effective. The contact angle of the 

water meniscus on the walls of soil pores also plays a role in causing hysteresis, as it tends to 

be greater in an advancing, wetting meniscus than a receding, drying one, resulting in greater 

suctions in drying than wetting (Smith, 2015). Hillel (1998) also notes entrapped air and 

changes in soil structure due to volume changes as possible causes of hysteresis. 

Hysteresis means that there are an infinite number of soil water retention curves for 

a given soil, as the path followed depends on its current stress state. Therefore wetting and 

drying curves in effect act only as bounding curves for the soil’s real behaviour. That is, that 

the soil will actually follow a path from one of these curves to another via a scanning curve 

(Figure 2.7).  

Hysteresis is often ignored in geotechnical analysis due to its complexity and the 

difficulties associated with deriving wetting SWRCs (Likos et al., 2014). Soil water retention 
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curves are therefore commonly assumed to refer to drying curves (Pham et al., 2005). 

However, as the wetting curve is of importance when considering slope instability, the effect 

of altering this characterisation is explored further in the hydrological modelling discussed in 

Chapter 5. 

 

Figure 2.7 - Relationship of initial stress state to hysteresis loops of the soil water retention curve 
(Fredlund et al., 2012) 

As discussed earlier, the quantity of water and air in the soil pores affects the ability of a soil 

to transport water and changes its hydraulic conductivity. Therefore, as well as the soil water 

retention curve, it is necessary to define how the hydraulic conductivity of a soil varies with 

the degree of suction. This relationship is known as the hydraulic conductivity function 

(HCF) and typical HCFs along with corresponding SWRCs for common soils are shown in 

Figure 2.8. 

For either air or water to be able to flow through a soil, the phase must be continuous 

throughout the pore space. Therefore a near-saturated soil may be impermeable to air and a 

nearly-dry soil may still have some residual water present but may not be permeable until the 

water content increases enough that the water becomes continuous. As a soil dries water 

drains from within the largest pores before leaving the smallest ones. The largest pores are 

the most important for flow so the hydraulic conductivity will reduce rapidly. After the water 

within the pore space dries to the extent that it is no longer continuous the hydraulic 

conductivity will reduce to zero. 
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Figure 2.8 – A typical relationship between soil water retention curves and hydraulic conductivity 
functions for sand and clayey silt (Fredlund et al., 2012) 

2.10  Methods for estimating unsaturated properties 

The process of experimentally determining a complete SWRC and HCF is time consuming, 

difficult, and expensive (Fredlund et al., 2012). This is due to the large range of suctions 

which need to be generated in order to fully describe a soil’s behaviour. A different technique 

is required to generate extremely low suctions (less than 10 kPa) than is necessary to generate 

suctions in the hundreds of thousands of kPa. An additional difficultly is that samples cannot 

be disturbed, otherwise, as Croney (1952) showed, the ability of the soil to absorb and release 

water is drastically altered. 

For these reasons, many researchers have proposed methods to estimate the two 

functions. With regards to the soil water retention function, Aubertin et al. (2003) derived 

estimations based on grain size distributions, while Fredlund & Xing (1994) and van 

Genuchten (1980) used closed form equations derived for curve fitting.  

For the hydraulic conductivity function, estimations have been made based on those 

water retention formulations, or on actual measured water retention functions. For instance, 

Mualem (1976) and Fredlund & Xing (1994) developed closed form analytical expressions 

of the hydraulic conductivity function. 
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Therefore, there are complete closed form equation formulations which can describe 

the unsaturated characteristics of a soil.  

One such formulation is the van Genuchten-Mualem model (Schaap & van Genuchten 

2006) which proposes that the soil water retention curve is given by: 

If h ≤ 0 
𝜃 =  𝜃𝑟 +

𝜃𝑠 − 𝜃𝑟

[1 + |𝛼ℎ|𝑛]𝑚
 (20) 

If h > 0  𝜃 =  𝜃𝑠  

 

Where,  

θ = the volumetric water content, θs = the saturated volumetric water content, θr = the residual volumetric 

water content, h = the pressure head (cm), and α, n, m = curve fitting parameters (α is related to the inverse of 

the air entry value (cm-1), n is a measure of pore size distribution (>1) and m = 1-1/n) 

 

The corresponding hydraulic conductivity function in the formulation is given by: 

If h ≤ 0 

𝐾(𝑆𝑒) =  𝐾𝑠𝑎𝑡𝑆𝑒
𝐿 [1 − (1 − 𝑆𝑒

1
𝑚)

𝑚

]

2

 (21) 

If h > 0 𝐾(𝑆𝑒) =  𝐾𝑠𝑎𝑡  

In which L is a pore-connectivity parameter (commonly fixed at 0.5) (Mualem, 1976) and Se 

is the effective saturation given by: 

 
𝑆𝑒(ℎ) =  

𝜃(ℎ) − 𝜃𝑟

𝜃𝑠 −  𝜃𝑟
 (22) 

 

It can be seen that it is only necessary for the user to define the three curve fitting parameters, 

α, n and m, along with saturated and residual soil water contents, in order to fully define the 

two functions. 

2.11  Flow within macropores 

The relationships describing flow within soils presented in this Chapter have used concepts 

and governing equations formed from fluid mechanics and continuum assumptions (e.g. 

Richards’s equation). However, due to the heterogeneity often found in real world slopes 

many instances of flow which do not obey these laws have been observed (Beven and 

Germann, 1982). This phenomenon is termed preferential, or non-equilibrium, flow and has 

been a topic of interest for researchers for many decades now. Hendrickx and Flury (2001) 
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define preferential flow as ‘all phenome where water and solute move along certain pathways 

while bypassing a fraction of the porous matrix’.  

Preferential flow results from significant spatial variations in water velocities due to 

heterogeneities in soil properties (Jarvis et al., 2016). The point at which water will start to 

flow into a macropore is determined by the surface tension of water, the radius of curvature 

of the air-water interface, and its contact angle with the solid pore walls (Beven and 

Germann, 2013). As water starts to flow into macropores, the sharp contrast in pore size and 

tortuosity with the surrounding textural pores leads to an abrupt increase in water flow rate 

for only a small increase in soil water pressure (Larsbo et al., 2014). 

Experimental evidence suggests that pores larger than around 0.3 – 0.5 mm in 

equivalent cylindrical diameter are the pores most responsible for rapid non-equilibrium flow 

(Jarvis, 2007). These pores also tend to be characterized by relatively large length (high 

continuity) and low tortuosity (pore length divided by sample length) (Perret et al., 1999; 

Clothier et al., 2008). 

The soil macroporosity is rarely full of water even under nominally saturated flow 

conditions because not all macropores form continuous pathways (Beven and Germann, 

1982). Some researchers have shown that only 10 – 50 % of the total macroporosity conducts 

water during saturated flow through intact cores, with different types of macrostructure 

showing significantly different flow phenomena (Bouma and Wösten., 1979; Mori et al., 

1999; Perret et al., 1999). However, these assessments of sample macroporosity were made 

using 2-D analysis or rudimentary imaging techniques. 

Some researchers have developed conceptual models which suggest that the 

strongest preferential transport is predicted to occur in soils which contain large continuous 

macropores but lack well-connected networks of smaller macropores (Jarvis et al., 2016). A 

well-connected network of smaller pores reduces the likelihood of soil water potentials 

increasing sufficiently to trigger flow in the largest macropores. However flow within 

macropores and the relationship between macropore properties (e.g. size and connectivity) 

and hydraulic conductivity is still an area of research of which we require an improved 

understanding in order to construct new descriptions of flow within soils (Beven and 

Germann, 2013). 
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2.12  Measuring porosity at different scales 

It is clear that the range of pore sizes within a soil and their connectivity has an important 

impact on the hydraulic conductivity and storage properties of that soil. Several techniques 

exist which allow for the pore (also known as void) size distribution and porosity of a soil 

sample to be determined. A void size distribution shows the volume of voids corresponding 

to any given size of void. A standard laboratory technique for determining the void size 

distribution for soil is mercury intrusion porosimetery (MIP). MIP involves applying an 

absolute pressure to mercury (a non-wetting fluid) in order to force it to enter pores within 

the sample. If pores are assumed to be of cylindrical shape then the Washburn equation 

applies: 

 
P = 

- n σHg cos θnw

x
 

 

(23) 

Where, P is the absolute pressure, σHg is the surface tension of mercury (equal to 0.484 N/m at 25°C), θnw is 

the contact angle between mercury and the pore wall (between 139° and 147° for clays (Diamond, 1970)) and 

x is the pore entrance diameter (n = 4).  

MIP is a widely trusted technique for determining the void size distribution of a soil between 

4 nm and 0.4 mm, however, it does have several limitations. Namely, that isolated pores 

which are completed enclosed by solids are not measured by the test and neither are pores 

that are only accessible through smaller ones (until p is large enough to penetrate the smaller 

pores). Some pores are also not intruded as the machine does not have the capability of high 

enough pressures. Furthermore, the minimum practical pressure of the machine may limit 

the largest size of pore measured and during low pressure application, before initial intrusion 

has taken place, some alteration in pore geometry may occur (Romero and Simms, 2008). 

MIP requires the use of very small samples (less than 1g) which must be oven or freeze dried 

prior to testing. Additionally, a typical MIP derived void size distribution relates the volume 

of intruded mercury against the void entrance diameter size. This can be very different from 

a true volumetric pore size distribution (Lapierre et al., 1990) 

Figure 2.9 shows two different pores which would give the same entrance radius and 

volume but would likely have very different permeabilities. MIP results cannot therefore 

directly be linked to permeability, without using another technique (e.g. CT imaging) to 

quantify other aspects of the pores which are related to permeability. 
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Computed tomography is an emerging technique within geotechnical research that is 

capable of determining void size distributions within much larger soil samples than MIP and 

has the potential to provide three-dimensional quantitative data regarding the macrostructure 

of any scanned samples (Helliwell et al., 2013). Chapter 4 of this thesis provides a detailed 

overview of the CT technique including its capabilities and limitations. 

For all experimental techniques exploring pore size, the measured porosity values of 

samples depend on the size of sample investigated and the scale of experimental technique. 

For instance imaging techniques such as Electron Microscopy and X-ray Computed 

Tomography provide differing indications of sample porosity due to the size of sample 

scanned and the smallest pores which can be visualised. The increase in connectivity, 

porosity, and observable features with different measurement techniques (using different 

scales) is an aspect which is explored further in Chapter 8 as clay fill contains a wide range 

of pore and particle sizes. 

 

 

Figure 2.9 - Example of two different pores which would lead to similar MIP test results (Lapierre et 
al., 1990) 
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2.13  Critical discussion 

A detailed background literature review has provided an overview of some of the 

fundamental concepts involved in the structure of soils and the flow of water through 

saturated and unsaturated soils. It was shown that Wilson’s (1990) equations provide 

simplified descriptions describing the flow of water, vapour, and heat. In conjunction with 

SWRCs and HCFs these flow equations provide a basis for modelling unsaturated flow 

(based on Darcy-Richards assumptions). 

However, the commonly used descriptions of flow and unsaturated soil behaviour 

presented in this Chapter have several drawbacks. 

The flow equations are not based on the physical reality of many real soils as no 

allowance is made for the presence of macropores. Macropores have been observed to result 

in non-equilibrium flow which does not obey the relationships described here. The equations 

do not take into account the structure of the soil and it is instead assumed to be a 

homogenous continuum based of the representative elemental volume theory. The hydraulic 

conductivity is also assumed to remain constant throughout time when, in reality, it can 

change over time (as can the strength of soils). 

Additionally, SWRCs are not physically based (depending on the pore structure) as 

they are curves fitted to a series of one-off test results on remoulded soils (where the nature 

of soil has been changed). The air entry point is also an approximation (see Figure 2.6) which 

does not precisely define the point at which the pores begin to desaturate. The complexity 

of the real world is not fully reflected in these curves as hysteresis and the effects of the 

current stress state are not captured. The van Genuchten-Mualem model approximation of 

HCF has also been shown to be inaccurate at low suctions, possibly due to the effects of 

macropores (Schaap et al., 2006).   

The implications of these assumptions regarding flow and unsaturated behaviour on 

modelling the hydrology of slopes is explored further in Chapter 5. 

The limitations of experimental methods for measuring hydraulic conductivity and 

porosity should also be noted. The size of the sample used for experimental work is of great 

importance, to avoid edge effects and to provide representative results. Additionally, 

anisotropy within field soils may not be captured during laboratory tests (see Section 5.4.8)  
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The limitations of current flow theory are a consequence of the experimental 

difficulty in accurately determining the direct influence of soil structure. There is a need for 

better understanding of these limitations and research into techniques which can overcome 

them. The relationship between the macropore properties and the hydraulic conductivity of 

clay fill is explored further in Chapter 8. 

Prior to this however, in order to model the hydrology of infrastructure slopes fully, 

it is necessary to examine slope scale processes and flow at the soil-atmosphere boundary as 

well as the theories discussed here. The following chapter describes these processes, 

including the hydrological triggering of failures, the influence of climate and vegetation, and 

observations of the influence of macroporosity at a slope scale. 
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3 Systems of slope hydrology 

3.1 Introduction 

To properly analyse the hydrology of infrastructure slopes it is necessary to build on the 

understanding of water flow in soils explored in Chapter 2 by introducing the influence of 

other factors within the slope hydrological system. This Chapter explores the effects of 

processes at the soil-atmosphere boundary including climate and vegetation in relation to 

modelling slope hydrological behaviour. This chapter also discusses observations of 

preferential flow and the influence of macroporosity at the slope scale. 

3.2 The role of climate and the hydrological cycle 

The hydrological cycle (Figure 3.1) describes the continual cyclical movement of water 

between land, sea and air. This process is driven by energy from the sun, changing the state 

of the water present in the environment. Evaporation causes liquid water within the oceans 

and on land to change to water vapour in the air, whilst precipitation returns this moisture 

to the land surface. Water can then complete the hydrological cycle by evaporating or being 

transpired by plants back into the atmosphere or by flowing as a liquid into the oceans. 

 

 

Figure 3.1 – The hydrological cycle of a railway embankment 

When rain falls on a slope, some of it will be intercepted by vegetation and will not penetrate 

the soil. A further proportion will run off the surface depending on how much water is 

already in the soil and how intensive the rainfall is. The rest will infiltrate the soil and produce 
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a change in water content which will then result in a change in pore water pressure. The 

magnitude of this pore water pressure change is dependent on a number of other factors 

(e.g. soil permeability, saturation, vegetation properties which influence transpiration, and 

aspects of climate which govern evaporation).  

Within earthworks, the hydrological regime can also vary depending on the 

construction methods used. Two primary types of earthwork used as infrastructure slopes 

are embankments and cuttings. Embankments are formed by placing a mound of fill material 

above ground to maintain the vertical alignment of road, rail, and canal routes. As a result 

they often remain largely unsaturated with a water table at depth. Cuttings are formed by 

excavating below ground level and soil and groundwater conditions will be determined by 

the natural geology at the site. 

Railway embankments in the UK were typically constructed in the late 19th and early 

20th centuries (Skempton, 1996). They can therefore often be comprised of poorly 

compacted fills placed upon unprepared foundations. As a consequence of this, the 

permeability of fill is commonly found to be higher than soils within other infrastructure 

slopes and it is likely that these railway embankments contain a greater degree of 

heterogeneity in structure and pore size (Loveridge et al., 2010). The change in macropore 

structure with depth within a clay fill embankment is explored further in Chapter 8. 

3.3 Hydrological triggering of failures 

Hydrological triggering is considered to be a principle landslide initiation mechanism for 

both natural and engineered slopes (Asch et al. 1999). Several different failure mechanisms 

have been observed for earthworks (Briggs et al., 2017).  

Infiltration (Figure 3.1) can cause an increase in pore-water pressure (i.e. a decrease 

in suction) and a decrease in shear strength, which can lead to failure (Leroueil, 2001). Pore 

water pressure increase within a slope can occur from above, through rainfall infiltration and 

a temporary perched water table, or from below through a rise in the groundwater table (Toll 

et al., 2011). Transient near-surface pore water pressure changes may be sufficient to induce 

landslides, even though they are likely to be shallow in nature (like many slope failures in the 

UK) (Pennington et al., 2014).  

Slopes which are subjected to seasonal wetting and drying cycles, and therefore cycles 

of effective stress, can experience a degradation in strength over time, termed ‘progressive 

failure’ (Potts et al., 1997; Vaughan et al., 2004; Take and Bolton, 2011; Harley et al., 2014) 
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Clay slopes which undergo regular seasonal volume changes (shrink-swell 

behaviour), either due to vegetation or climate influence, can also suffer from serviceability 

failures due to deformation (Glendinning et al., 2014). 

 These failure mechanisms are inter-related and can occur in combination with one-

another or sequentially (e.g. shrink-swell deformation may lead to progressive failure of an 

embankment, with the final slide triggered by an increase in pore water pressure) (Briggs et 

al., 2017). 

 Potential earthwork failure mechanisms depend upon the nature of the construction 

of the earthwork, including its parent geology (Loveridge et al., 2010). In the UK the 

dominant source materials generating unstable slopes include mud rocks such as the London 

Clay formation, the Lias group, and the Gault formation (Dijkstra and Dixon, 2010). 

3.4 Hydrological triggering thresholds  

The assessment and mitigation of landslide hazards requires an understanding of triggering 

factors and how these may vary spatially (e.g. due to local geology) and temporally (e.g. in 

response to extreme weather or changing climate patterns). 

By examining historical records of landslides in combination with climate data it is 

possible to define threshold values to identify periods of increased slope instability. These 

thresholds can be in terms of daily rainfall, antecedent rainfall, hydrological conditions, or a 

combination. A common approach is to estimate a meteorological threshold based on rainfall 

intensity and duration (e.g. Guzzetti et al., 2007). 

However, the rate and quantity of surface water infiltration (causing increased pore 

water pressures) is influenced by the geological conditions (e.g. soil type, saturation and 

permeability) and the antecedent weather conditions (Zhang et al. 2011). This can affect the 

time of landslide occurrence and the type of landslide failure mechanism (Leroueil 2001). 

As this thesis aims to help advance understanding of slope hydrology in the direction 

of upscaling to the network scale, a landside inventory study of recent UK failures was 

conducted. The aims of this study were to consider the influence of long term weather, 

extreme rainfall and the underlying slope geology on the type and time of landslide 

occurrence, for comparison with existing landslide trigger thresholds. The type, time and 

location of 441 landslide events recorded by the BGS over ten years (2004 - 2014) were 
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compared with rainfall data, geological permeability indices and calculated soil moisture 

deficit (see Section 3.7.1). 

 The results showed that a combined rainfall intensity and water balance assessment 

can be a useful proxy for predicting slope failure occurrence when daily rainfall is above the 

long term average and the soil moisture deficit is close to 0 mm. The methodology and 

further results of this study can be found in the Appendix. 

3.5 Field monitoring of slope hydrology 

From the study described in Section 3.4. It can be seen that rainfall by itself can only give a 

rough indication of likely slope failures. However, it is the easiest parameter to measure from 

a field site. Similarly, even if water content within the soil is measured directly it does not 

give a reliable indication of failures, because the relationship between water content and 

suction (the SWRC) is hysteretic (see Section 2.9). The best parameter to monitor within 

field study sites is therefore pore water pressure which is the most reliable indicator of failure 

and can be used in early warning systems (Toll et al., 2011). 

 A number of different instruments have been developed for measuring pore water 

pressures in the field some using direct and some using indirect techniques (Lourenco et al., 

2011). Widely used direct measurement devices include tensiometers and flushable 

piezometers. The instruments are commonly limited in the range of suctions they can 

measure by cavitation and cannot measure suctions greater than 100 kPa (Ridley, 2004). 

Cavitation occurs when water breaks down at negative pressure and bubbles of vapour are 

produced. In recent years, high-capacity tensiometers have been developed. Which allow 

measurement up to several hundred kPa before cavitation (Toll et al., 2011). 

All instrumentation is location specific and installation can have significant effects on 

the quality of data gathered (Ridley, 2004). An example of this might be if an observation 

tube used to take probe measurements is poorly installed in the soil then preferential flow 

paths may exist for infiltration from the surface, meaning that soil around the tube could be 

wetter than elsewhere in the slope (Hughes et al., 2009). Similarly, each type of instrument 

varies with respect to resolution.  

There is a lack of high quality field data regarding PWP and hydraulic conductivity 

variation at the near-surface of infrastructure slopes, so the selection of sites when 

conducting site-specific modelling is restricted. 
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3.6 The role of vegetation 

Trees cover many of the earthworks that support the UK’s transport infrastructure 

and dense vegetation has become more established since the 1960’s, when aggressive 

management of such vegetation was phased out (Briggs and Smethurst, 2013). Vegetation 

has been shown to have a very significant impact on the hydrology of slopes (Blight, 2003). 

Vegetation affects slope hydrology by intercepting rainfall, by transpiring soil moisture from 

within the root zone, and by altering hydraulic conductivity through physical transformation 

of the soil by roots (Glendinning et al., 2009). 

The effects of vegetation with regards to infrastructure asset management are far 

from clear cut in a positive or negative sense. In periods of dry weather, excessive suctions 

due to high water demand trees often cause significant serviceability issues and track 

deformation (Scott et al., 2007). This is particularly the case for clay embankments which 

suffer from large volume changes as water content changes (Briggs et al., 2013).  

However, in periods of wet weather it has been observed that some high water 

demand trees can help maintain suctions within embankments throughout the winter months 

and therefore can prevent slope instability (Biddle, 1998; Briggs and Smethurst, 2013). 

Additionally, tree roots have been shown to act as a mechanical reinforcement to slopes. 

(Glendinning et al., 2009). On the other hand, vegetation sometimes causes disruption due 

to leaves falling onto tracks, or prevents the necessary access to maintain drainage systems. 

It is also worth noting that vegetation is generally popular with those people who live 

adjacent to railway lines or major roads, as it often provides a visual and audial screen. Its 

removal can be therefore be unwelcome. 

The complex impact of vegetation on hydrology and its temporal effects on pore 

water pressure and stability, are areas which are still poorly understood and have been 

identified as requiring further research (Dijkstra and Dixon, 2010). Modelling of these 

impacts is explored in the Appendix. 

3.7 Modelling the soil-atmosphere boundary 

As discussed in Chapter 2, flow within soils is driven by differences in hydraulic head within 

a soil. Within infrastructure slopes, hydraulic head varies the most within the unsaturated 

zone above the water table where soil moisture is largely governed by the effects of 

atmospheric conditions at the soil surface (Figure 3.1). Therefore in order to model flow and 
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changes in pore water pressure within slopes it is necessary to define how water infiltrates at 

the soil-atmosphere boundary and is abstracted from the near-surface. 

3.7.1 Soil water balance and soil moisture deficit 

The soil water balance (Equation (24)) describes the effects of the hydrological cycle on the 

total quantity of water stored within a soil (Blight, 2003) 

 
∑(𝑅 − 𝐼 − 𝑅𝑂) − ∑ 𝐸𝑇 + 𝑆 − 𝑅𝐸 = 0 (24) 

   

Where, 

R is the sum of rainfall, I is the canopy interception, RO is the runoff, ET is the Evapotranspiration which is a 

function of the interaction between vegetation, soil and climate, RE is recharge to the water table, and S is the 

change in total water stored within the soil (all in mm/day). 

Soil moisture deficit (SMD) is a further simplified water balance calculation (Equation (25)) 

and represents the volume of water required to keep a soil at its field capacity (the equilibrium 

moisture content within a soil that is allowed to drain freely under gravity). A soil’s field 

capacity is dependent on pore size, as the water is held by capillary action (Clarke and 

Smethurst, 2010). SMD is strongly related to changes in pore water pressures, for many soils 

when SMD is zero there is usually a suction present of around 10 - 30kPa (Kabat and 

Beekma, 1994). As a result, SMD can be useful proxy for the hydrological conditions of a 

slope. SMD can be calculated using: 

 
∑(𝑅 − 𝑅𝑂) − ∑ 𝐸𝑇 + 𝑆 = 0 

(25) 

 

Where, 

R is the rainfall, RO is the runoff, ET is the amount of actual evapotranspiration and S is the change in stored 

moisture within the soil (all in mm/day). Thus the current soil moisture deficit is then the previous day’s SMD 

+ S. 

SMD can be derived from water content measurements in the field as well as from weather 

data. SMD derived from weather data provides a tool for understanding and comparing the 

wetness and dryness of the soil for different years and seasonal cycles without the need for 

field measurement equipment. This is of use to engineers and infrastructure owners when 

assessing seasonal risk to infrastructure and identifying SMD thresholds where seasonal 

problems may occur (Birch and Dewar, 2002). However, this water balance does not take 
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into account permeability when calculating infiltration/runoff which means its use is limited 

to larger scale applications rather than site specific cases. 

Water abstraction from the soil, shown in Equation (24) as evapotranspiration (ET), 

occurs due to evaporation from the soil surface and from transpiration through the root zone 

by vegetation. These are two independent processes, however, due to the difficulties of 

separating measurement of evaporation and transpiration, the combined term 

evapotranspiration is used (Hillel, 1998). Both of these water removal processes are 

controlled by available energy, vapour gradients and air movement but can be limited by soil 

water availability. Conditions where evaporation and transpiration are at their maximum 

possible value, given the available solar energy and climate conditions, are termed ‘potential’. 

Where evaporation and transpiration rates fall below the potential, due to lack of available 

water, the rate is described as ‘actual’ (Clarke and Smethurst, 2010). 

3.7.2 Potential evapotranspiration 

If evaporation and transpiration are combined the total contribution of each individual 

process to total evapotranspiration will vary seasonally. For instance Allen et al. (1998) found 

that during a crop growing cycle, evaporation can contribute 100 % to total 

evapotranspiration at sowing time but only 10 % when full crop cover is achieved. A number 

of models exist for estimating evapotranspiration (e.g. (Penman, 1948; Blaney and Criddle, 

1962). 

One of the most commonly used models is the Penman-Monteith equation 

(Equation (27)) which allows for the calculation of potential evapotranspiration (PET) from 

daily weather data (Allen et al., 1998). 

 

𝑃𝐸𝑇 =  

∆(𝑅𝑛 − 𝐺) + (86,400
𝜌𝑎𝐶𝜌(𝑒𝑠

0 − 𝑒𝑎)

𝑟𝑎𝑣
)

∆ + 𝛾 (1 +
𝑟𝑠

𝑟𝑎𝑣
)

 (26) 

Where, 

 ρa = air density (kg m-3), Cρ = specific heat of dry air, es
o = mean saturated vapour pressure (kPa) computed 

as the mean eo at the daily minimum and maximum air temperature (°C), rav = bulk surface aerodynamic 

resistance for water vapour (s m-1), ea = mean daily ambient vapour pressure (kPa), and rs = the canopy surface 

resistance (s m-1). Δ = slope of the vapour pressure curve, kPa ºC-1; γ = psychrometric constant, kPa °C-1.  

The surface resistance (rs) describes the resistance of water vapour flowing through stomata 

openings, leaf area, and root zones. Aerodynamic resistance (rav) describes the friction from 
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air flowing over vegetated surfaces (Allen et al., 1998). Further details on the theory and 

parameters defining this equation can be found in Zotarelli & Dukes (2010). These resistance 

factors describe a continually changing complex process which depends on environmental 

conditions and vegetation growth (McMahon et al., 2013).  

An updated equation was recommended by the Food and Agriculture Organisation 

of the United Nations (FAO) (Allen et al., 1998). The FAO-56 Penman-Monteith Equation 

(Equation (27) simplifies Equation (26) by utilizing some assumed constant parameters for 

a clipped grass reference crop (See appendix for more details). 

 

 

𝐸𝑇𝑜 =  
0.408(𝑅𝑛 − 𝐺) + 𝑦

900
𝑇 + 273 𝑢2(𝑒𝑠 − 𝑒𝑎)

∆ + (1 + 0.34𝑢2)
 (27) 

 

Where, 

PET = reference evapotranspiration (mm/day), T = mean daily air temperature at 2 m height (ºC), Rn = net 

radiation at the crop surface (MJ m-2 d-1), G = soil heat flux density (MJ m-2 d-1), u2 = wind speed at 2m height 

(ms-1), es = saturation vapour pressure (kPa), ea = actual vapour pressure (kPa), and es - ea = saturation vapour 

pressure deficit (kPa) 

3.7.3 Actual evapotranspiration 

To modify the standard evapotranspiration model (Equation (27)) for specific crops, 

empirically measured crop coefficients (Kc) have been established (Allen et al., 1998). 

Actual evapotranspiration may be less than potential evapotranspiration in cases 

where soil water is not freely available for plants to transpire. If the soil is subject to a period 

of dry weather, the SMD can increase until the plants can no longer extract the water that 

they require, and therefore become stressed. The plant transpiration is then reduced, and 

actual evapotranspiration falls below the potential value.  

A model based on CROPWAT (Clarke and Smethurst, 2010) can be used to estimate 

the actual evapotranspiration. The model uses the concept of readily and total available water 

in the active root zone, (RAW and TAW, respectively). 

 Actual evapotranspiration is limited by the total available water within the plant root 

zone. Some of this water is readily available water, contained in large voids and fissures, but 
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once this water is removed, soil water stress conditions occur and further evapotranspiration 

is reduced below the potential rate. It is assumed that there is no upward flow into the root 

zone from the soil below. 

 TAW is typically about 18% of the total root zone volume for a clay soil, but it is 

assumed that only half of this is accessible to plants (i.e. RAW) (Biddle, 1998). Grass and 

herbs growing on clay soils will typically root to about 0.8–1.0 m depth (Biddle, 1998; 

Smethurst et al., 2006). In a structured clay soil, the RAW will be the water occupying the 

larger voids, cracks and fissures, whereas the remainder of the water is harder for the plants 

to remove (Clarke and Smethurst, 2010). 

When the SMD is less than RAW, evapotranspiration is assumed to occur at the 

potential rate for the crop (Equation (28)). When the SMD exceeds RAW, evapotranspiration 

is assumed to fall below the potential rate, in proportion to the ratio of non-readily available 

water (TAW less RAW) which has been extracted (Equation (29)): 

For 0 ≤ SMD ≤ RAW 

 𝐴𝐸𝑇 = 𝑃𝐸𝑇 × 𝐾 𝑐 (28) 

Where, 

 AET is actual evapotranspiration and Kc is the crop factor. 

For SMD ≥ RAW 

 
𝐴𝐸𝑇 = 𝑃𝐸𝑇 × 𝐾 𝑐 ×

(𝑇𝐴𝑊 − 𝑆𝑀𝐷)

(𝑇𝐴𝑊 − 𝑅𝐴𝑊)
 (29) 

Should SMD exceed TAW, evapotranspiration is reduced to zero. 

3.7.4 Potential evaporation 

Evaporation from a soil surface occurs when there is a continual supply of heat to provide 

energy for the vaporisation of water, the vapour pressure in the air above the soil is lower 

than the vapour pressure at the soil surface, and there is a continual supply of water which is 

available for evaporation. The first two of these conditions are controlled by atmospheric 

conditions and the last is controlled by soil moisture conditions. 

Potential evaporation can be calculated using the Penman equation (Penman, 1948), 

or when the soil is unsaturated and suctions limit the evaporation rate, from PET using the 

Penman-Wilson formulation (Wilson, 1990): 
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𝐸 = 𝑃𝐸𝑇 [
ℎ𝑟 −

𝑃𝑣.𝑠𝑎𝑡.𝑎𝑖𝑟

𝑃𝑣.𝑠𝑎𝑡.𝑠𝑜𝑖𝑙
ℎ𝑎

1 −
𝑃𝑣.𝑠𝑎𝑡.𝑎𝑖𝑟

𝑃𝑣.𝑠𝑎𝑡.𝑠𝑜𝑖𝑙
ℎ𝑎

] (30) 

 

Where, 

PET is the potential evapotranspiration (Equation (27) (mm/day), hr is the relative humidity at the soil surface 

(%), ha is the relative humidity of the air above the soil surface (%), Pv.sat.soil is the saturated vapour pressure at 

the soil surface (kPa), and Pv.sat.air is the saturated vapour pressure of the air above the soil surface (kPa). 

3.7.5 Potential transpiration 

It is difficult to measure transpiration directly because it can be problematic to determine the 

proportion of solar energy which is received by the plant and the proportion which reaches 

the soil (Blight, 2003). Therefore evaporation and transpiration are commonly treated as one 

term. However, transpiration occurs from within the root zone whereas evaporation occurs 

at the surface. Therefore treating them as one process during modelling can lead to unrealistic 

estimates of pore water pressure variation with depth within a soil profile (Briggs et al., 2016). 

The depth over which transpiration occurs varies depending on the type of vegetation, for 

large trees this can be considerably deeper than for smaller vegetation such as grass and 

shrubs (Briggs and Smethurst, 2013). 

To overcome the difficulty in separating evaporation and transpiration, Ritchie 

(1972) and Feddes et al. (1978) proposed that the proportion of potential transpiration within 

total evapotranspiration depends on the degree of vegetation cover. This degree of cover can 

be estimated using the Leaf Area Index (LAI), which represents the total one-sided area of 

photosynthetic tissue per unit area of ground surface (Monteith and Unsworth, 1990). It can 

be used to divide available solar energy between that available for direct evaporation from 

the soil surface and that available to the plant for transpiration.  

Ritchie (1972) proposed that potential transpiration (PT) could be calculated with 

LAI using: 

 𝑃𝑇 = 𝐸 [−0.21 + 0.7√𝐿𝐴𝐼] (31) 

   

Where,  

LAI = Leaf area index (0.1 ≤ LAI ≤ 2.7) and E is the potential evaporation (mm/day) (Equation (30)) 
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There is no standard technique to measure LAI and it can be achieved using direct collection 

methods or indirect methods such as satellite measurement (Morisette et al., 2006). This, in 

conjunction with the seasonal variation associated with LAI, mean that there is a very large 

variation in published LAI values.  

Ritchie (1972) describes three degrees of vegetation cover, surface evaporation only 

(bare soil), combined evaporation and transpiration (partial cover) or solely transpiration (full 

leaf cover). When there is full leaf cover, all solar energy is assigned to transpiration, while 

for the bare soil condition all solar energy would be assigned to surface evaporation only. 

Ritchie (1972) defines the LAI for full leaf cover as 2.7 when transpiration is the main 

component of evapotranspiration and as 0.1 for a bare soil where transpiration is negligible. 

3.7.6 Actual transpiration 

Root water uptake describes the rate and spatial distribution of water removal from the soil 

by plant roots in response to transpiration. Feddes et al. (1978) proposed that the maximum 

extraction rate for a well-watered soil (Smax) can be obtained from:  

 
𝑆𝑚𝑎𝑥 =

𝑃𝑇

𝐷𝑟
 (32) 

 

Where,  

PT is the potential transpiration (Equation (31)) and Dr is total depth of root zone, 

However, lack of available plant water or high evaporative demands will cause most plants 

to biologically react by closing stoma and reducing transpiration (Saxton, 1982). Under 

continued and increasing stress the plant will reach its ‘wilting point’ which results in leaf 

drop and tissue death (Saxton, 1982). This process can be described using a Plant Moisture 

Limiting (PML) function which determines the percentage decrease in the plants ability to 

draw water as suction increases within an unsaturated soil. The concept of a plant limiting 

function has been experimentally confirmed by (Kutilek and Nielsen, 1994) and adopted in 

subsequent root water uptake models (e.g. (Tratch et al., 1995; Nyambayo and Potts, 2010)). 

A typical PML function for grass with a wilting point of 1500 kPa is shown in Figure 3.2.  
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Figure 3.2 - Estimation of a plant moisture limiting function for grass (Feddes et al., 1978) 

If the soil is partially saturated, then the actual transpiration value is reduced according to 

the plant moisture limiting function (GEO-SLOPE, 2008): 

 𝐴𝑇 = 𝑃𝑅𝑈 × 𝑃𝑀𝐿 (33) 

Where, 

AT = Actual nodal transpiration, and PRU the plant root uptake is given by: 

 
𝑃𝑅𝑈 =

2𝑃𝑇

𝐷𝑅
(1 −

𝐷𝑛

𝐷𝑅
) 𝐴𝑛 (34) 

Dr is total depth of root zone, Dn is the nodal depth, An is the nodal contributing area of the node in question, 

PT is the potential transpiration (Equation (31)), and PML is the value of the plant moisture limiting function 

at the current nodal soil negative pore water pressure (Figure 3.2). 

3.7.7 Actual evaporation 

When water is not readily available for evaporation the actual rate of evaporation decreases 

below its potential rate (Hillel, 1998). Ritchie (1972) proposed that actual evaporation (AE) 

could be calculated with LAI using: 

 

 𝐴𝐸 = 𝐸 [1 − (−0.21 + 0.7√𝐿𝐴𝐼)] (35) 

   

Where, LAI = Leaf area index (0.1 ≤ LAI ≤ 2.7) and E is the potential evaporation ((30) 
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3.8 Preferential flow at a slope scale 

Using the relationships described above, in conjunction with the flow equations described in 

Chapter 2, it is possible to model the hydrological conditions within a slope. However, as 

discussed in Chapter 2, flow in macropores can bypass the soil matrix and lead to preferential 

flow. Many observations of preferential flow in field soils have been reported (e.g. Flury et 

al., 1994). As well as macropore flow, other types of preferential flow have also been 

observed; for example in the form of unstable infiltrating ‘fingers’ in highly uniform soils  

(Hillel, 1998) or large-scale flow through fissures (Bouma, 1991).  

 The potential for non-equilibrium macropore flow at any site depends on the nature 

of the macropore network, which is determined by many factors including the abundance 

and activity of earthworms, the soil properties (e.g. clay content), and site specific factors 

(e.g. slope position, drying intensity, vegetation) (Jarvis et al., 2016). Preferential flow in 

macropores has been shown to strongly influence infiltration in some soils (Weiler and Naef, 

2003). However, macropore flow processes are often not considered in hydrological models, 

where soils are usually treated as a continuous porous medium and flow modelled using 

Darcy-Richards theory (which depends on the representative elementary volume concept). 

Continued inadequacy in addressing preferential flow remains a challenge in 

hydrology and soil science (Weiler, 2017). Many studies have demonstrated that preferential 

flow severely limits the applicability of standard models for flow and transport that are mostly 

based on homogenous domain theory (Lin, 2010). Some models take into account 

macropore flow by defining a higher conductivity for the soil, particularly in near-surface 

regions. However, this can lead to an unrealistic parameterization of soil properties in 

hydrological models in order to compensate for the influence of macropore flow. Other 

models use dual-permeability ‘add-ons’ to the Richards’ equation which lack rigorous 

physical underpinning (Beven and Germann, 2013).  Therefore a new conceptualisation is 

needed to develop the next generation of hydrological models that can explicitly consider 

dynamic flow pathways and flow configuration evolution over time (Vereecken et al., 2016). 

Some researchers have suggested that a complete rejection of the Richards theory is 

not the solution, as the theory works well when describing flow in the soil matrix (Weiler, 

2017). However, as the approach frequently fails to predict infiltration into soils containing 

macropores, cracks or other structural features, particularly during high intensity rainfall, new 

models are needed (Beven and Germann, 2013). These models should be based on 

experimental data and should take into account the specific soil structures and macropore 
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properties relevant to flow within individual macropores and their interaction with the soil 

matrix (Weiler, 2017).  

Desiccation cracking results in macropores at the surface of slopes (Figure 3.1) and 

has been a topic which has presented considerable trouble to researchers for decades 

(Kodikara and Costa, 2013). The presence of desiccation cracks strongly affects the hydraulic 

and mechanical properties of a soil and can therefore pose a problem across a wide range of 

geotechnical structures (Stirling et al., 2015). Desiccation cracking can have a significant 

impact on slope hydrology, as it provides rainfall with preferential flow paths, enabling 

deeper infiltration (Flury et al., 1994; Drumm et al., 1997). Cracking is particularly a problem 

in clays, where it has been shown to increase hydraulic conductivity by between 12 - 34 times, 

depending on the plasticity of the soil (Rayhani et al., 2007).  

The formation and propagation of cracks is highly complex due to coupling between 

the hydraulic and mechanical behaviour of soils. Water loss during evaporation induces a rise 

in capillary forces and the soil tends to contract under increasing suction (Rodríguez et al., 

2007). During shrinkage, the changes in the stress state tend to lead to movement of the soil 

particles and, at a certain point of the drying process, crack generation begins (Sanchez et al., 

2013). 

The influence of desiccation cracking on geotechnical structures can be large. For 

instance, there is evidence that cracking at the crest area of slopes can trigger the initiation 

of slope failure (e.g. (Take, 2003)). In embankments, cracking reduces strength and increases 

the infiltration capacity of the soil, mobilizing the shrinkage/swelling potential of deeper soils 

which can lead to progressive failure (Sanchez et al. 2013). 
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3.9 Critical discussion 

This chapter has shown the key role of pore water pressures and the influence of climate and 

the hydrological cycle on the stability of infrastructure slopes. Pore water pressures within 

earthworks vary seasonally in response to climatic events and the effects of vegetation, which 

results in effective stress cycles. This can lead to a degradation of strength over time. Field 

monitoring of PWPs is often limited by the quality of the equipment used. 

Estimations of water content within soils can be made using water balance equations 

and soil moisture deficit. Evaporation and transpiration can be considered separately or as a 

lumped term within models. Actual evaporation and transpiration vary from potential rate 

when soil water is not freely available. Penmen-Monteith based soil-atmosphere boundary 

conditions are based largely on a notional reference crop, however, they do provide useful 

estimations of potential evaporation. That said, these definitions do appear to lack adequate 

definition of the dynamic site-specific wind, shade, and leaf coverage conditions which are 

often present on real world slopes. 

A root water uptake term may be used to model water removal at depth by deep 

rooted vegetation. However, the role of vegetation in slope hydrology is still poorly 

understood and integrated into models. This is explored further in the Appendix.   

Vegetation and desiccation cracking can lead to changes in the structure of the soil 

and the presence of macropores which, in turn, can result in preferential flow which does 

not obey Darcy-Richards type flow equations. The presence of cracking and macropores 

resulting from other hydrological and dynamic natural processes within infrastructure slopes 

is likely to result in variation of measured hydraulic conductivity throughout the near-surface 

region. The impact of such changes on the hydrology of slopes is investigated further in 

Chapter 5. Modelling can help to further identify the key uncertainties in the slope 

hydrological system, particularly, concerning the variation of hydraulic conductivity with 

depth and saturation, and the validity of continuum assumptions at a slope scale. 

Many types of preferential flow have been observed in the field, implying that 

different macropore structures affect infiltration into slopes in different ways, therefore any 

link established between soil structure and preferential flow may be specific to that soil.  

The connection between macropore structure and increases in hydraulic conductivity 

must be explored further with research based on direct measurement of the macropore 

structure within the samples. The relationship between macropore properties (e.g. size and 
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connectivity) and the hydraulic conductivity within infrastructure slopes is still underexplored 

and is investigated further in Chapter 8. 

Direct visualisation of macropores and quantification of pore size and connectivity 

has the potential to help improve our understanding of the relationship between macropore 

size properties and hydraulic conductivity. The following Chapter explores the use of 

computed tomography, a new technique which has the potential to be adapted from other 

fields and modified for the non-invasive quantification of soil pore architecture within large 

clay fill samples. 
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4 Computed tomography in the geosciences 

4.1 Introduction 

Chapter 3 discussed the significant influence macropores can play on the hydrology and 

stability of slopes. Flow within soils is strongly dependent on a soil’s physical structure and 

pore space architecture and is therefore affected by the presence and interconnectivity of 

macropores (Perret et al., 1999). As a result, it is essential that the pore networks present 

within soils can be visualised and quantified accurately in order to help improve our 

understanding of the role of macropores. However, this has historically been hard to achieve, 

particularly in a non-destructive manner. 

Recently, X-ray computed tomography has developed as a means for non-destructive 

observation and analyses of the internal pore space architecture of soil samples in three 

dimensions (Cnudde and Boone, 2013). This chapter introduces the X-ray computed 

tomography technique and its suitability for geotechnical research. The chapter is intended 

to provide an overview of the fundamental concepts involved within the CT scanning and 

image analysis processes, as well as some of the drawbacks of the technique. Previous 

research within the literature specifically related to the scanning of soils is also reviewed and 

discussed. 

4.2 Introduction to X-ray computed tomography 

X-ray computerized transverse axial tomography, commonly known as computed 

tomography (abbreviated to CAT or CT), is a 3D imaging process that was first developed 

as a tool for diagnostic medicine in the 1970’s because of its capacity to produce non-

destructive, high-contrast, cross-sectional images quickly (Ambrose, 1973; Hounsfield, 1973; 

Ommaya et al., 1976). The earliest X-ray CT scans of soft tissue and bone took only 35 

minutes to acquire (Hounsfield, 1973).  

Researchers quickly realised the potential of CT for use in a wide range of academic 

disciplines. For instance, Petrovic et al. (1982) demonstrated the potential for studies 

involving soil by observing a relationship between the bulk density and the X-ray attenuation 

coefficient. However, it is only within the last decade that technological advances including 

the development of smaller, less expensive, ‘microCT’ scanners have allowed research using 

CT within the geoscience field to progress rapidly.  
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In general, X-ray computed tomography can be split into three different subsections 

depending on the type and power of the CT scanner used. These are medical, synchrotron, 

and laboratory. 

Medical CT machines are capable of very fast scans of human patients at spatial 

resolutions down to several hundred microns (> 200 μm) (du Plessis et al., 2016). 

Synchrotrons are the most powerful CT machines available and can provide extremely high 

quality, sub-micron resolution images (Peyrin et al., 2012). Access to synchrotron facilities is 

extremely limited however, and the operational costs are very high (Smith, 2015). Laboratory 

scanners (or microCT machines) span a wide range of spatial resolutions between the 

synchrotron and medical extremes, depending on the requirements of the research (Cnudde 

and Boone, 2013). Apart from the size and cost of the machines, a difference between 

medical CT and microCT is that in medical CT, the object (i.e. the patient) remains stationary, 

whilst the X-ray source and detector system rotates around it, whereas in most microCT 

systems, it is the object that rotates whilst the source and detector remain static.  

4.3 MicroCT principles and theory  

Figure 4.1 shows a typical microCT scanner machine set up. In essence, microCT scanners 

comprise three main elements, an X-ray source (tube), a rotating sample mount, and a 

detector (either an X-ray detector or a scintillator screen followed by a charge coupled device 

(CCD) camera focussed via a lens).   

  Computed tomography is based on the principle of electromagnetic wave 

attenuation. X-rays emitted from the source pass through the sample and are attenuated by 

absorption and scattering as the scanned object itself becomes a secondary source of X-rays 

and electrons through atomic interactions (Mooney et al., 2012). The detector subsequently 

produces a 2D grey-scale image of the sample showing the degree of attenuation of the X-

rays which have passed through the sample. This grey-scale is related to the linear attenuation 

coefficient for each pixel (μ) which depends on the bulk density of the material scanned as 

well as X-ray energy and intensity. 
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Figure 4.1 – A diagram of a typical Micro X-ray CT system  

As they pass through an object, the attenuation of X-rays follows Lambert–Beer’s law: 

 𝐼 = 𝐼0𝑒−𝜇𝑥 (36) 

   

Where, 

I is the attenuated intensity after the X-rays have passed through an object of thickness x, I0 is the incident 

radiation intensity, and μ is the linear attenuation coefficient. 

From Equation (36) it can be seen that the attenuated intensity is a decreasing function of 

the distance x and the attenuation coefficient, therefore materials with a high attenuation 

coefficient will only allow X-rays to penetrate a relatively short distance, whereas materials 

with a low attenuation coefficient are more easily penetrated. 

A typical scan involves rotating the sample in small increments to acquire a series of 

radiograph (projections) images over 360°, which can be used to mathematically reconstruct 

the 3D sample via integration of the linear attenuation coefficient values (Taina et  al., 2008). 

This process is known as back-projection and converts the series of 2D X-ray absorption 

images into a series of 2D greyscale ‘slices’ in the x-z plane from which a 3D representation 

of the sample can be generated which provides an indication of the density at any point 

within the sample. Each slice consists of discrete units known as voxels which are the 3D 

equivalent of pixels, the size of which reflects the spatial resolution of the scan. The 

reconstructed 3D image data from the scanned sample can subsequently be used for 

visualisation and quantitative analysis.  
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An X-ray source (tube) generates a beam of electrons directed at a target which, when 

hit, decelerates the electrons and generates X-rays which are shaped into a cone as they exit 

the tube (Figure 4.1). The usefulness of the resulting beam of X-rays is dependent on the 

energy spectrum produced, the focal spot size, and X-ray intensity (number of X-rays) 

(Helliwell et al., 2013). 

The energy spectrum produced affects the level of detail achieved when imaging 

samples with varying density. Higher energy X-rays penetrate more effectively through a 

material, enabling the scanning of more dense samples, however they are less sensitive to 

differences in material density which may make areas of differing density harder to identify.  

The focal spot size defines the possible source-detector paths that can intersect at 

any given point within the sample (Smith, 2015). A smaller spot size leads to less blurring 

and the ability to detect smaller features.  

The X-ray intensity affects the amount of noise which is found within sample images 

(the consequences of noise are discussed later in Section 4.6.4). Higher intensities can help 

improve the image quality (less noise) however they often require larger spot sizes which can 

increase blurring of images. 

4.4 Image quality  

The image quality comprises two factors, these are the contrast between sample constituents 

and the spatial resolution.  

The image contrast is largely dependent on X-ray energy and the range of densities 

in the sample. The energy of the X-rays relative to the average density of the sample 

determines the quantity of X-rays penetrating the scanned object. If X-ray energies are too 

low, insufficient X-rays will pass through the object for acceptable counting statistics 

(Helliwell et al., 2013). However if the X-ray energies are too high then the sample will appear 

transparent to the X-rays and no definition between different density material constituents 

will be possible (Ahmed, 2014). 

The spatial resolution is largely dependent on the focal spot size, the detector 

capabilities, and the distance between the source, the sample, and the detector within the 

system. Therefore there is often a trade-off between sample size and the highest resolution 

achievable (smaller samples allow the distance between the source and the sample to be 

reduced, resulting in higher resolution) (Dhondt et al., 2010). This is of relevance to CT 
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research within the geoscience field as large samples may be required for the result to be 

representative but high resolutions are also required for the scientifically relevant detail of 

water storage pores or fine root distributions (Young et al., 2001). As a consequence of this 

many microCT studies have often been limited to small sample sizes (< 5 cm) to achieve the 

required resolution. This is discussed further later in this Chapter. 

4.5 Image data processing 

After reconstruction, the image data can be visualised as a 3D volume (composed of 2D 

slices) based on the local linear attenuation coefficient where the intensity or brightness of 

each voxel is directly related with the density of the material or phase it represents. An 

example of this is presented in Figure 4.2, which shows a slice through a scanned foam 

sample and the difference in greyscale corresponding to the two phases present. Although 

visual inspection itself is an extremely valuable qualitative tool, quantitative results are often 

required. The image data can be analysed and quantified in dedicated software packages for 

visualising and analysing CT data such as Avizo (FEI, 2014) or Fiji (Schindelin et al., 2012). 

 

Figure 4.2 – An example of a slice of greyscale CT image data showing the different phases present 
within the sample (foam) (lowest density constituents appear darkest)(FEI, 2014) 

In the geosciences, quantitative results from 3D analysis can include data on the texture, 

volume fractions, particle sizes and morphology, porosity and pore properties, classification 

of pores into matrix and macropores, etc. The porosity of a material can be estimated by 

simply counting the number of voxels assigned to each phase after segmentation, which is 

the process of separating the phases within the sample. 
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 In practice, quantitative 3D analysis is often not straightforward and can be prone 

to several systematic errors caused by artefacts within the image data and other difficulties 

involved in image processing which are described within this Chapter. As noted by Cnudde 

and Boone (2013), it is essential that microCT users are aware of the limitations and pitfalls 

while recording or analysing data. 

In order to improve the quality of scan image data and obtain accurate quantitative 

results, a variety of image data analysis procedures have been developed by researchers using 

X-ray computed tomography (see Helliwell et al. (2013) and Wildenschild & Sheppard 

(2013). Three key stages which are involved in almost all such methods are explored within 

this Chapter: 

➢ The extraction of subvolumes  

➢ Segmentation and thresholding of the image data 

➢ Filtering and image enhancement of the image data 

4.5.1 Subvolume extraction 

CT scans can generate very large data sets which can prohibit effective analysis and 

quantification of the data. It is often necessary to reduce the file size prior to analysis in order 

to obtain useful results from the extremely large amounts of data. It is therefore common 

practice within CT image analysis procedures to extract a subvolume of the total scanned 

sample for analysis, in order to reduce the computational load of the process (Luo et al., 

2010). Image data can also be converted to a smaller quantity of bits to reduce file size. 

However, as the file size determines the relationship between the greyscale range and the 

densities represented within the voxels of the image data, it is important to ensure that no 

greyscale detail is lost as the file size is reduced (Ahmed, 2014). 

In studies which involve the microCT scanning of soils, the aim is not usually to 

visualise the network of macropores in large samples. As a consequence, the choice of 

subsampling technique and how representative the results obtained are, is not explicitly 

investigated. This is explored further in Chapter 7. 

4.5.2 Segmentation of sample phases 

The segmentation of image data refers to the identification and separation of the discrete 

materials or phases within a sample in order to allow for quantification and analysis of the 

properties of these constituents. 
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The greyscale value associated with each individual voxel after reconstruction is 

proportional to its X-ray attenuation coefficient, which is a function of material density. 

Therefore the intensity, or brightness, of each voxel is directly related with the density of the 

phase it represents. The densest sample constituents are represented by bright voxels (high 

attenuation) and the less dense pore spaces by darker voxels (low attenuation). An idealised 

example of a greyscale intensity histogram for a CT scan of soil can be seen in Figure 4.3. 

Different peaks within the greyscale histogram correspond to different material phases 

(densities) within the scanned sample (for Figure 4.3, these are air filled pores, organic 

material, and the solid soil matrix). Therefore a greyscale histogram can be used to distinguish 

between material phases and segment the data.  

The most commonly used approach to segment image data is ‘global thresholding’ 

which uses an estimate from the intensity histogram of the image to define a threshold 

greyscale value between phases or constituents (Wildenschild and Sheppard, 2013). Many 

approaches to thresholding exist, a simple method being to use the lowest points in the 

valleys of the histogram. However, even after filtering (see Section 4.5.3.), finding the 

minimum point between two peaks can be difficult, as the intensity corresponding to each 

phase can overlap considerably (Figure 4.3).  

 

 

Figure 4.3 – Idealised greyscale (intensity) histogram showing three constituents/phases frequently 

present in X-ray CT scans. The cross-over in greyscale values between the phases makes 

segmentation a challenging task (Helliwell et al., 2013) 
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The difficulty associated with assigning an appropriate threshold value for segmentation can 

be further exacerbated by poor image quality (for example due to use of high energy X-rays 

on very dense samples, or a large focal spot size due to large samples, or due to acquisition 

time constraints (less exposure)). Figure 4.4 shows an example of the effect of poor image 

quality on the greyscale histogram achieved through scanning of a sand. It can be seen that 

poor image quality makes establishing accurate threshold values considerably more difficult. 

 

 

(a) 

 

(b) 

Figure 4.4 - An example of the effect of poor image quality on the greyscale histogram achieved 
through scanning showing (a) A slice of scan data histogram (unconsolidated sand) with poor 

resolution compared to the geometrical features (28μm) and corresponding single-peaked 
histogram. (b) An image of the same region with sufficient resolution for this sample (10μm) 

showing the corresponding clear double peaked histogram (Varslot et al., 2010) 

 

The choice of threshold value has an important influence on the final results gained from 

the analysis programme, as a small variation can make a large difference in the volume and 

properties of the phases identified (Taina et al., 2008). Several manual or automated (either 

partially or fully) methods exist in order to determine the best value for the threshold used 
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for segmentation (e.g. manual thresholding or automated watershed-transform based 

methods).  

Manual methods have been shown to produce differing results when compared. For 

instance, Baveye et al. (2010) showed that when thirteen CT experts were asked to manually 

threshold image data from the same scan, results of porosities varied by between 13 % and 

73 %. For this reason, it is desirable to keep operator input or bias to a minimum during the 

analysis procedure. It is true however, that as long as the same analysis procedure is used on 

all the samples within a study, the quantitative results can be legitimately compared and 

meaningful conclusions made (Cnudde & Boone, 2013). Ideally, the reconstruction and 

analysis procedures would be completely automated or standardised to remove any operator 

bias so as to enable direct comparison between results from various researchers. 

The effectiveness of segmentation methods is difficult to evaluate as there is no 

“right answer’’ when it comes to segmentation of microCT image data (Helliwell et al., 2013). 

Often only a visual comparison can be made between different methods to indicate which 

provides the most realistic segmentation of the sample image data. Additionally, the optimal 

segmentation method for a particular sample type and microCT setup will almost certainly 

not be optimal for other systems.  

There is a clear consensus amongst the CT research community that automated 

methods are preferable in theory, since they both reduce the demands on operator time and 

eliminate operator bias (Sharma and Aggarwal, 2010). Recent advances in imaging hardware 

mean that for simple materials (i.e. with uniform densities), the grayscale image can be 

sufficiently clean that automated thresholding can be used. For instance Porter and 

Wildenschild  (2010) showed that automated segmentation can work very well on high quality 

images of glass beads obtained using a synchrotron. Contrastingly, Iassonov et al. (2009) 

found that, for more complex materials, some fully automated methods give inconsistent 

results and that ‘unsupervised’ automated schemes cannot yet be used with any confidence. 

The use of automated methods on complex samples (e.g. clay fill) and large sample sizes (> 

5 cm) remains underexplored and is investigated further in Chapter 7. 

  



4. Computed tomography in the geosciences 

 

  55 
 

4.5.3 Image enhancement and filtering 

When CT scans result in poor image quality, it can be difficult to segment the sample 

constituents using the greyscale intensity histogram. This can be due to inadequate image 

contrast, as shown in Figure 4.4, or image artefacts such as noise (see Section 4.6.) present 

within the image data. As a result, images acquired which contain significant amounts of 

image noise (e.g. scans of complex materials, using older systems, or with acquisition time 

constraints) can often result in a poor quality segmentation.  

Corrections for noise and poor contrast can be carried out on the greyscale data prior 

to segmentation and many methods for performing edge-preserving noise reduction have 

been published (e.g. Sheppard et al., 2004). These methods can be very computationally 

intensive to apply to very large 3D image sets and the memory requirements for applying 3D 

image filters can lead to post-processing software becoming very unstable (Smith, 2015). It 

is therefore necessary to balance the benefits of image enhancement against the 

computational restraints involved in analysis of microCT image data during post scan 

processing. 

 Many filtering methods work by smoothing image data in order to remove noise. 

They modify the greyscale value of a selected voxel by comparing it to some measure of the 

greyscale value of its neighbouring voxels. Figure 4.5 shows the result of using one type of 

filter (median) on the resulting greyscale histogram of the image data from a scan of glass 

beads. The correct application of filters can lead to increased definition between the peaks 

corresponding to material constituents within a greyscale histogram and therefore allow for 

more precise thresholding and segmentation (FEI, 2014).  

Commonly, smoothing of image data using filtering can reduce the contrast at the 

boundaries between phases (Chen et al., 2006). Some filters therefore include a sharpening 

process in order to correct for this and to reduce the partial volume effects often present 

within image data (See section 4.6.1).  

Whilst image enhancement methods such as filtering and sharpening can assist in 

segmentation and therefore quantification of image data, they will always result in the total 

information content of an image being reduced, usually resulting in the loss or distortion of 

very small features within the image data (Smith, 2015). 
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Figure 4.5 – The effect of median filtering on a greyscale histogram of showing sharpening of the 
peaks corresponding to each phase. (Scan of partially saturated glass beads – the two overlapping 
peaks of similar attenuation are from two different types of glass) (Porter and Wildenschild, 2010) 

4.6 Artefacts within CT image data 

The microCT technique can result in poor quality images as a result of insufficient image 

contrast, resolution, or from the presence of imaging artefacts within the data. The most 

common artefacts found within microCT image data are briefly discussed here. 

4.6.1 The partial volume effect 

When image data is reconstructed it is composed of 3D voxels arranged in a grid throughout 

the image. As a consequence, at the boundaries between the material constituents of a sample 

some voxels will contain more than one material. The greyscale value attributed to these 

voxels are therefore average values of the phases present. This is known as the partial volume 

effect (PVE) and is reflected in the blurring of edges between two different materials within 

a sample. Thus material boundaries, rather than being sharp, will often extend across 2-4 

voxel widths featuring a gradual greyscale transition (Ahmed, 2014). Figure 4.6 shows an 

illustration of the partial volume effect on the greyscale values of voxels at the phase 

boundaries. Whilst filters to sharpen edges in an image can be applied during the image-

processing stage, the blurring of material boundaries can never be completely avoided. 
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Figure 4.6 - Schematic of a sample with two phases and the corresponding greyscale of voxels within 
the image data, showing the partial volume effect on the voxels containing phases boundaries (Kato 

et al., 2013) 

As a result of the PVE a number of voxels will have indeterminate greyscale values 

which will impact on segmentation of the image data. The degree to which the PVE 

influences the quality of segmentation and the measured properties obtained depends on the 

properties of the sample scanned (e.g. the size and distribution of pores present when 

scanning a soil). 

A PVE correction involves the removal of small objects within the image data which 

cannot definitely be determined to lie within one phase or another. However the quantitative 

impact of this type of correction is another aspect of post scan image processing which is 

overlooked in the published literature discussing microCT work involving soils. This is 

examined in more detail in Chapter 7. 

4.6.2 Beam hardening 

All microCT machine X-ray sources generate a polychromatic beam (i.e. one that contains a 

spectrum of X-ray energies and wavelengths) (Wildenschild and Sheppard, 2013). Beam 

hardening occurs when there is an increase in the mean X-ray beam energy as it passes 

through a sample due to the energy dependence of the linear attenuation coefficient. Lower-

energy (soft) x-rays are more readily attenuated than higher-energy (hard) X-rays and 

therefore have less penetrating power and will be absorbed more easily. This results in a 

beam relatively depleted in lower energies with reduced overall intensity but greater mean 

energy. The beam is therefore said to have become harder. The effects of beam hardening 

are typically shown by the outer edges of an object appearing brighter (i.e. denser with a 

larger grey value/attenuation coefficient) than identical material at the centre of the object. 

An example of this beam hardening artefact is shown in Figure 4.7.  

Beam hardening, even when minor, makes segmentation more difficult since it is a 

large-scale, gradual inhomogeneity.  It can be difficult to correct for the artefact because 

different elements within the scanned sample harden the beam in different ways, so each 
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path through a heterogeneous sample will diverge from Lambert–Beer’s law in a different 

manner (Dewulf et al., 2012). The effect can be diminished by using beam hardening filters 

(thin sheets of copper or tin), which remove the lower energy soft X-rays before they reach 

the sample, ensuring only the high energy X-rays pass through (Mees and London, 2003). 

However, as discussed in Section 4.4., higher energy X-ray flux may make it harder to 

segment the data between phases. Beam hardening effects can also be corrected to some 

degree in post-processing, when software-based correction algorithms can be used to 

manually reduce common X-ray CT data artefacts (Boas and Fleischmann, 2012). 

 

Figure 4.7 – An example of microCT scan image data exhibiting beam hardening (an apparent 
increase in attenuation near the sample edge (5 mm diameter calcite limestone) (Wildenschild and 

Sheppard, 2013) 

4.6.3 Penumbra effect 

As the X-ray source within a microCT scanner is a focal spot as opposed to a point source, 

when X-rays pass through the object some edge blurring can sometimes be observed (Kueh 

et al., 2016). Blurring specifically at the edges of a reconstructed volume is known as a 

penumbra effect. 

When the focal spot size is small this effect is minimal and the boundary of images 

are very sharp. When the focal spot size is large, an X-ray’s path depends on the location 

within the spot from which it originates. This can create a poorly defined image. The focal 

spot size is dependent on the distance of the sample from the source, the size of the sample 

and the power used for scanning. Increased power increases the focal spot size which 

generates a greater penumbra effect. Therefore it is desirable to minimise the X-ray power, 

in order to minimise penumbra artefacts. However, this may prevent enough X-rays 
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penetrating the sample within the specified exposure time and the effects of penumbra are 

further exacerbated by the partial volume effects described above (Ketcham and Carlson, 

2001). 

4.6.4 Other artefacts 

As well as the major image artefacts discussed previously, several other types of artefact can 

occur within scan image data. These include noise, ring artefacts, star artefacts, and artefacts 

caused by sample movement or mechanical instability (Cnudde and Boone, 2013). 

As with all experimental imaging techniques, CT image data is subject to noise 

(Poisson noise due to random variations in detected X-ray intensity). CT image noise is 

associated with the number of X-rays contributing to each detector measurement and 

therefore affected by all the CT settings used (e.g. voltage, current, scan time, and slice 

thickness) and the sample properties (Goldman, 2007). 

 Figure 4.8 shows an example of noise within scan image data. Ring artefacts are 

caused by the failure of one or more pixels in a pixelated detector or by the non-linearity of 

different pixels and result in sharp contrasting rings concentric to the centre of rotation 

within the image data (Sijbers and Postnov, 2004). Star artefacts appear as star shaped 

distortions around high density objects and are caused by inaccurate measurement of the X-

ray attenuation of high density regions within a lower density material.  

The degree of artefacts present within the scan images depends largely on the type 

of sample scanned. The use of optimal scan settings for a particular sample (e.g. power and 

exposure) can produce images of high quality with minimal artefacts and this is examined in 

detail in Chapter 6. 
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Figure 4.8 – An example of noise with the scan data of a partially saturated glass bead pack 
(Wildenschild and Sheppard, 2013) 

4.7 MicroCT scanning of soils  

Computed tomography has been used to scan soil samples for various purposes over the 

past decade or so (e.g. Perret et al., 1999; Vogel, 2000; Mooney, 2002; Mees and London, 

2003; Sněhota et al., 2007; Luo et al., 2008; Anderson et al., 2010; Peth et al., 2010; Mooney 

et al., 2012; Geistlinger, 2013; Naveed et al., 2013; Shin et al., 2013; Lamorski et al., 2014; 

Larsbo et al., 2014; Katuwal et al., 2015; Eck et al., 2016). 

The microCT technique is continuously growing in popularity as a research tool 

within geoscience due to the rapid technological and computational progress being made. 

Indeed, Cnudde and Boone (2013) predict that the number of research projects using 

microCT will continue to rise, and that microCT will become an indispensable technique in 

the field of geosciences. 

The following key conclusions can be drawn from a review of the published literature 

regarding CT in the field of geosciences in terms of the materials and sample sizes that have 

been researched and the scanning procedure used. 

Materials and sample size – The majority of microCT soil research has involved samples 

consisting of narrowly-graded materials with particle sizes between 0.1 mm and 2 mm (i.e. 

sands) (Smith, 2015). In general, scanning of clay materials has been avoided, although 

Naveed et al. (2013) and Larsbo et al. (2014) have measured the macroporosity of clay soils. 

Scanned samples have almost always tended to be reformed or reconstituted samples 

and there is a lack of data for natural undisturbed samples. This is probably because 
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reconstituted samples tend to have a more uniform range of densities and can therefore lead 

to better quality images (with easier segmentation). 

Most published microCT literature within the geosciences uses cylindrical samples 

with diameters of less than 15 mm, with sample sizes generally ranging from 1 mm to 5 cm 

(Wildenschild and Sheppard, 2013). The sample sizes scanned are often limited by the type 

of microCT scanner used, or most commonly, the desire to achieve very high resolution 

images so that very small objects within the image data can be identified. Visualising the 

network of macropores in undisturbed clay fill samples therefore requires scanning of larger 

samples than are commonly scanned. 

It is also worth noting that a significant number of papers using CT have not 

published any quantitative results (e.g. measurements of material or pore properties) from 

their scans. Although visualisation and qualitative analysis is, in itself, a very valuable tool, 

this does not take full advantage of the potential of the CT technique. 

Scanning procedures – Due to the large variation in uses of the microCT technique, 

covering a range of sample sizes, shapes, and materials, there are no generally accepted 

protocols which exist regarding microCT scanning procedures. Therefore a great number of 

parameters involved in these processes which influence the final results of the scan (e.g. tube 

voltage, number of projections, total exposure time, etc.) can vary from scan-to-scan. Many 

published papers contain little to no information on the specific scanning procedures used 

by researchers to perform their scans. As Smith (2015) stated, this has led to CT being 

presented as a ‘black-box analysis technique’ which can provide perfect information about 

any given sample rather than as a key stage within the experimental procedure, the limitations 

of which should be critically analysed. This approach has potentially limited development of 

the technique, as researchers cannot build from a large knowledge base to further advance 

the technique and to develop new methods specific to the geosciences. 

One of the main potential advantages of the microCT technique in relation to soil 

science is that it is a non-destructive characterization technique which allows observation of 

temporal internal structural changes at high resolutions.  

With the exception of Peth et al. (2010) researchers have yet to fully take advantage 

of the non-destructive nature of the CT technique in order to repeatedly scan samples under 

altered conditions (e.g. after changes in saturation) and to analyse quantitatively the evolution 

of the pore structure (Helliwell et al., 2013). Peth et al. (2010) used CT to observe structural 
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changes and crack formation during wetting and drying of 5 cm and 5 mm loess samples. It 

was observed that wetting produced a rearrangement of particles accompanied by a 

restructuring of the pore space. This was a result of swelling and the formation of new coarse 

pores due to entrapped air.   

No research has explored the evolution of pore structure with saturation within clay 

fill samples. 

4.8 Critical discussion 

Within microCT literature, many of the variables it is necessary to define to perform a scan 

often appear hidden when researchers come to publish results. MicroCT in the geosciences 

has tended to focus on small samples with idealised constant density (e.g. glass beads) which 

makes scanning easier and enables higher image quality to be achieved in order to observe 

the smallest object possible within the scan.  

However, MicroCT has the potential to allow for the three-dimensional visualisation 

of large heterogeneous soil samples in a non-intrusive manner, provided that scanning and 

image analysis procedures are developed which can overcome the issues involved with the 

technique.  

A scanning procedure is needed which uses suitable power settings for the size and 

type of sample investigated in order to achieve sufficient image quality (contrast and 

resolution) with minimal imaging artefacts. Currently within the geosciences, microCT 

scanning of soil has been primarily concerned with small samples (< 5 cm) and tended to 

focus on uniform remoulded samples. Chapter 6 investigates the capabilities of microCT and 

the development of a scanning procedure for larger clay fill samples. 

A consistent image analysis procedure is needed to allow for comparison of results 

from different scans. However, more understanding is needed regarding the effects of 

subsampling method, the most efficient image enhancement method, the viability of 

automated segmentation, and the impact of a PVE correction for a large clay fill sample. This 

is discussed further in Chapter 7. 

MicroCT also provides the potential of scanning samples in different saturation states 

to examine the evolution of the internal macropore structure of samples and this aspect is 

explored in Chapter 8. 
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5 Hydrological modelling of Newbury cutting 

5.1 Introduction  

This chapter presents details of a finite element modelling exercise in which the hydrological 

conditions within a case study cutting slope were explored using site-specific climate and soil 

input parameters.  

The modelling undertaken investigates slope hydrology in response to real climate 

conditions and examines the key influences and uncertainties affecting flow in the system. 

This chapter informs the direction of the laboratory work carried out to subsequently 

understand the complex role of macropores within infrastructure slopes. 

Climate data collected from an instrumented section of a highway cutting was used 

within a hydrological finite element model (Vadose/W (GEO-SLOPE, 2008)) to calculate 

pore water pressure and volumetric water contents throughout the slope over a three year 

period. A model domain and soil parameters were established using an initial sensitivity 

analysis and validated with field data. A comprehensive sensitivity analysis was then 

conducted using this ‘field representative model’, in which the results of the model with 

varying input parameters were compared to site-measured pore water pressure and 

volumetric water content distributions. This was used to investigate the modelling process 

and the hydrological relationships involved, particularly, the influence of factors controlling 

water transfer at the surface of the slope. 

5.1.1 Modelling aims and objectives 

This chapter aims to examine the primary controls on water transfer into and out of slopes 

using a field representative model and sensitivity analysis. The influence of anisotropy of 

hydraulic conductivity, unsaturated soil behaviour characteristics and hydraulic conductivity 

variation at the surface and at depth within the model were explored. 

The specific objectives of this modelling exercise were: 

➢ To take input data from Newbury cutting and compare simulated pore water 

pressures and volumetric water contents with field measured data, in order to explore 

the implications of soil heterogeneity in slopes in relation to the continuum 

assumptions made within hydrological models (See Chapter 2). Specifically, does the 

field representative model (using Darcy-Richards type flow equations) capture the 

hydrological behaviour of the slope and do the definitions of unsaturated soil 
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behaviour (e.g. SWRCs) enable accurate simulation of in-situ conditions in both wet 

and dry conditions. 

➢ Learn from sensitivity analyses to determine the key model parameters which affect 

slope hydrology and pore water pressures within models. Particularly, to use 

understanding from the modelling process to comment on anisotropic flow within 

slopes and the influence of variation of both the near-surface and underlying 

hydraulic conductivity of the slope. 

5.1.2 Key facets of modelling  

Before commencing a discussion of the modelling carried as part of this investigation, it is 

perhaps worthwhile to briefly note the general purpose of modelling within geotechnics and 

some important aspects of good modelling practice.   

 In the geotechnical engineering field, the physical systems which engineers deal with 

on a daily basis are extremely complex. So in order to convert a complex physical reality into 

a mathematical system which can be used to understand risk and uncertainty, it is necessary 

to simplify the system and reduce it to its most important components. Perhaps contrary to 

popular belief, the main goal of numerical modelling is not to predict future performance. 

Rather, the main goal is to enter into a process in which it is possible to improve engineering 

judgements and understanding of the system (Fredlund et al., 2012). 

As Wood (2003) notes, it is good practice that any commercial software used is 

verified prior to model development either using a simpler problem or an initially simpler 

conceptualisation. This process has two benefits, namely, it confirms that the modelling 

software is working correctly in appropriate scenarios, whilst also allowing the user to 

become familiar with the software and the intricacies associated with using it. The ultimate 

aim of this initial process is the development of knowledge and confidence in the limits of 

the modelling software, theory, and results (GEO-SLOPE, 2008).  

Vadose/W was benchmarked (validated) against other FE software and an analytical 

method using a simple 1D caisson problem. For further discussion of this preliminary 

modelling exercise please see the Appendix. 

It is also good practice to begin modelling using the simplest model possible and 

then gradually add complexity (Vaughan, 1994). After development of a model, a sensitivity 

analysis can be conducted in order to gain understanding of the engineering processes and 

model parameters. This analysis involves running a series of simulations in which only one 
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parameter is varied at a time. Results of these simulations are then compared to an indicator 

of performance, for example, water content in a particular region. The aim of a sensitivity 

study is to aid understanding with regards to which elements of the conceptual and 

theoretical models are of most importance. As noted by Barbour and Krahn (2004), one of 

the key reasons for creating complicated numerical models is to enable us to explore and 

eliminate aspects of complexity from the physical system until it is possible to identify one 

or two central ideas. 

5.2 Newbury site description 

The modelled cutting, which is adjacent to the A34 Newbury bypass in southern England 

(Figure 5.1) was constructed in 1997 and is entirely within a region of London Clay. The clay 

at the site is about 20 m thick, highly weathered in places to a depth of about 2.5 m below 

original ground level, and underlain by Lambeth Group deposits and Upper Chalk. After the 

cutting was excavated, around 0.4 m of topsoil was placed over the cut London Clay surface 

to facilitate the planting of vegetation on the slope. A gravel fin drain approximately 0.6 m 

deep was installed at the roadside approximately 4 m from the toe of the slope (Smethurst et 

al., 2006).  

 

Figure 5.1 - Map showing the location of the instrumented site (Google maps (2016)) 
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The cutting is east facing, 8 m high and 28 m long. A cross-section through the slope is 

shown in Figure 5.2. Instruments were first installed on the site by researchers from the 

University of Southampton in 2003 in order to monitor soil water content (VWC), pore water 

pressure (PWP), rainfall, runoff, and the climate data required to estimate evapotranspiration 

(Smethurst et al., 2006). Monitoring of the site has continued since installation in 2003 

(Smethurst et al., (2006), Smethurst et al., (2012)). 

The equipment installed on-site includes arrays of time domain reflectometry (TDR) 

probes, flushable wire piezometers, water-filled tensiometers and equitensiometers in four 

groups spaced along the slope at depths of between 0.3 and 2.5 m. (Figure 5.2). A climate 

station was placed on the slope to record air temperature, humidity, wind speed, and solar 

radiation, whilst rainfall and surface runoff were measured using a rain gauge and an 

interceptor drain. A calibrated neutron probe was also used to measure soil water profiles at 

approximately two-monthly intervals. For further information on sensors installed on the 

site see Smethurst et al. (2012).  

All the field data shown in this Chapter from the Newbury site has been collected by 

Smethurst et al. (2006) and Smethurst et al. (2012) although it may be presented in new forms.  

Due to the nature of the field measurements at the site and their respective collection 

methods, it was observed that the years 2006-2009 were the years with the best combination 

of reliable weather, pore water pressure and water content measurements (as explained below 

- see Section 5.3.). For this reason and to prevent overly long computational times, it was 

decided that these three years would serve as the modelling duration. 
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Figure 5.2 – A cross-section of Newbury cutting showing the location of instrument groups (redrawn 
from Smethurst et al. (2006)) 

Vegetation at the site is shown in Figure 5.3. The slope was covered in medium length grass 

with some small shrubs, however, the very top of the slope was fringed by fully mature trees. 

The vegetation change at the site throughout the study period was not measured. 

 

Figure 5.3 - Picture of the modelled cutting and the vegetation present (from the top of the slope) 

5.2.1 Site weather and monitoring data summary 

Cumulative annual rainfall and soil moisture deficit (calculated from a 1D water balance 

concept as described earlier in Chapter 3) for the years 2003-2013 are shown in Figure 5.4, 

along with cumulative estimated potential and actual evapotranspiration (See Appendix for 

a table of evapotranspiration parameters). 

  Figure 5.4 shows that in the relatively dry summers of 2003, 2005, 2006 and 2010, 

actual evapotranspiration is significantly less than potential evapotranspiration. This is due 



5. Hydrological modelling of Newbury cutting 

 

  68 
 

to a reduction of transpiration caused by plant stress during prolonged dry periods when 

SMD exceeded the readily available water within the soil (see Chapter 3). 

 

Figure 5.4 – Cumulative annual rainfall, soil moisture deficit and estimated evapotranspiration at 
Newbury 2003-2013 (data from (Smethurst et al., 2012)) 

Figure 5.5 which presents cumulative monthly rainfall at the site, shows that the winter of 

October 2006 until March 2007 was continuously above the long term average rainfall (LTA) 

for the site. Similarly, the summer months of 2008 were wetter than the LTA, whilst, during 

the summer months of 2007 the site was subject to almost twice the average rainfall. 

 

Figure 5.5 - Cumulative monthly rainfall at Newbury 2006-2009 and long term average monthly 
rainfall (1970-2013) (data from (Smethurst et al., 2012)) 

Figure 5.6 shows that 2007 and 2008 had the highest cumulative rainfall since 1970, making 

them representative of extremely wet years.  
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Figure 5.6 - Cumulative annual rainfall at Newbury every year since 1970 (data from (Smethurst et 
al., 2012)) 

The extremes captured during this period are highlighted by examining the return periods 

for the modelled years (Figure 5.7). These return periods were calculated from the relative 

frequency of the total annual rainfall at Newbury for every year since 1970 (data from 

(Smethurst et al., 2012)). More information on these calculations can be found in the 

Appendix. 

 In terms of total annual rainfall (Figure 5.7 (a)), all three years were wetter than the 

long term average. 2006 has a relative frequency of 1 in every 2.5 years, 2007 of approximately 

1 in 10 years, and 2008 of around a 1 in 8 years.  

If rainfall during the summer months of June, July, and August of each year are 

examined (Figure 5.7(b)) it can be seen that the summer of 2006 was well below average with 

a cumulative probability of exceedance of 72.1%, indicating that this was a particularly dry 

period compared to other years. However, the summer of 2007 was the most extreme within 

the dataset with respect to summer rainfall and the summer of 2008 has a return period of 

approximately 1 in 10 years indicating that this was also an exceptionally wet summer.  

For the winter months December, January and February, 2006 was very wet, having 

an approximately 1 in 14 years return period. The year 2007 was wetter than average with a 

1 in 3 years return period and 2008 was significantly drier than average (Figure 5.7 (c)).  

The modelled period (2006-2009) therefore contains both periods of below average 

and moderately extreme rainfall and provides a good opportunity to explore a wide range of 

potential hydrological conditions within the cutting. 
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(a) 

 

(b) 

 

(c) 

Figure 5.7 - Return periods for all years since 1970 based on (a) Total annual rainfall (b) Total 
summer rainfall (June-August) (c) Total winter rainfall (December-February) (data from (Smethurst 

et al., 2012)) 

Despite the fairly extreme variation in rainfall throughout the modelling period, site-

measured solar radiation and temperature (Figure 5.8) was consistent each year, with only 

slightly higher temperatures and radiation measurements during the driest summer of 2006. 
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Figure 5.8 - Daily average temperature and solar radiation measured at Newbury (data from 
(Smethurst et al., 2012)) 

Instrument locations A and C (Figure 5.2) were deemed the most reliable of the four 

instrument groups on the slope (due to instrument reliability) and are therefore the primary 

field results used for comparison with the results of the simulation. Figure 5.9 & Figure 5.10 

illustrate the pore water pressure variation at location C between 2006 and 2009. There are 

noticeably higher suctions during the dry summer of 2006 compared to the other years. The 

magnitude of the response of PWP to changing weather conditions decreased with increased 

measurement depth, as the influence of vegetation and evapotranspiration decrease with 

depth. However, a suction was still present at a depth of 2.5 m during the summer of 2006. 

The positive PWPs recorded at this depth (2.5 m) throughout 2007 and 2008 imply that this 

point usually lies below the groundwater table at this location on the slope. 

It is important to note that the tensiometers installed in the slope here are limited to a 

maximum suction of around 100kPa, as at greater suctions they become desaturated (See 

Chapter 3). Therefore it is possible that higher suctions were present during the summer of 

2006 than were measured by the tensiometers.  
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Figure 5.9 - Pore water pressures from tensiometers at C (data from (Smethurst et al., 2012)) 

 

Figure 5.10 - Pore water pressures from vibrating piezometers at C (data from (Smethurst et al., 
2012)) 

The variation of pore water pressure change with depth can be explored by plotting the 

maximum and minimum depth profile envelopes of PWP at the different instrument 

locations (Figure 5.11). These envelopes are the maximum and minimum values of pore 

water pressure recorded at all instrumented depths throughout the profile at location C 

between 2006 and 2009. The narrowing of each of the yearly envelopes with depth (Figure 

5.11) indicate that there was a greater range of pore water pressure at the near-surface than 

at depth. This reflects the diminishing role of surface effects throughout the soil profile.  
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Figure 5.11 – Maximum and minimum depth profile envelopes of pore water pressure from 
tensiometers and vibrating piezometers at C (data from (Smethurst et al., 2012)) 

Volumetric water content (VWC) was recorded at Newbury and the results from TDR 

probes at A are shown in Figure 5.12. Below a depth of about 1 m the profile shows minimal 

VWC change due to changing climate conditions, with the exception of the very dry summer 

of 2006. 

 

 

Figure 5.12 - Volumetric water content from TDR probes at A (data from (Smethurst et al., 2012)) 

Water contents at the instrumented locations were measured periodically using a neutron 

probe by Smethurst et al. (2012). Figure 5.13 presents profiles measured using the neutron 

probe over the summer of 2006 and shows that a change in water content occurs above a 

depth of about 0.7 m, with little difference below this depth throughout the summer.  
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Figure 5.13 - Volumetric water content profiles across the summer of 2006 using a neutron probe 
(data from (Smethurst et al., 2012))  

As discussed in Chapter 3, Soil moisture deficit (SMD) can be a useful tool for assessing the 

amount of water within the near-surface zone. As well as being calculated from a one 

dimensional water balance (Chapter 3 - Equation 25), SMD can also be inferred from the 

TDR array and neutron probe measurements at the site using Equation (37) (Smethurst et 

al., 2012). By subtracting the daily depth profiles from the field capacity profile, a deficit 

within the instrumented zone can be calculated. 

 
𝑆𝑀𝐷 = ∑ ∆

𝑛

𝑖=1

𝑤𝑣𝑜𝑙(𝑖) × ℎ(𝑖) (37) 

 

 Where, 

 n is the number of measurement depths within the root zone, ∆wvol is the change in volumetric water content, 

and h is the depth of profile over which the measurement of change in water content is taken. (Total root zone 

depth was taken to be 800 mm to correspond with the 1D balance method (see appendix) and the wettest 

profile measured throughout the study period was assumed to correspond to SMD = 0). 

The three estimated soil moisture deficits (from a 1D water balance, from the 

neutron probe measurements, and from the TDR array measurements) are presented in 

Figure 5.14. There appears to be good agreement between the SMD estimations, although 

only three suitable neutron probe measurements were taken during the modelled period 

(2006 - 2009) and some of the TDR data is incomplete. However, the overall magnitude of 

estimated SMD and pattern of response to wetting is similar. 
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Figure 5.14 - Soil moisture deficit derived from a 1D water balance, neutron probe measurements, 
and TDR measurements at C (neutron and TDR probe data from (Smethurst et al., 2012)) 

5.3 Modelling  

5.3.1 Vadose/W description 

The finite element software Vadose/W was used to model hydraulic conditions within the 

cutting at Newbury (GEO-SLOPE, 2008). The software was used to calculate changes in 

pore water pressure in response to a boundary condition informed by real historical climate 

data. The effects of vegetation on slope hydrology were also explored and this is discussed 

further in the Appendix.  

Vadose/W calculates saturated and unsaturated water, heat and vapour flow in 

response to applied boundary conditions using Wilson’s form of Richard’s equation (Wilson, 

1990)(Equations  (13) and (14) in Chapter 2). Vadose/W includes the provision to specify a 

climate boundary condition which uses daily climate data to calculate water infiltration and 

removal from the surface of the soil and the rooting zone (see Section 3.7.). This allows for 

the investigation of changes in pore water pressure and volumetric water content in response 

to variations in weather conditions, soil properties, or vegetation cover.  

  Vadose/W was used for this investigation as opposed to alternative commercial 

software (e.g. Hydrus (Šimůnek et al., 2013), Shetran (Ewen et al., 2000), etc.) for a number 

of reasons. The most important was that this software uses the equations and descriptions 

discussed in Chapters 2 and 3 which are the most commonly used modelling approaches (e.g. 

Darcy-Richard’s) in the geotechnical industry and it was therefore possible to investigate the 

impact of the assumptions and theory previously discussed. 
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For clarity, any results obtained from numerical analysis in this Chapter are described 

here as ‘calculated’, whereas any results presented from site instruments are described as 

‘measured’. 

5.3.2 Interpreting field conditions and creating a field representative model 

To create a model of Newbury which could be used to aid understanding of the site, it was 

first necessary to establish model inputs which are an accurate representation of the site 

material properties, initial model conditions, and boundary conditions. Using site-specific 

field data wherever possible in combination within an initial sensitivity study a ‘best field 

representation of Newbury’ model was created. This model was assessed in comparison with 

site instrumentation data and used as a ‘field representative model’ or ‘base model’ for all 

subsequent sensitivity analyses. Construction of this field representative model is explored 

here.  

5.3.3 The model domain  

The domain was derived from a cross-section of the cutting (see Figure 5.2). However, as 

shown in Figure 5.15, the domain is extended at the sides and below what would usually be 

defined as the cutting. This was to ensure that edge effects of the boundary conditions other 

than the soil surface did not overly influence hydrology within the slope as discussed in 

Powrie (2013).  

 

 

Figure 5.15 - A cross-section of the field representative model domain used with Vadose/W 
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A mesh which varied in size was discretised within the model domain. The mesh was very 

fine within the surface layers (0.1 m elements) to ensure accurate calculations but coarser at 

depth to avoid overly long computational times (0.5 m elements). The mesh was also made 

finer at any boundaries between materials to prevent unconverged nodes developing (GEO-

SLOPE, 2008). Correspondingly, although results are output in daily time steps, adaptive 

time stepping was used within the solver to ensure convergence.  

5.3.4 Material properties  

Values from permeability measurements for Newbury from literature are shown in Table 5.1. 

Borehole bail-out tests were carried out in May 2003 by Smethurst et al. (2006), in unlined 

boreholes extending to depths of 2.0 m below ground level. Double ring infiltrometer tests 

were carried out at the site at a later date (Briggs et al., 2012). 

It can be seen that in-situ measurements from borehole bail-out tests for the site are 

typically one or two orders of magnitude larger than laboratory measured values. This is likely 

a result of the scale of the laboratory measurements failing to fully capture the effects of 

anisotropy and the soil fabric (e.g. bands of silt/sand or clay fissures). 

Measurements from infrastructure slopes show that saturated hydraulic conductivity 

(ksat) can vary by up to five orders of magnitude in the top 0.5 m of infrastructure slopes. At 

greater depths the ksat generally reduces and is less variable (Dixon et al., in review). 

The field representative model was established using averages of the laboratory and 

site-measured values and by defining four distinct regions in the domain which are seemingly 

present within the cutting (London clay, weathered clay, sub surface, and surface). The 

influence of the number and permeability of the surface layers is discussed in more detail 

later in this chapter.  
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Table 5.1 - In-situ and laboratory saturated hydraulic conductivity (ksat) measurements on samples 

from Newbury Cutting 

Depth 

(m) 

Material Measurement 

type 

ksat  

(m/s) 

Average ksat 

(m/s) 

Researchers 

0.1 - DRI*1 3 x 10-8 to 2.4 x 

10-7 

9.2 x 10-8 Briggs et al. 

(2012) 

0.6 - DRI 2.45 x 10-8 to 9.6 x 

10-7 

9.3 x 10-8 Briggs et al. 

(2012) 

0.5-3 London clay Triaxial 3.9 x 10-11 to 6.6 x 

10-10 

2.3 x 10-10 Smethurst et al. 

(2006) 

3 London clay BBO*2 2.3 x 10-9 to 4.4 x 

10-9 

3.7 x 10-9 Smethurst et al. 

(2006) 

0.5-3 Weathered clay Triaxial 5.0 x 10-10 to 1.6 x 

10-9 

8.7 x 10-10 Smethurst et al. 

(2006) 

3 Weathered clay BBO 3.6 x 10-8 to 5.8 x 

10-8 

4.3 x 10-8 Smethurst et al. 

(2006) 

*1DRI is a double ring infiltrometer  

*2BBO is a borehole bailout test 

The makeup of the domain in shown in Figure 5.16, where it can be seen that at this particular 

point in the slope the four material regions overlay each other. Table 5.2 gives the absolute 

values of saturated hydraulic conductivity used within the field representative model. 

 

 

Figure 5.16 - Material regions within the model domain 
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Table 5.2 – Values of saturated hydraulic conductivity used for the four material regions within the 
field representative model 

Material region Saturated hydraulic conductivity (m/s) 

Surface (0 – 0.4 m depth) 2.4 x 10-7 

Sub-surface (0.4 – 0.6 m depth) 9.3 x 10-8 

Weathered London Clay 5.8 x 10-8 

London Clay 3.7 x 10-9 

 

As discussed in Chapter 2, the unsaturated behaviour of a soil can be described using a soil 

water retention curve (SWRC) and a hydraulic conductivity function (HCF). Vadose/W 

requires an estimate of these functions in order to solve the governing equations. As 

determining SWRCs from undisturbed samples is a very difficult and time consuming 

process (Fredlund et al., 2012), it was decided to use the established values from literature 

for the field representative model and then assess the influence of these parameters within 

the sensitivity study. 

 Croney (1977) conducted a series of SWRC tests on undisturbed London clay 

samples and the values established are shown in Figure 5.17(a) up to a typical plant wilting 

point of 1500 kPa (Kabat & Beekma, 1994). The rate of suction increase can be seen to 

rapidly increase the more the soil dries. Both wetting and drying curves (Croney, 1977) are 

shown as the bounding behaviour for the soil although it should be noted that Vadose/W 

does not allow for hysteresis.  

Croney obtained this data by using a suction plate (for suctions below 90 kPa) and a 

pressure plate apparatus (for higher suctions) on small samples of intact clay. Due to the size 

of the samples, the curves presented may not necessarily be representative of the wider fabric 

of the soil, including the effects of macropores, fissures and cracks and could correspond 

more to the behaviour in intact peds (Fredlund et al., 2011). 

Figure 5.17(b) shows the Croney data plotted on a log-suction scale where differences 

between the two curves at low suctions (< 5kPa) are minimal, however at higher suctions a 

given water content can correspond to very different levels of suctions. 
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(a) 

 

(b) 

Figure 5.17 - Graphs of volumetric water content against suction for undisturbed samples of London 
Clay, (a) plotted up to a typical plant wilting point of 1500 kPa and (b) on a log-suction axis (redrawn 

from Croney (1977)) 

Differences in SWRCs can evidently have a large effect on the magnitude of suctions and 

volumetric water contents simulated within the model. To compare SWRCs from literature 

with measurements obtained from the cutting, estimates of unsaturated behaviour using data 

from the field instruments were made. Figure 5.18 compares VWC and PWP measurements 

from instruments installed at locations A and C on the cutting slope (Figure 5.2). Volumetric 

water content values from neutron probe measurements are plotted with corresponding pore 

water pressure values from adjacent piezometers installed at the same depth below the 

ground surface. Behaviour at both A and C is very similar to the Croney laboratory drying 

curve although the saturated water content appears to vary slightly depending on location 

within the cutting. 
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Figure 5.18 - Neutron probe volumetric water content measurements with corresponding piezometer 
measured pore water pressure measurements from instrumented sections A and C (Figure 5.2) 
compared to the Croney (1977) drying curve for London Clay (data from Smethurst et al. (2012)) 

If the volumetric water contents measured using the TDRs (Smethurst et al., 2012) are 

plotted against corresponding PWP values in a similar fashion (Figure 5.19), this pattern of 

behaviour can be seen even more clearly. The majority of data points show good agreement 

with the Croney (1977) drying curve, however a significant number of data points appear to 

follow the drying curve behaviour at a lower saturated water content. It was decided that all 

materials within the field representative model would initially use the Croney (1977) drying 

curve and a sensitivity study would be used to explore the influence of differing saturated 

water contents and the wetting curve on simulated PWPs and VWCs. Figure 5.19 also shows 

that there are limited measurements with which to characterise the behaviour of in-situ 

suctions greater than around 30 kPa. 

 

Figure 5.19 – TDR volumetric water content measurements and corresponding piezometer 
measured pore water pressure values for all instrumented days, compared to wetting and drying soil 

water retention curves (Croney, 1977)  
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The corresponding HCFs for the field representative model  were estimated from the drying 

curve SWRC using a van Genuchten approximation (see Section 2.10.) (van Genuchten, 

1980) (Figure 5.20). The effects of altering these approximation parameter values were 

further explored during the sensitivity studies (Section 5.4.9.). 

 

Figure 5.20 – Hydraulic conductivity functions for material layers within the field representative 
model (All curves use van Genuchten approximation for Croney (1977) drying curve. ksat is informed 

by an interpretation of field and laboratory measurements (Table 5.2)) 

5.3.5 Initial conditions 

The initial conditions for the field representative model were derived from field monitoring 

data at the beginning of the study period (2006 – 2009). At both locations A and C on the 

slope, the water table was found to vary between close to the ground surface (most winters) 

and a maximum depth of between 2 - 3.5 m (depending on the level of summer precipitation) 

(Figure 5.21). An initial zero pressure line was set to correspond to the piezometer 

measurements at the start of 2006, with suction limited at a certain height above this to 

prevent high initial suctions (greater than 25 kPa) at the near surface. Further information 

on the impact of the initial conditions on simulated hydrology can the found in the Appendix. 
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Figure 5.21 – Maximum and minimum pore water pressure depth profile envelopes from the 
instruments at C (Smethurst et al., 2012) and initial field representative (base) model conditions  

5.3.6 Boundary conditions 

Daily weather data was inputted as the hydrological boundary condition at the surface of the 

slope, whilst an open flow boundary was applied near the toe of the slope to replicate the 

road side drain. The effects of this drain on the hydrology on the slope was one of the 

parameters investigated during the preliminary sensitivity study in order to develop a field 

representative base model.  However, it was found to have little effect on pore water 

pressures within the slope at the instrumented positions. 

When modelling any site, it is essential that the outer edges of the domain, which are 

specified as no flow boundaries, do not affect conditions within the most important areas of 

the model (Powrie, 2013). The domain was therefore established so that it was large enough 

to prevent edge effects from influencing the results in the key parts of the slope. This was 

checked by assessing the contours of flow through the slope and ensuring that they were not 

distorted. The full specified domain is shown in Figure 5.15, where the surface and drain 

boundary conditions can be seen. 

The climate boundary condition within Vadose/w applies a net moisture flux to the 

soil surface in daily time steps, according to the water balance equation: 

 

 

 

𝑁𝐹 = 𝑅 − 𝐴𝐸 − 𝑅𝑂 (38) 

 

Where, 

NF is the net moisture flux into the soil surface (mm/m2) AE is the actual evaporation (mm/m2)(see chapter 

3), R is the rainfall (mm/m2) and RO is the runoff (mm/m2).  
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Water is also transpired by removing the actual transpiration (AT) from within the root zone 

via a root water uptake function (see Chapter 3). 

5.3.7 Vegetation properties 

Sensitivity analyses were conducted by varying vegetation parameters discussed in Chapter 3 

(Leaf area index, root depth and the plant moisture limiting function) and the results are 

explored in the Appendix, however the values included in the field representative base model 

are given here. 

In Vadose/W, transpiration is allocated over a specified root depth (See Section 3.7.). 

Initially within the field representative model, root depth was assumed to remain constant 

year round at 0.5 m, to agree with observations from the site (Smethurst et al., 2006; Briggs 

et al., 2012). 

Another Vadose/W vegetation input parameter is Leaf Area Index (LAI) (see Section 

3.7.) which specifies the proportion of energy allocated to transpiration and evaporation out 

of the total available for evapotranspiration. The initial field representative model LAI was 

set as a constant 2.7 to be consistent with values from literature (Scott et al., 2007; Briggs et 

al., 2016) in effect assuming a summer condition year-round, where evaporation would be 

low compared to transpiration. Vadose/W also includes in-built estimates of this function 

which depend on the quality of grass present on the slope. Use of these estimates is discussed 

later in this chapter.  

The last major vegetation input parameter into the surface boundary condition is the 

plant moisture limiting function (Section 3.7.) which determines the rate at which plants 

become stressed and can no longer transpire effectively, therefore reducing actual 

evapotranspiration from potential evapotranspiration. For the Field representative base 

model Feddes et al., (1978) estimate for grass was used after site observations of the slope 

vegetation. 

Other model input parameters not discussed here are given in the Appendix. 
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5.4 Results and analysis  

A numerical modelling analysis of hydrological conditions within Newbury cutting over a 3 

year period from Jan 2006 to Jan 2009 (1097 days) was conducted using site-measured climate 

data (Figure 5.4 and Figure 5.8) and material properties (Table 5.1). The results of this 

modelling exercise are presented in four forms:  

i. Pore water pressure and volumetric water content variation shows variation with 

time at a single location. This provides a continuous record of simulated pore water 

pressures or volumetric water contents at an instrumented location over the course of 

the modelling period to compare to field measured results. 

ii. Pore water pressure variation with depth displays depth profiles of PWP at a single 

section of the slope for individual time steps. Profiles are plotted at instrumented 

locations in the slope for the wettest and driest days, as well as maximum and minimum 

envelopes for longer time periods. These profiles allow comparison of the magnitude 

and variation of pore water pressures across all instrumented depths and have the 

advantage that they can be used to compare pressures throughout the whole root zone 

and not just at one single point. 

iii. Model derived soil moisture deficit (SMDFRM) provides an assessment of the total 

water content within the root zone. Model derived soil moisture deficit is determined 

from the model results by establishing the average volume of water in the top 0.8 m of 

the domain and determining the difference between this volume and the maximum 

volume at any time. An advantage of using SMD as opposed to individual TDR results 

is that it gives an indication of the VWC state of the whole root zone rather than at just 

one depth. SMDFRM can be compared to the 1D water balance derived SMD (see chapter 

3) - SMD1D, and to the field instrument (TDR array) derived SMD (See section 5.2.1.) - 

SMDTDR. 

iv. Spatial variation of pore water pressure uses two dimensional contour plots of PWP 

over the entire model domain for a specific time step and therefore shows the 

distribution of pore water pressures throughout the entire cutting at a given point in time. 

 

For direct comparison of model and field results at individual time steps, the ‘wettest’ and 

‘driest’ days according to the cumulative mesh water balance of the field representative model  

were selected (Figure 5.22). The cumulative mesh water balance is a water balance equation 

(see Chapter 3) for the whole model domain and therefore provides a good indication of 
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periods of extremes with regards to soil moisture. Behaviour described during ‘wetting’ and 

‘drying’ periods refers to a time period between a maximum and minimum of this graph or 

vice versa.  

 

Figure 5.22 - Field representative base model calculated water balance throughout modelling period 

5.4.1 A comparison of field representative model calculated PWPs and 

VWCs to field measurements 

Over the course of the three year simulation period (2006-2009), field representative model 

calculated volumetric water contents generally showed good agreement with TDR measured 

values (Figure 5.23). However during the exceptionally dry summer of 2006, the degree of 

change of water content within the domain appears to be underestimated by the model. This 

is the case at both locations A and C and at both 0.3 m and 1.5 m depths.  

The calculated VWC compares well with the field data, in that location A (Figure 

5.23 (a)) appears more responsive to rainfall events than location C (Figure 5.23 (b)). This is 

perhaps expected as location A lies further up the slope than location C and within the 

weathered clay material layer which has a higher hydraulic conductivity (Figure 5.20). Rainfall 

is therefore likely to infiltrate further and deeper into the domain at this point. At location C 

the simulation appears to overestimate saturated water content compared to the field data at 

1.5 m depth. Nonetheless, during the wetter years of 2007 and 2008 the overall response of 

the model to the rainfall events matches the field data very well. The reduced response of 

VWC to the climate boundary condition with increasing depth within the field measurements 

is also reflected in the model. 
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(a) 

 

(b) 

Figure 5.23 – Calculated field representative model volumetric water content, with site-measured 
TDR data (Smethurst et al., 2012) over the simulation duration at location A (a) and location C (b) 

Figure 5.24 compares simulated and measured PWP variation over the simulated period 

(2006-2009). At very shallow depths the model overestimates the suctions generated during 

dry periods such as the summer of 2006. This is likely to be a result of the idealised model 

assumptions associated with the reduction of hydraulic conductivity at high suctions (from 

the HCF, see Section 2.9.). The hydraulic conductivity may not decrease to such an extent in 

the field during dry periods because of desiccation cracking (Chapter 3) which alters the soil 

structure results in larger infiltration and hence lower suctions.   

 It is also worth noting that the tensiometers installed at the site are limited in the 

suctions they can measure, as they can become desaturated above 90 kPa. This is illustrated 

by the difference between equitensiometers and tensiometer measurements at the same 

shallow depth. The equitensiometers recorded suctions around three times higher than the 

tensiometers during the summer of 2006. Unfortunately the rest of the data from these 

equitensiometers is largely incomplete. Despite the difference in magnitudes of calculated 
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and measured pore water pressures, the pattern of response (i.e. the time at which wetting 

and drying occur) between the model and the field data is good. 

 

Figure 5.24 – Field measured (Smethurst et al., 2012) and simulated field representative base model 
pore water pressures at shallow depth (0.3 m) at instrumented location A (Figure 5.2) 

At greater depth below the surface (2 m), the magnitude of calculated PWPs is much closer 

to measured values, as can be seen from Figure 5.25. At 2 m depth the model actually slightly 

underestimates the suctions generated during the summer of 2006 and rewets during the 

winter much faster than the field data. Overall responsiveness of the model PWPs appears 

to be less than the measured PWP values. This is a result of higher suctions being generated 

at the surface within the model leading to reduced infiltration and depth of infiltration. 

Nonetheless, the overall periods of wetting and drying over the three years within the 

simulation show general agreement with the field measured data.  

 

Figure 5.25 – Calculated field representative base model and field measured pore water pressures at 
instrumented location A (Figure 5.2), 2 m depth (Smethurst et al., 2012) 
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5.4.2 Shallow vs deep pore water pressure behaviour 

Generally, simulated PWPs are more comparable to the field data at depths below the root 

zone (0.8 m). This is illustrated by Figure 5.26, which shows the maximum and minimum 

PWP depth profile envelopes of the model and the field data in the period 2006-2009. The 

differences arising above 0.8 m are due to both the development of high suctions in the 

model and the limited suction measurement capabilities of the tensiometers in the field. The 

overall size of the PWP envelope throughout the depth of the profile (i.e. the difference 

between maximum and minimum values) is quite similar for the model and for the field, with 

the tensiometers measuring slightly greater suctions than the model at depth, as noted earlier 

in Figure 5.25. 

Rajeev et al. (2012), modelled ground-atmosphere interaction using Vadose/W for 

two instrumented sites in Australia, they also found that model outputs showed closer 

agreement with field results at depths below the root zone, than near the soil surface. 

 

Figure 5.26 – Pore water pressure depth profile envelopes for 2006-2009 calculated for the field 
representative model and measured from the tensiometers (Smethurst et al., 2012) at A 

5.4.3 Summer vs winter pore water pressure behaviour 

Pore water pressure depth profiles from the model at the wettest and driest points of the 

simulation (Figure 5.27) indicate that the model is generally in closer agreement with the field 

measurements when the domain is at its wettest. However, below 1 m depth the model also 

compares well with field PWP when the domain is at its driest, with the exception of the very 

dry summer of 2006. 

 In combination with Section 5.4.2. these results indicate that the behaviour of the 

model when it is unsaturated (i.e. in dry periods and at shallow depths) matches field data 

less well than when saturated. This was explored further during sensitivity analyses (Section 
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5.4.9.) by altering hydraulic conductivity definitions and unsaturated (SWRC and HCF) 

characteristics. 

 

(a) 

 

(b) 

Figure 5.27 – Pore water pressure depth profiles calculated for the field representative model and 
measured from the tensiometers and piezometers at location A (a) and location C (b) (Smethurst et 

al., 2012) on the wettest and driest days of the simulation period  

5.4.4 Wetting vs drying behaviour 

Figure 5.28 compares the calculated and measured PWP response to heavy rainfall events. 

As an example of this behaviour, it was observed that heavy rainfall occurred on the night 

on 19/20th of October 2006. Figure 5.28 shows the measured and simulated PWP depth 

profiles during this time and the days immediately after. It can be seen that a wetting front 

progressively moves through the model domain after the rainfall event, reducing suctions 

down to the zero pressure line at around 1.5 m depth. This behaviour is also shown by the 

field measurements which show a minor decrease in suctions being observed after the event. 

However, the magnitude of the measured decrease in PWP is much less than that calculated 

within the model and the progression of the wetting front is not as well defined. 
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Figure 5.28 – Pore water pressure depth profiles calculated for the field representative model and 
measured from the instruments at location A (Smethurst et al., 2012) following heavy rainfall on the 

19th/20th of October 2006 

During prolonged wet weather, or a ‘wetting period’, the model behaves differently than 

during a ‘drying period’. Figure 5.29 shows the decrease in model calculated soil moisture 

deficit (SMDFRM), TDR derived SMD (SMDTDR), and SMD estimated using a 1D water 

balance (SMD1D) following the summer of 2006. It can be seen that the model rewets more 

slowly than SMD1D but at a similar rate to SMDTDR. However, the opposite is apparent during 

a drying period (Figure 5.30), when SMDFRM increases at a much faster rate than SMD1D.  

It is possible that this discrepancy in behaviour is due to the 2D nature of the 

Vadose/W model as opposed to the SMD1D. When the domain is dry, it is possible to think 

of the slope as a series of 1D ‘slices’ which behave in a similar fashion to SMD1D, however, 

when the domain is wet, the water in the slope may be flowing down towards the toe or 

‘cascading’ from one theoretical slice to another. The behaviour of the slope during wetting 

is therefore likely to be more accurately represented by the two dimensional model 

(SMDFRM), whereas the one dimensional SMD1D model might be more representative of 

drying behaviour. This is somewhat confirmed by comparing SMD1D with the incomplete 

SMDTDR  and observing that the field measured TDR data is closer to SMD1D during drying 

than wetting (Figure 5.29 and Figure 5.30). Additionally, the overall responsiveness of water 

content in the Vadose/W field representative model agrees more with the 1D water balance 

model during the drying period than the wetting period. 
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Figure 5.29 – Soil moisture deficit during a wetting period calculated from the field representative 
base model, from a 1D water balance equation and from TDR measurements from the field data. 

 

Figure 5.30 - Soil moisture deficit during a drying period calculated from the field representative 
base model, from a 1D water balance equation and from TDR measurements from the field data. 

The SMD data shown in Figure 5.29 and Figure 5.30 indicates that the Vadose/W model 

agrees better with field measurements during wetting than drying periods. However, this is 

only the case within the root zone.  At depth below this, the opposite is true, as reflected by 

Figure 5.31 & Figure 5.32, which present the PWP change with time at 2 m depth during the 

same wetting and drying periods. At 2 m depth the Vadose/W model matches the field 

results more closely during drying periods than wetting periods.  

The Vadose/W model is continuum based (Wilson’s equation see Section 2.7) and 

makes no allowance for any preferential flow which may occur in the field. As discussed 

earlier in Chapter 3 preferential flow could lead to the faster rewetting of the soil profile after 

rainfall events and this could be a cause of disparity between model calculated results and 

field measured values during wetting periods. However, at depth below the root zone, the 

model general matches the field results well (also shown in Section 5.4.2.) which indicates 

that flow at these depths is following the continuum assumptions (Darcy-Richards flow). 
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Figure 5.31 – Pore water pressure calculated for the field representative base model and measured 
from a piezometer at location A (Smethurst et al., 2012) during a wetting period 

 

Figure 5.32 – Pore water pressure calculated for the field representative base model and measured 
from a piezometer at location A (Smethurst et al., 2012) during a drying period 

5.4.5 Sensitivity studies 

Sensitivity analyses were used to explore the relative impact of input parameters on the 

simulated pore water pressures and moisture contents within the finite element model. The 

sensitivity analyses were used to identify the key influences and uncertainties related to 

understanding the effects of climate on slope hydrology. 

The influence of hydraulic conductivity variation at the surface and at depth, 

anisotropy, and unsaturated properties (SWRC characteristics) were investigated and are 

discussed here. Further detail on other sensitivity analyses including the effects of vegetation 

can be found in the Appendix. 
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5.4.6 The influence of surface layers of increased hydraulic conductivity  

As a result of laboratory and in-situ permeability measurements within the field, two surface 

layers (with higher saturated hydraulic conductivity (see Table 5.1)) were defined within the 

field representative base model reflecting the spatial change in measured hydraulic 

conductivity with depth observed at the site (Section 5.3.2). To investigate the effects of 

removing or altering this model definition, three additional Vadose/W models were 

constructed containing no surface layers, one surface layer (0.4 m deep), and one surface 

layer (0.6 m deep) respectively (Figure 5.33).  

 

 

Figure 5.33 - Diagram of the four different Vadose/W model material set ups used to investigate the 
influence of the number of surface layers within the Newbury model  

Figure 5.34 shows the temporal variation of PWP at 1 m depth for the four Vadose/W 

models. There is little difference between the one and two surface layer models, with only 

the extremely dry summer of 2006 resulting in a large difference in calculated PWP. However, 

the size of the layer is important to note when comparing to field measurements from one 

depth, as although the higher permeability layer of 0.6 m produced higher suctions at 1 m 

depth, the no surface layer and 0.4 m layer models generate very high suctions at shallower 

depths. Having no surface layer results in high suctions at shallow depths every summer, 

with long rewet times. This is due to the lower hydraulic conductivity of the no surface layer 

model when the soil is dry allowing less infiltration. PWPs at depth seem less responsive in 

the models with two surface layers and are closer to field measurements. This likely reflects 

that most of the change of moisture content is occurring within the near-surface zone of the 
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slope (0 – 0.6 m) and the higher conductivity of the two-surface layer model better captures 

this behaviour.  

 

Figure 5.34 – Pore water pressure at A 1 m depth calculated for four Vadose/W models each with a 
different surface layer configuration and pore water pressure measured from a piezometer 

(Smethurst et al., 2012) 

Figure 5.35 shows the simulated temporal variation of VWC over the models 

duration for the four models with different surface layer configurations. It is noticeable that 

the model with no surface layers rapidly produces lower water contents during the summer 

months of all three years (2006-2009) which are then maintained for a greater duration than 

the other models in the winter months. There is little apparent difference between the other 

models (0.4 m, 0.6 m, and 2 surface layers). 

 

Figure 5.35 – Volumetric water content at 0.3 m depth at location C for four Vadose/W models each 
with a different surface layer configuration and pore water pressure measured from a piezometer 

(Smethurst et al., 2012) 

It is clear that including two surface layers of higher hydraulic conductivity than the London 

clay (as indicated by field measurements) within a model of the site is necessary to better 

capture in-situ behaviour. These layers prevent extremely high suctions being simulated in 
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the very near-surface zone during dry summers and better reflect the shallow depth over 

which the majority of change of moisture within the slope occurs.  

5.4.7 The relative influence of altering underlying hydraulic conductivity as 

opposed to surface layer hydraulic conductivity 

The sensitivity of the model to the saturated hydraulic conductivity (ksat) of the clay below 

the near-surface (below 0.6 m) was explored and compared to the effects of changing only 

near-surface saturated hydraulic conductivity. Near surface hydraulic conductivity influences 

infiltration into the slope whereas deeper hydraulic conductivity governs water storage within 

the model (Briggs, 2011). 

Section (5.4.6.) showed that increasing near-surface layer ksat results in lower suctions 

generated at the near-surface. This is likely due to more infiltration in the dry summer 

months. Increasing near-surface ksat also reduces the depth at which changes in pore water 

pressure can be observed throughout the year. This is a result of more transpiration occurring 

due to less plant stress and increased rates of evaporation from the surface, meaning that 

infiltration does not percolate as deep. 

In addition to the field representative model (Section 5.3.2), two Vadose/W models 

were set up with altered ksat below the near-surface of the slope (i.e. The London clay) but 

with an unchanged surface layer ksat. One with a London clay ksat greater by an order of 

magnitude and one with a London clay ksat reduced by one order of magnitude. 

Figure 5.36 shows the effect of altering the saturated hydraulic conductivity of the 

underlying London clay layer, which comprises the majority of the domain, on pore water 

pressure variation with depth in the model.  

Increasing the ksat of the underlying clay layer results in a decrease in the minimum 

pore water pressures calculated in the root zone throughout 2007 and an increase in the 

depth at which suctions are observed, implying that the model is responsive to the climate 

boundary condition at greater depths as a result. Conversely, decreasing the London clay ksat 

has the effect of increasing suctions in the near-surface region and reducing the depth within 

the model at which pore water pressure changes can be observed. 

These results indicate that when the underlying ksat is reduced, less percolation into 

the London clay layer occurs and therefore the majority of PWP (and VWC) change occurs 
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in the surface layers, reducing the depth of the model influenced by the surface boundary 

condition.  

 

Figure 5.36 - Minimum pore water pressure depth profile envelopes for 2007 calculated from three 
Vadose/W models each with a different London clay saturated hydraulic conductivity value. 

5.4.8 The influence of hydraulic conductivity anisotropy on horizontal and 

vertical flow in the slope 

Due to the internal structure and history of the cutting, it is highly likely that permeability at 

the site varies depending on the direction of water flow (Smethurst et al., 2006). Horizontal 

layers of sand or silt may result in a larger horizontal than vertical permeability in some 

regions, whilst loading history at the site and the formation of vertical cracks may mean that 

the vertical permeability is increased in others. 

The effects of ksat anisotropy were investigated by varying the K-ratio parameter (ky 

= R x kx, where R is the K-ratio, ky is the vertical saturated hydraulic conductivity (m/s), and 

kx is the specified horizontal saturated hydraulic conductivity of the material (m/s)). Figure 

5.37 shows soil moisture deficit for models with K-ratio values of 0.5, 1, 2 and 10 respectively 

(the K-ratio assumed constant throughout the whole model domain).  

Increasing the K-ratio appears to lower the change in SMD within the root zone, 

whilst decreasing the ratio appears to result in a higher SMD during the summer months. 

This is likely a result of the reduced vertical permeability in the low K-ratio models delaying 

the model response during wetting periods. This difference is reflected by Figure 5.38, which 

presents a plot of PWP at 1 m depth for all four models (K-ratios of 0.5, 1, 2, and 10). 

Increasing the K-ratio results in higher suctions being generated in the summer months, 

whilst models with lower K-ratios show less responsiveness to the changing climate 

boundary condition.  
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Figure 5.37 – Soil moisture deficit calculated from four Vadose/W models each with a different ratio 
vertical to horizontal permeability throughout the domain and from a water balance equation 

The behaviour of the models might also be explained with regards to the 1D vs 2D behaviour 

discussed earlier in Section (5.4.4.). When the K-ratio = 0.5, horizontal flow has a large 

impact, meaning that a considerable amount of 2D flow from one theoretical ‘slice’ to 

another takes place. It would therefore be expected to be least comparable to the SMD1D. 

Likewise, in the K-ratio = 10 model horizontal flow is reduced, as are 2D effects, meaning 

that it is likely to be closer to the SMD1D, as shown in Figure 5.37. 

 

Figure 5.38 – Pore water pressure at 1 m depth for models calculated from four Vadose/W models 
each with a different ratio vertical to horizontal permeability throughout the domain and measured 

from a piezometer in the field (Smethurst et al., 2012) 

 

5.4.9 The influence of soil water retention characteristics within the model 

To investigate the effects of altering the soil water retention characteristics on the hydrology 

of the modelled slope, the drying SWRC (Croney, 1977) in the model was replaced by the 

wetting curve also derived by Croney (1977). The two functions are shown in Figure 5.17 
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and the specific van Genuchten parameters associated with each are given in Table 5.3. The 

difference between the two theoretical curves of behaviour is largely reflected in a reduced 

air entry point. The drying curve has a higher air entry valve as the surface tension of the 

smallest pores can keep water within the largest pores when drying and sustain higher 

suctions than when wetting. More detail of the physical significance of these parameters can 

be found in Chapter 2. Since the hydraulic conductivity function is directly calculated from 

the SWRC (Section 2.9.) the corresponding HCFs of all materials in the domain were also 

altered as a result of this change to the model SWRC. 

Table 5.3 - Van Genuchten parameters derived for wetting and drying soil water retention curves 
from  Croney (1977) (shown in Figure 5.17) 

 AEV (kPa) θs θr m n mv (kPa) 

Drying curve 20 0.47 0.1 0.14 1.17 1x10-5 

Wetting curve 7 0.47 0.1 0.15 1.18 1x10-5 

 

Figure 5.39 shows the depth profile envelopes of pore water pressure for two Vadose/W 

models with the wetting and drying SWRCs. It can be observed that the model using the 

wetting curve has a much shallower PWP response to climate, with PWP largely unaffected 

below 1.5 m depth. This is emphasised by Figure 5.40 which shows the temporal PWP 

change at 1 m depth. In the wetting curve model there is a very uniform response to wetting 

and drying periods despite the varying extremes of the simulated years (2006-2009). In 

contrast, the PWPs calculated within the drying curve model are much more responsive to 

rainfall events.  

 Briggs (2011) and GEO-SLOPE (2008) have also shown more responsiveness within 

Vadose/W models as a result of reducing the AEV. 
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Figure 5.39 – Pore water pressure depth profile envelopes for the year 2006 calculated from two 
Vadose/W models, one using a wetting soil water retention curve and one using a drying soil water 

retention curve (Croney, 1977) 

 

Figure 5.40 – Pore water pressure at 1 m depth calculated from two Vadose/W models, one using a 
wetting soil water retention curve and one using a drying soil water retention curve (Croney, 1977), 

and pore water pressure measured in the field using a piezometer (Smethurst et al., 2012) 

At shallower depths the suctions generated during the summer months are considerably 

greater and more prolonged in the wetting curve model than in the drying curve model. This 

is reflected in terms of VWC as Figure 5.41 shows. It is apparent that within the root zone 

(0 - 0.8 m), substantially higher and more prolonged soil moisture deficits are generated in 

all three years of the simulation by the wetting curve model than the drying curve model. 

During the initial drying stages there is little difference between the two models, only once a 

large SMD (> 50 mm) is established do the differences become apparent, with the wetting 

curve model generating maximum SMDs more than 30 mm larger than the drying curve 

model in the summer months. Toll et al. (2014) observed similar behaviour when modelling 

tropical soils with Vadose/W.  
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From Figure 5.18 and Figure 5.19 it was shown that the Croney (1977) London clay 

drying curve better reflected the site behaviour as measured using field instruments than the 

Croney (1977) London clay wetting curve. This is replicated in the results of the models 

shown here in Figure 5.40 and Figure 5.41 where the drying curve model results appear to 

capture the changes in PWP and VWC in response to climate conditions in a manner more 

reflective of field observations. 

The impact of altering the SWRC implies that the definition of a SWRC is very 

influential in modelling the hydrology of this slope. This is likely to be because the many of 

the important hydrological processes within this slope occur in the unsaturated zone. 

However, it also shows the limitations of the modelling assumptions involving SWRCs. As 

discussed in Chapter 2, SWRCs are curves approximately fitted to laboratory data (see figure 

2.6) and are not true reflections of the soil behaviour which follows scanning curves between 

wetting and drying SWRCs. Therefore these results indicate that better relationships 

describing unsaturated behaviour based on true measurements of pore connectivity are 

needed. 

 

Figure 5.41 – Soil moisture deficit calculated from two Vadose/W models, one using a wetting soil 
water retention curve and one using a drying soil water retention curve (Croney, 1977), and from a 

water balance equation 
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5.5 Conclusions  

Vadose/W was used to model a roadside cutting near Newbury in order to assess 

hydrological modelling with regards to estimating pore water pressures and volumetric water 

contents and to examine slope hydrology in response to real climate data. The model was 

used to explore key uncertainties and their impact on slope hydrology. The following 

conclusions can be drawn from the findings presented here and have informed the rest of 

the work carried out as part of this thesis: 

➢ Generally, the pattern of response of the field representative model pore water 

pressures in the root zone and the field measurements is good. However, the field 

representative model generates large suctions at the near-surface during dry periods 

which are not measured within field observations. The model makes no allowance 

for preferential flow due to cracking or the presence of macropores, which could 

result in higher hydraulic conductivity and lead to lower suctions occurring in the 

field. The magnitude of calculated PWP values is much closer to field measurements 

at depths below the root zone (0.8 m). At these depths, the soil behaviour is described 

better by the continuum assumptions and Richard’s equation type flow within the 

model. 

 

➢ The behaviour of the slope during wetting periods is more accurately represented by 

the Vadose/W field representative model than the SMD1D water balance model due 

to the two-dimensional nature of flow within the slope during these periods. Flow 

within the slope during drying periods is shown to be a more one-dimensional 

process. This was emphasised using a sensitivity analysis of hydraulic conductivity 

anisotropy. 

 

➢ The field representative model generated pore water pressures are closer to field 

measured pore water pressures when the domain is close to saturation as opposed to 

dry. The results indicate that the assumptions of unsaturated soil behaviour (SWRC 

and HCF parameters) used within the model do not reflect the true behaviour of the 

slope in dry conditions. A sensitivity analysis which explored altering soil water 

retention characteristics showed that these parameters have a large impact on slope 

hydrology and exposed the limitations of the use of SWRCs to characterise 

unsaturated soil behaviour. Therefore better relationships describing unsaturated 
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behaviour based on true measurements of pore connectivity and structure are 

needed. 

 

➢ Including surface layers within the model to represent the spatial variation of 

hydraulic conductivity in near-surface region (0 – 0.6 m) was shown to be important 

in order to better reflect the shallow depth over which the majority of moisture 

change occurs and to better model field behaviour. During sensitivity analyses, 

altering saturated hydraulic conductivity of the underlying clay within the slope was 

also shown to affect the magnitude of simulated suctions in the near-surface zone 

and the depth over which PWP changes occur. 

The results of this investigation reinforce the importance of determining how the 

hydraulic conductivity of clay soils varies with depth and saturation within earthworks, 

in order to be able to correctly model the hydrological response of these slopes to climate 

conditions. It has been shown in Chapter 2 that macropores and the pore structure of a 

soil plays a role in the hydraulic conductivity. Determining the degree to which this pore 

architecture and its evolution with changes in saturation and depth influence hydraulic 

conductivity is therefore of great importance. This is explored further in Chapter 8 after 

Chapters 6 and 7 first investigate the use of microCT to visualise and quantify the internal 

macropore structure of earthwork samples. 
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6 Investigation into microCT capabilities and 

development of a scanning procedure for large scale 

clay fill samples 

 

6.1 Introduction 

Chapter 5 showed the importance of accurately describing the variation of hydraulic 

conductivity with depth and with changes in saturation, when modelling the hydrological 

conditions of infrastructure slopes. However, it has historically been difficult to precisely 

observe the effects of soil macroporosity on soil hydraulic conductivity due to the difficulty 

in quantifying the internal macropore structure of representative natural samples in a non-

destructive manner. Computed tomography is a potential new tool for overcoming this 

problem.  

Over the past decade or so, CT scanning has become a more widely used 

experimental technique in disciplines outside of medicine, including hydrology and soil 

science (See Chapter 4). This technique allows high resolution, 3D, non-destructive imaging 

of soil structure and macropore networks. This imaging data can then be used to provide 

quantitative estimates of many properties associated with the pore architecture including 

macroporosity, pore connectivity, and tortuosity. It therefore offers the potential to link soil 

structure and pore architecture to flow and hydraulic conductivity. This is discussed further 

in Chapter 8.   

Although quantitative measures of the macropore network calculated from X-ray 

tomography images can provide useful information on soil structure, they are dependent on 

the sample size, scanning procedure, image quality, and image processing methods used 

(Chapter 4).  

This chapter investigates the capabilities of a microCT scanner with regards to 

scanning large clay fill samples within the scan acquisition time constraints imposed by a 

working day. Subsequently Chapter 7 develops a suitable image analysis procedure using the 

data obtained using the scanning procedure developed here. 

Within the geosciences, the definition of what constitutes a macro or micro pore can 

vary widely (Perret et al., 1999). For clarity, throughout this chapter and any subsequent 
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descriptions of CT derived pore parameters, the term ‘macropore’ is used to describe any 

pore that is visible within the CT image data. As the samples scanned are clay, this will 

exclude a significant amount of smaller ‘micropores’, which are pores not visible in the CT 

data and constitute the majority of the total porosity of the scanned samples. 

6.2 Objectives  

This chapter presents an investigation into the use of microCT to scan a large scale clay fill 

block sample, as well as two smaller 100 mm diameter clay fill samples (which are still large 

by microCT standards), assessing the limits of microCT scanner capabilities with regards to 

sample size and image quality. 

The objective of this work was to scan a large clay fill sample (either a block sample 

or 100 mm diameter cylindrical sample) at an image quality (i.e. resolution and contrast) 

which allows for the visualisation and quantification of the macropore structure inside the 

samples (pores > 63 microns in size) within the acquisition time restraints of a working day.  

This investigation can then be used to explore the effects of sample size and to 

determine appropriate scan settings (e.g. X-ray energy, number of projections etc.) that will 

be used to scan undisturbed clay fill samples in Chapter 8. 

6.3 Background 

As discussed in Chapter 4, the quality of image data (contrast and spatial resolution) obtained 

from CT scanning is usually relative to the size of the sample being scanned.  

The spatial resolution is dependent on the distance between the source, sample, and 

detector, as the focal spot size is altered according to the field of view required to scan the 

entire sample (a larger sample requires a larger focal spot size). The best resolution achievable 

is reduced as power and field of view increase. This is due to focal spot defocusing at high 

powers which results in edge blurring or penumbra (see Chapter 4). 

Contrast depends on the difference in X-ray attenuation by the respective materials 

which comprise the sample. It therefore depends on the power of X-rays fired through the 

sample, with high powers resulting in a lower contrast (Helliwell et al., 2013). Higher contrast 

means that internal features of the specimens become more visible and results in an easier 

segmentation process between material phases. 
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However, if sample size (or density) is increased, then higher powers need to be used 

in order to enable the X-rays to penetrate through to the detector. As a result, there is 

commonly a trade-off between contrast and the size and density of the samples being 

scanned (Cnudde and Boone, 2013).  This is one of the reasons that, historically, researchers 

exploring the use of CT in the geosciences have tended to focus on very small sample sizes 

(< 5 cm) (see Chapter 4). 

6.4 Method 

6.4.1 The microCT machine used 

The scans presented within this thesis were undertaken using a Nikon X-Trek XTH225ST 

microCT machine installed at the Department of Mechanical Engineering at the University 

of Bath (Figure 6.1). It has a 225 kV micro-focus X-ray source with minimum 3 µm focal 

spot size. Other specifications are given in Table 6.1. 

 

 

Figure 6.1 - Manufacturer image of the microCT scanner used for all scans (Nikon X-Trek 
XTH225ST)  

Table 6.1 - Specifications for the Nikon X-Trek XTH225ST  
 

*Focal spot size depends on the power used (i.e. the size and density of the sample) 

 

 

Micro-focus X-ray source Max. kV Max. 

power 

Focal spot size* Focal spot size 

 at max power* 

225 kV Reflection target 225 kV 225 W 3 µm up to 7 W 225 µm at 225 W 
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6.4.2 Materials 

Three scans were used in this investigation to explore microCT capabilities and establish a 

suitable scanning procedure. The scans explored sample size, achievable image quality, 

sample consistency and imaging artefacts. 

Three different samples were used for the respective scans. Details of the samples 

are shown in Table 6.2. All the samples were derived from clay fill from Laverton 

Embankment in Gloucestershire. This embankment forms part of the Gloucestershire-

Warwickshire historic railway line which has suffered slope failures in the past and was 

originally part of the Honeybourne line (Cheltenham–Stratford-upon-Avon–Birmingham) 

built between 1900 and 1906. The embankment is around 6 m high and is believed to have 

been constructed by end tipping of local Charmouth Mudstone (see Chapter 8 for more 

details on the site and sampling methods). 

The first sample (Figure 6.2) was a large block sample of clay fill (approximately 30 

cm x 30 cm x 30 cm) obtained from the near-surface (0.5 m depth) within Laverton 

Embankment which was the largest sample that could be realistically inserted into the 

microCT machine.  

The second sample was a 100 mm diameter core trimmed from within the block 

sample (Figure 6.3). The third sample was a 100 mm diameter core manufactured from 

reconstituted clay fill obtained from within the embankment (3.5 m depth) (Figure 6.4). The 

reconstituted sample was prepared using wet compaction to a bulk density of 1.91 g/cm3  in 

line with the most dense of the core samples scanned later in Chapter 8 (Table 8.1) and the 

mean bulk density associated with samples from Laverton embankment measured by Gunn 

et al. (2016). 

Particle size distributions for the clay fill block sample and for the reconstituted 

sample are shown in Figure 6.5, as well as the particle size distribution from a clay fill core 

sample taken from 4.5 m depth (5C bot, scanned in Chapter 8). One novel aspect of this 

work is that the block and trimmed samples are both near-surface (0.5 – 0.8 m depth) samples 

which contain small rocks, and in contrast to many previous studies involving CT, no sieving 

or grading was conducted prior to scanning. This is shown by the large particles sizes present 

within the block sample particle size distribution (Figure 6.5).  
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Figure 6.2 - The clay fill block sample (0.5 - 0.8 m depth) excavated from Laverton embankment 
(approx. 30 cm diameter) 

 

Figure 6.3 - The 100 mm diameter trimmed core (from a clay block sample) from Laverton 
embankment (80 mm height)) 

 

Figure 6.4 - The reconstituted sample prepared from a clay fill from Laverton embankment (3.5 m 
depth) (80 mm height) 
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Table 6.2 – Details of the three clay fill samples used in the investigation into microCT capabilities and scanning procedure  

Sample Dimensions Parent 

material 

Origin Sampling procedure Scanning and 

saturation 

procedure 

Block sample 

Height ≈ 30 cm 

Width ≈ 30 cm 

Length ≈ 30 cm 

Charmouth 

Mudstone  

Laverton embankment fill 

0.5 - 0.8 m depth 

Block sampled using an 

excavator by the British 

Geological Survey 

Scanned at 

sampled (field) 

conditions. 

Trimmed 100 mm 

diameter cylindrical 

sample 

Height: 79 mm 

Diameter: 98 mm 

Charmouth 

Mudstone   

Laverton embankment fill 

0.5 - 0.8 m depth 

 

Trimmed from the block 

sample to a cylindrical 

sample with a diameter of 

approximately 100 mm 

 Scanned fully 

saturated 

(submerged). 

Reconstituted 100 mm 

diameter cylindrical 

sample 

Height: 87 mm 

Diameter: 100 mm 

Charmouth 

Mudstone 

Laverton embankment fill 

3.5 m depth 

 

After crushing sample was 

prepared using wet 

compaction with a 

hydraulic ram to a bulk 

density of 1.91 g/cm3 in 

line with cores from 

Laverton (Chapter 8) 

 

Stored refrigerated 

at 3ºC. Scanned 

after saturated 

hydraulic 

conductivity 

testing within a 

triaxial cell. 
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Figure 6.5 – Particle size distributions for a near-surface clay block sample, a reconstituted sample 
made from a clay fill core (3.5 m depth), and a clay fill core from 4.5 m depth, obtained from wet 

sieving and hydrometer tests (BS 1377-2:1990) 

X-Ray diffraction analysis of the clay fill was undertaken using a Bruker D8 Advance X-ray 

powder diffractometer. This showed that the clay fraction of the fill (< 63 μm) consisted of 

quartz, calcite, kaolinite, illite and sodium magnesium aluminium silicate. 

Table 6.3 shows the plasticity, moisture content, density and porosity properties 

determined from samples from Laverton embankment both from Gunn et al. (2016) and 

from the samples investigated later in Chapter 8. 

Table 6.3 - Material properties determined from samples from Laverton embankment both from 
(Gunn et al., 2016) and from the samples investigated later in Chapter 8 (including the reconstituted 
sample). 

Sample type and source Properties 

 

Properties from Laverton embankment samples (see 

Chapter 8) as well as results from (Gunn et al., 

2016)(6 additional samples (12 total)) 

Liquid limit range : 61 – 77% 

Plastic limit range 27 – 37% 

Moisture content (gravimetric) range: 21 – 33% 

Bulk density range: 1.76 – 1.97 g/cm3 

Dry density range: 1.33 – 1.64 g/cm3 

Particle density: 2.66 g/cm3 

 

 

Reconstituted 100 mm diameter cylindrical sample 

 

Bulk density: 1.91 g/cm3 

Dry density: 1.45 g/cm3 

Void ratio: 0.98 

Porosity: 0.49 
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6.4.3 MicroCT Scanning Method 

The microCT scanning method used within this investigation can by summarised by the 

following procedural steps: 

1) Firstly, a scan was conducted on the largest possible sample that could be placed 

within the Nikon X-trek machine (the block sample) using the maximum power 

possible in order to determine the image quality achievable for this size of clay fill 

sample within the acquisition time restraints of a working day (4 hour scan).  

2) To obtain images containing less artefacts and better contrast between phases (pores 

and matrix) the block sample was trimmed to a 100 mm diameter cylinder and 

scanned using lower microCT power settings (inferred from Step 1)(still achieving 

high resolution images). 

3) A reconstituted 100 mm diameter sample (which was denser and more representative 

of core samples from depth within the embankment) was prepared and subsequently 

scanned using the same power and scanner settings as the trimmed sample (Step 2).  

4) The image quality (resolution, contrast, artefacts) of the trimmed and reconstituted 

sample scans was compared to determine the scan settings to be used for all 

embankment core samples (Chapter 8). 

5) The image data from the trimmed and reconstituted sample scans was also compared 

to assess differences in the structure and consistency of the samples to determine the 

optimum sample to use in order to develop a suitable image analysis procedure 

(Chapter 7). 

The microCT power and scan parameters for all three scans are shown in Table 6.4. 
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Table 6.4 – MicroCT scan properties for three scans 

Sample 

Scanner power settings Scan parameters  

Voltage 

(kV) 

Current 

(mA) 

Exposure 

(ms) 

Projections Vertical 

slices 

Other 

Block sample 225 395 4000 1800 1998 

copper 

filter (0.5 

mm thick)*  

Trimmed 100 

mm diameter 

cylindrical 

sample 

 

195 105 2000 1800 1998 - 

Reconstituted 

100 mm 

diameter 

cylindrical 

sample 

195 105 2000 1800 1998 

copper 

filter (0.5 

mm thick)* 

* A copper filter was used to remove low powered X-rays and reduce beam hardening image artefacts 

The duration of microCT scans depends on two scan parameters, namely, the number of 

projections (rotations) of the sample and the exposure time used. The number of projections 

is usually a function of detector size although it can be optimised for particular samples if 

desired. The exposure time is the amount of time that the detector measures photons to 

create an image. Increasing exposure time allows the use of lower scan powers which can 

lead to increased contrast and image quality of large specimens (see Chapter 4). However, 

long exposure times increase the duration of scans significantly which can be problematic 

due to several limitations imposed on the length of scan time.  

The scan acquisition time (i.e. the duration of the scans) in this investigation was influenced 

by the following factors: 

➢ The nature of the samples – The samples could not be left to overly dry out 

during the scanning process as new macropores may develop due to cracking.  

➢ The saturation procedure – Due to the desire to keep the saturated samples 

as close to saturation as possible during scanning, the experimental programme 

dictated that the scans had to occur at certain times of day to allow for pre and post 

scanning sample preparation. 
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➢ Access to the CT scanner facilities - The machine is heavily used by 

researchers and an operator is need to set up and end any scans so scan duration was 

limited to 4 hrs 

The block sample was scanned using the maximum power and the longest exposure time 

possible within 4 hours. A 0.5 mm copper filter was also used to reduce the effects of beam 

hardening (see Chapter 4).  

After the results of this scan had been analysed, the X-ray power was lowered to 

improve image quality (discussed later) in order to scan the trimmed sample. Having achieved 

sufficient image resolution and contrast, the same settings were then used to scan the 

reconstituted sample in order to investigate if the image quality was preserved when scanning 

denser samples (e.g. embankment cores from depth). 

6.4.4 Scan output 

Prior to analysis and quantification of image data, the raw attenuation data must first be 

reconstructed into a 3D image. Image data from scans is reconstructed by building a 3D 

image from 2D slices (see Chapter 4). All the scan images were reconstructed using 

proprietary software supplied by Nikon with the scanner. The software contains inbuilt 

correction algorithms to reduce ring artefacts, beam hardening and noise (see Chapter 4). 

These were used during the reconstruction process along with a shading correction, which 

takes into account any error in greyscale caused by ageing of the microCT detector. These 

reconstruction settings were kept constant for all subsequent scans to aid comparison of 

sample data and repeatability of the tests. Reduction of noise and artefacts can also 

subsequently be carried out during analysis of the image data as discussed later.  

An example of how image quality is assessed is shown in Figure 6.6, which shows 

the trimmed sample reconstructed within Avizo Fire (FEI, 2014), a commercial software tool 

for visualisation and analysis of microCT scans. Figure 6.6 shows a clear contrast between 

phases (pores and soil matrix) which indicates good image quality and the potential to 

segment the data. Image contrast can also be examined using the greyscale intensity 

histogram of an image (see Chapter 4) where more pronounced peaks corresponding to 

different material phases increase the ease with which a sample can be segmented. The spatial 

resolution of an image is determined from the voxel size achieved during the scanning 

process. 
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Figure 6.6 – An example of how microCT image data can be visualised - A reconstruction of the 
trimmed 100 mm diameter sample (79 mm height) within Avizo Fire showing a cross-section of the 
sample with clear contrast between material phases (pores, soil matrix, and higher density stones) 

(greyscale is inverted in this image (pores appear lighter)). 

6.5 Results and discussion 

Figure 6.7 shows two vertical slices from the reconstructed microCT image data of the clay 

fill block sample. Table 6.5 shows the spatial resolution achieved within scans of all three 

samples within this investigation). 

Figure 6.7 shows that there is not enough contrast between the phases within the 

sample in order to segment the images. The figure also shows several image artefacts present 

within the image data, including a significant amount of noise (shown as the white speckle), 

beam hardening (higher greyscale at edges of sample), and penumbra (blurring at sample 

edges). As well as the poor contrast, these artefacts prevent the image data from being 

segmented and therefore quantified reliably. However, as Table 6.5 shows, the scan of the 

block sample did achieve good spatial resolution for a large sample (37 μm sized voxels). 

Both these results indicate that the high X-ray power used in order to achieve good 

resolution mean that the image contrast has suffered severely. This problem has been 

exacerbated by beam hardening and noise due to the high density of the sample absorbing 

low energy X-rays. The presence of penumbra is a result of the large focal spot size needed 

to scan a sample of this size. 

 It can also be seen from Figure 6.7 that the image data does not allow the presence 

of stones within the sample (Figure 6.3 and Figure 6.5) to be distinguished. If acquisition 
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time had not been limited to four hours, exposure time could have been increased therefore 

allowing a lower X-ray power to have been used in the scan. This may have resulted in better 

image contrast, however the large number of image artefacts present in the sample mean that 

this would not have improved the image quality enough for the data to be quantifiable. 

Therefore this size of sample (30cm x 30cm x 30cm) is too large in order to achieve usable 

data with the microCT scanner used here in a 4 hour scan. 

Table 6.5 – The spatial resolution achieved within the three scans investigation microCT capabilities 

Sample Voxel resolution (mm3) 

Block sample 0.037475 

Trimmed 100 mm diameter 

cylindrical sample 
0.038775 

Reconstituted 100 mm diameter 

cylindrical sample 

0.062784 

 

   

  

Figure 6.7 – Two vertical slices from a microCT scan of a clay fill block sample showing poor 
contrast between phases, noise (white speckle), beam hardening (lighter/higher greyscale at edges), 

and penumbra (blurring at the top and bottom of the image) 

Figure 6.8 shows a vertical slice from the trimmed (100 mm diameter) sample and a vertical 

slice from the 100 mm diameter reconstituted sample. Figure 6.8 shows that both of these 

scans achieve a clear contrast between phases and that sharp boundaries are present between 

these phases, which allows for accurate segmentation. It can also be seen that any image 

artefacts present (e.g. beam hardening) are not significant. Table 6.5 shows that the spatial 

resolution for the trimmed sample remains approximately the same as for the block sample 

despite the lowering of X-ray power and the change in sample size. This is because the power 
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settings used for the trimmed sample scan were chosen to achieve a similar resolution. The 

change in sample size allows a lower exposure time and X-ray power to be used as these two 

changes, in effect, counteract one another. The reduction of the diameter of the sample 

allows enough X-rays to penetrate the samples at these lower power settings, leading to 

acceptable image quality. 

 Table 6.5 shows that although the contrast for the 100 mm diameter reconstituted 

sample data was improved relative to the large block sample (Figure 6.8(b)), the spatial 

resolution achieved in that scan was less than the previous two (62 μm). This is because the 

same X-ray power settings were used for both the trimmed and reconstituted sample scan. 

The reconstituted scan is considerably denser than the trimmed sample, which is composed 

of near-surface clay fill and can be seen to contain larger macropores and stones (Figure 

6.8(a)). As a result of this difference in density, the X-rays are less effective at penetrating the 

reconstituted sample at these power settings. However these settings were chosen in order 

to assess if the power settings used for the trimmed sample provide useful data when used 

to examine the embankment cores in Chapter 8. The resolution and contrast achieved using 

these X-ray power settings within the acquisition time restrictions was deemed acceptable 

for the study of macropores presented within this thesis, as it allows for the visualisation and 

quantification of individual macropores above (a maximum of) 62 microns in size. 

   

(a)                                 (b) 

Figure 6.8 – A vertical slice (80 mm height) from the reconstructed microCT image data of (a) the 
100 mm diameter trimmed sample and (b) the 100 mm diameter reconstituted sample. Showing clear 

phase contrast (between pores and other constituents) and no significant imaging artefacts 
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The image quality of all three scans can be further assessed by viewing the greyscale intensity 

histogram corresponding to each scan. These are shown in Figure 6.9. It can be seen that the 

intensity histogram corresponding to the block sample (Figure 6.9(a)) shows only one clear 

peak within the data. This is due to noise and beam hardening and the data is therefore 

impossible to segment (As illustrated by Figure 6.7). The block sample histogram also has a 

much larger range of greyscale than the histograms corresponding to the other scanned 

samples (Figure 6.9(b) and Figure 6.9(c)). This is due to the presence of a significant amount 

of high density stones within the sample (Figure 6.5). 

 The greyscale histograms from the trimmed sample and the reconstituted sample 

scans (Figure 6.9(b) and Figure 6.9(c)) show a clearer indication of the overlap between the 

material phases and therefore the threshold value which could be used to segment the data. 

However, the maxima and minima within the data are not totally apparent due to some noise 

within the samples. This indicates that 100 mm diameter samples of this density (clay fill) are 

at the limit of the scanner capabilities in terms of generating scan image data with good image 

quality. Despite this, the scans conducted here (with these power settings and acquisition 

time) have provided image data which is of sufficient quality in order for the segmentation 

and quantification process to be carried out after image enhancement (Chapter 7) (as 

illustrated by the clear contrast shown in Figure 6.8 and the resolutions shown in Table 6.5). 

It can also be noted from Figure 6.9 that the reconstituted sample histogram (c) has a lower 

greyscale range than trimmed sample (b). This is due to the presence of stones in the trimmed 

sample (Figure 6.8).  

 

(a) 
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(b) 

 

(c) 

Figure 6.9 – Greyscale intensity histograms for (a) the large block sample, (b) the trimmed 100 mm 
diameter core, and (c) the reconstituted 100 mm diameter sample. Showing more defined peaks 

corresponding to the pores in the 100 mm diameter samples 

Figure 6.10 shows a series of horizontal slices from three heights (20, 40, and 60 mm from 

the base of the sample) within trimmed and reconstituted samples. The figure shows the 

consistency of the samples throughout their height. It can be seen that the trimmed sample 

has a much greater degree of macroporosity (both larger and more numerous macropores) 

and is much more variable throughout the entire height of sample, whereas the reconstituted 

sample is very consistent in terms of macroporosity and structure. Figure 6.10 also shows 

the difference in edge disturbance between the trimmed and reconstituted samples. The 

figure shows that the trimmed sample has a much greater degree of heterogeneity along the 

edges of the sample (large macropores) due to the trimming process during sample 

preparation. 
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(a) 

  

(b) 

   

(c) 

Figure 6.10 – Horizontal (x-y) slices throughout the height of the samples showing (a) 20 mm height 
(b) 40 mm height and (c) 60 mm height for the trimmed 100 mm diameter sample (left) and the 

reconstituted 100 mm diameter sample (right). Showing that the trimmed sample contains much 
larger macropores and is less consistent than the reconstituted sample.  
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The reconstituted samples shows less edge disturbance, a more uniform distribution of 

macropores, and a more consistent structure (more uniform particle sizes) than the trimmed 

sample (which is near-surface clay fill). Figure 6.5, Figure 6.10, and Table 8.1 (Chapter 8) 

show that the embankment cores taken from depth within the embankment are similar in 

particle size, density and edge disturbance to the reconstituted sample. This indicates that the 

reconstituted sample is a suitable sample to use in order to develop a consistent image 

analysis procedure which allows for the quantification of macropores within the 

embankment cores (Chapter 7). 

6.6 Conclusions 

This chapter presented an investigation into the capabilities of a microCT machine with 

regards to scanning large clay fill samples within the scan acquisition time constraints 

imposed by a working day. Several key conclusions were drawn from this investigation and 

were subsequently used within the scanning methodology for the embankment cores 

discussed later in this thesis. 

➢ It was not possible to scan a large clay fill block sample (30 cm) using a microCT 

scanner and obtain sufficient image quality to quantify macropores within the time 

restraints imposed by a working day (4 hours). This was due to the very dense nature 

of the clay fill sample requiring very high X-ray powers in order to achieve good 

resolution and the subsequent loss of phase contrast. The large sample size and 

density also resulted in excessive amounts of imaging artefacts (such as beam 

hardening) which further hinder accurate image segmentation. 

 

➢ A 100 mm diameter sample of near surface clay fill was scanned using a microCT 

scanner within a working day at sufficient image quality to distinguish material phases 

(pores and soil matrix) and to allow for segmentation. The reduced diameter of the 

sample (compared to the large block sample) enabled X-rays to penetrate the sample 

at a lower intensity without generating excessive imaging artefacts. This size of 

sample is much larger than commonly scanned using microCT (< 5 cm), especially 

so for a clay soil. 

The power settings used to scan the 100 mm diameter trimmed sample also 

achieved acceptable image quality to identify macropores (> 63 microns) and 

distinguish phases for segmentation when used on a denser 100 mm diameter 
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reconstituted clay fill sample. Therefore, in order to maintain consistency in all 

subsequent scans (to allow for comparison between results) the microCT power 

settings determined for these scans should remain constant (Voltage: 195 kV, current: 

105 mA, exposure time: 2 seconds, projections: 1800, and 1998 slices). 

 

➢ Differences in soil structure between the reconstituted sample (clay fill from 3.5 m 

depth) and the near-surface (0.5 m) clay fill samples are identifiable from scan image 

data. Scans of the reconstituted clay fill sample show that the structure, macropore 

size, and macropore distribution are consistent throughout the sample. This indicates 

that the reconstituted sample is a suitable sample to use in order to develop an image 

analysis procedure which allows for the quantification of macropores within other 

cores extracted from Laverton embankment (Chapter 7).  

Scans of the near-surface clay fill sample show more complexity (including 

edge disturbance due to sampling), spatial changes in macropore size and 

distribution, and particle sizes (containing higher density stones). This sample is 

therefore less suitable for exploring image analysis techniques (Chapter 7) and 

relationships between macropore properties (e.g. pore size distribution, 

macroporosity, macropore length, and macropore surface area) with measurements 

of saturated hydraulic conductivity (Chapter 8). 
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7 Development of a microCT image analysis procedure 

for large scale clay fill samples 

7.1 Introduction 

This chapter presents a microCT image analysis procedure for a reconstituted 100 mm 

diameter clay fill sample which allows for visualisation and quantification of the internal 

macropore architecture. This procedure provides a technique to consistently image and 

measure macropore properties including size, structure, and distribution. A consistent image 

analysis procedure is necessary to compare results obtained from different microCT scans. 

The procedure developed here allows embankment core samples to be reliably measured and 

compared (including at different states of saturation) in Chapter 8.  

This chapter explores subsampling as a technique to allow for quantification 

(identification and measurement of individual macropores) within a data set from a large 

scale microCT scan taking into account computational demands. The image procedure 

developed also seeks to limit the effects of operator input/bias into the analysis and establish 

a consistent method of improving and segmenting scan image data, as these are common 

sources of error when processing microCT scan image data (see Chapter 4). Additionally, 

this chapter investigates the impact of a partial volume effect correction on measured pore 

property metrics (e.g. number, and volume of macropores). 
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7.2 Objectives  

The aim of this investigation was to develop a consistent and repeatable image analysis 

procedure for 100 mm diameter clay fill cores which can be subsequently used on scan data 

obtained from the sample cores in Chapter 8. This procedure was developed by achieving 

the following specific objectives: 

1) To explore three types of subsampling (A maximum cuboid subvolume, 25 mm 

layers, and a 40 mm central cube) as a method to reduce computational demand in 

order to allow for the quantification of scan image data from a large clay fill sample 

(100 mm diameter). 

2) To determine suitable image improvement and segmentation methods which allow 

for an accurate definition of the macropores (> 60 μm) within a 100 mm diameter 

clay fill sample.  

3) To assess the impact of the partial volume effect on measured macropore properties 

(e.g. number, volume, and distribution of macropores) within a 100 mm diameter 

clay fill sample. 

7.3 Methodology 

7.3.1 Materials and microCT scanning procedure 

An investigation was carried out to determine the optimal image analysis procedure to use 

for a clay fill 100 mm diameter sample. A reconstituted specimen (100 mm diameter, 87 mm 

height) (Figure 7.1) was prepared and scanned using the settings described previously 

(Section 6.4.3.). These settings are shown in Table 7.1. It has been shown in Chapter 6 that 

this scan is of acceptable image quality (resolution and contrast) to allow for segmentation 

between the pores and soil matrix and represents the densest sample found within the 

embankment samples. 
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Figure 7.1 - The reconstituted sample prepared from a clay fill from Laverton embankment (3.5 m 
depth) (80 mm height) 

Table 7.1 – The microCT scan settings used in order to scan the 100 mm diameter reconstituted clay 
fill sample at sufficiently image quality (see Chapter 6).  

Sample Voltage 

(kV) 

Current 

(mA) 

Exposure 

(ms) 

Projections Vertical 

slices 

Other  

Reconstituted 

100 mm 

diameter 

cylindrical 

sample 

195 105 2000 1800 1998 

Copper* 

filter (0.5 

mm thick) 

*copper filter used to reduce beam hardening 

Image data from the scan of the reconstituted sample was reconstructed in Avizo fire (FEI, 

2014) as shown in Figure 7.2. The image data was used to compare various analysis 

techniques and procedural steps and comment on peculiarities and limitations of the 

experimental method. Figure 7.3 shows a flowchart of the analysis procedure investigated. 

The following four key steps in this process were explored and are discussed in this Chapter: 

➢ Extraction of sub volumes from within the sample image data in order to reduce 

computational demands and enable the quantification of macropore size properties 

(Section 4.5.1). 

➢ Filtering and image enhancement to remove any image artefacts and increase 

definition between pore and matrix phases to enable more accurate segmentation 

(Section 4.5.3.). 
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➢ Segmentation and thresholding methods to effectively assign voxels within the image 

data to material phases in an accurate manner, (ideally with limited operator bias) 

(Section 4.5.2.). 

➢ Establishing the impact of a partial volume effect correction on the pore property 

metrics (e.g. number of pores) obtained from sample scan data (Section 4.6.1). 

 

  

Figure 7.2 – Reconstruction of the 100 mm diameter reconstituted sample visualised within Avizo 
fire (FEI, 2014) 
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Figure 7.3 – A flowchart of the key steps involved in a microCT scan image analysis procedure in 
order to visualise and quantify the internal macropore structure of clay fill samples 

7.3.2 Subsampling 

As discussed in Chapter 4, extraction of a subvolume for analysis is a method which can be 

used within microCT image analysis procedures in order to remove edge effects and/or 

reduce the sometimes prohibitive size of the image files generated. It is often necessary to 

reduce file size prior to analysis in order to output useful results from the extremely large 

amounts of data (32 Gb) generated during the scans, even on a computer with significant 

processing power (all samples were analysed in a specifically designed CT visualisation suite 

on a computer with 2 x 2.5 GHz processors and 176 Gb of RAM). 

As the aim of the image analysis procedure is to quantify the macropore structure 

within the samples, extraction of a subvolume has the limitation that almost all subvolumes 
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will contain truncated pores at their edges. Quantitative results from one subvolume within 

a sample will therefore differ from the results of another, due to this truncation of pores as 

well as the inherent variation of soil parameters throughout the sample.  

The use of the three subsampling methods with respect to quantification and 

truncation of pores was measured by examining pore size distributions, pore property 

metrics (macroporosity, macropore volume, length, surface area etc.), and the variation of 

volume of macropores with depth throughout the sample. These three types of subsample 

are shown in Table 7.2 and visualised in Figure 7.4. The impact of both the size and location 

of the subvolumes were examined. The computational implications in terms of time and 

what results could be generated from the subsamples was also explored.  

The first method investigated was the extraction of the maximum possible cuboid 

volume from the centre of the sample (Figure 7.4). This volume was chosen to see if it was 

possible to visualise and quantify almost the entire volume of macropores within the sample. 

This volume also results in removing some, but not all, edge effects caused by sampling 

disturbance. These edge effects are important as they can result in incorrectly quantified 

pores along the edges of the subvolume.  

The second method involved splitting the core into three volumes (or layers) (top, 

middle and bottom) so that the maximum volume could be analysed in smaller, less 

computationally demanding, sections (Figure 7.4).  

The last method involved the extraction of a 4 cm cube from the centre of the sample 

(Figure 7.4). This has the advantage of removing the effects of sampling disturbance around 

the edge of the sample whilst the smaller volume means that the analysis is potentially less 

computationally costly. 

Table 7.2 – The dimensions and location of the different subsampling methods used in the 
investigation into the impact and importance of subsampling with microCT image data 

Subvolume 

method 

Number of 

subvolumes 

Height 

(mm) 

Width 

(mm) 

Location 

Max cuboid 1 80 70 Centre of sample 

 

Layers 3 25 70 Top (1), middle (2), and 

bottom (3) of sample 

 

4 cm cube 1 40 40 Centre of sample 
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Figure 7.4 – Visualisations of the five subsample locations within the reconstituted sample image 
data (dimensions in Table 7.2) 
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7.3.3 Filtering and image enhancement  

All microCT scans contain imaging artefacts to some degree or other (e.g. noise or beam 

hardening) due to the nature of the scanning process (see Chapter 4 and Chapter 6). The 

effect of these imaging artefacts on the quality of the image data and the ability to segment 

and quantify the macropore size properties of the sample accurately can be alleviated to some 

extent during the image analysis process (See Chapter 4 Section 4.5.3.).  

In this investigation four different methods of image enhancement were explored (a 

median filter, a sharpened median filter, a non-local means filter, and a Gaussian filter). The 

methods investigated were all types of image filter, commonly used within microCT research 

to improve the quality of the image data by removing noise and other imaging artefacts, 

allowing the pores to be more clearly identified and segmented. The effectiveness of these 

methods was measured by comparing the degree of contrast (from image slices and greyscale 

histograms) achieved using each technique whilst balancing against the computational cost 

of each respective method. These methods were investigated using a 4 cm cube subsample 

due to the computational requirements necessary for image improvement. 

This process was used to determine the most appropriate image enhancement 

procedure to achieve sufficient image contrast to analyse embankment core samples (Chapter 

8) at the minimum computational cost. Therefore, only available filters thought to provide 

clear noise reduction and increased phase contrast (between pores and matrix) within 

computational limits were explored. It is possible that different types of noise removing 

filters which were not investigated may have been more effective than those discussed here. 

However, there is no published standard for filtering image data such as this. Indeed, very 

few published microCT studies in the geosciences discuss the use of image enhancement 

filters in detail, often choosing filters seemingly arbitrarily.  

The four methods explored were: 

1) A median filter is commonly used to remove noise and smooth images, particularly 

in cases where the preservation of edges and phase boundaries is a priority (see 

Chapter 4). The principle of a median filter is that voxel greyscale values are related 

to the values of neighbouring voxels and by examining the surrounding cells of each 

voxel, greyscale values can be better smoothed. A median filter has the effect of 

smoothing the image data and removing noise, however this can lead to a loss of 

contrast between phases. 
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2) A sharpened median filter applies a subsequent deburring filter as well as a median 

filter to the image data in order to sharpen the edge boundaries between phases. 

3) A non-local means filter works in a similar manner to a median filter, although it 

only considers the mean value of voxels in the vicinity which are similar in greyscale 

to a particular voxel when smoothing. In other words, this filter only takes into 

account the neighbouring voxels which are in the same phase as a voxel and look 

similar. It is therefore considered useful for maintaining edge sharpness and 

increasing the contrast between phases.  

4) A Gaussian filter smooths the image data and reduces noise by applying a 

transformation to each voxel in the image using a Gaussian distribution. Values from 

this distribution are used to build a convolution matrix which is applied to the original 

image (FEI, 2013). In a similar manner to the median filter, each voxel’s new value 

is set to a weighted average of that voxel’s neighbourhood. 

7.3.4 Segmentation and thresholding  

As discussed in Chapter 4 Section 4.5.2, segmentation is the process by which individual 

voxels can be classified as the different phases or materials present within the sample 

according to their greyscale (X-ray attenuation) values. Segmentation is a key step within the 

microCT image analysis procedure, as different methods and operators can achieve very wide 

ranging end results (e.g. estimates of total macroporosity ranged between 13 and 73 % in one 

study (Baveye et al., 2010)). The most commonly used approach is global thresholding which 

uses an estimate from the greyscale histogram of the image data to determine a threshold 

between phases (e.g. between macropores and the soil matrix). This has historically been 

done manually, however researchers have noted the need to implement more automated 

segmentation processes in order to reduce the impact of operator bias (see Chapter 4 Section 

4.5.2). 

Therefore within this investigation, the use of both an automated and a manual 

method for determining a threshold value were explored and compared. The automated 

method used was watershed segmentation which simulates the flooding of the image data 

from a series of seed points using a greyscale gradient image (FEI, 2014). The effectiveness 

of this segmentation method to fully ascertain the pore phase within the reconstituted sample 

was assessed against manual (interactive) segmentation of the image data and visual 
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verification of a section of segmented slices. The total macroporosity measured using the 

respective segmentation techniques was also compared. 

7.3.5 The influence of a partial volume effect correction 

Partial volume effect, as discussed earlier in Chapter 4 (Section 4.6.1), is a consequence of 

the fact that many voxels contain more than one material or phase and that the greyscale 

value attributed to that voxel will therefore be an average of the constituents of the voxel. 

This often leads to the boundaries between phases being blurred and occurring over the 

width of several voxels.  

To counteract this limitation of the CT image data, it is common practice to remove 

all of the objects within the scan data which are below the width of either one or two voxels 

in equivalent diameter (Helliwell et al., 2013). The partial volume correction therefore 

effectively results in reducing the resolution of the scan images up to twice the original voxel 

resolution. However, without this correction it is possible that the smallest objects within the 

data set identified as pores are not actually pores. 

The quantitative impact of correcting for PVE was measured by calculating the 

differences in pore property metrics between image data with no correction applied and 

image data with a two voxel PVE correction applied. The influence of a two voxel PVE 

correction on the measured pore size distribution and the variation of macropores 

throughout the height of subsample was also established. 

7.4 Results and discussion 

7.4.1 Presentation of results 

Within the results of this investigation, two visualisations of pore size distributions are used: 

1) Pore volume as a percentage of total sample volume – This displays the total macroporosity present 

within the sample in relation to the volume of the whole sample (in terms of pore size). 

2) Pore volume as a percentage of total pore volume – Displays the proportion each pore size 

contributes to the total macroporosity within a sample. 

The variation of macroporosity throughout the samples is presented by examining profiles 

of the total pore volume per slice. Which is a measure of the pore volume within each vertical 

slice of the sample as a percentage of the total volume of that slice. 

Calculating the volume of the top ten largest pores identified allows for the effects of 

subsampling and pore truncation to be examined.  
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Some researchers have shown that it is possible to represent the macropore structure 

of a soil sample using a process known as skeletonisation (Luo et al., 2008). A skeleton of a 

macropore is its centre line. Skeletons can be generated by determining the nearest distance 

to the border voxels of a pore and thinning so that the pores can be represented by lines (or 

tubes) and nodes. The process is extremely computational heavy and can only be carried out 

on small subsamples. The following pore property metrics are also used to describe 

quantitative results in this study: 

➢ Macropore density is the number of macropore networks per unit volume.  

➢ Mean macropore length is the average length of each individual macropore. 

➢ Length density is the total actual length of macropores per unit volume. 

➢ Surface area density is the total surface area of macropores per unit volume. 

➢ Mean tortuosity is the ratio of the total actual macropore length to total straight-line 

(skeletonised) distance of all the macropores within the sample. 

➢ Computational cost is also noted. 

7.4.2 Subsampling 

Figure 7.5 shows the pore size distributions corresponding to the five different subvolumes 

extracted from within the reconstituted scan image data (Figure 7.4) in terms of total sample 

volume. The figure shows that the 4 cm cube subsample has a similar total macroporosity to 

the maximum cuboid subsample. This is confimed by Table 7.3 which shows the quantitative 

pore property metrics calculated for the five different subvolumes. The macroporosity of the 

4 cm central cube subsample was 0.40 % compared to 0.39 % for the maximum cuboid 

sample. The individual layer subsamples varied in total macroporosity between 0.27 % and 

0.48 %. This indicates that the smaller 4 cm central cube subsample captures the overall 

average macroporosity within the reconstituted sample better than the individual layer 

subsamples. 

Figure 7.5 shows that the macroporosity varies considerably between the top and 

bottom layer subsamples. This is likely a result of the increasing macroporosity present 

throughout the height of the sample due to the compaction technique used when 

manufacturing the reconstituted sample (i.e. it is denser at the bottom than the top). This is 

shown in Table 7.3 as the other quantifiable pore property metrics for the subsamples are 

also less in the bottom layer subsample than the top layer subsample. For instance, the 

macropore surface area density within the bottom subsample is significantly less than the 
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surface area density calculated for the top subsample (45.87 m2/m3 compared to 74.76 

m2/m3). 

 

Figure 7.5 – Pore size distributions (as a % of total sample volume) quantified using five different 
subvolumes within the reconstituted sample. 

Table 7.3 – Pore property metrics quantified using five different sub volumes within the 
reconstituted sample (see Figure 7.4) 

 Maximum 

cuboid  

subsample 

Top layer 

subsample 

Middle layer 

subsample 

Bottom layer 

subsample 

4 cm central 

cube 

subsample 

Macroporosity (with 2 

voxel PVE correction) 

(%) 

 

0.386 

 

0.475 

 

0.412 

 

0.272 

 

0.400 

Macropore density 

(x106) (no/m3) 

 

42.079 

 

45.452 

 

48.766 

 

33.170 

 

51.697 

Mean macro pore 

length (mm) 

 

1.007 

 

1.033 

 

0.999 

 

0.981 

 

0.979 

Length density (km/m3) 42.391 46.945 48.761 32.536 50.607 

Surface area density 

(m2/m3) 
63.003 74.76 68.612 45.867 69.153 

Mean tortuosity* - - - - 1.241 

      

* Tortuosity could not be computed for the larger subvolumes due to the number of macropores present. 
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These results show that the location of the subsample defined within the scan image data 

influences the macropore property metrics achieved within the quantitative analysis due to 

the variability of these properties within the sample.  

As well as the location of the subsample influencing the quantified results, it is 

evident that the size of the subsample also impacts the size (volume, length, and surface area) 

and number of pores identified in the analysis. Figure 7.6 shows the pore size distributions 

of the five subvolumes in terms of total pore volume. It shows that the total macroporosity 

within the 4 cm cube subsample is comprised of smaller voids than the other three samples, 

with 100 % of the macroporosity consisting of pores under 7.5 mm3 in volume. Table 7.4 

shows the maximum, minimum and average volume of the ten largest pores within each 

subvolume. The table shows that the average volume of the ten largest pores is lower for the 

three layer subsamples and the 4 cm cube subsample than it is for the maximum cuboid 

subsample. This indicates that the layer and 4 cm cube subsamples do not fully capture the 

largest pores present within the sample and some truncation of pores occurs at the edges of 

these subvolumes.  Despite this, Table 7.3 shows that the mean macropore length within the 

subsamples is fairly consistent. This contradiction is an indication that the majority of 

macropores identified are very small in terms of volume and length, and that it is mostly the 

largest macropores which are affected by the subsample choice. Figure 7.6 shows that the 

total macroporosity appears to be mainly comprised of smaller macropores (for all samples 

around 80 % of total pore volume is made up of pores less than 2 mm3 in volume). These 

sizes of pores appear to be captured in all the subvolumes and the subvolume choice 

therefore has less impact. It should be noted however that this is the case for the 

reconstituted sample and, as discussed in Chapter 6, this is quite a uniform clay fill sample. 

So the choice of subsample methods is likely to generate greater discrepancies when 

examining less homogenous samples. 
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Figure 7.6 - Pore size distributions (as a % of total pore volume) quantified using five different 
subvolumes within the reconstituted sample. 

Table 7.4 – The properties of the ten largest pores measured within five different subvolumes within 
the reconstituted sample 

10 largest pores 

Maximum 

cuboid 

subsample 

Top layer 

subsample 

Middle layer 

subsample 

Bottom layer 

subsample 

4 cm central 

cube 

subsample 

Mean volume (mm3) 10.080 7.346 5.068 6.664 4.422 

Max volume (mm3) 18.081 11.787 10.888 17.362 7.527 

Min volume (mm3) 6.902 4.764 3.438 3.204 1.764 

 

The computational cost for the subsample methods is shown is Table 7.5. The Maximum 

cuboid subvolume is considerably more computational demanding than the other 

subsampling methods. Table 7.5 shows that only the 4 cm cube subvolume allows for 

skeletonisation of the pores and image improvement (filtering) due to the number of pores 

present within each subvolume (the maximum cuboid and layer subvolumes contain a greater 

total number of pores). This is because skeletonisation and image enhancement of microCT 

data for samples with so many pores requires more computational power than was available 

for the analysis carried out here.  

In addition to the differences in computational cost, the 4 cm cube subvolume 

appears to capture overall sample macroporosity and other property metrics well. This 

subvolume is therefore suitable to use within the image analysis procedure of subsequent 

scans of clay fill samples.  
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Table 7.5 – The computational cost of the different methods of subsampling investigated 

Subvolume method Computational cost 

Max cuboid Extremely heavy - does not allow 

for complete quantification/ 

skeletonisation due to the quantity 

of pores present. Image 

improvement is difficult. 

 

Layers Moderate - does not allow for 

skeletonisation. Image 

improvement is difficult. 

 

4 cm central cube Moderate but allows for 

skeletonisation. Image 

improvement possible. 

7.4.3 Image improvement 

The effects of the applying image filters to the reconstituted scan data in order to improve 

image quality were explored by examining greyscale intensity histograms and by visual 

assessment of slices throughout the height of the subsample (4 cm central cube). An example 

of one such slice from the midsection of the subsample is shown in Figure 7.7. 

 Figure 7.8 shows this midsection slice subject to no filter, a 3D median filter, a 3D 

sharpened median filter, a non-local means filter, and a Gaussian filter. It can be seen that all 

of the filters used reduce the level of noise present within the scan image data. The sharpened 

median filter and the non-local mean filter appear to give the sharpest contrast between 

phases with the most defined pore edges. However, the Gaussian filter and the median filter 

result in blurring of the pore boundaries due to the smoothing process which reduces noise. 

Using any of the filters results in the loss of some very small pores, however these pores are 

likely to be below the value of pores affected by the partial volume effect (volume < 0.0082 

mm3) so would not be included in quantitative results anyway. 
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Figure 7.7 – The location of an example slice used to explore the effectiveness of image filters used 
in order to improve the image quality of the reconstituted sample 

 

The visual inspection of the effectiveness of these image filters was supplemented by 

examining the greyscale intensity histograms before and after application of the image filters 

(Figure 7.9). Figure 7.9 shows that the median and Gaussian filters do not make a significant 

improvement on the definition of the material phase peaks within the greyscale histograms 

whereas the sharpened median filter and non-local means filter result in improved image 

quality and definition of peaks. These filters will therefore make the process of segmentation 

easier and more reliable. 

The effectiveness of image enhancement methods has to be balanced against the 

computation cost required in order to achieve higher quality image data. Table 7.6 shows the 

computational cost of all the enhancement methods investigated. The non-local means filter 

is considerably more computationally costly than the sharpened median filter, taking twice 

as long to complete. It is also worth noting that applying the median filter and sharpened 

median filter in three dimensions, as opposed to two, causes a significant increase in the time 

need for computation. 

The sharpened median filter and the non-local means filter both have a similar effect 

in terms of reducing noise and improving phase contrast when applied to the image data 

Therefore due to the very significant difference in computational time needed for each 

respective method, the 3D median filter with sharpening represents the most effective and 

useful image enhancement process to include within the analysis procedure for all subsequent 

scans. 
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(a) 

  

(b)      (c) 

  

(d)      (e) 

Figure 7.8 – A midsection slice from the reconstituted scan image data (4 cm cube subsample) 
subjected to (a) no filter, (b) a 3D median filter, (C) a 3D sharpened median filter, (d) a non-local 

means filter, and (e) a Gaussian filter. 
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Figure 7.9 – Greyscale intensity histograms corresponding to the reconstitute sample before and 
after application of four different image enhancement filtering techniques (no filter, a 3D median 

filter, a 3D sharpened median filter, a non-local means filter, and a Gaussian filter). 
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Table 7.6 – The computation cost of the four image enhancement filtering techniques investigated 

Type of image enhancement Computational cost 

No filter None 

Median filter Moderate  

Sharpened median filter Moderate (completion time 1.5 times 

longer than median filter) 

Non-local means filter Heavy (completion time more than 

three times longer than median filter) 

Gaussian filter Light (completion time half as long 

as median filter) 

 

7.4.4 Thresholding and segmentation of the image data 

The effectiveness of automated watershed thresholding in relation to interactive manual 

thresholding was compared by visual assessment of a set of slices throughout the height of 

the reconstituted sample (4 cm central cube subsample). 

Figure 7.10 shows a midsection slice throughout the 4 cm subsample prior to 

segmentation (after application of a sharpened median filter) (see Figure 7.7(c)). Figure 7.11 

shows the same slice after application of the watershed flooding algorithm within Avizo fire 

(FEI). Using the fully automated method on this sample results in many unsegmented pores 

compared to the manual method (Figure 7.12). This indicates that the automated method 

does not provide a reliable measurement of sample macroporosity. This suggests that the 

automated watershed thresholding method is more suited to scan image data containing 

more pronounced peaks within the greyscale histogram. Because the reconstituted sample is 

a large clay fill sample, the peaks corresponding to different phases within the greyscale 

histogram are not as distinct as they would be within a smaller scan of a more homogenous 

material of consistent density (e.g. glass beads) (see Chapter 4 Figure 4.3 for an idealised 

greyscale histogram with clear peaks).  

Figure 7.12  shows the midsection sample slice after segmentation using the manual 

interactive thresholding method. It can be seen that the image data does not contain a 

significant amount of unsegmented pores. The manual method, although more labour 

intensive, does allow for a more reliable segmentation method than the automated method 

for a sample of this type (dense clay with intensity histograms lacking complete definition). 
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Figure 7.10 – A midsection slice through the reconstituted sample (4 cm central cube subsample) 
prior to segmentation (pores shown in black) 

 

Figure 7.11 – The midsection slice of the reconstituted sample (4 cm central cube subsample) after 
thresholding using the fully automated ‘watershed’ method. Showing the pores segmented using the 

method in blue. 
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Figure 7.12 - The midsection slice of the reconstituted sample (4 cm central cube subsample) after 
manual thresholding using the interactive method. Showing the pores segmented using the method 

in blue. 

The impact of using the different segmentation methods on the measured macroporosity is 

compared in Table 7.7 which shows the total macroporosity calculated using the threshold 

values defined by the automated and manual segmentation techniques. The difference in the 

calculated macroporosity is very significant, particularly as overall sample macroporosity is 

low, so the relative difference between the two segmentation methods is substantial (46 % 

of total macroporosity). 

Table 7.7 – Total macroporosity within the reconstituted sample (4 cm central cube subsample) 
calculated from pores segmented using the automated segmentation method and using manual 

interactive thresholding  

Threshold greyscale value Macroporosity (2 voxel partial volume correction) (%) 

Automated threshold (30) 0.216 

Manual threshold (35) 0.400 

 

7.4.5 Partial volume effect correction 

In order to remove the uncertainty associated with the small objects within the scan image 

data caused by the partial volume effect, all objects with an equivalent diameter less than two 

voxels (volume < 0.0082 mm3) wide were removed from the image data prior to 

quantification of macropore property metrics. 

Table 7.8 shows the impact of this partial volume correction on the pore property 

metrics derived through the image analysis procedure by comparing the results of an 
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uncorrected and corrected analysis of the reconstituted scan image data. It can be seen that 

this correction leads to removal of a large number of objects from within the image data. 

 This is because the reconstituted sample is quite uniform in terms of pore size and 

distribution and contains few large macropores compared to the number of smaller 

macropores. However it is noticeable that although the number of pores removed is large, 

particularly in the largest subvolume, that the volume of pores removed is actually quite 

small. Therefore the effect of a two voxel partial effect correction on total calculated 

macroporosity is small (between 0.02 and 0.04 % of sample volume depending on the size 

of the subsample).  

Table 7.8 – The quantitiative impact of partial volume correction (2 voxels) on pore properties 
derived from the five different subvolumes throughout the reconstituted sample image data 

 Maximum 

cuboid 

subsample 

Top 

 layer 

subsample 

Middle 

layer 

subsample 

Bottom 

layer 

subsample 

4 cm 

central cube 

subsample 

Number of pores with no 

partial volume correction 
79295 31164 29393 19108 16840 

Number of pores with a 

correction 
16885 6084 6513 4440 3307 

Total volume of 

macropores with no partial 

volume correction (mm3) 

1663.21 679.22 592.19 391.81 279.62 

Total volume of 

macropores with a 

correction (mm3) 

1550.02 635.57 550.04 363.89 256.17 

No PVE correction 

macroporosity (%) 
0.41 0.51 0.44 0.29 0.44 

Corrected Macroporosity 

(%) 
0.39 0.48 0.41 0.27 0.40 

Figure 7.13 shows the result of the partial volume correction on the pore size distribution 

obtained from the segmented images (in terms of total sample volume). It shows that the 

PVE correction translates the pore size distribution downwards by the volume of pores 

removed, whilst keeping the shape of the distribution the same. This is to be expected as the 

PVE correction only affects the smallest objects within the image data and not the pores 

which comprise the majority of the pore size distribution.  
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Figure 7.13 – The impact of partial volume correction (2 voxels) on pore size distributions calculated 
from the reconstituted sample (maximum cuboid subsample) 

Figure 7.14 shows the impact of the PVE correction on the profile of volume of pores per 

slice throughout the height of the reconstituted sample. The correction does not seem to 

have a great impact on the profiles with the exception of one small section at the centre of 

the subsample, which has a higher macroporosity. This difference would indicate that the 

increase in macroporosity in these middle slices is due to lots of individual small macropores 

as opposed to a few larger macropores, as these are the size of pores which are removed 

from the scan data in the correction because they cannot definitely be determined to be 

pores. This increase in macroporosity is likely a consequence of sample preparation of the 

reconstituted sample. The effect of the PVE correction therefore depends on the nature of 

the sample scanned and the distribution of macropore sizes present as opposed to the total 

level of macroporosity. 

 Overall, the partial volume effect correction allows for more reliable pore property 

metrics from the scan image data due to the removal of uncertainty related to the smallest 

objects in the data, whilst only altering calculated macroporosity by a small amount. A two 

voxel correction (equivalent diameter < two voxel widths) is therefore included within the 

image analysis procedure of clay fill embankment samples in Chapter 8. Within samples 

scanned at different states of saturation the correction was standardised to aid comparison 

of calculated pore property metrics. 
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Figure 7.14 - The impact of partial volume correction (2 voxels) on pore variation with depth 
throughout the reconstituted sample (maximum cuboid subsample) 

7.4.6 Labelling and quantification of pores 

After the key image analysis steps of subsampling, image enhancement, and segmentation, 

the pores within the sample can be extracted from the soil matrix in order to be quantified.  

Figure 7.15 shows all the segmented pores extracted from within the reconstituted 

sample (4 cm central cube subsample). Each individual pore must then be labelled in order 

to be quantified as shown in Figure 7.16. The labelling process involves automatically 

assigning each macropore a unique label and colour. These labels subsequently enable 

calculations of pore property metrics (e.g., surface area, volume, length, etc.) to be carried 

out for each pore within the segmented image data (see Table 7.3). 

Figure 7.17 shows a visualisation of the top 10 largest pores within the reconstituted 

sample by volume. It can be seen that these are very irregular in shape and representations 
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by circular or cylindrical shapes are likely to be a simplification of the true macropore 

geometry. Being able to measure and visualise the shape of such internal macropores in a 

non-intrusive manner shows one of the key advantages of using the microCT technique 

within the geoscience field, as this would simply not be possible using many other techniques. 

 

Figure 7.15 – The result of segmentation, showing only the thresholded pores (>63 μm) without the 
soil matrix, from the reconstituted sample (4 cm cental cube subsample)  

 

Figure 7.16 -  Individual labelling applied to each segmented pore within the reconstittuted sample 
(4 cm central cube subsample) 
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Figure 7.17 – The ten largest pores by volume within the reconstituted sample (4 cm central cube 
subsample) quantified using labellling of the segmented image data. 

After labelling of pores, if the subsample is small enough to allow for the computational 

process necessary, then a pore skeleton within the sample can be generated (Figure 7.18). As 

shown in Table 7.5, it was only possible to skeletonisation the reconstituted sample image 

data within the 4 cm central cube subsample due to computational difficulties associated with 

the other subsamples. 

  Figure 7.19 shows this skeleton with the pores represented by cylindrical tubes, the 

‘thickest’ of which are coloured in red. Some researchers have shown that these pores may 

represent key pores for flow (Luo et al., 2010). However the majority of the pores within clay 

fill samples are extremely irregular in nature and the pore property metrics (Table 7.3) appear 

to represent a more reliable indication of macropore architecture than the skeletonisation 

technique. For this reason, skeletonisation was not included within the image analysis 

procedure for the embankment samples in Chapter 8. 
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Figure 7.18 – The pore structure within the reconstituted sample (4 cm central cube subsample) after 
skeletonisation of the segmented image data 

 

Figure 7.19 – The pore skeleton within the reconstituted sample (4 cm central cube subsample) 
showing the ‘thickest’ tubes correspning to pores in red. 
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7.5 Conclusions 

This chapter explored the development of a microCT image analysis procedure which allows 

for visualisation and quantification of the internal macropore architecture within 100 mm 

diameter clay fill samples. Several key conclusions were drawn from this investigation: 

 

➢ Subsampling was used to reduce computational cost, to enable image improvement 

and to allow for quantification of macropore property metrics. Different 

subsampling methods were investigated and compared. It was found that both the 

size and location of the subsample used affects the pore property metrics achieved 

from analysis of the image data (total macroporosity, macropore density, length, 

volume and surface area). Smaller subsamples result in truncation of pores and more 

location specific pore properties, although they are less computationally costly. A 4 

cm central cube subsample represents a good balance between reducing file size in 

order to allow for quantification of macropores whilst providing pore property 

metrics which are representative of the sample as a whole. 

 

➢ Four different methods of image enhancement were explored to improve the 

contrast between phases and to reduce imaging artefacts (noise). A 3D sharpened 

median filter and a non-local means filter were both found to smooth image data, 

eliminating noise whilst also preserving pore edge boundaries and contrast between 

phases. A non-local means filter was found to take twice as long as a 3D sharpened 

median filter to complete the image improvement process. Therefore a 3D sharpened 

median filter is the most effective and efficient image enhancement process, of those 

trialled, to include within the analysis procedure for all subsequent scans. 

 

➢ The use of fully automated watershed thresholding was explored in order to keep 

operator input to a minimum during segmentation of scan image data. The 

effectiveness of this method was compared with the manual interactive thresholding 

technique of segmentation. The difference in calculated macroporosity was found to 

be very significant (46 %), particularly as the overall macroporosity within the sample 

is low. The automated method was found to define a threshold which leaves voxels 

which appear to correspond to pores unsegmented. It is therefore not suitable for 

use on scan image data from a sample of this type (dense clay with intensity 
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histograms lacking complete definition). The manual method, although more labour 

intensive, appears to allow for more reliable segmentation of a sample of this type. 

 

➢  A partial volume effect correction which excludes objects less than two voxels in 

equivalent diameter allows for more reliable pore property metrics from the scan 

image data due to the removal of uncertainty related to the smallest objects in the 

data. The correction, whilst removing a large number of objects, only alters calculated 

macroporosity by a small amount (less than 0.04% within the subsample types 

investigated here). A two voxel correction is therefore included within the image 

analysis procedure of clay fill embankment samples in Chapter 8. 

 

 This chapter has established suitable subsampling, filtering, segmentation, and PVE 

correction procedures to achieve the image quality required to measure the pore architecture 

within a 100 mm diameter reconstituted sample of clay fill. This allows the more complex 

structure of clay fill samples to be explored in Chapter 8. The repeatable and consistent 

nature of these developed procedures allow for the comparison of macropore structure 

variation with depth, evolution with saturation, and the relationship of these microCT 

derived pore properties to the hydraulic conductivity within the samples. 
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8 Examining the internal macropore structure of large 

scale clay fill samples using microCT 

8.1 Introduction 

This chapter explores the use of microCT as a means to visualise and quantify the 

macropore networks present within large (100 mm diameter) clay fill cores extracted from 

within an embankment. For the first time, clay fill cores of this size were scanned repeatedly 

at different water contents using the non-destructive nature of the microCT technique to 

investigate the evolution of macropore structure with increases in saturation.  

The work presented within this chapter also explores the variation in macroporosity 

with depth throughout the embankment and examines the influence of macropores on the 

saturated hydraulic conductivity of the samples using triaxial and oedometer permeability 

tests. The pore property metrics (total macroporosity, macropore density, mean macropore 

length, macropore surface area density, and mean volume of the largest pores) derived from 

the microCT image data which have the strongest relationship to saturated hydraulic 

conductivity are investigated. Additionally, the differences in porosity observed using 

microCT in relation to other techniques (e.g. mercury intrusion porosimetery) are discussed.  

8.2 Objectives 

The objectives of the work presented within this chapter were as follows: 

➢ To visualise and quantify the macropore architecture of 100 mm dimeter samples of 

undisturbed clay fill. 

➢ To comment on the pore structure observable with the microCT technique in 

comparison to other experimental techniques, such as mercury intrusion 

porosimetery and phase relationship calculations. 

➢ To assess the change of macroporosity and macropore properties with depth 

throughout an embankment (between 1.5 - 6.5 m) and to comment on the 

heterogeneity of the macropores. 

➢ To assess the evolution of the macropore structure within samples due to changes in 

saturation. 

➢ To investigate the influence of the internal macropore structure (measured using 

microCT derived macropore property metrics) on the measured saturated hydraulic 

conductivity of samples. 
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8.3 Background  

Chapter 3 discussed the role that macropores can play in influencing the hydraulic properties 

of soil if they can act as high conductivity preferential flow conduits for infiltrating water. 

Some researchers have shown that saturated conductivity is particularly sensitivity to the 

abundance and size of macropores, as demonstrated by the considerable decrease (often 

across several orders of magnitude) in hydraulic conductivity when macropores are excluded 

from measurements by the application of slightly negative potentials (Jarvis, 2007). Although 

only a small fraction of total soil porosity, macropores may dominate near-saturated flow 

and lead to infiltration by bypassing the soil matrix (Beven and Germann, 2013). 

 However, classical morphological descriptions have not allowed the direct 3D 

visualisation of the pore and solid space geometry within samples which determine the 

hydraulic conductivity (Vervoort and Cattle, 2003). Additionally these descriptions do not 

tend to investigate the large sample sizes required to evaluate a representative sample of 

macropores due to the low spatial density of macropores (Lauren et al., 1988). Chapter 6 

showed that microCT can be used to scan larger samples to investigate macropore structure. 

Classical morphological descriptions are also usually conducted under dry soil 

conditions (Vogel and Roth, 2001). As a result, the metrics of visible soil pores are not 

representative of those pores under saturated conditions for soils with moderate or large 

potential for swelling (McKenzie and Jacquier, 1997). 

As discussed in Chapter 4, microCT scanning can be used to determine soil 

properties in a non-destructive manner, which allows repeated scans of the same sample 

under different conditions. These scans at different moisture contents provide a direct 

assessment of any spatial modifications of the soil pore architecture caused by dynamic 

processes continuously re-arranging pore networks and therefore altering hydraulic 

properties as a result of wetting the sample. 
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8.4 Methodology 

8.4.1 Materials 

Six clay fill cores (102 mm diameter (two deepest samples 87 mm diameter), 160 mm height) 

extracted from bore holes within Laverton embankment in Gloucestershire (Figure 8.1) by 

the British Geological Survey were used for this investigation. The embankment, shown in 

Figure 8.2, forms part of the Gloucestershire-Warwickshire historic railway line which has 

suffered slope failures in the past. Originally part of the Honeybourne line (Cheltenham–

Stratford-upon-Avon–Birmingham) built between 1900 and 1906, Laverton embankment is 

around 6 m high and is believed to have been constructed by end tipping of local Charmouth 

Mudstone. The centre of the embankment contains a variable 0.9 m thick upper layer of 

ballast fouled with fines, ash, and soil (rich in humus) which is generally underlain by clay fill 

of reworked Charmouth Mudstone (Gunn et al., 2016). 

 

 

Figure 8.1 - Map showing the location of Laverton embankment where the samples were collected 
(Google maps (2016)) 
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Figure 8.2 – A photograph of Laverton embankment, a map showing the location of sampling within 
Laverton embankment, and a cross-section through the embankment at that location 

The six samples were taken from approximately 1 m intervals between 1.5 - 6.5 m depth. 

Figure 8.3 shows an example of one of the cores after sampling. Due to the trade-off between 
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sample size and achievable scan resolution (due to focal spot size), discussed in Chapter 6, 

these cores were halved, and only the top half of each of the cores was scanned. One 

exception to this was sample 5C, which was scanned three times across its full height (top, 

middle and bottom focussed scans) to assess macroporosity variation and the ability to link 

microCT data from multiple scans. It is worth noting that the samples scanned within this 

study still represent very large samples in comparison to other conducted microCT literature 

(See Chapter 4). The literature shows that sample sizes above 5 cm are extremely rare and 

that scanning of clay samples of this size (in order to quantify macropore properties) has not 

yet been achieved. Furthermore, no scans reported in the literature have investigated the 

change in macroporosity with depth throughout an embankment or the change in macropore 

structure due to saturation within samples of this size. 

Table 8.1 shows the properties of the samples scanned within this study. After 

scanning in their sampled conditions, the samples were scanned again after saturation and 

hydraulic conductivity testing. A reconstituted clay fill sample was formed from a core (3.5 

m depth) within the embankment and was also scanned for inclusion in the analysis (see 

Chapter 6) (Table 8.1). 

 

 

Figure 8.3 – An example of one of the cores extracted from Laverton embankment prior to being cut 
in half and saturated (sample shown is 2C) 

 

The cores were collected using a Dando Terrier 2002 rig and were driven using cable-

percussion which allows recovery of continuous 1 m long samples captured in polyvinyl 
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chloride (PVC) liners. Figure 8.4 shows the rig used during extraction of the cores. The 

diameter of the two deepest cores, 6C and 7C (5.5 m and 6.5 m depth) was reduced from 

102 mm to 87 mm due to resistance issues associated with collecting the wider core at these 

depths. 

Disturbance occurs at several different stages during the acquisition of a lab test 

specimen and can change the structure and properties of the specimens. Samples were 

obtained by using a drill rig, thus displacing soil which causes disturbance at the edges of the 

sample. Extrusion, storage and preparation for testing can also result in disturbance. The 

relative importance of the disturbance caused during each of these stages cannot be 

prejudged because bad practice at any stage can have a very significant effect on the quality 

of the specimen (Clayton and Siddique, 2001). 

Therefore while it is impossible to obtain a ‘perfectly’ undisturbed sample from the 

field for testing, it was attempted to keep disturbance minimalised in every part of the 

process. After trimming, the samples were contained within PVC tubes with secure end caps 

to prevent mechanical disturbance and evaporation. Before and after scanning in their 

sampled state, the samples were stored in a refrigerator at 3°C until the start of the saturation 

and hydraulic conductivity testing experimental stages. 

 

Figure 8.4 – A photograph of the Dando Terrier 2002 rig used to extract the core samples (1.5 - 6.5 m 
depth) from within Laverton embankment 
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Table 8.1 – Details of all the samples from Laverton embankment which were microCT scanned (both in field and saturated conditions). 
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Height (mm) 98 86 87 80 92 78 92 83 107 94 75 91 78 92 87 

Diameter (mm) 102 102 102 102 102 102 102 102 102 102 102 87 87 87 100 

Bulk density (g/cm3) 1.75 1.73 1.79 1.79 1.85 1.91 1.80 1.79 1.84 1.84 1.89 1.81 1.85 1.87 1.91 

Origin - depth of 

centre of sample from 

the surface  (mm) 

1507 1507 2511 2511 3506 3506 4501 4501 4539 4579 4579 5507 5507 6510 3580 

Water content 

(gravimetric) 
0.25 0.31 0.26 0.34 0.26 0.29 0.26 0.29 0.26 0.26 0.30 0.25 0.33 0.24 0.33 

                

      * Sample 7C could not be saturated and rescanned due to the fragmented nature of the sample 
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8.4.2 MicroCT scanning and analysis procedure 

The samples were scanned using the microCT scan settings determined in Chapter 6 in order 

to obtain image data with good spatial resolution, a sharp contrast between material 

constituents of the samples, and with minimal imaging artefacts (see Chapter 4).  Image data 

with sufficient quality can subsequently be segmented, visualised and quantified in an 

accurate manner. Table 8.2 shows the microCT scan settings used to achieve this image 

quality within the image acquisition time restraints of a working day.  

Table 8.2 – The microCT scanning procedure/settings used to scan the cores from Laverton 
embankment (determined in Chapter 6) 

Sample Voltage 

(kV) 

Current 

(mA) 

Exposure 

(ms) 

Projections Vertical 

slices 

Other  

102 or 87 mm 

diameter 

cylindrical 

sample 

195 105 2000 1800 1998 

Copper* 

filter (0.5 

mm thick) 

* Copper filter used to reduce beam hardening 

After scanning, the image data obtained from the samples was processed using the rigorous 

and repeatable image analysis method determined in Chapter 7. Figure 8.5 presents a flow 

diagram of the method used. The goal of the analysis process was to improve image quality 

and allow for segmentation and quantification of the image data of all the samples in a reliable 

fashion. As discussed in Chapter 7, it was vital that this process was kept consistent to allow 

for comparison of results between scans of different samples, particularly, the repeated scans 

of samples in different states of saturation.  

Due to the inherent variability of the samples in this study, the scans were performed 

at a range of voxel sizes.  Table 8.3 shows the voxel sizes achieved from each scan. To keep 

the resolution constant between repeated scans of the same sample and to allow for 

comparison of the evolution of the macropore structure with saturation, the partial volume 

effect correction was matched between corresponding samples. 

The quantitative results presented in this chapter use the pore property metrics 

discussed in Chapter 7. Macropore size is classically sorted by equivalent pore diameter 

however macropores with greater volume are likely to be more active in flow at near-

saturated conditions (Luo et al., 2010). For this reason macropore size was sorted by volume 

as opposed to equivalent pore diameter in the results presented within this chapter. 
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Figure 8.5 – The microCT image analysis procedure used for all samples (determined in Chapter 7) 

 

A 4 cm cental subsample was used for all image anaylsis processing of the samples as this 

allowed for the greatest range of image improvement and quanitifcation by reducing file size 

(see Chapter 7).  
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Since the sample surfaces were slighlty uneven, the soil surface of the samples was 

demmed to be located where the soil matrix filled 50 % of the horizontal column cross-

sectional area as determined from the microCT image data. 

Table 8.3 – The voxel resolution achieved from microCT scans of the clay fill cores from Laverton 
embankment 

Sample Voxel 

resolution 

(mm) 

Sample Voxel 

resolution 

(mm) 

Sample Voxel 

resolution 

(mm) 

2C 0.0582 5C-top*2 0.0573 6C 0.0534 

2C saturated*1 0.0611 5C-top saturated*1 0.0615 6C saturated*1 0.0529 

3C 0.0548 5C-mid*2 0.0537 7C 0.0544 

3C saturated*1 0.0604 5C-bot*2 0.0547 Recon 0.0627 

4C  0.0555 5C-bot saturated*1 0.0597 
  

4C saturated*1 0.0582     

*1 Saturated and unsaturated sample resolutions were matched using the PVE correction to allow for 

comparison. 

*2 The resolutions of the three samples within 5C were matched using the PVE correction to allow for porosity 

throughout the height of the sample to be compared. 

The consistency of the image analysis procedure was explored by examining the results of 

the three scans over the height of sample 5C (at the top, middle, and bottom of the sample). 

Data from three individual scans was processed independently, however there is some 

crossover (overlap) in the height of sample measured, so this allows for a comparison of the 

quantitative results obtained between the scans. This process also reveals macroporosity 

throughout the sample over 12 cm as opposed to the 4 cm subvolume giving an insight into 

the variation over the full height of samples which is not observed within the analysis 

procedure. 

The spatial distribution of macropores and macropore geometry with depth 

influences the potential for non-equilibrium flow within soils (Luo et al., 2010). Therefore 

the variation in macroporosity with depth within the embankment was assessed by 

comparing the microCT measured macropore properties from all of the samples (in their 

sampled conditions), each corresponding to a different depth (1.5 – 6.5 m). 
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8.4.3 Saturated hydraulic conductivity testing 

The samples were saturated within a triaxial cell and, after saturation was achieved, constant 

head permeability tests were carried out on the samples before they were scanned in a 

saturated condition. 

The goal of these tests was not to determine in-situ hydraulic conductivity of the 

embankment, as the samples would not be fully representative of the embankment due to 

fissuring and other large discontinuities which may be present which are not captured within 

100 mm diameter samples (i.e. the size limited by the microCT technique). Rather, the goal 

was to determine if macroporosities and macropore property metrics measurable using 

microCT had an observable impact on hydraulic conductivity. 

The constant head permeability tests were carried out according to BS 1377:1990, 

using the experimental set up described in Chapter 2 (Figure 2.5). 

 After installation in the triaxial cells, the samples were saturated using back pressure 

saturation (B-ratio > 95%). CO2 flushing was explored to achieve better saturation, although 

this was found to be ineffective. The effective stresses on the sample were set to replicate 

field conditions at the depth from which the sample originated (Table 8.1). A hydraulic 

gradient of 125 was applied over the height of the samples and measurements were taken to 

record the flow rate. The saturated hydraulic conductivity was calculated for the samples 

using Darcy’s Equation (Equation 7 in Chapter 2). 

The saturated conductivity testing stage is likely to have resulted in some soil 

structure changes in addition to those caused by saturation due to the changes in effective 

stress to which the samples were subjected. During testing the samples were returned to their 

in-situ pressures which had previously been reduced after extraction from the embankment. 

This pressure was subsequently reduced again prior to scanning the samples in their saturated 

state as the samples could not be scanned within a triaxial cell. 

After microCT scanning in a saturated state, the samples were subsequently divided 

into three layers and subjected to three one-dimensional oedometer consolidation tests 

according to BS 1377-6:1990. Using Terzaghi's (1943) theory (Equation 11 in Chapter 2) 

values for the saturated hydraulic conductivity of the three layers within the samples were 

calculated. 
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8.4.4 Mercury intrusion porosimetery testing 

To investigate the degree of porosity in the samples which was not captured by the microCT 

technique, two mercury porosimetery tests were carried out (on the reconstituted and 5C-

bot samples). The aim of these tests was to examine the difference in porosity identified 

using laboratory measurements of void ratio (phase relationships) and microCT image data.  

Mercury intrusion porosimetery, as discussed in Chapter 2, has the ability to estimate 

porosity to a much finer resolution than microCT (between 4 nm and 0.4 mm). The 

technique’s upper bounds in terms of pore size overlap with the point at which microCT can 

capture pores (i.e. > 0.05 mm). This is shown in Figure 8.6 which presents typical ranges of 

pore size measured using different experimental techniques including MIP, microCT, and 

phase relationship (total) measured porosity. 

 

Figure 8.6 – Typical ranges of pore size measured using different experimental techniques 

 

MIP therefore represents a useful tool for exploring the range of pore sizes within the 

samples further. However, as noted in Chapter 2, MIP does not measure pore volume 

directly but rather the entrance diameter associated with the pores (and the pressure required 

for mercury to enter them). It therefore has several limitations and sources of error which 

were discussed in more detail in Chapter 3.  

As is common practice, the surface tension of mercury was taken to be equal to 0.484 

N/m at 25°C (Smith, 2015). The contact angle is usually taken between 139° and 147° for 

clays (Diamond, 1970) and 140° was used in these tests. 
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8.4.5 Method to compare the strength of association between results 

obtained from microCT and from conventional measurement 

techniques  

Conventional measurements of porosity were calculated using the phase relationships 

discussed in Chapter 2 (Equation 2). 

The correlation between the microCT derived property metrics and the 

measurements of porosity, density, and saturated hydraulic conductivity, were examined 

using Spearman’s correlation coefficient (rs) 

 
𝑟𝑠 = 1 −

6 ∑ 𝐷2

𝑁3 − 𝑁
 (39) 

 

Where, D is the difference between the two ranks of each observation and N is the number of observations. 

Spearman's correlation coefficient is a non-parametric test used to measure the strength of 

association between two variables, where rs = 1 means a perfect positive correlation and the 

rs = -1 means a perfect negative correlation. 

8.5 Results  

8.5.1 Visualisation and quantification of macropores within the samples 

from microCT image data 

Table 8.4 shows the macropore property metrics calculated using the image analysis for the 

samples. It can be seen that total macroporosity within the samples (after PVE correction) 

ranged from 0.12 % to 4.12 % and that the mean macropore length varied between 0.80 and 

2.03 mm. These values are similar in magnitude to macroporosities derived from CT scans 

of various soils reported in the literature (Luo et al., 2010 (silt loam samples); Naveed et al., 

2013 (clay and sandy clay samples); Shin et al., 2013 (artificial clay samples); Larsbo et al., 

2014 (clay loam samples)).  

Figure 8.7, shows the visualisation of all the internal macropores within the samples 

after segmentation and labelling. Figure 8.7 shows that the macropore structure within each 

of the samples is extremely wide ranging, with some samples containing more biological type 

pores running throughout the subvolume (e.g. 5C top), some samples containing several very 

large macropores (e.g. 3C), and some samples containing a more uniform size and spatial 
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distribution of macropores (e.g. the reconstituted sample). From Figure 8.7 it can be seen 

that sample 7C was extremely fractured in nature, and as a result, the sample could not be 

saturated and scanned using the same procedure as the other samples. 

This visualisation of clay fill samples shows that the size and distribution of 

macropores within the samples is heterogeneous. An accurate quantitative description of 

these internal macropore structures is difficult to achieve using conventional morphological 

techniques (e.g. method of sections). Therefore the results from these microCT scans 

emphasise the clear benefits of microCT as a non-destructive 3D visualisation and analysis 

tool for soil research. 

8.5.2 Effects of saturation procedure on sample macroporosity 

Table 8.4 shows that for all the samples the saturation procedure reduced the total calculated 

macroporosity within the samples. This is confirmed by Figure 8.7 which shows that the 

quantity of visible macropores within the subvolumes was reduced after saturation.  

The pore property changes reflected here as a result of saturation are associated both 

with the experimental procedure used to test the samples and the changes caused by 

saturation. The samples were saturated under effective stress equal to their in-situ effective 

stress, which the samples had not been under for some time after extraction from the 

embankment. Additionally, as the samples could not be scanned whilst within the triaxial 

cell, they had to be removed prior to scanning in their saturated condition. To remove the 

sample from the cell, the pore pressure within the sample must first be lowered whilst the 

cell pressure is still relatively high. Therefore some consolidation could have occurred at this 

stage as the effective stresses in the sample increased. Unloading from the triaxial cell for 

scanning also has the consequence that the samples were no longer completely saturated as 

they contained some air which was driven into solution by back pressure saturation prior to 

the saturated hydraulic conductivity test.  

Table 8.4 shows that the saturation procedure reduced the macropore density and 

the macropore surface area density within the scanned samples. This suggests that the 

saturation procedure reduces both the quantity and size of macropores within the samples. 

Saturation also appeared to reduce the mean macropore length within the samples, except in 

samples 4C and 6C which had the lowest initial macroporosity. This may be because, within 

these samples, the reduction in the number of small macropores (reflected in the reduced 
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macropore density) after saturation has a greater relative effect on the mean length than the 

reduction in the size of the largest macropores. 

Figure 8.8(a-f) shows pore size distributions (as a % of total pore volume) for all the 

samples scanned in both partially saturated and saturated conditions. Figure 8.8 therefore 

shows the proportion of pore volume within each sample made up of pores of a certain size. 

It is clear that in all samples the saturation procedure reduces the size of the largest 

macropore present. For all samples except 3C and 4C (Figure 8.8b and Figure 8.8c) it appears 

that the total macropore volume within samples is composed of a greater proportion of small 

pores after saturation than at field conditions.  These results suggest that it is the largest 

macropores within samples which are most affected by the saturation procedure and are 

likely to suffer changes in volume as a result. 

 Figure 8.9(a-f) shows profiles of pore volume per vertical slice throughout the 

subvolumes within the scan image data for each sample. The figure shows that the saturation 

procedure tended to decrease the volume of pores per slice throughout the subvolumes and 

tended to result in less variation in total macroporosity throughout the height of the 

subvolume. For example compare the changes shown in Figure 8.9a and Figure 8.9f as a 

result of saturation.  It can be seen that after saturation the range of variation between the 

minimum and maximum macroporosity measured throughout the subvolume is less than 

prior to saturation. This implies that the saturation procedure resulted in the samples 

becoming more uniform in structure, this can also be observed in Figure 8.7. 
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Table 8.4 – The pore property metrics calculated from analysis of the microCT image data from scans of the clay fill samples (4 cm central cube subvolumes) 
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Corrected 

Macroporosity 

(%) 

1.984 0.806 2.030 1.719 0.382 0.155 1.854 1.797 1.301 0.581 0.530 0.180 0.115 4.117 0.400 

Macropore 

density (x106) 

(no/m3) 

66.141 57.765 60.859 35.078 89.625 13.203 142.422 83.453 149.953 74.875 56.453 29.109 25.750 59.844 51.697 

Mean macro 

pore length 

(mm) 

1.094 0.981 1.129 0.965 1.052 1.193 1.594 1.433 1.582 1.570 1.412 0.801 0.815 2.025 0.979 

Surface area 

density (m2/m3) 
207.870 110.620 198.453 188.523 85.999 19.756 264.183 209.676 203.252 88.807 70.681 34.754 23.764 337.639 69.153 

Mean volume of 

ten largest pores 

(mm3) 

55.279 13.931 70.570 72.904 6.825 4.469 36.689 21.194 16.156 8.531 6.506 5.679 2.413 203.442 4.422 
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Figure 8.7 – 3D visualisations in Avizo Fire (FEI, 2014) of the macropores present within the clay fill samples from analysis of the microCT scan image data, showing 
the same samples scanned in different states of saturation (4 cm central cube subvolumes) (continued on next page) 
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Figure 8.7 - Continued 
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(a)                                                                                                                             (b) 

  

(c) 

Figure 8.8 – Pore size distributions (in terms of total pore volume) from analysis of the microCT image data from scans of the clay fill samples, showing the change 
in pore size as a result of saturation (4 cm central cube subvolumes) (continued on next page) 
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(d)            (e) 

 

(f) 

Figure 8.8 - Continued 
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(a)                                                                          (b)                                                                                            (c) 

Figure 8.9 – Profiles of the volume of voids calculated within each vertical slice of the microCT image data from scans of the clay fill samples, showing the change in 
the number of macropores as a result of saturation (4 cm central cube subvolumes) (continued on next page) 
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(d)                                                                               (e)                                                                                              (f) 

Figure 8.9 – Continued 
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8.5.3 Linking multiple microCT scans throughout the full height of a sample 

The macropore structure within sample 5C was quantified across its entire height using three 

separate microCT scans. This was used to compare the macroporosity variation within the 

samples over their full height and to assess the potential of linking image data from multiple 

adjacent microCT scans. Figure 8.10 shows the profile of volume of pores per slice resulting 

from image analysis of all three scans on sample 5C. It can be seen that the volume of voids 

per slice quantified from the three scans align almost exactly at the top and bottom of the 

middle subvolume. This suggests that the consistent microCT scanning and image analysis 

procedure developed in Chapter 6 and Chapter 7 can be used to link multiple microCT scans 

in a reliable manner.  

 

Figure 8.10 – The profile of volume of voids throughout 12 cm of sample 5C, composed of data 
obtained from analysis of three individual microCT scans of 5C (one at the top, one in the middle, 

and one at the bottom)(each a 4 cm central cube subvolume). 
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Figure 8.10 is an important validation of the microCT scanning methods used in this thesis. 

The ability to compare results obtained from different scans of variable density material has 

proven difficult in the past due to the scanning complications and necessary operator input 

discussed in Chapter 4. 

 Figure 8.10 also shows that the sample macroporosity decreases slightly with depth 

throughout the full height of the sample. The figure shows that the maximum and minimum 

macroporosity within the full sample are not captured by the middle scan subvolume. This 

is a consequence of using a smaller subvolume to reduce computational demand and to 

enable quantification of the macropores within large microCT scanned samples (see Chapter 

7). 

 From Figure 8.7 it can be seen that some macropores extend throughout the height 

of the subvolumes from top to bottom and may therefore prove influential to flow through 

the sample. Although the volume of pores throughout the height of the subvolumes obtained 

from the three different scans of 5C can be linked (Figure 8.10), the individual macropores 

within the data sets and their corresponding pore property metrics cannot due to truncation 

of pores during analysis (See Section 7.3.2). To overcome this, visual assessment was used to 

examine if individual macropores connected throughout the entire height of 5C. It was 

observed that no individual macropores apparently extended throughout the entire height of 

the triaxial-scale combined sample. 

Assessing the scan data from different heights within 5C before and after saturation 

also allows for an assessment of the impact of consolidation during the saturated hydraulic 

conductivity testing stage of the experimental procedure. Figure 8.8 shows that the largest 

pores within the 5C-top are reduced to a greater extent as a result of saturation than those 

within 5C-bot. This may be an indication of increased consolidation within 5C-top due to 

the gradient over the sample during conductivity testing (i.e. effective stress is higher at the 

top of the triaxial sample). However, Table 8.4 shows that the impact of the saturation 

procedure on total macroporosity was similar throughout the height of 5C (0.057 % 

reduction after saturation for 5C-top as opposed to 0.051 % for 5C-bot). 
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8.5.4 Variation in microCT measured macroporosity with depth throughout 

the embankment 

Figure 8.11 shows profiles of volume of pores per slice for all of the samples shown 

throughout the depth of the embankment (between 1.5 – 6.5 m depth). It can be seen that 

no clear pattern of macropore distribution exists (for instance decreasing macroporosity with 

depth). Figure 8.11 reflects the inherent variability of the macropore structures within the 

clay fill forming the embankment. This was also evident from the visualisation of the wide 

range of internal macroporosity within the samples presented in Figure 8.7. No other studies 

exist showing the quantitative variation of macroporosity throughout the depth of an 

embankment for comparison of the results given here. It is therefore difficult to comment 

on the significance of the variation shown in Figure 8.11. 

 As visualised in Figure 8.7, Figure 8.11 shows that sample 7C was particularly 

fractured in nature. This could be a result of increased disturbance of the samples during 

extraction due to resistance encountered at this depth (diameter had to be reduced for 

samples from 5.5 m and 6.5 m depth). This could also reflect the changing nature of the clay 

at the foundation of the embankment or the inherent heterogeneity present within clay fill. 
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Figure 8.11 – The profiles of volume of voids per slice for all the samples (between 1.5 – 6.5 m depth 
within the embankment) showing the variability of microCT measured macroporosity within the 

embankment 

8.5.5 A comparison of porosity measured at different scales 

Measured pore characteristics (e.g. connectivity) depend on the spatial resolution of the 

experimental technique used, as pores which exist in the sample below this size will also be 

connected but not included in the results. As a result, the connectivity of the pore structure 

within the samples will change with resolution because more connections or more isolated 

features appear and are measured. Figure 8.6 showed the range of pore size measured by 

various experimental techniques including microCT and mercury intrusion porosimetery. 

Table 8.5 shows the results of the mercury intrusion porosimetery tests carried out 

on the reconstituted and 5C-bot samples, as well as total porosity for the samples calculated 
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using phase relationships from the oedometer samples. The porosity determined using the 

MIP technique is found to be significantly smaller than the values measured on the 

oedometer size samples (0.27 as opposed to 0.45 for the 5C-bot sample). This difference 

likely arises due to the scales of pores measured using the MIP technique. MIP does not 

measure non-intruded porosity with pore entrance diameters less than 4 nm and non-

detectable porosity for pore sizes larger than 110 μm. Also the other limitations of MIP 

discussed in Chapter 2 will cause a discrepancy between the two values. 

Table 8.5 – Mercury intrusion porosimetery properties and results for two samples (5C-bot and the 
reconstituted sample) 

 
5C-bot sample Reconstituted sample  

Mass of sample (g) 0.49 1.39 

Density (g/cm3) 1.78 1.91 

Volume of sample  (mm3) 275.83 730.05 

Total specific volume of pores (mm3/g) 152.34 134.73 

Total pore volume (mm3) 74.62 187.72 

Max pore entrance diameter  (μm) 109.52 110.01 

Min pore entrance diameter  (μm) 0.0037 0.0037 

Average pore entrance diameter (μm) 0.023 0.024 

Modal pore entrance diameter (μm) 0.051 0.052 

Median pore entrance diameter  (μm) 0.042 0.043 

MIP Porosity (%) 27 26 

Total porosity (phase relationship) (%) 45 50 

 

A typical MIP output is a graph of log differential intrusion curve vs pore entrance diameter 

(pore size density function) which aids the visual detection of the dominant pore modes. 

Figure 8.12 shows this relationship for the two MIP tested samples. This function is not 

necessarily a true reflection of the pore size distribution, as MIP measures pore entrance 

diameter as opposed to pore volume, but rather provides a useful quantitative description of 

the sample pore structure. 

Figure 8.12 shows that both samples contain a peak pore size of around 0.05 microns 

which is a thousand times smaller than can be observed within the microCT images, hence 

the difference in estimated porosity between the MIP and microCT (microCT macroporosity 

for 5Cbot is 0.58 % and 0.40 % or the reconstituted sample (Table 8.4)). It is difficult to link 

MIP derived pore size density functions with microCT derived pore size distributions as the 
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volume of intruded mercury does not necessarily correspond to the volume of individual 

pores and the overlap between the techniques is small (60 – 110 μm).  

 

Figure 8.12 – Mercury intrusion porosimetery measurement of pore entrance diameter within the 
reconstituted and 5C-bot samples 

 

8.5.6 The relationship between saturated hydraulic conductivity and 

microCT measured pore property metrics of the samples 

Table 8.6 shows the saturated hydraulic conductivity measurements from triaxial 

permeability tests and one-dimensional consolidation tests for all the samples along with the 

phase relationship measured total sample porosity. Table 8.6 shows that the saturated 

hydraulic conductivity determined on triaxial size samples is consistently less than the 

hydraulic conductivity measured on the oedometer sized samples. The triaxial ksat is lower 

by a factor of between 3.6 and 17.  This is likely a result of the height of the samples (20 mm 

oedometer, 80 mm triaxial) and the relative influence of macropores within them. 

Figure 8.13 shows the spearman correlation coefficients calculated for the microCT 

derived macropore property metrics and the measurements of porosity, density and saturated 

hydraulic conductivity (at the triaxial scale and the oedometer scale). 
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Table 8.6 – Porosity and saturated hydraulic conductivity measurements from triaxial permeability 
tests and one-dimensional consolidation test for the saturated samples  
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0.50 0.49 0.44 0.48 0.45 0.48 0.50 

Oedometer (3 x 70 mm diameter, 
20 mm height) - average saturated 

hydraulic conductivity (first loading 
step)  (m/s) 

 

1.77 x 

10-9 

6.24 x 

10-10 

7.35 x 

10-10 

3.75 x 

10-9 

1.65 x 

10-9 

2.26 x 

10-10 

2.95 x 

10-10 

Triaxial (100 mm diameter, 80 mm 
height) - saturated hydraulic 

conductivity (m/s) 
 

1.04 x 

10-10 

5.32 x 

10-11 

1.67 x 

10-10 

8.03 x 

10-10 

1.08 x 

10-10 

1.76 x 

10-11 

8.15 x 

10-11 

Factor of difference between 
oedometer and triaxial measured 
saturated hydraulic conductivity 

17.0 11.7 4.4 4.7 15.3 12.8 3.6 

 

Figure 8.13 – Spearman’s correlation coefficients for all the microCT calculated pore property 
metrics from saturated samples as well as the lab measurements of saturated hydraulic conductivity, 

porosity, and bulk density 
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Figure 8.13 shows that total porosity has a slight negative correlation to both forms of the 

saturated hydraulic conductivity measurement (oedometer and triaxial samples). This 

indicates that the hydraulic conductivity cannot be related to the overall porosity.  The 

correlation between the triaxial measured hydraulic conductivity and microCT derived total 

macroporosity is mild (rs = 0.39) suggesting that the macroporosity has less of an influence 

on the hydraulic conductivity than the connectivity of the soil matrix (at a scale below that 

visible with microCT). 

The microCT measured mean macropore length shows a strong positive correlation 

with both the triaxial hydraulic conductivity (rs = 0.96) and oedometer hydraulic conductivity 

(rs = 0.86), indicating that the length of the macropores is more influential than the quantity 

of macropores (total macroporosity) within a sample. This could be a result of preferential 

flow only being influential in pores which are connected throughout the length of the 

samples as opposed to ‘dead end’ pores. From Table 8.4, Table 8.6, and Figure 8.7, it can be 

seen that the samples with the most connected pores (from top to bottom of subsample) 

have the highest saturated hydraulic conductivity and the highest mean macropore length. 

MicroCT derived mean macropore length therefore appears to represent a measure of the 

connectivity of macropores within the samples which is strongly related to their influence on 

flow.  

These results are consistent with some researchers who have shown that highly 

continuous macropores are potentially active in hydrological processes at near-saturated 

conditions (Perret et al., 1999; Luo et al., 2010). 

In general, correlations between the oedometer measured hydraulic conductivity and 

microCT derived pore property metrics are more significant than between the triaxial 

measured saturated hydraulic conductivity and the microCT pore property metrics. Indeed, 

the oedometer measured saturated hydraulic conductivity shows good correlation with all of 

the microCT derived pore property metrics. These correlations could be a result of the size 

of subsamples used for analysis of the microCT images being more representative of the 

oedometer samples. It is possible that the macropores quantified within the microCT 4 cm 

subvolumes correspond to the macroporosity (and other metrics) within the oedometer 

samples more closely than within the triaxial samples, where macroporosity can vary across 

the entire sample height (see Figure 8.10). Munkholm et al (2012) showed similar results on 
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scans of agricultural soils, in that the strongest correlations were found between parameters 

assessed at similar levels of observation. 

However, as discussed earlier, macropores can be seen to extend throughout the 

height of the oedometer samples but were not observed to connect throughout the height 

of a triaxial sample. Therefore the correlation between the oedometer measured hydraulic 

conductivity and microCT derived pore property metrics may be due to the macropores 

having a much greater influence on the conductivity within the smaller oedometer samples 

than the triaxial samples due to their increased relative size (i.e. long macropores connect 

throughout the height of the oedometer samples and affect flow but not within the triaxial 

samples). This result explains the difference in triaxial and oedometer measured saturated 

hydraulic conductivity shown in Table 8.6. 

8.6 Conclusions 

MicroCT was used to visualise and quantify the pores within 100 mm diameter clay fill 

embankment samples at a resolution which enables quantification of macropores (> 60 

microns). The samples were scanned in both partially saturated and saturated conditions to 

investigate the evolution of internal macropore structure with saturation. Additionally, 

microCT derived pore property metrics were compared to saturated hydraulic conductivity 

measurements to assess the influence of macroporosity on flow. The following conclusions 

can be drawn from the work presented here: 

➢ Visualisation of the samples, obtained from between 1.5 – 6.5 m depth within the 

embankment, showed that the size and distribution of macropores present within 

the samples varied considerably. Total microCT measured macroporosity ranged 

between 0.12 % and 4.12 % although this is a small proportion of the total porosity 

of the samples, which depends on the scale of measurement technique used (MIP 

porosity varied between 0.26 - 0.27 and total porosity between 0.44 - 0.5). 

 Historically, visualising and achieving an accurate description of the internal 

macropore structure of soil has proven difficult. The results from these microCT 

scans emphasise the clear benefits of microCT as a non-destructive 3D visualisation 

and analysis tool for soil research, even on large undisturbed clay samples which have 

not been previously scanned using the technique. This is only possible if a consistent 

microCT scanning and image analysis procedure is developed and followed within 

the experimental program. The procedures developed in Chapters 6 and 7 allow for 
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direct comparison of the macropores within these large samples in different states of 

saturation and enable multiple microCT scans of the same sample to be linked. 

 

➢ It was found that the saturation procedure of the clay fill samples reduced the overall 

total macroporosity and the number/density of macropores within the samples. The 

saturation procedure was observed to decrease other macropore properties (mean 

macropore length and surface area) as well as the size of the largest macropores 

within the samples. After saturation the majority of the samples were composed of a 

greater proportion of smaller pores than at sampled conditions, indicating that it is 

the largest macropores within samples which are most affected by the saturation 

procedure. Saturation was also shown to make the samples more uniform in structure 

throughout their height, with less variation in total macroporosity throughout the 

subvolume than prior to saturation.  

 

➢ Saturated hydraulic conductivity of the clay fill samples measured within an 

oedometer cell was found to correlate well with all microCT derived pore property 

metrics (better than triaxial measured ksat). Macropores within oedometer samples 

can be seen to extend throughout the height of the samples whereas macropores 

were not observed to connect throughout the height of a triaxial sample. This 

suggests that macropores have a much greater influence on the hydraulic 

conductivity of oedometer samples than triaxial samples due to their increased 

relative size. 

 

➢ MicroCT derived mean macropore length has a strong positive correlation with the 

hydraulic conductivity measured using triaxial or oedometer size samples (rs = 0.96 

and rs = 0.86 respectively) and appears to represent a measure of the connectivity of 

macropores within the samples.  The results indicate that the length of the 

macropores is more closely related to flow within the samples than the quantity of 

macropores (total macroporosity) which was not found to correlate significantly with 

measures of hydraulic conductivity. Therefore, the length and connectivity of 

macropores rather than the total volume of pores is the key influence on saturated 

hydraulic conductivity.
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9 Overall discussion  

The work presented within this thesis has analysed definitions of flow and unsaturated 

behaviour and developed the capabilities of microCT to help improve our knowledge of the 

influence of macropores on the hydrology of infrastructure slopes. 

In Chapter 5, a field representative finite element model was used to calculate the 

pore water pressure and volumetric water content response of a cutting slope to the effects 

of climate and the results were compared to field measurements. It was found that the 

continuum assumptions (Richard’s equation flow) and characterisation of unsaturated soil 

behaviour (SWRC parameters) used within the model do not reflect the true behaviour of 

the slope at shallow depths or in dry conditions. In other words, the practice most commonly 

used within geotechnics does not fully capture the real world behaviour of the slope. The 

lack of understanding of macropore influence hinders our ability to accurately estimate slope 

hydrology and to upscale models of slope hydrology across transport networks. 

These results reinforce the importance of determining how the hydraulic 

conductivity of clay soils varies with depth and with saturation within earthworks, in order 

to be able to correctly model the hydrological response of these slopes to climate conditions. 

Macropores and the pore structure of a soil plays a role in the hydraulic conductivity of the 

soil both when saturated and unsaturated. Determining the relationship between macropore 

properties (e.g. size and connectivity) and saturated hydraulic conductivity is therefore of 

great importance. As is the degree to which this pore architecture evolves with changes in 

saturation and depth within a slope. 

The need for new flow descriptions based on the real physical structure of soils is 

clear. This must take into account the interaction of the macropores and soil matrix as well 

as the properties of the macropores present (e.g. size, density, and connectivity). 

To enable such descriptions to be formulated it is necessary to advance current 

experimental techniques in order to accurately measure the pore structure present within 

samples without destroying the samples.  

This thesis has shown that after development of suitable scanning and image analysis 

procedures, microCT can be adapted to help overcome the difficulties associated with 

traditional laboratory methods. The microCT technique is not without its own difficulties 

however, Chapter 6 showed the trade-off encountered between image quality and the size of 

sample scanned due to the power needed to scan such dense samples. Chapter 7 also showed 
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the advancements necessary to ensure that image analysis is consistent and allows for 

comparison between scans of different samples (by using consistent and suitable 

subsampling, segmentation, image enhancement, and PVE correction methods etc.). This 

thesis has shown that following investigation into these issues, microCT enables non-

destructive visualisation and quantification of the macropores (> 63 microns in size) within 

100 mm diameter clay fill samples in the time restraints imposed by a working day. However, 

this size of sample is currently at the limit of microCT scanner capabilities in terms of 

achieving good image quality (resolution and phase contrast) from scans.  

Chapter 8 showed that the macropore structure within relatively undisturbed clay fill 

samples could be observed due to the non-destructive nature of the technique. This 

visualisation of clay fill samples shows that the size and distribution of macropores within 

the samples is heterogeneous. An accurate quantitative description of these internal 

macropore structures is difficult to achieve using conventional morphological techniques 

(e.g. method of sections). Therefore the results from these microCT scans emphasise the 

clear benefits of microCT as a non-destructive 3D visualisation and analysis tool for soil 

research. 

Chapter 8 also built on this method to show how microCT can be used in a repeatable 

fashion to scan samples at different water contents and throughout the depth of an 

embankment. This enables the dynamic nature of macropore structure to be investigated. 

MicroCT was used to investigate the evolution of macropore structure with saturation within 

100 mm diameter clay fill samples at high resolution for the first time. It was found that the 

saturation procedure of the clay fill samples reduced the overall total macroporosity and the 

number/density of macropores within the samples. The saturation procedure was observed 

to decrease other macropore properties (mean macropore length and surface area) as well as 

the size of the largest macropores within the samples. After saturation, the majority of the 

samples were composed of a greater proportion of smaller pores than at sampled conditions, 

indicating that it is the largest macropores within samples which are most affected by the 

saturation procedure. Saturation was also shown to make the samples more uniform in 

structure throughout their height, with less variation in total macroporosity throughout the 

subvolume than prior to saturation. 

To improve understanding of macropore influence on the saturated hydraulic 

conductivity of clay fill, microCT quantified macropore characteristics were compared to 

saturated hydraulic conductivity tests. It was found that microCT derived mean macropore 
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length has a strong positive correlation with the hydraulic conductivity measured using both 

triaxial and oedometer sized samples and appears to represent a measure of the connectivity 

of macropores within the samples.  The results indicate that the length of the macropores is 

more closely related to flow within the samples than the quantity of macropores (total 

macroporosity) which was not found to correlate significantly with measures of hydraulic 

conductivity. Therefore, the length and connectivity of macropores rather than the total 

volume of macropores is the key influence on saturated hydraulic conductivity. 

The fundamental aim of the work presented within this thesis is to help progress 

research towards achieving a complete picture of transient water movement within 

infrastructure slopes, based on a fundamental understanding of earthwork material and 

system behaviour. Improving our knowledge of macropore influence on flow within soils 

and infrastructure slope hydrology can enable us to advance our modelling of slope 

behaviour and develop a more resilient transport network. 

It terms of achieving this aim, the development of the microCT technique and the 

‘proof of concept’ studies presented here are significant progress to help build up the 

knowledge surrounding macropores. However, the techniques discussed here are some way 

away from directly affecting the modelling of geotechnical practitioners. Despite this, it is 

clear that microCT provides the potential to improve models of flow and make modelling 

assumptions more physically based in the future if research into the technique is continued. 

The technique allows the real world complexity present in infrastructure slopes to be 

captured at a scale larger than possible before. Provided the difficulties surrounding scanning 

fully saturated samples and issues with operator bias can be overcome then use of the 

technique within this field will surely increase.   
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10 Conclusions 

This thesis used detailed numerical modelling of a case study infrastructure slope in 

conjunction with field data to assess the key influences on flow within infrastructure slopes. 

The results of this investigation reinforce the importance of determining how the hydraulic 

conductivity of clay soils varies with depth and with saturation, in order to be able to correctly 

model the hydrological response of earthworks to climate conditions. Determining the extent 

to which pore structure and connectivity influence hydraulic conductivity and the evolution 

of this pore architecture with changes in saturation and depth is therefore of great 

importance. 

This thesis builds on recent developments in X-ray computed tomography (CT) in 

order to progress the technique as a means of visualising and quantifying macropore 

characteristics in a non-intrusive manner. A microCT scanning technique which allows for 

the scanning of large undisturbed clay fill samples was developed, as well as an image analysis 

procedure that allows for the quantification of internal macropore architecture. It was shown 

that 100 mm diameter clay cores are at the limit of microCT capabilities as a result of 

achievable spatial resolution and phase contrast. The use of subsampling and image 

improvement techniques allows for the pores above 63 microns in size present within the 

samples to be visualized and quantified.  

Macropore influence on governing flow has traditionally been hard to define within 

laboratory experiments, particularly on representative and undisturbed samples. Additionally, 

quantitative descriptions of the dynamic nature of soil pore architecture and the effects of 

saturation on altering internal pore networks have proven elusive. 

This thesis assessed the evolution of the internal macropore structure of undisturbed 

clay fill samples with saturation. Scans were conducted on 100 mm diameter clay fill samples 

at different states of saturation at microCT resolution for the first time. It was found that the 

saturation procedure reduced overall measured total macroporosity as well as the number of 

macropores within the samples. Additionally, the saturation procedure was observed to 

decrease the size of largest macropores within the samples and to make the samples more 

uniform in structure throughout their height. 

MicroCT determined macropore property metrics of the clay fill samples were 

compared to saturated hydraulic conductivity tests of the samples. Saturated hydraulic 

conductivity was found to correlate strongly with microCT derived mean macropore length, 
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which represents the connectivity of the macropores within the samples. The results also 

indicate that the length of the macropores within a sample has more influence on the 

saturated hydraulic conductivity than the quantity of macropores (total macroporosity). 

Overall, the developed microCT technique allows the real world complexity present in 

infrastructure slopes to be captured at a scale not possible before. As shown, if the difficulties 

surrounding use of the technique can be overcome, then it represents a new tool with which 

to develop more realistic flow and unsaturated behaviour theories and develop current 

modelling practice to better take account of the effects of macropores. 
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11 Future Research 

The literature review and research presented within this thesis show that are still many areas 

of research in relation to slope hydrology (across several different scales) of which we require 

a better understanding. A few key topics which could be explored to further knowledge 

within this field are presented here: 

➢ In order for microCT to be further adopted as a research tool for 3D non-invasive 

quantification within the geosciences, it is important that automated image 

processing techniques are developed which remove the influence of the operator and 

allow comparison between scans using different experimental methods. This is 

particularly important for segmentation of image data between material constituents, 

where significant operator input is currently necessary for inhomogeneous samples.  

 

➢ The novel work presented within this thesis used the non-destructive nature of 

microCT to conduct repeated scanning of samples in different states of saturation. 

The microCT technique offers further potential yet to be fully taken advantage of by 

researchers. For instance, scans could be carried over a wide range of water contents 

in order to better understand macropore evolution with drying and potentially 

develop more realistic unsaturated behaviour descriptions. Additionally, 

development of microCT scanners which could house the experimental set up 

needed for real-time flow and conductivity measurements could lead to the 

development of new models of flow within soils where preferential flow occurs. 



12. References 

 

189 
 

12 References 

Ahmed, S. I. (2014) An investigation of fabric and of particle shape in railway ballast using X-ray CT and the discrete element 

method. University of Southampton. 

Allen, R. et al. (1998) Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and 

drainage paper 56. Rome. 

Ambrose, J. (1973) ‘Computerized Transverse Axial Scanning (Tomography): Part 2: Clinical Application’, 

British Journal of Radiology, 46, p. 1023. 

Anderson, S. et al. (2010) ‘CT-measured macropore parameters for estimating saturated hydraulic conductivity 

at four study sites’, 2010 19th World Congress of Soil Science, Soil …, (August), pp. 13–16. 

Asch, T. W. J. Van, Buma, J. and Beek, L. P. H. Van (1999) ‘A view on some hydrological triggering systems in 

landslides’, (June 1997), pp. 25–32. 

Aubertin, M., Mbonimpa, M. and Chapuis, R. P. (2003) ‘A physically-based model to predict the water retention 

curve from basic geotechnical properties’, Canadian Geotechnical Journal, 40(February), pp. 1104–1120. 

Barbour, S. L. and Krahn, J. (2004) ‘Numerical modeling-prediction or process?’, Geotechnical News, 

22(December), pp. 44–52. 

Barnes, G. (2010) Soil mechanics : principles and practice. Third. Basingstoke: Palgrave Macmillan. 

Baveye, P. C. et al. (2010) ‘Observer-dependent variability of the thresholding step in the quantitative analysis 

of soil images and X-ray microtomography data’, Geoderma, 157(1–2), pp. 51–63. doi: 

10.1016/j.geoderma.2010.03.015. 

Beven, K. and Germann, P. (1982) ‘Macropores and water flow in soils’, Water Resources Research, 18(5), pp. 

1311–1325. doi: 10.1029/WR018i005p01311. 

Beven, K. and Germann, P. (2013) ‘Macropores and water flow in soils revisited’, Water Resources Research, 49(6), 

pp. 3071–3092. doi: 10.1002/wrcr.20156. 

Biddle, P. G. (1998) Tree Root Damage to Buildings. Wantage, England: Willowmead Publishing. 

Birch, G. and Dewar, A. (2002) ‘Earthwork failures in response to extreme weather’, in Forde, M. (ed.) 

Proceedings of the international conference of railway engineering. London: Engineering technics press CD-ROM. 

Bishop, A. (1960) ‘The principle of effective stress’, Norwegian Geotechnical Institute, 32, pp. 1–5. 

Blaney, H. F. and Criddle, W. D. (1962) ‘Determining consumptive use and irrigation water requirements’, 

United States Department of Agriculture, Technical, pp. 1–59. doi: USDA Technical Bulletin 1275. 

Blight, G. (2003) ‘The vadose zone soil-water balance and transpiration rates of vegetation’, Geotechnique, (1), 

pp. 55–64. 

Boas, F. E. and Fleischmann, D. (2012) ‘CT artifacts: causes and reduction techniques’, Imaging in Medicine, 4(2), 

pp. 229–240. doi: 10.2217/iim.12.13. 

Bouma, J. (1991) ‘Influence of soil macroporosity on environmental quality’, Advances in Agronomy, 46(C), pp. 

1–37. doi: 10.1016/S0065-2113(08)60577-5. 

Bouma, J. and Wösten., J. H. M. (1979) ‘Flow Patterns During Extended Saturated Flow in Two, Undisturbed 

Swelling Clay Soils with Different Macrostructures’, Soil Sci. Soc. Am. J., 43, pp. 16–22. 

Briggs, K. (2011) Impacts of climate and vegetation on railway embankment hydrology. University of Southampton. 

Briggs, K. M. et al. (2012) Permeability measurements at Newbury cutting using a double ring infiltrometer (DRI). 

Briggs, K. M. et al. (2013) ‘Managing the extent of tree removal from railway earthwork slopes’, Ecological 



12. References 

 

190 
 

Engineering, 61, pp. 690–696. doi: 10.1016/j.ecoleng.2012.12.076. 

Briggs, K. M. et al. (2016) ‘The influence of tree root water uptake on the long term hydrology of a clay fill 

railway embankment”, Transportation Geotechnics, 9, pp. 31–48. doi: 10.1016/j.trgeo.’, Transportation 

Geotechnics, 9, pp. 31–48. doi: 10.1016/j.trgeo.2016.06.001. 

Briggs, K. M., Loveridge, F. A. and Glendinning, S. (2017) ‘Failures in transport infrastructure embankments’, 

Engineering Geology. Elsevier B.V., 219, pp. 107–117. doi: 10.1016/j.enggeo.2016.07.016. 

Briggs, K. and Smethurst, J. (2013) ‘Wet winter pore pressures in railway embankments’, Proceedings of the ICE 

…, 166(5), pp. 451–465. doi: 10.1680/geng.11.00106. 

Chen, T. J. et al. (2006) ‘A blurring index for medical images’, Journal of Digital Imaging, 19(2), pp. 118–125. doi: 

10.1007/s10278-005-8736-y. 

Clarke, D. and Smethurst, J. a. (2010) ‘Effects of climate change on cycles of wetting and drying in engineered 

clay slopes in England’, Quarterly Journal of Engineering Geology and Hydrogeology, 43(4), pp. 473–486. doi: 

10.1144/1470-9236/08-106. 

Clayton, C.R.I., Matthews, M.C. and Simons, N. E. (1995) Site investigation: A handbook for engineers. Oxford: 

Blackwell Science. 

Clayton, C. R. I. and Siddique, A. (2001) ‘T ube sampling disturbanceöforgotten truths and new perspectives’, 

(3), pp. 127–135. 

Clothier, B. E., Green, S. R. and Deurer, M. (2008) ‘Preferential flow and transport in soil: progress and 

prognosis’, European Journal of Soil Science, 59, pp. 2–13. 

Cnudde, V. and Boone, M. N. (2013) ‘High-resolution X-ray computed tomography in geosciences: A review 

of the current technology and applications’, Earth-Science Reviews. Elsevier B.V., 123, pp. 1–17. doi: 

10.1016/j.earscirev.2013.04.003. 

Croney, D. (1952) ‘The Movement and Distribution of Water in Soils’, Geotechnique, 3(1), pp. 1–16. 

Croney, D. (1977) The design and performance of road pavements for the Transport and Road Research Laboratory. First 

Edit. Edited by T. and R. R. Laboratory. London: H.M.S.O. 

Dakshanamurthy, V. and Fredlund, D. G. (1981) ‘A mathematical model for predicting moisture flow in an 

unsaturated soil under hydraulic and temperature gradients’, Water Resources Research, 17(3), pp. 714–722. doi: 

10.1029/WR017i003p00714. 

Dewulf, W., Tan, Y. and Kiekens, K. (2012) ‘Sense and non-sense of beam hardening correction in CT 

metrology’, CIRP Annals - Manufacturing Technology. CIRP, 61(1), pp. 495–498. doi: 10.1016/j.cirp.2012.03.013. 

Dhondt, S. et al. (2010) ‘Plant structure visualization by high-resolution X-ray computed tomography’, Trends 

in Plant Science. Elsevier, 15(8), pp. 419–422. doi: 10.1016/j.tplants.2010.05.002. 

Diamond, S. (1970) ‘Pore Size Distributions in Clays’, Clays and Clay Minerals, 18(1), pp. 7–23. doi: 

10.1346/CCMN.1970.0180103. 

Dijkstra, T. et al. (2014) ‘Forecasting infrastructure resilience to climate change’, Proceedings of the Institution of 

Civil Engineers: Transport, 167(5), pp. 269–280. doi: 10.1680/tran.13.00089. 

Dijkstra, T. and Dixon, N. (2010) ‘Climate change and slope stability in the UK: challenges and approaches’, 

Quarterly Journal of Engineering …, 43(4), pp. 371–385. 

Dixon, N. et al. (2017) ‘Near surface saturated hydraulic conductivity in engineered clay slopes’, Quarterly Journal 

of Engineering Geology and Hydrogeology, In review. 

Domenico, P. A. (1972) Concepts and Models in Groundwater Hydrology. New York: McGraw-Hill. 



12. References 

 

191 
 

Drumm, E., Boles, D. and Wilson, G. (1997) ‘Desiccation cracks result in preferential flow’, Geotech. News. 

Eck, D. V. et al. (2016) ‘Relating Quantitative Soil Structure Metrics to Saturated Hydraulic Conductivity’, 

Vadose Zone Journal, 15(1), p. 0. doi: 10.2136/vzj2015.05.0083. 

Edlefsen, N. E., Anderson, A. B. C. and Station, C. A. E. (1943) Thermodynamics of Soil Moisture. University of 

California. 

Ewen, J., Parkin, G. and O’Conell, P. E. (2000) ‘SHETRAN : Distributed River Basin Flow Modeling System’, 

Journal of Hydrologic Engineering, 5(JULY), pp. 250–258. doi: doi:10.1061/(ASCE)1084-0699(2000)5:3(250). 

Feddes, R. A., Kowalik, P. J. and Zaradny, H. (1978) Simulation of Field Water Use and Crop Yield. Wiley (A Halsted 

Press book). 

FEI (2014) ‘Avizo Fire 3D software’. 

Flury, M. et al. (1994) ‘Susceptibility of soil to preferential flow of water: a field study’, Water Resouces Research, 

30(7), pp. 1945–1954. 

Fredlund, D. et al. (2012) Unsaturated Soil Mechanics in Engineering Practice, … of geotechnical and geoenvironmental 

engineering. Wiley. 

Fredlund, D. G., Sheng, D. and Zhao, J. (2011) ‘Estimation of soil suction from the soil-water characteristic 

curve’, Canadian Geotechnical Journal, 48(2), pp. 186–198. doi: 10.1139/T10-060. 

Fredlund, D. G. and Xing, A. (1994) ‘Equations for the soil-water characteristic curve’, Canadian Geotechnical 

Journal. NRC Research Press, 31(4), pp. 521–532. doi: 10.1139/t94-061. 

Freeze, R. A. and Cherry, J. A. (1977) Groundwater. 

Geistlinger, H. (2013) ‘Mass transfer processes across the Capillary Fringe: Quantification of gas-water interface 

and bubble mediated mass transfer’, EGU General Assembly, 15(i), p. 3343. 

Gens, A. (2010) ‘Soil-environment interactions in geotechnical engineering’, Géotechnique, 60(1), pp. 3–74. 

van Genuchten, M. T. (1980) ‘A closed-form equation for predicting the hydraulic conductivity of unsaturated 

soils’, Soil Science Society of America Journal, 44(5), pp. 892–898. 

GEO-SLOPE (2008) Vadose Zone Modeling with VADOSE/W 2007. Third. Calgary: Canada. 

Gili, J. A. and Alonso, E. E. (2002) ‘Microstructural deformation mechanisms of unsaturated granular soils’, 

International Journal for Numerical and Analytical Methods in Geomechanics. John Wiley & Sons, Ltd., 26(5), pp. 433–

468. doi: 10.1002/nag.206. 

Glendinning, S. et al. (2009) ‘Role of vegetation in sustainability of infrastructure slopes’, Engineering Sustainability 

- Proceedings of the ICE, 162(2), pp. 101–110. 

Glendinning, S. et al. (2014) ‘Construction, management and maintenance of embankments used for road and 

rail infrastructure: implications of weather induced pore water pressures’, Acta Geotechnica, 9(5). doi: 

10.1016/j.pnsc.2014.06.008. 

Glendinning, S. et al. (2015) ‘Research-informed design, management and maintenance of infrastructure slopes: 

development of a multi-scalar approach’, IOP Conference Series: Earth and Environmental Science, 26(September), p. 

12005. doi: 10.1088/1755-1315/26/1/012005. 

Goldman, L. W. (2007) ‘Principles of CT: radiation dose and image quality.’, Journal of nuclear medicine technology, 

35(4), pp. 213-225-228. doi: 10.2967/jnmt.106.037846. 

Gunn, D. et al. (2016) ‘Aged embankment imaging and assessment using surface waves’, Proceedings of the 

Institution of Civil Engineers - Forensic Engineering, 169(4), pp. 149–165. doi: 10.1680/jfoen.16.00022. 

Guzzetti, F. et al. (2007) ‘The rainfall intensity–duration control of shallow landslides and debris flows: an 



12. References 

 

192 
 

update’, Landslides, 5(1), pp. 3–17. doi: 10.1007/s10346-007-0112-1. 

Harley, R. et al. (2014) ‘Progressive deformation of glacial till due to viscoplastic straining and pore pressure 

variation’, 67th Canadian Geotechnical conference, (October), pp. 1–6. doi: 10.13140/2.1.2112.3846. 

Helliwell, J. R. et al. (2013) ‘Applications of X-ray computed tomography for examining biophysical interactions 

and structural development in soil systems: A review’, European Journal of Soil Science, pp. 279–297. doi: 

10.1111/ejss.12028. 

Hendrickx, J. M. . and Flury, M. (2001) Conceptual Models of Flow and Transport in the Fractured Vadose Zone. National 

Academies Press. 

Hillel, D. (1998) Environmental Soil Physics - Fundamentals, Applications, and Environmental Considerations. 1st edn. 

Academic Press. 

Hounsfield, G. . (1973) ‘Computerized transverse axial scanning (tomography): part 1. Description of system’, 

British Journal of Radiology, 46, pp. 1016–1022. 

Hughes, P. N. et al. (2009) ‘Full-scale testing to assess climate effects on embankments’, Proceedings of the …, 

162(June), pp. 67–79. doi: 10.1680/ensu.2009.162. 

Iassonov, P., Gebrenegus, T. and Tuller, M. (2009) ‘Segmentation of X-ray computed tomography images of 

porous materials: A crucial step for characterization and quantitative analysis of pore structures’, Water Resources 

Research, 45(9). doi: 10.1029/2009WR008087. 

J. Perry, M. Pedley, K. Brady,  and M. R. (2003) ‘Briefing: Embankment cuttings: condition appraisal and 

remedial treatment’, Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 156(4), pp. 171–175. 

Jarvis, N. J. (2007) ‘A review of non-equilibrium water flow and solute transport in soil macropores: Principles, 

controlling factors and consequences for water quality’, European Journal of Soil Science, 58(3), pp. 523–546. doi: 

10.1111/j.1365-2389.2007.00915.x. 

Jarvis, N., Koestel, J. and Larsbo, M. (2016) ‘Understanding Preferential Flow in the Vadose Zone: Recent 

Advances and Future Prospects’, Vadose Zone Journal, 15(12), p. 0. doi: 10.2136/vzj2016.09.0075. 

Joshi, B. et al. (1993) ‘A finite element model for the coupled flow of heat and moisture in soils under 

atmospheric forcing’, Finite Elements in Analysis and Design, 15, pp. 57–68. 

Kabat, P. and Beekma, J. (1994) Water in the unsaturated zone, in Drainage principles and applications. ILRI publi. 

Edited by H. P. Ritzema. Wageningen: International Institute for Land Reclaimation and Improvement. 

Kato, M. et al. (2013) ‘Segmentation of multi-phase X-ray computed tomography images’, (October 2014), pp. 

1–14. doi: 10.1680/envgeo.13.00036. 

Katuwal, S. et al. (2015) ‘Effects of CT Number Derived Matrix Density on Preferential Flow and Transport 

in a Macroporous Agricultural Soil’, Vadose Zone Journal, 14(7), p. 0. doi: 10.2136/vzj2015.01.0002. 

Ketcham, R. A. and Carlson, W. D. (2001) ‘Acquisition, optimization and interpretation of X-ray computed 

tomographic imagery: applications to the geosciences’, Computers & Geosciences, 27(4), pp. 381–400. doi: 

10.1016/S0098-3004(00)00116-3. 

Kodikara, J. and Costa, S. (2013) ‘Desiccation Cracking in Clayey Soils: Mechanisms and Modelling’, in Laloui, 

L. and Ferrari, A. (eds) Multiphysical Testing of Soils and Shales SE  - 2. Springer Berlin Heidelberg (Springer Series 

in Geomechanics and Geoengineering), pp. 21–32. doi: 10.1007/978-3-642-32492-5_2. 

Krstelj, I. (1994) ‘Manual of soil laboratory testing’, Soil Dynamics and Earthquake Engineering, p. 147. doi: 

10.1016/0267-7261(94)90007-8. 

Kueh, A. et al. (2016) ‘Modelling the penumbra in Computed Tomography 1’, Journal of X-Ray Science and 



12. References 

 

193 
 

Technology, 24(4), pp. 583–597. doi: 10.3233/XST-160576. 

Kutilek, M. and Nielsen, D. R. (1994) Soil hydrology: GeoEcology. Catena-Verlag, Germany. 

Lamorski, K., Slawinski, C. and Barna, G. (2014) ‘Estimation of water saturated permeability of soils, using 3D 

soil tomographic images and pore-level transport phenomena modelling’, EGU General Assembly …, 16, p. 

11775. 

Lapierre, C., Leroueil, S. and Locat, J. (1990) ‘Mercury intrusion and permeability of Louiseville clay’, Canadian 

Geotechnical Journal, 27(6), pp. 761–773. doi: 10.1139/t90-090. 

Larsbo, M., Koestel, J. and Jarvis, N. (2014) ‘Relations between macropore network characteristics and the 

degree of preferential solute transport’, Hydrology and Earth System Sciences, 18(12), pp. 5255–5269. doi: 

10.5194/hess-18-5255-2014. 

Lauren, J. G. et al. (1988) ‘Variablity of saturated hydraulic conductivity in a glossaquic hapludalf with 

macropores’, Soil Science, 145(1). 

Leroueil, S. (2001) ‘Natural slopes and cuts: movement and failure mechanisms’, Geotechnique, (3). 

Likos, W. J., Lu, N. and Godt, J. W. (2014) ‘Hysteresis and Uncertainty in Soil Water-Retention Curve 

Parameters’, Journal of Geotechnical and Geoenvironmental Engineering, 140(4), p. 4013050. doi: 

10.1061/(ASCE)GT.1943-5606.0001071. 

Lin, H. (2010) ‘Linking principles of soil formation and flow regimes’, Journal of Hydrology, 393, pp. 3–19. 

Lourenco, S. D. et al. (2011) ‘Cavitation in high suction tensiometers : effect of temperature , time of use , and 

stone drying Cavitation in high suction tensiometers : effect of temperature , time of use , and stone drying’, 

(1996), pp. 429–435. 

Loveridge, F. A. et al. (2010) ‘The impact of climate and climate change on infrastructure slopes, with particular 

reference to southern England’, Quarterly Journal of Engineering Geology and Hydrogeology, 43(4), p. 461 LP-472. 

Luo, L., Lin, H. and Halleck, P. (2008) ‘Quantifying Soil Structure and Preferential Flow in Intact Soil Using 

X-ray Computed Tomography’, Soil Sci. Soc. Am. J., 72(4), pp. 1058–1069. 

Luo, L., Lin, H. and Li, S. (2010) ‘Quantification of 3-D soil macropore networks in different soil types and 

land uses using computed tomography’, Journal of Hydrology. Elsevier B.V., 393(1–2), pp. 53–64. doi: 

10.1016/j.jhydrol.2010.03.031. 

Luo, L., Lin, H. and Schmidt, J. (2010) ‘Quantitative Relationships between Soil Macropore Characteristics and 

Preferential Flow and Transport’, Soil Science Society of America Journal, 74(6), p. 1929. doi: 

10.2136/sssaj2010.0062. 

McKenzie, N. J. and Jacquier, D. (1997) ‘Improving the field estimation of saturated hydraulic conductivity in 

soil survey’, Australian Journal of Soil Research, 35(4). 

McMahon, T. A. et al. (2013) ‘Estimating actual, potential, reference crop and pan evaporation using standard 

meteorological data: a pragmatic synthesis’, Hydrology and Earth System Sciences, 17(4), pp. 1331–1363. doi: 

10.5194/hess-17-1331-2013. 

Mees, F. and London, G. S. of (2003) Applications of X-ray Computed Tomography in the Geosciences. Geological 

Society (Applications of X-ray Computed Tomography in the Geosciences). 

Monteith, J. L. and Unsworth, M. H. (1990) Principles of environmental physics. 2nd edn. London: Arnold, Edward. 

Mooney, S., Pridmore, T., Helliwell, J. & Bennett, M. (2012) ‘Developing X-ray computed tomography to non-

invasively image 3-D root systems architecture in soil’, Plant and Soil, 352, pp. 1–22. 

Mooney, S. (2002) ‘Three-dimensional visualization and quantification of soil macroporosity and water flow 



12. References 

 

194 
 

patterns using computed tomography’, Soil Use and Management, 18(2), pp. 142–151. doi: 10.1079/SUM2002121. 

Mori, Y. et al. (1999) ‘Discriminating the Influence of Soil Texture and Management-Induced Changes in 

Macropore Flow Using Soft X-Rays’, Soil Science, 164(7), pp. 462–482. 

Morisette, J. et al. (2006) ‘Validation of Global Moderate-Resolution LAI products: A Framework Proposed 

Within the CEOS Land Product Validation Subgroup’, 44, 7(7), pp. 1804–1817. 

Mualem, Y. (1976) ‘A new model for predicting the hydraulic conductivity of unsaturated porous media’, Water 

Resources Research, 12(3), pp. 513–522. doi: 10.1029/WR012i003p00513. 

Munkholm, L. J., Heck, R. J. and Deen, B. (2012) ‘Soil pore characteristics assessed from X-ray micro-CT 

derived images and correlations to soil friability’, Geoderma, 181–182, pp. 22–29. doi: 

10.1016/j.geoderma.2012.02.024. 

Naveed, M. et al. (2013) ‘Revealing Soil Structure and Functional Macroporosity along a Clay Gradient Using 

X-ray Computed Tomography’, Soil Science Society of America Journal, 77(2), pp. 403–411. 

Nitao, J. J. and Bear, J. (1996) ‘Potentials and Their Role in Transport in Porous Media’, Water Resources Research, 

32(2), pp. 225–250. doi: 10.1029/95WR02715. 

Nyambayo, V. P. and Potts, D. M. (2010) ‘Numerical simulation of evapotranspiration using a root water uptake 

model’, Computers and Geotechnics, 37(1–2), pp. 175–186. doi: 10.1016/j.compgeo.2009.08.008. 

Ommaya, A. K. et al. (1976) ‘Computerized Axial Tomography: Estimation of Spatial and Density Resolution 

Capability’, British Journal of Radiology, 49, p. 604. 

Penman, H. L. (1948) ‘Natural Evaporation from Open Water, Bare Soil and Grass’, Proceedings of the Royal Society 

A: Mathematical, Physical and Engineering Sciences, 193(1032), pp. 120–145. doi: 10.1098/rspa.1948.0037. 

Pennington, C. et al. (2014) ‘Antecedent Precipitation as a Potential Proxy for Landslide Incidence in South 

West United Kingdom’, in Sassa, K., Canuti, P., and Yin, Y. (eds) Landslide Science for a Safer Geoenvironment SE  

- 34. Springer International Publishing, pp. 253–259. doi: 10.1007/978-3-319-04999-1_34. 

Perret, J. et al. (1999) ‘Three-Dimensional Quantification of Macropore Networks in Undisturbed Soil Cores’, 

Soil Science Society of America Journal, 63(6), p. 1530. doi: 10.2136/sssaj1999.6361530x. 

Peth, S. et al. (2010) ‘Dynamics of soil pore space structure investigated by X-ray microtomography’, in 19th 

World Congress of Soil Science, Soil Solutions for a Changing World, pp. 17–20. 

Petrovic, A. M., Siebert, J. E. and Rieke, P. E. (1982) ‘Soil bulk density analysis in three dimensions by computed 

tomographic scanning.’, Soil Sci. Soc. Am. J., 46, pp. 445–450. 

Peyrin, F. et al. (2012) ‘Synchrotron radiation CT from the micro to nanoscale for the investigation of bone 

tissue’, in Proc. SPIE 8506, Developments in X-Ray Tomography VIII, p. 12. 

Pham, H. Q., Fredlund, D. G. and Barbour, S. L. (2005) ‘A study of hysteresis models for soil-water 

characteristic curves’, Canadian Geotechnical Journal, 42(6), pp. 1548–1568. doi: 10.1139/t05-071. 

du Plessis, A., le Roux, S. G. and Guelpa, A. (2016) ‘Comparison of medical and industrial X-ray computed 

tomography for non-destructive testing’, Case Studies in Nondestructive Testing and Evaluation. Elsevier Ltd, 6, pp. 

17–25. doi: 10.1016/j.csndt.2016.07.001. 

Porter, M. L. and Wildenschild, D. (2010) ‘Image analysis algorithms for estimating porous media multiphase 

flow variables from computed microtomography data: A validation study’, Computational Geosciences, 14(1), pp. 

15–30. doi: 10.1007/s10596-009-9130-5. 

Potts, D. M., Kovacevic, N. and Vaughan, P. R. (1997) ‘Delayed collapse of cut slopes in stiff clay’, Geotechnique, 

47(5), pp. 953–982. doi: 10.1680/geot.2000.50.2.203. 



12. References 

 

195 
 

Powrie, W. (2013) Soil Mechanics: Concepts and Applications. Third, Book. Third. 

Rajeev, P., Chan, D. and Kodikara, J. (2012) ‘Ground–atmosphere interaction modelling for long-term 

prediction of soil moisture and temperature’, Can. Geotech. J. Editor’s Choice, 1(1), pp. 1059–1073. doi: 

10.1139/t2012-068@cgj-ec.2015.01.issue-1. 

Rayhani, M. H., Yanful, E. K. and Fakher,  a (2007) ‘Desiccation-induced cracking and its effect on the hydraulic 

conductivity of clayey soils from Iran’, Canadian Geotechnical Journal, 44(3), pp. 276–283. doi: 10.1139/t06-125. 

Richards, L. A. (1931) ‘CAPILLARY CONDUCTION OF LIQUIDS THROUGH POROUS MEDIUMS’, 

Physics, 1(5), p. 318. doi: 10.1063/1.1745010. 

Ridley, A. (2004) ‘Role of pore water pressures in embankment stability’, Proceedings of the ICE- …, (October), 

pp. 193–198. 

Ridley, A., McGinnity, B. and Vaughan, P. (2004) ‘Role of pore water pressures in embankment stability’, 

Proceedings of the ICE - Geotechnical Engineering, 157(4), pp. 193–198. doi: 10.1680/geng.2004.157.4.193. 

Ritchie, J. T. (1972) ‘Model for predicting evaporation from a row crop with incomplete cover’, Water Resources 

Research, 8(5), pp. 1204–1213. doi: 10.1029/WR008i005p01204. 

Rodríguez, R. et al. (2007) ‘Experimental and numerical analysis of desiccation of a mining waste’, Canadian 

Geotechnical Journal. NRC Research Press, 44(6), pp. 644–658. doi: 10.1139/t07-016. 

Romero, E. and Simms, P. (2008) ‘Microstructure Investigation in Unsaturated Soils: A Review with Special 

Attention to Contribution of Mercury Intrusion Porosimetry and Environmental Scanning Electron 

Microscopy’, Geotechnical and Geological Engineering, 26(6), pp. 705–727. 

Sanchez, M. et al. (2013) ‘Exploring desiccation cracks in soils using a 2D profile laser device’, Acta Geotechnica. 

Springer Berlin Heidelberg, 8(6), pp. 583–596. doi: 10.1007/s11440-013-0272-1. 

Saxton, K. E. (1982) ‘Mathematical modelling of evapotranspiration on agricultural watersheds.’, Modeling 

Components of the Hydrologic Cycle, (May 18-21), pp. 183–203. 

Schaap, M. G. and van Genuchten, M. T. (2006) ‘A Modified Mualem–van Genuchten Formulation for 

Improved Description of the Hydraulic Conductivity Near Saturation’, Vadose Zone Journal, 5(1), p. 27. doi: 

10.2136/vzj2005.0005. 

Schindelin, J. et al. (2012) ‘Fiji - an Open Source platform for biological image analysis’, Nature methods, 9(7), p. 

10.1038/nmeth.2019. doi: 10.1038/nmeth.2019. 

Scott, J. M., Loveridge, F. and O’Brien, A. S. (2007) ‘Influence of climate and vegetation on railway 

embankments’, Geotechnical Engineering in Urban Environments: Proceedings of the 14th European Conference on Soil 

Mechanics and Geotechnical Engineering, pp. 659–664. 

Sharma, N. and Aggarwal, L. M. (2010) ‘Automated medical image segmentation techniques.’, Journal of medical 

physics / Association of Medical Physicists of India, 35(1), pp. 3–14. doi: 10.4103/0971-6203.58777. 

Sheppard, A. P., Sok, R. M. and Averdunk, H. (2004) ‘Techniques for image enhancement and segmentation 

of tomographic images of porous materials’, Physica A: Statistical Mechanics and its Applications, 339(1–2), pp. 145–

151. doi: 10.1016/j.physa.2004.03.057. 

Shin, H. S., Kim, K. Y. and Pande, G. N. (2013) ‘Porosity and Pore-Size Distribution of Geomaterials from X-

ray CT Scans’, in Laloui, L. and Ferrari, A. (eds) Multiphysical Testing of Soils and Shales SE  - 21. Springer Berlin 

Heidelberg (Springer Series in Geomechanics and Geoengineering), pp. 177–186. doi: 10.1007/978-3-642-

32492-5_21. 

Sijbers, J. and Postnov, A. (2004) ‘Reduction of ring artefacts in high resolution micro-CT reconstructions.’, 



12. References 

 

196 
 

Phys Med Biol., 49(14), pp. 247–253. 

Šimůnek, J. et al. (2013) ‘The HYDRUS-1D Software Package for Simulating the Movement of Water, Heat, 

and Multiple Solutes in Variably Saturated Media, Version 4.17, HYDRUS Software Series 3’, (June), p. 343. 

Sivakumar, V. et al. (2015) ‘Influence of testing on permeability of compacted fine soils’, 168. 

Skempton, A. W. (1996) ‘Embankments and Cuttings on the early Railways’, Construction History, Vol. 11, pp. 

33–49. 

Smethurst, J. et al. (2006) ‘Seasonal changes in pore water pressure in a grass-covered cut slope in London 

Clay’, Geotechnique, (8), pp. 523–537. 

Smethurst, J. et al. (2012) ‘Factors controlling the seasonal variation in soil water content and pore water 

pressures within a lightly vegetated clay slope’, Géotechnique, (5), pp. 429–446. 

Smith, I. (2014) Smith’s Elements of Soil Mechanics. 9th edn. Wiley-Blackwell. 

Smith, J. C. (2015) Examining Soil Based Construction Materials through X-Ray Computed Tomography. Durham 

University. doi: ear. 

Sněhota, M. et al. (2007) ‘Impact of the biopores morphology on infiltration properties of soil’, in Bioclimatology 

and natural hazards. Slovakia. 

Stirling, R., Davie, C. T. and Glendinning, S. (2015) ‘Multiphase modelling of desiccation cracking in the near-

surface of compacted soils / Modélisation multiphasique de fissures ... Multiphase modelling of desiccation 

cracking in the near-surface of compacted soils Modélisation multiphasique de fissures de ’, (September). 

Taina, I.A., Heck, R.J. & Elliot, T. R. (2008) ‘Application of X-ray computed tomography to soil science: a 

literature review’, Canadian Journal of Soil Science, 88, pp. 1–19. 

Take, W. A. (2003) The influence of seasonal moisture cycles on clay slopes. University of Cambridge. 

Take, W. A. and Bolton, M. D. (2011) ‘Seasonal ratcheting and softening in clay slopes, leading to first-time 

failure’, Géotechnique, 61(9), pp. 757–769. doi: 10.1680/geot.9.P.125. 

Terzaghi, K. (1925) ‘Principles of Soil Mechanics: I—Phenomena of Cohesion of Clays’, Engineering News-Record, 

95(19), pp. 742–746. 

Terzaghi, K. (1943a) Theoretical soil mechanics. J. Wiley. 

Terzaghi, K. (1943b) ‘Theoretical soil mechanics’, Géotechnique, p. 510. doi: 10.1016/0167-1987(88)90005-0. 

Toll, D. G. et al. (2011) ‘Soil suction monitoring for landslides and slopes’, Quarterly Journal of Engineering Geology 

and Hydrogeology, 44(1), pp. 23–33. doi: 10.1144/1470-9236/09-010. 

Toll, D. G. et al. (2014) ‘Soil atmosphere interactions for analysing slopes in tropical soils’, The 14th International 

conference of the International Association of Computer Methods and Advances in Geomechanics, (2003), pp. 1333–1338. 

Tratch, D. J., Wilson, G. W. and Fredlund, D. G. (1995) An Introduction to Analytical Modelling of Plant Transpiration 

for geotechnical engineers, Proceedings of the 48th Canadian Geotechnical Conference. Vancouver. 

Varslot, T. et al. (2010) ‘Fast high-resolution micro-CT with exact reconstruction methods’, in, pp. 780410–

780413. 

Vaughan, P. R. (1994) ‘Assumption, prediction and reality in geotechnical engineering’, Géotechnique, 44(4), pp. 

573–609. doi: 10.1680/geot.1994.44.4.573. 

Vaughan, P. R., Kovacevic, N. and Potts, D. M. (2004) ‘Then and now: some comments on the design and 

analysis of slopes and embankments’, in Advances in geotechnical engineering: The Skempton conference, pp. 15–64. 

Vereecken, H. et al. (2016) ‘Modeling Soil Processes: Review, Key Challenges, and New Perspectives’, Vadose 

Zone Journal, 15(5), p. 0. doi: 10.2136/vzj2015.09.0131. 



12. References 

 

197 
 

Vervoort, R. W. and Cattle, S. R. (2003) ‘Linking hydraulic conductivity and tortuosity parameters to pore space 

geometry and pore-size distribution’, Journal of Hydrology, 272(1–4), pp. 36–49. doi: 10.1016/S0022-

1694(02)00253-6. 

Vogel, H. J. (2000) ‘A numerical experiment on pore size, pore connectivity, water retention, permeability, and 

solute transport using network models’, European Journal of Soil Science, 51(1), pp. 99–105. doi: 10.1046/j.1365-

2389.2000.00275.x. 

Vogel, H. J. and Roth, K. (2001) ‘Quantitative morphology and network representation of soil pore structure’, 

Advances in Water Resources, 24(3–4), pp. 233–242. doi: 10.1016/S0309-1708(00)00055-5. 

Weiler, M. (2017) ‘Macropores and preferential flow-a love-hate relationship’, Hydrological Processes, 31(1), pp. 

15–19. doi: 10.1002/hyp.11074. 

Weiler, M. and Naef, F. (2003) ‘An experimental tracer study of the role of macropores in infiltration in 

grassland soils’, Hydrological Processes. John Wiley & Sons, Ltd., 17(2), pp. 477–493. doi: 10.1002/hyp.1136. 

Wildenschild, D. and Sheppard, A. P. (2013) ‘X-ray imaging and analysis techniques for quantifying pore-scale 

structure and processes in subsurface porous medium systems’, Advances in Water Resources. Elsevier Ltd, 51, pp. 

217–246. doi: 10.1016/j.advwatres.2012.07.018. 

Wilson, G. W. (1990) Soil evaporative fluxes for geotechnical engineering problems. University of Saskatchewan. 

Wood, D. M. (2003) Geotechnical Modelling. CRC Press (Applied Geotechnics). 

Young, I. M., Crawford, J. W. and Rappoldt, C. (2001) ‘New methods and models for characterising structural 

heterogeneity of soil’. 110, , , 61(1/2), pp. 33–45. 

Zotarelli, L. and Dukes, M. (2010) ‘Step by step calculation of the Penman-Monteith Evapotranspiration (FAO-

56 Method)’, Institute of Food and …, pp. 1–10. 



13. Appendix 

 

198 
 

13  Appendix 

13.1  A study of the influence of slope geology on landslide 

occurrence during extreme rainfall 

Landslides are a major natural hazard all over the world and regularly cause severe disruption, 

damage to infrastructure, and loss of life. In the UK we are fortunate that landslides tend to 

be on a smaller scale than elsewhere.  

By examining historical landslide records and comparing them with climate data it is 

possible to identify meteorological threshold values for periods of increased slope instability. 

A common approach is to estimate a meteorological threshold based on rainfall intensity and 

duration (e.g. Wieczorek, 1987; Guzzetti et al., 2007) However, the rate and quantity of 

surface water infiltration (causing increased pore water pressures) is influenced by the 

geological conditions (e.g. soil type, saturation and permeability) and the antecedent weather 

conditions (Zhang et al., 2011). This can affect the time of landslide occurrence and the type 

of landslide failure mechanism (Leroueil, 2001). 

Soil water balance approaches such as  the calculation of soil moisture deficit (SMD) 

can be used to consider the long term influence of rainfall, runoff and evapotranspiration on 

surface water infiltration (Blight, 2003) and to assess trends in landslide triggering. For 

example, Hutchinson (1995, cited Leroueil, 2001) showed that landslides in the London Clay 

cliffs at Southend-on-Sea occurred when SMD was less than around 10mm between 1967 

and 1976. A similar relationship between landslide occurrence and periods of low SMD has 

been shown by Kovacevic et al. (2001, cited Macdonald et al., 2012), Ridley (2004) and 

Wilson (2003).  

Network Rail has used SMD to predict periods of likely slope instability and identify 

risk areas within the rail network since 2000 (Birch and Dewar, 2002). The Network Rail 

threshold considers average monthly rainfall above 175% of the historical long term average 

during periods of SMD close to zero (Winter et al., 2006). It has proved to be a valuable tool 

as part of an effective early warning system (Goldfingle, 2010). 

An evaluation of existing landslide triggering thresholds and large scale trends 

requires records of the type, time, and location of landslide events over a range of long term 

weather conditions including extreme events and from a range of geological areas. With the 

integration of news and media reports into landslide records, the British Geological Survey 
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(BGS) has collated a landslide database of over 400 landslide events from across the UK 

between 2004 and 2014.  

The aim of this project was to consider the influence of long term weather, extreme 

rainfall and the underlying slope geology on the type and time of landslide occurrence, for 

comparison with existing landslide trigger thresholds. The type, time and location of over 

400 landslide events recorded by the BGS over ten years are compared with rainfall data, 

geological permeability indices and the calculated soil moisture deficit.  

13.1.1  Method 

Met Office (2014) weather data for England and for Scotland was used to plot daily 

rainfall and to calculate the long term soil moisture deficit (SMD) for the period 2004 to 

2014. This was compared with the type and time of landslide occurrence recorded within the 

BGS landslide database. Landslide location records were compared with geological maps of 

the superficial and bedrock geology. This was used to identify geological features such as low 

permeability soils or the presence of underdrainage by permeable bedrock which might 

influence groundwater response to extreme weather (Briggs et al., 2013). 

 

 Daily SMD was calculated for both central Scotland and central England using daily 

data from Met Office weather stations at Strathspey and Northampton respectively. SMD 

was not calculated at individual sites, therefore neglecting the influence of localised weather 

and vegetation conditions. 

13.1.2  BGS Landslide Database 

The British Geological Survey first created a landslide database in the 1980’s and the current 

version now contains over 17,000 events (Pennington et al., 2014). However, it is only since 

2004 and the gradual integration of media reports into the system, that most events are 

recorded with accurate temporal data (i.e. a precise date ‘stamp’ of occurrence). Since 2004, 

over 400 dated landslide records have been added to the database (coastal landslides have 

been excluded from the scope of this study). Within the database each event is related to 

information including the type, time and location of the landslide.  

Figure 13.1 shows the distribution of the events within the database according to the 

BGS landslide type classification described in Foster et al., (2012). Slope failures are the most 

numerous landslide failure type within the database. This classification contains landslides 

on man-made slopes affecting transport infrastructure (e.g. road and rail embankments and 
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cuttings).  Many of these records were reported via social media and the exact nature of the 

landslide failure is not known. 

Since 2012, social media has been incorporated into the search system used to 

populate the database. This has resulted in an increased number of recorded events in the 

period 2012-2014, as many of the smaller, low impact events which might have previously 

gone unreported are now detected. The use of media sources does not provide a 

comprehensive record of all events but it does provide a cost-efficient way to gain an 

understanding of landslide trends. 

Pennington et al. (2014) explored the relationship between antecedent rainfall and 

landslides in southwest England using the BGS landslide database. Three different types of 

landslide recorded in the BGS database (falls, slope failures, and translational/planar slides) 

were examined. Falls were found to correlate with longer term antecedent rainfall (60 days), 

whereas planar slides and slope failures correlated with shorter-term antecedent rainfall 

(between 7 and 30 days, and between 1 and 7 days respectively). However, Pennington et al. 

(2014) noted that these conclusions were based on a limited number of observations in a 

regional study.  

 

Figure 13.1 - Landslide failure type division of 441 records (2004-2014) within the BGS landslide 
database 

 

13.1.3  Geological Maps 

Landslide records were overlaid on superficial and bedrock geology maps (1:50,000 scale) 

using ArcGIS software (ESRI, 2014). This associated each landslide record with a bedrock 

and superficial geology (Figure 13.2), giving an indication of geological features which might 

influence local hydrogeology in response to weather. 
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Figure 13.2 - BGS landslide database records (2004-2014) (excluding coastal events) overlaid on a 
map of UK bedrock geology (© NERC 2014) using ArcGIS software  

13.1.4  Permeability Classes 

The permeability of the superficial and bedrock geology influences the ability of rainfall to 

infiltrate and to drain from slopes during periods of extreme rainfall (Briggs and Smethurst, 

2013). Broad permeability classes (high, moderate and low) (Table 13.1) were used to indicate 

the influence of superficial and bedrock geology on local hydrogeology at the landslide 

locations. The permeability classes were based on the BGS permeability indices (Lewis et al., 

2006) categorising every lithology within the Digital Geological Map of Great Britain 

(DiGMapGB-50). Although this qualitative ranking of soil and rock permeability does not 

allow a great deal nuance, it allows a simplified examination of its influence on landslide 

occurrence.  
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Table 13.1 – BGS landslide database events (2004-2014) categorised by BGS permeability class.  

Permeability Class  England/Wales Scotland 

Bedrock Geology 

Low permeability 

 

6 

 

27 

Moderate permeability 214 43 

High permeability 

Unknown 

Superficial Geology 

Low permeability 

Moderate permeability 

High permeability 

Unknown 

94 

20 

 

6 

82 

26 

220 

37 

0 

 

12 

48 

25 

22 

13.1.5  Results and discussion 

The rainfall data, soil moisture deficit and permeability classes were used to explore trends 

within the BGS landslide database. The following questions were considered: 

 

1) Landslides and specifically slope failures are associated with low SMD (Hutchinson (1995), cited 

Leroueil (2001); Ridley (2004)) 

Figure 13.3 shows that around 66 % of landslide events occurred when SMD was at, 

or very close to zero. If the failures are sorted by type, this relationship becomes much more 

pronounced. Approximately 90 % of slope failures occurred when SMD was less than 1mm. 

Flow and fall type failures occurred less frequently during periods of low SMD. Cumulative 

rainfall analysis showed that slope failures are triggered by lesser antecedent rainfall than flow 

or fall type failures (Pennington et al., 2014). Slope failures are more closely linked to 

prolonged, low intensity surface water infiltration than fall or flow type failures. 

 



13. Appendix 

 

203 
 

 

Figure 13.3 - Landslide events by failure type during periods of low (< 1 mm) Soil Moisture Deficit 
(2004-2014) 

2) A rapid reduction in SMD (e.g.. intensive rainfall following a prolonged dry period) is associated with 

earthwork slope failures (Macdonald et al., 2012) 

No correlation was observed between slope failures (or any type of failure) and a 

large (> 25 mm) reduction in SMD during the week prior to failure.  

 

3) Landslides are associated with intensive rainfall on the day of failure (Wieczorek and Guzzetti, 1999) 

The majority of the events were triggered by daily rainfall of less than 10 mm. Daily 

rainfall alone was not a good indicator of landslide occurrence. 

 

4) Landslides and specifically slope failures are associated with above-average rainfall during periods of low 

SMD (Birch and Dewar, 2002) 

Figure 13.4 shows that slope failures generally occur after longer periods of zero 

SMD than falls or flows. Figure 13.5 shows that slope failures in England correspond well 

with periods when both SMD is zero and daily rainfall is above the long term average. This 

relationship also applied to slope failures in Scotland but was not apparent for other types of 

failure. 
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Figure 13.4 - A comparison of the cumulative percentage of landslide events and the number of days 
of zero SMD prior to failure, sorted by failure type 

 

Figure 13.5 - Slope failures in England compared with of periods of low (< 1 mm) soil moisture 
deficit and rainfall above the 1971-2000 long term average  

5) Areas of high permeability superficial geology are vulnerable to landslide events following sudden intensive 

rainfall (Corominas (2001), cited Tofani et al., (2006)) 

Figure 13.6 compares daily rainfall with landslide events within the high and low 

superficial permeability classes. Records from the moderate permeability class are omitted 

(130 records). Landslides in the high superficial permeability class are associated with high 

intensity rainfall (51 records). Landslides in the low superficial permeability class are 

associated with low intensity rainfall (18 records). Pore water pressures within high 

permeability soils are more likely to respond to intensive rainfall events and surface water 

infiltration than low permeability soils, where greater runoff occurs.  

Results indicate that the presence of lower permeability bedrock (33 records; Table 

13.1), does not lead to increased landslide occurrence during periods of zero SMD. Further 

differentiation of the permeability classes is required to explore the large number of landslide 

events in moderate permeability bedrock (257 records). 
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Figure 13.6 - A comparison of daily rainfall with landslides in areas of high and low permeability 
superficial geology (see Table 13.1) 

 

13.1.6  Conclusions 

The relationship between daily rainfall, soil moisture deficit and underlying slope geology 

were examined using a database of 441 landslide events between 2004 and 2014. 

The data shows that a combined rainfall intensity and water balance assessment can 

be a useful proxy for predicting slope failure type landslide occurrence when daily rainfall is 

above the long term average and the soil moisture deficit is close to 0 mm. However, intense 

rainfall (> 10 mm per day) or rapid changes in the calculated soil moisture deficit (> 25 mm 

per day) were not good indicators of slope failure or other landslide failure types. Factors 

including the permeability of the superficial geology play a role in determining whether a 

slope will fail in response to an intensive rainfall event or a prolonged period of wet weather.  

It is recommended that future work is undertaken to identify more localised 

phenomena by improving the spatial resolution of both the permeability classification and 

the weather data used in the SMD calculations. It is anticipated that this will benefit from 

continual additions to the BGS landslide database following the extremely wet winter of 

2013/2014. 
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13.2  Field data interpretation 

When interpreting field measurements, it is important to try and avoid incorrectly inferring 

the wrong conclusion from the way in which the data has been presented or analysed. For 

instance, the return periods presented in Figure 5.7 in Chapter 5 are influenced by how the 

data is grouped and which months are included. Figure 13.7 shows the return periods for the 

three modelled years with summer and winter rainfall from six-monthly periods, as opposed 

to the three-monthly periods in Figure 5.7. It can be seen that the return periods are 

significantly altered. For example, 2006 no longer appears to be a particularly dry period 

based on either summer or winter rainfall, although the summer of 2007 is still the most 

extreme (wettest) within the dataset with respect to summer rainfall and 2008 is largely 

unchanged in terms of return periods. This is illustrated further by Figure 13.8, which shows 

the cumulative probability distribution of the rainfall totals of all the years of data for several 

different groupings. The 50 % position on the graph represents the average of all the years, 

with drier years towards the left and wetter years with high cumulative probabilities on the 

right. For the furthermost data point to the right on each line, 100 % of the previous years 

fall below the total rainfall for that period. The modelled years are labelled and it can be 

observed that their respective positions (cumulative probabilities) vary depending on which 

grouping is used. 
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(a) 

 

(b) 

Figure 13.7 - Return periods for all years since 1970 based on (a) Total winter rainfall (November – 
April) and (b) Total summer rainfall (May-October) (data from (Smethurst et al., 2012)) 

 



13. Appendix 

 

208 
 

 

Figure 13.8 – A cumulative probability plot of annual, winter (both December-February and 
November-April) and summer (both May-October and June-August) rainfall totals for all years since 

1970  

13.3  Soil moisture deficit calculations 

Table 13.2 shows that values used to calculate soil moisture deficit according to Section 3.7. 

 As SMD calculations involve using hourly/daily weather data from site stations, it 

was commonly necessary to have to estimate missing or erroneous values. Missing rainfall 

and temperature values were estimated by factoring data from nearby stations. Any missing 

wind values were approximated from the site averages. Daily maximum and minimum values 

of relative humidity were calculated using the assumption that Tdew point = Tminimum and that the 

August-Roche-Magnus approximation can therefore be used (Allen et al., 1998; Lawrence, 

2005). 
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Table 13.2 – Water Balance soil moisture deficit model and evapotranspiration estimation 
parameters, for a vegetation cover of grass and herbs at Newbury cutting (Clarke and Smethurst, 
2010) 

Vegetation root depth (mm) 1000  

Available water (% of total soil volume) 18% 

Total available water (mm) 180 

Readily available water (mm) 90  

Crop coefficient Kc 1 

Psychrometric constant (kPa/0C) 0.000665×atm. pressure 

Solar constant 0.082 

Latitude (rad) 0.895 

Hypothetical reference crop height (m) 0.12  (Zotarelli and Dukes, 2010) 

Surface resistance (s m-1) 70  (Zotarelli and Dukes, 2010) 

Albido (or canopy) reflection coefficient 0.23 (Allen et al., 1998) 

Stefan-Boltzman constant (Mj/K4/M2/day) 4.903 × 10-9 

Elevation above sea level (m) 105 

 

 

13.4  iSMART 

Part of the research presented within this thesis was conducted under the scope of the 

iSMART (Infrastructure Slopes Sustainable Management and Resilience Assessment) 

project. The project is funded by the Engineering and Physical Sciences Research Council 

(EPSRC) and the group comprises researchers from six different UK universities (Bath, 

Newcastle, Durham, Queens Belfast, Southampton, and Loughborough) as well as the 

British Geological Survey. The aim of the project is to coalesce on-going field, laboratory, 

and computing research studies within the UK infrastructure slope management and 

resilience fields, so as to address the current knowledge gaps. 

Within iSMART there is also a heavy emphasis on collaboration with industry and 

several key stakeholders in the group are infrastructure asset owners (e.g. Network Rail and 

the Highways Agency) and engineering consultancies (e.g. Atkins and Balfour Beatty). By 

forming a partnership with industry, the group aims to provide research which addresses the 

most pertinent issues asset managers and engineers in the field currently face. The group also 

benefits from the input of the stakeholders in guiding research, opening up company 

databases of slope failures, and by allowing access to sites within their networks for field 

studies.  
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13.5  Caisson benchmark study 

As part of the iSMART working group, several site-specific modelling studies were 

conducted in order to help improve the group’s modelling capability and to provide a link to 

the field work and experimentation also being undertaken within the group. Prior to these 

case studies, it was decided to conduct a benchmark modelling study to compare modelling 

capability and different modelling approaches. 

13.5.1  Caisson model domain 

Two modelling exercises were carried out involving the wetting and drying phases of a one-

dimensional caisson. The aim of this study was to identify any significant differences in the 

modelling criteria necessary, model assumptions, or results of the modellers from different 

universities. Several different modelling approaches were compared (see Glendinning et al. 

(2015)). The results from Hydrus and Vadose/W are shown here. Divergences from any 

standard assumptions outlined in the examples regarding boundary conditions, initial 

conditions or fluid properties were noted and compared.  

The problem and benchmark results are taken from Forsyth et al. (1995). The 

domain, shown in Figure 13.9, is a 6 m high, 3 m wide rectangular caisson. The caisson is 

initially wetted using a constant infiltration surface boundary condition of 20 cm/day for 7 

days in order to fully saturate the soil. It is subsequently allowed to drain freely from the 

bottom boundary for 100 days with no further infiltration. 

 

Figure 13.9 - Caisson domain for the benchmark study (Forsyth et al., 1995) 
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13.5.2  Initial Conditions 

This exercise was conducted with an initial uniform degree of saturation of 0.303 throughout 

the model domain. The uniform saturation of 0.303 was set as the initial condition in 

Vadose/W by specifying a uniform pressure head spatial function of -7.2 m, which 

corresponds to a volumetric water content of 0.1 from the SWRC and a degree of saturation 

of 0.303. In the second case the initial condition was specified by drawing an initial water 

table at the base of the caisson and there was therefore a suction of 60 kPa at the surface. 

 

13.5.3  Boundary conditions  

Two separate models were set up and run, the first specifies a potential seepage face at the 

bottom of the caisson so that after saturation water is allowed to flow downwards through 

the domain. The other model specifies a potential seepage face at the top of the caisson so 

that after saturation no flow is allowed through the bottom of the domain and water is instead 

discharged over the top of the caisson. This was necessary, as failure to specify either of these 

boundaries as a potential seepage face during the wetting stage resulted in unconverged 

pressure head nodes and the model breaking down, as would be expected, as there is nowhere 

for the infiltration to go within the model. 

In all models an infiltration flux of 200 mm/day was specified during the wetting 

stage for exactly 7.16 days (169.5 hours). During the drying stage, the only boundary 

condition applied was a seepage face at the base of the caisson. All other boundaries not 

mentioned above were specified as no flow boundaries. 

 

13.5.4  Modelling parameters 

The soil water retention parameters used in this example take the van Genuchten-Mualem 

form (see Chapter 2 Section 2.10) and are summarised in Table 13.3 along with other model 

inputs. Water and porous media compressibilities are assumed to be zero (Forsyth et al., 

1995). 
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Table 13.3 – Caisson benchmark exercise model input parameters 

 

Domain Properties 

Caisson size 

 

 

3 m x 6 m 

Mesh elements 

 

Material Properties 

SWRC 

HCF 

Parameter α 

Parameter n 

Saturated water content 

Residual water content 

Saturated hydraulic conductivity 

 

Thermal properties  

Volumetric heat capacity 

Thermal conductivity 

Initial temperature distribution 

 

Solver properties 

Time settings 

Adaptive time setting 

Max number of iterations 

200 (0.3 m x 0.3 m) 

 

 

van Genuchten-Mualem form 

In-built van Genuchten estimation 

0.0143 

1.5060 

0.33 

0.0008  

0.254016 m/day 

 

 

1,875 kJ/m³/°C 

138 kJ/days/m/°C 

Uniform spatial function of 10°C 

 

 

30 steps during wetting, 100 during drying 

Max change in pressure head allowed was 2.5% 

500 

 

13.5.5  Results and outcomes 

Figure 13.10 shows the results obtained from Vadose/W compared to those from Hydrus 

for the wetting phase of the caisson exercise. The figure shows that the wetting front 

progresses faster through the caisson in the Vadose/W model than in the Hydrus model. 

Figure 13.11 shows that Vadose/W model also appears to dry faster than the Hydrus model. 

These results indicate that the Vadose/W model is more responsive to boundary conditions. 

Figure 13.11 shows that both the Vadose/W and Hydrus models appears to over-estimate 

the speed of initial drying after 1 day compared to experimental results from Forsyth et al. 

(1995). After 4 days, Vadose/W provides a closer match to the experimental results than 

Hydrus, although the profiles of VWC converge over the course of the simulation as the 

domain approaches the residual moisture content. 
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The caisson exercise provided a number of useful lessons regarding the process of 

undertaking hydrological modelling. These are discussed in further in Glendinning et al. 

(2015) in relation to the ISMART project. 

 

 

Figure 13.10 - Comparison of Vadose/W and Hydrus simulated water contents during the saturation 
stage 

 

 

Figure 13.11 – Comparison of Vadose/W and Hydrus simulated water contents during the drainage 
stage as well as experimental observations from Forsyth et al. (1995) 

 

 

 



13. Appendix 

 

214 
 

13.6  Newbury modelling  

13.6.1  Field representative model inputs 

Table 13.4 shows all the specified input parameters used to construct the field representative 

model of Newbury cutting. 

Table 13.4 – The properties and inputs used within the field representative model of Newbury 
cutting 

 

Domain Properties 

Size 

 

 

48 m x 17 m 

Mesh elements 

 

Material Properties 

SWRC 

Air entry value 

Parameter n 

Saturated water content 

Residual water content 

HCF 

Saturated hydraulic conductivities: 

Surface Clay (0 - 0.4m) 

Sub Surface Clay (0.4-0.6m) 

Weathered London Clay 

Grey London Clay 

 

Vegetation Properties  

Leaf area index 

Plant moisture limiting 

Root depth function 

Root depth distribution 

 

Thermal properties  

Volumetric heat capacity 

Thermal conductivity 

Initial temperature distribution 

 

Solver properties 

Time settings 

Adaptive time setting 

Max number of iterations 

1 m global, 0.5 m constrained. (12 elements in 0.6 m surface layers)  

 

 

Taken from drying London clay data Croney (1977)  

20 kPa 

1.17 

0.47 

0.1 

In-built van Genuchten estimation  

 

2.4 x 10-7 m/s (Briggs et al., 2012) 

9.3 x 10-8 m/s (Briggs et al., 2012) 

5 x 10-8 m/s (Smethurst et al., 2006) 

3.7 x 10-9 m/s (Smethurst et al., 2006) 

 

 

Vadose grass estimate (GEO-SLOPE, 2008) 

(Feddes et al., 1978) 

Grass estimate (0.5 m year round) (GEO-SLOPE, 2008) 

Triangular 

 

 

1,875 kJ/m³/°C (Briggs, 2011) 

138 kJ/days/m/°C (Briggs, 2011) 

Spatial function of 10 - 11°C (Briggs, 2011) 

 

 

1096 time steps (adaptive time stepping used) 

Max change in pressure head allowed was 2.5 % 

500 
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13.6.2  Initial water table justification using a repeating cycle of weather 

To investigate the impact of the initial conditions set within the field representative model 

of Newbury cutting, a simulation was carried out in which one year of weather data (2006) 

was repeatedly applied as the climate boundary condition. An unrealistic initial condition 

would cause the simulated results to vary over time until the model eventually reaches a 

steady state which is no longer influenced by the initial condition. Figure 13.12 shows 

simulated volumetric water content at location A (0.3 m depth) within the field representative 

model of Newbury cutting. The figure shows that no initial delay occurs before the model 

starts to respond to the climate data. This indicates that the initial conditions set within the 

field representative model are not influencing the results obtained from the simulations 

discussed in Chapter 4 in an unrealistic manner. 

 

 

Figure 13.12 - Simulated volumetric water content at location A (0.3 m depth) within the field 
representative model of Newbury cutting in response to one year (365 days) of climate data (2006) 

repeated five times 

13.7  Further sensitivity analyses  

13.7.1  The influence of root depth 

The root water uptake function in Vadose/W removes transpired water from within the root 

zone (Section 3.7). This differs from the soil moisture deficit 1D model which considers both 

evaporation and transpiration as one function applied at the soil surface (Equation 25). 

Therefore within the Vadose/W model it would be expected that increasing the root depth 

would result in changes in VWC occurring over a wider range of depth below the surface, as 

the depth over which transpiration occurs is increased.  
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Figure 13.13 shows the effects of varying root depth on soil moisture deficit 

calculated from three different Vadose/W models with differing root depths along with 

SMD1D. Increasing the root depth from 0.8 m to 3 m results in a decrease in maximum soil 

moisture deficit generated. This is because SMD from the Vadose/W models is only 

calculated from VWC change in the top 0.8 m whereas the total VWC change during the 

summer of 2006 is distributed over the entire root zone in the 3 m root depth Vadose/W 

model. Soil moisture deficit is also less for the 0.2 m root depth model, as the entirety of the 

evapotranspiration is occurring near the surface and the average volume of water in the top 

0.8 m is not reduced by as much as within 0.8 and 3 m root depth models.  

 

Figure 13.13 – Soil moisture deficit calculated from three different Vadose/W models, each with a 

different root depth, and from a 1D water balance equation 

Figure 13.14 shows the impact of root depth on the minimum PWP depth profile envelopes 

calculated within the sensitivity Vadose/W models with root depths between 0.2 and 3 m. 

Using a small root depth (e.g. 0.2 m) generates a narrow band of very high suctions during 

the dry summer of 2006 (the driest period in the simulation) while using 3 m generates deeper 

suctions below 1 m depth. 
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Figure 13.14 – Minimum pore water pressure depth profile envelopes at location A during 2006 

calculated from four Vadose/W models each with a different root depth 

The effect of the root water uptake function on PWPs within Vadose/W in the root zone is 

also observable from contour plots of the spatial variation of pore water pressure within the 

domain (Figure 13.15 & Figure 13.16). For the field representative base model with a root 

depth of 0.5 m no suctions are present after the winter wetting period of 2006/07. However 

for a Vadose/W model with root depth = 3 m (which corresponds to the root depth of 

mature trees), suctions are maintained throughout the winter at depth below the surface, 

although noticeably only within the lower permeability London clay zone and not at the top 

the slope.  

The results from this root depth sensitivity analysis are  in agreement with the 

findings for embankments of Briggs & Smethurst (2013) and Briggs et al. (2016). As 

transpiration from the root zone occurs spatially separate from surface evaporation and 

rainfall infiltration, vegetation with deep root systems can develop soil suctions at depth, 

which can be maintained throughout periods of wet winter weather. The magnitudes of these 

tree induced soil suctions (> 90kPa) are sufficient to significantly increase the effective 

stresses within a slope, and hence improve its stability (Briggs et al., 2016).  
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Figure 13.15 – Contour plot of the model domain of the field representative base model with root 

depth = 0.5 m at the end of the winter of 2006/07 (07/03/2007) 

 

 

Figure 13.16 - Contour plot of the model domain of a Vadose/W model with root depth = 3 m at the 

end of the winter of 2006/07 (07/03/2007) (white zones indicate regions of high suctions (above -100 

kPa)) 

13.7.2  The influence of leaf area index 

As discussed in Chapter 3, the leaf area index (LAI) function defines the proportion of solar 

energy divided between evaporation and transpiration. Figure 13.17 shows that a variable 

LAI function can be defined. To investigate the impact of different LAIs on hydrological 

conditions within the model, indexes equal to 2.7 and 0.1 representing the extreme cases of 

uniform 95% transpiration and uniform 95% evaporation were modelled (Equation 35) 
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(Ritchie, 1972), along with a Vadose/W estimate of the LAI function corresponding to 

‘excellent’ quality grass (GEO-SLOPE, 2008).  

 

Figure 13.17 –The different leaf area index functions used within three Vadose/W (estimated grass 

LAI from (GEO-SLOPE, 2008)) 

Figure 13.18 shows the temporal variation of PWP at 1 m depth for three different 

Vadose/W models each with a different LAI (constant LAI of 2.7, constant LAI of 0.1 and 

grass estimation LAI). Throughout the modelling duration, the LAI = 2.7 model appears to 

match the field results well, especially during dry periods. The LAI = 0.1 model appears to 

underestimate suctions during the summer months, whilst the LAI grass estimate appears to 

take longer to rewet after the summer of 2006.  

 

Figure 13.18 – Pore water pressure at A 1 m depth calculated for three Vadose/W models each with a 

different leaf area index function and field measured pore water pressure from a piezometer 

(Smethurst et al., 2012) 

This behaviour is replicated in plots of soil moisture deficit over the model duration (Figure 

13.19). The LAI = 2.7 model is much closer to SMD1D in the dry summer of 2006 but the 
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LAI = 0.1 model is slightly closer in the other years. This may be because all the solar energy 

is assigned to evaporation in the LAI = 0.1 model (see Chapter 3), which has the impact that 

any drying from transpiration within the root zone is not taken into account. So if 

evaporation is reduced when the near-surface zone is desaturated, not a lot of total 

evapotranspiration will take place and the resulting change in VWC will be less. The LAI = 

0.1 model and grass estimate model may rewet slower due to high rates of evaporation 

reducing infiltration in the autumn months.  

The definition of leaf area index therefore has a large effect on the near surface 

hydrology of the modelled slope which reflects the very significant impacts of vegetation on 

slope hydrology in general.  

 

Figure 13.19 – Soil moisture deficit from three Vadose/W models each with a different leaf area 

index and from a water balance equation 

13.7.3  Conclusions 

From these sensitivity analyses it was observed that vegetation properties (root depth and 

leaf area index), which dictate the degree of evaporation and transpiration occurring in the 

near-surface zone, are very influential on calculated PWPs. Increasing the root depth can 

lead to suctions being maintained at depth throughout the winter months, whilst decreasing 

root depth leads to high suctions in the very near-surface zone. Changing the leaf area index 

function also has a considerable influence on the quantity of water removed from the root 

zone by evapotranspiration. Therefore, vegetation must be taken into consideration when 

examining slope hydrological behaviour and subsequent stability. 

 

 


