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Summary

This thesis investigates the problem of visual learning using a robotic platform.

Given a set of objects the robots task is to autonomously manipulate, observe,

and learn. This allows the robot to recognise objects in a novel scene and pose,

or separate them into distinct visual categories. The main focus of the work is

in autonomously acquiring object models using robotic manipulation.

Autonomous learning is important for robotic systems. In the context of

vision, it allows a robot to adapt to new and uncertain environments, updating

its internal model of the world. It also reduces the amount of human supervision

needed for building visual models. This leads to machines which can operate in

environments with rich and complicated visual information, such as the home or

industrial workspace; also, in environments which are potentially hazardous for

humans.

The hypothesis claims that inducing robot motion on objects aids the learning

process. It is shown that extra information from the robot sensors provides

enough information to localise an object and distinguish it from the background.

Also, that decisive planning allows the object to be separated and observed from a

variety of different poses, giving a good foundation to build a robust classification

model. Contributions include a new segmentation algorithm, a new classification

model for object learning, and a method for allowing a robot to supervise its own

learning in cluttered and dynamic environments.
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Chapter 1

Introduction

The holy grail of robotics is a machine that can operate as well as a human, but

with the advantage of coping in environments that are otherwise inhospitable or

too physically demanding. The world we live in is vastly complex, but despite

that, we are able to operate in it with considerable ease. Millions of years of

evolution has a part to play in the model we have of our universe, but in order

for any intelligent agent to function properly it must first be able to adapt to its

environment, learning in the presence of change. This thesis explores what it

means for a robot to learn about objects in the environment, developing a

learning framework for a robot to build robust object models.

Fundamental to cognition is the problem of sensing, for a robot to make

decisions it must first be able to obtain information about its environment. One

of the most important and information rich sensors is the vision system,

allowing entities to observe and learn about objects in the world. The field of

computer vision is vast, with work dating back to the 60’s. The first people to

study the problem were a group of psychologists, pioneered by [Marr, 1982],

who suggested ideas for how the human brain represents visual data. Although

the work remains fundamental to current vision algorithms, more recent work

focuses on probabilistic methods to build visual models.

Current computer vision algorithms focus on the ability to learn, without

assuming any control over the environment. In the context of robots with

vision, the robot can either navigate the environment or move objects within it.

The ability to plan a motion, and execute it, in order to actively change the

environment, gives a robot more information to learn from than a passive vision
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system.

When using a robot there is much more information available, it has a

degree of control over the environment, the ability to choose to manipulate

objects in a particular way. The ability to act on the environment conforms

with another idea that evolved at around the same time as Marr. [Gibson, 1986]

argued that objects are perceived by the actions that can be performed on

them, by their ‘affordances’. This idea explicitly links action with perception,

something that has resonated throughout the robotics literature [Brooks, 1999]

and more currently computer vision [Soatto, 2009].

The work presented in the thesis uses knowledge of the robot’s motion, or in

other words proprioception, to aid the perception and learning process. In other

words, the robot is able to learn about objects placed in its workspace by

manipulating them.

1.1 Research Hypothesis

The results presented in this thesis makes significant headway in proving the

hypothesis that:

• ‘Robot-object interaction, in the form of induced motion on

objects, aids robot perception and the learning of visual object

models.’

The definition given above is a compact representation of the work presented

in the thesis, and composed of terms explained in further detail below:

• The word ‘perception’ is defined as object level segmentation, using only

robotic sensor data, and no prior knowledge.

• The term ‘object level segmentation’ means to take the image that the

robot is viewing and remove the background, leaving only the object that

the robot is manipulating.

• ‘Learning’ is building an abstract representation of sensor data. In the

context of vision, it means to represent objects in such a way that they

can be recognised and classified in a number of different scenes and poses.
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• ‘Classification’ is the process of building a model of the objects perceived

by the robot, labelling them into classes, and then identifying the correct

class for new objects presented to the robot.

The main idea behind the hypothesis is that robots manipulate objects in

their environment in order to better learn about them. Allowing a robot to

make decisive actions on objects in its workspace means that it can learn to

operate without human supervision. An example application is a robot which

sorts objects in a factory. If the robot needs to work on a different set of

objects, using current technology, a supervisor would need to provide data of

the objects photographed in different environments. With a system which

autonomously learns, the robot can move the objects itself and build visual

models, reducing the amount of time needed in training.

The known motion of a robotic manipulator is used to localise and find the

object as it is being manipulated. This allows the robot to focus only on the

object that it is interested in, and remove data which only provide noise in the

models, such as other objects or the robot itself.

The benefit of induced motion to the problem of learning is explored after

the robot is able to segment objects. Making a plan to move an object allows

the robot to obtain multiple views, in order to build a more robust model. The

object can be isolated from other objects in the environment, removing the

problem of other items occluding the robots view.

Finally, the combination of object segmentation and learning is explored,

inheriting the benefits of both systems.

1.2 Motivation

An autonomous robot which can learn about objects is an interesting challenge.

Despite the motivation to build machines that appear to operate like human

beings, there are practical motivating factors, spanning from industry through

to robotic maids to operate around the home.

Some examples and benefits of the application of autonomous learning to

robotics are listed below:

• Service Robots: There is a large effort towards building service robots

10



Figure 1-1: Robots designed to operate with humans. From left to right, PR2
(Willow Garage), a personal service robot (Stanford), a teleoperated robot used
to fetch a beer (Stanford), Dexter (UMass, Amherst)

that are able to operate around the home. The applications range from

robotic care workers to help disabled patients to robotic maids for cooking.

Figure 1-1 shows a selection of service robots with this purpose in mind.

The ability to recognise objects in the environment is essential for robots

in this setting. The object models used for recognition could be learned

from a set of images downloaded from the web or built from photographs

taken by a human supervisor. Allowing the robot to manipulate objects

and update its model autonomously makes it much more capable of

operating by itself, particularly in environments where object models do

not match the data well enough to make a conclusive decision.

• Factory Robots: Most of the robots in current use are found in industry.

They serve a variety of different purposes, including sorting products,

fitting parts, spraying, soldering and welding. All of these applications

involve robot interaction with the environment and objects in the

environment. The standard, and easiest, way to make the robot function

in this way is to control the environment; pre-programming trajectories

that the robot makes and delivering the objects to the correct place. A

more desirable, and flexible system, would be a robot which can learn the

product, or environmental object models, and have the robot move to the

correct position autonomously. Showing that a robot can learn its own

models makes training much more simple, an operator can give the robot

the items it needs to learn about in order for it to build its own models.

• Mobile Robots: Intelligent machines can be used for mapping the

environment, navigating through inhospitable areas or providing transport
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Figure 1-2: Some example problems in recognising objects, taken from the CMU
Ikea dataset [Hsiao et al., 2010]. The left image gives an example of an object
which can be learned by robotic manipulation. The right three images show the
object in and around the workplace, these images include variation in projective
transformation, occlusion and lighting.

autonomously. Mobile robots can use a vision system to navigate. This

requires some object recognition, the robot needs to understand when it

has seen a particular landmark previously, in order to update its internal

map. Although mobile robots, generally, do not have a manipulator to

allow them to move objects, the robot is able to move its body in relation

to landmarks in the environment. Navigation and mapping could then be

enhanced, giving the robot the technology to choose trajectories which

improve the learning process for visual landmarks.

• Improved AI: Beyond the practical applications of a robot which can

learn about objects, are the implications for Artificial Intelligence (AI).

The use of the body to improve a learning system is in support of the

hypothesis that intelligence is embodied, that there is some level of

simplification in having a body which can act on the world.

The examples discussed above touch on the need for robotics in the real

world. Robots can be built to serve as operators in places that humans cannot

go, for example, the disposal of nuclear waste, robots which operate in outer

space, or under the sea.

1.3 Visual Learning and Robotics

One of the most fundamental problems in Computer Vision is to automatically

separate objects into visual categories, building an abstract model for each

category, and using the models to further categorise objects found in new
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images. These methods can be applied to a scenario in which a robot needs to

learn about objects in its environment, for example, a system for recognising

and sorting objects moving along a conveyor belt.

The objective is to enable a robot to learn object models, in an attempt to

be able to recognise them in new environments. Humans are able to perceive

and recognise even when faced with a large amount of noise, occlusion,

illumination and pose changes. These challenges make it very difficult for a

machine to recognise objects. Human recognition has been studied in depth by

psychologists for a long time. One of the founding researchers in the

area, [Biederman, 1987], made the hypothesis that humans learn models by

breaking objects into irreducible pieces or geons. Once the geons are found,

their relative locations form a model of an object. Although the psychological

concept of visual recognition has been studied in humans, building a replica on

a machine is vastly complex; instead, models are built for vision systems which

are to some extent, independent of the biological process of learning.

Inspiration is taken from work such as [Biederman, 1987], as a principal

foundation for visual learning and ported for use on a machine.

Since pure computer vision problems only deal with images that have been

collected from a camera they usually don’t assume any control over the

environment. A robot has a means to interact with the world, plan and

manipulate. Intuition implies that any extra information about the

environment should be useful for the learning process. This thesis explores how

manipulation and motion induced by a robotic manipulator benefits the process

of perceiving objects and learning object models.

Despite human and machine capability to reconstruct 3D information from a

pair of cameras, there are a set of problems which need to be accounted for

when processing information to learn about objects. As objects move, their

shape appears to change, due to perspective and scale. A change in lighting

causes the object to become more saturated, and specular reflection can change

the appearance of object parts significantly. Certain parts of an object may be

occluded either by other objects in the scene, or because it is only possible to

view the object from one angle, the object may also be partially out of view. It

is desirable to design visual learning algorithms to be as invariant to these

properties as possible. Figure 1-2 provides some examples of images which are
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Figure 1-3: Sample images taken from the CalTech 256 dataset.

Figure 1-4: A set of images taken from a single class of the CalTech 256 dataset.
The background, and pose of the giraffe, changes significantly between each im-
age.

difficult to recognise because they vary in some of the properties mentioned. In

principle, a robot can move an object and view it from all angles, acquiring all

the information needed to build a model which is pose, illumination and

occlusion invariant.

The affect of background noise when processing the visual data is important

to consider. Unless the object can be properly distinguished from its

background, before any learning takes place that background will have an

influence on the object model. One way to minimise this affect is to take images

with a range of different backgrounds. There will then be more variance in the

background between the images than in the object. If the model is built
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statistically, features which belong to the object will maintain a higher

probability than background features, thus, averaging out the background.

Figure 1-3 shows sample images from the standard computer vision dataset,

Caltech 256. Figure 1-4 shows a set of images from a single class. It is clear

that the background changes significantly with the object of interest changing

pose between each image. In the case of a robot learning around the home, the

background varies much less, unless the object is moved decisively. This

advocates the use of manipulation to try to differentiate the background from

the object.

To summarise the differences between current vision and robotic systems,

exemplified by Figures 1-3 and 1-2, it can be seen that for current visual

categorisation:

• The background changes significantly between each image.

• The object does not assume a single pose with respect to other objects in

the environment.

These points are much different in a kitchen scene. The robot is able to

observe the objects in their fixed position within the workspace and the

background does not change much with viewpoint. Introducing a robot which

can manipulate the objects and differentiate them from the background, while

changing the pose, could greatly assist the robot in learning within these

environments. The issues introduced above motivate the work explored

throughout the thesis.

1.4 Current Robotic Vision Systems

The field of Computer Vision has produced a number of efficient and

statistically robust algorithms for visual perception and learning using cameras.

Most current robotic systems use the vision system independently of the robotic

sensors or actuators. The addition of a robotic manipulator, provides a range of

extra sensors, including position, velocity, acceleration and torque sensors.

Where most current robotic systems do not use this information to aid visual

learning, the results in this thesis pave the way towards a system which does.
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Vision
System

Robot
Actions

Figure 1-5: A graph showing the information flow in a robot. Models in the
vision system can inform the robot of potential actions (black arrow), it is also
possible for the robot actions to inform the vision system about how to perceive
and learn (red arrow).

Perception
Video Input

Learning

Robot Motion

Figure 1-6: A diagram showing the process of learning with a robotic manipulator,
the robot motion has information for the image processing algorithm and also the
learning. Once object models are built, the robot can use them to make a plan
about how to act on the objects further.

The decoupling between the vision and robotic sensors is inherent in most

robotic systems. The robot observes an event and creates a plan to act based

on what it has seen. Although the robot is constrained by the body it has, the

physical properties and sensor readings have little to no impact on the decision

made. Having the ability to purposefully change the environment gives a huge

amount of information to the robots vision system. If the robot is holding an

object of interest in its hand, most of the other visual information can be

ignored. If it has moved something, knowing the motion of the hand gives

information about how the object moved.

Figure 1-5 gives a graphical representation of the information flow in

standard robotic systems. Vision software is used to give the robot information

about how to move, in very few cases the robot movement is used to tell the

robot how to ‘see’.
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Figure 1-7: The experimental set-up. The image on the left shows the robot
recursively pushing objects in the environment. The right image shows the robot
holding an object and moving it in front of the camera system.

1.5 The Experimental Platform

The system proposed incorporates robotic perception, the low-level processing of

visual information; and learning, the use of processed information to build a

model of objects in the environment. In the experiments, the robot will be

presented with a set of objects, which it will then decisively push. The vision

information is processed to remove noise and background, while allowing the

object to be viewed from multiple angles. Finally, a statistical object model will

be built, allowing the robot to recognise the object in a new scene. To support

the hypothesis, robotic motion and planning is used at every stage of the

algorithm to improve or simplify the process. Figure 1-6 shows a graphical

representation. The idea is that the robot perceives, learns and acts in a loop,

building up a knowledge of the objects through interaction.

The robot is comprised of a 6 degree of freedom manipulator and a pair of

Guppy cameras. The positions of the cameras are fixed relative to the robot.

Changing their relative positions would require recalibration. A set of objects

are placed in the workspace visible to the cameras and in reach of the robot

arm. Figure 1-7 shows images of the set-up.

Although the experimental set-up is fixed, the algorithms outlined in the

thesis are designed and tested to operate under various different conditions,

including dynamic backgrounds. This allows the work to easily be ported onto a
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more pervasive robot such as a humanoid operating around the home.

1.6 Contributions

The main contribution of the thesis is an autonomous and unsupervised system

for learning and classifying objects using a robotic system. Although other

methods are available for learning about objects, the system presented in this

work contributes by providing extensions to current segmentation and learning

algorithms. The result is a system which can iteratively plan, segment and

recognise in order to classify objects with a high inter-class variance, while

remaining robust to cluttered dynamic environments. The contributions of each

chapter are summarised below, with references to the relevant papers.

• A new visual-dynamic model for hand-eye coordination [Beale

et al., 2010]. The introduction of a new statistical model to incorporate

dynamics and visual uncertainty for the problem of timed hand-eye

coordination. The statistical model integrates mechanical information

(forces) with tracking information (vision) to define suitable control

trajectories. Trajectories can be designed to minimise energy consumption

or maximise precision while intercepting a moving target. This work

shows that robotic sensor data can be combined with vision to aid a

common problem in robotics, the problem of hand-eye coordination.

Although the work does not directly support the hypothesis, since it

stands outside of visual learning, it provides a good case study in vision

and robotics. It also gives all the technology needed to make the robot

move in the environment, and exchange motion information between the

robot manipulator and vision system.

• Robust robot-object segmentation in the presence of dynamic

and cluttered environments [Beale et al., 2011a] contributes a new

method to segment and localise objects based on robot’s motion.

Improvements are made to previous algorithms in the area when there is a

moving (dynamic) background. The probabilistic formulation allows prior

knowledge to be used when segmenting, something that has not been

considered previously. This is in support of the hypothesis since it shows
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that manipulator motion can be used to segment and localise the object

that the robot is moving.

• Online learning for robotics [Beale et al., 2011b]. An online version of

the successful batch topic model ‘Latent Dirichlet Allocation’ (LDA) is

applied to classification in computer vision. A ‘universal dictionary’ is

tested and applied, so that the algorithm is able to build topic models,

without having to update the dictionary. The model is extended into a

‘Mixture of Topics’ (MoT) model, not previously used in computer vision

since it requires object level segmentation to perform properly. The use of

online LDA and its extension in to MoT for classification is also new to

the robotics literature. The use of online learning does not contribute to

the hypothesis, but provides a good platform for visual learning on a

robotic system.

• Self-supervision [Beale et al., 2011b]. A new algorithm for unsupervised

learning using a robot, based on a supervised Mixture of Topics classifier.

The work supports the hypothesis by showing that inducing motion on

objects allows the robot to supervise its own learning. Items from each

class of object are labelled by the robot for use in a supervised machine

learning classifier, removing some problems associated with unsupervised

visual learning. The robot can recursively manipulate objects in the

workspace, exposing multiple views, and reducing noise caused by

specular reflection.

The work concludes in a system which combines segmentation and classification

to recursively learn about objects, inheriting the contributions of each system.

This is presented in the final chapter of the thesis, and provides a novel method

for learning about objects on a robotic system. The system is robust to

cluttered and dynamic environments, while allowing the robot to view objects

from a number of poses. The results show the system to robustly categorise

objects placed in the workspace.
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1.7 Structure of the Thesis

• Part I - Introduction

– Chapter 1: Introduction

This chapter provides an introduction to robotics and the problem of

machine learning. The thesis is motivated by the problem of building

a robot which can effectively learn about objects in the environment,

under varying and uncertain conditions.

– Chapter 2: Background

In this chapter the history of object learning in robotics is explored.

The fundamental problems of computer vision, and how they have

been solved in general; the use of computer vision in robotics ; most

relevant to this thesis, how the literature uses robotic manipulation

to aid visual perception and learning.

– Chapter 3: Vision and Manipulation Vision, motion and

dynamics.

This chapter shows how the robot and vision system are calibrated

to each other. A case study is presented which explores a combined

model of the uncertainty in the vision system and a dynamic model

of the robotic arm. This gives the basis for a robot to move objects

in the environment, while providing the first step towards a model

which uses both vision and robot sensor readings to operate

efficiently.

• Part II - Robot Perception

– Chapter 4: Object Segmentation Manipulation aids perception.

In this chapter the robot pushes objects in order to localise and

segment them from their background. This provides a simple

approach to figure / background segmentation, and improves current

methods, allowing the robot to segment when the background is

changing.

– Chapter 5: Experiments in Object Segmentation
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The algorithm is experimentally compared to previous work in the

area, showing an improvement in dynamic / moving environments.

There are also results showing the algorithm working for three

dimensional robotic motion.

• Part III - Learning

– Chapter 6: Autonomous Visual Learning of Object Models

How robots learn object models.

A major result in learning for computer vision is the bag-of-words

model. This chapter explores the use of Latent Dirichlet Allocation

(LDA) in a robotic scenario, allowing object models to be built

Online, without the need to store or recompute old data. The results

experiment with the idea of a wide, or universal, dictionary; built

using a well known dataset with a large number of images. The

chapter concludes with an unsupervised algorithm capable of

learning object models on a robotic vision system.

– Chapter 7: Mixtures of Topics and Self-Supervision

Manipulation aids learning.

The LDA algorithm introduced in the previous chapter is extended

by the idea that objects are composed of multiple views, rather than

just one. A method of self-supervision is explored for the robot, so

that it can take control of its own learning, viewing objects from

multiple angles and autonomously labelling input data. The

algorithm is tested with data taken from the robot, and also on a

well known publicly available dataset.

– Chapter 8: Combined Segmentation and Learning Perception

and learning combined.

In this chapter object segmentation is combined with model learning.

The results show an improved rate of classification in general, but

the algorithm also inherits robustness to changing and cluttered

backgrounds.

• Part IV - Conclusions

– Chapter 9: Conclusions
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Conclusions are drawn about the learning methods with a discussion

about future work.
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1.8 Table of Notation

This table provides the common notation used throughout the rest of the thesis.

Q Rn → Rn Motion transformation function

Φ Probabilistic motion model

% Rn × Rn → R Error measurement function

p(ε|Q,Ω) R→ [0, 1] Error probability density function

Ω Prior data relating to error distribution

ε Error value

S Set of segments in an image

Sj the jth segment in an image

P RP3 → RP2 Camera calibration matrix

I Identity matrix

Σ Covariance matrix

N() Normal distribution

Dir() Dirichlet Distribution

Multinomial() Multinomial Distribution

α Parameter controlling the distribution of documents

β Matrix of multinomial parameters controlling the

distributions of words given a topic

θ A document, or proportion of topics

z A single topic index

w A word index
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Chapter 2

Background

This chapter presents an analysis of the literature concerned with visual

learning on a robotic system, in particular, how a robot can learn the visual

appearance of objects in its environment. The problem of visual learning is

large and detailed, covering topics throughout psychology, biology, computer

science and mathematics. The background presented here is concerned with

learning using a vision system and a robotic manipulator, providing the

motivation for the contributions made in this thesis towards machine

perception, learning and classification.

The literature is reviewed by finding robotic systems which are capable of

learning, and building object models. The problem is then broken down into

the components that are needed in order to build such a system; segmentation

and learning. The emphasis is towards robots which use other sensor data, such

as encoder readings, in combination with the visual input.

• Segmentation. The problem of breaking images into regions of pixels is

used in robotics as a first step towards identifying objects in images. The

literature surrounding object segmentation is reviewed, specifically to do

with algorithms which only use pixel information and robotic sensor data.

• Learning. The information from the vision system can then be used to

build a model of objects in the environment. The emphasis is on robots

which can learn without the need for human supervision, and also, are able

to update their internal models without the need to recompute old data.

Both of these problems are largely studied in the computer vision and
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Computer Vision Robotics

Supervised Unsupervised Embodied Non-Embodied

Segmentation Classification

Incremental / Online Batch

Figure 2-1: Diagram showing the structure of the literature. On the top level
segmentation and classification are distinct, although some vision techniques in-
volve solving segmentation and classification simultaneously. The literature is
broadly separated into computer vision and robotics, where robotic systems have
the ability to act on the environment. The work in this thesis follows the dashed
arrows, and lies in between segmentation and classification.

robotic literature already, in both a general setting and also for more specific

problems. The background covered in this chapter draws attention to literature

in which:

1. Robotic motion, or knowledge of the robot position is used to segment

and localise objects.

2. The learning is online, with the robot updating its model as new data

becomes available.

3. Robots can learn visual object models autonomously, with little or no

human supervision.

Figure 2-1 is a diagram showing how the literature is structured. Both

segmentation and classification are large and unsolved problems in vision, and
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applicable to the fields of robotics and general computer vision. The algorithms

can solve the problems in a supervised manner, taking input from the human

user to aid the results; or unsupervised, without any external input. In the

robotics literature, work is split by its use of extra sensor information to aid the

vision. Finally, methods are differentiated into incremental or online, and batch.

Batch methods require all of the data in order to compute classes or segments,

whereas online methods can update the models without storing old data.

The chapter begins with general learning on a robotic system, and moves to

more specific areas of robotic perception and learning. The literature is related

to the hypothesis stated in the introduction and also the contributions of the

thesis.

2.1 Learning in Robotics

Allowing a robotic system to learn is generally desirable, as it allows the robot

to easily adapt to new environments. In the context of machines, an algorithm

which changes its behavior based on its observation of the input variables, is

known as a learning algorithm, which forms a part of the larger set of

non-deterministic algorithms.

The review in this section gives an overview of machine learning, and its

application to a few of the many problems in robotics. The general problem is

covered along with a few more specific examples. This gives a motivation and

basis for the approaches used throughout the rest of the thesis.

• General Machine Learning. “A computer program is said to learn

from experience E with respect to some class of tasks T and performance

measure P, if its performance at tasks in T, as measured by P, improves

with experience E” – [Mitchell, 1997]. Machine learning is the problem of

building computer programs which can adapt their response to an input,

according to a given set of data, or measure of performance. Since sensor

readings are noisy, and the world is complicated and unpredictable, most

machine learning algorithms are based on statistics and practical

probability theory [Bishop, 2006]. The applications range from computer

vision, through to bioinformatics and search engines.
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• Learning to Navigate A large amount of research goes into creating

robots which are able to navigate the environment. The general area is

known as Simultaneous Localisation and Mapping (SLAM) [Davidson,

1998]. Robots equipped with SLAM observe the environment using vision

or a selection of other sensors, and build a map, while localising

themselves within the map. This kind of navigation can require machine

learning, so the robot is able to identify landmarks that it has seen

before [Gibbens et al., 2000,Kaess et al., 2011,Strasdat et al., 2010]. The

techniques employed from machine learning can be used to navigate a car

along a road, [Thrun et al., 2006]; allow a submarine to navigate

underwater [Ribas et al., 2010], in an environment in which GPS does not

work; or for aerial vehicles [Conte and Doherty, 2008].

• Learning to Control. Alongside the ability to navigate, robots also

need to control their motors, wheels, propellers, or joints. For instance a

humanoid robot may need to learn the motor trajectories required to pick

up an object [Schaal et al., 2003]. The dynamics of the robotic

manipulator can also be learned, including masses of each link and

coefficients of friction etc. This allows more flexible software to be written

for a range of different robotic platforms [Petkos, 2008].

• Learning about Objects. This thesis focuses on a robot which can

autonomously learn about objects in the environment. The work draws on

techniques from machine learning, motor control, text analysis and other

fields, in order to obtain results. Object classification and recognition

span many fields and applications on their own, for instance they can be

used in SLAM to identify landmarks [Gibbens et al., 2000], on search

engines to find similar images [Ma and Manjunath, 1997], and also for

general understanding of scenes [Alex Flint, 2011].

• Learning from Human Psychology. Machine learning also addresses

the problem of general intelligence. Given sensory information and a

means to act upon the world, the robot needs to decide how to make

decisions. The area of developmental psychology sheds some light on the

way humans develop through childhood [Wood et al., 2005]. These ideas

have been explored using a robotic system [Vernon et al., 2007], with an
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emphasis towards learning about objects [Fitzpatrick et al., 2008]. The

general goal of this area is to enable a machine to progress through one

stage of development, in the same way a human would [Asada et al., 2009].

Throughout the rest of the chapter the literature is reviewed specifically in

the context of object classification using a robot and vision system. The thrust

is to find general algorithms in computer vision which are able to build object

models for classification and recognition, and also, to find a means to build such

a system from the robotic literature. The hypothesis relates the research to

embodiment, or the knowledge of the robots movement to aid the perceptual

process, and the use of object segmentation and localisation in learning.

2.2 Visual Perception and Learning

The first goal is to understand the vision system, and how to build a computer

system which is able to learn about objects and classify them. There are several

ways to attempt a solution to this problem, but the approach taken throughout

the thesis is to break it into two subsystems; segmentation (visual perception)

and learning. Literature is reviewed in both of these areas throughout

Computer Vision and Robotics.

2.2.1 Segmentation

Segmentation is a fundamental problem in computer vision. The general

definition is to break an image or video into semantically disjoint regions. This

definition is useful but relatively ill posed as, in order to segment, a good

definition of ‘semantic’ is needed. In a top-down segmentation algorithm, prior

knowledge about the objects in the scene is assumed, the image is then broken

up according to known object models. In bottom-up segmentation, no prior

object knowledge is assumed, the algorithm breaks the image up according to

the data, coherent regions of colour, motion or texture.

The computer vision literature broadly classifies the segmentation literature

into two areas,

• Bottom-up Segmentation is the use of raw image data and simple local
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té
r

a
n

d
S

te
w

é
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Table 2.1: A table showing how the literature is separated. Distinctions are made
between vision and robotics; and also, segmentation and classification.
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Figure 2-2: Different static low-level segmentation algorithms. Left: The original
image; Centre: Mean Shift; Right: Berkely

image metrics to group regions of an image; for example, grouping pixels

which are close together and have a similar colour.

• Top-down Segmentation is used when there is some prior knowledge of

the objects in the environment, an object model. The models are used to

identify the objects.

In this work, the primary focus is on bottom-up segmentation, since it is widely

used for robot perception. The assumption is that the robot has little or no

understanding of any objects in the environment. Literature is also broken into

video and image segmentation, the similarity metrics used for image

segmentation are based on colour or texture information; whereas video

segmentation can use motion. It is certainly not the case that objects are similar

in colour or texture, but the assumption that objects move coherently is more

accurate. Bottom-up video segmentation forms a core part of robot perception

and is the focus for review. The categorisation is reflected in Table 2.1.

The most basic approach to bottom-up image segmentation is clustering.

Each pixel in an image is composed of red, green and blue intensity values.

Assuming we want each region of the image to contain coherent colour

information, the pixels are clustered according to their position and colour
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intensity. For a single image, these values are clustered using an algorithm such

as mean shift [Comaniciu and Meer, 2002], k-means [MacQueen et al., 1967] or

graph partitioning [Schaeffer, 2007]. If an extra assumption is made about the

distribution of the data in each segment, then the results can be improved. In

the case of Multivariate Gaussian distributed clusters the EM algorithm [Bilmes,

1998] can be used to refine the clustering. This is not necessarily the case in a

general image, and so discriminative clustering works well.

The main concern of clustered approaches to image segmentation is the

amount of time they take to compute. Algorithms exist to reduce the overall

complexity, the most notable being [Paris and Durand, 2007] who use a

topological method to improve speed. Building a graph over the image pixels

and reformulating segmentation as a max-flow min-cut problem [Boykov and

Kolmogorov, 2004] can also be used to efficiently segment an image into colour

or texture coherent regions [Felzenszwalb and Huttenlocher, 2004].

One of the most recent and popular methods for segmentation is from

Berkely [Arbeláez et al., 2009,Martin et al., 2004]. They base the technique on

the edges present in the image. A model is trained from a set of ground truth

images in which human participants are asked to break the image into the

regions they believe partition the image. An edge detector is trained on the

ground truth images, which is used as a base model for segmenting unseen

images. However, this algorithm is arguably top-down, since some prior

knowledge is present from the human participants.

Figure 2-2 shows standard Mean Shift in comparison to the Berkely

segmentation algorithm. The Berkely method is much stronger at accurately

finding the edges, and all segments are strictly subsets of objects, making it a

suitable algorithm for image analysis. The trade off is the amount of time it

takes to compute the segmentation, for which the Berkely method’s

performance is much worse.

The techniques described so far only take single images as input. When

dealing with video, each frame can be independently segmented, but the

boundaries of each segment are not continuous between frames. The solution to

this problem is to consider multiple frames of a video when segmenting. The

methods for static image segmentation can be extended in order to segment

videos by considering them as a volume of colour intensity. In this case each
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pixel is represented instead by a 6 dimensional vector, an extension of

segmentation for a single image, including time as an extra variable. This is

known in the literature as volumetric segmentation [Grundmann et al.,

2010,Apostoloff and Fitzgibbon, 2006]. Mean-shift can also be used for

volumetric segmentation, but is generally quite slow, the method of [Paris,

2008] makes the process faster using Morse Theory.

A good way to represent motion in a video is to use optical flow [Horn and

Schunck, 1981]. Optical flow represents the motion throughout the video.

Without considering the colour intensity of each pixel, optical flow can be used

to segment objects assuming they move according to some motion

transformation (affine, translation, projective) [Weiss and Adelson, 1996]. If

there are multiple objects in the environment which move according to different

distinct transformation functions then probabilistic modelling can be used to

segment the objects and also estimate their motion [Torr and Zisserman,

1998,Torr, 1998]. Using a method to track features throughout a video, whole

trajectories can be clustered to segment videos in to regions of coherent

motion [Brox and Malik, 2010,Vazquez-Reina et al., 2010].

Motion segmentation algorithms are useful on a robotic platform if they are

fast to compute or, ideally, incremental. The video is broken into regions that

are likely to contain objects, which can then be used for higher level learning. If

the robot is manipulating an object, or has some control over the environment,

the extra information from the robotic sensors can be used to segment and

localise it, or in other words, extract the object of interest from all other objects

in the environment. In the following section literature is reviewed from the

robotics community, who attempt to solve this problem.

2.2.2 Interactive Robot Segmentation

The literature discussed so far is for general bottom-up segmentation, where

there are few assumptions made about the objects in the environment. When

using a robot, the system does not only have extra information from the range

of sensors on its body, but also has control over the environment. The work

presented here focuses on systems which use extra sensor information to aid the

segmentation process. Algorithms which use sensor information to segment
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objects have an advantage over ones which don’t, since they are also able to

localise the object that the robot is moving. This means that the robot can

differentiate the object of interest from other objects in the environment, and

also the robot body.

Bottom-up segmentation in robotics can be separated into the following

categories, depending on the information used by the robot:

• Proprioceptive Information. It is well known in the literature on

human development that young children develop a sense of proprioception,

awareness of the relative body positions, before beginning to learn about

objects in the environment. Along with basic image processing tools, this

gives a child the tools it needs to begin learning about objects. When

applied to robotics, the word means that the system has a prior model of

its own body (possibly a CAD model) which can be used to remove the

body from the images.

• Robotic Motion. Another way to segment objects is to use the motion

that the robot makes. The differentiation between using proprioceptive

information and robotic motion is analogous to the vision problem of

image and video segmentation. In the former case, the robot uses

information for a single instance in time, in the latter, knowledge of the

robot motion from more than one frame is used in the segmentation.

• No Sensor Information. In the final category, no robotic information is

used at all. Methods in this area either use a prior object model of some

kind, or assume that the robot is operating on a plain background.

This categorisation is reflected in Table 2.1, showing the different papers

and their use of the robot’s sensors.

One way to use the robot to aid segmentation is to move the cameras to

focus on a position inside the boundary of an object [Mishra et al.,

2009,Ramanathan et al., 2010,Mishra, 2010]. This work requires some weak

prior knowledge of the object’s location before segmenting. Since the

segmentation is based on edge maps, complicated objects with strong edges and

patterns on it may be segmented incorrectly. The work is classified as

proprioceptive since the robot can segment with only one frame of the video.

Figure 2-3 gives an example of this kind of segmentation.

33



Figure 2-3: Segmentation by fixation. The robot fixates on a point in the scene
and segments the object in that region. Images taken from [Mishra et al., 2009].

The first papers written to use robotic motion to aid segmentation were

written at Massachusetts Institute of Technology (MIT) in the artificial

intelligence laboratory [Fitzpatrick and Metta, 2003,Fitzpatrick, 2002,Metta

and Fitzpatrick, 2003]. The robot COG pushes objects and uses frame

differencing along with knowledge of the frame in which the object first moves

to segment it from its background. This process involves no learning or the

need for any prior knowledge, the assumption is that the robot is able to touch

(prod) an object. The segmentation is computed over three frames. In the first

pair of frames only the robot is moving, and in the second pair of frames the

robot has pushed the object. The algorithm uses a combination of image

subtraction and graph cuts [Boykov et al., 2001] to both remove the arm and

determine the object from the background. The use of image subtraction means

that any objects that are moving other than the arm and object causes the

segmentation to fail.

Assuming that the object is being held by the robot, optical flow can be

used instead of frame differencing [Arsenio et al., 2003]. This requires a

kinematic model of the robot arm to remove it from the segmentation, and also

requires that the object is held by the robot to begin with.

More recently, the idea of using interaction to improve or simplify object

segmentation has been extended [Kenney et al., 2010]. This work focuses on the

ability to not only segment the object but build a model, and track it
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(a) Video Frame (b) Segmented Points (c) Kinematic Constraints

Figure 2-4: Segmenting object which have articulated motion, the kinematic
constraints are calculated from the resulting segments [Katz and Brock, 2008]

throughout successive frames of the video. The underlying segmentation

algorithm is based on the subtractive method by [Fitzpatrick and Metta, 2003],

and is prone to the same shortcomings.

If sparse (trackable) feature points are used instead, then the graph cut

algorithm first used by Fitzpatrick can be extended for articulated motion [Katz

and Brock, 2008]. Figure 2-4 shows qualitative results from the algorithm.

Feature points are extracted from frames of the video, and if the motion of the

object is articulated, the algorithm will calculate the kinematic constraints

between each link. The points are then grouped into segments which conform to

each constraint. This work can also be used in 3D, for service environments

such as in the home or workplace [Katz and Brock, 2011]. The algorithm works

by saving an image of a scene without the robot, manipulating the environment,

and then saving another image. Although the robot has had some interaction

with the environment, the movement is not used in the segmentation. Thus,

this work is classified as segmentation without the use of robotic manipulation.

2.2.3 Object Classification

Object classification is the problem of identifying a visual category for a given

object automatically. The categories are pre-learned from a set of training data,

according to a particular statistical model. In computer vision the classification

algorithm is given a set of training images, each containing a number of objects.

The algorithm should reduce the amount of information in the image to a level

general enough to classify images in the presence of noise and occlusion, with
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Figure 2-5: A general classification algorithm, images (right) are turned in to
features (centre). Some form of dimensionality reduction is used on the set of
features to turn them into vectors. A statistical model is built over the vectors,
allowing new images to be classified.

invariance to transformation. A number of these problems are reduced by

choosing a good set of features to represent the images.

Once a set of features has been chosen, a statistical model is built to

represent the content of the images, with the purpose of reducing

dimensionality in a way that separates the numerical representations of objects

between classes. Figure 2-5 represents an ideal classifier, features in the image

are reduced in to 2 dimensional vectors. Images in the classes ‘car’ and ‘bike’

are well separated, so that a Gaussian model can be built to represent the data,

and classify new images in the respective class.

Learning algorithms are discriminated into batch, online and incremental

approaches, explained in more detail below:

• Batch approaches to learning which compute categories over a fixed
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training set. If new data is added to the training set, then the categories

are recomputed over both old and new data.

• Incremental approaches, where only the new data needs to be computed

but the whole training set must be stored.

• Alternatively, online approaches only require the new data to be stored

and computed while the model is updated.

Computer Vision has a lot to offer to the problem of visual classification,

covering a vast range of different methods and approaches. Recent work has

seen a diverse range of developments including learning taxonomies of classes

[Griffin and Perona, 2008,Winn et al., 2005], learning spatial patterns of words

[Philbin et al., 2010,Yuan et al., 2007,Zhao et al., 2010], learning tens of

thousands of categories [Fergus et al., 2010], and learning 3D objects [Ferrari

et al., 2010,Su et al., 2009,Thomas et al., 2006]. The literature search

throughout the rest of this chapter is restricted to Bag of Words (BoW)

approaches, since it is the general approach used in the thesis. The main focus

is on online learning, and is discussed in the following section.

Bag of words

The ‘bag of words’ (BoW) model dates back to the 60’s [Maron and Kuhns,

1960] for analysing text documents. The model is based on the simplifying

assumption that words in a document are unordered, and that a document can

be represented by the frequency of the words within the document alone.

Mathematically speaking, we assume that each word is statistically independent

of other words in the document.

This idea relates to the problem of object classification: If an object can be

represented by a set of low level features (words), then a bag of words model

represents the object as the frequency of features contained within it, e.g. a car

has two wheels and four doors, where as a bike has two wheels and zeros doors.

As a result, an image is represented as a histogram over a fixed word base, and

an example is shown in Figure 2-6. A detailed explanation of BoW can be

found in Appendix B.1.

Bag of words approaches have begun to take use recently in computer vision

[Agarwal and Roth, 2002,Amit and Geman, 1999,Burl et al., 1998,Fergus et al.,
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Figure 2-6: A diagram showing the steps involved in a bag-of-words model. The
far left is an image of a car, features are extracted from the image to form ‘words’.
The image is finally represented as a histogram of the features in the image over
the word base.

2003,Weber et al., 2000]. The use of robust image features [Lowe, 2004a]

improved classification considerably, and has lead to more modern algorithms

being developed, with improved results in [Fei-Fei and Perona, 2005a,Sivic and

Russell, 2005]. This work provides a basis for the results found throughout the

thesis, since features are quick to compute using a GPU, making a practical

robotic implementation more feasible.

In problems, such as a robot in a free environment, it is important to learn

from images that show more than one object at a time. The use of latent

variable models shows best results for this [Tuytelaars et al., 2010]. For

example, [Sivic and Russell, 2005] use probabilistic Latent Semantic Analysis

(pLSA) to learn object classes, Fei-Fei and Perona use Latent Dirichlet

Allocation (LDA) [Fei-Fei and Perona, 2005a]. [Lazebnik et al., 2006] use a

pyramid scheme to learn about whole scenes, and [Sudderth et al., 2005] use a

hierarchy of Dirichlet Processes.

All of these methods are known as Batch learning algorithms. The training

set with a fixed size is provided. If more training data becomes available to the

robot, it can’t update the object models without reprocessing all of the previous

data. The next section reviews methods which are able to update their models

when new data and objects become available.

38



Online and Incremental Learning

For a robot to learn in an ubiquitous environment, with several new objects

entering and leaving the scene, it is important that the learning algorithm has

the capacity to update its model as new data becomes available. A distinction

is made between incremental learning, where the algorithm can keep all of the

data used throughout the training, and online learning, where old data can be

thrown away. Online learning is more desirable on a robotic platform as the

storage requirements and processing power are typically limited.

When applied to bag-of-words there are a number of other problems that

need to be considered in order to make the system work online. Although the

statistical model can be incremental or online over the histograms, the number

of words may change. The literature deals with this problem in a number of

ways, either by building a dictionary which is as universal as possible, or by

changing the dictionary online while taking care to update the BoW model.

Probabilic Latent Semantic Analysis was developed before LDA and has

been extended to online learning, with the application of automatically selecting

text questions [Wu et al., 2008]. The algorithm has also been used for

recognising visual objects [Fu et al., 2010]. This work allows the vocabulary and

classes to change at the same time, with the vocabulary length changing as data

becomes available.

Online LDA has also been used in computer vision [Li and Fei-Fei, 2010],

with the use of a Hierarchical Dirichlet Process (HDP) for automated online

picture collection. The work is motivated by the need to search the web for new

images, and the results are shown to compare well with batch learning. There

are examples of online LDA studied throughout the machine learning literature

[Griffiths and Steyvers, 2004,Banerjee and Basu, 2007,Canini et al.,

2009,X. Song et al., 2005], but they are not directly applicable to computer

vision.

The algorithm chosen for use in this thesis is a direct implementation

of [Hoffman et al., 2010a], but adapted for use in computer vision. The

vocabulary is of a fixed size, and computed before the LDA model. The details

are covered in Part III.

The approaches mentioned above consider the problem of general machine

learning, applied to computer vision problems. For a robot operating in a
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Figure 2-7: The learning system developed in [Welke et al., 2010]. The robot
grasps an object and segments it from the background. After segmentation, a
statistical model is built that allows the robot to identify the object in a new
scene.

workspace, there are not only a different set of challenges to face, but also more

sensors and control over the environment. For example, a robot working in a

kitchen environment does not have access to images containing objects on

different backgrounds, rather a single scene which does not change unless

manipulated. The robot is able to move around the environment, change it, and

also read from motion sensor placed around its body. The following section

covers visual learning in robotic systems, and approaches which use a

combination of vision, manipulation, and robot motion for classification and

recognition.

2.2.4 Active Robotic Learning

The previous section covered algorithms which can learn from a general set of

images. Using a robot to learn about object categories introduces a different set

of problems. In a general setting, such as an industrial workplace, objects do

not move by themselves. This means that, in order for a robot to see objects

from multiple views, it must change its position relative to the object. The
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most straightforward way to achieve this is to use the robotic arm to push the

objects. However, the problem remains of distinguishing the object being

manipulated from others in the environment.

Literature in this area is categorised into methods which;

• Use robotic segmentation as a basis for discriminating objects from

their background.

• Assume a plain background, or use prior knowledge to detect the

objects which are being learned about.

The idea of orienting a camera system relative to an object of interest, in

order to learn about it, dates back to the 90’s [Borotschnig et al., 1999]. In this

area, objects are placed on a platform which rotates, the angle the object makes

with the camera is used to build a robust probabilistic model. This is known as

active vision [Paletta and Pinz, 2000,Chen, 2008,Croon and Postma, 2006], and

is useful for a robot which can hold an object in a fixed known position relative

to the camera system.

The area of active vision makes the assumption that the object can be well

segmented, usually assuming a plain background. Although this doesn’t imply

the necessity of segmentation, algorithms which learn based on these methods

require a decent segmentation in order to work properly. This suggests a need

for object segmentation in the robotic learning process.

An object’s shape can be used as a visual description; and a good object

segmentation provides one of the most basic object models. Object

segmentation for robotic platforms was discussed in more detail in Section 2.2.2,

covering state of the art robotic segmentation algorithms [Fitzpatrick and

Metta, 2003,Fitzpatrick, 2002,Metta and Fitzpatrick, 2003,Arsenio et al.,

2003,Kenney et al., 2010]. Although these methods can be used in a system

which learns about objects, they do not cover the process needed to build an

object model, or verify the models in a classification or recognition task.

Object classification has been studied for robots which are able to

manipulate or grasp objects in the environment [Li and Kleeman, 2011,Li and

Kleeman, 2009]. This approach uses visual cues to infer the position and shape

of the object in order to pick it up. Once the object has been grasped, the

features on the object are recorded and used to match the object again in novel
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images. The initial segmentation is based on the symmetry of the object.

Although the approach is shown to work well in a recognition task, it is limited

to the small class of symmetric objects.

Making the assumption that the robot is already holding the object requires

a different set of tools to segment and learn. Once the object is held, it is

possible to move it along a path so that all sides become visible. Methods to

generate trajectories, with the application of learning have been studied by [Ude

et al., 2008,Omrcen et al., 2007], moving the object to the centre of the visual

field and rotating it about its centre of mass. This work is extended by [Welke

et al., 2010], who use a mixture of cues to segment the object from the

background, and building the object model. Figure 2-7 shows the process used

by [Welke et al., 2010] to learn the models, combining proprioceptive

segmentation with learning.

More recently, [Williamson, 2009,Willimon et al., 2010] use a robot to

manipulate soft objects, segment them and build models using a skeleton based

approach. While these methods provide a means to manipulate, grasp and learn

about objects, there are limiting assumptions made about the environment.

The background is necessarily plain and prior knowledge is needed to infer the

location of the object in order to grasp it.

2.3 Observations and Relation to the

Hypothesis

The literature review gives rise to a number of gaps and potential avenues for

further research. The work presented throughout the thesis focuses on a robot’s

ability to perceive and learn, both of which are explored in the literature

concerning robotic object recognition and classification.

The work on robotic segmentation allows a robot to distinguish an object

from its background by pushing it. These algorithms differ from a generic

segmentation algorithm since they can both;

• localise, or determine the object it is playing with from other objects in

the environment;
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• and segment, or determine the boundary of the object that is being

manipulated.

The combination of these two properties already shows the benefit of using

proprioception for use in robotic perception. Computer vision algorithms can

separate an image into regions likely to contain distinct objects, but are not

able to determine which object is being manipulated.

The gap lies in the use of image subtraction in robotic segmentation.

Current algorithms in the area use subtraction to determine areas of the image

that have moved. This limits the algorithm’s ability to perform when other

objects in the environment are moving. This motivates the use of robotic

motion to aid in segmentation. This idea is explored in Part II, showing an

improved quality of segmentation when objects in the background are moving.

Once the background data has been filtered out, a model of the object can

be built. Robotic learning algorithms use some form of background removal to

isolate objects in the workspace. There are two main observations on the work

in this area compared to learning algorithms in computer vision:

• The algorithms are not online, this means that a robot is not able to

update its model as new data becomes available.

• Robotic segmentation is not used to filter the background. The

methods either assume a plain background or use some prior knowledge to

find the object. For example, [Li and Kleeman, 2011] assume that objects

are symmetric in order to segment.

The work throughout III explores online learning on a robotic platform,

using Latent Dirichlet Allocation. This work does not use segmentation and

assumes a background with a low-density of features. Chapter 8 goes on to

combine segmentation and learning to create a system which can autonomously

learn robust object models in cluttered environments.

Referring back to Table 2.1, the literature is separated into vision and

robotics, with the former meaning the computer has no control over the

environment, the latter meaning it does. It is also separated into segmentation

and classification; segmentation meaning to break an image into disjoint

regions, and, classification meaning to identify an object’s class from an image
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of it. The second part of the thesis is dedicated to segmentation, and fits into

the robotic segmentation area. The work presented here is comparable to three

other techniques, but delivers an improvement when the background is

changing. The third part to the thesis looks at robotic classification. The work

presented here introduces self-supervision and topic modelling to the literature,

and also goes on to combine segmentation and learning in the final system.
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Chapter 3

A Case Study in Vision and

Manipulation

The case study presented in this chapter introduces a new method for

combining robot dynamics and vision to perform hand-eye coordination, and

shows it to be successful at intercepting a moving object. The work does not

directly confirm the hypothesis, but shows that visual information can be

combined with robotic sensor data in order to benefit motion generation. The

ability to generate trajectories is fundamental to robotics and is required

throughout the rest of the thesis.

Current methods for hand-eye coordination generate robot trajectories that

are based on the position, velocity and acceleration of the arm, but do not

consider the force needed to make the movement. In this work, a statistical

model for the vision system is derived, along with a Lagrangian dynamical

model of a robotic arm, showing how to relate joint torques to the vision

system. Because of the Bayesian approach to integrating the different

distributions and modelling the vision, the method is robust to noisy data when

estimating the position of the object. It also allows a degree of flexibility to

change prior information about the trajectories.

The method is tested in simulation to show that it can intercept a moving

object, while remaining optimal to a set of criteria. The study includes energy

minimisation and precision combined with visual accuracy to intercept the

target object.

The first part of the chapter is concerned with finding a common space
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through which all of the sensors can communicate. The space that is most

conceptual to work with is three dimensional Euclidean space. This correlates

well with the model that humans use to understand the world. Once a common

world is established, making decisions to move through it is much easier. These

decisions can then be influenced by the physical body of the robot. For instance,

it may be beneficial for a robot to make decisions based on the amount of energy

it needs to make a movement, or how accurately it can take a measurement.

In summary, the chapter is broken into the following sections,

• Robot Calibration. The robot is able to measure the position of its

joints, but this does not directly relate to the 3D position of its

end-effector. In this section the robot is calibrated, finding a function

which maps joint positions to end-effector pose and position in 3D.

• Camera Calibration. There is also a complex relation between camera

sensor data and 3 dimensional Euclidean geometry. Cameras measure in

projective space, meaning that points further from the camera focus

appear closer together than points measured near the camera. This

relationship is modeled, finding a function which maps points in 3D to

points in the camera space.

• Trajectory Generation. Once all of the different sensors can be

measured in the same space, it is possible to define trajectories for the

robot end-effector to move along. Statistical models of the vision system

and robot are built in order to find optimal trajectories for the task of

intercepting a moving target.

Solving these problems provides the basis for a robot to manipulate objects

in the environment, a foundation for work throughout the rest of the thesis.

3.1 Robot Calibration

The robotic manipulator has sensors to encode the position of each joint. This

is useful for moving the motors independently, but does not give the position or

pose of the end-effector. Given a position in 3 dimensions, the robot should be

able to calculate the joint positions needed to reach that point, the
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(a) Calibration. (b) Experimental Set-up.

Figure 3-1: The robotic set-up and calibration process. The arm moves in front
of the cameras, points on the end-effector are recorded in order to find a map
between the camera system and the robot motors.

inverse-kinematics of the robot. Conversely, given the positions of each joint,

the robot should be able to calculate the position of the end-effector, this

problem is known as the forward-kinematics.

Knowing the kinematics is important for hand-eye coordination, since it

maps the sensor data into the 3D space surrounding the robot. Other sensors,

such as cameras, can then easily transfer information to and from the robot

manipulator. In the context of hand-eye coordination, we would like to be able

to visualise a trajectory for the robot to move along, and convert it to motor

positions. The full calibration diagram is shown in Figure 3-1a. This section

gives a brief overview of the kinematic computations used throughout the rest

of the thesis.

3.1.1 Kinematics

Finding the full kinematics of a robotic arm can be complicated, particularly for

robots with a large number of degrees of freedom. The problem is well studied

in the robotics community and too extensive to review here; solutions exist

ranging from analytical methods, which are inexpensive to compute but

complicated to solve; to numerical methods, which are computationally slower

but can deal with much higher degrees of freedom. The methods used in this

chapter are taken from [Zhao and Badler, 1994,Spong and Vidyasagar, 2008].

Forward kinematics is the problem of calculating the euclidean position x

of an N degree of freedom robot arm, given the joint angles θ, that is,
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calculating a map,

f : RN →RM (3.1)

θ 7→x (3.2)

Where M is the number of dimensions in Euclidean space and also the degrees

of freedom for the pose of the end-effector. For example, the robot may have 6

degrees of freedom, with an end-effector which can be rotated in 2 dimensions.

In this case N = 6 and M = 5 = 3 + 2. Standard trigonometry is used to

compute this function, and the details of this computation can be found

in [Spong and Vidyasagar, 2008]. The positions of each link can be computed

independently and summed to find the end-effector.

If velocity information can be read from the joint sensors then the velocity

of the end-effector can be found by differentiating f , using the multivariate

chain rule,

Jfθ θ̇ = ẋ. (3.3)

Finding the inverse kinematics poses a much more difficult problem,

particularly for an analytical solution. Analogously to Equation 3.2 an inverse

map needs to be found,

f−1 : RM →RN (3.4)

x 7→θ (3.5)

The position of the end-effector usually has fewer dimensions than the

number of joints, and so the problem of finding an appropriate map is

under-constrained. In general there is more than one solution to this problem.

It is possible for there to be redundant solutions which are reachable by the

robot, Figure 3-2 shows how a single point can be reached in two configurations

of a 2D two link robot. Extending the problem in to 3D, potentially leads to an

infinite number of reachable solutions.

The simplest solution is to use a non-linear optimisation method, choosing

the robot’s current configuration as a starting point. For a fixed position x, an
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Figure 3-2: A diagram showing how a 2 link robot can reach multiple solutions.
The manipulator is set to reach a point x, a pair of vectors can be constructed
to reach x in two different configurations, i.e. a + b = x and a∗ + b∗ = x with
|a| = |a∗| and |b| = |b∗|.

objective function is defined,

g(θ) = f(θ)− x (3.6)

Extra constraints can be formulated (such as lower and upper bounds on

some of the angles). The starting point is taken to be the current position of

the robot. This provides enough information for Newton’s algorithm [Coleman

et al., 1992] to effectively find a solution.

The solution used throughout the rest of this thesis is analytical, making it

faster to compute. Details of the method can be found in Appendix A.1.

3.2 Camera Calibration

A camera is a sensor which takes points in three dimensions and projects them

onto a plane. When observing a scene through a camera, points which are

further away appear to be closer together than points which are near the

camera focus. This is known as perspective, and does not conform to standard

3D Euclidean geometry.

Modelling a camera mathematically, involves building a model of perspective

and then estimating a map between the world the cameras live in, and the 3D

Euclidean geometry. This section explains the type of geometry capable of

modelling a standard perspective camera, projective geometry, and the process

required to estimate its parameters.

49



3.2.1 Projective Geometry

To build an accurate model of a camera while maintaining simplicity, standard

Euclidean geometry is not enough. In the world of Euclid, parallel lines never

meet. When viewing lines through a camera, train tracks for instance, parallel

lines meet at a point at infinity. Projective geometry deals with this problem,

defining points at infinity with mathematical rigour.

In Euclidean geometry each point is a vector. Consider a plane for instance,

in this space parallel lines do not meet. Mathematically speaking, consider the

parallel lines α · p1 = c1 and α · p2 = c2, with the constant gradient α ∈ R2,

variables p1,p2 ∈ R2 and c1, c2 ∈ R with c1 6= c2. The lines cross when p1 = p2

but this then implies that c1 = c2, a contradiction.

In projective geometry an extra dimension is added to the euclidean space,

this is known as projective space denoted RPn for n dimensions. A 2

dimensional point in euclidean space (p1, p2) ∈ R2 is equivalent to the point

(p1, p2, 1) ∈ RP2, but in projective space there is an equivalence class of points

which are considered equal, in fact (p1, p2, 1) = (kp1, kp2, k) for and k ∈ R \ {0}.
If an arbitrary point is taken from RP2 dividing by the last element gets us back

to R2. This makes the two spaces almost equivalent, except there is a set of

points in RP2 which can’t be mapped back to R2. Take (p1, p2, 0) ∈ RP2 the

corresponding point in R2 is (p1/0, p2/0), which does not really exist. This set

of points is known as the line at infinity.

If we now consider a pair of lines in projective space, as before with(
α

c1

)
·p1 = 0 and

(
α

c2

)
·p2 = 0, and variables p1,p2 ∈ RP2. The lines meet

when p1 = p2, this either implies that c1 = c2 but that breaks our assumption,

or that the third element of p1 and p2 is zero i.e. they are both at infinity.

3.2.2 The perspective camera

The projective geometry introduced above gives the right tools to properly

model a perspective camera. In its most general form it is a matrix P ∈ R3×4

which takes points in RP3 and maps them into RP2.

Figure 3-3 is a diagram showing a perspective camera. Points in the three

dimensional euclidean world are mapped onto the two dimensional camera

50



f

Figure 3-3: The perspective camera. Points in the 3 dimensional environment
are mapped back on to the camera. Objects which are further away from the
focus point appear smaller in the camera.

plane. In order to calculate a 3D position from a pair of cameras, matching and

triangulation are needed, this process is explained in Section 3.4.1.

3.2.3 Estimating the camera matrix

Both projective geometry and a matrix camera model have been covered in

previous sections, it remains to show how to estimate the parameters of the

model. This is already a well known problem, but can be solved differently

when using a robotic manipulator.

Estimating the projection matrix using computer vision alone is known as

camera calibration [Hartley and Zisserman, 2000]. General methods exist to

calibrate using only a pair of cameras and images of a chessboard (an object

with clearly visible points of known relative dimension). Although these

techniques can work very well, they put the cameras into an arbitrarily placed

3D coordinate frame with arbitrary units along each dimension. Performing

calibration in this way requires a further affine map relating camera coordinates

into robot coordinates. Instead, the cameras can be directly calibrated to the

robotic arm, immediately placing them into the same 3D coordinate frame.

To estimate the matrix P , the robot is sent to a set of points in its work

space. To make the estimation as accurate as possible these set of points should

be as wide and as dense as possible. At each point, the corresponding position
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in each camera is recorded. This can either be done manually or by putting a

brightly coloured object on the end-effector of the robot and tracking it using a

suitable algorithm, for example CAMShift [Bradski and Kaehler, 2008].

Assuming we have a set of known points in three dimensions X i ∈ RP3 and

their corresponding point in the camera xi ∈ RP2. The projection matrix

satisfies the following equation,

xi = PX i (3.7)

Respecting that the image points are in projective space, this leads to the

following pair of simultaneous equations,

(xi)1 =P(1,:)X i/P(3,:)X i (3.8)

(xi)2 =P(2,:)X i/P(3,:)X i (3.9)

Where (xi)k denotes the kth element of xi and P(m,:) denotes the mth row of P .

Rearranging these equations gives a matrix equation,

−(x1)1X
T
1 0T XT

1

0T −(x1)2X
T
1 XT

1

−(x2)1X
T
2 0T XT

2

0T −(x2)2X
T
2 XT

2
...

...
...


 P T

(1,:)

P T
(2,:)

P T
(3,:)

 =0 (3.10)

Letting A represent the matrix on the left and v the vector on the right we have,

Av = 0 (3.11)

The trivial solution to this problem is v = 0 which is not useful for this

purpose. In fact, the matrix A is singular and so there exists another solution

to Equation 3.11. Performing singular value decomposition on the matrix A and

choosing the singular vector with smallest corresponding singular value yields

the correct, non-zero, solution. When A is chosen to be the matrix shown in

Equation 3.10, the solution corresponds to the camera parameters.

All of the mathematics introduced in previous sections relate sensors into a
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common coordinate frame. This provides the basis for a system which can

easily make calculations based on multiple sensors. The rest of the chapter

deals with generating trajectories to make the robot move, based on both vision

and robot sensor data.

3.3 Combining Vision with Dynamics for

Trajectory Generation

Hand-eye coordination is an important problem in robotics, enabling a robot

equipped with a vision system to manipulate visually sensed objects. This is

particularly important in places where the uncertainty in reaching a point is

very high, to direct the robot towards minimising error between the current and

final pose.

The problem can be broken down into two distinct areas static and timed

hand-eye coordination. In the static case, the robot must be able to move

towards a point which is static in the scene, for example the picking and placing

of fixed objects within the task space. A robot equipped with timed hand-eye

coordination can move to match a trajectory of points through time, for

example, a robot picking up moving objects from a conveyor belt, or a robot

designed to hit a ball.

A significant amount of research has been done in the area of static

hand-eye coordination; the image Jacobian can be found, relating velocities in

the joints of the robot to points in the image [Chaumette and Hutchinson,

2006], [Chaumette and Hutchinson, 2007]. In a partitioned approach [Corke and

Hutchinson, 2001] several points are tracked on the end-effector, ensuring the

manipulator reaches the correct pose, taking care of the redundant degrees of

freedom in the kinematics. Timed hand-eye coordination, introduced in [Allen

et al., 1993], presents a much more difficult problem.

Progress has been made towards a solution using the image Jacobian,

extending it to match the velocity of a visual trajectory [Chaumette and

Hutchinson, 2007]. Dynamical systems can also be used to generate timed

trajectories which make an interception [Santos and Ferreira, 2009], while

allowing the robot to learn natural grasping movements.
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This is extended into the field of mobile robotics, to intercept a moving ball.

Methods in this area use statistics to find a distribution of possible ball

positions [Guerrero et al., 2008], [Santos and Lima, 1993]; and then using

controllers to intercept it [Capparella et al., 2005]. Both static and timed

coordination have been solved using kinematics, giving positions, velocities and

accelerations for the robot to move to. It is also important for the robot to be

given the torques needed to make the movement. Force and vision have been

combined in this way to better estimate and control the robot’s position [Baeten

and Schutter, 2004], [Lippiello et al., 2007], and allow the robot to apply a force

to an object while maintaining a particular pose [Nelson et al., 1995]. This gives

the robot the ability to use vision to position the arm and force sensors to

undertake tasks which require more precision. Throughout the rest of this

chapter, we explore a method for timed hand-eye coordination that can generate

trajectories which are optimal in terms of the vision and dynamics of the robot.

3.4 Visual Trajectory Generation

To make the robot move, position commands are sent to the motors. The

process of visualising a scene and determining a path for the robot to follow is

known as trajectory generation. This section describes a method to generate

trajectories based on the dynamics and uncertainty in the vision system,

providing the first step towards integrating robot motion and the vision system.

3.4.1 Triangulation

Calibrating the robot in three dimensions (Section 3.1 ) provides a model of the

cameras and robot that allow them to operate in the same three dimensional

space. This means we can choose a point in the workspace and determine the

joint positions needed to make the robot move to that point, and also, where it

lies in the camera system. The converse problem is to find matching points in

the camera system and find the corresponding point in three dimensions, this is

known as triangulation.

Given a point x1 ∈ Π1 in camera 1, a matching point x2 ∈ Π2 in camera 2,

and the projection matrices P1, P2. The problem is to find the three
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Figure 3-4: The epipolar geomtery of the cameras. A single point X in 3D is
projected onto both of the cameras, Π1 and Π2. The reconstruction problem is
to find the 3D point given the two corresponding camera points x1 and x2.

dimensional point X ∈ RP3 such that the following two equations hold,

xi = PiX ∀i ∈ {0, 1} (3.12)

There are many solutions to this problem, all with varying degrees of

quality. The full process is detailed in [Hartley and Zisserman, 2000]. Figure 3-4

shows the epipolar geometry of the problem, and how the camera foci and

matching 2D points relate to the corresponding 3D world point.

When the manipulator is constrained to a plane, such as a table top, the

problem of mapping points into three dimensions can be simplified. Given a

single camera matrix P , a point in the camera frame x, the 3D world point X,

and the parameters of the plane, the normal n and κ the following simultaneous

equations are solved,

x =PX (3.13)

κ =n ·X (3.14)
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The equations are then rearranged to give,

(x1P(3,:) − P(1,:))X =0 (3.15)

(x2P(3,:) − P(2,:))X =0 (3.16)

(nT − (0, 0, 0, 1)κ)X =0 (3.17)

This system of equations can be solved using singular value decomposition,

in a similar way to standard triangulation and camera calibration techniques.

Further refinement using an optimisation algorithm is possible but beyond

requirements for a robot which needs to operate quickly.

3.4.2 Visual Uncertainty

To build a model of the uncertainty in the vision system we assume that the

error in measuring a point in each camera is Gaussian distributed. The problem

is to then find out how the error is propagated through the triangulation, this

gives the points in the 3D environment that are most accurate.

The epipolar geometry shown in Figure 3-4 motivates the problem. Consider

two rays extending from the focus of each camera, through the lens. When the

rays are close to perpendicular, a small deviation in each camera will not affect

the calculation of X much. If the intersection is far away from the cameras then

a small deviation in each camera could cause a large error in calculating the

resulting 3D point.

Given the matching points in each camera, and the projection matrices, the

probability of X is sought. Bayes theorem and the conditional independence of

readings in each of the cameras gives,

p(X|x1,x2) =
p(x1,x2|X)p(X)

p(x1,x2)
(3.18)

=
p(x1|X)p(x2|X)p(X)

p(x1,x2)
(3.19)

Assuming that the likelihood of observing a 3D point is evenly distributed

everywhere, they are possible to be observed by the cameras, the following
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Figure 3-5: The accuracy in the vision system. Points which are further away
from the camera focii reconstruct with much less certainty.

relation can be made,

p(X|x1,x2) ∝ p(x1|X)p(x2|X) (3.20)

The two distributions on the right hand side of Equation 3.20 are assumed

to be normally distributed,

p(xi|X) =N(π2(xi)|π3(PiX),Σ). (3.21)

Where πn : RPn → Rn is the projection from real projective space into real

space, representing a division by, and removal of, the last element of the input

vector. The diagrams in Figure 3-5 represents the resulting probability map in

3D projected on to two dimensions.

When tracking a moving object we would like to be able to predict how it

will move in the future. Doing this will allow enough time to make a decision

and perform an action, before the object reaches a particular state.

In making this kind of prediction, the uncertainty grows with every time

step taken without new data. Assuming that the object follows linear dynamics,

the movement is modelled using a Kalman filter. This gives an estimated

position and velocity for the object, and allows us to predict its state arbitrarily

into the future.

A covariance matrix representing the corresponding measure of uncertainty

57



in estimating the state is also calculated, complementary to the probabilistic

model used so far.

For each measured state st =

(
zt

vt

)
at discrete time t ∈ N, where zt is the

position and vt is the velocity, the following relation holds,

st = Ast−1 + εt, (3.22)

where A is the state-transition matrix and εt ∼ N(0, Q) is zero mean

Gaussian noise. Letting H(i,j) = [si, si+1, ..., sj], the following matrix equation is

solved finding a least-squares solution for A.

AH(1,N−1) = H(2,N) (3.23)

A = H(2,N)(H(1,N−1))
∗. (3.24)

Where (H(1,N−1))
∗ is the Moore-Penrose pseudo inverse of the matrix

H(1,N−1). This requires that N states are measured before any prediction can

take place.

For known states the position and variance is estimated using the

predict-update equations of a Kalman filter, for future time intervals the

position is predicted using equation 3.22, and covariance predicted as follows,

Mt = AMt−1A
T +Q. (3.25)

This ensures that the covariance increases appropriately with the amount of

prediction.

To incorporate this information into the final optimisation, a probability

distribution p(x|t,K) is required where t ∈ N is the time and K := H(1,N)

denotes the set of past measurements.

The probability distribution is given as follows,

p(x|t,K) =p(x|t,H(1,N)). (3.26)

=N(x|st,Mt) (3.27)

Here x denotes the true position of the target and st the measured state at
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time t. This distribution incorporates knowledge about the most accurate

places in the vision system to catch the object, and also the best point in time.

3.4.3 Combining geometric and predictive uncertainty

We now have a probabilistic model governing the geometric relationship of the

camera system, showing how the error in measuring a point is distributed in

three dimensions (Equation (3-5)). A Kalman filter allows us to measure the

position of an object and predict its future position and error distribution

(equation (3.26)). It remains to show how these two distributions can be

combined, to predict the position of a moving object while triangulating its

position using multiple cameras.

Using the independence of the camera C and the Kalman filter with time

(K, t), the likelihood of the position x, given data from the tracked target

β := (C,K) is calculated.

p(x|β, t) =p(x|C,K, t) (3.28)

∝p(x|C)p(x|K, t) (3.29)

This probability distribution gives a complete likelihood of the estimated

position of a moving object, also allowing for future positions to be predicted.

The formulation is general enough for alternative tools to be used if needed. For

example, where the assumption of linear dynamics in the Kalman filter may be

too limiting in some circumstances, it is possible to be easily exchanged with

another particle filter which also gives information about the uncertainty in

prediction.

3.5 Arm Dynamics

There are very large number of movements a robot can make in order to achieve

a particular task. In this section we analyse a set of trajectories by considering

the inverse dynamics of the robot, i.e. the torques needed to make the

movement. This is then used as a basis to decide on which trajectory is the best.
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To determine the inverse dynamics, a Katana robot is modeled in the

program DySim [Sahinkaya, 2004]. Katana is a 6DOF small sized robotic

manipulator, with a reach of 517mm and weighing 5.2kg.

DySim uses the Lagrange equation, considering the difference between

kinetic and potential energy in the system to find the torque in each joint

needed to make a given movement.

3.5.1 The Set of Trajectories

A small set of trajectories are selected to analyse on the robot. Bezier curves

are used to make the movement, but with the additional constraint that the

beginning and end of the trajectory have zero velocity and acceleration. This

prevents the controllers from putting too much force on to the motors, making

them stall or break.

A Bezier curve is defined by the following equation,

b(t) =(1− t)2p0 + 2(1− t)tp1 + t2p2 t ∈ [0, 1] (3.30)

Then b(t) passes through the points p0 and p2 with curvature controlled by

the point p1. To ensure that the trajectory terminates with zero velocity and

acceleration a shaping function f : R+ → [0, 1] is used [Sahinkaya, 2001], defined

by the following equations,

f(t) =1− e−(αt)3 (3.31)

ḟ(t) =3(αt)2e−(αt)3 (3.32)

f̈(t) =(6αt− 9(αt)4)e−(αt)3 (3.33)

The parameter α controls the magnitude of acceleration. Setting α := 1.66

ensures that the movement stops near t = 1.

The Bezier curve is then reparametrised by the variable t, to give a new
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Figure 3-6: The position, velocity and acceleration are shown for a 2-dimensional
Bezier curve, that has been modified by shaping the time input. The graphs
demonstrate that in each dimension the trajectory has zero velocity and acceler-
ation at the end points.

function Φ : R→ Rn, defined by the following,

Φ(t) =b(f(t)) (3.34)

Φ̇(t) =ḃ(f(t))ḟ(t) (3.35)

Φ̈(t) =f̈(t)ḃ(f(t)) + b̈(f(t))ḟ 2(t) (3.36)

Substituting (3.31) - (3.33) into (3.34) - (3.36) gives a smooth function with

the correct boundary conditions, i.e. zero velocity and acceleration when t = 0

and t = 1.

A set of trajectories is then defined by the vector ψ ∈ Ψ with,

ψ = (θ, l, γ)T (3.37)

This relates to the Bezier curve defined by the points p0, p1, p2, as follows,

p0 = (0, 0.7, 0)T (3.38)

p2 = l(sin(θ), cos(θ), 0)T (3.39)

p1 = p0 +
1

2
(p2 − p0) + γp⊥2 (3.40)

Where p⊥2 is the vector perpendicular to p2. Each of the parameters are

shown in Figure 3-7.

This constrains the manipulator to move in the plane, to simplify degrees of
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Figure 3-7: The geometry of the robot trajectories. The robot is constrained to
a 2 dimensional environment, i.e. the last element of p1, p2 and p3 are zero. The
robot moves along a Bezier curve from p0 to p2. The parameter θ describes the
angle the the robot begins moving in, l the distance it moves and γ how far the
trajectory curves away from a straight line.

freedom in the model. With the parameter γ, giving the degree of freedom

termed curvature. Figure (3-6) shows a Bezier curve along with the

corresponding velocity and acceleration, demonstrating the zero terminal

boundary conditions.

3.5.2 Energy Efficiency

We take the set of trajectories as defined in section 3.5.1 and calculate an energy

cost function, more explicitly, the mechanical work [Mansfield and O’Sullivan,

2011]. This gives a good measure to determine one trajectory from another.

The average energy in the kth joint is defined as follows,

Ek(ψ) =

∫ υ

t=0

|fk(t)|dt (3.41)

This is the integral of the absolute sample mean torques over time, where
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fk(t) denotes the torque in joint k at time t ∈ [0, υ). The total energy

consumption for the action is taken to be the the sum over each of the joints.

To test that the calculation of energy is correct, the same trajectories are

performed on the Katana robot and the total current needed to make the

movement is measured. Figure 3-8 shows the results of this experiment for a

range of trajectories, the simulated results are similar to those from the

dynamic simulation, validating the model.

3.5.3 Precision

Another measure of quality between trajectories is precision. A trajectory is

called precise if adding noise to any of the motor torques affects the final

position of the end-effector the least. This is useful for robots which do not use

a high gain for position feedback, an example of this would be a torque

controlled robot which is designed to be compliant.

To calculate precision, random Gaussian noise is added to the desired end

position of the robot. The trajectory needed to reach this point is then

calculated. This process is repeated 500 times, giving a sample set of the torques

required to make the move in each joint. Counter intuitively, precise trajectories

are chosen to be ones which have the lowest signal to noise ratio, ensuring that

small perturbations in the motor torques will affect the end-position the least.

Two examples of this are shown in Figure 3-9, with each colour representing

a different motor. The bottom set of torque trajectories have a lower signal to

noise ratio and are therefore more precise.

The signal to noise ratio for the kth joint is then given by,

ρk(ψ) =

∫ υ

t=0

µk(t)

σk(t)
dt (3.42)

Where µk(t) and σk(t) are the mean and variance of the torques in the kth

joint at time t. ψ denotes the parameters of the trajectory.

This can then be used to estimate how the covariance of the end-effector
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Figure 3-8: The total energy required to perform a particular trajectory. The
top row shows the results from a dynamic simulation, and the bottom row shows
the results of measuring the total current used in the motors of the Katana.
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Figure 3-9: The resulting torques calculated from a distribution of end-effector
positions. The top graph shows a the torques needed to generate a Bezier curve
with parameters θ = 0, l = 0.15 and γ = 0. In the bottom graph the trajectory
has parameters θ = −1.5, l = 0.07 and γ = −0.3. The graphs show each measured
trajectory plotted one on top of the other.

position changes, given that there is noise present in the torques.

Σψ ∝ (
4∑

k=1

ρk(ψ))−1I3. (3.43)

If a robot with high precision controllers are used, a small constant

covariance matrix can be used instead.
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3.6 Combining Vision and Dynamics

In this section, the arm dynamics and probabilistic models of the vision system

are combined in order to perform hand-eye coordination.

Given the statistics for the arm α and object β being tracked, and the time

passed t ∈ R+, a distribution over the set of trajectories can be found,

p(ψ|α, β, t) ∝ p(α, β|ψ, t)p(ψ) (3.44)

∝
∫∫

xb,xa

p(α, β|ψ,xa,xb, t)p(xa,xb|t, ψ)p(ψ) (3.45)

∝
∫∫

xb,xa

p(α|ψ,xa, t)p(β|xb, t)p(xa,xb|t, ψ)p(ψ) (3.46)

Where xa and xb denote the positions of the arm and object respectively,

and ψ represents the parameters of the trajectory.

The Dirac-delta distribution is then used, so that a touch is only probable

when the position of the object and position of the hand coincide.

p(xa,xb|t, ψ) =δ(xa − xb) (3.47)

Using Bayes theorem and equation (3.47) with equation (3.46) then gives

that,

p(ψ|α, β, t) ∝
∫
x

p(x|α, t, ψ)p(x|β, t)p(ψ) (3.48)

p(x|β, t) is the distribution of error in the visual estimate of the moving

object, given in equation (3.29), with β defined at the end of section 3.4.3;

p(x|α, t, ψ) is the distribution of error in the estimate of the arm position, taken

to be normally distributed, with covariance as in equation (3.43) and a mean

corresponding to the measured arm position at time t.

The distribution p(ψ) is known as the prior, and gives the likelihood of a

trajectory independent of any other information. The prior is set to be
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proportional to the total energy required to make the movement,

p(ψ) ∝ (
4∑

k=1

Ek(ψ))−1 (3.49)

To find an action ψ the negative log-likelihood of (3.48), −ln(p(ψ|α, β, t) is

optimised using the Gauss-Newton technique. The initial value is estimated by

sampling the whole domain sparsely, and then choosing the maximum.

3.7 Simulations

The method is tested by dynamically simulating a Katana robot, and a linearly

moving object in DySim. To ensure that the simulation environment is as

accurate as possible, the same set of movements are performed on the robot as

in simulation, and compare the total energy outputs using equation (3.41). The

trajectories are defined by Bezier curves, as in section 3.5.1, with the following

defining parameters, l ∈ [0.07, 0.21], θ ∈ [−1.5, 1.5], γ ∈ [−0.3, 3]. Sampled to

give a total of 252 trajectories.

In order to compute the total energy for the robot, the trajectories were

performed 10 times, and the current required in each of the joints recorded and

averaged, this gives a value roughly proportional to the torque. This mean

current is then used as fk(t) in equation (3.41), to calculate the total energy

exerted by the robot throughout the movement.

The validation of the dynamics of the robot allow us to move on to use only

simulation for experimentation. This simplifies the amount of technology

needed and allows us to concentrate on the functionality of the method instead.

The ability of the robot to intercept the target is shown in Figure 3-10. The

method starts predicting when the trajectory becomes red, and the size of

marker is proportional to the covariance, as estimated by the Kalman filter.

This demonstrates how uncertainty in the object’s position increases with the

amount of prediction. The robot is optimising for both energy reduction and

precision in the trajectory and, as a result, moves in a straight line towards the

point of interception.

In order to show the effect of using different priors, the method is run and
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Figure 3-10: Intercepting a moving target, the uncertainty in prediction is repre-
sented proportionally to the marker size.
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optimised for both energy minimisation and precision; energy minimisation

alone with the end-effector covariance taken as 0.01; and precision alone with

the prior p(ψ) set to be uniformly distributed.

The magnitude of the noise is increased and, as the standard deviation

increases, the method tends to choose interception points earlier (figure 3-11).

Comparing this with Figure 3-10 it can be seen that as the variance increases,

the robot starts to choose interception points earlier along the objects path,

minimising the uncertainty in the Kalman Filter.

The response to noise was tested by adding Gaussian noise to the position of

the moving object with a standard deviation between 0 and 3cm, this was done

for 50 trajectories and the average distance between the object and end-effector

was consistently below 3mm. This is just above the minimum tolerance of

2.5mm, which is calculated as the average distance when zero noise is added to

the objects position. As a result, if the target object has a diameter of 6cm,

then assuming that the tracker estimates its position within the boundary, the

standard deviation will be less than 3cm, allowing the object to be intercepted

with a high probability.

3.8 Discussion

A restriction of the method is that it is open loop with respect to the cameras,

so changing the calibration would affect the results. To remedy this, a visual

feedback controller (such as defined in [Chaumette and Hutchinson, 2007]) can

be used, after a decision has been made on the correct trajectory.

It would also be possible to extend the method so that a variety of priors

can be combined. Considering the torques in the motors, the prior can be used

selectively depending on the application. For example, it may be important to

avoid certain areas of the scene that are blocked by objects, or are out of reach

for the robot. Trajectories that exert the maximum amount of torque may be

needed in certain areas of the scene, in order to pick up an object, or push

something out of the way. These improvements are beyond the scope of the

thesis, and would make a good candidate for future research.

The experiments show that, as the uncertainty increases, the robot tends to

chose trajectories that intercept the object early on. Determining the optimal
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Figure 3-11: Different actions the robot takes under varying noise and priors. In
the final three graphs the trajectories for energy efficiency and combined energy
and precision coincide, this shows a prior with a stronger preference for a tra-
jectory dominating the other. Both the ‘Energy Only’ (black) and ‘Both’ (blue)
lines coincide for the whole trajectory.
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time to start predicting is something that can’t be calculated before making a

decision. We plan to solve this problem using machine learning, enabling the

robot to learn about the best prediction times incrementally, through

intercepting the object several times.

This concludes the results and method for robotic / visual calibration and

trajectory generation. The next part of the thesis describes a method to use the

known position of the robotic arm, within the camera frame, in order to

segment objects.
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Part II

Robot Perception
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Chapter 4

Object Segmentation

The previous part of the thesis introduces the tools needed to calibrate the

robot and cameras together, and generate trajectories in the robot’s workspace.

The robot is then able to move to a set of points defined by the vision system.

The method introduced in this part allows the robot to perceive objects using

the known motion of the robotic arm. Perception is defined as bottom-up

object localisation and segmentation of the object being manipulated.

The method is in support of the hypothesis, since it shows that robotic

motion can be used to identify the object that the robot is interacting with.

Although it does not require any prior knowledge, a prior can be used to further

improve the result, allowing a top-down element to visual perception.

The main contributions of this work are to provide a method which:

• Proves that robotic motion can be used to localise and segment

objects manipulated by the robot.

• Improves current robotic perception methods, allowing object

segmentation in cluttered environments with moving backgrounds.

• Gives a segmentation that is probabilistic, providing a degree of

certainty in any part of image being part of the object.

The chapter begins by introducing the theory behind the method, and some

background surrounding bottom-up and object segmentation in robotics, before

describing the technique in detail.
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Figure 4-1: Results from the Motion-Likelihood method. From left to right: (1)
A frame from the video. (2) The corresponding low-level segmentation. (3) The
resulting probability map over each segment. (4) The thresholded probability
map corresponding to the object of interest.

4.1 Method Overview

The method allows a robot to manipulate an object in front of it (e.g. push or

grasp), and use the visual information to segment the object from its

background. This is done by a probabilistic process that correlates robot and

image motion.

The correlation between the motion on the video and the robot arm is

evaluated using a statistical motion model. The main component of the motion

model is the motion transformation function. This function is used to represent

how things can move in the environment. For example a rigid body motion

transformation (i.e. objects that can’t be deformed) implies that the pixels

within the object must ‘move together’. Other motion transformation functions,

such as elastic or fluidic could be used, but are beyond the scope of the thesis.

The motion transformation function is used to calculate the error between the

observed motion in the image and the expected one for a given arm motion.

The method presented here comprises five steps:
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1. Low-level image segmentation

2. Computing the motion in the image using dense optic flow

3. Mapping end-effector motion into camera coordinates

4. Estimating the arm-segment motion correlation

5. Thresholding the estimation to define the object of interest

In step 1, a video stream is taken and segmented according to the colour

information in each frame. This gives the robot knowledge of where the

segments are, and tracks them throughout the video. Mean shift segmentation

is used for this, and is detailed in Section 4.2.1. Step 2 is calculated using

optical flow, detailed in Section 4.2.2. In Step 3 the robot joint angles are

converted into 2D camera coordinates. The method for robot calibration was

described in the previous chapter. Step 4, estimates the correlation of segment

motions with that of the robot arm. The result is a probability that any

segment belongs to the manipulated object. Finally, Step 5 chooses the

segments with highest probability and defines the object of interest. Figure 4-2

illustrates a diagram of the method. The blocks illustrate the previous steps and

the images some of their outputs. Steps 4 and 5 are described in Section 4.4.

The process to calculate motion models and correlate them with the arm

motion is detailed in the rest of this section. This process is inspired by the

work of [Torr, 1998,Torr and Zisserman, 1998] for general motion segmentation.

4.2 Low-level Image Processing

General low-level image processing is used to extract meaningful information

from images and videos. Algorithms of this class are known as low-level as they

do not use prior information about the scene. This is useful for work carried out

throughout the chapter as it provides the tools needed to analyse the motion of

the video, and also to break the image into regions contained within objects.

Higher level analysis can then be used to group together regions which move in

a coherent manner.

Two types of low-level image processing are used throughout the chapter:

75



Figure 4-2: A diagram showing the full object segmentation process. The method
takes input from a camera and the robot arm, the images are processed using low-
level segmentation and optical flow. The probability that each segment matches
the arm motion is calculated over a period of time. The resulting probability
map is then thresholded to obtain a final object-background segmentation.

• Video Segmentation. A segmentation algorithm is used to separate a

video into non-overlapping regions which contain pixels of a similar

colour. The regions change continuously from frame to frame, so that

parts of objects can be tracked through the video. The goal is to “over

segment” the video, so that there is more than one region per object. This

allows us to go on and merge regions which belong to the same object

without the risk of including background.

• Optical Flow. Motion is extracted from the video using optical flow,

which determines the direction that part of an object has moved from one

frame to the next. This information is used to determine the overall

motion of each segmented region, to correlate it with the robot arm

motion.

There is a vast amount of literature surrounding these two problems. The

work in this chapter uses two well known implementations which are described

in more detail in the following subsections.
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4.2.1 Mean Shift Video Segmentation

One of the most basic approaches to low-level video segmentation is Mean

Shift [Cheng, 1995]. Mean shift is a clustering technique and in order to

segment a video each pixel, pi, is represented by its colour, position and frame

number, pi = (ri, gi, bi, xi, yi, fi), respectively. A set of means µk are then

computed iteratively according to the following algorithm,

µk+1 =

∑N
i=0K(µk − pi)pi∑N
i=0K(µk − pi)

(4.1)

The function K can be any kernel, but is usually chosen to be Gaussian or

flat. The algorithm is initiated at every point in the feature space, and

re-cursed until |µk − µk+1| becomes small enough. The points which converge

to the same point are considered part of the same cluster. Figure 4-3 shows an

example of the Mean Shift algorithm converging to the modes of 2D data, with

a complex multi-modal distribution.

Using this algorithm for image segmentation was introduced in [Comaniciu

and Meer, 2002]. Several improvements exist, including [Paris and Durand,

2007], who use Morse theory to optimise the speed of the algorithm. This

method for segmentation is used throughout the chapter. It is simple and fast

enough to operate, but is limited by its quality. Replacing the algorithm for one

of higher quality could lead to an improvement in the final object level

segmentation results, but is beyond the scope of the thesis. Instead topological

mean shift is chosen, keeping speed of computation in mind.

4.2.2 Optical Flow

Optical flow is the problem of determining how the scene, in front of the camera,

moves throughout a video sequence. The only information available to the

algorithm is the change of pixel intensity at each frame. Intensity information

needs to be translated into a change of position in camera coordinates,

representing a video as I(x, t), where x is the pixel position and t is the frame.

Assuming that pixel intensities are translated from one frame to the next,

I(x+ u, t+ 1) = I(x, t) (4.2)
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(a) 2 Dimensional set of feature points (b) The data clustered according to
Mean Shift

(c) Density function of the data, showing the con-
vergence of points. The modes are shown in red.

Figure 4-3: Mean Shift clustering on 2D data. The subfigures show how a set of
data is clustered using mean shift, and how start points around the distribution
converge towards the local maxima. Image taken from [Comaniciu and Meer,
2002].

Where u is the velocity of the moving object. This constraint means finding

a translation u which maps the pixel in the previous frame to the current frame.

Using Taylors theorem and linearly approximating this constraint leads to,

J I(xT ,t)T

(
ẋ

1

)
= 0 (4.3)

Where J I(xT ,t)T is the Jacobian of I with respect to (xT , t)T . The usual

approach is to use an optimisation technique in order to find the velocities,

given a video. This is covered in detail in [Horn and Schunck, 1981], and has

been studied and extended throughout the computer vision literature. To date,
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one of the most widely used algorithms for optical flow is based on matching

small image patches between frames [Bouguet, 2001]. This approach is not only

accurate but fast on a standard processor, and is used throughout the rest of

the thesis.

4.3 Motion Modelling

The objective for the rest of the chapter is to develop a method to segment

objects based on induced motion. To do this a probabilistic motion model is

defined, which captures the correlation between object motion and robotic

manipulator. A motion model is calculated for each region of the video, using

optical flow, as described in the previous section.

In general terms, let us define a probabilistic motion model as a 3-tuple,

Φ = (Q, %, p(·|Q,Ω)), (4.4)

Where Q is a motion transformation function, % is an error measurement

function and p(·|Q,Ω) is the likelihood of error given a transformation function

and some prior knowledge. The motion transformation function, Qi
j, is

calculated as a function of the optic flow of each pixel with the jth segment in

the ith frame. For example, Q could be simply calculated as the average optic

flow within a segment (as in Section 4.4.1) or as a Homography transformation

(as in Section 4.4.1). Then, the position for any arbitrary point in the image, a,

undergoing this transformation can be calculated as Qi
j(a). The same

transformation can be applied to the initial arm position xi, resulting in the

expected arm position if this was moving like segment j, Qi
j(xi). The

transformed arm position can then be compared to the real arm position at

frame i+ 1, xi+1.

The error between these two indicates how correlated they are. This error

could be defined, for example, by the distance %(xi,xi+1;Q) = |Q(xi)− xi+1|2.

The probability distribution of the error, p(ε|Q,Ω), is then used to assess the

membership between the robot and the segment’s motion as detailed in the

next section. Figure 4-4 illustrates an example where motion transformation

functions are defined as the average segment motion.
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4.3.1 Assessing Segment Membership through Motion

This section details how the motion of a segment is correlated to that of the

robot arm using the probabilistic motion model. The model estimates the

probability of observing a particular error magnitude between the end-effector

and the segment’s estimated motion model. The probability that a particular

motion model, Q, explains the observed error is needed, and so an appeal is

made to Bayes’ theorem to obtain

p(Q|ε,Ω) ∝ p(ε|Q,Ω)p(Q|Ω). (4.5)

The posterior conveniently factorises into the likelihood of the error and a

prior on the transformation function. The prior is used when extra information

is available about the object regarding its shape, colour or location. For

example, this could allow the use of previously learned object models to

influence the decision about which segments belong to the object being moved.

If no prior is known, then Ω is regarded as the empty set.

4.4 Implementation

The method described in this section allows a robotic arm to poke and grasp

objects in order to discriminate them from their background. Many of the

details regarding robot control and trajectory generation are ignored, as these

are not relevant to the contribution. This section details the steps required to

practically implement the method.

The motion of regions in the video are extracted and correlated with the

arm movement as explained in Section 4.3.1. This gives a probability that each

segment belongs to the object, which is then thresholded to extract an

object-level segmentation. A prior can optionally be used to give extra

information about the object, for instance its colour distribution, or shape.
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4.4.1 Motion Transformation Function

The theory laid out in Section 4.3 gives an abstract way to define probabilistic

motion models. In this section the definition is applied to the problem of

object-level segmentation using a robot arm.

A video stream is first segmented using the low level segmentation algorithm

described in Section 4.2.1. The algorithm tracks each segment Sj throughout

the video stream. A motion model is then assigned to each segment, j, so that

the probability of a segment correlating with the arm movement can be found.

Translational transformation function

Assuming that segments can only undergo a translation motion in the camera

space, the model, Φi
j = (Qi

j, %, p(·|Qi
j,Ωi)), can be instantiated as follows:

Qi
j(a) =a+ bij (4.6)

%(xi,xi+1;Qi
j) =|Qi

j(xi)− xi+1|2 (4.7)

Where Qi
j is given by a single translation, i is the frame index, a is a variable

position vector, and bij the average segment motion. This average motion is

calculated using dense optical flow [Bouguet, 2001]. As previously, xi and xi+1

are the position of the arm at frames i and i+ 1 respectively. The error

distribution p(ε|Qi
S,Ωi) is calculated as a Gaussian with a mean of xi − xi+1

and covariance Σ. The norm given above is the ‘L2 norm’ |x| =
√∑K

k=0 x
2
k.

Homography transformation function

It is possible to extend the practical implementation into three dimensions.

Allowing the robot to segment objects which move non-linearly.

The tensor which models rigid body motion in 3D from observations in a

single camera is known as the fundamental matrix [Hartley and Zisserman,

2000]. Points which match across frames xi,xi+1 ∈ RP2 are related as follows:

xTi Fxi+1 = 0 (4.8)
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Figure 4-4: A diagram showing how to assess arm motion membership to a
model. The arrows in the object denote the optical flow field. Each Sj represents
a different segment, each with its own motion model (dark arrow). The large
ellipse represents a magnification of a motion model being tested against the
motion of the end-effector.

This relation can be used as a motion model in the formulation described in 4.3.

Setting %(xi,xi+1) = xTi Fxi+1, the density function p(ε|Q,Ω) can then be

accurately approximated as χ2. The transformation function Q can’t be directly

computed using this approach, but the implementation only requires the error

density function to compute the object segmentation.

If an extra assumption is made that the points inside a segment are planar,

then a homography H ∈ R3×3 can be used for the motion model:

H i
jxi = xi+1 (4.9)

Qi
j(a) = H i

ja (4.10)

%(xi,xi+1;Qi
j) =|Qi

j(xi)− xi+1|2 (4.11)

Both equations 4.8 and 4.10 represent a body moving rigidly in 3D. These

models can be used to extract a full 3D model of the object using a single

camera. Alternatively, if dense 3D optical flow can be obtained from a pair of

cameras then a rigid body transformation function can be used for Q : R3 → R3.
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The probabilities and low-level segmentation algorithm remains the same.

The fundamental matrix can be computed from a pair of

homographies [Pellejero et al., 2004]. Combining this approach with the object

segmentation algorithm detailed here, and dense monocular SLAM [Newcombe

and Davison, 2010], the motion models could be used to compute a

reconstruction of the object from the video. This is out of scope for the thesis,

but would be an interesting extension for future work.

4.4.2 Error Probability Density Function

Given the model parameters, the error probability density function can be

calculated as follows:

p(ε|Qi
j,Ωi) =N(xi + bij − xi+1|0,Σ) (4.12)

=N(xi − xi+1|bij,Σ) (4.13)

p(ε|Qi
j,Ωi) =N(H i

jxi − xi+1|0,Σ) (4.14)

Where Equations 4.13 and 4.14 represent the error probability density

function for the translation and homography transformation functions

respectively.

The covariance Σ = λI is chosen with parameter λ ∈ R. In practise,

choosing any value for λ between 10 and 50 does not affect the results

significantly.

This definition of the error density assigns a high probability to segments

that belong to the robot arm. In order to separate arm segments from those of

the object, the next section defines a new probability density function that

eliminates highly probable arm segments.

4.4.3 Robust Model Estimation

Estimating dense optical flow is a difficult problem, as noise in the image leads

to outliers. Assuming that there are outliers in the data, measures can be taken

to improve the quality of the motion model estimation, and is known as robust

statistics [Tyler, 2008]. There are several methods available to reduce the affect
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of outliers, but this chapter is only concerned with calculating the mean optical

flow, or the fundamental / homography matrix.

Robust Mean Estimation

For the linear motion model the only parameter needed is the mean, the

standard way to compute this statistic for a set of samples xi ∈ RN is as follows,

µ =
1

K

K∑
i=0

xi. (4.15)

If any number of the xi are too large then it will significantly affect the

estimate of the mean. In order to make this robust to outliers an M-estimator

can be used instead,

Ψ(x) =

{
x : |x| < c

0 : otherwise
(4.16)

Where c is a constant defining the radius of the M-estimator, and is known

as the bandwidth. A larger value of c results in more data being taken in to

account when estimating the mean, so the convergence may be slow and

inaccurate; alternatively, a smaller choice of c may result in an incorrect

convergence. Methods for choosing the bandwidth are described in more detail

in [Comaniciu et al., 2001]. If the samples are Gaussian distributed with a zero

mean, then the robust mean is estimated as,

µ =
1

K

K∑
i=0

Ψ(xi). (4.17)

For Gaussian distributed data which is not centred at zero an iterative

algorithm can be used to remove outliers and compute the correct sample mean.

This algorithm is an adapted version of mean shift for uni-modal data with

a flat kernel, proven to iterate to the mode regardless of the

distribution [Cheng, 1995] for a well chosen value of c. Figure 4-5 shows an

example of this for Gaussian samples corrupted by outliers.
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(a) Robust Mean Estimation

(b) Convergence

Figure 4-5: These figures show how the mean can be computed in the presence
of outliers. Figure 4-5a contains data which is normally distributed (red) and
from another distribution (blue). Iteratively windowing the data, computing the
mean and centring the window around the new mean, accurately finds the correct
mean for the normal data. Figure 4-5b shows that the algorithm converges. The
axes do not show the units since the plots are to be analysed relatively.
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Algorithm 1 Robust calculation of the mean

Require: c, x1, ..., xN , Q
µ← 1

K

∑K
i=0 xi

ε←∞
while ε >Q do
µT ← µ
µ← 1

K

∑K
i=0 Ψ(xi − µ) + µ

ε← |µ− µT |
end while

Random Sampling Consensus

For more complicated motion models, robust regression is needed instead. A

popular algorithm used for this purpose is found in the computer vision

literature, and follows a similar procedure to algorithm 1.

Suppose we have a transformation function Q taking points in one frame to

points in the next. A random set of correspondences are chosen and the

parameters of Q are computed. The metric is then used to determine the error

over all of the other correspondences. The transformation function which gives

the largest number of inliers is chosen as the correct transformation function.

The Random Sampling Consensus (RANSAC) method is detailed in Algorithm

2.

Algorithm 2 RANSAC robust estimation [Hartley and Zisserman, 2000]

Require: x1, ..., xN , y1, ..., yN
k ← 0
while k <K do

a) Select a random sample of correspondences and compute the transforma-
tion matrix Q
b) Calculate the distance % for each putative correspondences
c) Compute the number of inliers consistent with Q by the number of corre-
spondences for which % < t pixels
k ← k + 1
Update K

end while
Choose Q with the largest number of inliers. In the case of ties choose the
solution that has the lowest standard deviation of inliers.
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4.4.4 Removing Arm Segments from the Object

Correlating all movement in the video with that of the arm results in the arm

itself being segmented as a part of the object of interest. To prevent this from

occurring, the arm segments must be eliminated from the video.

The standard way to remove the arm segments would be to use an accurate

3D model of the arm and project it onto the cameras [Welke et al., 2010]. The

work presented in this chapter presents a probabilistic approach which is a

simpler alternative, as calculating the kinematics and calibrating a full CAD

model of the robot is time consuming, and assumes that an accurate model of

the robot is available. Further, the method used here could be combined with

model-based arm removal for improved accuracy and robustness.

Conceptually, any motion that correlates with the arm movement before an

object is touched or moved is likely to be a part of the arm. This information is

used to remove the arm from the segmentation. Thus, the full error distribution

is:

p(ε|Qi
j,Ωi) =

{
1
κij

(1− p(ε|Qi
j,Ωi)) : i ∈ T ′

p(ε|Qi
j,Ωi) : i /∈ T ′

(4.18)

with,

κij =

∫
xi,xi+1∈D

1− p(%(xi,xi+1;Qi
j)|Qi

j,Ωi) (4.19)

Where D = [−N,N ]× [−M,M ] is the set of all possible values for the optical

flow. M and N are the height and width of the image respectively. In practice

κis can be any constant since each i is independent. In this formulation

Ωi = (i, T,Σ). In Figure 4-6 it can be seen that the robot arm segments (left

side of the images) are darker (lower probability) in comparison to the other

segments in the image.

4.4.5 Integrating over Multiple Frames

So far we have only considered the probability of a segment in a single frame. It

remains to calculate the distribution for a set of frames. Using Equation 4.5 and

substituting Ω by Ωi
j = (i, T,Σ) and Q by Qi

j allows prior knowledge to be
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incorporated at each frame i. The goal is to segment the object throughout the

whole video, so the a probability of a segment belonging to the object is sought,

independently of any particular frame. The variable i can be eliminated by

marginalisation over T , using the law of total probability [Bishop, 2006]. This

step can be realised at any point in time, for a set T̂ ⊂ T :

p(Sj|ε, T ′,Σ) =
∑
i∈T̂

p(Sj|ε, i, T,Σ)p(i|ε, T,Σ) (4.20)

=
1

|T̂ |

∑
i∈T̂

p(Qi
j|ε,Ωi) (4.21)

The final step follows from assuming that our confidence in the variable i is

uniformly distributed over the whole window T̂ , and that the probability of a

segment Sj given frame i is equal to that of its motion model Qi
j.

This results in a probability map for each segment throughout the video.

The quality of the object segmentation improves as this probability is

integrated. Figure 4-6 shows the probability map evaluated for a range of

different T̂ . The left most image shows the distribution before the object has

been touched, and on the right after the integration over 21 frames. The centre

image is the distribution at the time the robot touches the object, marked with

a red border.

Thresholding the probability map to obtain a segmentation throws away a

lot of information. In practise a map is stored as a measure of our confidence in

the whereabouts of the object. The robot could then go back and touch areas of

the scene that it is uncertain about, transforming the process into interactive

segmentation [Kenney et al., 2010].

4.5 Sparse Features

When programming a robot to learn about objects, descriptive features may be

more useful. The method of using dense optical flow, calculated at every pixel,

and low-level segmentation gives a very accurate segmentation of the object

being manipulated. Although the algorithm accurately finds the boundary of

the object, there is a trade off in speed. When learning about an object using

88



Figure 4-6: The probability map of a spirit level being pushed, evaluated at a
different set of times throughout the video. The top-left image is the map for
the first frame and the bottom-right represents the final frame. A red boundary
shows the first frame the object was touched. The spirit level becomes more
probable (brighter) with each successive frame.
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feature points, it is not necessary to find the boundary of the object in the

camera space, only the feature points that belong to the object.

Descriptive features (such as SIFT [Lowe, 2004b]) find sparse points on an

image frame and describe them so that they can be matched to corresponding

points in successive frames. There are two points that make this different from

the optical flow and low-level segmentation approach defined above,

1. Firstly, optical flow is dense, computed at every pixel in the image. Sparse

features can be used and matched across frames as an alternative method

to standard optical flow.

2. Since the features are sparse, there may be large regions of the image that

do not contain any features at all. Using this in combination with

low-level segmentation is difficult as some segments may not contain any

features and so the motion information can’t be calculated. Instead, a

low-level segmentation is performed on the features themselves, rather

than the frames. The features don’t need to be tracked throughout the

image, but the descriptors output from the frame by frame segmentation

can be fed directly into a learning algorithm.

Segmenting sparse features follows the same motion modelling concept

introduced in previous sections. The method is outlined in Algorithm 3. Where

v1, ..., vN are the velocity vectors between matching feature points, xi and xi−1

are the arm positions at frame i and i− 1 respectively. The parameter τ is a

threshold to differentiate between features moving with the arm and

background.

Algorithm 3 Sparse feature segmentation

Require: v1, ..., vN , xi, xi−1, τ
C=meanShift(v1,v2,... ,vN)
for k=1 → size(C,2) do

label(k) ← N(Ck:|xi − xi−1,Σ)
end for
foreGroundFeatures ← find(label ≥ τ)
return foreGroundFeatures

The segmentation algorithm works well when every feature is matched to its

corresponding feature in the consecutive frame. Noise in the images lead to
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No Prior

(a) Prior (b) Probability Map (c) Segmentation

Figure 4-7: Using a position prior to segment a cup. The top row shows the
object segmentation with no prior. The bottom row has a strong position prior
in one of the frames, leading to a much better final segmentation.

some features not properly matching their counterparts, however. In order to

improve the result, density estimation is used on the spatial position of the

features, and then a threshold is applied. This takes all of the features that

were moving in the same way as the arm and finds the nearby features, bringing

them into the foreground.

4.6 Using Prior Knowledge

Although the algorithm works without any prior knowledge of the objects in the

environment. The Bayesian formulation allows priors to be used to reinforce or

improve the final segmentation. For instance a basic background or arm model

could be used to further discriminate the object of interest from its

surroundings.

This allows the use of a weak recognition algorithm to infer the existence of

an object and its whereabouts, based on colour or texture information. The

robot can then push the object to segment it based on the priors given by the

recognition algorithm. Part III of this thesis is dedicated to recognition and
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classification, the prior provides a coupling between the bottom up

segmentation and top down recognition.

4.7 Theoretical Discussion

The method and theory laid out in this chapter introduces object level

segmentation using knowledge of the robotic arm motion, a sense of

proprioception. The extra information allows the robot to both localise and

segment the object it is interacting with, removing background from the video.

A general segmentation algorithm can separate a video into composing objects,

but is not able to determine which object is being manipulated by the robot.

In section 4.4.1 the complexity of the algorithm is mentioned. There are K

frames and L unique segments in the video, and the mean flow vector biS needs

to be calculated for each, giving KL motion models. Unless the distribution is

updated for each frame as the video stream is being processed, the complexity

will rise linearly with the number of frames. Using this method for large

sections of video could become computationally difficult. To ensure the

algorithm is practical for robotic applications it can be modified to work

incrementally. Section 4.4.5 shows how the distributions in multiple frames are

integrated into one. This process is equivalent to building the distributions at

each frame using a running average.

It may also be the case that we have some measure which gives a confidence

in particular frames of the video, the robot may have some prior knowledge

about any noise in the images which affect its vision negatively. This can be

formulated as a prior probability on the frames, and incorporated into Equation

4.21, further increasing the stability and robustness of the final object

segmentation. Again, this is not considered here, but using prior knowledge

about the robots sensors and objects in the scene is something that will be

incorporated into future work.
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Chapter 5

Experiments in Object

Segmentation

The theory introduced in the previous chapter leverages the known motion of a

robotic arm in order to allow a robot to both localise and segment objects. The

algorithm allows a prior object model to be used, in order to improve the

segmentation results, and will theoretically remain robust to cluttered and

moving backgrounds.

Current object segmentation algorithms which are based on robotic motion

assume that the background is static. The method improves current methods

by improving quality of segmentation when the background is moving. The

method considered here is tested against a current state of the art algorithm in

the area, demonstrating the improvement both qualitatively and quantitatively.

To summarise the experiments carried out in the chapter. The method is

tested against the current state of the art algorithm for robotic object

segmentation in both,

• Static backgrounds: The algorithm is robust to videos which are

cluttered but have static backgrounds. The results are comparable to

state of the art.

• Moving Backgrounds: The algorithm performs significantly better than

previous results when the background is moving.

Alongside the experiments mentioned above, the method is also tested for

objects undergoing significant rotation, and also, when the object is
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manipulated in three dimensions. The work concludes in a tested algorithm

which is able to segment objects in the presence of clutter and other moving

objects in the environment surrounding the robot.

5.1 Translation Models

The method is tested using a single camera and a Katana 5 DOF robot. A total

of 61 videos of the robot pushing 5 different objects were taken (toy rabbit,

mug, spirit level, bottle and book). In this set of videos the robot moves

linearly and parallel to the table that contain the objects (see Figure 3-1 for the

experimental set up). The videos are of a cluttered scene, some with moving

backgrounds. The translation transformation function defined in Section 4.4.1 is

used here.

At each frame, the position of the arm’s end-effector is recorded together

with a binary variable indicating the frames in which the object is being

pushed. The frame in which the objects are touched for the first time are hand

segmented to give a ground truth segmentation to evaluate the results. This

dataset can be obtained by emailing the authors of this thesis.

5.1.1 Comparing to current state of the art

The method is compared experimentally to [Fitzpatrick and Metta, 2003] since

they use robot motion to segment objects. Although [Kenney et al., 2010]

provide a more recent version, the underlying segmentation algorithm is the

equivalent to that presented in [Fitzpatrick and Metta, 2003]. In both

approaches, subtraction is used to determine the temporal location of the touch

event. The frame directly preceding the touch is used as a model for the arm.

The Graph Cut algorithm (GraphCuts) [Boykov and Kolmogorov, 2004] is then

used to build a hull around these points. The frame in which the object is

touched for the first time is applied to GraphCuts, with the pixels that belong

to the arm model classified as background.

Some results of our algorithm, named Motion-Likelihood (M-L), are shown

in Figure 4-1, showing the full process used to obtain the object-level

segmentation. The far left column shows the initial videos of the toy rabbit, cup

94



and spirit level which are being poked by the robot; a low-level segmentation is

obtained using the algorithm of [Paris and Durand, 2007], shown in the second

column; the probability map is given in column three; and the result of

thresholding the map is displayed on the far right. It is worth noting here

that [Fitzpatrick and Metta, 2003]’s method can only be computed on the

frames nearest to the touch event, whereas M-L gives a segmentation for the

object throughout the whole video, this means that M-L has the advantage that

more information can be used to discriminate between background and object.

Throughout the results, the same frame segmented using [Fitzpatrick and

Metta, 2003] is used for comparison against M-L.

Both M-L and [Fitzpatrick and Metta, 2003]’s algorithm rely on a free

parameter. In [Fitzpatrick and Metta, 2003], the authors apply a threshold to

the subtracted image. M-L applies a threshold to the probability map. Reasons

for choosing this parameter may vary according to the hardware used or visual

statistics of the scene. Following the work of [Martin et al., 2004], the

segmentation’s Precision and Recall are calculated for every value of the free

parameter against the ground truth. These graphs will indicate the optimal

parameter values for both segmentation algorithms and compare their

performance. Precision (Pr) and Recall (Re) are defined as follows:

Pr =
tp

tp + fp
(5.1)

Re =
tp

tp + fn
(5.2)

Where tp is the number of true-positives, the pixels that are correct and verified

by the ground truth; fp is the number of false-positives, pixels which are not

part of the ground truth but have been detected as being part of the object;

and fn are the number of false-negatives, pixels which are in the ground truth

but are not found to be part of the object. If the true object is completely

covered by the segmentation then there will be no false-negatives and the recall

will be 1, on the other hand, if the object covers the segmentation then there

will be no false-positives and the precision will be 1. The segmentation is

perfect if and only if both Precision and Recall have a value of 1.
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(a) All Objects (b) Changing Backgrounds

Figure 5-1: P-R graphs for M-L and [Fitzpatrick and Metta, 2003]. With static
(a) and changing (b) backgrounds.

The results of using Precision-Recall (P-R) for every parameter of M-L and

the algorithm from [Fitzpatrick and Metta, 2003] are shown in Figure 5-1 for the

five different objects. Figure 5-1(a) is the P-R for videos with static background

and Figure 5-1(b) with a changing background. The points on the line represent

different values of the parameter. The segmentation is of a better quality if it is

closer to the top right hand side of the graph (1,1). Both of the graphs show

that M-L has a superior segmentation performance to that of [Fitzpatrick and

Metta, 2003]. Figure 5-1(b) shows the P-R graph for all of the videos with a

changing background. In this test M-L performs significantly better.

The P-R graphs shown in Figure 5-2 show segmentations of each object for

both moving and static backgrounds. It is clear that M-L performs as well

as [Fitzpatrick and Metta, 2003] for all objects other than the Cup. This is

likely to be due to the highly patterned surface, causing segmented regions on

the mug to be small, thus, increasing the noise in calculating the motion

models. The Book, Bottle and Spirit Level perform noticeably better, and the

Rabbit is of no significant difference.

Low valued thresholds result in most of the background being considered as

part of the object, thus has a high recall. M-L exhibits this relationship, with

recall decreasing as the threshold increases. The P-R results for [Fitzpatrick

and Metta, 2003] show a graph with a more unusual shape at a low threshold.
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(a) Book (b) Bottle

(c) Level (d) Cup

(e) Rabbit

Figure 5-2: P-R graphs for M-L and [Fitzpatrick and Metta, 2003]. For each of
the objects used for testing. M-L works very well for all objects except the cup,
which is covered by a highly textured pattern.

97



This was further investigated and it was found that when the subtraction

method used by [Fitzpatrick and Metta, 2003] is thresholded at a low value the

result is a noisy binary image with foreground distributed across the whole

image. Proceeding to use GraphCuts on the image acts as a filter removing a

lot of the background noise but inaccurately segmenting the object. As the

threshold is increased, the amount of noise reduces, significantly improving the

segmentation and the result from GraphCuts.

Although testing the algorithm across each parameter gives good intuition of

the performance, a single parameter for the threshold needs to be calculated to

verify the performance for practical use.

To determine the quality of the segmentation at a single threshold we

introduce a measure of the distance between foreground/background

segmentations and ground truth, formally the average L2 distance between two

binary images:

ρL2(Im1, Im2) =
1

NK

√√√√ N∑
i=1

K∑
j=1

|Im1(i, j)− Im2(i, j)|2 (5.3)

and the Tanimoto, or Jaccard, distance [Clarkson, 2006], given by,

ρT (Im1, Im2) = 1−
∑N

i=1

∑K
j=1 |Im1(i, j) ∧ Im2(i, j)|∑N

i=1

∑K
j=1 |Im1(i, j) ∨ Im2(i, j)|

. (5.4)

The threshold for each algorithm is chosen to be the optimal value in terms

of the Precision and Recall. For both M-L and [Fitzpatrick and Metta, 2003]

the point on the P-R curve for all of the objects that is closest to the point

(1, 1) is chosen. This optimal value is shown in Figure 5-1(a), and takes on a

value of 75% of the maximum likelihood for M-L and a threshold of 5

for [Fitzpatrick and Metta, 2003]. These values are used to segment each video

in the dataset for comparison. The measure in Equation 5.3 is used to find the

distance between the object segmentations and ground truth, giving the average

distance between two segmentations.

This is done for all of the videos using [Fitzpatrick and Metta, 2003]’s

method, M-L and M-L with the Graph Cut algorithm (ML+GraphCuts). Using

GraphCuts draws a hull around the segmented object in order to fill in any
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Figure 5-3: Bar chart comparing segmentation algorithms for both changing
and static backgrounds. Each colour represents a different method; the y-axes
represent the distance from the computed segmentation to the ground truth, with
error bars representing the standard deviation. Organised by different objects (a)
and backgrounds (b), measured by the L2 distance defined in Equation 5.3. The
bar chart in (c) represents the errors as measured by the Tanimoto distance in
Equation 5.4

details which are missing in the original segmentation. Experimenting with this

algorithm determines how well the M-L algorithm performs, if GraphCuts

makes a big difference to the result then the M-L performance is poor for

details on the object.

Figure 5-3 shows the results of this experiment. In Figure 5-3(a), for the

book, spirit level and bottle, M-L provides a better quality of segmentation.

The low standard deviation implies it is more stable across a range of different

environments. Videos in the dataset include moving backgrounds, camera shake

and change in lighting condition. The rabbit performed roughly the same, and

the cup object performs slightly worse because of a failure in the low-level
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segmentation algorithm of [Paris and Durand, 2007], due to the complicated

pattern on it.

The results were further divided into cases in which the video has a static

background and ones with a changing background. Figure 5-3(b) shows that

both methods become a little more unreliable when the background is changing,

M-L represents a significant improvement over [Fitzpatrick and Metta, 2003]

however.

Figure 5-3 visually indicate that our method offers an improvement

over [Fitzpatrick and Metta, 2003], the Kolmogorov-Smirnov (KS)

test [Massey Jr, 1951] provided a quantitative indicator. In the context of

segmentation, this can be interpreted as the percentage chance that our method

outperforms [Fitzpatrick and Metta, 2003]’s, given a random scene. In the case

of static backgrounds the KS-test gives results of 60% and 45% for ML and

graph cuts. For moving backgrounds we get 48% and 95%. The L2 distance, is

known to be a poor measure of visual quality; the Tanimoto distance, as defined

in Equation 5.4, is thought to be more reliable for binary images. Figure 5-3(c)

graphically displays the results. The KS results for the Tanimoto distance are

as follows, 46% and 61% for ML and graph cuts in static scenes, and 81% for

both ML and graph cuts for moving backgrounds. Presenting qualitative results

help one to interpret these numbers.

Figure 5-4 shows a sample of the results for videos with a static Figure

5-4(a) and changing Figure 5-4(b) backgrounds. Both methods perform

reasonably well when the background is static, although using subtraction poses

problems in some of the videos. For example, in the centre column of Figure

5-4(a). The constant uniform yellow colour of the spirit level means that image

differencing does not detect a change when the object is moved between frames.

The result from GraphCuts is shown in this image, [Fitzpatrick and Metta,

2003] goes on to extract the connected region which is closest to the end-effector

when the object is touched for the first time, further degrading the quality of

the final segmentation. Problems like these contribute to the wide standard

deviation shown in Figure 5-3(b).

The changing backgrounds have a significant effect on the subtraction used

by [Fitzpatrick and Metta, 2003] (bottom row), and in some cases results in the

whole image being segmented as part of the object as in Figure 5-4(b). Our
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Figure 5-4: Different segmentations tested on static (a) and changing (b) back-
ground. The top row are the results for M-L, the centre shows the probability
map the bottom row are results of the method described by [Fitzpatrick and
Metta, 2003].
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results show a large improvement (top row). [Fitzpatrick and Metta, 2003]

failed for a number of different reasons, the right hand column of Figure 5-4(b)

shows a frame from video with camera shake. In the fourth column, movement

of the book causes the object behind to move slightly. Columns two and three

include people moving behind the robot. Any level of movement or change in

the environment causes the background subtraction used in [Fitzpatrick and

Metta, 2003] to fail.

5.2 Homography Models

Extra datasets are used to test the method on objects undergoing challenging

motions. 10 videos of the robot pushing a bottle on a table and undergoing

significant rotations are used to assess the performance of the algorithm under

non-linear motions. Two further datasets (10 videos each) containing a box and

spirit level being gripped and moved in space by the robot are used to test the

model under 3D motions. In these experiments, both the translation and

homography transformation methods are compared. The results are compared

to a hand segmented ground truth for a random frame in the video sequence.

The qualitative performance of the algorithm using a homography motion

model is shown in Figure 5-5. The columns show a frame of the video, the

probability map and resulting segmentation respectively. The first row shows a

segmented frame of the video where the object undergoes significant rotation

during the push. The second and third rows are videos of an object (spirit level

and box) being held by the robot and moved non-linearly in front of the

camera.

Figure 5-6 shows the Precision-Recall graphs for a homography model and

the translation model. The graphs show a similar performance for both models

for the pushed bottle Figure 5-6(a). This is due to (i) inaccuracies in calculating

the homography for small movements in a segment, and (ii) the good

approximation of translations only for small motions.

Figures 5-6(b) and 5-6(c) show results for objects which are held by the

robot and moved non-linearly and in 3D in front of the cameras. Here, the

homography based method shows a significant improvement over the translation

model.
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Figure 5-5: Segmentations and probability maps computed using a homography
motion model.

The spirit level tested is accurate near the manipulator, but becomes less

accurate towards the edges. This is due to the quality in estimating the

homography further away from the manipulator. High velocity motion at the

edge of the level is approximately linear in these regions and, if it is calculated

inaccurately, will not match well with the arm motion. In Figure 5-6(b) a

smaller object is used, with improved precision and recall. The linear model

also works much better in this case, but is still out performed by a homography.

5.3 Discussion

A new method for segmenting objects based on visual information and robot

motion has been introduced. Alternative state of the art methods use image

differencing as a basis for the segmentation and despite its ease of use and
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(a) Rotating Bottle (b) Held Box

(c) Held Level

Figure 5-6: P-R graphs comparing Homography and Translation motion func-
tions. (a) Rotating bottle, (b) held box and (c) held spirit level. The results are
comparable, except in the case of the spirit level, for which a homography motion
model works much better.

ability to cope with cluttered, or unstructured backgrounds, break down if the

background environment is dynamic. Empirical results show that the method

provides a much better quality of segmentation compared to previous results,

with both, dynamic and static backgrounds. To the best of our knowledge, this

is the first implementation of motion-based segmentation using a robot where

the background can change and no prior knowledge is used.

The results also illustrate how the method can be extended from poking

objects in a linear fashion to cases in which the objects are moved in complex
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3D trajectories. This is based on a homography motion model which assumes

that points within segments lie in a plane. This assumption could be relaxed if

full 3D data (i.e. stereo camera system) was used. In this case, a standard 3D

rotation-translation matrix could be used as a motion model for rigid objects.

Flexible and articulated objects would require complex non-linear motion

models for their segmentation. In principle, the method introduced here could

be recursively used for each connected component of an articulated body.

Although beyond the scope of this thesis, this is an interesting area for future

research.

The probabilistic formulation of the algorithm gives a measure of certainty

in regions of the image belonging to the object. This will form a basis for the

robot to decide the best place to manipulate the object from in future, further

differentiating the object from it’s background.

In summary, the contribution made in this chapter to the current literature

is as follows:

• Support for the hypothesis that robotic motion can be used to localise

and segment objects manipulated by the robot.

• The background is not assumed to be static, allowing the method to

perform better in changing environments than previous methods.

• The segmentation is probabilistic, giving a degree of certainty in any part

of an image being part of the object.

The segmentation algorithm provides a way to filter out background noise in

a changing environment. Using it on a robotic system in this way provides the

first step towards a machine that can start learning about objects. The next

part of the thesis explores techniques in machine learning for describing the

visual objects in the robot’s workspace.
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Part III

Robot Learning
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Chapter 6

Autonomous Visual Learning of

Object Models

In the previous part of the thesis, a method for extracting an object from the

background was presented. This allows the robot to differentiate the object it is

playing with from other distracting objects, as well as the robot itself. For a

robot to classify the objects, it needs to turn the pixel data into a

representation which can be used to recognise the object again from a variety of

poses, under different illumination and also in the presence of occlusions. This

part of the thesis deals with the building of such models, using a robotic system.

The part is broken into three chapters, representing the three main

contributions listed below.

• An Online version of a successful visual classifier is adapted for a

robotic vision system. The classifier used here is known as Latent

Dirichlet Allocation (LDA), and has been recently modified to learn

Online [Hoffman et al., 2010b]. The use of a universal dictionary is

explored, and results are compared against standard LDA, and also using

a robot vision system.

• The robot can then use decisive planning and motion to manipulate the

objects in its workspace, moving objects out of the field of view, and

rotating objects of interest. This process is termed self-supervision, and

allows the robot to use a supervised classifier for unsupervised learning.

Since the robot can supervise its own learning, a new Mixture of Topics
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model is introduced, an extension to LDA showing improved classification

results.

These two contributions are covered in Chapters 6 and 7. This chapter

introduces visual object learning using Online LDA, and provides the basis for a

robot which can learn autonomously. It is not in direct support of the

hypothesis, but contributes a novel visual learning algorithm for robotics. The

second contribution, covered in Chapter 7, is in support of the hypothesis since

it shows that manipulation of objects can be used to self-supervise. This leads

to better classification results and object models built from a number of

different views.

The final chapter in this part,

• Combines the segmentation algorithm built in Part II with the

Mixture of Topics model built in Chapter 7. This inherits the qualities

of both algorithms so that the robot can autonomously learn robust visual

object models, in the presence of moving backgrounds.

Visual learning is a difficult, and largely unsolved, problem. The process

involves extracting defining information about objects from the image, and

representing it as an object model in a compact manner. A robot will not

necessarily have all the data needed to build visual models of its environment.

If it were to use Batch learning then it would need to save data for everything it

has already seen, and recompute for each new set of data. This is remedied by

the use of Online learning, in which the object models are updated as new data

becomes available.

This chapter begins by introducing ‘bag-of-words’ models for visual learning,

the paradigm on which LDA is based, and details the approach used in this

thesis. The problems associated in using the approach for robotic vision are

covered. Finally, the approach is tested on the Caltech dataset, and for objects

placed in the robot’s workspace.

6.1 Bags of Words for Visual Learning

There is a well known set of methods for classification in the text literature,

known as ‘bag-of-words’ classifiers. In these approaches, a dictionary is formed
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from all of the documents, and a document is represented as a histogram of its

words over the dictionary. This approach is explained with mathematical rigour

in Appendix B.1.

Although the statistical model for learning is taken from the literature on

text analysis, it can be applied to computer vision. The problem is slightly

different, however, since images are not made up of discrete words, but instead,

an array of coloured pixels. In order to use bag-of-words methods for vision

problems, the data needs to be processed so that it fits into the same

framework. Essentially, this means processing the image so that it can be

represented as a histogram.

To summarise, the rest of the section is broken into the following subsections

• Features. The visual features represent the meaningful information in an

image. The goal is to remove as much of the information that is variant to

change in viewpoint, illumination and occlusion as possible, leaving only

information that can be used to represent the objects in the environment.

• The Visual Vocabulary. From the features, a discrete fixed set of

‘words’ is obtained, this is known as the dictionary or vocabulary. A

single image can then be represented as a histogram over the vocabulary,

analogous to bag-of-words for text analysis.

• Documents and Topics. The algorithm is given a set of images, and

the goal is to discover the objects in the environment. This subsection

describes a method known as Latent Dirichlet Allocation (LDA, see

Appendix B.1), for object learning.

• Classification. Once an LDA model is built, the system can then classify

images of new objects. This subsection explains the method for

classification, given an LDA model and a new image.

The visual problem of general classification is different when a robot is

involved, which has control over the environment. A robotic arm is able to

manipulate objects in order to view them from all sides. This section only

covers general object classification using LDA, which works well with a wide

dataset of objects such as CalTech [Sivic et al., 2005,Fei-Fei and Perona,
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2005b]. This section provides a technical review of the pre-requisites for Visual

LDA, in particular, describing the method used for classification in this thesis.

6.1.1 Visual Features

Videos and images as interpreted by cameras and the human eye, contain

information about colour and illumination intensity. Although this provides

everything necessary to learn about objects in the environment, most of it is

redundant. For instance, the amount an object is illuminated does not affect its

description, neither does its pose or scale.

One of the most fundamental problems in Computer Vision, is to extract

information about an object in an image that is invariant to changes in

redundant properties. This area is known as feature extraction. The problem

was introduced by a well known psychologist David Marr [Marr, 1982], who

argued that the underlying biological representation of images is based on the

primal sketch, the edges of objects in an image. This theory stands to reason,

since children usually make line drawings to express the definition of objects,

suggesting that this is the way they are represented in the brain.

Feature Extraction

The first step towards finding descriptive features in an image is to extract

salient points, which are invariant to change of viewpoint and illumination.

These feature points orinterest points are used to identify areas which contain

rich information about the objects in the image, and provide the basis for

matching and learning algorithms.

A large number of algorithms exist to detect interest points. The most

common approach is to find sharp edges or corners in the image. This is done

by estimating the spatial derivative or second order derivatives of the image,

and finding the local maxima. One of the most well known tools in feature

extraction is known as the Laplacian of Gaussians (LoG) operator [Huertas and

Medioni, 1986], and works by double differentiating a Gaussian kernel and

convolving it with the image, giving an estimation of the second derivative of

the image. The parameter of the method is the covariance of the Gaussian,

setting it to a higher determinant results in extra blurring of the image, which
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(a) Blood vessel

(b) Sift features

Figure 6-1: The process of SIFT extraction, the image is re-sampled at various
scales. Strong visual corners are extracted at each scale as shown in Figure 6-1b,
the red markers represent the interest points and the radius of the surrounding
green circle represents their scale. The figures were generated using SIFT code
from [Vedaldi and Fulkerson, 2008].
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in turn, finds the corners at a higher scale. For example, the wheel on a bike is

a corner at a high scale, but the wheel nuts are corners at a smaller scale.

The LoG interest point detector forms the basis of the SIFT feature

algorithm. SIFT feature extraction follows the work of [Lindeberg, 1994] who

analyse scale invariance in images. Interest points are found in the image by

analysing the gradient of the intensity in local regions of the image, sharp

intensity changes are taken to be salient points. The use of a Gaussian kernel to

smooth the image provides the robustness to change in scale.

There are alternatives to edge and corner detectors when finding interest

points in images, one of the most notable algorithms is Maximally Stable

Extremal Regions (MSER) [Matas et al., 2004]. This algorithm works by

applying a variable threshold to the image in grey scale. This creates a binary

image, revealing a number of connected regions in the scene. If the resulting

regions are stable (i.e. do not change much) as the threshold varies then they

are considered to be interest points. This method is shown to be robust to

variation in pose and illumination of objects in the environment, making it a

good candidate for a matching or learning algorithm.

The interest points alone are not enough for obtaining information about

the scene. The following section introduces image descriptions as a means to

describe the region local to the feature point.

Feature Descriptors

Identifying points which stay stable across changes in viewpoint and

illumination provide the first step towards building robust descriptions of

objects. Once the points have been found, it is necessary to describe the region

local to the interest point, retaining information about the object it belongs to.

The SIFT algorithm finds 16× 16 image patches around the interest points

and normalises them to maximise invariance to affine and illumination changes.

Although SIFT features have been shown to work well for matching and

classification, they have limitations. They are not proven to work in the

presence of projective variance, if an object rotates significantly in the

environment then the features do not match well. Despite the limitations, SIFT

features are robust enough to cope in a wide range of environments, making

them a suitable candidate for recognition on a robotic platform.
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The resulting SIFT features have 128 dimensions, relatively high when

compared to other descriptors. The high dimensionality can cause

computational problems, making it difficult to operate quickly on the data. The

dimensionality can be reduced using Principal Component Analysis [Jolliffe and

MyiLibrary, 2002], or kernel PCA [Schölkopf et al., 1997].

Although SIFT features have become prominent in computer vision for

classification and matching, several other feature description algorithms are

available. MSER interest points can be described using shape

descriptors [Forssen and Lowe, 2007]. A combination of SIFT and MSER

features have been used in classification to a proven level of success [Sivic et al.,

2005]. Throughout the rest of the thesis standard 128-dimensional SIFT

features are used without any dimension reduction, they were chosen because

they have recently adapted for use on a GPU [Sinha et al., 2006], allowing a

robot to operate in bounded time.

Another alternative is to use dense SIFT patches, where the feature

extraction algorithm is neglected and descriptors are taken on a sparse grid

across the whole image. This has been shown to work well for understanding

natural scene categories, where large parts of the image have coherent

descriptions (large patches of grass for example) [Bosch et al., 2007].

6.1.2 The Visual Vocabulary

In order to build a classification system analogous to the text BoW models, a

vocabulary needs to be built using the visual features extracted from the

images. Words in a document are discrete, an observed word has no ambiguity

in its definition. Visual features are drawn from a continuous distribution,

however, a small change in illumination, scale or position affects the value taken

by the feature. In order to build a visual vocabulary, the space of features needs

to be discretised.

The standard way to discretise the space of features, is to take all of the

features used in the learning process and cluster them using a suitable

algorithm, such as K-means. The centres of each cluster then form the visual

‘words’. The visual histograms are then built by iterating through each feature

and finding the closest word in the euclidean sense, incrementing the respective
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bin by one.

When using an incremental or Online BoW algorithm, not all of the features

are available to the algorithm to begin with. So building a vocabulary using

K-means is not possible. Using incremental K-means seems like a good starting

point, but if the cluster centres change, it will affect the histograms. To put it

another way, histograms of the same object under a different visual vocabulary

will look different. In the context of text documents, it isn’t so much of a

problem, the words in the dictionary are fixed. Although the histograms may

need to have a larger dimension, the centres do not change. As a result, varying

vocabularies are not considered in the Online version of Latent Dirichlet

Analysis.

This problem has been studied to a small extent in the Computer Vision

literature [Lian et al., 2010,Lazebnik and Raginsky, 2009]. The approach taken

in this thesis is to use a fixed dictionary, computed before updating the LDA

model. The results in this chapter experiment with the use of a wide dictionary,

computed on a large set of images from a publicly available dataset.

6.1.3 Documents and Topics

When using Bag-of-Words for text analysis, a ‘document’ is well defined, when

processing images the definition is not so clear. The most intuitive definition is

to use the whole image as a document. Referring back to the text analogy, LDA

determines the ‘topics’. This requires the topics (histograms of words that

always appear together) to move in and out of the documents, in order for the

algorithm to differentiate between them. When applied to images, objects are

sets of features that coherently move together. The analogy is then that objects

are topics.

This works well when the image contains only the object of interest, with

some background noise, or when objects are independently moving in and out of

the images. This may not be the case for a set of images in front of the robot,

where the robot can see all of the objects at all times. The fact that objects

have not entered or left the scene makes it impossible for LDA to discriminate

between them. A solution to this problem is to segment the image using a

low/mid level algorithm and use the segments as documents instead [Cao and
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Fei-Fei, 2007]. This generally requires that at least the object (rather than

background noise) is contained in the segment, already a well known and

difficult problem in computer vision.

The solution to segmentation used throughout Chapters 6 and 7 is a simple

object detection algorithm. The algorithm is detailed in Section 6.2, and works

by extracting regions (blobs) of the image with a high density of SIFT features.

The assumption is that the background has a lower density of features than the

object, which is not true in a general environment, but is sufficient for testing

the algorithm before employing the more robust segmentation algorithm of Part

II. A consequence of using feature density, is that objects which appear close

together are placed in the same segment, implying multiple objects per blob.

The results show LDA to be robust to this kind of noise, since multiple topics

are allowed within documents.

Figure 6-2 illustrates the elements of the model learning process. The

rectangular grids represent SIFT features, the cones represent putative objects

as detected by the density-based algorithm. Each wi represents a set of words

related to putative object i. The histograms over these words are then used to

learn the topics z. Each topic is analogous to an object model, and once

learned, they are used to classify images of the objects.

6.1.4 Classification

Once the robot has been given all the training data, and has computed the

parameters of the training data, it can classify objects in the environment. The

learned parameters of the LDA model give rise to a set of distributions, covered

in more detail in Appendix B.1.

In order to classify a new document (or blob), the histograms of words are

updated into the Online LDA variational algorithm. In computing the

inference, the parameter θ is calculated, which represents the topic proportions

for the document. This parameter gives the probability distribution p(z|θ) for

the document, i.e. the probability of a topic, given the document. Assuming

that the document contains a single topic, classification can be performed by

finding the maximum likelihood of a topic, i.e. z∗ = argmaxzp(z|θ). In other

words, the object in the image or document is identified as belonging to the
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Figure 6-2: This diagram shows the LDA process for visual features. A set of
documents and a dictionary of words is given to the algorithm, words are clusters
of visual features. Once trained, the topics are found and returned.
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(a) Density map (b) Thresholded density map

Figure 6-3: An example of density-based segmentation. The probability map on
the left is thresholded to create regions containing putative objects.

class or topic z∗.

For this approach to operate successfully two things must happen, (i)

objects must be segmented robustly into documents and most importantly (ii)

objects must be represented by single topics.

6.2 Detecting High Density Blobs

The LDA approach to learning, covered in the previous section, required frames

of the video to be separated into regions which are likely to contain objects.

This section details a method for extracting objects termed ‘blobs’, based on

the density of SIFT features. Regions of the image are more likely to contain an

object if they have a higher density of features. This approach makes the

assumption that the background has a low feature density, but suffices for an

initial set of experiments on the method. The blobs output from this method

give the documents needed for the LDA algorithm.

Density estimation can be slow, the usual approach is to use kernel density

estimation (KDE) [Scott, 1992]. Given a set of samples x1, ...,xN ∈ RK the

probability density function f is estimated as follows,

f(x) =
1

N

N∑
n=1

Kf (x− xn) (6.1)
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Where Kf is a kernel function, usually taken to be a Gaussian or flat kernel. To

speed this process up we create a function (image) h that is zero everywhere

apart from at the feature points,

h(x) =

{
1 : x ∈ {x1, ...,xN}
0 : otherwise

(6.2)

A Gaussian kernel is then used, denoted N , and convolved with the function h.

This process is faster than standard kernel density estimation because

convolution is equivalent to multiplication in the frequency domain. Letting H

and N̂ denote the Fourier transforms of h and N respectively. The convolved

function is computed as,

(h ∗N)(x) = ifft(H(x)N̂(x)) (6.3)

Where ifft denotes the inverse fast Fourier transform algorithm. The

function h ∗N is then thresholded at a particular value to extract the regions of

highest density. This is a low cost method with a simple implementation, giving

rise to a set of putative objects in the workspace.

The use of Online LDA for vision and in a robotics environment provides

the first step towards a robot which can learn about the objects around it. The

experiments in the following chapter tests the algorithm for practical use on a

robot, and also on a publicly available image dataset.

6.3 Experiments in Object Modelling

The theory laid out in the previous sections provides the foundation for a robot

to learn object models using Online LDA. This section provides a set of

experiments to test the practicality of the methods in a real world environment.

The experiments are motivated by the following hypothesis,

• Online Learning. It is possible to effectively use Online LDA for visual

learning on a robotic system.

Although Online LDA has been proven to work for text analysis, the

extension into vision is not straight forward. Documents are formed using a
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dictionary which does not change. A visual word represents a high-contrast

patch in the image which is subject to change depending on viewpoint,

illumination, and other non-descriptive features. Since Online LDA was built

for text analysis, it assumes the use of a fixed dictionary. The first part of the

results explores the use of a Universal Dictionary, or in other words, a single

visual dictionary trained on a wide set of classes. This is an alternative to using

an Online dictionary, which changes as new information becomes available. The

difference between Online LDA and Batch LDA is also tested showing the

Online version to work just as well as Batch.

To summarise the experiments made throughout the chapter,

• Specific versus Wide Dictionary. A dictionary is built over specific

and wide dictionaries, using the CalTech dataset. This experiment shows

that when LDA models are trained using images that weren’t used to

build the dictionary, the quality in classification is worse than otherwise.

• LDA versus Online LDA. It is shown that LDA and Online LDA are

of a similar classification quality, advocating the use of online LDA for

robotics.

• Classification using a Robot Vision System. The method is shown

to work for a collection of objects, randomly moved in the robot’s

workspace.

In total, the results show Online LDA performs well on a robotic platform.

Using a wide dictionary shows improved results for a wider set of test objects,

advocating its use for Online object learning in robotics.

6.3.1 Specific versus Wide Dictionaries

In this experiment, two dictionaries are developed, a wide (W) and specific (S)

dictionary. Both dictionaries contain 400 words, and both are built from classes

in the Caltech 256 database. The wide dictionary is built using 100 different

classes, randomly selected. The specific dictionary is built from the following 5

classes: bikes, faces, horse, guitar and starfish.

The following procedure is adopted to build each dictionary. For each class,

a fixed number of images (30) are selected. For each image a fixed number (100)
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of SIFT features are randomly selected among a dense grid of locations. This

produces a training set of about 300,000 samples from which 400 clusters were

learned using k-means (stopping after the evolution fell below 0.1%).

Now we have two dictionaries, we want to compare them in terms of how

well an LDA model built over them generalises to include new objects. Two

sets, A and B, are formed from CalTech 256. These will be used to build topic

models using LDA, and should not be confused with the data used to build

dictionaries. Sets A and B are defined as follows; set A ={a=bikes, b=faces,

c=horse, d=guitar, e=starfish }, and set B = {f=binoculars, g=gorilla,

h=hammock, i=mushrooms, j=air-planes }. Note that set A is exactly the set

used to build a specific dictionary, and set B is a subset of the 100 classes used

to build the wide dictionary. Both of the sets are further partitioned in training

and test sets. The test datasets comprise of 20 images of each class, the training

data are the images left in each class. Figure 6-4 shows a sample of images

taken from each class, for each of the training sets.

Thus, there are fours sets in total; training set A, test set A, training set B

and test set B. Four LDA models are learned; (i) CAS built over the training set

A using the specific dictionary (which was drawn from set A); (ii) CAW also

built over training set A but using the wide dictionary; (iii) CBS built over

training set B using the specific dictionary (taken from set A); (iv) CBW built

over training set B using the wide dictionary.

CAS a b c d e

a 9 0 1 10 0
b 0 20 0 0 0
c 0 10 8 1 0
d 0 6 0 14 1
e 0 7 4 6 3

CBS f g h i j

f 15 2 3 0 0
g 6 4 10 0 0
h 5 4 11 0 0
i 7 3 10 0 0
j 10 3 7 0 0

Table 6.1: Using the specific dictionary taken from set A. Confusion matrix CAS
has an LDA model trained and tested on set A; 55% accuracy. Confusion matrix
CBS has an LDA model trained and tested on set B; 30% accuracy.

The test sets were then used to obtain the classification results in Table 6.1

and Table 6.2. The results in Table 6.1 show that the classification rate is much

higher when an LDA model is built with the same images used to build the

dictionary. Specifically 55% compared to 30%; it is true neither of these are
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motorbikes faces horses guitars starfish

(a) Sample images for test set A, used to build the specific dictionary.

binoculars gorilla hammock mushroom aeroplane

(b) Sample images from test set B.

Figure 6-4: The sample images shown above are taken from the CalTech 256
dataset, test sets A and B respectively. Test set A is used to build the specific
dictionary. The images contain objects in a variety of different poses on arbitrary
backgrounds.
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CAW a b c d e

a 7 0 0 13 0
b 0 19 1 0 0
c 1 2 8 3 6
d 3 3 2 9 3
e 1 3 3 6 7

CBW f g h i j

f 12 1 7 0 0
g 2 9 2 2 5
h 2 0 18 0 0
i 1 2 2 8 7
j 0 4 0 8 8

Table 6.2: Wide vocabulary: Confusion matrix CAW : trained and tested on set
A; 50% accuracy. Confusion matrix CBW , trained and tested on set B; 55%
accuracy.

S
A

B

55%

30%

(a) Specific Dictionary

W
A

B

50%

55%

(b) Wide Dictionary

Figure 6-5: The graphs shown above describe the experiment to test the use of
wide and specific dictionaries. Test set A contains images used to construct S,
test set B contains a random set of classes. Dictionary W is constructed on a
wide set of classes. Both dictionaries are tested against both sets of images.

impressive but the figure of 55% compares well with the early literature using

LDA for visual object classification which is sufficient for this experiment.

The results in Table 6.2 show the classification rates obtained when the wide

dictionary is used to train the LDA model. The characteristics to notice here

are (i) the classification rates are now about equal for both set A and B, and

(ii) these rates are only a little less than the rate for the LDA model for set A

when using the specific dictionary taken from set A. Figure 6-5 indicates the

results of this experiment, showing the percentage accuracy of confusion

matrices using different test sets and dictionaries. It can be seen that the LDA

model using a specific dictionary fails when the images are from a larger set.

In summary, this experiment illustrates that using a dictionary learned over

a wide variety of object classes is preferable than one that is specific to a subset
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of images. This is an important conclusion if robots need to be equipped with a

fixed dictionary throughout their training.

6.3.2 LDA versus Online LDA

In this experiment the performance of Online LDA is compared to Batch LDA.

The confusion matrices produced using the wide dictionary using Online LDA

appear in Table 6.3. These show similar accuracy rates (or better) to the

previous matrices (Table 6.2); This experiment concludes that Online LDA is at

least as efficient as Batch LDA.

CAO a b c d e

a 14 1 0 5 0
b 0 20 0 0 0
c 2 5 3 3 7
d 6 1 2 6 5
e 6 1 1 0 12

CBO f g h i j

f 10 0 8 2 0
g 0 9 1 2 8
h 1 2 16 1 0
i 0 2 0 7 11
j 0 0 0 1 19

Table 6.3: Confusion matrices using Online LDA. CAO: wide vocabulary, trained
and tested on A; 55% accuracy. Confusion matrix CBO: wide vocabulary, trained
and tested on B; 61% accuracy.

It is noted that Online LDA out-performs Batch LDA. This is interesting,

but no significance is placed on this result as the tests are limited to showing

that Online LDA is at least as good as Batch LDA: the data supports that

conclusion, and therefore application of interest is tested in the following

section.

6.3.3 Classification using a Robot Vision System

This section illustrates how the unsupervised learning method is applied to a

robotics scenario. The robot is presented with various objects in its work space.

The task is to then move them around in order to learn an LDA and MoT

model.

Two videos are used to test the Online LDA method. The first contains

three objects, a calculator, bike and bottle, which are randomly moved around

the robots workspace. In this video, none of the objects leave the camera’s field
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Figure 6-6: The images above are a sample from the sequence used to train
the LDA model. The objects are in random poses, and with different reflective
properties. Most importantly, objects with high density features appear together,
placing them in same blob, and hence, document. LDA is able to classify the
objects even when there are multiple objects in a document.

of view. In the second video an extra object is added, a toy giraffe. The objects

are placed in the workspace randomly, but this time allowing the objects to

leave the camera’s field of view and re-entering at random periods of time. For

each of the objects we have a ground truth dataset composed of 100 images of

the object from different angles on a plain background. Figure 6-6 shows a

sample of images from the training set, objects are randomly distributed around

the workspace with some moving close together, leading to multiple objects per

blob.

To begin with an Online LDA model is built for both of the videos, using

mini-batches of 50 frames each. The number of topics is set to be equal the

number of objects in the scene. After the training, the learned topics are tested

for classification. Results are presented on a confusion matrix which shows the

proportion of right and wrong classifications using ground truth data. Each

topic z corresponds directly to an object class. In this particular example topic,

z1 is the calculator, z2 the bike and z3 the bottle. Table 6.4 shows the confusion
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matrix for the first video, the average accuracy is of 83%. The classification

shows a relatively large confusion between the bike (z2) and the bottle (z3).

Using an extra object, and allowing objects to leave the scene, gives a slightly

lower overall accuracy of 72%, this is shown in Table 6.5.

O z1 z2 z3

Calc 94 6 0
Bike 0 100 0

Bottle 0 43 57

Table 6.4: Confusion matrix for three objects, the objects stayed in the robot’s
field of view for the whole duration of the video. The average accuracy of the
matrix is 83%.

O z1 z2 z3 z4

Calc 71 0 15 14
Bike 0 19 81 0

Bottle 0 0 98 2
Giraffe 0 0 0 100

Table 6.5: Confusion matrix for four objects, the objects enter and leave the
robot’s field of view throughout the video. The average accuracy of this matrix
is 72%.

Specifying the number of topics in this way (one topic per object in the

environment) neglects the fact that, for instance background features, may

become a topic of their own. Also, in most real situations, a robot will not

know the number of topics of objects it will encounter a priori.

To assess how the algorithm converges, the perplexity is plotted against each

iteration, as in Hoffman’s original paper [Hoffman et al., 2010a]. Figure 6-7

shows the results of this experiment. The algorithm seems to converge quickly

and settle at a value of 20. This measure of convergence would allow an

autonomous robot to decide when it has learned enough about the objects in

the environment, a halting criterion for the robot.
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Figure 6-7: Perplexity against iterations of Online LDA.

6.4 Discussion

Online LDA can be used for vision in robotics, allowing the robot to update

object models. The results show that a good, wide, dictionary suffices for

Online LDA in computer vision; without the need to update the parameters of

the model, or the dictionary for new data.

A limitation of the model is that it requires a fixed number of topics to be

specified beforehand. The results show that the number of topics significantly

affects the quality of the classification results. Thus, choosing the correct

number is essential for learning about an arbitrary number of objects. This

observation also leads to the problem of merging multiple LDA models. If the

robot learns a set of topics from several different scenes independently, the

models need to be merged, identifying similar objects between models and

updating the total number of topics.

The success of the algorithm is heavily dependent on segmenting the scene

into potential objects. We use the density of SIFT features to decide what

constitute putative objects. This is a simple and effective method, but if the

background contains densely clustered features then the algorithm will fail.

This can be avoided by using a different segmentation algorithm, but for

simplicity of implementation, this was not considered here. The use of a more

advanced segmentation algorithm is investigated in Chapter 8.
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Despite these limitations, we have shown that Online LDA is a useful tool

for autonomously learning about objects on a robotic platform. The following

chapter goes on to extend LDA for improved classification results, and describes

an algorithm for manipulating objects in the environment.
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Chapter 7

Mixtures of Topics and

Self-Supervision

The previous chapter of the thesis introduced Latent Dirichlet Allocation as a

method for learning on a robot. It was shown the method works Online with

the use of a suitable dictionary. Although Online LDA is a necessary

requirement for the robot to start learning, it is not directly in support of the

hypothesis. The work carried out in this chapter explores the use of robotic

manipulation in the learning process.

Two main contributions are made in the chapter:

• A new Mixture of Topics (MoT) model is introduced to represent

objects in the robot workspace. The model is shown to outperform LDA

when used on robotic data, and shown to be robust to data from wide

object classes using the CalTech 256 dataset. The MoT model requires

that objects are first discriminated from their background, and that the

data is labelled. This motivates a need for object segmentation, covered

by the second contribution of the chapter.

• The second contribution of the chapter, is a method for self-supervision

with a robotic manipulator. The robot then removes other objects from

the environment, and focuses on an object of interest, viewing it from

multiple angles. Once a model is built, other objects in the environment

can easily be distinguished and separately learned about.

The work is in support of the hypothesis, since planned robotic motion is
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used to move objects in the environment. The standard method for learning

object models is to provide the algorithm with a set of training images from a

wide dataset, such as the web. Using a robot to manipulate the objects allows

them to be viewed from multiple sides. This improves the visual model by

providing information of objects from more than one view, widening the

variance, and improving recognition and classification.

The chapter begins by introducing the Mixture of Topics model as an

extension of LDA, and then goes on to describe the process of self-supervision,

and how the robot plans its movement in the environment. Motivation for using

Mixture of Topics over standard LDA is shown, along with improvements in

classification quality on a robotic manipulator. Finally, the model is tested

using CalTech 256 to show robustness to classes containing a large number of

different objects.

7.1 A Mixture of Topics

The classification method shown in Chapter 6, assumes that documents are the

images themselves, and topics are objects within the images. This works

relatively well on a wide class of objects, but if a particular object significantly

changes visual appearance depending on its view, then it could be considered as

a different object entirely. An example of this are the classes ‘car’ and

‘motorbike’. From the side both look similar, appearing to contain two wheels

and a body. When viewed from the front the objects are much different

however, giving strong evidence that their visual category is dependent on view.

An alternative view is to take the objects as documents, then each view is a

distribution of topics. This can be modelled by adding an extra variable into

the graphical LDA model. At the top of the hierarchy are the images, which

contain objects, which contain views of the objects, which contain words. This

model is shown in Figure 7-1b, and is named ‘Mixture of Topics’. Writing the

graphical model as a probability distribution and using variational Bayes, it

would be possible to derive a fully Online method for the Mixture of Topics

model. Using the same technique as in [Hoffman et al., 2010a] for LDA.

Once an LDA model is trained on a set of data, new images are passed to

the variational algorithm, returning a distribution of topics. The LDA process
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(a) The ‘Latent Dirichlet Allocation’ graphical model.
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(b) The ‘Mixture of Topics’ graphical model.

Figure 7-1: Comparing the Mixture of Topics model to standard Latent Dirichlet
Allocation. The greyed out boxes are the observed variables. A Mixture of
Topics model has an extra level to the hierarchy representing an image or video
as containing a number of objects, with multiple views. Standard LDA represents
an image as a set of objects with only one view.

then involves choosing the topic of maximum likelihood in order to classify the

data. Looking at the topic distributions for 4 objects placed in front of the

robot, show in Figure 7-3, it is clear that some objects have a high probability

of containing more than one topic. For example, Figure 7-3c shows the bottle to

have a high probability of containing topics 3 and 5. This may be due to

different views of objects correlating to topics, or also, groups of features which

are consistent between objects. For example, a wheel appears on both a bike

and a car making it a topic of its own.
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Instead of choosing a maximum likelihood topic, a model can be built using

the topic distributions alone. Each piece of data given to LDA translates in to a

vector of probabilities, the probability that the data belongs to a topic.

Assuming these vectors are drawn from a Dirichlet distribution, a model is built

for each object independently. This can be done in a supervised manner, using

Bayes Theorem, or unsupervised with the addition of a clustering algorithm.

When using a robot, it is possible to self-supervise the process, and is discussed

in more detail in Section 7.2.

The distribution of topics is assumed to be sampled from a Dirichlet

distribution. The problem is to find the probability of the parameters of the

model ω, given the topic distribution of a new object θ,

p(ω|θ) ∝p(θ|ω)p(ω) (7.1)

=Dir(θ|ω)p(ω). (7.2)

To train the model, the distribution p(θ|ω) is found for the set of training

data θ1, θ2, ..., θN . The parameters ω of this Dirichlet distribution are calculated

using [Minka, 2003]. The number of dimensions of ω corresponds to the number

of topics chosen in the LDA algorithm. If labelled data is available then each ω

is computed separately for each known class of objects. Alternatively, the

Mixture of Topics can be used in an unsupervised setting. The separate classes

are found using a clustering algorithm, such as k-means, on all of the θi.

The model can be modified to perform online by sampling the old

distribution, appending new data to the generated samples and recomputing

the model parameters (ω), as described above. This method for Online MoT is

tested in Section 7.3.3, (termed online-unsupervised).

The graphs in Figure 7-3 show the topic distributions of objects under a 3D

projective transformation, for four separate objects. It is clear from the

distributions that the different objects are separated across each of the 8

dimensions. Figure 7-2 shows these distributions projected on to their largest

principle components. The classes are well separated in the two dimensions,

using a discriminative clustering algorithm such as k-means is appropriate for

determining the classes, with minimal loss in quality.

The MoT model can be described simply as a Bayesian model over the topic
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distributions returned by LDA. Different views of the object are given to the

algorithm in order to build a model of the whole object. This requires that the

documents given to MoT contain only the object of interest, and that the robot

is able to manipulate objects so they are viewed from multiple angles. These

problems are addressed in the following chapter.

7.2 Self-Supervised Learning

The Mixture of Topics model defines documents as objects. This means that

the algorithm needs to be given images of different views of whole objects in

order to work effectively. This is in contrast to LDA, where documents are

images containing multiple objects. Object segmentation is one way to ensure

that documents contain single objects, but requires assumptions to be made

about the objects.

This section explores the use of robot motion to remove other objects from

the camera frame, and also manipulate an object of interest so that it is viewed

from multiple angles. This simplifies object segmentation when the background

is plain, since objects can be assumed to have a higher density of visual

features. A combination of motion based object segmentation and

self-supervision is explored in Chapter 8.

Since the robot has control over the environment, it is able to make changes

to objects in the scene in order to benefit its learning. Classical learning

algorithms can be separated in to two distinct categories:

• Supervised. Where the robot has access to labelled data. Algorithms of

this type need a supervisor to identify the objects within an image, in

order for the algorithm to learn the classes.

• Unsupervised. Where the robot generates its own labels given only the

data. Usually some extra prior knowledge is given to these algorithms,

such as the number of classes, but this is not necessary in principle.

The use of a robotic manipulator allows enough control over the

environment to build a classifier that can label its own data, and is termed:

• Self-supervised learning. This approach trains a supervised classifier, in

the machine learning sense, using a robotic manipulator to obtain
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(a) Supervised

(b) Using kmeans (95% correct)

Figure 7-2: The topic distributions projected on to the 2 largest principle com-
ponents. Graph (a) shows the distribution of each class and graph (b) the result
of applying k-means to the data.
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(a) Calculator (b) Bike

(c) Bottle (d) Giraffe

(e) Ground truth data

Figure 7-3: The distribution over the topics of 4 ground truth objects. Given
the LDA model trained on objects entering and leaving the scene. Subfigure 7-3e
shows a sample of the ground truth images used to generate the topic distributions
in Subfigures 7-3a - 7-3d
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Dictionary

LDA
Model

MoT
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Figure 7-4: The order in which information is built in the Mixture of Topics
model. A visual dictionary is generated using a set of data, histograms are built
over this in order to form the LDA model. Images of objects are then passed to
LDA in order to generate data to build a Mixture of Topics model.

multiple views of the single object. The method makes the assumption

that the robot is holding or pushing the same object until it chooses to

move on to another. A supervised Bayesian classifier is built over the

data. The robot then chooses another object with the lowest probability

of fitting any previous models, and begins to manipulate it instead.

The algorithm is only given the number of objects it has to learn about,

without any labelled data. In a global sense, the process of self-supervision

turns a supervised classifier in to an unsupervised one, inheriting all of the

benefits of supervised learning, assuming that there is control over objects in

the environment.

The algorithm uses a Mixture of Topics model as the supervised classifier, in

this model it is assumed that objects are a mixture of different topics. Figure

7-3 shows the distributions of 4 objects viewed around 360 degrees on a plane.

The LDA model is set to 8 topics. Although each object has an individual

maximum likelihood topic, there are other are other topics in the distribution

with a relatively high probability.

All of the theory needed to manipulate and learn about objects in a

workspace has been covered. The full algorithm for automated learning on a

robot is broken into stages.

1. The first step is to find the visual dictionary. LDA requires that the

dictionary is built independently of the distributions in the statistical

model. So to ensure that the algorithm works incrementally, a universal

dictionary can be employed instead. This approach builds a single

dictionary, over a large publicly available image dataset. The alternative is

to get the robot to manipulate the objects in front of it first, building the
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dictionary before the LDA model. The pros and cons of using a universal

dictionary compared to a specific one are discussed in the Chapter 7.

2. In order to build a Mixture of Topics model, an LDA model is required

first. The robot could recursively and randomly push objects in the

environment through their centre of mass; using the method laid out in

Section 6.2. The model could also be trained separately on a wide dataset

of images, opening up the possibility of a universal LDA model. For the

experiments in this section the same data is used as in Chapter 7, so that

the results of classification using LDA can be compared with

self-supervised MoT.

3. Once an LDA model is built, uses self-supervised learning is used to build

a Mixture of Topics model. Given the number of objects in the

environment K, the robot,

(a) Chooses an object (blob) at random.

(b) Pushes all other objects to the edge of the visual field.

(c) Recursively pushes the object of interest, while building an

unsupervised MoT model.

(d) The objects are presented to the robot again. It chooses the object

least likely to belong to previously learned models and repeats from

(b).

Since the algorithm works in stages: Building a dictionary, finding the LDA

model before finally building the Mixture of Topics model; it is not an Online or

incremental method. Improving Online LDA so that a changing vocabulary is

possible is a current area of research, and the use of a universal dictionary was

discussed in Section 6.1.2. The separation of modules is summarised in Figure

7-4, learning the dictionary, LDA model and MoT are separated. Changing a

model to the left, implies reprocessing all of the data for modules on the right.

Online Mixture of Topics with a changing LDA model is not currently possible

but a good direction for future research in the area.
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7.2.1 Robotic Planning

To manipulate objects in the environment, a simple planning algorithm is

employed. The robot is calibrated to the cameras as detailed in Section 3.1.

The objects are constrained to a table and points are defined for the robot to

move to, in camera coordinates, and the robot is constrained to move in

straight lines. Objects are represented by their feature density as defined in

Section 6.2. There are two problems to be solved by the planner, firstly the

robot needs to be able to push the object through its centre of mass; secondly it

needs to avoid pushing other objects in the environment.

Object Pushing

When the robot chooses an object to manipulate there are three key points

given to the planner, the centre of mass pc computed as the average feature on

the object, the target position pt and the point the robot starts at ps. The hull

that defines the boundary of the object is also given to the algorithm.

The robot is constrained to move in straight lines, so the first problem is to

parametrise the line for the path of the manipulator, as follows,

f(t) = ps + tn (7.3)

Where n = ps−pt
||ps−pt||

. When t ∈ [0, 1] the function f defines a line between

the start point and the target position. We want to push the object so that the

centre of mass lies over the target.

Assuming that we know the distance from ps to the edge of the object, call

this distance d. The robot take a path along f from t = 0 to t = d+ ||pc − pt||.
To calculate d Algorithm 4 is used. Two hull algorithms are assumed,

findConvexHull and containedInConvexHull, both of which are standard in

computational geometry [Barber et al., 1996].

Once the path has been found in the camera space. The calibration and

inverse kinematics converts the positions into motor positions and velocities,

more details on this can be found in Section 3.1.
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Figure 7-5: Geometry of the motion planner.

Algorithm 4 Algorithm to find the distance to the edge of the object

Require: ps, pt, pc, x1, ..., xN
t← 0
stop← 0
[y1, ...,yK ] = findConvexHull(x1, ...,xN)
while stop = 0 do

stop = containedInConvexHull(f(t), [y1, ...,yK ])
t← t+ ε

end while

Object Avoidance

To avoid other objects in the environment, a probabilistic approach is taken.

We seek the probability that a particular path will cause the manipulated

object to encounter another object in the environment.

To achieve this, the probability of the function f given the hull parameters

y1, ...,yK is found by marginalising over the variable t,

p(f |y1, ...,yK) =

∫ d+||pc−pt||

t=0

p(f |t,y1, ...,yK)p(t|y1, ...,yK) (7.4)

=

∫ d+||pc−pt||

t=0

p(f(t)|y1, ...,yK) (7.5)

Where the probability distribution p(f |y1, ...,yK) is the density of sift
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features described in Section 6.2, with everything inside the hull set to zero.

The maximum of the probability density function in equation 7.5, is found

by choosing a set of potential points. There are certain constraints to be

considered, for example, a trivial solution to the optimisation problem is to

have a zero length path where the object is not moved at all. The vectors pc, ps

and pt are all constrained to be a minimum distance apart. The set of start and

end points are randomly sampled, and the maximum is chosen. A more

advanced optimisation algorithm such simulated annealing could improve or

further refine the correct trajectory to take, but the computation is fast enough

to operate well, with a reasonably dense initial sampling.

7.3 Experiments

Three experiments are made in this section, to test the applicability of an MoT

model in robotics, and to verify the algorithm on a dataset with classes

containing a large variety of objects:

• Motivation for Mixture of Topics. The experiments made in this

section show the topic proportions that LDA returns, and how a single

object can contain more than one topic. This motivates the need for a

model which describes objects as multiple topics, rather than one object

per topic, as in standard LDA.

• Self-supervised Topic Mixtures. The MoT model is tested with robot

data, using a robot which uses self-supervised learning. The results

outperform the standard LDA results given in the previous chapter.

• Verification using CalTech. The Mixture of Topics model is tested on

the CalTech dataset. This shows that the model works well on classes

with a high intra-class variance, i.e. on objects of the same class in a large

variety of different poses, and locations.

The chapter concludes with a method for learning about objects in the

environment autonomously. Improving results above standard visual LDA, and

shown to perform well on classes containing a large number of different objects.
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7.3.1 Motivation for using Mixtures of Topics

The results presented in this section provide some motivation for using a

Mixture of Topics model rather than LDA. The main argument is that when

the number of topic in LDA is greater than the number of objects, certain

objects have a high likelihood of containing more than one topic. This idea was

introduced in Section 7.1, particularly in Figure 7-3, where the topic

distributions are shown for a collection of ground truth objects.

When using LDA for classification, there is motivation to increase the

number of topics beyond the number of known objects. This technique was

used in [Sivic et al., 2005] to reduce the negative effects of background noise.

The results shown throughout the rest of this section prove the same result,

while demonstrating the multiple topic per object problem.

The test videos used in this section are the same as for Chapter 6. Two

videos of objects moved in the robots workspace, comprising the objects

‘Calculator’, ‘Bike’, ‘Bottle’, and ‘Giraffe’. In the next experiments the number

of expected topics is chosen as 8. Table 7.1 shows results from the first video.

Some of the topics do not match any of the ground truth data, this implies that

they are topics which were part of the training set, but not in the ground truth.

Background noise and motion blurred features are a likely cause. The bike data

is separated in to two topics, z2 and z7. If these topics are merged, the overall

accuracy of the confusion matrix (neglecting empty topics) is 88%.

O z1 z2 z3 z4 z5 z6 z7 z8

Calc 0 0 0 0 0 100 0 0
Bike 2 55 0 0 0 33 10 0

Bottle 100 0 0 0 0 0 0 0

Table 7.1: Confusion matrix for three objects, the objects stayed in the robot’s
field of view for the whole duration of a 1000 frame video

Increasing the number of topics for the second video produces similar

results, as illustrated in Table 7.2. Again the objects are a mixture of different

topics in the model. For example, the calculator is attributed to topics z1, z2

and z4, merging these topics and neglecting empty ones yields a 4× 4 matrix

with 92.5% accuracy. In both cases the accuracy is improved by choosing a

higher number of topics than there are objects. Allowing extra topics for
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O z1 z2 z3 z4 z5 z6 z7 z8

Calc 10 69 3 1 9 0 0 8
Bike 0 0 0 0 0 0 0 100

Bottle 0 0 90 0 9 0 0 1
Giraffe 0 0 0 0 100 0 0 0

Table 7.2: Confusion matrix for four objects, the objects enter and leave the
video throughout

background items lowers the total amount of noise contributing to the minimal

number of topics used for Tables 6.4 and 6.5.

As described in Section 6.3.3, images are classified by maximising the

probability distribution p(zi|θ) where θ is the test document. Figure 7-3 shows

a graphic of the topic distributions for each ground truth objects. As it can be

seen single objects are a mixture of topics rather than a single one.

The LDA algorithm not only gives the distribution of topics for a particular

document, but also the distribution of words. This distribution can be used to

find words in a document which correspond to a particular topic. For example,

what words make the bike topic. Given a new document θ̂ and topic zi, the

probability distribution p(y|zi, θ̂) is sought for a particular descriptor y.

Marginalising over each word wj gives,

p(y|zi, θ̂) =
N∑
j=1

p(y|wj, zi, θ̂)p(wj|zi, θ̂) (7.6)

The distribution p(wj|θ̂) is given by LDA and p(x|wj, θ̂) chosen as a

Gaussian. To build a probability map over the whole image, for a particular

pixel x ∈ N2 we let,

p(x|zi, θ̂) =
K∑
k=1

N(x|xk,Σ)p(yk|zi, θ̂) (7.7)

Figure 7-6 shows the results of this experiment for the topics which most

correspond to the ground truth objects. The circle in the figures shows the most

likely point as calculated by Equation 18. It is clear that the topics correlate

well with the objects in the test image and the results of the confusion matrix
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(a) Test Image (b) Topic 2

(c) Topic 3 (d) Topic 5

(e) Topic 8 (f) Topic 7

Figure 7-6: Distributions over descriptors given the test image (7-6a). The red
marker displays the region of the image most likely to belong to the topic.
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Figure 7-7: Frames of the robot manipulating a toy giraffe. The robot first
removes objects in the workspace which are likely to belong to a model it has
already learned about, before recursively pushing a giraffe in the scene.

in Table 7.2. For example topic z2 corresponds to the calculator and this can

also be seen to be the case in Figure 7-6c.

The probability map in image 7-6f is from a topic which does not match any

of the objects in the confusion matrix. The result is a distribution of descriptors

which are close to uniformly distributed over each of the objects. All of the

probability maps exhibit noise from each of the objects, but the point of

maximum likelihood is a good match.

To summarise, the results show that when the number of topic is chosen to

be larger than the number of objects; the quality of classification improves,

since background noise becomes a topic of its own. Also, objects can be

represented by multiple topics, suggesting that topics relate to specific views

rather than the objects themselves.
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7.3.2 Self-Supervised Topic Mixtures

The results in this section experiment with Mixtures of Topics, self-supervision,

and whether it makes an improvement over LDA alone. In the experiment, the

robot is given a set of 4 objects, as in Table 7.2. A single object is isolated from

the group and pushed on the table. This process is repeated until all of the

objects have been learned about. In other words, until the robot has played

with each object individually. Figure 7-7 shows sample frames of the robot

performing the self-supervision task. The robot has already learned about the

bottle in this video and it selects the object least likely to belong to that class,

in this case the giraffe. The robot goes on to manipulate the object, before

moving on to the bike.

Calc Bike Bottle Giraffe
Calc 95 5 0 0
Bike 0 100 0 0

Bottle 0 1 99 0
Giraffe 0 2 7 91

Table 7.3: Confusion matrix for four objects, built using a Mixture of Topics
model. The accuracy of this matrix is 96%.

O Calc Bike Bottle Giraffe
Calc 71 0 15 14
Bike 0 19 81 0

Bottle 0 0 98 2
Giraffe 0 0 0 100

Table 7.4: Confusion matrix for four objects using standard LDA. The accuracy
of this matrix is 72%.

The confusion matrix shown in Table 7.3 shows the results of classification

against a ground truth dataset of each object on a plain background. There is a

significant improvement over the standard LDA model shown in Table 7.4, with

an accuracy of 96% rather than 72%. These results demonstrate the value of

self-supervision when learning a Mixture of Topics model for objects.
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Figure 7-8: A selection of images used for training the Mixture of Topics model.
Each column represents a different class from the CalTech 256 dataset.

7.3.3 Verification using CalTech

The results in the previous sections of this chapter show that a Mixture of

Topics model works well for a small number of specific objects. This section

tests the Mixture of Topics model on the CalTech dataset [Griffin et al., 2007].

The aim is to verify the use of a MoT model on a larger set of object classes,

with a high inter-class variance.

The images from the dataset are split in to training and test sets. The

former set is used to build the object model with, and the latter to test the

models. Supervised and unsupervised Mixture of Topics is compared on the

CalTech dataset. Finally, the Dirichlet estimation described in Section 7.1 is

extended so that it can estimate the MoT parameters Online. The results are

compared over a varying number of topics, up to 25.

The features used are dense SIFT [Lazebnik et al., 2006], as opposed to the

gpu-sift used in the previous experiments. It is known that the selection of

features can significantly affect the results, in [Fei-Fei and Perona, 2005b] a

comparison is made between features, including dense SIFT, for natural scene

categorisation. The results throughout the rest of this section are comparable.

In [Sivic et al., 2005], a high classification rate is achieved using 4 classes from

the CalTech dataset. They use a combination of MSER [Matas et al., 2004] and

SIFT descriptors, making a direct comparison difficult.

Figure 7-9 shows the results of the experiment. Using the unsupervised
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Figure 7-9: Confusion quality over a varying number of topics, on CalTech.

classifier provides a significantly lower quality of confusion than both supervised

and online-supervised. If the test images were evenly distributed over the

classes then, since there are 8 classes of objects, the confusion quality would

average at 13%. Taking the random classifier as a benchmark, all of the graphs

perform well. For optimal performance the supervised classifiers work best but

require labelled data.

Tables 7.5, 7.6, and 7.7 show some sample confusion matrices, the highest

quality of confusion is taken in each case. The ‘car’ and ‘face’ classes are

consistently and accurately classified in each of the tests, implying that the data

is well separated in the topic models. The number of images in each class of

object is as follows {97, 122, 81, 114, 201, 800, 116, 435}, indicating that the

number of training images does not correlate with how accurately the images

are classified in to the correct class. The ‘face’ class has a large training set, and

performs well; the aeroplane class has a large training set, but does not perform

so well.

The results show a level of classification good enough to perform on a

dataset with a high inter-class variance, with pictures of objects taken in a

variety of different scenes, exhibiting change in scale and position. Although
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0 Buddha Guitar Starfish Umbrella Watch Aeroplane Car Face
Buddha 17 2 3 6 0 2 0 1
Guitar 5 5 1 10 2 2 1 5

Starfish 3 0 14 13 0 0 0 1
Umbrella 2 1 0 24 1 2 1 0

Watch 1 0 0 12 13 1 1 3
Airplane 0 0 0 12 0 14 5 0

Car 0 0 0 0 0 1 30 0
Face 2 0 0 2 3 0 0 24

Table 7.5: The optimal confusion matrix, built with a topic mixture of 20 topics.
With CalTech images (supervised).

0 Buddha Guitar Starfish Umbrella Watch Aeroplane Car Face
Buddha 13 8 3 3 2 1 0 1
Guitar 2 13 0 2 10 2 1 1

Starfish 5 5 18 2 1 0 0 0
Umbrella 2 12 1 10 5 0 1 0

Watch 4 4 2 3 16 2 0 0
Airplane 0 7 0 8 0 15 1 0

Car 0 0 0 0 0 5 26 0
Face 4 1 0 1 1 1 0 23

Table 7.6: The optimal confusion matrix, built with a topic mixture of 25 topics.
With CalTech images (online-supervised).

0 Buddha Guitar Starfish Umbrella Watch Aeroplane Car Face
Buddha 5 0 1 8 8 0 2 7
Guitar 1 0 2 10 10 1 4 3

Starfish 11 0 10 7 1 0 0 2
Umbrella 1 0 5 12 11 0 0 2

Watch 0 0 4 4 13 0 1 9
Airplane 1 0 4 8 3 7 8 0

Car 1 0 0 0 0 4 26 0
Face 0 0 0 0 1 0 0 30

Table 7.7: The optimal confusion matrix, built with a topic mixture of 10 topics.
With CalTech images (unsupervised).

there is room for improvement, the algorithm could potentially be used for

learning object classes on wide dataset of images such as Google image search,

and used in a robotic system operating in the environment.
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7.4 Discussion

This chapter presented a method for a robot to autonomously learn about

objects in its environment using self-supervision. The models built by the robot

can be used to recognise and classify the learned objects in novel scenes.

The extension of LDA in to a Mixture of Topics model, shows an improved

quality of classification, but requires object level segmentation in order to

determine the object from its background. This poses a problem for most

robotic systems since, in order to obtain a good object level segmentation, some

prior knowledge of the object is needed. In this chapter, the background is

assumed to be plain, with fewer features than on the objects in the

environment. The benefits of the using the more advanced segmentation

algorithm introduced in Part II are explored in the next chapter.
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Chapter 8

Combined Segmentation and

Learning

The work discussed in the previous chapters of the thesis provide contributions

to the literature in robotic perception and learning. The work presented in this

chapter describes a method to combine perception with learning. The work

integrates: Object Segmentation, using known robotic motion, allowing the robot

to segment in the presence of moving and cluttered backgrounds; and Learning,

building robust object models Online, without the need to recompute old data.

In summary, the work presented in this chapter supports the hypothesis in

two ways,

• Motion is used in order to segment the objects the robot is interacting

with. The algorithm is taken from Part II of the thesis, and is already

proven to be robust to cluttered and changing environments. The

robustness to cluttered environments is an improvement over the blob

detection used in previous chapters, as it allows the robot to learn without

the need to remove other objects from the camera field of view.

• A new robotic planning module is introduced to extend the

self-supervision process. It uses a combination of learning, object

recognition and motion planning to repeatedly push the object of interest,

allowing it to be observed from multiple views.

The results show the algorithm to perform well in cluttered environments,

achieving a classification accuracy of up to 90%. This section begins by giving
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Push and Segment
 Object

Update Words and
Build Dirichlet Model

Recognise Object

Update Mixture of Topics
Model

Build and Temporarily
Store Histogram

Low-level Planner Learning Algorithm

Video
Robot Position

Make a plan

Figure 8-1: This diagram shows process of building a ‘Mixture of Topics’ model
using the proposed system. Sensor data from the vision system and robot manip-
ulator is passed to the algorithm, which iteratively plans a movement, segments
an object, and recognises. This process generates a set of descriptors which are
used to build a Mixture of Topics model for the objects in the environment.

an overview of the method, before describing the segmentation technique and

planning algorithm in more detail.

8.1 System Overview

The goal of the system is to recursively push an object in the environment in

order to build an object model, which can be used to classify the object again.

The whole system is summarised in Figure 8-1, and is split in to two main

subsystems. The first part is the planning algorithm, which segments objects

and then finds the best way to induce motion on the objects; and the second

part is the learning algorithm, i.e. the Mixture of Topics model used in previous

chapters. The two subsystems are summarised below.

• Low-level Planner. In this module the robot makes a plan to push an

object. When the object is moved, robotic bottom-up segmentation is

used to determine the object from its background. The information is

used to update a simple bag-of-words model, based on the Dirichlet

distribution. The model is then used to recognise the object again, in
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order to make a new plan to manipulate it. This process is iterated,

passing segmented regions to the learning algorithm.

• Learning Algorithm. The data from the segmentation algorithm model

is passed to a ‘Mixture of Topics’ model, shown to be able to classify

objects with a high inter-class variance and with a robotic vision system

(in Chapter 7).

The learning algorithm was detailed and tested in previous chapters.

Throughout the rest of this section the low level planning algorithm is described

in detail. The algorithm employs a ‘look, plan, move’ strategy. It begins by

pushing the object and segmenting every frame, then using the segmentations

to build a simple object model, finally, the model is used to recognise the object

of interest again in the scene. Once the object has been found, the robot

chooses a path to push the object through the centre of mass, without touching

other objects in the environment. This process is repeated with each set of

segmentations passed to the Mixture of Topics learning algorithm.

8.1.1 Bottom-Up Segmentation

The bottom-up segmentation algorithm is explained in detail in Part II, where

probabilistic motion models are used to derive the probability that any pixel

belongs to the object being manipulated. The approach used here is slightly

different, in that SIFT features [Lowe, 2004a] are matched across frames to

describe the motion, rather than optical flow. Also, instead of video

segmentation, Mean Shift Clustering [Comaniciu and Meer, 2002] is used on the

velocity vectors for each matched SIFT feature. Providing a low-level

segmentation of the features at a particular frame. The motion models from

Part II are then applied to the data, giving a probability distribution that a

cluster of descriptors belong to the object. A threshold is then applied to the

distribution to extract the object of interest.

The benefit of using a probabilistic approach to segmentation is that prior

knowledge can be used to further improve the result, when an object model is

available. The proceeding sections go on to describe how to build object

models; or more specifically, find the probability that a feature descriptor

belongs to a particular object.
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8.1.2 Building a Bag-of-Words Model

The result of the above method is a set of features which belong to the object.

This section details a simple method for building a bag-of-words model over the

object features, using the Dirichlet distribution.

To build a bag-of-words model the first items needed are the ‘words’. These

correspond to clusters of all the features that have been observed, found by

storing all of the features that have been observed and clustering them using

Mean Shift [Comaniciu and Meer, 2002]. The centres of each distribution then

become the words.

The set of words are calculated using the frames from each push. After the

first push, Mean Shift is used on the descriptors belonging to the object. For all

of the movements following the first, the words are incrementally updated. For

each word (w) the closest descriptors (d) is found, replacing w with ŵ using

the incremental mean update rule,

ŵ =
N

N + 1
(w + d). (8.1)

Where N is the number of descriptors used to generate the word and ŵ is the

new value for the word.

The goal is to then find the probability distribution of a word belonging to

the object, given we are at frame i. Assuming a discrete set of words w ∈ W
and a set of descriptions d ∈ D from a particular frame i. To find the

distribution of words, marginalisation is used,

p(w|i) =
∑
d∈D

p(w|d, i)p(d|i) (8.2)

=
∑
d∈D

N(w|d,Σ)p(d|i). (8.3)

This gives the distribution of the words at each frame; where, p(d|i) is the

output of the segmentation at frame i, and Σ is the covariance associated with

each word. There is now a set of distributions, for each frame, measuring the

same object, these distributions are assumed to be Dirichlet distributed. To

estimate the parameters of the Dirichlet distribution a combination of

fixed-point iteration and Newton-Raphson as described in [Minka, 2003]. This
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gives the object model used to recognise the object again after the robot has

finished its movement.

It may be the case that the robot encounters extra noise when pushing an

object, for instance, the arm partially covers the object. To avoid corrupting

the model, it is updated incrementally. This is done by sampling the Dirichlet

distribution using the parameters from a previous push, and concatenating it

with the new data. The learning rate is set at 50:50, i.e. the number of samples

generated by the old distribution is equal to the number of frames in the

current push. The parameters of the Dirichlet distribution are then

re-estimated using the new data.

8.1.3 Top-Down Recognition

After the object has been pushed, and a Bag-of-Words model learned over the

data, the robot can use the model to recognise the object again. Performing

this step means that if the object has moved from its previous position by an

external force, the robot is able to adapt to the change.

To recognise the object, the parameters from the Dirichlet distribution

described in Section 8.1.2 are used. The parameters of a Dirichlet distribution

are themselves a probability distribution, and in the case described above,

describe the probability that a word w belongs to the object being

manipulated. This distribution is denoted p(w).

When recognising, the algorithm has access to a set of descriptors and p(w).

The goal is to find the probability that a particular descriptor belongs to the

object in question. To achieve this, marginalisation is used over the set of words,

p(d) =
∑
w∈W

p(d|w)p(w) (8.4)

=
∑
w∈W

N(d|w, Σ̂)p(w). (8.5)

Where the parameter Σ̂ denotes the variance associated with each word.

This can be trained when the dictionary is built, but in practice it makes little

difference, and a small value (around 0.1) multiplied by the identity matrix

suffices.
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The distribution p(d) can further be transformed into image space, to find

the probability that a particular pixel x belongs to the object. The benefit of

doing this is that it is a spatial distribution that also depends on the probability

of a particular feature point belonging to the object. Analogously to Equation

8.5, marginalisation is performed over the descriptors,

p(x) =
∑
w∈W

p(x|d)p(d) (8.6)

The distribution p(x|d) is chosen as Gaussian, with a fixed covariance. To

extract the object from the distributions a threshold is applied.

The threshold can be chosen by using the Dirichlet parameters associated

with the object. The goal in doing this is to find a ‘connected’ subset of

descriptions that have a high probability of being part of the object. The

problem now is to find the threshold that has a high probability of containing

the correct feature. Given the threshold κ, to find the subset of features which

are contained in the foreground the following set is defined,

P (κ) ={w : p(w) > κ} (8.7)

This set defines a region of the image containing the putative object. For

each κ, the descriptors which are contained in the region build into a histogram

over the set of words. The parameters of the Dirichlet distribution are then

used on each histogram to find the threshold with the highest probability.

The result is a region of the image which is likely to contain the object

interacted with by the robot. Once this object has been identified the robot can

plan to move it. The algorithm used for planning is taken from Section 7.2.1, in

Chapter 7. The components introduced above make up the low-level planning

module, which is used to iteratively manipulate objects in the robot’s

workspace. The algorithm is tested for classification performance in the

following section.
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8.2 Experiments

The objective of these experiments are to show that the robot is able to gather

data to build robust models of objects in the environment, using a combination

of motion-based segmentation and learning. Videos are taken of the robot

pushing 4 different objects, a ‘book’, ‘bottle’, ‘CD’ and toy ‘giraffe’, using the

low-level planning algorithm described above. All of the videos have a cluttered

background, with objects placed randomly around the object being

manipulated. A set of sample frames of the robot pushing the toy giraffe is

shown in Figure 8-2.

For each object there are three trials, with the robot pushing the objects an

average of 10 times for each trial. The features used are standard SIFT

features [Lowe, 2004b], but reimplemented to work on a GPU [Sinha et al.,

2006]. This allows the algorithm to run quickly, a necessity for a robot to

perform in a working environment.

The graphs shown in Figure 8-3a are the results of applying a supervised

Mixture of Topics algorithm to the data, with a varying number of topics. The

gray region shows the variance in changing the segmentation threshold, with

values between 0.016 and 0.028. Increasing the number of topics does have an

affect on the data, choosing a number of topics greater than 15 yields a higher

quality of classification, on average, than lower values. Both graphs display a

high variance, with confusion matrix accuracy as high as 90% and as low as

40%. Figure 8-3b shows the results of using an unsupervised Mixture of Topics

model, the classification quality does not reach as high as for the supervised

model, but is not significantly different.

Tables 8.1 and 8.2 show the best and worst confusion matrices, respectively.

The matrices are the average over each threshold. Each of the rows show how

the 20 different objects were classified, for instance, row 1 of Table 8.1 shows

that the 20 images of a book given to the robot were correctly classified as a

book 19 times, and incorrectly classified as a bottle once. Similarly the bottle

was correctly classified 19 times out of 20, and incorrectly classified an average

of 0.75 in to the CD class, and 0.25 in to the giraffe class.

Both confusion matrices show the giraffe to appear similar to the bottle and

CD, and with the lowest classification rate among all of the objects. The book
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Figure 8-2: Sample frames of the robot manipulating the giraffe object. Each
row represents a different push action. The robot continues with this strategy
for 10 movements and 3 trials for each object. Note the background clutter and
occlusion of the giraffe by the robot arm in several frames of the sequence.
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(a) Supervised topic mixture using the robot.

(b) Unsupervised topic mixture using the robot.

Figure 8-3: Confusion accuracy in the Mixture of Topics model, with a varying
number of topics. The variance in quality when choosing different segmentation
thresholds is represented in grey, the dashed line represents the average quality.
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is well classified in both of the matrices, since it is relatively visually distinct

from the other objects due to the pattern on the front.

Model
Book Bottle CD Giraffe

Book 19 1 0 0
Data Bottle 0 19 0.75 0.25

CD 0.5 3.5 17 1
Giraffe 2.25 9.25 0.75 9.75

Table 8.1: Best average confusion matrix for 15 topics, over 4 different thresholds.

Model
Book Bottle CD Giraffe

Book 17.5 2 0.5 0
Data Bottle 0 0.5 19.5 0

CD 0 1.25 19 1.75
Giraffe 0 0.25 21.5 0.25

Table 8.2: Worst average confusion matrix for 6 topics, over 4 different thresholds.

Both of the experiments exhibit a large amount of noise, the quality reaches

values as high as 90% but in some cases lower than 40%. Although the average

quality of confusion is at a level high enough for practical use, the lower values

may not be acceptable.

8.3 Discussion

This chapter presents an algorithm which is able to learn object models without

human supervision. The algorithm requires a priori knowledge of the number of

objects in the scene for unsupervised learning, the parameter K in the k-means

algorithm. There is research available which can compute K by considering the

information contained in each cluster [Sugar and James, 2003], but is not

considered in this work.

Despite its limitations, the method presented in this chapter makes a

significant effort towards an unsupervised means for a robot to learn about

objects in the environment. The algorithm contributes a new planning
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algorithm which is robust to cluttered an dynamic environments, following

previous results in the thesis.
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Part IV

Conclusions
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Chapter 9

Conclusions

The work presented in this thesis provides a new method for interactively

learning about objects using a robot. The method incorporates bottom-up

object segmentation and top-down recognition into a system capable of

classifying objects in the environment, robust to changes in viewpoint and with

a large inter-class variance. The system is motivated by the idea that using

induced robotic motion provides a benefit to the learning process. Each

subsystem of the model makes explicit use of the robot sensor data to aid the

vision system in learning object models.

The final system has an impact on industry and commerce, as it is capable

of autonomously learning about objects in the environment. Any robot which

needs to learn about the environment can be presented with a set of objects,

making it more flexible for reuse with different applications. The user will not

have to re-program the robot, or go to the effort of taking a set of pictures to

retrain. The work also provides the first step towards a fully autonomous robot,

which is capable of operating in the environment without any supervision. For

instance, a robotic maid used to operate around a home would benefit from an

algorithm capable of learning its own models, and the ability to update them

with new information.

The contributions to the literature include a learning algorithm capable of

operating in cluttered and dynamic environments. The model contributes online

learning to the robotic community, allowing a robot to update centrally stored

models without the the need to store or recompute old data.

This chapter concludes all of the results made throughout the thesis, and
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discusses new areas for further research, which have been made possible as a

result of the work. To begin with a discussion is made about the original

hypothesis, and how the results support it. The main contributions of the thesis

are presented, along with a chapter breakdown, discussing the benefits and

limitations of each subsystem. Finally, a case for further work is presented, to

extend and improve the overall results and method.

9.1 Hypothesis Support

Although there are a range of different contributions made to the robotics and

computer vision literature, the hypothesis is as follows,

• ‘Robot-object interaction, in the form of induced motion on

objects, aids robot perception and the learning of visual object

models.’

Each chapter of the thesis provides some support for the hypothesis, and

paves the way towards a system which utilises known robotic motion to aid the

learning process:

• Vision and Dynamics: This chapter provides a case study into the use

of dynamics and vision to intercept a moving target. Current readings are

taken from the robot sensors, as a measure of the force exerted by each of

the motors. Statistics of the vision system are combined with the dynamic

information to build a probabilistic visual servo model. This does not

directly support the hypothesis, since it does not involve learning or

perception, but provides motivation that using extra sensor information to

aid a vision problem can be beneficial. In the case of hand-eye

coordination, it gives a means to simultaneously reduce the energy of a

movement, while intercepting a moving target.

• Robot Object Segmentation: The work introduced in this chapter

uses known robot motion to simultaneously segment and localise objects.

Objects in the environment can be segmented using an algorithm which

breaks a video into parts, using detected motion from the vision system.

Robot segmentation is different because it not only segments the object,
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but also localises it in the image. Without knowing the motion of the

manipulator, this would not be possible. The work also shows that the

known motion can accurately remove the robotic arm from the

foreground, without a complex kinematic model, reducing the time it

takes to calibrate the robot.

• Building object models: When learning object models, it is important

that the objects are viewed from multiple angles, particularly since they

need to be recognised. The work introduces a new model, based on the

assumption that objects have more than one view, this assumption leads

to more robust object models being built under viewpoint change. The

standard method for learning in vision, is to give the system a set of

pictures taken of objects in different scenes, with a set of different

backgrounds. This is ideal if those images are available, for a robot

learning to operate autonomously in a workplace, it may come across an

object or class which has not been previously categorised by humans. In

this case, the robot has to induce motion on the object to learn about its

visual description from multiple views, and update its model.

• Combined Segmentation and Learning: This chapter combines

robotic motion segmentation with the learning of object models,

incorporating the benefits of both systems. The robot is able to learn in

the presence of dynamic and cluttered environments, and also

self-supervise the learning, allowing the robot to build object models from

multiple views.

In summary, it is shown that motion can be used to segment and localise

objects in cluttered and changing backgrounds. It is also shown that a Mixture

of Topics model improves standard LDA when classifying objects. The MoT

model needs object segmentation, and so the robot either needs to make

assumptions about the background to remove it, and then physically remove

other objects in the scene (self-supervision, as used in part III); or use robotic

motion segmentation to remove the background, as used in chapter 8.
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9.2 Limitations and Further Work

Although the thesis provides a significant effort towards the hypothesis and

contributions such as online learning on a robotic system, there are gaps and

limitations which would make good areas for further research.

The first and most important limitation worth noting is the online use of a

Mixture of Topics model. Although the work uses Online LDA and MoT, each

system works independently. This means that the robot has to play with the

objects in two separate stages, once for the LDA model, and then again for the

MoT model. Instead, the whole model can be formulated into one graphical

model and computed online.

γ φ z w
N
M

β

Λ

L

Λ

images objects object views view word

Figure 9-1: The ‘Mixture of Topics’ graphical model.

The ‘Mixture of Topics’ model is shown in Figure 9-1, and leads to the

following factorisation,

p(w, z, φ, γΛ, β|Λ) =

[
N∏
n=1

p(wn|zn, β)p(zn|φ)

]
p(φ|γΛ)p(β) (9.1)

Integrating out φ and summing over zn gives,
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p(w, γΛ, β|Λ) = p(β)

∫ [ N∏
n=1

∑
zn

p(wn|zn, β)p(zn|φ)

]
p(φ|γΛ)∂φ (9.2)

This derivation is analogous to the derivation in [Blei et al., 2003] for Latent

Dirichlet Allocation. Further following the working through and using

variational Bayes, a fully online approach to Mixture of Topics for object

recognition could be derived. The model is one hierarchy more complex than

LDA, and finding a good factorisation for the variational probability

distribution could be difficult. Performing the computation without needing to

recompute or store any old data, would mean that a robot could continuously

learn in the environment, with low memory requirements. The model must also

be combined with an evolving (online) dictionary, which was covered to some

extent in Chapter 6.3 via the use of a universal dictionary. As the robot

encounters new data, new words can appear which are needed to describe the

scene. Ideally the algorithm should require no knowledge or vocabulary, take

batches of images as input, and return accurate class models.

The combination of segmentation and recognition used in Chapter 8 works

well, but as mentioned in the discussion, requires the use of a short term

memory module to manipulate the object. Using the long-term model to

recognise the object while being manipulated would be more robust to the

objects being moved between pushes.

9.3 Final Comments

The methods and results given in this thesis provide a method for autonomous

learning using a robot. Despite the quality of the resulting system, and

reliability in the face of noisy data, there is still a large amount of room for

further research. The results show that the use of proprioception, a knowledge

of relative body positions, on the robot can be used to improve the quality of

unsupervised classification. The use of other sensor data such as torque

readings, pressure readings from an artificial skin or sensors to measure heat

transfer properties could be integrated in to the system further; improving the
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performance of the learning algorithm.
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Appendix

167



Appendix A

Kinematics

A.1 Inverse Kinematics

In calculating the inverse kinematics of a robotic manipulator, the goal is to

find the joint angles, given the position that the end-effector needs to be in.

The result of this section is to solve the problem analytically. This is done by

first solving the problem for a general 3 degree of freedom, 2 link robot; and

then extending it to 4 degrees of freedom placing a geometric constraint on the

final link.

b

a
n v

(a) A diagram showing the geometry
of a 2- link robot.

θ

φ

α

β

t

(b) The geometry of the final 4DOF
robot.

Figure A-1: Diagrams of the robotic set-up. Both a simple 2 link robot, and a
representation of the Katana manipulator used throughout the thesis.
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The solution to the problem is as follows,

α =sign(a⊥.b) cos−1(
a.b

|a||b|
) (A.1)

θ =sign(o.a) cos−1(
n3.a

|a|
) (A.2)

φ =sign(n2.o) cos−1(
n1.o

|o|
). (A.3)

With the position of the end-effector is given by v let α denote the angle in

the elbow joint (between a and b) and let θ, φ denote the angles in the joint

which connects the robot to the ground. Where θ is the angle between a and

the ground. Assume that n3 is the unit normal. Let n1,n2 denote fixed normals

perpendicular to n3. Where o = (n3×v)×n3

|(n3×v)×n3| , is the outward xy normal.

To prove this result, vector geometry is used. Figure A-1 shows how the

system of vectors is set up, with a and b the first and second links of the robot

respectively.

v = a+ b (A.4)

The problem is to find the joint angles given only v, so a and b are not

known. Assuming knowledge of |a| and |b| however, it is possible to find a.b.

|v|2 = v.v (A.5)

= (a + b).(a + b) (A.6)

= |a|2 + 2a.b + |b|2 (A.7)

Hence,

a.b =
1

2
(|v|2 − (|a|2 + |b|2)) (A.8)

Using equation (1) it follows that,

a.v = |a|2 + a.b (A.9)

Since |a|2 + a.b is constant. It follows that a lies on the plane with normal

n := v
|v| and distance from the origin c := 1

|v|(|a|
2 + a.b). To find the possible
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positions the following simultaneous equations need to be solved,

x.n = c (A.10)

|x| = |a| (A.11)

For each x ∈ R. Conceptually it is clear that this is the intersection of a

plane and the boundry of a ball. So this is a nonlinear problem, with no

solutions, one solution or infinitely many solutions (lying on a circle) depending

on the value of c. Ideally we want to control the position of the elbow, so a

parametrisation of the circle is needed.

Consider the transformed problem defined by the equations,

x.ñ = 0 (A.12)

|x− ñc| = |a| (A.13)

Where ñ is normal to the plane x3 = 0. It follows that,

x2
1 + x2

2 = |a|2 − c2 (A.14)

This gives the radius of the circle to be parametrised. Which is then given by,

a(t) =
cv

|v|
+ (|a|2 − c2)

1
2 (sin(t)ñ1 + cos(t)ñ2) (A.15)

Where,

ñ1 =
v× n3

|v× n3|
(A.16)

ñ2 =
(v× n3)× n

|(v× n3)× n|
(A.17)

This provides all the necessary information to calculate the joint angles for a

2 link robot, given in Equations A.1, A.2, A.3. To find the joint angles for a

4DOF robot, as shown in Figure A-2, a constraint is chosen, specifically the

angle c makes with the horizontal. The correct position for link b is then

calculated using the method defined above. Here we know |a|, |b|, |c| and the

position vector v. .
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a
n

v

c

P

Figure A-2: Diagram of a 4DOF, 3 link robot.

Letting ψ denote the angle the gripper will be accessing the object from.

Then,

P = v + |c|(sin(ψ)n3 + cos(ψ)o) (A.18)

The angles α, θ and φ. Can then be found using the method defined above,

but since there are only three degrees of freedom in the remaining problem an

extra-constraint is needed, to ensure that a, b, and c are coplanar. Specifically,

x(t).
a× b

|a× b|
= 0. (A.19)

This happens when t ∈ {0, π}. In practise, t is chosen to be π, ensuring the

robots elbow is convex, as drawn in Figure A-2.
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Appendix B

Learning

B.1 Bags of Words for Text Analysis

The ‘bag of words’ model dates back to the 60’s [Maron and Kuhns, 1960] for

analysing text documents. The model is based on the simplifying assumption

that words in a document are unordered, and that a document can be

represented by the frequency of the words within the document alone.

Mathematically speaking, we assume that the each word is statistically

independent of other words in the document.

This idea relates to the problem in computer vision of object classification.

If an object can be represented by a set of low level features (words). Then a

bag of words model represents the object as the frequency of features contained

within it, eg. a car has two wheels and four doors, where as a bike has two

wheels and zeros doors. Analogously to the document classification problem,

the spatial location of the features are not taken in to account.

B.1.1 Supervised Learning

If we have a set of training data in whiich the classes are already identified,

building a model to represent the data is known as supervised learning. For

example, a set of articles along with their classes (Computer Vision, Robotics,

Machine Learning) are given to the algorithm, which should then be able to

accurately classify a new (previously unseen) document in to one of the classes.

There are several supervised algorithms known to the machine learning
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literature. This section covers the most basic bag of words model, known as

naive bayes. Suppose we have a set of features fi ∈ RN and a set of classes

C ∈ N. The problem is to find the probability of a class, given the set of

features. Bayes theorem obtains,

p(C|f1, f2, ..., fK) ∝ p(f1, f2, ..., fK |C)p(C). (B.1)

C fk
K

Figure B-1: The naive Bayes model.

The words are then assumed statistically independent and so Equation B.1

factorises in to,

p(C|f1, f2, ..., fK) ∝ p(C)
K∏
k=1

p(fk|C). (B.2)

Finding the maximum of Equation B.2 yeilds the class C most likely to

belong to the given words. The p(fk|C) likelihoods must be trained on a set of

examples beforehand. There are several ways to train this likelihood function

given a set of training images.A non-parametric way is to use density

estimation, which can be slow. The usual approach is to use kernel density

estimation (KDE) [Scott, 1992]. Given a set of L samples d1, ...,dL ∈ RN from

class C the probability density function p(·|C) is estimated as follows,

p(f |C) =
1

L

L∑
n=1

Kf (f − dn). (B.3)

The function Kf is a kernel function, usually a Gaussian or flat kernel. The

samples are the concatination of all training image descriptors. Using a

parameteric approach can less time consuming, memory intensive, and

depending on the method, made to work incrementally. These methods make

extra assumptions about the distribution of the features in an image. An

example of a parameteric estimation is to assume the features form a mixture of
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Gaussians distribution, the parameters of the model can be estimated using the

EM-algorithm.

In the more specific case of text analysis, the features are words, drawn from

a discrete distribution. Rather than a set of continuous features, fk, some words

will be equivalent in a document. The distribution p(fk|C) in equation B.2, has

a discrete support. Letting h ∈ NN denote a histogram, i.e. hn is the number of

words in the document that correspond with dictionary word n. Some of the

words in Equation B.2 then become equivalent, denoting the words in the

dictionary ω. We have,

p(ω|h, C) =
K∏
k=1

p(ωk|h, C)hk (B.4)

=
K∏
k=1

p(ωk|C)hk (B.5)

Using conditional bayes we have,

p(h|ω, C) =
K∏
k=1

p(ωk|C)hk
p(h)

p(ω)
(B.6)

Letting θk = p(ωk|C), we can rewrite the Equation as follows,

p(h|θ) =
K∏
k=1

θhkk
p(h)

p(ω)
(B.7)

Assuming a flat distribution over the words, and normalising gives the

multinomial distribution,

p(h|θ) =
K!∏K
i=1 hi!

K∏
i=1

θhii (B.8)

A class of documents is then represented by the parameters θ. Bayes

theorem is then used to find the probability of a class given a histogram over

the words in a document.

p(θ|h) ∝ p(h|θ)p(θ) (B.9)
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This version of naive Bayes , specific to discrete distributions is known as a

Mixture of Unigrams model.

B.1.2 Unsupervised Topic Modelling

Supervised classification algorithms are useful when labelled training data is

available to the system. This isn’t always the case, and it is more generally

desireable to give the program a set of features and allow it to distinguish the

seperate classes automatically. Bag of words methods exist to separate data in

this way, the most prominent in literature are Probabilistic Latent Semantic

Analysis (pLSA) and Latent Dirichlet Allocation(LDA). Both of these methods

are generative, meaning that the distribution of the data is modelled according

to the way it was generated. The complement of these methods are known as

discriminative models, where the means by which the data is generated is not

considered. Discrimintive models tend to be faster and are applicable to a wider

range of data sets, generative models are specific but more accurate.

Latent Dirichlet Allocation (LDA) was originally presented as a probabilistic

generative model to discover the latent ‘topics’ in text documents [Blei et al.,

2003]. The idea is that each document comprises a random mixture of topics,

and that each topic specifies a distribution that governs a collection of words

drawn at random from a vocabulary. LDA is an unsupervised approach to

classification, the dictionary of visual words is given, along with a number of

documents. The problem is to find the parameters of the multinomial

distributions that make up the objects.

One of the main problems of learning algorithms is that they need the whole

training set to build the model. If new data becomes available to learn from the

algorithm needs to recompute the model for the old and new data again. This

means that all of the data would need to be stored along with the model, which

is memory intensive. Also, recomputing models over large training sets can take

a long time, if new data is constantly made available the computation time

needed for the update can become intractable. To get around this problem,

algorithms are build which don’t need to recompute over all of the data, these

are known as incremental learning algorithms. Further, if the algorithm can be

made to update its model without needing to store all of the data, it is known
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(a) Hierarchical representation as used in LDA

α θ z w
N
M

β

(b) LDA Graphical Model

Figure B-2: The LDA data structure.

as an online learning algorithm. This section describes the Latent Dirichlet

Allocation method for learning, and the steps needed to make it operate Online.

Latent Dirichlet Allocation

Similarly to the mixture of unigrams model in Section B.1.1, the images are

represented as histograms over visual words. The histogram for each object is

assumed to be drawn from a multinomial distribution, but in this case we don’t

assume that each document contains a single object, but a proportion of the

features from each object.

The original paper on LDA [Blei et al., 2003] describes the model as a

generative process. We have M images containing a distribution of objects θ,

the distribution of objects are dirichlet distributed, conditioned by a parameter
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α,

p(θ|α) = Dir(θ|α). (B.10)

The distribution of objects represents the image, from this distribution a

particular object z ∈ N can be drawn. Once we have an object, the histogram

of words contained inside the object are assumed to be multinomially

distributed, conditioned on a parameter βz,

p(h|βz) = Mult(h|βz) (B.11)

This allows a single word to be drawn from the histogram for each of the N

words in the object. The parameter β is a table, with the number of rows and

columns equivalent to the total number of objects and words respectively. The

βz make up the rows of β.

Figure B-2a illustrates a dictionary of available words on the left, topics in

the centre and documents in the right. The words that appear in any given

document are drawn from dictionary following the distributions that the topics

dictate. This representation is usually known as hierarchical, as topics are

abstractions over words that dictate their structure or distribution.

Figure B-2b shows the graphical model of this generative process using plate

notation. The words w are the only observed variables, all of the other

parameters must be computed. In this case variational inference is used,

described in more detail in [Blei et al., 2003].

The graphical model shows the independence of variables, which is

equivalent to the following probability distribution,

p(θ, z,w|α, β) = p(θ|α)
N∏
n=1

p(zn|θ)p(wn|zn, β) (B.12)

Given the relationships just described there are only two free parameters, α

and η. The likelihood of all other parameters, including the observed data w, is
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given by

p(w, z, θ, β|α, η) =
K∏
i=1

p(βi|η)
M∏
j=1

p(θj|α)

N∏
k=1

p(zj,k|θj)p(wj,k|βzj,k). (B.13)

In which K is the size of the vocabulary, M is the number of documents, and N

is the number of words (this should be written Nj to show its dependence on

the choice of document). The key problem to solve for LDA is computing the

posterior of the latent variables, θ, z, and β; that is

p(θ, z, β|w, α, η) =
p(θ, z, w, β|α, η)

p(w|α, η)
. (B.14)

Unfortunately, estimating the normalising term

p(w|α, η) =

∫ ∫ ∑
z

p(w, z, θ, β|α, η) (B.15)

is intractable in general. Solutions are found using either Monte Carlo Markov

Chain or variational Bayes. The variational approach to estimating p(w|α, η) is

used for online LDA, so its salient points are outlined here — but see [Blei

et al., 2003] for details.

The variational Bayes approach to estimating p(w|α, η) uses a simpler

distribution — one that can be factorised. The probability that the ith word of

the vocabulary appears in document j, which include topic k, is

q(wjik) = q(zjk, θj, βi); which factorises into q(zji = k) = φjik;

q(θj) = Dir(θj; γj); q(βi) = Dir(βi;λi). The variational parameters, (γ, φ, λ), are

evaluated by minimising the Kullback-Leibler divergence between the

variational distribution and the true posterior, thus:

(γ∗, φ∗, λ∗) = argmax
(γ,φ,λ)

KL(q(θ, z, β|γ, φ, λ)||p(θ, z, β|w, α, η)).

An EM approach is used to find a solution. The E-step finds optimising values

of the variational parameters γ, φ for all documents d in a corpus D. The
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M-step updates λ, and also the model parameters α and η. In the E-step

optimal values for γ and φ are found by gradient descent. That is, iterate over

φjik ∝ exp {Eq[ln θjk] + Eq[ln βki]} , (B.16)

γjk = α +
∑
i

njiφjik (B.17)

until the average change in γjk is pleasingly small (about 10−5); nji counts the

number of times word i appears in document j. The expectations are then

Eq[ln θjk] = Ψ(γjk)−Ψ(
N∑
w=1

γjw) (B.18)

Eq[ln βki] = Ψ(λki)−Ψ(
K∑
w=1

λkw) (B.19)

in which Ψ is the first derivative of the logarithm of the gamma function (i.e.

the digamma function).

The M-step involves updating the λ, β, α and η functions. The variable λ

is updated as follows,

λki = η +
N∑
j=1

φjiknji. (B.20)

Where nji is the number of times that word i appears in document j. The α

and η parameters are updated using a Newton-Raphson procedure

α ← α− ρtᾱ(γt), (B.21)

η ← η − ρtη̄(λ). (B.22)

In this the ᾱ and η̄ are the step displacements, each the product of an inverse

Hessian with a gradient vector; see [Blei et al., 2003].

Online LDA

The online version of LDA is almost identical to the batch version just outlined,

see [Blei et al., 2003] for a more in-depth explanation than can be given here.
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The technique uses “mini-batches”, that is the new data is processed in chunks,

rather that one at a time; this mitigates noise. Only the M-step changes. In

particular the “topics” are estimated as a linear combination of the new value

just computed with previous values. If a corpus of D documents is available for

training, and a new batch of size S arrives:

λ̄kw = η +
D

S

∑
s

ntswφtswk, (B.23)

λ = (1− ρt)λ+ ρtλ̄. (B.24)

The mixture proportion, ρt, controls the influence of the new batch of data

compared with the current model. It is set so that new data has lower influence

as time progresses; in particular ρt = (τ0 + t)κ, for κ ∈ (0.5, 1] to ensure

convergence. A limitation is that D should be known in advance.
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