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Abstract


Single-frequency Global Positioning System (GPS) receivers do not accurately 

compensate for the ionospheric delays imposed upon GPS signals. This can 

lead to significant errors and single-frequency systems rely upon models to 

compensate. This investigation applies 4D (four-dimensional) ionospheric 

tomography to GPS timing for the first time. The tomographic algorithm, MIDAS 

(Multi-Instrument Data Analysis System), is used to correct for the ionospheric 

delay and the results are compared to existing single and dual-frequency 

techniques. Days during the solar maximum years 2002, 2003 and 2004 have 

been chosen to display results when the ionospheric delays are large and 

variable. Maps of the ionospheric electron density, across Europe, are produced 

by using data collected from a fixed network of dual-frequency GPS receivers. 

Results that improve upon the use of existing ionospheric models are achieved 

for fixed (static) and mobile (moving) GPS receiver scenarios. The effects of 

excluding all of the GPS satellites below various elevation masks, ranging from 

5° to 40°, on timing solutions for fixed and mobile situations are also presented. 

The greatest timing accuracies when using the fixed GPS receiver technique are 

obtained by using the highest mask. The mobile GPS timing solutions are most 

accurate when satellites at lower elevations continue to be included. 

Furthermore, timing comparisons are made across baselines up to ~4000 km 

and the ionospheric errors are shown to increase with increasing baseline. GPS 

time transfer is then investigated and MIDAS is shown to improve the time 

transfer stabilities of a single-frequency GPS system. The results are 

comparable to the dual-frequency time transfer after ~2 hours averaging time. 

Overall, the MIDAS technique provides the most accurate and most stable 

results (comparable to dual-frequency) for a single-frequency based GPS 

system. Ionospheric corrections (via MIDAS) may be broadcast to users 

nationally or via the internet for example, opening up the possibility of improving 

the accuracy and stability of single-frequency GPS systems in real-time. 

i 



Chapters at a glance


1.	 Introduction 1


Overview of thesis, objectives and outline 

2.	 GPS 6


Introduction to the Global Positioning System (GPS)

GPS error budget

GPS applications


3.	 Earth’s atmosphere, tomography and MIDAS 22


Introduction to the atmosphere

Plasmasphere, ionosphere, troposphere

Radio wave propagation, tomography and MIDAS


4.	 GPS Timing 41


Overview of GPS timing

Importance of time

Timing applications


5.	 Ionospheric tomography applied to GPS timing 52


Ionospheric tomography is shown to improve the GPS timing 
results for static and moving GPS receiver scenarios 

6.	 Elevation masks, tomography and GPS timing 77


The affects of GPS satellite positions on timing accuracies for 
static and moving receivers are shown 

7.	 Baseline comparisons and GPS time transfer with 101

tomography

Differences in the ionospheric delays, between stations 
separated by various baselines, are investigated, followed by 
GPS time transfer using MIDAS 

8.	 Conclusions and Future Work 126


A.	 TEC Maps 131


B.	 Publications 143


ii 



Table of Contents


Abstract ............................................................................................i


Chapters at a glance.......................................................................ii


Table of Contents...........................................................................iii


List of Figures ...............................................................................vii


List of Tables...................................................................................x


List of Abbreviations ....................................................................xii


List of Symbols .............................................................................xv


Acknowledgements ....................................................................xvii


1. Introduction .........................................................................1


1.1 Background......................................................................................... 1


1.2 Project Objectives............................................................................... 3


1.3 Thesis Overview.................................................................................. 3


2. GPS.......................................................................................6


2.1 The GPS............................................................................................... 6


2.2 The GPS Receiver ............................................................................... 8


2.3 GPS Satellites ..................................................................................... 8


2.4 The GPS Navigation Message............................................................ 9


2.5 Pseudorange and the GPS Solution .................................................. 9


2.6 Satellite Geometry ............................................................................ 11


2.7 GPS Error Budget ............................................................................. 13


2.8 Error Sources.................................................................................... 14


2.9 Accuracy and DGPS ......................................................................... 16


2.10 GPS Jamming and Backup............................................................. 16


2.11 GPS Applications............................................................................ 18


2.11.1 Satellite Navigation ...........................................................................................18


2.11.2 Synchronisation ................................................................................................19


2.12 Other GNSS ..................................................................................... 19


iii 



2.12.1 GLONASS ........................................................................................................19


2.12.2 Galileo...............................................................................................................20


2.12.3 Compass...........................................................................................................21


2.13 Summary ......................................................................................... 21


3. Earth’s atmosphere, tomography and MIDAS................22


3.1 Introduction to the Atmosphere....................................................... 22


3.2 The Plasmasphere ............................................................................ 24


3.3 The Ionosphere ................................................................................. 25


3.4 The Troposphere............................................................................... 27


3.5 Ground Environment (Blocking and Multipath) .............................. 28


3.6 Radio Wave Propagation and the Ionosphere ................................ 29


3.6.1 Reflected Radio Waves ......................................................................................29


3.6.2 GPS Signal Propagation through the Ionosphere ...............................................31


3.6.3 GPS Carrier Phase Advance and Group Delay ..................................................33


3.6.4 Dual-frequency TEC Measurements...................................................................35


3.7 Tomography ...................................................................................... 37


3.8 GPS and Tomography ...................................................................... 37


3.9 Ionospheric Imaging......................................................................... 38


3.10 MIDAS .............................................................................................. 39


4. GPS Timing........................................................................41


4.1 Importance of Time........................................................................... 41


4.2 Time, GPST and UTC ........................................................................ 41


4.3 GPS Time Transfer............................................................................ 44


4.3.1 GPS Time Transfer Overview .............................................................................44


4.3.2 Basic Pseudoranging Technique ........................................................................44


4.3.3 Direct-Reference Time Measurement.................................................................45


4.3.4 Common View and All in View Techniques.........................................................46


4.3.5 Carrier Phase Method.........................................................................................47


4.4 TWSTFT ............................................................................................. 48


4.5 Time Transfer  Discussion .............................................................. 50


5. Ionospheric tomography applied to GPS timing ...........52


5.1 Introduction....................................................................................... 52


5.2 Method............................................................................................... 56


iv 



5.2.1 Overview.............................................................................................................56


5.2.2 IGS/EPN Stations, Map and MIDAS ...................................................................56


5.2.3 Timing solution overview.....................................................................................57


5.2.4 Pseudorange ......................................................................................................59


5.2.5 Fundamental corrections and calculations..........................................................60


5.2.6 Least squares technique.....................................................................................63


5.2.7 Common Pseudorange Corrections....................................................................65


5.2.8 Ionospheric corrections and the five timing solutions..........................................66


5.3 Results............................................................................................... 69


5.4 Conclusions and Discussion ........................................................... 76


6. Elevation masks, tomography and GPS timing .............77


6.1 Introduction....................................................................................... 77


6.2 Method............................................................................................... 80


6.2.1 Overview.............................................................................................................80


6.2.2 GPS timing solution, pseudorange and corrections ............................................81


6.2.3 Multipath .............................................................................................................82


6.2.4 Satellite Geometry and DOP...............................................................................83


6.2.5 Elevation Masks..................................................................................................84


6.3 Results............................................................................................... 86


6.4 Conclusions and Discussion ........................................................... 98


7. Baseline comparisons and GPS time transfer with

tomography .................................................................................101


7.1 Introduction..................................................................................... 101


7.2 Method............................................................................................. 104


7.2.1 Overview...........................................................................................................104


7.2.2 GPS timing solution, pseudorange and corrections ..........................................105


7.2.3 Baseline comparisons.......................................................................................105


7.2.4 GPS time transfer .............................................................................................106


7.3 Results............................................................................................. 109


7.3.1 Baseline comparisons.......................................................................................109


7.3.2 GPS time transfer .............................................................................................116


7.4 Conclusions and Discussion ......................................................... 123


7.4.1 Baseline comparisons.......................................................................................123


7.4.2 GPS time transfer .............................................................................................124


8. Conclusions and Future work .......................................126


8.1 Conclusions .................................................................................... 126


8.2 Future work ..................................................................................... 129


v 



A. TEC Maps...............................................................................131


A.1 6th January 2002 ............................................................................. 132


A.2 13th February 2002.......................................................................... 133


A.3 11th May 2002 .................................................................................. 134


A.4 21st November 2002........................................................................ 135


A.5 13th December 2002........................................................................ 136


A.6 27th December 2002........................................................................ 137


A.7 27th October 2003 ........................................................................... 138


A.8 28th October 2003 ........................................................................... 139


A.9 29th October 2003 ........................................................................... 140


A.10 30th October 2003 ......................................................................... 141


A.11 31st October 2003.......................................................................... 142


B. Publications...........................................................................143


B.1 Journal Papers ............................................................................... 143


B.2 Conference Proceedings ............................................................... 143


References...................................................................................144


vi 



List of Figures


Figure 2.1 – GPS satellite constellation ............................................................. 7


Figure 2.2 – Trilateration: intersecting pseudoranges ...................................... 10


Figure 2.3 – Poor GDOP.................................................................................. 11


Figure 2.4 – Good GDOP ................................................................................ 12


Figure 3.1 – Thermal layers of the atmosphere................................................ 22


Figure 3.2 – Magnetosphere............................................................................ 24


Figure 3.3 – Ionospheric electron density profile.............................................. 26


Figure 3.4 – Blocking and multipath................................................................. 28


Figure 3.5 – Reflected radio waves.................................................................. 29


Figure 3.6 – MIDAS TEC map ......................................................................... 39


Figure 4.1 – Direct reference time transfer....................................................... 45


Figure 4.2 – Common view time transfer ......................................................... 46


Figure 4.3 – Two-way time transfer.................................................................. 50


Figure 5.1 – Map of Europe, showing the test stations and those used for


the inversion .............................................................................. 56


Figure 5.2 – Receiver clock bias referenced to the receiver clock bias from


CODE for GOPE 6 January 2002, for a quiet ionosphere (Kp 

index 0-1.3) using a fixed (a) and mobile (b) GPS receiver 

solution ...................................................................................... 70


Figure 5.3 – Receiver clock bias referenced to the receiver clock bias from


CODE for GOPE 21 November 2002, for a stormy ionosphere 

(Kp index 4.3-6.7) using a fixed (a) and mobile (b) GPS 

receiver solution......................................................................... 70


Figure 5.4 – Receiver clock bias referenced to the receiver clock bias from


CODE for VILL 13 December 2002, for a quiet ionosphere 

(Kp index 0.3-1.7) using a fixed (a) and mobile (b) GPS 

receiver solution......................................................................... 72


vii 



Figure 5.5 – Receiver clock bias referenced to the receiver clock bias from 

CODE for VILL 11 May 2002, for a stormy ionosphere (Kp 

index 0.7-6.7) using a fixed (a) and mobile (b) GPS receiver 

solution ...................................................................................... 72 

Figure 5.6 – Midday (12:00 UT) receiver clock bias referenced to the 

receiver clock bias from CODE (using the fixed receiver 

solution) for one quiet day (a) and one stormy day (b) from 

each month of 2002 at VILL, excluding September due to 

data quality ................................................................................ 73 

Figure 5.7 – Receiver clock bias referenced to the receiver clock bias from 

CODE for VILL before, during and after the October 2003 

ionospheric storm, using a fixed GPS receiver solution (a) 

and corresponding Kp indices (b) .............................................. 74 

Figure 6.1 – Map of Europe, showing the test station VILL and those used 

for the inversion ......................................................................... 81 

Figure 6.2 – Receiver clock bias referenced to the receiver clock bias from 

CODE for VILL 13 February 2002 (Kp index 1.0-3.7) using a 

fixed receiver solution at an elevation mask of (a) 10° (b) 20° 

(c) 40°. Dashed horizontal line at 80 ns aids the comparison 

between elevation masks........................................................... 86 

Figure 6.3 – Various results for 13 February 2002, at VILL, using a mobile 

receiver solution and an elevation mask of 20° (Kp index 1.0-

3.7), as follows: (a) Receiver clock bias referenced to the 

receiver clock bias from CODE, (b) the number of satellites in 

view and the TDOP, (c) the satellite elevation angles (the 

vertical dashed lines highlight the time periods of interest and 

the patches define the area more specifically), (d) the vertical 

positioning errors, (e) the horizontal positioning errors............... 90 

Figure 6.4 – Receiver clock bias referenced to the receiver clock bias from 

CODE for VILL 13-15 February 2002 (Kp index 0-3.7) using a 

mobile receiver solution at an elevation mask (a) 20° (b) 10°.... 92 

Figure 6.5 – Various results for 27 December 2002, at VILL, using a mobile 

receiver solution and an elevation mask of 5° (Kp index 3.3-

6.0), as follows: (a) Receiver clock bias referenced to the 

viii 



receiver clock bias from CODE, (b) the number of satellites in 

view and the TDOP, (c) the satellite elevation angles (the 

vertical dashed lines highlight the time periods of interest and 

the patch defines the area more specifically) ............................. 94 

Figure 6.6 – Results for October 2003: (a) Receiver clock bias referenced to 

the receiver clock bias from CODE for VILL 27-31 October 

2003 (Kp index 1.0-9.0) using a fixed receiver solution at an 

elevation mask of 15°, (b) MIDAS TEC map for 29 October 

2003 at 19:00 UT h .................................................................... 95 

Figure 7.1 – Map of Europe, showing the test stations and those used for 

the inversion ............................................................................ 104 

Figure 7.2 – Differences (described in Section 7.2.3) computed between (a) 

KOSG and PTBB and (b) ZECK and VILL for an 18 day 

period in March 2003 and the differences between (c) KOSG 

and PTBB and (d) ZECK and VILL for an 18 day period in 

February 2004 ......................................................................... 111 

Figure 7.3 – The difference between GPS Time and the clock at PTBB (a) 

and corresponding MDEV (b) .................................................. 118 

Figure 7.4 – The difference between GPS Time and the clock at ONSA (a) 

and corresponding MDEV (b) .................................................. 119 

Figure 7.5 – The difference between PTBB and ONSA (a) and 

corresponding MDEV (b) ......................................................... 122 

ix 



List of Tables


Table 2.1 – Error Budget.................................................................................. 13


Table 2.2 – Errors at the GPS Receiver........................................................... 14


Table 2.3 – Errors at the Ground Station ......................................................... 14


Table 2.4 – Errors during Signal Propagation .................................................. 15


Table 2.5 – Errors at the Satellite..................................................................... 15


Table 2.6 – GPS Application Overview ............................................................ 18


Table 3.1 – Layers of the Ionosphere............................................................... 26


Table 4.1 – GPS control stations ..................................................................... 42


Table 5.1 – RMS midday (12:00 UT) receiver clock bias (ns) referenced to 

the receiver clock bias from CODE (using the fixed receiver 

solution) for the quiet and stormy days selected from each 

month of 2002 at VILL, excluding September due to data 

quality ........................................................................................ 75 

Table 6.1 – RMS receiver clock bias (ns) referenced to the receiver clock 

bias from CODE (using the fixed receiver solution at VILL) 

with 5°, 15°, 20° and 40° elevation masks, for Geophysically 

quiet and stormy days selected from each month of 2002, 

excluding September due to data quality ................................... 87 

Table 6.2 – Standard deviation (ns) (using the fixed receiver solution at 

VILL) with 5°, 15°, 20° and 40° elevation masks, for 

Geophysically quiet and stormy days selected from each 

month of 2002, excluding September due to data quality ........... 87 

Table 6.3 – RMS receiver clock bias (ns) referenced to the receiver clock 

bias from CODE (using the fixed receiver solution at VILL) 

with 5, 15°, 20° and 40° elevation masks, calculated over a 

geophysically stormy period between 27 and 31 October 

2003........................................................................................... 96 

x 



Table 6.4 – Standard deviation (ns) (using the fixed receiver solution at 

VILL) with 5, 15°, 20° and 40° elevation masks, calculated 

over a geophysically stormy period between 27 and 31 

October 2003............................................................................. 96 

Table 7.1 – RMS of the differences for each baseline, for each of the four 

solution techniques, for March 2003......................................... 113 

Table 7.2 – Standard deviations of the differences for each baseline, for 

each of the four solution techniques, for March 2003 ............... 113 

Table 7.3 – RMS of the differences for each baseline, for each of the four 

solution techniques, for February 2004 .................................... 114 

Table 7.4 – Standard deviations of the differences for each baseline, for 

each of the four solution techniques, for February 2004........... 114 

xi 



List of Abbreviations


Term Description 

2D Two Dimensional 
3D Three Dimensional 
4D Four Dimensional 
ADEV Allan Deviation 
AVAR Allan Variance 
APC Antenna Phase Center 
ARP Antenna Reference Point 
AV All in view 
BBC British Broadcasting Corporation 
C/A Coarse Acquisition code 
CT Computed Tomography 
CDMA Code Division Multiple Access 
CME Coronal Mass Ejection 
CNSS Compass Navigation Satellite System 
CODE Centre for Orbit Determination in Europe 
Compass Chinese Global Satellite Navigation System 
CV Common View 
DCB Differential Code Bias 
DGPS Differential GPS 
DOP Dilution of Precision 
DSARC Defense System Acquisition and Review Council 
ECEF Earth Centered Earth Fixed 
ECI Earth Centered Inertial 
EGNOS European Geostationary Navigation Overlay System 
eLoran Enhanced LORAN 
EM Electromagnetic 
ESA European Space Agency 
EU European Union 
EUREF Regional Reference Frame Sub-commission for Europe 
EPN European Permanent Network 
FAA Federal Aviation Administration 
FDM Frequency Division Multiplexing 
FIA Federation Internationale de l'Automobile 
FM Frequency Modulation 
Galileo European Global Satellite Navigation System 
GDOP Geometric Dilution of Precision 
GEO Geostationary Earth Orbit 
GLONASS Russian Global Navigation Satellite System 
GMT Greenwich Mean Time 
GNSS Global Navigation Satellite System 
GOPE Ondrejov, Czech Republic (IGS Station) 
GPS Global Positioning System 
GPST GPS Time 
HDOP Horizontal Dilution of Precision 
HF High Frequency 
HMO Hermanus Magnetic Observatory 
ICD Interface-Control-Document 
IGRT IGS Time (rapid product) 

xii 



IGS International GNSS Service 
IGST IGS Time (final product) 
IRI International Reference Ionosphere 
KOSG Kootwijk, Netherlands (IGS Station) 
Kp Planetary Index of geomagnetic activity 
LEO Low Earth Orbit 
LORAN Long Range Navigation System 
LOS Line of Sight 
MDEV Modified Allan Deviation 
MEO Medium Earth Orbit 
MF Medium Frequency 
MIDAS Multi-Instrument Data Analysis System 
MJD Modified Julian Day 
MSAS Multi-functional Satellite Augmentation System 
NASA National Aeronautics and Space Administration 
NeQuick Ionospheric model 
NIST National Institute of Standards and Technology 
NNSS Navy Navigation Satellite System 
NOAA National Oceanic and Atmospheric Association 
NTP Network Time Protocol 
Nudet Nuclear Detonation 
ONSA Onsala, Sweden (IGS Station) 
P(Y) Precise Code 
PDOP Position Dilution of Precision 
PM Phase Modulation 
PPS Pulse Per Second 
PRN Pseudo-random Number 
PTBB Braunschweig, Germany (IGS Station) 
RINEX Receiver Independent Exchange format 
RMS Root mean square 
S4 Scintillation Index 
SA Selective Availability 
SatNav Satellite Navigation 
SNR Signal to Noise Ratio 
SoL Safety of Life 
SPS Standard Positioning Service 
SV Satellite Vehicle 
TAI International Atomic Time 
TDOP Time Dilution of Precision 
TEC Total Electron Content 
TECU TEC Units 
TIC Time Interval Counter 
TOA Time of Arrival 
TOT Time of Transmission 
TW Two-way 
TWSTFT Two-way Satellite Time and Frequency Transfer 
UDP User Defined Protocol 
UK United Kingdom 
UKSSDC UK Solar System Data Centre 
URE User Range Error 
US United States 
USNDS US Nuclear Detonation Detection System 
USSR Union of Soviet Socialist Republics 
UT Universal Time 
UTC Coordinated Universal Time 
VDOP Vertical Dilution of Precision 
VHF Very High Frequency 

xiii 



VILL Villafranca, Spain (IGS Station)

VLF Very Low Frequency

WAAS Wide Area Augmentation System

ZECK Zelenchukskaya, Russian Federation (IGS Station)


xiv 



�


�


�


�

�


c 

List of Symbols


Symbol Description 

P Pseudorange 
tr Time of reception (TOA) 
tt Time of transmission (TOT) 
brx Receiver clock bias (RCB) 
bsv Satellite clock bias 
Tsagn Sagnac bias 
Ttrop Tropospheric delay 
Tiono Ionospheric delay 

1 2∆ → t Small satellite P1 to P2 bias 
s 

∆1 t Single-frequency clock bias 
s 

∆ t Dual-frequency clock bias 
s 

→ Antenna position 
S 

' S Modulus of the satellite center of mass position vector 

∆ S Vertical component of the antenna offset 
v 

S
' Position vector of the satellite center of mass 

Ω Angular velocity of the Earth

� 
Bi 

Speed of light 

Amplitude coefficients of the harmonic
Ai , 

i

| r |

Rate of change of distance between satellite and receiver


∆r Uncertainty on the range 

∆t Uncertainty of the transmission time 
t 

→ 
i

Satellite velocity

S 

x, y, z Position coordinates 

ri
Receiver to satellite vector


r̂ Unit vector 
i

G Geometry matrix 

u x , u y , u z Components of r̂
ri ri ri i

Ω
 Rotation vector of the Earth


R
 Receiver position vector


Tπ / 2,0 ≈ 2.44 m Azimuth delay at sea level 

h Receiver altitude 

∆ ' t Satellite specific error 
s


r
∆ t Satellite relativistic effects 
s 

• Rate of change of distance (see S above) 
S 

xv 



N Electron concentration 
dl Ray-path to voxel intersection 
P0 Ionosphere-free pseudorange 
P1, P2 Pseudoranges obtained from precise P-code signal 
L1, L2 Recorded carrier phases of the signal 
λ Carrier wavelength 
∆x Positioning error 
ρ True geometric range between satellite and receiver 

∆ρ Pseudorange errors to each satellite 
c 

σ 2 Variance 
R 

trx1 , trx2 
Timing solutions of stations 1 and 2 

b , b RCB calculated by the timing solutions for stations 1 and 
rx1 rx2 

2 
b , b RCB calculated by the CODE for stations 1 and 2 

rx 1( CODE ) rx 2( CODE ) 

ωp Angular plasma frequency 
ωB Electron gyrofrequency 
e Charge of an electron 
ε0 Permittivity of free space 
me Rest mass of an electron 
µp, µg Phase and group refractive indices 
vp, vg Phase and group velocities 
∆Sp Carrier phase advance 
∆Sg Group delay 
tGPS GPS Time 
tA, tB Clock A and B 

2σ Allan variance 
y 

τ Averaging time 
yi ith of M fractional frequency values averaged over τ 

xvi 



Acknowledgements


A PhD is a memorable journey and I must say a big thank you to all of my family 

and friends who have supported me along the way. I am extremely grateful to 

my Mother and Father, Judith and Stephen Rose, my Grandparents, Charles 

and Joyce Coxall and my partner, Victoria Stewart. Their strength, 

encouragement and great humour have fuelled my dedication over the years. 

I wish to thank my supervisors; Cathryn Mitchell and Robert Watson for their 

outstanding friendship, advice and support throughout my time at the University 

of Bath. I would also like to thank Damien Allain and Jenna Tong for their 

general advice and tips that have helped along the way. I really value my 

colleagues and the light hearted and friendly atmosphere that we work in. 

I am grateful to the Engineering and Physical Sciences Research Council 

(EPSRC) for funding this project. I would also like to thank the International 

GNSS (Global Navigation Satellite System) Service (IGS) and European 

Permanent Network (EPN) for providing valuable data. I am also grateful to 

Matlab, which I used throughout my PhD and to AlaVar, which I used to verify 

the stability results. 

xvii 



Chapter 1


1. Introduction 

1.1 Background 

Since the dawn of time the human race has endeavoured to explore and 

navigate the Earth. Accurate timekeeping plays a fundamental role in the 

navigational accuracy and throughout history various tools have been used to do 

it. Natural bodies such as the Sun, Moon and the stars enable rough estimates 

of time and position to be found. The John Harrison clock enabled world 

exploration to be performed to a new degree of accuracy in the eighteenth 

century simply by providing maritime explorers with a reference, Greenwich 

Mean Time (GMT). 

More and more sophisticated navigation techniques were developed in the 

twentieth century, largely fuelled by the fight for military advantage during World 

Wars I and II. Radio waves were heavily exploited and their potential for all-

weather positioning was realised. Several systems were developed that covered 

vast and even global geographical areas. The United States (US) developed 

Omega in 1968. Eight antenna stations and very low frequencies (VLF) were 

sufficient to achieve accuracies of 3 to 6 km across the globe (Larijani 1998). 

In 1973 the Global Positioning System (GPS) was granted approval by the US 

Defense System Acquisition and Review Council (DSARC). This marked the 

dawn of the world’s first truly global and accurate positioning system. However, 

it did not become fully operational until 1995. The constellation consists of 

roughly 30 satellites and, conservatively, navigational accuracies to within 10 m 

are achievable. 

1 



Signals from at least four GPS satellites are required to compute a user’s four-

dimensional (4D) solution (longitude, latitude, altitude and time). However, the 

solution is corrupted by many error sources, which may be space-based, 

ground-based or due to the propagation path. Most notably, before the GPS 

signals reach Earth, they must travel through the ionosphere. This part of the 

atmosphere lies between roughly 80 and 1000 km altitude and imposes one of 

the largest errors upon a single-frequency GPS system. The effect is dependent 

upon many factors: solar activity, season and time of day are just a few. 

Every eleven years or so the radiation released by the sun increases and peaks 

at what is called solar maximum. This increase in solar activity may last for a 

couple of years and the rest of the so called ‘solar cycle’ may be denoted the 

solar minimum. Huge outbursts of radiation are released from the sun during 

solar maximum. These travel towards Earth and give rise to increased levels of 

free electrons and ions in the ionosphere. Correspondingly, the GPS signals 

suffer greater levels of refraction and retardation as they propagate through it. If 

left uncorrected, the ionospheric error may measure between 10 and 20 m or 

more. 

The cheapest and most common GPS receivers are ‘single-frequency’ (L1), 

which are widely used for satellite navigation and do not adequately compensate 

for the ionospheric delay. These GPS receivers may be found in purpose built 

navigational devices, cars, mobile phones and cameras to say the least. 

Standard single-frequency GPS receivers use the Klobuchar model (named 

after its creator) to correct for this error (Klobuchar 1987). The corrections are 

broadcast by the GPS satellites and are designed to offer at least 50% RMS 

correction. The model is largely a compromise between computational 

requirements and accuracy. It has been shown to behave poorly during stormy 

ionospheric periods and there are various techniques that better compensate for 

this delay. 

Dual-frequency GPS receivers make use of two GPS frequencies (L1 and L2) to 

measure the ionospheric delay. This is widely considered as the best method of 

ionospheric compensation. However, dual-frequency GPS receivers are much 

larger and more expensive than single-frequency receivers and they require 

calibration. 

2 



Another technique, known as ionospheric tomography, may be used to mitigate 

the ionospheric delay. Tomography consists of a collection of external 

measurements that propagate through the medium and are used to form a 

picture of the internal make-up of the structure. In this case, GPS data are 

collected from hundreds of globally distributed ground-based GPS receiver 

stations. These data, together with a suitable algorithm, are used image the 

ionosphere. Global, 4D ionospheric maps of electron density are produced in 

order to calculate the expected ionospheric delays. Since these systems actually 

monitor the ionosphere, they may be used in real-time and are shown to perform 

well under both stormy and quiet ionospheric conditions. 

The modern world now relies upon GPS for accurate timing and navigation. Just 

a few of the tens of applications are as follows: mobile phone networks, seismic 

activity monitoring, wildlife tracking, international banking, power systems and 

satellite navigation. 

1.2 Project Objectives 

Aim: to use ionospheric imaging to improve GPS timing 

Objectives: 

•	 compare existing GPS timing solutions to a new technique that uses 

ionospheric tomography 

•	 investigate the effects of various elevation masks on GPS timing 

accuracy 

•	 investigate the use of ionospheric tomography in GPS time transfer 

1.3 Thesis Overview 

The Global Positioning System (GPS) is described in Chapter 2. To start with, 

the GPS constellation is explained. This is followed by information about GPS 

receivers and the satellites themselves. Next, the navigation message 

(broadcast by the satellites) is introduced. The GPS solution and pseudoranging 

technique are then described. In continuation, the satellite geometry, the GPS 
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error budget and error sources are discussed. This leads to information about 

the accuracy of GPS and Differential GPS (DGPS). This is followed by a 

discussion regarding the vulnerabilities of GPS and hence jamming and the 

need to provide a backup. A great number of GPS applications are then 

presented, before the discussion of other Global Navigation Satellite Systems 

(GNSS), including GLONASS, Galileo and Compass. 

The Earth’s atmosphere and observation techniques are discussed in Chapter 3. 

Following an introduction to the thermal layers of the atmosphere, is information 

about electromagnetic waves and how the ionosphere may be used to our 

advantage when it comes to high frequency communications. The 

Plasmasphere is then introduced, followed by more extensive information about 

the ionosphere, its various layers and its electron density profile. The 

troposphere and ground environment are then discussed. The origins of 

tomography are outlined, followed by information about GPS and tomography. 

This leads to a subsection on ionospheric imaging and consequently MIDAS 

(tomographic algorithm used in this project). 

Information about GPS timing forms Chapter 4. Firstly, the importance of time is 

outlined. This is followed by descriptions of time (GPST and UTC) and includes 

information on how the GPS (and GPST) is managed/maintained, from a timing 

point of view. Finally, time transfer techniques are described in detail. 

Chapter 5 is the first of three results chapters. The 4D tomographic algorithm, 

Multi-Instrument Data Analysis System (MIDAS), is used to mitigate the 

ionospheric error in a single-frequency GPS solution. This technique is 

compared to three other single-frequency solutions: one with no ionospheric 

correction, one that uses the International Reference Ionosphere (IRI) 2001 

model, and finally one that uses the existing broadcast Klobuchar model. The 

MIDAS solution is also compared to a dual-frequency system. Maps of 

ionospheric electron density, across Europe, are produced for days during the 

solar maximum year 2002, and a famous storm in October 2003, in order to 

display results when ionospheric delays are large and variable. Results are 

presented for fixed (stationary) and mobile (moving) GPS receiver scenarios. 

MIDAS yields the most accurate single-frequency solutions, which are 

comparable to those from the dual-frequency system. 
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Chapter 6 builds upon the work presented in Chapter 5. MIDAS is now used, 

together with elevation masks, to improve the single-frequency GPS system. 

Signals originating from low elevation GPS satellites are often excluded from a 

GPS solution because they undergo greater multipath and atmospheric delays. 

However, their exclusion can degrade the overall satellite geometry, which can 

adversely affect the resulting solution. The aim is to find a balance between the 

choice of elevation mask and the knock-on effects of: multipath, propagation 

delays and satellite geometry. Three single-frequency solutions are compared 

(no correction, Klobuchar and MIDAS) together with the dual-frequency solution. 

Once again, days from 2002 and the October 2003 storm are investigated. The 

study focuses on Europe. Elevation masks range from 5° to 40°. MIDAS offers 

the most accurate and least variable single-frequency timing solutions. The most 

accurate results for the fixed receiver scenario are obtained using a 40° mask. 

For the case of the mobile receiver, a mask between 10° and 20° offers the best 

results. 

Chapter 7 marks a natural progression from the previous work. The aim is to use 

MIDAS to improve the time transfer capabilities of single-frequency GPS. 

Periods in March 2003 and February 2004 have been used to display results 

when the ionospheric delays are large and variable. Five European test sites, 

ranging from 320 to 3760 km apart, are used to investigate ten different time 

transfer links. In general, the time transfer accuracies and stabilities improve 

with decreasing baseline. The adverse effect of the ionospheric delay is 

distinctly noticeable for the solutions that either have no ionospheric correction 

or use the Klobuchar model. MIDAS provides the most accurate and most stable 

single-frequency time transfers. Although the dual-frequency system tends to 

outperform MIDAS, their results are not dissimilar. 

Conclusions from the main results and overall project are given in Chapter 8. 

The future directions of the work are also discussed. 

Maps of Total Electron Content (TEC) are shown for several days in 2002 and 

2003 in Appendix A. There are twelve maps per day, showing the TEC every 

two hours. Appendix B lists journal and conference publications. 
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Chapter 2


2. GPS 

2.1 The GPS 

The Global Positioning System (GPS) was granted approval by the US Defense 

System Acquisition and Review Council (DSARC) in December 1973. This 

marked the dawn of the world’s first truly global and accurate positioning 

system. 

The satellites were manufactured by Rockwell International and launched from 

1978 onwards. The system began with only four satellites and so could not 

provide global coverage. However, four satellites are sufficient to provide a user 

with three a dimensional (3D) positioning solution, assuming each satellite is 

visible simultaneously. A single satellite failure however would have significantly 

compromised the solution and many more satellites were required to fulfil the 

goal of global coverage. Inevitably therefore, the system developed into what it 

is today and its basic operation remains essentially identical. 

The GPS currently consists of approximately thirty satellites in Medium Earth 

Orbit (MEO), at an altitude of 20,200 km above sea level. They are restricted to 

six orbital planes, with typically four satellites in each (plus a spare), inclined at 

55° to the equator. This ensures that at least four satellites are visible from 

virtually any location on Earth at any given time. Four satellites enable the user 

to solve for their longitude, latitude, altitude and time. Fewer satellites may be 

used provided there are fewer unknowns. 
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Figure 2.1 – GPS satellite constellation 

GPS satellites have an orbital period of approximately 11 hrs 58 mins; passing 

the same point on Earth once every sidereal day. This is the time taken for the 

Earth to rotate about its axis ~23 hrs 56 mins 4 s. However, Choi et al., (2004) 

state that the satellite repeat period varies between satellites and may not be 

quite sidereal. They have found that the orbit repeat time is ~8 s earlier than 

sidereal. These findings are most relevant to high-rate GPS users, whom may 

achieve greater precision by taking this into account. 

A network of worldwide ground stations monitors and maintains the GPS. This 

network provides data that enables future satellite positions to be calculated; 

these are crucial for calculating the GPS receiver position. The master control 

station uploads this information to the satellites on a daily basis, along with the 

satellite clock corrections in order to maintain the system as precisely as 

possible. Finally, the satellite positions are transmitted to the receiver via the 

navigation message, which, along with four pseudoranges (explained shortly), 

allows the receiver’s position and time (x, y, z, t) to be estimated using a least 

squares technique. 
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2.2 The GPS Receiver 

A GPS receiver generally uses a pseudoranging method in order to compute a 

solution. This is where the ranges between the GPS receiver and the satellites 

in view are calculated using time of arrival (TOA) techniques. The time of 

transmission (TOT) from the satellite is recorded within the navigation message 

and the receiver records the time of arrival. More specifically, the GPS receiver 

locally generates an identical code to that which is broadcast from the satellites. 

The timing alignment will differ between the received code and the locally 

generated code. This time difference yields the pseudorange, or distance, 

between the receiver and satellite (Larijani 1998). Receivers rely on time 

difference observations from multiple satellites for the navigation/timing solution. 

2.3 GPS Satellites 

The GPS satellites broadcast two frequencies, L1 (1575.42 MHz) and L2 (1227.6 

MHz), which are generated synchronously. Dual-frequency receivers take 

advantage of this by computing a highly accurate ionospheric correction, since 

two frequencies allow the ionospheric group delay to be found (Parkinson and 

Spilker 1996). Most civilian receivers offer only single-frequency capabilities. 

Such products utilise the L1 signal and employ a broadcast model to correct for 

the ionosphere (Klobuchar 1987). This model was designed with efficiency in 

mind; using as little computational power as possible. Klobuchar (1987) explains 

how the solution required a compromise between; computational complexity, the 

number of available coefficients, the likely application areas for single-frequency 

receivers and the Total Electron Content (TEC) information at the time. There 

were eight coefficients available for the resulting ionospheric correction 

algorithm, which is transmitted within the satellite message. At the time of 

conception, they were typically updated once every ten days. In addition, there 

were a number of assumptions and approximations made in order to maintain 

the model’s simplicity. Notably, any improvements adding to the complexity 

failed to yield proportionally better results and thus the final model resulted in a 

typical 50% RMS ionospheric correction. This model continues to improve the 

accuracy of single-frequency GPS receivers today. 
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2.4 The GPS Navigation Message 

The navigation message is a vital part of the GPS solution. It provides the user 

with the data required to achieve a navigational solution, a geodetic survey or a 

time transfer solution (Parkinson and Spilker 1996). The GPS ground station 

control segment uploads the navigation data to each satellite everyday, or 

sooner if the user range error (URE) lies outside the specification. Subsequently 

the satellites broadcast the information to the user. 

The message is required to provide the user with the following: 

•	 The precise time at which the signal is transmitted (the TOT) 

•	 The precise satellite position at the time of transmission 

•	 Model data for single-frequency receivers to correct for the ionosphere, 

given the time and user location (Klobuchar model) 

•	 Time transfer data, by providing conversion parameters for GPS Time to 

Coordinated Universal Time (UTC) 

•	 Quality and accuracy of satellite data 

•	 Entire GPS constellation data, allowing the healthiest (most accurate) set of 

satellites to be included in the solution 

•	 Data to keep track of the P(Y) code from the C/A code. 

2.5 Pseudorange and the GPS Solution 

The successful acquisition of the GPS navigation message enables a GPS 

receiver to compute a solution using pseudoranging techniques. The so called 

pseudorange between a given satellite and a receiver essentially represents the 

separation between the two, in metres. This distance is calculated using time of 

arrival (TOA) techniques. By obtaining and hence subtracting the GPS signal’s 

TOA from the TOT, the propagation period remains. This value is then multiplied 

by the speed of light, resulting in the ‘pseudorange’ between satellite and 

receiver. A simplified example of solving for a GPS receiver’s 2D position using 

just three satellites is shown here: 
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Figure 2.2 – Trilateration: intersecting pseudoranges 

This method is known as trilateration. The three satellite positions are assumed 

to be known, together with their corresponding pseudoranges. Thus the receiver 

may effectively be thought to be located somewhere on the surface of an 

imaginary sphere, centered on each satellite. The distance between each 

satellite and receiver is represented by the radius. When the pseudoranges of 

the three satellites have been found, the receiver computes a first approximation 

of its 2D position. The overlapping pseudoranges intersect at the GPS receiver’s 

location, ignoring any errors. 

B represents the location of the GPS receiver. P1, P2 and P3 act as reference 

points and represent the positions of the satellites. The radius of each sphere is 

represented by r1, r2 and r3. Measuring r1 narrows the receiver position down 

to a circle. Measuring r2 narrows it down to two points, A and B. Further still, 

measuring r3 yields the receiver’s coordinates at B. Further measurements help 

to reduce the error. 

Additionally, as more and more satellites come into view, the receiver 

informatively selects the best group to use in the solution. The selection is 

determined by the geometric dilution of precision (GDOP), which illustrates 

which satellites are in the best relative positions for a good solution and those 
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which would provide a poor solution. Other important factors considered are as 

follows; multipath, the propagation path lengths through the ionosphere and the 

signal to noise ratio. Typically, satellites below an elevation angle of 15° may be 

excluded. The final solution is then found using a least squares method, 

resulting in the receiver coordinates and receiver clock bias. Of course the 

results are subject to several errors, which directly affect the quality of the GPS 

solution. 

2.6 Satellite Geometry 

The accuracy of a GPS solution greatly depends upon the ability to compensate 

for the errors imposed upon the signals during propagation, which can be 

directly affected by the geometric configuration of the satellites. 

The satellite configuration is measured by the Geometric Dilution of Precision 

(GDOP), which corresponds to the proximity of the GPS satellites to one 

another. A poor GDOP is recorded when satellites are close together; making it 

difficult to calculate a precise location. This is directly affected by the local 

environment. A satellite with a building blocking its line of sight (LOS) with the 

receiver will hinder the GDOP, lessening the potential angular separation 

available between other satellites. 

Figure 2.3 – Poor GDOP 
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Ideally the GDOP would be zero. But realistically a good GDOP occurs when 

satellites are spread-out, with wide angles of separation between them. 

Figure 2.4 – Good GDOP 

GPS receivers analyse different combinations of satellites and use the optimal 

configuration; the setup being recorded as GDOP. Thus the overall positioning 

accuracy may be estimated by multiplying the ranging accuracy by the GDOP. 
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2.7 GPS Error Budget 

Atmospheric and environmental affects are the main contributors towards the 

GPS error budget (Langley 1997). For single-frequency GPS users, the 

ionospheric error usually dominates (Parkinson and Spilker 1996). Selective 

Availability (SA), the intentional degradation of the signal, used to dominate, 

however, SA no longer exists and was removed in May 2000. SA, according to 

Langley (1997), typically produced an RMS range error of 24 m. A typical GPS 

error budget is as follows: 

ERROR SOURCE Typical RMS 
error [ns] 

Typical RMS 
range error [m] 

Satellite Vehicle Clock 7 2.0 
Antenna coordinates 10 3.0 
Ephemeris 8 2.5 
Troposphere (wet component) 2 0.7 
Troposphere (dry component) 22 6.7 
Ionosphere 23 7.0 
Multipath 4 1.2 
Receiver noise 3 0.9 
Receiver software 2 0.7 
Instrumental delays 2 0.7 

Table 2.1 – Error Budget 

These values vary slightly between sources, for example Kaplan and Hegarty 

(2006), nevertheless the important point to note is that the ionosphere imposes 

one of the most considerable errors and this project focuses on using 

tomography to overcome that error. The total tropospheric error is approximated 

using Equation 5.21. 
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2.8 Error Sources 

Error sources may be divided into four main segments, depending upon their 

place of origin. 

Errors at the Receiver 

1 
Antenna Phase 
Center Offset and 
Variation 

Offset between Antenna Phase Center (APC) and 
Antenna Reference Point (ARP). 
Note: signal measurement is referred to APC. 

2 
Local Environment 
Effects (Multipath) 

Reflections from nearby structures delay and 
weaken signals. Attenuation depends upon 
reflector material, polarisation & incident angle of 
the GPS antenna. 

3 Receiver Noise 
Unwanted electrical signals due to switching 
transients and radiating electromagnetic signals. 

4 Receiver Software 
Software, adopted constants and reference frames 
may vary between receivers. 

5 Instrumental Delays 
Delays are imposed by hardware, such as 
propagation delays due to cabling, and should be 
calibrated for. 

Table 2.2 – Errors at the GPS Receiver 

Errors at the Ground Station 

1 Solid Earth Tides Displace ground station coordinates. 

2 
Earth Rotational 
Deformation 

Caused by changes in polar motion, which alter the 
Earth’s centrifugal force and displaces the ground 
station position. 

3 
Plate Tectonic 
Motion 

Can displace ground station coordinates by several 
cm a year. 

4 Ocean Loading 
The ocean tide and sheer mass can perturb ground 
station coordinates. The closer to the ocean shore, 
the more affected. 

5 Atmospheric Tides 
The atmosphere’s varying pressure distribution 
produces an almost negligible affect. 

6 Antenna Eccentricity 
The measured distance between the GPS 
Receiver’s ARP and local geodetic markers 
(geographic reference points) may not be exact. 

7 Sagnac Must account for the rotation of the Earth during 
signal transit. 

Table 2.3 – Errors at the Ground Station 
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Errors during Signal Propagation 

1 Ionospheric Delay 

Free electrons, predominantly during daytime, 
perturb the GPS signal. Delay is proportional to the 
number of electrons along the signal path. Sunspot 
activity, altitude, local time and season can affect 
the electron density. 

2 Tropospheric Delay Refraction due to water vapour. 

3 Relativistic Effects 

Earth’s gravitational field causes the 
electromagnetic signal to curve in space-time, 
imposing a time delay; according to Einstein’s 
theory of General Relativity. 
Also, due to the satellite’s speed, its clock should 
run slower, however, it will also speed up due to a 
minute gravitational influence. The result is a 
slightly faster clock. 

Table 2.4 – Errors during Signal Propagation 

Errors at the Satellite 

1 
SV Center of Mass 
and Antenna Phase 
Center offset 

Ephemeris is calculated with respect to the 
satellites centre of mass, whereas signal 
measurements use the APC as a reference. An 
offset should hence be included if computing the 
range using GPS orbit information. 

2 
GPS Yaw Attitude 
Model 

This represents the variation in rotational motion 
about the Z-axis, since the APC does not lie 
exactly on it. If the yaw attitude changes, so does 
the APC, with respect to a receiver. 

3 
Signal Wrap Around 
Effect 

If the transmitter or receiver antenna orientation 
(reference direction) is changed, then there will be 
a change in the transmitted or measured phase. 
This affects carrier phase observables, which 
depend upon antenna orientations and the 
direction of line of sight. 

4 Satellite Clock Bias 
Satellite specific error and satellite relativistic 
effects. 

Table 2.5 – Errors at the Satellite 

To obtain the most accurate GPS results, many of the above errors should be 

estimated, measured or calculated. Though admittedly, several of the above are 

virtually small enough to be deemed negligible in many applications. More 

detailed definitions may be found in Byun (1998). 
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2.9 Accuracy and DGPS 

The initial specification for the C/A standard positioning service (SPS), or civilian 

service as it is more commonly known, gives an expected solution accuracy of 

100 m (Langley 1997). When SA was turned off, the accuracy measurably 

increased to between ~15 and 30 m. In contrast the higher chip-rate P(Y) signal 

can provide the military with approximately 30 cm accuracy. 

Aircraft landing and harbour navigation applications require high degrees of 

accuracy and may hence use a system called Differential GPS (DGPS). This 

involves a reference station at a fixed known position and a remote receiver. 

Since the location of the reference receiver is accurately known and the remote 

receiver is relatively nearby (tens of km or less), several errors common to both 

receivers may cancel. Atmospheric errors are almost completely cancelled; the 

closer together the receivers, the greater the accuracy. In addition, ephemeris 

and satellite clock errors are completely removed. Grewal et al., (2000) 

comprehensively describes DGPS. 

2.10 GPS Jamming and Backup 

GPS signals are highly susceptible to interference because they are so weak by 

the time they reach Earth. This is generally true for all GNSS (e.g. Galileo and 

others), due to the low powered nature of the signals and their propagation 

paths. Interference may be intentional; ‘jamming’ by an enemy perhaps, or 

unintentional; possibly due to nearby electrical equipment. GNSS are also 

vulnerable to space weather events. 

Thus there is a need for a backup; particularly as GPS (and GNSS in general) is 

used for more and more everyday applications. A ground-based system may be 

most suitable because it would depend upon different technology and 

propagation techniques when compared to space-based systems. As stated in 

Roth et al. (2005), an extensive study in the US confirmed that an Enhanced 

Loran (eLoran) system could be used for aviation, marine navigation and time 

and frequency applications, as well as disseminating UTC, essentially acting as 
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a GPS backup. Incidentally, Loran was developed not long after World War II 

and more information may be found in Hlavac and Stacey (2004). 

eLoran signals have a 3 km wavelength; ~10,000 times greater than GPS. 

Antennas inside buildings and those in urban areas are therefore able to receive 

such signals, which is an advantage over GPS. The US and other parts of the 

world, such as the United Kingdom (UK) and France, have conducted 

performance tests, yielding results comparable to the Global Positioning System 

(Roth et al. 2005). However, this is only for basic time and frequency 

applications and is not the case for high precision functions. eLoran looks set to 

be a crucial system for GPS backup. 

Laboratories that currently depend upon GPS for precise timing information may 

also employ a stable oscillator. If for example there is a GPS outage, then the 

oscillator will aim to maintain the delivery of accurate timing information e.g. If 

large timing errors are detected then the setup may allow for them to be rejected 

and the laboratory may then ‘coast’ on the oscillator until the condition is 

rectified (Geier et al. 1995). However, this is not always possible because the 

costs of a stable oscillator may be much higher than the cost of a simple GPS 

receiver. 

In comparison to the hardware based approach above, a cheaper, software 

based method may be used instead to help mitigate the effects of a GPS 

outage. Receiver Autonomous Integrity Monitoring (RAIM) algorithms may be 

applied to the GPS receiver internally, which automatically detects and removes 

failed satellites from inclusion in the timing solution (Geier et al. 1995). 
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2.11 GPS Applications 

GPS has provided the means for anyone to solve for their position, velocity and 

time at virtually any point on Earth. Inevitably the system has been exploited and 

applied to several areas, creating evermore GNSS applications. 

Application area Applications 

Civilian Navigation 

Military 
Precise navigation, weapon guidance systems, 
intelligence and reconnaissance 

Safety of Life 
Emergency services, search and rescue, life 
raft/jacket transponder 

Scientific 
Atmospheric science, geophysics and geology, 
oceanography, archaeology, wildlife monitoring 

Commercial and 
Industrial 

Telecommunications synchronisation, agriculture, 
cartography and surveying 

Transportation 
Fleet and asset tracking, vehicle theft tracking, 
land, sea and aircraft guidance, road pricing 

Sport and Recreational 
Exploration, accurate timing, competitor tracking 
and monitoring 

Table 2.6 – GPS Application Overview 

2.11.1 Satellite Navigation 

Modern vehicles are equipped with satellite navigation, or so called ‘SatNav’. 

These systems combine mapping data, with single-frequency GPS positioning, 

to provide navigational assistance to the user. Cars use a discretely mounted 

antenna and clever software, which ‘snaps-to-road’, to provide a suitable 

positioning output. Therefore, even if the GPS solution suggested your vehicle 

was 10 m offset from the current road, placing it in a field for example, the 

SatNav software would simply assume you were on the closest and most likely 

road. The end-user only witnesses the outcome of this process and so may 

unwittingly rely on not so accurate GPS solutions. 

It is worth bearing in mind that the forthcoming solar maximum could give rise to 

much larger positioning errors and the software may place the user on the 

wrong road entirely. Specialised SatNav devices for hiking, walking and marine 

exploration also exist. 
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2.11.2 Synchronisation 

Atomic clock-level accuracy may be achieved globally with the possession of a 

GPS receiver (Anon 2008a). For instance, the uncertainty of a caesium fountain 

is 1 part in 10-16 at an averaging time of 10 days (after 10 days of continuous 

operation), according to the datasheet of a Symmetricom product: see 

http://www.symmetricom.com/link.cfm?lid=7832. The free availability of such a 

precise time measurement is sufficient in the synchronisation of financial 

networks, communications systems and electrical power grids. Companies take 

advantage of this and ultimately save money, since owning an expensive atomic 

clock of their own becomes unnecessary. 

GPS is used to maintain synchronisation between the base stations for wireless 

telephone and data networks. More simply it is used to time-stamp transactions, 

allowing businesses to accurately record and trace such events. GPS Time is 

synchronised throughout the GPS satellite constellation and so no matter where 

you are in the world, employing GPS for timing purposes ensures global 

synchronisation, which is another reason why it is possible to accurately network 

computers worldwide. If signals arrived out of synch, data would become corrupt 

and transactions could be rendered invalid. 

2.12 Other GNSS 

2.12.1 GLONASS 

Though this project utilises only the GPS, the same principles may be applied to 

the Russian Global Navigation Satellite System, GLONASS, which was created 

in the mid-1970’s by the former USSR. GLONASS was originally intended solely 

for military use, however, it also offers civilian capabilities. The Russian Ministry 

of Defence control and operate the system, which shares similar design 

characteristics to GPS. 

The GLONASS constellation comprises 24 satellites divided equally between 

three orbital planes. They orbit every 11 hrs and 15 mins at an altitude of 19,100 
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km above the Earth’s surface, with an inclination of 64.8° to the equator. Ground 

stations upload-to and monitor the constellation. This system can also provide 

users with a 3D fix, as well as time information. In fact, the accuracies available 

to the Russian military and civilian users are much the same as those obtained 

from GPS (Kaplan and Hegarty 2006). 

Nevertheless, one major difference between GPS and GLONASS is evident by 

the manner in which the satellite signals are multiplexed. The former uses Code 

Division Multiple Access (CDMA), whereas GLONASS employs Frequency 

Division Multiplexing (FDM). The two GLONASS carrier signals L1 and L2 

occupy the frequency bands as follows; 1.597 GHz – 1.617 GHz and 1.240 GHz 

– 1.260 GHz respectively. FDM enables the C/A and P codes to be the same 

throughout, whereas the signal frequencies differ for each satellite. 

Both the GLONASS L1 and L2 signals are modulated by the P code. The C/A 

code modulates the L1 signal only. Unlike GPS, the GLONASS P code is freely 

accessible. This is particularly advantageous for time transfer because the P 

code pseudorange measurements are much more precise than both the GPS or 

GLONASS C/A code measurements and the ionospheric delays may be 

measured accurately using both signals (Foks 2004). 

2.12.2 Galileo 

The European satellite navigation system, Galileo, is another worldwide, space 

based radio navigation system, following GPS and GLONASS. Since the latter 

two systems are already operational, any problems they have encountered, 

common to space-based radio navigation systems, have essentially been 

overcome and hence provide the Galileo project with an unprecedented level of 

information. Such knowledge has enabled the design of Galileo to feature 

enhanced signals; allowing for easier tracking and acquiring of signals and 

increased resistance to interference (GSA 2008). 

In continuation, the European Union (EU), together with the European Space 

Agency (ESA) run and endorse the Galileo program. In the early 1990’s the EU 

realised the need for their own global positioning system; one which did not rely 

upon other nations that could stop the use of service at anytime. Galileo will be 
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under civilian control, which is a significant attraction in comparison to the 

militarily controlled American and Russian systems. 

Incidentally, 2005 witnessed the launch of GIOVE-A; the first Galileo test 

satellite. In March 2008, the second test satellite was launched; GIOVE-B. 

However, the constellation will not be complete for some years. In total there will 

be 30 satellites, restricted to three orbital planes and inclined at 56° to the 

equator. Each satellite vehicle (SV) should take approximately 14 hrs to orbit the 

Earth and all three planes will contain one spare satellite in case of failure. The 

constellation should enable between 6 and 8 satellites to be visible from any 

location on Earth, whilst ground stations may monitor and upload data to the 

satellites (Anon 2007). 

2.12.3 Compass 

The Compass Navigation Satellite System (CNSS) is China’s global satellite 

navigation system. It will consist of thirty MEO satellites and five geostationary 

Earth orbit (GEO) satellites. The latter will offer localised enhancements to the 

service for China-based users. Three GEO satellites are already in orbit and the 

first MEO satellite was launched in 2007 (Dong et al. 2008). 

2.13 Summary 

In conclusion, the accuracy of global navigation satellite systems (GNSS) looks 

set to improve. It is likely to be common place for modern receivers to use a 

combination of GPS, GLONASS and Galileo signals. This will increase the 

number of satellites in view at any given time and will improve the overall 

satellite geometry. This will result in a more dependable and reliable GNSS era, 

leading to improvements in positioning and timing accuracies. 
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Chapter 3 

3.	 Earth’s atmosphere, 

tomography and MIDAS 

3.1 Introduction to the Atmosphere 

The GPS satellites occupy a medium Earth orbit (MEO) set at an altitude of 

20,200 km. Thus the path of a GPS signal (from SV to Earth) passes through 

several layers of the atmosphere. Typically, the layers are either defined by 

temperature profile or electron density. The former is represented by Figure 3.1 

which shows the thermal characteristics of the Thermosphere, Mesosphere, 

Stratosphere and Troposphere. 

Figure 3.1 – Thermal layers of the atmosphere 
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However, since electromagnetic wave propagation is significantly affected by 

free electrons, the division of the atmosphere by electron density is most 

relevant here. Thus the atmosphere is divided into different layers and in 

conjunction with the path of a GPS signal, their names are as follows; the signal 

first passes through the ionised plasmasphere, followed by the ionised 

ionosphere and then the troposphere (affected by variable amounts of water 

vapour), before being subject to local environment effects at the Earth-based 

GPS receiver. These layers and effects are discussed in the following 

subsections. 
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3.2 The Plasmasphere 

The boundaries of the plasmasphere are dependent upon solar activity and so 

are constantly changing, but may be considered to range from ~1000 km – 

~19,000 km in altitude. The particle densities in the Plasmasphere range from 

104/cm3 at 1000 km and 10-100/cm3 at the outer edge (Tascione 1994). 

The plasmasphere is not considered to have a great impact upon GPS signals 

and in any case, ionospheric modelling techniques can be extended to include 

parts of this region. For instance, the altitude of the ionospheric model could be 

increased. Figure 3.2, courtesy of NASA (2008), shows the Sun-Earth 

environment, whereby ejections from the Sun are interacting with the Earth’s 

Magnetosphere. 

Figure 3.2 – Magnetosphere 
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3.3 The Ionosphere 

The ionosphere has considerably greater electron content than that of the 

plasmasphere and thus has the greatest atmospheric effect upon GPS signals. 

The lower and upper boundaries are as follows; ~80 km – 1000 km altitude. This 

layer imposes a time delay in conjunction with refraction and phase advances. 

The ionisation levels are time dependent, caused by solar radiation and the 

resultant delay is proportional to the number of electrons along the signal path. 

The radiation from the Sun ionises the neutral atoms and molecules in the upper 

atmosphere, resulting in free electrons during the daytime. This peaks in the 

early afternoon for mid-latitude areas, ~14:00 hrs local time. Such areas, 

together with low latitudes, are contained within the Earth’s closed magnetic field 

lines. In contrast high latitude regions are most exposed to the solar wind, which 

results in a greater influence over the ionosphere (Hargreaves 1992). This is 

because the geomagnetic field lines in this region (polar caps) are able to 

reconnect with the interplanetary magnetic field, see Figure 3.2. 

Sunspot activity and season can also affect the total electron content (TEC). 

Recombination and other electron-loss processes dominate the evening, as the 

Sun’s radiation decreases. During night-time the Sun is absent and only the F2 

layer of the Ionosphere remains; due to the increased time taken for 

recombination at this higher altitude. The other layers; D, E and F1 regions are 

negligible after local sunset (Tascione 1994). 
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Layer of the Ionosphere Description 

D-layer 

Low rate of ionisation since the layers above 
absorb most of the photons. High rate of 
recombination due to a large molecular density. 
Exists only in daytime. HF pass through, LF can be 
refracted. 

E-layer 
Higher rate of ionisation. Lower molecular density, 
hence slower recombination, enables layer to exist 
for longer. Daytime refraction of HF. 

F-layer(s) 
High rate of ionisation. Lowest molecular density. 
Thus F1 and F2 layers exist in daytime, and 
continue to exist at night, merging into the F-layer. 

The electron density profile of the ionosphere, with respect to altitude is shown 

by: 

Figure 3.3 – Ionospheric electron density profile 

Table 3.1 – Layers of the Ionosphere 
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3.4 The Troposphere 

The troposphere begins at sea level and reaches ~11 km above the Earth’s 

surface, whereby temperature decreases with height. It contains large amounts 

of water vapour, which refracts the GPS signals, causing a small group delay. 

There is also a dry delay component. Since the GPS signals are microwave in 

nature, the water vapour, or rain drops have a large delay effect causing errors 

ranging from 2.4 m for a satellite directly overhead and up to 25 m for a satellite 

near the horizon (Larijani 1998). 

It is very difficult to predict the weather here on Earth and hence the rain density 

in the troposphere is challenging to account for. The rain drops cause 

electromagnetic waves to undergo scattering due to refraction, diffraction and 

absorption; weakening the GPS signals (Parkinson and Spilker 1996). The 

chemical composition of the troposphere leads to atmospheric fading, which is 

slightly easier to predict since it is less variable compared to weather. Its 

characteristics include refraction and absorption primarily due to water vapour 

and oxygen. Thus, a GPS signal propagating through the troposphere will 

undergo some delay due to rain and atmospheric fading. This can be corrected 

for by pointing a radiometer along the line of sight towards each satellite; in 

order to measure the water vapour quantity and hence make a correction 

(Larijani 1998). 
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3.5 Ground Environment (Blocking and Multipath) 

The effects of blocking and multipath are dependent upon the physical location 

of the receiver. For instance, if it is placed near a tall building, then the GPS 

signals from satellites directly above would most likely reach the receiver. 

However, if a satellite is positioned on the other side of the building and close to 

the horizon then it’s’ signal will be blocked; unable to penetrate the building and 

reach the user. Any receiver placed at close proximity to buildings or 

obstructions of any kind, will receive multipath signals. These signals weaken as 

they are reflected off nearby obstructions, before reaching the user. The 

following figure illustrates blocking and multipath. 

Figure 3.4 – Blocking and multipath 
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3.6 Radio Wave Propagation and the Ionosphere 

Electromagnetic (EM) waves exhibit certain properties which allow them to 

propagate over extremely long distances. EM waves possess an electric field, 

which generates a magnetic field, in turn fuelling the electric field allowing for 

extensive propagation. Some EM waves are reflected by the ionosphere, whilst 

others propagate through it. The propagation characteristics are related to the 

frequency of the wave and the make up of the ionosphere. 

3.6.1 Reflected Radio Waves 

Figure 3.5 – Reflected radio waves 

Figure 3.5 illustrates the reflective abilities offered by the ionosphere; whereby 

signals within a particular frequency (High Frequency, HF) range may be 

transmitted around the curvature of the Earth. The HF band covers frequencies 

between 3 MHz and 30 MHz, which corresponds to wavelengths between 100 m 

and 10 m respectively (Hargreaves 1992). Since the ionosphere is a slowly 

varying medium and given the size of these wavelengths, the ionospheric 

medium is not considered to change very much in the distance of a few 

wavelengths and so it may be regarded as a stack of thin slabs. Assuming that 
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each slab is several wavelengths thick and by applying Snell’s law to each 

boundary, with refractive indices n1, n2, n3 etc., we can see why a radio signal is 

reflected back from the ionosphere, according to Hargreaves (1992) page 27 as 

follows: 

sin i = n sin i0 1 1 

n sin i = n sin i1 1 2 2 

n2 sin i2 = n3 sin i3 
(3.1) 

n(r −1) sin (r −1) = nr 

sin i = n0 r 

where n is the refractive index and i is the angle of incidence. 

The refractive index (n) of the ionosphere decreases with height. When n = 0, 

the ray is reflected and will return by a similar path, assuming the ionosphere is 

horizontally uniform. The ray actually returns to the ground by a process of 

continual refraction (bending), not reflection, within the ionosphere. However, by 

simplifying this process to a single reflection, accurate results are still obtained 

(McNamara 1991). 

ωN 

2 /ω 2 = 1− n 2 

ωN 

2 /ω 2 = 1− sin 2 i0 (3.2) 

ωN 

2 /ω 2 = cos2 i0 

ω =ω cos iN 0 

where ωN is the plasma frequency and ω is the radio signal frequency. 

During the day, radio waves are reflected back down to Earth by the E-layer of 

the Ionosphere. At night time, the transmitted signal effectively bounces off the 

F-layer. This may occur several times, albeit with signal degradation. 

Nevertheless, a message can be received many hundreds of kilometres away 

using this method. A famous example was led by Marconi in 1901; achieving the 

successful transatlantic transmission of a signal from the UK to Canada (Kirby 

and Comm 1995). Notably, the Ionosphere and Troposphere are the most 

significant parts of the atmosphere with respect to radio wave propagation. This 
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is due to the former’s charged state and the latter’s changes in weather and 

density. 

3.6.2 GPS Signal Propagation through the Ionosphere 

Radio waves (e.g. GPS signals) travel at the speed of light, c, in a vacuum and 

in the ionosphere their velocity, v, is modified by the refractive index, n, as 

follows: 

v = c/n (3.3) 

The ionosphere both slows and refracts GPS signals as they propagate through 

it. The magnetised plasma, which consists of ions and free electrons, is a 

dispersive medium. This is because n depends upon the frequency of the signal 

passing through it. The refractive index may be found using the Appleton 

formula (Davies 1990): 

n 2 = (µ − iχ )2


X

n 2 = 1− (3.4) 

2 4 

1− iZ − 
YT ± 


 

YT 

2 
+ YL 

2 
 

1/ 2 

2(1 − X − iZ )  4(1 − X − iZ )  

where X, Y and Z are as follows: 

X =ω2 

p /ω
2 , 

Y =ωB /ω , YL =ωL /ω , YT =ωT /ω , 

Z = v /ω 

The angular plasma frequency is represented by ωp and ω is the angular 

frequency. The electron gyrofrequency is represented by ωB and it’s longitudinal 

and transverse components are ωL and ωT respectively. The electron-neutral 

collision frequency is denoted as v. 
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In the E and F layers of the ionosphere, collisions between electrons and neutral 

atoms are negligible ( Z ≈ 0 ) because the neutral gas density is low. Absorption 

and the magnetic field are assumed to be negligible and so by taking the real 

part of n, Equation 3.4 may be simplified as follows: 

µ 2 = 1− X (3.5) 

At GPS frequencies, the higher order terms may be neglected and µ may be 

approximated as follows (Parkinson and Spilker 1996): 

1 
µ ≈ 1− X (3.6) 

2 

Recalling that X =ω2 

p /ω
2 and since f = 2πω we can re-write Equation 3.6 as 

follows: 

1ω2 1 f 2 

µ = 1− p = 1− p 
(3.7) 

2ω2 2 f 2 

where fp and f are the plasma and carrier frequencies respectively. 

2 e 
f p 

2 = 
2 

N (3.8) 
4π ε m0 e 

e = − 1.602 ×10 −19 C, the charge of an electron 

ε0 = 8.854 ×10 −12 F/m, the permittivity of free space 

me = 9.107 ×10 −31 kg, the rest mass of an electron 

N is the electron concentration in electrons m-3 

Substituting Equation 3.8 into 3.7, together with the above constants yields: 

40.3 
µ = 1− 

2 
N (3.9) 

f 

Note that 40.3 is a constant, with units of m3s-2 . 
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The phase and group refractive indices, µp and µg respectively, may be written 

as follows (Kaplan and Hegarty 2006): 

40.3 40.3 
µ p = 1− 

2 
N µg = 1+ 

2 
N (3.10) 

f f 

Substituting v = c / µ into the above yields the phase and group velocities, vp 

and vg respectively: 

c c 
vp = vg = (3.11) 

40.3 40.3 
1− N 1+ N 

f 2 f 2 

Therefore and with respect to GPS signals, the carrier phase is advanced and 

the navigation message and PRN codes are delayed during their journey 

through the ionosphere. 

3.6.3 GPS Carrier Phase Advance and Group Delay 

The true geometric range, ρ, between a GPS satellite, s and receiver, r, along 

the line of sight, is given by: 

s 

ρ = ∫1 dl (3.12) 
r 

Similarly, the measured range, S, is: 

s 

S = ∫ µ dS (3.13) 
r 

Thus the path length difference, ∆S, due to the ionosphere, is as follows: 

∆S = S − ρ 
s s (3.14) 

∆S = ∫ µ dS − ∫1 dl 
r r 
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The carrier phase advance, ∆Sp, is then found by substituting the phase 

refractive index from Equation 3.10 into 3.14: 

s s 40.3 
∆S p = ∫1− 

f 2 
N  dS − ∫1 dl (3.15) 

r   r 

Now by integrating along the line of sight path and by changing dS to dl, the 

carrier phase advance (in metres) is as follows: 

s
40.3 

∆S p = − 
2 ∫ N dl (3.16) 

f 
r 

Likewise, the group delay, ∆Sg, may be expressed (in metres) as: 

s
40.3 

∆Sg = + 
2 ∫ N dl (3.17) 

f 
r 

Noting that the Total Electron Content (TEC) may be expressed (in electrons 

m-2) as: 

I = ∫ Ndl (3.18) 

Then the carrier phase advance (Equation 3.16) and group delay (Equation 

3.17), respectively, may be re-written as: 

40.3 40.3 
∆S p = − 

2 
I and ∆Sg = 

2 
I (3.19) 

f f 
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3.6.4 Dualfrequency TEC Measurements 

There are two main positioning signals provided by the GPS: L1 (1575.42 MHz) 

and L2 (1227.6 MHz). The former is modulated with a coarse acquisition (C/A) 

code and a precise (P) code. The latter is modulated by the P code. 

On the L1 frequency, the C/A code (C1) is unencrypted and so the 

corresponding P code (P1) may be used by all GPS receivers. However, in 

order to use it, the C/A code must first be tracked, due to the high frequency of 

the P code. On the L2 frequency, the P code (P2) is encrypted and may be used 

by tracking it with the P1 code (Allain 2009). 

Most GPS receivers are ‘single-frequency’ (i.e. can only use the L1 signal). 

However, ‘dual-frequency’ GPS receivers, which are more expensive and 

heavier, can use both the L1 and L2 signals, as explained in the previous 

paragraph. Such receivers are used for high accuracy applications, such as 

geodetic positioning, surveying and also by the International GNSS Service 

(IGS), which is explained in Chapter 5. 

RINEX files (discussed in Chapter 5) are recorded by these receivers and 

contain these observables: 

P1 = P0 + 
I 

2 
+ε1 (3.20) 

f1 

P2 = P0 + 
I 

2 
+ε2 (3.21) 

f2 

L1 = P0 −	
I 

2 
+ n1λ1 (3.22) 

f1 

L2 = P0 − 
f

I 
2 
+ n2λ2 (3.23) 

2 

The pseudoranges from the precise P code are denoted by P1 and P2. The 

carrier phases of the signal (in metres) are given by L1 and L2. The ionosphere-

free pseudorange is P0, n is the integer ambiguity and λ is the carrier 

wavelength. The TEC and carrier frequency are given by I and f respectively. 

Differencing the code and phase ranges, gives two expressions for I: 
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P − P ε −ε1 2 1 2= I + (3.24) 
f 2 − f 2 f 2 − f 2 

1 2 1 2 

L − L n λ − n λ1 2 1 1 2 2= − I + (3.25) 
f 2 − f 2 f 2 − f 2 

1 2 1 2 

Using Equation 3.24, I may be found together with a noise term. Equation 3.25 

gives I with an offset term from the integer ambiguity, which is constant whilst 

the satellite is visible (ignoring sudden or large changes in cycle slips). Note that 

large cycle slips are easy detectable. By substituting Equation 3.25 into 3.24, I 

may be calculated. The weighted mean of the differences between Equations 

3.24 and 3.25 is used to find the offset between cycle slips. The weights are 

correlated with the signal to noise ratio (Allain 2009). 

The line integral of the electron density gives the TEC, which is derived using 

dual-frequency measurements. Images of the TEC may then be formed using 

tomography. 
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3.7 Tomography 

‘Tomo’ comes from the Greek word for a slice and the term ‘tomography’ 

represents the process by which a two dimensional image of a section or slice of 

a three dimensional object is obtained. The ‘tomograph’ is the apparatus and the 

‘tomogram’ is the picture (Anon 2008b). 

The process is performed by externally subjecting the 3D object to penetrative 

electromagnetic waves. The resulting representation of the internal make-up of 

the structure is obtained after an inversion of the line-integral measurements. 

Computed Tomography (CT) scanning is the most commonly used form of 

tomography and may be referred to as X-ray computed tomography (RCR 

2008). 

The technique was applied to radio astronomy in 1956, Bracewell (1956) 

presents the notion of creating a complete and full reconstruction from a finite 

number of scans in all directions. In 1988 tomography was first applied to 

ionospheric imaging (Austen et al. 1988). This is known as ‘ray tomography’ and 

is becoming increasingly common; providing images of the electron density in 

the upper atmosphere. 

3.8 GPS and Tomography 

GPS signals penetrate the atmosphere from well above the upper ionospheric 

boundary and progress all the way through the ionosphere before reaching the 

surface of the Earth. This is due to the altitude and setup of the GPS 

constellation; whereby the satellites orbit and encompass the whole globe. The 

vast array of fixed ground-based GPS receivers and LEO-based receivers thus 

allow the measurements to be recorded and communicated for computation. But 

why is this data important? Radio signal propagation is directly affected by 

electron density and so a comprehensive real-time understanding of the 

ionosphere is highly sought after. Two main effects of this phenomenon are 

described below. 
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Firstly, international high frequency radio communications links exploit the 

ionosphere, by using it to refract transmitted signals back down towards Earth 

over the horizon. The instantaneous path of refraction is dependent upon the 

electron density. Contrastingly, scintillation in the ionosphere can cause 

disruption to communications signals. Scintillation can impose an unknown time 

delay upon GNSS signals. The increased dependence upon such systems 

requires a more accurate technique to account for all of the effects imposed by 

the ionosphere. The following two resources provide a wealth of information 

regarding radio signals and the ionosphere, Davies (1990) and McNamara 

(1991). 

3.9 Ionospheric Imaging 

Certainly, ionospheric imaging unlocks the potential to accurately map and track 

the electron density across the world in real-time. As explained in Section 3.3 

The Ionosphere, the amount of electron density depends upon: the time of day, 

the season, the amount of solar activity and the geographic location. Of course 

there are other ionospheric transient parameters, but the most crucial to this 

application is the electron density. The integral of the density between each 

satellite-to-receiver path is known as the Total Electron Content (TEC), which is 

fundamental to ionospheric tomography. 

Initially, the ionosphere was imaged using 2D maps, yet as the research 

matured, 3D imaging became possible and was shown to produce a threefold 

improvement over the former method, see Meggs and Mitchell (2006). This 

study reinforces an earlier comparison between different TEC mapping methods 

for mid-latitude regions (Meggs et al. 2004). Several algorithms and techniques 

created to continuously monitor the ionosphere are reviewed by Bust and 

Mitchell (2008). This acts as a very valuable resource by not only reviewing the 

history, but the present state and future directions of ionospheric imaging as 

well. 
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3.10 MIDAS 

The foundation of this project is based upon a three-dimensional time-

dependent algorithm for ionospheric imaging using GPS (Mitchell and Spencer 

2003). This resulted in a Multi-Instrument Data Analysis System (MIDAS), able 

to essentially produce a 4D movie of the evolving electron-concentration 

distribution. A snapshot example of this system is shown by Figure 3.6. 

TEC 
Units 

Figure 3.6 – MIDAS TEC map 

Figure 3.6 represents the vertical total electron content (TEC) measured at 

20:00 hrs on the 30th October 2003; a snapshot of time during the so called 

‘Halloween Storm’. TEC provides a means of quantifying the number of 

electrons along a path between two points. The deep red patches indicate the 

highest amounts of TEC and are seen over North America and Northwest Africa 

at this time. The vast blue areas represent weaker amounts of TEC, whilst 

green-yellow patches portray medium-high TEC. More precisely the colours 

correspond to TEC Units (TECU): the larger the value, the greater the total 

electron content. Subsequent images would portray the movement of this 

plasma across the globe. 
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Note: 1 TECU = 1016 electrons/m2. 

Tomography based GPS corrections are a suitable technique to correct for 

ionospheric delays. This is because the electron densities are constantly 

changing and a predictive model is not sufficient to account for the transient 

nature of the ionosphere for precise applications. Thus constant monitoring and 

imaging will continue to mature. 

The MIDAS algorithm is explained by Mitchell and Spencer (2003) and Spencer 

and Mitchell (2007) . 
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Chapter 4


4. GPS Timing 

4.1 Importance of Time 

Scientific, commercial and industrial applications are increasingly taking 

advantage of GPS and it’s ability to disseminate time. The vast amount of 

applications doing so is a good measure of how important precise timing has 

become. Without it, many ‘everyday’ applications would suffer. Mobile phone 

base stations, data networks and electrical power grids are synchronised using 

GPS. Crucially, GPST is available worldwide and should not differ between 

locations. 

4.2 Time, GPST and UTC 

GPST began at 00:00 hrs on the 6th January 1980. This was in fact a Sunday, 

which is defined as Day 0 and marked the beginning of GPS Week 0. Monday is 

denoted by Day 1, Tuesday by Day 2 and so on until Day 6, Saturday. 

Thereafter, the GPS Week number is incremented at the beginning of every 

Sunday and the days continue to be numbered from 0 to 6. Therefore, every day 

since GPST began may be identified by a unique week number and specific day 

number. 

GPST is a continuous timescale and though similar to UTC it does not include 

leap seconds. UTC, an atomic timescale, has introduced leap seconds since 

1972 in order to keep it in approximate step with the Earth’s rotation (Parkinson 

and Spilker 1996). Leap seconds are usually added or removed on the 30th June 

or 31st December of any particular year. This is the fundamental difference 
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between GPST and UTC, since they run at the same rate. More information may 

be found from the following resources: Parkinson and Spilker (1996) and Borre 

(2007). 

The GPS Control Segment compares GPS Time to each SV clock and provides 

corrections as and when required. It consists of a network of strategically placed 

stations across the globe, monitoring and maintaining the whole system 

(including GPST) as follows: 

# Location Responsibility 

1 Falcon Air Force Base 
Colorado Springs, Colorado, USA 

Master Control Station 
& Monitor station 

2 Hawaii Monitor station 

3 
Cape Canaveral 
Florida, USA 

Monitor station 

4 
Ascension Island 
Atlantic Ocean, UK 

Monitor station & Ground antenna 

5 
Diego Garcia 
Indian Ocean 

Monitor station & Ground antenna 

6 
Kwajalein Island 
South Pacific Ocean 

Monitor station & Ground antenna 

Table 4.1 – GPS control stations 

The Master Control Station is responsible for the overall management of the 

network. It provides the GPS ephemeris data, which is a collection of SV 

computed positions, velocities, derived right ascensions and declinations of SV’s 

at specific times (FAA 2007). Information regarding the accuracy and 

consistency of the broadcast ephemeris data is presented in a 2000 study 

(Jefferson and Bar-Sever 2000). Furthermore, the network of monitoring stations 

check the; exact altitude, position, speed and health of each satellite twice a 

day; as the SV’s complete their orbit around the Earth. This allows the behaviour 

of each satellite’s orbit and clock data to be predicted. Such behaviour is 

maintained to within an acceptable limit by the GPS Control Segment (Parkinson 

and Spilker 1996). 

The ephemeris data is uploaded to the SV’s, where it is then re-transmitted to 

the user. Communication with each SV can be achieved due to the strategic 

locations of the stations. Transmissions are made using the ground antennas, 
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whilst they monitor the satellites from horizon to horizon. The Federal Aviation 

Administration (FAA) provides a valuable resource for this section (FAA 2007). 

The GPS Space Segment not only refers to the actual satellites, but also to the 

rockets that launched them. Relevant information related to the space segment 

and timing is provided here. Four atomic clocks are contained within each GPS 

satellite. Three act as a backup, whilst only one operates at any given time 

(Larijani 1998). Atomic clocks are used because they are very accurate, with an 

uncertainty of 1 second over tens or even hundreds of thousands of years. An 

error of 1 microsecond would result in a ranging error of ~300 m for example. 
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4.3 GPS Time Transfer 

4.3.1 GPS Time Transfer Overview 

Various methods of time transfer are discussed in this section. Time transfer is 

the process of comparing the time and frequency offset between clocks at two 

distant locations. Typically, a time measurement comes from a reference source 

(such as the GPS system) and is transmitted, or transferred, to a different 

location (or several locations) in order to synchronise a network or system. The 

GPS provides the global, reliable and precise time standard that is required to 

synchronise communications systems, computer networks and electrical power 

transmission lines for example. GPS is the source of the time. 

4.3.2 Basic Pseudoranging Technique 

GPS satellites are synchronised to GPST. Their orbits and ephemeris data are 

known and a GPS receiver records the local time of arrival (TOA) of a GPS 

signal. Each received navigation message includes the time at which the SV 

broadcast the signal, the time of transmission (the TOT). The TOA minus the 

TOT results in the time of transit, which yields the pseudorange. Thus, when the 

pseudoranges (or time differences) between several satellite-receiver paths are 

found, the positional solution at the receiver, as well as the time, may be 

computed. Note that receivers vary and may measure the GPS code and/or 

phase. 
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4.3.3 DirectReference Time Measurement


Figure 4.1 – Direct reference time transfer 

This is the simplest and least accurate method of GPS time transfer, but has 

global coverage. Suppose a GPS receiver is at a fixed, known position then 

GPST (or UTC) may be obtained by tracking just one satellite. To compute the 

solution, the receiver coordinates must be provided, together with data from just 

one GPS satellite. Specialised timekeeping GPS receivers with modified 

algorithms are available to do this. 

However, it is important to note that relying solely on just one GPS satellite is 

dangerous because it is not possible for the GPS Control Segment to remove a 

bad satellite from the constellation immediately. The process would in fact take 

between 5 and 45 mins (Geier et al. 1995). Geier et al. (1995) state that by 

using GPS, relative timing accuracies of the order of 1 to 10 ms are easily 

achieved. For example, Global System for Mobile Communication (GSM), which 

uses Time Division Multiple Access (TDMA), requires at least these accuracies 

to maximise the use of the allocated spectrum. 

Accuracies of a few tens of nanoseconds are typically achievable (Kaplan and 

Hegarty 2006). During the implementation of SA, accuracies within 100 ns were 

expected (Dana 1997). Please see Figure 4.1 and Lewandowski et al., (1999) 

for more information. 
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4.3.4 Common View and All in View Techniques 

Supposing two clocks (can be more), A and B, are each controlled by a GPS 

receiver station and are separated by some distance; a baseline, then given that 

GPS satellites broadcast GPST and ensuring both stations receive signals from 

the same specific satellite(s) simultaneously; a value for GPST can be obtained. 

This value is available at both locations and originates from the common 

signal(s). It is then communicated between the stations to compare their clocks. 

Ideally, it would be exactly the same at each station, but the signals succumb to 

several errors. 

However, the Common View (CV) technique is advantageous because the 

satellite clock error contributes nothing to the solution, as GPST drops out when 

comparing the difference between the two clocks. The differential accuracy is 

said to be ~10 ns or better according to Allan and Weiss (1980) and 

Lewandowski and Thomas (1991). 

Figure 4.2 – Common view time transfer 

In comparison, advances in acquiring clock parameters and precise satellite 

orbits have led to the replacement of CV by the All in View (AV) method (Petit 

and Jiang 2008). All available measurements, from all of the satellites in view, 

are used and averaged to obtain a reference time. In 2005, Weiss et al. (2005) 
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stated that if the errors in the satellite clock estimates were sufficiently small, 

then AV would have an important advantage and since 2006, the AV method 

has been used towards International Atomic Time (TAI) computation, rather than 

CV. 

AV enables time comparisons to be made globally, as the same satellites do not 

have to be observed simultaneously between stations. Furthermore, AV enables 

satellites at higher elevations to be used: GPS measurements originating from 

such satellites typically leads to a reduction in errors at the receiver, due to 

reduced ionospheric and tropospheric delays and less multipath (Weiss et al. 

2005). 

4.3.5 Carrier Phase Method 

The GPS signal carrier phase can be used as an alternative to using purely the 

C/A code measurements. Four simultaneous measurements are required for 

geodetic analysis, which include the code and phase measured at both carrier 

frequencies for each satellite observed (Dach et al. 2006). 

To quantify the carrier phase, a receiver will measure the difference between the 

phase of the received carrier signal (SV generated) and the phase of the locally 

generated signal (produced by the receiver), see Larson and Levine (1999). 

However, there is an uncertainty with respect to defining which carrier phase 

cycle is being tracked by the receiver, see Dach et al., (2003). This is known as 

the carrier phase ambiguity and may be solved for with the help of the much 

noisier code measurements. “Averaging the code data over some interval and 

fitting the resulting data as to best match the carrier phase data is the method 

most commonly used to resolve for this carrier phase ambiguity” (Brown et al. 

2000). Brown et al., (2000) state that accuracies using carrier phase methods 

have the potential to be more accurate than C/A code methods since the carrier 

frequency is ~1000 times greater, which provides an increased resolution. 

Defraigne and Petit (2003) state that there is an improvement by a factor of two 

when using a geodetic receiver, as opposed to using just measurements based 

on the C/A code, for long baselines e.g. a transatlantic time link. Geodetic 

receivers are capable of measuring the carrier phase. Over short baselines the 
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carrier phase technique is however comparable to measurements based solely 

on the C/A code (Defraigne and Petit 2003). 

4.4 TWSTFT 

Note that Two-way Satellite Time and Frequency Transfer (TWSTFT), or ‘Two-

Way’ (TW), does not use GPS. 

Imagine two stations once again separated by some baseline and suppose a 

geostationary telecommunications satellite exists ideally at the midpoint 

separating the two stations. Both stations communicate with this satellite to 

determine the absolute time difference between them and hence achieve a 

stable and accurate time transfer. This is achievable because propagation 

delays largely cancel-out due to symmetry; as the satellite-receiver path lengths 

are essentially common to each receiver, as stated by Takahashi et al. (1993) 

and Kirchner (1991). The Sagnac effect must also be accounted for. 

A satellite was first used in 1962 to carry out a timing comparison between the 

US and the UK. The satellite was called Telstar I, which was a low orbiting 

communications satellite (Steele et al. 1964). The satellite link achieved an 

accuracy of 1 µs and 20 µs for the complete link; which includes the Earth-

based stations and timekeeping institutions. Ever since, time transfer 

experiments have endeavoured to develop a reliable and inexpensive method of 

operation. Over time there has been rapid growth in satellite communications 

and costs have decreased (Kirchner 1991). 

In TWSTFT, time signals are transmitted (uploaded and downloaded) between 

the two stations (transceivers) via the communications satellite, hence the ‘two-

way’ element to this method. In contrast the aforementioned GPS methods are 

‘one-way’ techniques, since they only receive signals from the satellite. 

Therefore, an extra complication for TWSTFT is that both stations need 

transmit-receive hardware, which increases the cost. Time Interval Counters 

(TIC’s) are used at each station to take time interval measurements. A pulse 

from the local clock causes the TIC to start, and a pulse from the remote clock 

stops them. As the TIC begins it is simultaneously transmitted to the other 
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station. A 1PPS (Pulse Per Second) signal is typically used. Both stations record 

the time interval data, which is then exchanged and differenced. This technique 

can effectively be used in real-time, since there is usually a large bandwidth 

available, allowing for the data to be transferred concurrently with the 

transmission of timing pulses. The time interval data recorded at each station 

includes the propagation delays and the clock differences, as shown below 

(NIST 2008b): 

TIC(A) = A – B + TA + ts-A 
(4.1) 

TIC(B) = B – A + TB + ts-B (4.2) 

The time interval counter readings are represented by TIC(A) and TIC(B), the 

respective clock times are A and B and the propagation and Sagnac delays are 

represented by TX and ts-X respectively. The time difference between clocks A 

and B is found from Equations (4.1) and (4.2) by differencing the individual 

simultaneous TIC readings. The path delays tend to cancel, but not perfectly 

since the ‘transmit and receive’ equipment are physically different pieces of 

hardware and impose different delays. This is a major source of inaccuracy and 

instability for TWSTFT. Any satellite delay perfectly cancels if the same satellite 

transponder is used for both directions. 

Additionally, the up and downlink frequencies tend to be different. For example, 

for Ku-band communications the uplink and downlink frequencies are normally 

14 GHz and 11 GHz respectively and so the ionospheric delay will differ 

depending upon the mode; uplink or downlink. This is because the refractive 

index for the ionosphere varies with frequency, due to the ionised gases. The 

velocity (v) of propagation changes according to the refractive index (n), n = c/v, 

where c is the speed of light and v is related to frequency (f) and wavelength (λ) 

as follows: v = fλ. Thus different frequencies have different refractive indices. 

The tropospheric delay mostly cancels because it does not depend upon 

frequency (NIST 2008b). This technique improves signal-to-noise ratio (SNR) 

and multipath may be lessened using highly directional antennas. Hanson 

(1989) presents a wealth of information regarding TWSTFT. 
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Figure 4.3 – Two-way time transfer 

4.5 Time Transfer  Discussion 

TWSTFT is a good method of verifying the time transfers made using GPS 

common view, because it is independent and has low measurement noise 

(Davis et al. 1996). Kirchner (1991) states that since 1988 precisions of 100 ps 

and expected accuracies of at least 1 ns were achieved using domestic 

communications satellites for two-way time transfers between USNO (United 

States Naval Observatory) and NIST (National Institute of Standards and 

Technology). This is of course after having calibrated the station delays. 

For accurate time transfers, it is crucial to measure hardware delays and 

calibrate the equipment. Shemar and Davis (1999) have shown that delays 

incurred during transmission through cables, are more stable at lower 

frequencies. For example, significantly lower outdoor temperature coefficients 

are achieved when transmitting through cables at 70 MHz or L-band, rather than 

Ku-band. The clock stabilities of the stations involved also have a significant 

impact on time transfers: caesium clocks are known to exhibit relatively large 

instabilities when compared to Hydrogen masers. Clock noise due to caesium 

clocks noticeably impacts the Allan Variance calculations between laboratories 

(Davis 1996). 
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Clarke et al. (1999) show hardware, rather than GPS signals, are the limitation 

for short baselines e.g. only 5 m. The use of temperature controlled GPS 

antennae and cables, with low temperature coefficients should improve the 

situation. Over long baselines, such as 750 km for example, hardware delays 

must not be ignored, however Braasch and Dierendonck (1999) state that most 

errors are not under the control of the receiver, since they are typically related to 

the path of propagation, or the SV itself. Undeniably the most significant factors 

affecting the accuracy are; the ionosphere, troposphere, multipath and hardware 

delays, as stated by Petit and Thomas (1996). For example, the propagation 

paths may vary significantly over longer baselines. Another resource states how 

there are “inadequacies in the models of the ionosphere and troposphere” (NIST 

2008a). This reinforces the work of this project, which uses tomography to 

provide a more accurate method to represent the ionosphere. 

For frequency transfer, it is preferable to use the phase measurements, rather 

than the code observations (Dach et al. 2006). Carrier phase measurements 

yield much less noise, in contrast to using just the C/A code, and they are 

intrinsically less noisy. Note that phase multipath is around a thousand times 

smaller than code multipath (Clarke et al. 1998). 

GPS AV is now regarded as advantageous over CV. By making use of every 

GPS satellite in view for the calculations, direct comparisons can be made 

between stations across the globe, whereas CV requires that the stations 

observe the same satellite(s). AV also allows for improved dilutions of precision 

and reduced propagation delays and multipath (Weiss et al. 2005). 

Senior and Ray (2001) concur that more accurate time transfer results may be 

obtained by using carrier phase measurements and antenna cables with small 

temperature coefficients. Interestingly they also state that older generation dual-

frequency receivers cannot track the L2 signal during periods of high 

ionospheric activity. This is part of the motivation behind this project, whereby 

tomography is coupled with a single-frequency system (L1). 

GPS is used for many timing applications because it can provide atomic clock 

accuracy at the lesser cost of just a receiver. It is difficult to obtain accurate time 

from a cheap, portable single-frequency GPS receiver during stormy ionospheric 

conditions, however, MIDAS helps towards making that possible. 
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Chapter 5 

5.	 Ionospheric tomography 

applied to GPS timing 

5.1 Introduction 

The work in this Chapter is presented in Rose et al. (2009) and I would like to 

thank the co-authors for their general advice. 

The Global Positioning System (GPS) allows a user to solve for their position 

and time virtually anywhere in the world. GPS receivers use Time Difference of 

Arrival (TDOA) techniques to measure the time of signal propagation between 

each satellite in view and the receiver, together with the knowledge of the 

satellite positions, to compute a solution. When the GPS signals propagate 

through the ionosphere they are both slowed and refracted which directly affects 

the accuracy of the solution. This effect is proportional to the line integral of the 

ionospheric electron density, the Total Electron Content (TEC), which is 

dependent upon several factors: season, time of day, solar activity and latitude, 

to name but a few. Hence, an unknown, highly variable propagation delay is 

imposed upon the signals (Davies 1990). 

Civilians commonly use GPS receivers for satellite navigation. They operate on 

a single-frequency, the L1 channel and are now compact and affordable. 

However, their accuracy is hindered by the ionospheric delay, which is the 

cause of the largest error in a single-frequency solution (Langley 1997). This 

delay is largely removed by dual-frequency GPS receivers, which hence provide 

more accurate solutions and are used by the scientific community towards 

atmospheric monitoring for example. However, dual-frequency receivers are 
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more expensive than standard single-frequency receivers and in extreme 

ionospheric conditions, are susceptible to losses of lock on the L2 signal, which 

corrupts the GPS solution. 

There are ionospheric models available to single-frequency users that 

compensate for this delay. The GPS satellites broadcast the Klobuchar model 

coefficients via the GPS navigation message (Klobuchar 1987). This aims to 

provide at least a 50% Root Mean Square (RMS) correction for the ionospheric 

time delay. Similarly, ionospheric correction coefficients will be broadcast via the 

Galileo navigation message, for single-frequency users (Hochegger et al. 2000). 

Future development of the NeQuick ionospheric model (Radicella and Leitinger 

2001) will provide an alternative to that of Klobuchar (1987). 

Another model, known as the International Reference Ionosphere (IRI), is 

available (Bilitza 2001), but not in real-time to GPS users. Furthermore, 

geostationary satellite systems approximate the ionosphere to a thin shell (2D) 

and broadcast real-time ionospheric mapping information to complement the 

GPS solution. North America, Europe and Asia employ the: Wide Area 

Augmentation System (WAAS) (El-Arini et al. 1995), European Geostationary 

Navigation Overlay Service (EGNOS) (Hein 2000) and Multi-functional Satellite 

Augmentation System (MSAS) (Matsunaga et al. 2003) respectively. 

Single-frequency GPS receivers, coupled with the 4D tomographic algorithm, 

Multi-Instrument Data Analysis System (MIDAS) (Mitchell and Spencer 2003), 

present a cheaper alternative to dual-frequency receivers and a more accurate 

alternative to standard single-frequency receivers. Tomographic imaging allows 

for a realistic estimate of the ionosphere to be created, see for example the 

review by Bust and Mitchell (2008). This real-time mapping system, MIDAS, 

provides the ionospheric delay by producing electron density images (maps), 

which have been proven to provide more accurate representations of the 

ionosphere than 2D shell approximations (e.g. WAAS) which introduce mapping 

function errors (Meggs and Mitchell 2006). Smith et al. (2008) state that thin 

shell models fail to describe the TEC of a slanted ray path because they do not 

contain any information regarding the vertical structure of the ionosphere. The 

MIDAS maps show the time evolution of plasma across the ionosphere, allowing 

real-time corrections to be made. 
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A large network of GPS receivers is required over the area of interest in order to 

monitor and track the plasma. This is already in place within Europe through the 

International GNSS (Global Navigation Satellite System) Service (IGS) and the 

Regional Reference Frame Sub-Commission for Europe (EUREF) Permanent 

Network (EPN). The IGS and EPN are voluntary services and collectively 

consist of hundreds of fixed GNSS stations that provide high precision products. 

This study focuses on Europe and it is important to note that the behaviour of 

the ionosphere varies according to geographic location. Solar tides and 

horizontal geomagnetic field lines dominate the evolution of the ionosphere at 

low latitudes. Electron precipitation and the solar wind govern the ionospheric 

dynamic at high latitudes (Mitchell et al. 2005), whereas at mid-latitudes, neutral 

winds and the inner magnetosphere drive the dynamics (Kintner et al. 2007). 

The aim of this work is to show that the accuracy of a single-frequency GPS 

timing solution can be improved by using 4D tomographic mapping to reduce the 

ionospheric delay. Results are presented to this effect by including comparisons 

between timing solutions that are obtained using different ionospheric 

corrections. The figures show solutions for fixed and mobile receivers with: no 

correction, the Klobuchar model, the IRI 2001 model, the real-time MIDAS maps 

and dual-frequency corrections. The latter is taken as the benchmark timing 

solution because it essentially removes the ionospheric delay by providing a 

direct means of measuring it. 

It should be noted from the outset that these results represent the GPS solutions 

for a free-running GPS timing device, regardless of location and show how 

accurately the error may be bound. This is analogous to a navigational solution 

that is relative to the center of the Earth, as opposed to a solution that is relative 

to a known, fixed and local point. In systems such as the latter, Differential GPS 

(DGPS) for example, common errors are cancelled out, which greatly enhances 

the solution accuracy. The dual-frequency results presented here should not be 

compared to precise time transfer techniques, such as Two-Way Satellite Time 

and Frequency Transfer (TWSTFT), which can obtain 1 ns accuracy (0.1 ns 

precision) and is expensive to operate as it requires a dedicated satellite link 

(Ray and Senior 2003). This is because results are presented as instantaneous 

solutions for fixed and mobile GPS receivers and do not use common view 

geostationary or CV GPS satellites to synchronise two clocks at different 
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locations, nor are these results averaged over any lengthy time periods. 

Averaging over several days can improve the accuracy by smoothing-out noise 

in time transfers (Lewandowski and Azoubib 2000). Therefore, this research 

does not aim to compete with high precision time transfer techniques, but 

instead focuses on improving the accuracy of existing single-frequency GPS 

timing solutions that are globally obtainable from the standard GPS 

constellation. 

The results are in the form of a receiver clock bias; this is the offset between the 

GPS receiver clock and GPS Time (GPST), which is referenced to the receiver 

clock bias as calculated by the Centre for Orbit Determination in Europe (CODE) 

(Beutler et al. 1999). From this point on, the Receiver Clock Bias shall be 

referred to as the RCB. The CODE, an IGS Analysis Center, uses the GPS code 

and phase measurements, together with atomic clock references to calculate 

their clock solutions (Kouba and Springer 2001). This yields a precise timing 

solution at the test station and is taken as the ‘truth’, to give an independent and 

fair comparison between methods. These receiver clock products are computed 

daily and are freely available to download from the IGS (Dow et al. 2005). The 

RCB, calculated by each of the timing solutions, are presented relative to the 

bias as calculated by CODE. 

An offset exists between these solutions and the solution provided by CODE 

due to differences in filtering to remove multipath: the CODE solution is obtained 

using integer ambiguity resolution, whereas the presented timing solutions are 

obtained using phase filtering only (Rose et al. 2009). Ambiguity filtering is not 

used because it is not feasible for the timing methods presented in this thesis. 

The integer ambiguity is constant as long as the received power is sufficient. 

The presented timing solutions, for both the fixed and mobile cases, are 

calculated instantaneously at each sampling point, without relying on historic or 

averaged data and produce a solution without prior knowledge of the local 

multipath effects. The phase filtering yields the sum of the integer ambiguity and 

of the small multipath average, offering improvements over raw multipath error 

and noise. The offset is location/site specific and in the case of GPS, is repeated 

every sidereal day. 
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5.2 Method 

5.2.1 Overview 

The method described in this section is similar to the method presented by Allain 

and Mitchell (2009), which involves using tomography to correct for the 

ionosphere and measures its impact upon GPS positioning. In contrast this work 

is concerned with fixed and mobile single-frequency GPS receiver timing 

solutions, each of which incorporates a different ionospheric correction 

technique. 

In order to represent different geophysical conditions both quiet and stormy days 

have been selected for this study from the year 2002, along with a stormy period 

during October 2003. The selection was based upon Kp index, which ranges 

from 0-9 and gives a measure of the disturbance in the Earth’s magnetic field. 

The Kp values were obtained from the UK Solar System Data Centre 

(UKSSDC), see http://www.ukssdc.ac.uk/. 

5.2.2 IGS/EPN Stations, Map and MIDAS 
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Figure 5.1 – Map of Europe, showing the test stations and those used for the inversion 
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Data from dual-frequency GPS receiver sites across mainland Europe have 

been obtained from the IGS (Dow et al. 2005) and the EPN (Bruyninx 2004) for 

this study. The data at each site is recorded at 30 s intervals in Receiver 

Independent Exchange (RINEX) format (Gurtner 2002). Stations in close 

proximity to each other were not chosen because they fail to provide any 

additional data about the ionosphere for that region. As a result 74 stations 

located across Europe were used to create ionospheric maps. 

Two IGS stations, based in different areas of Europe, are used as test stations. 

Single-frequency GPS data from these sites are used to illustrate the 

performance of a single-frequency GPS receiver with: no ionospheric correction, 

the Klobuchar ionospheric correction, the IRI 2001 correction and finally the 

MIDAS correction. The dual-frequency data, available from these test sites, are 

then included in the resulting figures to enable direct comparisons between a 

wide range of GPS timing solutions. The data from these test stations does not 

contribute to the ionospheric mapping since independent single-frequency 

solutions are desired. The test stations are VILL (Villafranca, Spain) and GOPE 

(Ondrejov, Czech Republic). Figure 5.1 shows the location of the test stations 

and those used for the imaging (or ‘inversion’), by representing each site with a 

red and blue marker respectively. 

The tomographic grid is centered on Europe at 50°N 15°E. The longitude and 

latitude ranges from -44° to +44° in steps of 4°. The altitude ranges from 100 km 

to 1500 km in steps of 50 km. The MIDAS inversions use three empirical 

orthonormal functions, to represent the vertical basis functions and are 

computed from a range of Epstein functions. For a detailed description of the 

MIDAS tomographic algorithms please see Mitchell and Spencer (2003) and 

Spencer and Mitchell (2007). 

5.2.3 Timing solution overview 

GPS satellites are synchronised to GPST and their positions are provided by the 

IGS. The GPS receiver records the local Time of Arrival (TOA), or ‘time of 

reception’, of a GPS signal according to its clock. Each received navigation 

message incorporates the time at which the Satellite Vehicle (SV) broadcast the 

signal, the Time of Transmission (TOT). Thus the pseudorange between each 
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satellite and the receiver may be computed. However, it is not that simple. 

Parkinson and Spilker (1996) state that the pseudorange may be defined as the 

difference between the satellite clock time and the receiver clock time, but it is 

corrupted by the receiver’s clock bias which must be estimated and removed. 

Additionally, there are several biases and propagation errors which are imposed 

upon the GPS signal and system as a whole and so several corrections are 

applied to the pseudorange equation, before the ionospheric correction, that are 

fundamental and common to each of the GPS timing solution techniques 

presented in this thesis. 

If the GPS receiver is at a known position then the receiver clock bias, brx, can 

be obtained from a single satellite. The fundamental and common corrections 

(described in section 5.2.5) may be calculated from the outset using the known 

position. This yields the RCB and as there are typically several satellites in view, 

a more accurate brx value is obtained by averaging all of the values of brx for all 

of the satellites in view at each instant in time. 

In contrast, if the GPS receiver is at an unknown position it must track at least 

four satellites, to form at least four pseudorange equations, to solve for its 

position coordinates x, y, z and its RCB, using a least squares technique. The 

fundamental and common corrections must first be estimated using an 

approximation of the receiver coordinates. More accurate pseudorange 

equations may then be formed and applied to the least squares technique for a 

second time in order to output more accurate receiver coordinates. This process 

is repeated to obtain an increasingly accurate x, y, z and brx. 

The RCB represents the receiver clock’s offset from actual GPS system time. 

Therefore, once this value has been found, the GPST at the receiver’s location 

is known and may be converted to Coordinated Universal Time (UTC) using the 

specific broadcast conversion parameter. GPST is not converted in this study. 

This technique is employed by each of the GPS timing solutions, together with 

the common corrections and the only difference between them is the method by 

which the ionospheric delay is accounted for. Each solution yields the RCB at 

the receiver, which is then presented relative to the bias as calculated by CODE. 
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5.2.4 Pseudorange 

The pseudorange, P, is the difference between the satellite clock time and 

receiver clock time and in the idealised error-free condition is as follows, in 

seconds: 

P = tr − tt (5.1) 

where tr is the GPST at the receiver (time of reception) and tt is the GPST at the 

satellite (time of transmission). But it is also corrupted by the clock in the GPS 

receiver, the ‘RCB’, brx: 

P = (tr − tt ) + brx (5.2) 

Realistically, there are propagation errors, relativistic effects and various other 

biases and noise effects and so the pseudorange, as measured by the GPS 

receiver, becomes (in seconds): 

P = (tr − tt ) + brx + bsv + Tsagn + Ttrop + Tiono + ε (5.3) 

where Tsagn is the Sagnac bias, Ttrop is the tropospheric delay, Tiono is the delay 

imposed by the ionosphere, bsv is the satellite clock bias (accounts for the 

satellite specific bias and relativistic effects) and ε represents any unmodelled 

errors (which are ignored). Several corrections are applied to each of the timing 

solutions to account for the above delays or biases, but before they can be 

calculated several other fundamental corrections and calculations must be 

performed. 
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5.2.5 Fundamental corrections and calculations 

This section describes the fundamental corrections and calculations which are 

necessary in order to compute the GPS solution (Allain and Mitchell 2009). 

5.2.5.1 Differential Code Bias (DCB) 

The two codes, modulated onto the L1 and L2 frequencies, have different 

electrical path lengths at the transmitter/receiver, which results in the so called 

Differential Code Bias (DCB), which are specific to each satellite and receiver 

and are provided by the CODE. The satellites show a small P1 to P2 bias, 

∆1 

s 

→2 t , which gives a different clock bias for each frequency, f1 and f2. For time 

transfer, the absolute measurement of P1 and P2 is required. The single-

frequency clock bias, ∆1 

st is offset from the dual-frequency clock bias, 

∆ st (which is given in the ephemeris data) as follows: 

−2 

∆1 

st = ∆ st + −2 

f1 

−2 
∆1 

s 

→2 t (5.4) 
f − f1 2 

5.2.5.2 Antenna Offsets 

The ephemeris data are calculated with respect to the satellite’s centre of mass, 

whereas signal measurements are made with respect to the Antenna Phase 

Center (APC). These offsets are calculated by Schmid et al. (2007) for each 

satellite. The position of the antenna is found as follows: 

� S ' −∆ vS � ' S ≃ S (5.5) 
' S 

→ 
' where S is the antenna position, S is the modulus of the satellite center of 

mass position vector, ∆ vS is the vertical component of the antenna offset and 

' S is the position vector of the satellite center of mass. The horizontal satellite 
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antenna offsets are neglected because they are extremely complicated to take 

into account and have an insignificant impact upon the range. 

→ 

5.2.5.3 Satellite position, S and Time of transmission, tt 

The satellite positions are given by the ephemeris data and are presented in 

Earth-Centered Earth-Fixed (ECEF) frame coordinates at intervals of 15 min 

(Dow et al. 2005). The antenna coordinates are interpolated from the ephemeris 

(with the antenna offsets applied) at the TOT. Trigonometric interpolation, with 4 

harmonics in the ECEF frame, is used as follows: 

→ 4 → → 

≃ ∑ A sin i t Bi cos S i Ω + iΩt (5.6) 
i=1 

where S is the satellite position, i is the index of the harmonic, Ω is the angular 

velocity of the Earth, t is the time and Ai and Bi are the amplitude coefficients of 

the harmonic. 

However, tt is not explicitly recorded in the RINEX file and so iterative methods 

are used to extract it. It can be calculated provided the time of reception, tr 

(recorded in the RINEX file) and the range between the satellite and receiver r 

are known: 

tt = tr − r / c (5.7) 

where c is the speed of light and the range can be calculated from the receiver 

and satellite coordinates, R and S respectively. But since S is a function of 

transmission time an iterative approach is required to find it. A first 

approximation of the receiver coordinates, R, may be found using the least 

squares method, described later. 

The rate at which the distance between a GPS satellite and a ground-based 

receiver changes is: 
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i 

| r |< 800 ms −1 (5.8) 

The uncertainty on the range, ∆r, and the uncertainty of the transmission time, 

∆tt, are related as follows: 

i 

∆r =| r | ∆tt and ∆tt < c −1∆r (5.9) 

The computation converges quickly towards the solution because each iteration 

multiplies the uncertainty on the range by: 

i 

c −1 | r |< 2.7 ×10 −6 (5.10) 

The range, r, between a GPS satellite and a ground based receiver must lie 

between 20.2 × 106 m and ~26.6 × 106 m, ignoring any delays, as follows (in 

metres): 

r = (23.4 ± 3.2) ×10 6 (5.11) 

The aim is to achieve an uncertainty of ∆r < 0.1 m, which leads to the number of 

iterations required, 2, as follows: 

6ln(0.1/ 3.2 ×10 ) 
≤ 2 (5.12) 

i 

ln(| r | / )c 

Results with an uncertainty of approximately 0.04 m RMS and a maximum of 

0.15 m were achieved. 

→ 
i 

5.2.5.4 Satellite velocity, S 

Satellite velocities are found by multiplying the coefficients, found from the 

position interpolation, with the derivatives of the trigonometric functions, also 

used in the interpolation of the satellite positions: 
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→

i 4 → →


∑ iΩ − Ai sin i t Bi cos 
S ≃ Ω + iΩt (5.13) 

i=1   

→ 
i 

where S is the satellite velocity and the other terms are as described previously 

under the heading ‘satellite position’. The precise satellite positions and 

velocities are hence used to calculate the relativistic clock bias of the satellites 

and the Sagnac bias. 

5.2.6 Least squares technique 

A least squares technique is used to solve for the position (x, y, z) and clock 

bias (brx) of a GPS receiver. The method shown below originates from Parkinson 

and Spilker (1996) and is used by Allain and Mitchell (2009). 

If each satellite is given a number, n, and r is the range between satellite and 

receiver, then for n ≥ 4 satellites, taking a receiver of position R and satellite of 

position Si, with 1 ≤ i ≤ n, then the pseudorange between a specific satellite, i, 

and receiver, ignoring errors, is as follows (in metres): 

Pi = cbrx + ri (5.14) 

where c is the speed of light and ri is the range between satellite i and the 

receiver. 

By rewriting ri with the receiver to satellite vector, ri and its unit vector, r̂i and by 

using the position vectors of the satellite and receiver, Si and R respectively, 

the pseudorange is as follows: 

P = cb + r̂ iS − r̂ iR (5.15) 
i rx i i i 

The geometry matrix of the satellite constellation, G, is as follows: 
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where ur

x

i 
, ur

y

i 
and ur

z

i 
are components of r̂i and n represents the satellite 

number, for n ≥ 4. 

Now by re-arranging Eq. 5.15: 

r̂i iR − cb rx = r̂i iSi − Pi 
(5.17) 

and by using the same notation, G becomes: 

 x   r̂ iS − P  
   1 1 1  

G 
 z

y 
 
= 
 �

⋮ 
 

(5.18) 

   r̂ iS − P  
 cb rx   n n n  

The solution to Eq. 5.18 is then found by taking the generalised inverse of G, 

(GT G)−1 GT as follows: 

 x   r̂ iS − P  
   1 1 1 

 y  T −1 T  

 z  

≃ (G G ) G 
 �

⋮ 
 

(5.19) 

   r̂ iS − P  
 cb rx   n n n  

The receiver coordinates are initially unknowns, yet are needed to find a 

solution. Therefore, iteration is necessary and a guess, such as the centre of the 

Earth, must be given at the start. Four or five iterations will yield a solution. 
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5.2.7 Common Pseudorange Corrections 

The following corrections, from Parkinson and Spilker (1996), are applied to 

each of the timing solutions to account for the Sagnac effect, the tropospheric 

delay and the satellite clock bias. 

5.2.7.1 The Sagnac bias, Tsagn 

The Sagnac bias, Tsagn is calculated to account for the Earth’s rotation during the 

propagation time of the GPS signal. The receiver coordinates must be known (or 

approximated) beforehand. 

→ → → 

T ≃ c −1 Ω⋅ S× R (5.20) sagn 

Where c, Ω , S and R represent the speed of light, the rotation vector of the 

Earth, the satellite position vector and the receiver position vector respectively. 

5.2.7.2 Tropospheric delay, Ttrop 

The error imposed upon the GPS signal as it propagates through the 

troposphere, is approximated and corrected for as follows (wet and dry 

components): 

1.0121 × e −0.133 10 × −3 h 

Ttrop ≃ Tπ / 2,0 
sin φ + 0.0121 

(5.21) 

The azimuth delay at sea level, the receiver altitude and the elevation angle of 

the satellite are represented as follows; Tπ / 2,0 ≈ 2.44 m , h and φ respectively. 
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5.2.7.3 Satellite clock bias, bsv 

The satellite clock bias bsv accounts for the satellite specific error ∆ ' 

st and the 

satellite relativistic effects ∆r

st and is corrected for according to Kouba and 

Heroux (2001) as follows: 

c∆r

st = 2S S c 
−1 ⇒ cb sv = c∆ ' 

st + 2S S c 
−1 (5.22) 

• 
where S and S represent the distance between the satellite and center of the 

reference frame and the rate of change of this distance respectively. 

The product of these fundamental and common corrections results in a set of 

partially corrected pseudorange equations for each satellite-to-receiver ray path, 

which lays the foundation for each GPS timing solution. Only the method by 

which the ionospheric delay is to be accounted for remains. 

5.2.8 Ionospheric corrections and the five timing solutions 

The method of ionospheric compensation employed by each of the five timing 

solutions is now described below. 

5.2.8.1 Single-frequency solution and no ionospheric correction 

A single-frequency solution is obtained by extracting the P1 code from the 

RINEX file. This represents the first GPS timing solution and does not include 

any correction for the ionosphere (only the common pseudorange corrections) 

and illustrates the sheer magnitude of the ionospheric delay. 

5.2.8.2 Single-frequency solution and the Klobuchar model 

The second technique incorporates the Klobuchar model for ionospheric 

correction. This is a global model of the ionosphere and is represented by 8 
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coefficients, which are broadcast along with the GPS navigation message. 

Standard single-frequency GPS receivers use this model to correct for the 

ionosphere in real-time, via a receiver based algorithm. This solution portrays 

the current accuracy of such receivers. The data are recorded within the RINEX 

navigation file and are obtained from the IGS. Typically, a minimum of 50% RMS 

correction is obtained. Please refer to Klobuchar (1987) for more information. 

5.2.8.3 Single-frequency solution with IRI model 

The IRI 2001 model (Bilitza 2001) offers a global, 3D description of the electron 

density, given the solar activity and a particular date/time. This model is not 

available for real-time applications. Forward integration along slant paths of the 

model provide an estimate of the ionospheric delay imposed upon an L1 signal, 

using Eq. 5.23 below: 

40.3 
Tiono = 

2 ∫ Ndl (5.23) 
cf 

where c is the speed of light, f is the frequency of the GPS signal (L1, 1575.42 

MHz), N is the electron concentration, provided by the model and dl is the ray-

path to voxel intersection. 

5.2.8.4 Single-frequency solution with MIDAS 

MIDAS, together with the pure single-frequency solution, represents a new 

approach to GPS timing solutions. MIDAS was first presented by Mitchell and 

Spencer (2003) and has since been upgraded (Spencer and Mitchell 2007). 

Data is input from the IGS/EPN network of dual-frequency receivers, based 

across Europe, in order to produce 4D real-time ionospheric maps. The 

ionospheric (group) delay may be found as follows: 

40.3 
Tiono = 

2 ∫ Ndl (5.24) 
cf 
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where ∫ Ndl is the TEC in electrons per squared metre. The TEC is given by the 

line integral of the electron density between the satellite-to-receiver ray-path, 

which is provided by MIDAS. 

5.2.8.5 Dual-frequency solution 

Lastly, the dual-frequency solution is used to act as a benchmark. Two GPS 

signals with differing frequencies are used to measure the ionospheric delay, 

thus this method represents what is widely considered as the best ionospheric 

compensation technique, provided that accurate DCB data are obtained. 

The ionosphere-free pseudorange, called P0 here, is used to calculate the dual-

frequency solution. P0 is computed from four observables, P1 and P2, which 

represent the pseudoranges obtained from the precise P-code signal and L1 and 

L2, which are the recorded carrier phases of the signal, in terms of distance: 

P = P + T f −2 +ε1 0 iono 1 1 

P = P + T f −2 +ε2 0 iono 2 2 
(5.25) 

L = P −T f −2 + n λ1 0 iono 1 1 1 

L = P −T f −2 + n λ2 0 iono 2 2 2 

Where, ε1 and ε2 represent the noise, n represents the integer ambiguity and λ 

represents the carrier wavelength. Thus the following expressions for Tiono may 

be obtained from dual-frequency data: 

P − P ε −ε1 2 1 2= T + (5.26) 
f 2 − f 2 iono 

f 2 − f 2 

1 2 1 2 

L − L n λ − n λ1 2 1 1 2 2= − Tiono + (5.27) 
f 2 − f 2 f 2 − f 2 

1 2 1 2 

The first expression illustrates the ionospheric delay plus a noise term, whilst the 

second includes the integer ambiguity term, along with Tiono. Whilst a given 

satellite is visible, the ambiguity does not change. However, large and sudden 

changes can occur due to cycle slips, but these are detectable. Tiono is hence 

found by fitting Eq. 5.27 into Eq. 5.26 to yield: 
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P −T f −2 = P +ε (5.28) 1 iono 1 0 

L1 + Tiono f1 

−2 = P0 + n1λ1 (5.29) 

Fitting Eq. 5.29 into Eq. 5.28 then gives P0. This forms part of the dual-

frequency timing solution. 

5.3 Results 

Figures 5.2 to 5.5 inclusive show the diurnal variation in RCB for 

geomagnetically quiet and disturbed days selected from 2002, for GOPE and 

VILL. The minimum and maximum values for the Kp indices measured on each 

day are quoted in each corresponding figure caption. Kp values between 0-4 

and 5-9 represent geomagnetically quiet and stormy days respectively. For 

reference, TEC maps are shown for certain days in Appendix A. Each figure 

consists of two plots, (a) and (b), which represent the fixed and mobile receiver 

techniques respectively. These figures illustrate the performance of MIDAS in 

comparison to other GPS timing solutions and in increasing order, the general 

accuracy is: no correction, Klobuchar, IRI 2001, MIDAS and dual-frequency. 

Figures 5.2 to 5.5 inclusive show that the uncorrected solution gives the worst 

results because it always exhibits a significant peak around midday (as 

expected due to the Sun’s ionizing radiation). During the night-time this solution 

generally provides a more stable and reduced RCB, but this is not so evident in 

Fig. 5.5 and the other solutions always perform better. The Klobuchar solution 

also exhibits a diurnal peak, which is either positive or negative and represents 

the model’s tendency to undercompensate or overcompensate, respectively, for 

the ionospheric delay. This solution provides a steady night-time result and 

overall, a lower RCB than the solution with no ionospheric correction, but it is 

still highly variable. Generally, the IRI solution displays a small diurnal peak and 

despite its variability, it yields an improved RCB at night-time and daytime, with 

respect to the Klobuchar and uncorrected solutions. 
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Figure 5.2 – Receiver clock bias referenced to the receiver clock bias from CODE for 
GOPE 6 January 2002, for a quiet ionosphere (Kp index 0-1.3) using a fixed (a) and 
mobile (b) GPS receiver solution 
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Figure 5.3 – Receiver clock bias referenced to the receiver clock bias from CODE for 
GOPE 21 November 2002, for a stormy ionosphere (Kp index 4.3-6.7) using a fixed (a) 
and mobile (b) GPS receiver solution 

0 4 8 12 16 20 24 
−40 

120 

Time of day (UT h) 

GOPE, 21 November 2002, Fixed, Stormy 

No Correction 
Klobuchar 
IRI 2001 
MIDAS 
Dual Frequency 

−40 

120 

Time of day (UT h) 

R
e
c
e
iv

e
r 

C
lo

c
k
 B

ia
s
 (

n
s
) 

GOPE, 21 November 2002, Mobile, Stormy 

−40 

Time of day (UT h) 
0 4 8 12 16 20 24 

−40 

Time of day (UT h) 

0 4 8 12 16 20 24 

No Correction 
Klobuchar 
IRI 2001 
MIDAS 
Dual Frequency

R
e
c
e
iv

e
r 

C
lo

c
k
 B

ia
s
 (

n
s
) 100
 100


80
 80


60
 60


40
 40


20
 20


0 0 

−20 −20 

70




MIDAS offers the most accurate and least variable single-frequency solution 

throughout the whole day. It eliminates the diurnal peak and is highly 

comparable to the benchmark dual-frequency solution. This yields a virtually 

constant RCB of 5 ns, largely irrespective of the time of day. 

The solution characteristics described above are typical of both the quiet and 

stormy days. Figures 5.2a and 5.2b exhibit a negative-looking spike at around 

02:00 UT for the dual-frequency solution. This is due to losses of lock on both 

frequencies at the receiver and shows that the MIDAS solution performs better 

under these conditions, because it is not vulnerable to isolated losses of lock on 

the L2 signal. 

By comparing the results for a fixed receiver (see Figures 5.2a to 5.5a inclusive) 

to those for a mobile receiver (see Figures 5.2b to 5.5b inclusive), it is clear that 

the solutions become more variable and that the magnitude of the RCB 

generally increases. This is most evident for the following solutions: no 

correction, Klobuchar and IRI 2001, which is to be expected because the 

receiver is constantly moving and so an approximation of its position is regularly 

being made, which directly affects the accuracy of the fundamental calculations 

and corrections described in the Method. However, the MIDAS and dual-

frequency solutions continue to yield a RCB of typically 10 ns or less, whilst the 

stability of the latter solution is slightly better than that of MIDAS. 
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Figure 5.4 – Receiver clock bias referenced to the receiver clock bias from CODE for 
VILL 13 December 2002, for a quiet ionosphere (Kp index 0.3-1.7) using a fixed (a) and 
mobile (b) GPS receiver solution 
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Figure 5.5 – Receiver clock bias referenced to the receiver clock bias from CODE for 
VILL 11 May 2002, for a stormy ionosphere (Kp index 0.7-6.7) using a fixed (a) and 
mobile (b) GPS receiver solution 
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Figures 5.6a and 5.6b illustrate the RCB at 12:00 UT (midday) for one quiet and 

one stormy day, respectively, from each month in 2002, for each timing solution, 

at VILL. The RCB have not been included for September due to data quality. 

Table 5.1 summarizes the RMS midday RCB for both the quiet and stormy days 

selected from 2002 at VILL. These figures, together with Table 5.1, reinforce the 

fact that the solution accuracies, in increasing order are as follows: no 

correction, Klobuchar, IRI 2001, MIDAS and dual-frequency. The solution with 

no correction is the worst and MIDAS gives the best single-frequency GPS 

timing solution, which is virtually on par with the dual-frequency solution. 

Figures 5.6a and 5.6b also show a seasonal variation. The midday peak in RCB 

for the uncorrected solution tends to be larger in the autumn and winter months 

in comparison to the spring and summer months. The same is true for the 

Klobuchar and IRI 2001 solutions, which yield similar results to each-other. 

These models undercompensate at the beginning of the year (winter-spring) and 

compensate best during the summer, whilst overcompensating in the autumn. 

MIDAS and the dual-frequency solutions are very similar and the former 

performs slightly better in March 2002. According to the RMS values for the 

quiet days from Table 5.1, for each solution, MIDAS is shown to achieve an 86% 

and 37% RMS improvement with respect to the uncorrected and Klobuchar 

solutions correspondingly. The Klobuchar solution achieves its design goal of 

providing a minimum 50% RMS ionospheric correction. 
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Figure 5.6 – Midday (12:00 UT) receiver clock bias referenced to the receiver clock bias 
from CODE (using the fixed receiver solution) for one quiet day (a) and one stormy day 
(b) from each month of 2002 at VILL, excluding September due to data quality 
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Figure 5.7 – Receiver clock bias referenced to the receiver clock bias from CODE for 
VILL before, during and after the October 2003 ionospheric storm, using a fixed GPS 
receiver solution (a) and corresponding Kp indices (b) 
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GPS Timing RMS receiver clock bias (ns) 
Solution Quiet days Stormy days 
No correction 40.6 46.0 
Klobuchar 8.7 12.3 
IRI 2001 8.0 12 
MIDAS 5.4 6.4 
Dual-frequency 4.0 4.2 

Table 5.1 – RMS midday (12:00 UT) receiver clock bias (ns) referenced to the receiver 
clock bias from CODE (using the fixed receiver solution) for the quiet and stormy days 
selected from each month of 2002 at VILL, excluding September due to data quality 

Figure 5.7a shows the variation in RCB for several GPS timing solutions over 

the period 26 October (day 299 of 2003) to 1 November 2003 (day 305 of 2003) 

inclusive, at VILL, using a fixed receiver solution. Two Coronal Mass Ejections 

(CME) were detected on days 302 and 303 (Skoug et al. 2004). This led to 

global and intense geomagnetic storms, as reflected by the corresponding high 

Kp indices in Fig. 5.7b. VILL is in Spain and it is important to note that days 302 

and 303 mark the positive and negative phases of the storm respectively, across 

this region. Figure 5.7b shows that days 299 and 300 mark a depression in the 

ionosphere and are essentially quiet, which is reinforced by the corresponding 

low peak of about 35 ns in RCB in Fig. 5.7a, for the solution with no correction. 

In contrast, day 301 is moderately disturbed and with reference to Figures 5.2 to 

5.5 inclusive, a midday peak in RCB of about 55 ns for the solution with no 

correction is not unusual, as seen on day 301 in Fig. 5.7a. Days 304 and 305 

show the RCB after the storm. Figure 5.7a shows that the Klobuchar solution 

always overcompensates for the ionospheric delay and would indeed make the 

resultant timing solution worse on days 300, 303, 304 and 305, in comparison to 

the solution with no ionospheric correction. This was when the ionosphere is in 

negative storm and/or with very low TEC. A prolonged and highly variable RCB 

peak is seen in Fig. 5.7a on day 302, for the curve with no correction and is due 

to the intensely disturbed ionosphere, which exists not only during the daytime 

but continues deep into the night because of the positive phase of the storm. 

The same curve for day 303 exhibits a much lower peak than normal, at about 

22 ns and is due to the negative phase of the storm, which causes a depression 

in the ionosphere. Overall, the IRI model is unstable and exhibits significant 

midday peaks. In contrast, the MIDAS and dual-frequency solutions provide 

fairly stable and comparable solutions throughout the intense period. 
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5.4 Conclusions and Discussion 

A new single-frequency GPS timing solution that uses tomography to correct for 

the ionospheric delay has been presented and compared to various other GPS 

timing solutions in this thesis. Results were produced using fixed and mobile 

based receiver techniques for two IGS stations, VILL (Spain) and GOPE (Czech 

Republic). 

In increasing order, the general timing accuracy is: no correction, Klobuchar, IRI 

2001, MIDAS and dual-frequency. It should be noted that in certain 

circumstances the Klobuchar solution can produce a worse result than if there 

were no ionospheric correction at all, as seen by the extreme ionospheric 

conditions presented in Fig. 5.7a. MIDAS offers the best single-frequency 

solution because it is typically very stable and eliminates the large RCB seen at 

midday by the other single-frequency solutions. These characteristics are true 

for the fixed and mobile receiver solutions. The RMS RCB of the GPS timing 

solutions with no ionospheric correction, the Klobuchar model and the IRI model 

noticeably increase and become more variable under stormy conditions, as 

opposed to quiet conditions. This is in contrast to the MIDAS and dual-frequency 

solutions which continue to provide stable and accurate results under variable 

ionospheric conditions. 

Overall MIDAS is shown to achieve accuracies comparable to those from the 

dual-frequency system presented here and is in some cases more robust as it is 

not vulnerable to L2 losses of lock. For stormy days, MIDAS provides a stable 

GPS timing solution accurate to within 6.4 ns RMS, typically correcting 86% of 

the error imposed by the ionosphere (according to the solution with no 

correction). In comparison, the broadcast Klobuchar model exhibits a 73% 

reduction in the ionospheric error, but as Figures 5.2 to 5.7 inclusive show, it can 

be highly variable (over the course of a few minutes to a few hours) and 

unreliable in severe conditions. 
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Chapter 6 

6.	 Elevation masks, 

tomography and GPS timing 

6.1 Introduction 

The work in this Chapter is presented in Rose et al. (2011). I am grateful to the 

co-authors for providing general advice. 

Some GPS receivers, built specifically for timing, may rely on a single GPS 

satellite for a timing solution. When a GPS receiver’s position is already known, 

such a method is perfectly feasible. This however could lead to a highly 

unreliable solution, due to environmental, atmospheric and satellite specific 

errors. Contrastingly, for navigation receivers, when the receiver’s position is 

unknown, signals from at least four GPS satellites are required to compute the 

user’s 3D position and time. However, any errors in the measurements used to 

estimate the position will propagate into the timing solution. If navigation 

receivers are to be used for timing purposes then improved accuracies (relative 

to fixed timing receivers) may be obtained when placed in a fixed position over 

time; allowing the positional solution to improve over averaging and smoothing 

times of a few hours or more. Both fixed and mobile receiver scenarios are 

considered in this chapter and described later. 

Signals from GPS satellites at high elevations (or directly overhead at zenith) 

travel through smaller portions of the ionosphere on their journey towards Earth 

and so contribute smaller errors to the GPS solution, in contrast to signals from 

GPS satellites at low elevations (near the horizon). Low elevation signals travel 

through a larger part of the ionosphere, are subject to more multipath and are 
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hence delayed by a larger and unknown amount when compared to high 

elevation signals. Satellite geometry plays an important role with respect to a 

GPS navigation/timing solution and may be measured by the Dilution of 

Precision (DOP). A good DOP is most likely to occur when there are wide 

angles of separation between the satellites, allowing more accurate horizontal 

and vertical positioning solutions, and hence timing solutions, to be found. A 

poor DOP is most likely when there are small angles of separation between the 

satellites. Overall, the future combination of the Galileo and GPS constellations 

will lead to greater performance, enhanced satellite geometry and a more 

dependable GNSS service (Feng 2003). More signals and measurements will be 

available, resulting in more accurate GNSS solutions and could lead to improved 

ionospheric modelling techniques (Hernández-Pajares et al. 2003). 

The satellite geometry is investigated by enforcing various elevation masks, 

which begin at 5° and increase in steps of 5° up until 40°. Masks beyond this 

value are not employed due to the limited number of satellites available above 

40°. Signals from GPS satellites originating from below the value of the 

elevation mask are excluded from the solution. For a mobile GPS receiver, 

signals from both high and low elevation satellites are required to calculate a 

good positioning and hence timing solution. Therefore, there is a trade-off to be 

made between excluding extremely low elevation satellites whilst still including 

some in order to calculate an accurate position. In contrast and since fixed GPS 

receivers only require at least one GPS satellite to calculate a timing solution, 

signals from a high elevation satellite are desirable, as they would be expected 

to contribute less ionospheric and multipath errors into the solution. 

The aim is to minimise multipath, DOP and the ionospheric delay by finding a 

balance between the elevation mask and satellite geometry. Ionospheric 

tomography is also used towards producing a more accurate single-frequency 

GPS timing solution. In total, four separate GPS timing solutions are presented 

in the results, each with a different method of ionospheric compensation. The 

solutions are presented for fixed and mobile GPS receivers with: no ionospheric 

correction, the Klobuchar model, MIDAS and dual-frequency corrections. The 

first three are single-frequency solutions. The solution with no correction 

illustrates the sheer magnitude of the ionospheric delay, whilst the Klobuchar 

solution demonstrates the current capability of single-frequency receivers. The 

4D tomographic real-time mapping system, MIDAS, portrays the capability of an 
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ionospheric tomography system. The dual-frequency solution provides a direct 

means of measuring the first order ionospheric delay and is hence a benchmark 

solution. 
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6.2 Method 

6.2.1 Overview 

The method described in Chapter 5 is built upon in this chapter to investigate the 

relationship between satellite geometry and GPS timing accuracy (Rose et al. 

2009). Ionospheric tomography and elevation masks are the key focus points. 

Results are presented for fixed and mobile receiver situations. Allain and 

Mitchell (2009) use similar techniques to investigate the relationship between 

various ionospheric models and GPS positioning. 

Geophysically quiet and stormy days from the year 2002 and a stormy period in 

October 2003 have been included in this study in order to represent diverse 

geophysical conditions. As GPS signals propagate through the ionosphere 

during ‘quiet’ periods such as solar minimum (a period of reduced ionospheric 

activity) they are delayed by smaller amounts. This is in contrast to periods of 

high ionospheric activity, which is more common during solar maximum 

conditions and can lead to significant delays upon GPS signals. It is relevant to 

present results during both quiet and stormy conditions because they are both 

equally valid situations. 

Furthermore, it is important to illustrate the performance of MIDAS under 

challenging geophysical conditions. Days were chosen according to the Kp 

index, which measures the disturbances in the Earth’s magnetic field and ranges 

from 0-9. It is important not to depend solely upon the Kp index to indicate the 

local geophysical conditions, but simply to use it as a general indication that a 

higher Kp is more likely to correspond to an enhancement in the ionosphere, but 

perhaps not over the particular area of interest. TEC maps may be plotted over 

these areas to illustrate the local ionospheric activity. 
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Figure 6.1 – Map of Europe, showing the test station VILL and those used for the 
inversion 

Collectively, data from 74 IGS (Dow et al. 2009) and EPN (Bruyninx 2004) sites 

across mainland Europe are used in this study. These, together with MIDAS, are 

used to create the 4D real-time ionospheric maps, which are then employed to 

mitigate the ionospheric delay imposed upon the GPS signals. The tomographic 

grid ranges from -44° to +44° in steps of 4° in longitude and latitude and is 

centered on Europe at 50°N 15°E (see Figure 6.1). The altitude ranges from 100 

km to 1500 km in steps of 50 km. 

An additional IGS station was chosen as a test site; VILL (Villafranca, Spain), to 

demonstrate the performance of a single-frequency GPS receiver with: no 

ionospheric correction, the Klobuchar ionospheric correction and finally the 

MIDAS correction. Dual-frequency data are included in the resulting figures to 

enable direct comparisons between various GPS timing solutions. The IRI model 

is no longer included in these results as it is not available in real-time. 

6.2.2 GPS timing solution, pseudorange and corrections 

The timing solutions presented in this Chapter are described in Sections 5.2.3-8, 

along with the common/fundamental corrections and ionospheric compensation 

techniques. Similarly, each type of timing solution yields the RCB at the receiver, 
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which is presented relative to the precise bias as calculated by the Centre for 

Orbit Determination in Europe (CODE). 

Note that if there are less than 4 satellites in view, due to the enforcement of a 

high elevation mask perhaps, the mobile GPS timing solution presented here will 

fail. This method is used to demonstrate that high elevation masks are not suited 

to mobile GPS receiver applications, albeit that in reality if less than 4 satellites 

are in view GPS receivers may have some memory of their previous position 

and so may be able to continue providing a solution for a short while, however, 

as time passes, the more degraded and unreliable the solution would become. 

Incidentally, the combination of the Galileo and GPS constellations will make 

more satellites available at higher elevations at any given time. 

6.2.3 Multipath 

Various elevation masks are employed with the aim of limiting multipath, but 

whilst maintaining reasonably good satellite geometry for the calculations. It is 

beyond the scope of this thesis to focus on techniques that attempt to 

significantly remove multipath from a GPS solution. In precise GNSS 

applications, and due to reflections from the local environment, multipath may be 

considered as one of the most limiting factors (Axelrad et al. 1996). Multipath is 

similar from one sidereal day (23 h 56 m 04 s) to the next, due to the 

repeatability of the GPS satellite ground-tracks (Choi et al. 2004). Sidereal 

filtering takes advantage of this repetition and may be used to help reduce the 

errors due to multipath in GNSS solutions (Ragheb et al. 2007). For sidereal 

filtering, data is required from at least two consecutive orbits. Following the 

estimation of 1 Hz positions for day one, high-frequency noise (unrelated to the 

satellite-receiver geometry) is removed via a low-pass filter. These positions are 

then shifted by the sidereal period and subtracted from the estimated positions 

on the second day (Choi et al. 2004). Multipath may be identified in the results 

by analysing the GPS timing accuracies over consecutive days: if there is a 

significant error in timing accuracy, due to multipath, on one particular day then 

it should also be evident the following sidereal day. 
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6.2.4 Satellite Geometry and DOP 

GPS satellite positions may be described by azimuth and elevation angles, 

which are important when investigating the relationship between satellite 

geometry and GPS timing accuracy. The elevation angles at the horizon and at 

zenith are 0° and 90° respectively. North, East, South and West are represented 

by azimuth angles of 0°, 90°, 180° and 270° respectively. The ranging accuracy, 

multiplied by a dilution factor (that depends solely on geometry) may be used to 

estimate the positioning accuracy (Parkinson and Spilker 1996). 

The number of GPS satellites in view also plays an important role; the more 

satellites there are, the more likely a good DOP will be obtained. The Position 

DOP (PDOP) gives a measure of the positioning accuracy (vertical and 

horizontal), while more specifically, the Horizontal and Vertical DOP are 

measured by the HDOP and VDOP respectively. Time DOP (TDOP) may be 

used as an indicator of timing accuracy and the Geometric DOP (GDOP) 

includes PDOP and TDOP. In general, a DOP greater than 6 represents poor 

satellite geometry and the worldwide PDOP median is roughly 2.5 according to 

Parkinson and Spilker (1996). The satellite geometry directly impacts the 

accuracy of the horizontal and vertical positioning solutions. The vertical 

positioning errors are correlated with the timing errors (explained below) and are 

therefore presented in the results, along with the TDOP. Note that in the case of 

a fixed receiver, when its position is already known, a good DOP is not so 

crucial. The following shows the relationship between the satellite geometry and 

the positioning error (Parkinson and Spilker 1996): 

∆x = G−1∆ρ (6.1) c 

where ∆x is the positioning error, G is the geometry matrix and ∆ρ 
c represents 

the pseudorange errors to each satellite. The satellite elevation and azimuth 

angles θ and φ respectively, can be translated into the east, north, up coordinate 

frame. The geometry matrix, for four satellites, is shown below: 
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 cosθ1 sinφ1 cosθ1 sinφ1 sinθ1 1

 
cosθ sinφ cosθ sinφ sinθ 1



2 2 2 2 2

G =   (6.2) 
cosθ sinφ cosθ sinφ sinθ 13 3 3 3 3
  
cosθ 4 sinφ4 cosθ 4 sinφ4 sinθ 4 1 

The covariance matrix of the solution may be expressed as follows (in m2): 

(EDOP )2  
 2  

cov( solution ) =σ 2 
 

(NDOP )

(VDOP ) 

 

(6.3) R 2 

  
 (TDOP )2 

 

where σ R 

2 is the variance, EDOP and NDOP are the East and North DOP 

respectively, which make up the HDOP. The GDOP is the square root of the 

trace of the GDOP matrix and may be found as follows: 

GDOP = (EDOP)2 + (NDOP)2 + (VDOP)2 + (TDOP)2 (6.4) 

Negative correlation between vertical positioning errors and timing errors are 

shown by an example in Parkinson and Spilker (1996) that yields non-zero off 

diagonal terms in the covariance of position matrix. Accordingly, a positive 

timing error will typically correspond with a negative vertical positioning error and 

vice versa. In general, vertical positioning and timing errors largely correlate and 

with opposite signs. 

6.2.5 Elevation Masks 

An elevation mask of 20° means that signals from all of the GPS satellites below 

this value will be ignored and only signals from those above it will be included in 

the timing solution. The masks range from 5° to 40° in steps of 5°. Lower 

elevation masks are most likely to yield better DOP’s than high elevation masks. 

This is because there are fewer satellites in view at higher elevations, which 

reduces the likelihood of good angles of separations between them. High 

elevation satellite signals are less prone to multipath and ionospheric delays in 

comparison to signals originating from low elevation satellites. GPS satellite 
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elevation angles are linked to multipath (Jin and de Jong 1996), whereas 

satellite azimuth angles are not crucial to this investigation, but may aid towards 

specifically locating multipath sources if desired. 
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6.3 Results


GPS timing solutions for fixed and mobile GPS receiver situations are presented 

that employ various elevation masks and different ionospheric compensation 

techniques. The figure titles specify the: receiver name, date(s), type of solution 

(fixed/mobile, where relevant) and elevation mask. The figure captions include 

the minimum and maximum Kp indices measured for the particular period. 

These results are representative of solar maximum conditions. For reference, 

TEC maps are shown for certain days in Appendix A. 
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Figure 6.2 – Receiver clock bias referenced to the receiver clock bias from CODE for 
VILL 13 February 2002 (Kp index 1.0-3.7) using a fixed receiver solution at an elevation 
mask of (a) 10° (b) 20° (c) 40°. Dashed horizontal line at 80 ns aids the comparison 
between elevation masks 
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Figures 6.2a-c represent the diurnal variation in RCB for 13 February 2002, at 

VILL, using the fixed receiver solution. A dashed horizontal line is fixed at 80 ns 

RCB to help compare the reduction in the diurnal peak of RCB when using a 20° 

or 40° elevation mask, as opposed to a 10° mask. These figures imply that the 

accuracy of a GPS timing solution, for a fixed receiver, improves as satellites at 

lower elevations are excluded. The ‘no correction’ curves effectively illustrate the 

magnitude of the ionospheric error and this clearly reduces as the elevation 

mask increases from 10° to 40°: the curve peaks at approximately 80 ns in Fig. 

6.2a and at roughly 55 ns in Fig. 6.2c respectively. Table 6.1 summarizes the 

RMS RCB for both the geophysically quiet and stormy days selected from 2002, 

at VILL (using the fixed solution). The data includes one quiet and stormy day 

from each month, excluding September due to data quality. Table 6.2 

summarizes the standard deviations over the same period. 

GPS Timing RMS receiver clock bias (ns) 
Solution 5° mask 15° mask 20° mask 40° mask 
No correction 34.9 30.8 28.9 24.4 
Klobuchar 11.0 9.4 8.8 7.8 
MIDAS 6.7 6.3 6.3 6.1 
Dual-frequency 4.4 4.3 4.3 4.2 

Table 6.1 – RMS receiver clock bias (ns) referenced to the receiver clock bias from 
CODE (using the fixed receiver solution at VILL) with 5°, 15°, 20° and 40° elevation 
masks, for Geophysically quiet and stormy days selected from each month of 2002, 
excluding September due to data quality 

GPS Timing Standard deviation of the receiver clock biases (ns) 
Solution 5° mask 15° mask 20° mask 40° mask 
No correction 15.3 13.1 12 9.7 
Klobuchar 8.9 7.8 7.3 6.2 
MIDAS 2.2 2.1 2.1 2.0 
Dual-frequency 1.8 2.0 2.0 1.7 

Table 6.2 – Standard deviation (ns) (using the fixed receiver solution at VILL) with 5°, 
15°, 20° and 40° elevation masks, for Geophysically quiet and stormy days selected 
from each month of 2002, excluding September due to data quality 
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According to Table 6.1, the most accurate solutions are obtained by employing 

the highest elevation mask tested, 40°, as opposed to the lowest elevation 

mask, 5°. By comparing these masks, the greatest improvements in timing 

accuracy are shown by the no correction and Klobuchar solutions: 30% and 

29% respectively. The MIDAS and dual-frequency timing solutions improve by 

only 9% and 5% respectively under the same circumstances. These reductions 

are most likely due to both the decrease in propagation delay and multipath 

when using the 40° mask. 

Overall, Table 6.2 indicates that the higher the elevation mask, the less variable 

the timing solution becomes. This table shows that the timing solution with no 

ionospheric correction has a standard deviation of 13.1 ns when an elevation 

mask of 15° is employed. This solution improves by 26% when a 40° mask is 

used. The Klobuchar solution is shown to be less variable and improves by 20% 

when using a 40° mask as opposed to a 15° mask. The MIDAS and dual-

frequency solutions have lower and similar standard deviations than the other 

solutions, so much so that the changes in elevation mask have little effect. In 

fact, one would expect that as the elevation mask is increased, the dual-

frequency solution would become less variable. This is true when comparing 

only the 40° mask with the 5° mask, however the standard deviations for the 15° 

and 20° mask are both 0.2 ns higher than the standard deviation obtained using 

a 5° mask. Though these changes are relatively small, it does suggest that there 

are other accuracy-limiting factors such as multipath. 
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Figure 6.3 – Various results for 13 February 2002, at VILL, using a mobile receiver 
solution and an elevation mask of 20° (Kp index 1.0-3.7), as follows: (a) Receiver clock 
bias referenced to the receiver clock bias from CODE, (b) the number of satellites in 
view and the TDOP, (c) the satellite elevation angles (the vertical dashed lines highlight 
the time periods of interest and the patches define the area more specifically), (d) the 
vertical positioning errors, (e) the horizontal positioning errors 
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Figure 6.3a shows the diurnal variation in RCB for 13 February 2002, at VILL, 

using the mobile receiver solution and an elevation mask of 20°. Figures 6.3b-e 

are presented to explain particular anomalies. Figures 6.3b and 6.5b illustrate 

the number of satellites in view and the TDOP. A dotted horizontal line marks 

the threshold at which there are only 4 satellites in view. When the number of 

satellites falls below this threshold, the corresponding mobile timing solution is 

unavailable because at least 4 satellites are required for a 4D solution. Two 

prominent examples of error in the timing solution are shown at approximately 

04:00 UT h and 20:00 UT h (see the large spikes) in Fig. 6.3a. Figure 6.3b 

shows that just before 04:00 UT h the number of satellites in view dropped from 

6 to 5, which was followed by an increase in the TDOP. 

Additionally, just before 20:00 UT h, the number of satellites in view momentarily 

dropped from 5 to 3 (see the slight data gap in Fig. 6.3a) before settling at 4 in 

view, which is accompanied by a rise in TDOP. Figures 6.3c and 6.5c show the 

satellite elevation angles of all of the satellites in view on the day in question, 

each curve represents a particular satellite. A dashed horizontal line has been 

placed at the satellite elevation angle of 20° on Fig. 6.3c. The satellite tracks 

above/below this line represent those that are available/unavailable when a 20° 

elevation mask is implemented. The dashed vertical lines in Figures 6.3c and 

6.5c highlight particular periods of interest, whilst the green patches illustrate 

instances when only satellites at high elevations are available (around 30-40° for 

example). For the purpose of this investigation, it is not necessary to show which 

curve corresponds to which GPS satellite. Figure 6.3c shows that at around 

04:00 UT h and above 20° elevation, there is a period when only satellites at 

even higher elevations were available. This is akin to an even higher elevation 

mask that varies between ~20° and ~40°. 

Figures 6.3d and 6.3e show that the vertical positioning errors are much larger 

than the horizontal positioning errors. By analysing the no correction curves: the 

midday peak in vertical positioning error reaches approximately -28 m, which is 

equivalent to roughly 93 ns and the midday peak in RCB is roughly +112 ns (see 

Fig. 6.3a). This agrees with the relationship explained in the Method (see 

section 6.2.4), whereby the vertical positioning errors are most likely to correlate 

with the timing errors and with opposite signs. 
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Figure 6.4 – Receiver clock bias referenced to the receiver clock bias from CODE for 
VILL 13-15 February 2002 (Kp index 0-3.7) using a mobile receiver solution at an 
elevation mask (a) 20°  (b) 10° 
 

Figure 6.4a shows the variation in RCB using a 20° mask over a consecutive 

three day period, 13-15 February 2002 inclusive. A dashed vertical line is shown 

to represent the boundary line between each consecutive day. The previously 

discussed anomalies from Fig. 6.3a are now of course evident in the first day 

shown in Fig. 6.4a and are repeated on the following two days. See the spikes 

at around 04:00 and 20:00 UT h. By analysing these consecutive days, the most 

likely cause of the anomalies is due to the satellite geometry. More specifically, 

as the number of satellites in view decreases there is a reduced likelihood of a 

good DOP, as is the case here, whereby only high elevation satellites are in 

view. This prevents an accurate positioning solution from being calculated, 

which in turn causes a large TDOP and results in a degraded timing solution.  

 

Similarly, distinctive anomalies exist at around 11:00, 12:00 and 13:00 UT h for 

the 14 and 15 February 2002 in Fig. 6.4a (see the large spikes). They are also 

evident for 13 February 2002, though on a smaller scale. Fig. 6.3b shows that at 

these times the TDOP increases significantly and the number of satellites in 

view changes rapidly at around 11:00 to 12:00 UT h and fluctuates between 6 

and 5 at 13:00 UT h. Figure 6.4b shows the variation in RCB using a 10° mask 

over the same period. By comparing Figures 6.4a and 6.4b, the single-frequency 

solutions show less variability in Fig. 6.4a (20° mask) when compared to Fig. 

6.4b (10° mask), most notably from midday onwards. The dual-frequency 

solution however becomes more variable. Furthermore, there are more 

anomalies when using a 20° elevation mask, rather than the 10° mask. This 
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indicates that there is a trade-off between the size of the elevation mask and the 

timing accuracy. When the elevation mask is too high, there is a bad effect on 

satellite geometry and TDOP (see Fig. 6.3b-c). 

The single-frequency and even the dual-frequency solutions exhibit a clear 

anomaly between ~03:00 and ~04:00 UT h in Fig. 6.5a. Figure 6.5c illustrates 

that the most likely cause is due to a lack of GPS satellites between 0° and ~40° 

elevation at particular instances during this period (see highlighted area). Figure 

6.5b shows that at this time the number of satellites in view drops to 6 and there 

is an increase in TDOP. Large increases in TDOP at 11:00 and 14:00 UT h 

coincide with setting satellites and correspond to slight anomalies in Fig. 6.5a at 

these times (see the small downward spikes). 
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Figure 6.5 – Various results for 27 December 2002, at VILL, using a mobile receiver 
solution and an elevation mask of 5° (Kp index 3.3-6.0), as follows: (a) Receiver clock 
bias referenced to the receiver clock bias from CODE, (b) the number of satellites in 
view and the TDOP, (c) the satellite elevation angles (the vertical dashed lines highlight 
the time periods of interest and the patch defines the area more specifically) 
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Figure 6.6 – Results for October 2003: (a) Receiver clock bias referenced to the receiver 
clock bias from CODE for VILL 27-31 October 2003 (Kp index 1.0-9.0) using a fixed 
receiver solution at an elevation mask of 15°, (b) MIDAS TEC map for 29 October 2003 
at 19:00 UT h 
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Figure 6.6a shows the variation in RCB (using a 15° mask and the fixed timing 

solution) over a consecutive five day period, 27-31 October 2003 inclusive. Two 

Coronal Mass Ejections (CME) were detected on days 302 and 303, which led 

to global and intense geomagnetic storms. These two days mark the positive 

and negative phases of the storm respectively, across the European region. A 

snapshot of the ionosphere across Europe on the 29 October 2003 (day 302) at 

19:00 UT h is shown by Fig. 6.6b. This figure was produced using MIDAS and 

shows the spatial distribution of vertical TEC. TEC Units ranging between 40-60 

are apparent across VILL at this time and correspond to the highly variable peak 

in RCB, which continues deep into the night, shown by the no correction curve in 

Fig. 6.6a. The negative phase of the storm causes a depression in the 

ionosphere, resulting in the lower than average RCB for the curve with no 

correction on day 303 (Fig. 6.6a). Table 6.3 summarizes the RMS RCB for 27-

31 October 2003, at VILL (using the fixed solution). 

GPS Timing RMS receiver clock bias (ns) 
Solution 5° mask 15° mask 20° mask 40° mask 
No correction 25.2 22.8 21.4 18.1 
Klobuchar 22.5 20.7 19.5 15.2 
MIDAS 6.3 6.1 6.1 5.9 
Dual-frequency 4.4 4.3 4.2 4.2 

Table 6.3 – RMS receiver clock bias (ns) referenced to the receiver clock bias from 
CODE (using the fixed receiver solution at VILL) with 5, 15°, 20° and 40° elevation 
masks, calculated over a geophysically stormy period between 27 and 31 October 2003 

GPS Timing Standard deviation of the receiver clock biases (ns) 
Solution 5° mask 15° mask 20° mask 40° mask 
No correction 13.1 11.9 11 8.9 
Klobuchar 17.3 16.0 15 11.9 
MIDAS 1.8 1.6 1.6 1.6 
Dual-frequency 0.7 0.8 0.8 0.9 

Table 6.4 – Standard deviation (ns) (using the fixed receiver solution at VILL) with 5, 
15°, 20° and 40° elevation masks, calculated over a geophysically stormy period 
between 27 and 31 October 2003 
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Table 6.4 summarizes the standard deviations over the same period. According 

to Table 6.3, the most accurate solutions are achieved when the highest 

elevation mask (40°) is employed. Notably the no correction and Klobuchar RMS 

RCB values differ by less than 3 ns, whichever mask is used. The latter solution 

performs only slightly better. The MIDAS and dual-frequency RMS RCB values 

are comparable, differing by less than 2 ns irrespective of elevation mask. Table 

6.4 shows that the no correction and Klobuchar solutions are least variable 

when the highest elevation mask is used. The variability of the MIDAS and dual-

frequency solutions remains largely constant irrespective of elevation mask. 

Interestingly, Table 6.4 shows that the Klobuchar solution is roughly 32-36% 

more variable than the solution with no ionospheric correction, whichever 

elevation mask is used. This along with Fig. 6.6a (see days 300, 303 and 304) 

show that during intense geomagnetic storms it may be better not to employ the 

broadcast Klobuchar corrections. According to Table 6.4, and with a 15° mask, 

the standard deviations of the RCB for the MIDAS and dual-frequency solutions 

are 1.6 ns and 0.8 ns respectively. MIDAS and the dual-frequency solutions 

yield a 90% and 95% improvement respectively when compared to the 

Klobuchar solution. 
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6.4 Conclusions and Discussion 

Ionospheric tomography and elevation masks have been used to reduce the 

overall timing error and produce a new single-frequency GPS timing solution. 

This is compared to other timing solutions produced for the IGS station, VILL 

(Spain), using fixed and mobile based receiver techniques. Results were 

produced using data from the previous solar maximum in 2002 and a particular 

stormy period in October 2003. 

The tomographic mapping system, MIDAS, provides the most accurate and 

least variable single-frequency GPS timing solutions. Using MIDAS, accuracies 

to within 10 ns are achievable in fixed GPS receiver situations, even during 

periods of intense geomagnetic activity. In general and in increasing order the 

timing accuracy is as follows: no correction, Klobuchar, MIDAS and dual-

frequency. However, during intense storms the Klobuchar solution may produce 

a worse timing solution than if there were no ionospheric correction at all. The 

method of ionospheric error compensation is integral to an accurate timing 

solution. 

This research indicates that for fixed GPS receivers, the greater the elevation 

mask; the less variable and more accurate the timing solution will be. This 

relationship continues up to and including the 40° elevation mask, (masks 

beyond 40° have not been tested). This is because signals from satellites at 

high elevations are typically subject to less multipath and less ionospheric 

delays. Good satellite geometry is not crucial to a fixed timing solution and a 

balance between the number of available satellites and those at high elevations 

should be found. On the other hand, an elevation mask of 40° typically reduces 

the number of satellites in view to around 2 or 3 at any given time and since the 

average of all of the RCB’s (calculated from all of the satellites in view) forms the 

fixed GPS timing solution, if just one of the satellites used is subject to a 

fault/error then it has the potential to seriously degrade the overall solution. 

Relying on just one satellite, or too few, can make it difficult to detect and 

remove satellite specific errors. Therefore, it would be prudent to employ some 

sort of warning/alarm system that could detect large anomalies and not only 

prevent the erroneous satellite from being included in the solution but also 
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dynamically lower the elevation mask to increase the number of satellites in 

view. In continuation, a potential solution to this might be to perform TDOP 

analyses. By using the known receiver position (or trajectory of a mobile 

receiver) along with the satellite ephemeris data, the covariance matrix (from 

which the TDOP is calculated) may be computed prior to the actual data 

collection. This technique may be employed to give an advanced warning of the 

potential degradation in timing accuracy that could be due to changes in satellite 

geometry. 

For mobile GPS receivers (unknown position) the timing solutions improve as 

the elevation mask is increased from 5° to 10°. Multipath appears to be reduced 

by using at least a 10° elevation mask. However, as the mask is increased from 

10° to 20° some errors can be exasperated, due to the degradation of satellite 

geometry, that actually worsen the overall solution (whereas errors due to 

multipath and the ionosphere are expected to decrease with higher elevation 

masks). The best choice of elevation mask for a mobile receiver lies between: 

10° and 20°. Nonetheless, even a 20° elevation mask can lead to times when 

there are less than 4 satellites in view. 

Although it may be crude to assume that as soon as there are less than 4 

satellites are in view, the mobile GPS timing solution will fail; this method does 

suitably demonstrate that high elevation masks are not suited to mobile GPS 

receiver applications. There are occasions when there are not any low elevation 

satellites in view at all, say between 0° and 40°. These periods have been 

shown to adversely affect the mobile timing solution. A balance must be struck 

between elevation mask and its effect on satellite geometry to minimise the 

propagation delays and optimise the timing solution, depending upon 

application. The rising/setting of satellites can improve/worsen the overall 

geometry, but the effects of acquiring/losing a satellite signal can lead to 

momentary fluctuations in timing accuracy and increases in TDOP. 

The Galileo constellation will consist of 30 satellites and several new signals. 

These, together with the GPS constellation (and its forthcoming modernization) 

will lead to a much larger number of satellites in view at any given time and will 

improve the overall satellite geometry. This will result in a more dependable and 

reliable GNSS era, leading to improvements in positioning and timing 
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accuracies. Please see http://www.esa.int/esaNA/galileo.html for more 

information. 

MIDAS is currently used to generate real-time ionospheric corrections, which are 

available via the internet. The corrections are created using GPS data, which 

are available from an existing infrastructure and are processed at the University 

of Bath. The corrections could be broadcast to actual GPS end-users in the field, 

in real-time, using a radio signal. This would enable more accurate GPS timing 

solutions to be obtained from a low-cost single-frequency GPS receiver, than is 

currently possible using the broadcast ionospheric corrections, albeit with a 

modification to enable them to receive and interpret the MIDAS data. It is 

intended that these real-time ionospheric corrections, for Europe, will be 

broadcast across the UK in the near future. Two or more free running devices 

may be synchronised anywhere in the world, using GPS, to within 10 ns using 

the MIDAS system proposed here. This system could also help to reduce the 

risks of poor synchronisation during highly variable ionospheric conditions and in 

particular during the impending solar maximum. 
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Chapter 7 

7.	 Baseline comparisons and 

GPS time transfer with 

tomography 

7.1 Introduction 

Supposing two GPS receivers were collocated and assuming everything is equal 

(hardware and setup for example), then the GPS timing solutions according to 

each receiver should be identical, assuming all of the errors are equal. If both 

receivers are then separated by a baseline of tens or hundreds of kilometres, 

then the timing solutions would be expected to differ, because some 

components of timing errors depend upon the length of the baseline. This is 

because some of the largest errors in GPS solutions may be due to the 

propagation paths travelled by the GPS signals and these errors are more likely 

to differ as the distance between each receiver, or ‘station’, increases. For 

instance, the ionosphere between London and Edinburgh is likely to differ by a 

greater amount than the ionosphere between London and Reading. 

The effects of the ionosphere on GPS timing, across baselines ranging from 320 

km to 3760 km, are investigated in the first part of this chapter. Four GPS timing 

solutions are presented in the corresponding results, similar to those presented 

in Chapter 6. Recalling that these timing solutions were presented in the form of 

the calculated RCB, with respect to the RCB calculated by CODE, the results 

presented in the first part of this chapter show the differences between the 

above as calculated for station 1 and station 2. This is not a time transfer, but 

simply a comparison between the error in the timing solution calculated at 
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station 1 and the error calculated at station 2. The difference between these 

errors is presented and is expected to increase as the baseline increases. 

This study takes place over Europe and uses data from March 2003 (a period of 

high solar activity) and February 2004 (lower solar activity). Approximately 70 

IGS/EPN stations are used to provide data towards the construction of 4D 

ionospheric maps (for MIDAS) and 5 additional stations are used as test 

stations. The aim of this work is to show how the ionosphere affects GPS timing 

accuracy and how that affect increases with increasing baseline and that MIDAS 

can reduce that affect. 

The second part of this chapter investigates the use of MIDAS in GPS time 

transfer and the potential improvements in accuracy and stability that it may 

offer over the other single-frequency and dual-frequency methods presented. 

Data from March 2003 and 2 test stations are used. 

Accurate timing and synchronisation are essential to modern infrastructure. 

Power transmission systems, the internet, television/radio and mobile phone 

networks are just a few of the telecommunications applications that require 

accurate timing and synchronisation. The Global Positioning System (GPS) 

provides access to atomic clock accuracy at the cost of a GPS receiver and is 

available worldwide. For these reasons, GPS is widely employed for 

synchronisation purposes. 

Several methods of time transfer exist, for example: direct-reference, CV, AV 

and TW, which are described in Chapter 4, and there are various costs and 

accuracies attributed to each method. Time transfer is the process of 

transmitting time and frequency measurements from one point to another, which 

are then compared. The GPS acts as a reference source for time. The satellites 

are synchronised to GPS Time (GPST), which differs from UTC by an integer 

number of seconds, and the GPST may be transmitted to different locations 

across the world, using a GPS Receiver. 

The AV method is used in this chapter. This is where all available 

measurements from all of the satellites in view are averaged to obtain a 

reference time. AV is advantageous because it makes use of all available 

satellites; enabling data from high elevation satellites to be included which 
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provide more accurate results in comparison to low elevation satellites (Rose et 

al. 2011). AV also allows time transfers to be done anywhere in the world using 

a GNSS system. 

The aim of this work is to show that single-frequency GPS receivers, together 

with an ionospheric tomography system, may be used to produce improved time 

transfer results when compared to existing single-frequency techniques and also 

produce results that are not dissimilar to those produced by a dual-frequency 

system. Compared to a single-frequency system, dual-frequency systems are 

much more expensive, cumbersome and have to be calibrated, and in time 

transfer, a single-frequency system requires fewer calibrations than a dual-

frequency system. 
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7.2 Method


7.2.1 Overview 

The application of 4D ionospheric tomography to GPS timing. described by 

Rose et al. (2009), is used here to investigate the effects of the ionosphere 

across various baselines and GPS time transfer accuracy and stability. 

Ionospheric tomography is a key focus point. Diverse geophysical conditions are 

represented by an 18 day period during solar maximum conditions, in March 

2003 and an 18 day period of decreased solar activity in February 2004. 
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Figure 7.1 – Map of Europe, showing the test stations and those used for the inversion 

Receiver Independent Exchange (RINEX) data (Gurtner 2002) for all of the 

IGS/EPN stations, used in this study, are collected from the IGS/EPN and used 

towards computing the timing solutions and maps. The 4D real-time ionospheric 

maps are created using data from around 70 IGS/EPN sites, situated across 

mainland Europe. The maps are used to mitigate the ionospheric delay imposed 

upon GPS signals. The tomographic grid is centred on Europe at 50°N 15°E, the 

longitude and latitude both range from -44° to +44° in steps of 4°. The altitude 

ranges from 100 to 1500 km in steps of 50 km. 
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The data from the test sites are used to demonstrate the performance of single-

frequency GPS receivers with: no ionospheric correction, the Klobuchar 

ionospheric correction and finally the MIDAS correction. Dual-frequency data are 

also included in the results for direct comparisons. The five test stations are as 

follows: KOSG (Kootwijk, Netherlands), ONSA (Onsala, Sweden), PTBB 

(Braunschweig, Germany), VILL (Villafranca, Spain) and ZECK 

(Zelenchukskaya, Russian Federation). There are ten different links between the 

five test stations, the shortest baseline is KOSG-PTBB (320 km) and the longest 

is VILL-ZECK (3760 km). 

7.2.2 GPS timing solution, pseudorange and corrections 

The timing solutions, fundamental corrections and ionospheric compensation 

techniques presented in this chapter are calculated according to the 

methodology described in Sections 5.2.3-8. Note that all of the satellites in view, 

above an elevation angle of 15° are used to compute the solutions presented in 

this chapter. 

7.2.3 Baseline comparisons 

The effects of the ionosphere on GPS timing across various baselines are 

investigated. The GPS AV method is used: all of the satellites in view at each of 

the five test stations are used towards calculating the timing solutions. The 

timing solutions are calculated instantaneously at each sampling point, without 

relying on historic or averaged data. The RCB is calculated at each of the five 

test stations using each of the four timing solution techniques. The differences 

between these RCB and the precise RCB (calculated by the CODE) are then 

computed. It is these results that are then compared between two stations, 

station 1 and station 2, over an 18 day period in March 2003 and an 18 day 

period in February 2004. The differences between stations 1 and 2 are 

presented in the results, which illustrates the error due to the ionospheric 

component between the solutions at each station. 
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For this part of the results, the differences (in nanoseconds) between station 1 

(trx1) and station 2 (trx2) are given by: 

trx1 − trx2 = (brx1 − brx1(CODE) ) − (brx2 − brx2(CODE) ) (7.1) 

where brx1 and brx2 are the RCB calculated by the timing solution techniques for 

stations 1 and 2 respectively. The RCB computed by the CODE are represented 

by brx1(CODE) and brx2(CODE) for stations 1 and 2 respectively. These results do not 

represent a time transfer. 

The impact of the ionospheric error is a key focus point. As the baseline 

increases, the ionospheric error is more likely to differ by a larger amount 

between the two stations and so the presented differences should increase. The 

timing solution techniques that least adequately account for the ionospheric 

delays are most likely to exhibit these characteristics. 

7.2.4 GPS time transfer 

Two stations, PTBB and ONSA, are used to investigate GPS time transfer over 

the 18 day period in March 2003. PTBB and ONSA are separated by a baseline 

of 580 km and both are equipped with hydrogen masers. Transfer noise is 

expected to dominate for averaging times up to and in excess of one day. The 

results include the three single-frequency techniques: ‘no correction’, Klobuchar 

and MIDAS, in addition to the dual-frequency method. 

The GPS Time minus the station clock (clock A for PTBB and clock B for 

ONSA), according to each of the four timing solutions, for March 2003, is 

presented in the results. The Modified Julian Day (MJD), instead of day of year, 

is used in these figures as it is widely used when computing time transfers. The 

MJD which started at 00:00, 17 November 1858 and each day is represented by 

a unique number. Correspondingly, plots of the modified Allan deviation 

(MDEV), described shortly, are then shown to investigate the ionospheric impact 

on the instabilities of the timing solutions. 
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Stability gives an indication of how well an oscillator can produce the same 

frequency offset, or time, for a given period (Lombardi 2002). Frequency stability 

is commonly measured using the Allan variance (AVAR) (Allan 1966). This is a 

measure of the fractional frequency fluctuations and though similar to the 

standard variance, it is instead convergent for most types of clock noise. The 

standard variance is not suited to measure stability in this case because it only 

converges when used with stationary data. When measured in the time domain 

clock noise is not a stationary process. 

However, the data used in this study contains time dependent noise and is non-

stationary and so would not converge to any particular values. In contrast, the 

AVAR transforms a non-stationary clock noise data set to one that is stationary 

using the transforms z = ( yi+1 − yi ) for frequency measurements and 

z = (xi+2 − 2xi+1 + xi ) for time measurements. AVAR may be defined as: 

2 2σ y (τ ) = 
1 M 

∑
−1

[ yi+1 − yi ] (7.2) 
2(M −1) i=1 

where τ is the averaging time, yi is the ith of M fractional frequency values 

averaged over the averaging time τ (Riley 2008). AVAR converges to a value 

for divergent noise types, such as flicker noise. 

The term AVAR is typically used to refer to the overlapping Allan variance, which 

increases the number of degrees of freedom and improves the confidence. At 

each averaging time the overlapping AVAR forms all possible overlapping 

samples, making maximum use of the data set: 

2 

1 M −2m+1  j+m−1 
σ y 

2 ( ) τ = 
2 ∑  ∑ [ yi+m − yi ] (7.3) 

2m (M − 2m +1) j=1  i= j  

where m is the averaging factor and the averaging time is τ = mτ0 and τ0 is the 

basic averaging time (Riley 2008). 

The modified Allan variance (MVAR) is also commonly used to measure 

frequency stability (Allan and Barnes 1981) and may be defined as (Riley 2008): 
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2 

2 1 M −3m+2  j+m−1  i+m−1  
Modσ y (τ ) = 

4 ∑  ∑  ∑[ yk +m − yk ] (7.4) 
2m (M − 3m + 2) j=1  i= j  k =i  

MVAR is advantageous over AVAR because it can help to distinguish between 

white and flicker Phase Modulation (PM) noise, it also includes an additional 

phase averaging operation. Note that MVAR is usually expressed as the square 

root, the MDEV. The analysis focuses on the ionospheric impact on the 

instabilities. Information regarding frequency stability may be found in Riley 

(2008). 

Subsequently, the differences between the ‘GPS Time (tGPS) minus clock A (tA)’ 

and the ‘GPS Time (tGPS) minus clock B (tB)’ are presented to illustrate the time 

transfer accuracy between PTBB and ONSA respectively: 

PTBB − ONSA = (tGPS − tA ) − (tGPS − tB ) (7.5) 

The corresponding MDEV is then shown to illustrate the impact of the 

ionosphere on the instabilities of the time transfer. 
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7.3 Results 

7.3.1 Baseline comparisons 

Five GPS receiver stations, situated across Europe, have been used to allow ten 

different timing comparisons to be made between various pairs of stations. The 

baselines between the stations range from 320 to 3760 km in length. Four 

different timing solutions were computed at each station and then compared to 

the corresponding solutions across the various baselines. 

Figures 7.2a-b illustrate the differences between the shortest baseline and the 

longest baseline respectively for the 18 day period in March 2003. This period 

coincides with solar maximum. Tables 7.1 and 7.2 show the RMS and standard 

deviations, respectively, of the differences for each baseline and each of the four 

solution techniques for March 2003. 

Note that the term ‘accuracy’, used in this section, refers to the RMS values of 

the differences between the two stations – for example, the method (no 

correction, Klobuchar, MIDAS or dual-frequency) is said to be most accurate 

when the RMS values are smallest i.e. when the ionospheric component is 

smallest, in comparison to the other methods. Also note that the percentage 

improvements quoted in this section (for Figures 7.2a-d) are with respect to the 

corresponding ‘no correction’ results. 

Figure 7.2a shows the results for the smallest baseline, 320 km, between KOSG 

and PTBB. The largest differences belong to the comparison derived from the 

solutions with ‘no correction’. The corresponding RMS is 2.16 ns. The Klobuchar 

results offer a 17% improvement in accuracy over the no correction results, with 

an RMS of 1.79 ns. The MIDAS results offer a 60% improvement, with an RMS 

of 0.86 ns. An improvement of 77% is achieved using the dual-frequency 

technique, which has an RMS of 0.49 ns. The differences in order of least to 

most accurate technique are: no correction, Klobuchar, MIDAS and dual-

frequency. Similarly, the standard deviations, presented in Table 7.2, show the 

same pattern, the corresponding standard deviations are as follows: 2.15, 1.71, 

0.85 and 0.49 ns respectively. 
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Figure 7.2 – Differences (described in Section 7.2.3) computed between (a) KOSG and 
PTBB and (b) ZECK and VILL for an 18 day period in March 2003 and the differences 
between (c) KOSG and PTBB and (d) ZECK and VILL for an 18 day period in February 
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Figure 7.2b shows the results for the largest baseline, 3760 km, between ZECK 

and VILL. The ‘no correction’ differences are now roughly five times more 

variable (standard deviation of 10 ns) and greater in magnitude when compared 

to the results for the smallest baseline (Figure 7.2a). The differences are 

bounded by roughly ± 28 ns and have an RMS of 10.3 ns. Whilst the accuracy of 

the Klobuchar differences improves upon the former solution by only 4%, with an 

RMS of 9.85 ns, the variability decreases by 27% with a standard deviation of 

7.28 ns. The MIDAS results offer a 71% and 84% improvement in accuracy and 

variability respectively, with an RMS of 2.96 ns and standard deviation of 1.64 

ns. These results may be bounded by approximately 0 to 5 ns. The dual-

frequency differences improve by 87%, with an RMS of 1.31 ns and by 90% in 

terms of variability. 

Interestingly, the RMS of the differences for the no correction and Klobuchar 

solutions do not simply increase with increasing baseline (see Table 7.1). Links 

4 to 6 inclusive have a greater RMS result for the no correction results than links 

7 to 9, which have larger baselines. The RMS of link 10, the longest baseline, is 

the same as that of links 4 to 6: 10.3 ns. This is the largest RMS recorded in the 

results for the no correction technique. Similarly, the Klobuchar RMS results 

exhibit the same pattern. The standard deviations for both of these methods, 

shown in Table 7.2, concur. 

However, the MIDAS and dual-frequency results generally behave as expected: 

the differences between the stations increases with increasing baseline. 

Notably, VILL is common to links 4 to 6 and 10, which suggests that the reason 

for the slight abnormality in the ‘no correction’ and Klobuchar results is due to 

the ionospheric delay experienced at VILL – since the abnormality is not 

apparent in the results that better correct for the ionosphere: MIDAS and dual-

frequency. 

Figures 7.2c-d represent the differences between the shortest and longest 

baselines respectively for the 18 day period in February 2004. This period 

corresponds to the latter part of solar maximum: a period of less geomagnetic 

activity compared to March 2003. The RMS and standard deviations of the 

differences of the four solution techniques for each baseline are given in Tables 

7.3 and 7.4 respectively. 
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RMS (ns) 
Link Baseline Length (km) SF SFK MIDAS DF 
1 KOSG-PTBB 320 2.16 1.79 0.86 0.49 
2 PTBB-ONSA 580 2.12 1.93 0.82 0.43 
3 KOSG-ONSA 705 2.41 2.57 1.00 0.54 
4 VILL-KOSG 1500 10.3 7.26 1.44 0.92 
5 VILL-PTBB 1720 10.3 7.09 1.46 0.91 
6 VILL-ONSA 2210 10.3 7.10 1.55 0.89 
7 ZECK-PTBB 2500 8.33 6.25 2.30 1.19 
8 ZECK-ONSA 2560 8.96 6.13 2.47 1.15 
9 ZECK-KOSG 2810 8.32 6.75 2.44 1.22 
10 ZECK-VILL 3760 10.3 9.85 2.96 1.31 

Table 7.1 – RMS of the differences for each baseline, for each of the four solution 
techniques, for March 2003 

Standard Deviation (ns) 
Link Baseline Length (km) SF SFK MIDAS DF 
1 KOSG-PTBB 320 2.15 1.71 0.85 0.49 
2 PTBB-ONSA 580 1.84 1.92 0.81 0.43 
3 KOSG-ONSA 705 2.24 2.45 1.03 0.54 
4 VILL-KOSG 1500 9.62 7.20 1.39 0.90 
5 VILL-PTBB 1720 9.69 6.93 1.39 0.89 
6 VILL-ONSA 2210 9.31 6.88 1.51 0.88 
7 ZECK-PTBB 2500 5.72 3.43 1.18 0.66 
8 ZECK-ONSA 2560 5.43 3.56 1.28 0.67 
9 ZECK-KOSG 2810 5.50 3.51 1.29 0.72 
10 ZECK-VILL 3760 10.0 7.28 1.64 1.03 

Table 7.2 – Standard deviations of the differences for each baseline, for each of the four 
solution techniques, for March 2003 
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RMS (ns) 
Link Baseline Length (km) SF SFK MIDAS DF 
1 KOSG-PTBB 320 1.10 0.97 0.80 0.30 
2 PTBB-ONSA 580 2.04 1.85 1.13 0.48 
3 KOSG-ONSA 705 2.03 1.75 0.97 0.50 
4 VILL-KOSG 1500 3.09 2.17 0.77 0.47 
5 VILL-PTBB 1720 3.40 2.34 1.05 0.45 
6 VILL-ONSA 2210 4.69 3.46 1.25 0.56 
7 ZECK-PTBB 2500 5.44 4.93 2.43 1.14 
8 ZECK-ONSA 2560 6.70 6.04 2.90 1.34 
9 ZECK-KOSG 2810 5.57 5.02 2.28 1.05 
10 ZECK-VILL 3760 4.70 4.23 2.09 1.15 

Table 7.3 – RMS of the differences for each baseline, for each of the four solution 
techniques, for February 2004 

Standard Deviation (ns) 
Link Baseline Length (km) SF SFK MIDAS DF 
1 KOSG-PTBB 320 1.10 0.97 0.79 0.29 
2 PTBB-ONSA 580 1.34 1.30 0.99 0.45 
3 KOSG-ONSA 705 1.20 1.20 0.74 0.44 
4 VILL-KOSG 1500 1.71 1.63 0.71 0.48 
5 VILL-PTBB 1720 2.12 1.89 0.97 0.45 
6 VILL-ONSA 2210 2.09 2.16 0.84 0.52 
7 ZECK-PTBB 2500 3.37 2.75 1.09 0.56 
8 ZECK-ONSA 2560 3.31 2.68 1.03 0.67 
9 ZECK-KOSG 2810 3.67 2.84 0.92 0.53 
10 ZECK-VILL 3760 4.41 3.25 1.09 0.64 

Table 7.4 – Standard deviations of the differences for each baseline, for each of the four 
solution techniques, for February 2004 
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The differences for the ‘no correction’ results in Figure 7.2c are roughly bounded 

by ± 5 ns and have both an RMS and standard deviation of 1.10 ns. The 

Klobuchar method offers a 12% improvement in both accuracy and variability 

with respect to (wrt) the aforementioned method, with an RMS and standard 

deviation of 0.97 ns. The MIDAS results offer a 27% improvement with an RMS 

of 0.80 ns and are less variable, with a standard deviation of 0.79 ns. This 

method may be bounded by roughly ± 2 ns. The dual-frequency differences yield 

a 72% improvement in accuracy with an RMS of 0.30 ns and are less variable 

with a standard deviation of 0.29 ns. 

Figure 7.2d shows the differences for the longest baseline. The ‘no correction’ 

results are more variable (standard deviation 4.41 ns) and larger in magnitude 

when compared to those for the shortest baseline (Figure 7.2c). The RMS is 

4.70 ns and the differences may be bounded by approximately ± 14 ns. The 

Klobuchar differences are also quite variable with a standard deviation of 3.25 

ns, yet offer a 10% improvement in accuracy wrt the no correction results. The 

MIDAS results offer a 55% improvement, with an RMS of 2.09 ns and may be 

bounded by roughly 0 to 5 ns. The dual-frequency results offer a 76% 

improvement, with an RMS of 1.15 ns. The MIDAS and dual-frequency 

techniques yield decreases in variability by 75% and 85% respectively. 
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7.3.2 GPS time transfer 

Two GPS receiver stations, PTBB and ONSA, have been used to investigate 

time transfer. The baseline between the stations is 580 km in length. Four 

different timing solution techniques have been used. 

Figures 7.3a and 7.4a show the differences between GPS Time and the clocks 

at PTBB and ONSA, respectively, during an 18 day period in March 2003, 

according to each of the four timing solutions. It can be observed from these 

figures that the instabilities in the ‘no correction’ and Klobuchar solutions are 

dominated by the diurnal effect of the ionosphere. The MIDAS solution reduces 

these effects and is similar to the dual-frequency solution. 

Figures 7.3b and 7.4b show the MDEV of the differences between GPS Time 

and the clocks at PTBB and ONSA respectively. From the outset it is clear that 

the MDEV are lower for the MIDAS solutions, for both PTBB and ONSA, in 

comparison to the ‘no correction’ and Klobuchar solutions. In the short term, 

receiver noise appears to dominate the instabilities. 

The resolution of MIDAS is not sufficient to improve the error for time periods of 

τ < 1000 s. This is as expected because MIDAS cannot resolve the small scale 

transient fluctuations in the ionosphere any better than the ‘no correction’ or 

Klobuchar solutions for τ < 1000 s. MIDAS has a temporal resolution of roughly 

10-15 minutes (600-900 s) and for 1000 s < τ < 1E5 s, it offers a clear 

improvement over the ‘no correction’ and Klobuchar solutions and is as good as 

the dual-frequency solution from roughly τ = 20,000 s (~5.5 hrs) onwards. 

The ‘no correction’ and Klobuchar solutions tend to converge towards the dual-

frequency solution when τ = 2.5E5 s (~3 days). This implies that the ionosphere 

no longer dominates the instabilities in the long term and the limitation may now 

be due to clock noise and hardware instabilities. 

According to Fig. 7.3b (PTBB), white Frequency Modulation (FM) dominates in 

the short term for each solution type. According to Fig. 7.4b (ONSA), the noise 

processes may be approximated as flicker PM and white PM in the short and 

medium terms up to roughly τ = 1 day, for the single-frequency solutions. White 

FM appears to be the dominant noise process for the dual-frequency solution up 
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to τ = 1 day. In the long term, flicker FM, random walk FM and linear frequency 

drift may be present. 

The ‘bump’ exhibited by the ‘no correction’, Klobuchar and dual-frequency 

techniques at τ = 30,000 s (~8.33 hrs) in both Figures 7.3b and 7.4b is indicative 

of periodic effects due to diurnal changes. This is most likely due to the periodic 

ionospheric day to night changes. Variations in temperature and hence 

hardware may also have some affect. Similar characteristics are exhibited in 

figures presented by Defraigne and Petit (2003) and Lee (2009). 
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Figure 7.5a represents the time transfer between PTBB and ONSA during 

March 2003. The diurnal effects of the ionosphere are now greatly reduced, yet 

still evident in the ‘no correction’ and Klobuchar solutions. This is to be expected 

because the ionosphere is less likely to vary greatly over the baseline of 580 km. 

The MIDAS and dual-frequency solutions are similar, yet the former exhibits 

more noise. GPS time transfer noise, in addition to clock noise from PTBB and 

ONSA, are expected to be contained within this time transfer. 

Figure 7.5b shows the MDEV for the time transfer between PTBB and ONSA. 

From the outset it is clear that the MDEV are lower for the MIDAS solution, 

which shows that MIDAS may offer improvements in stability over the other 

single-frequency methods presented here. This also shows that the ionosphere 

is a limiting factor in time transfer, unless adequately compensated for. 

According to Fig. 7.5b, the MIDAS solution is shown to improve the time transfer 

stabilities for 1000 s < τ < 1E5 s, when compared to the ‘no correction’ and 

Klobuchar solutions. The MIDAS time transfer tends to be virtually as good as 

the dual-frequency time transfer by τ = 7680 s (~2 hrs). The three single-

frequency solutions roughly tend to converge towards the dual-frequency 

solution for τ > 2.5E5 s (>3 days), which implies that the ionosphere no longer 

dominates the instabilities in these transfers from this point. 

At averaging times of roughly 2 hours the stabilities of the no correction and 

Klobuchar time transfers are both ~2E-13. The corresponding stabilities for the 

MIDAS and dual-frequency time transfers are roughly 7E-14. At averaging times 

of approximately 1 day, the stabilities for the no correction and Klobuchar time 

transfers are 2.5E-14 and 3E-14 respectively. The stabilities for the MIDAS and 

dual-frequency time transfers are both ~1.8E-14. 

According to Fig. 7.5b, the ‘no correction’ time transfer noise is part flicker PM 

and part white PM up to τ = 2.5E5. The same is true of the time transfer using 

the Klobuchar method. For both the ‘no correction’ and Klobuchar solutions, a 

random walk FM process likely dominates the time transfer when τ > 2.5E5 s, 

according to Fig. 7.5b. The MIDAS time transfer noise appears to be partly 

flicker PM and white PM up to τ = 10,000 s, from which the noise appears as 

white FM. The dual-frequency time transfer noise appears as white FM up until 
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τ = 1E5 s. In the long term, there may be some flicker FM and random walk FM 

noise. 

The ionosphere dominates the instabilities in the time transfer for both the no 

correction and Klobuchar solutions for longer than the solutions that better 

correct for it, which is as expected. In the long term, linear frequency drift 

becomes apparent and beyond the aforementioned times, the instabilities in the 

corresponding time transfers are dominated by noise from both clocks and the 

time transfer. 
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7.4 Conclusions and Discussion 

7.4.1 Baseline comparisons 

Timing comparisons have been made across baselines ranging from 320 to 

3760 km using four GPS solution techniques. The differences between the RCB 

wrt the RCB calculated by CODE for station 1 and the same at station 2 were 

computed for various baselines that incorporate five test stations. The 

differences were computed to investigate the ionospheric impact and the 

performance of the 4D tomography system, MIDAS. 

MIDAS provides the most accurate and least variable single-frequency GPS 

solutions. RMS accuracies to within 5 ns are achievable using MIDAS. Typically, 

the least to most accurate techniques are as follows: no correction, Klobuchar, 

MIDAS and dual-frequency. 

Generally, the timing comparison accuracy and variability worsened as the 

baseline increased. The ionospheric delays are more diverse and variable 

between two stations with increasing baseline. This effect is most noticeable in 

the ‘no correction’ and Klobuchar results, since they least adequately 

compensate for the ionospheric delay. Notably, these two techniques do not 

always behave as expected. Tables 7.1 and 7.2 illustrate that their RMS and 

standard deviations are sometimes higher for baselines that are shorter than the 

longest baseline. This is most likely due to localised ionospheric effects. 

In contrast, the MIDAS and dual-frequency techniques are much better at 

compensating for the ionospheric error – a trait that is most advantageous for 

longer baselines. These techniques can be said to essentially follow the trend, 

whereby the accuracy and variability are inversely proportional to the length of 

the baseline. These results reinforce the importance of adequately 

compensating for the ionospheric errors. 

The improvements offered by the MIDAS and dual-frequency techniques are 

most significant in the 2003 results, compared to the 2004 results. This is 

because the ionosphere has a greater influence on the timing comparisons 

during the more geomagnetically stormy times in 2003, when compared to the 
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quieter period in 2004. Overall, MIDAS offers the most accurate and least 

variable single-frequency results, which are not dissimilar to the dual-frequency 

results. 

7.4.2 GPS time transfer 

The short term instabilities of the timing solutions for PTBB and ONSA are likely 

due to receiver noise. The medium term instabilities are dominated by the 

ionosphere. The long term instabilities are due to clock noise and hardware 

effects, which may vary according to local environmental conditions. MIDAS 

offers greater stabilities than the other single-frequency solutions and is not 

dissimilar to the dual-frequency solution. From ~20,000 s (~5.5 hrs) the MIDAS 

solution is as stable as the dual-frequency solution. However, it is not until 

nearly 2.5E5 s (~3 days) that the ‘no correction’ and Klobuchar solutions 

become roughly as stable as the MIDAS and dual-frequency techniques. 

Now considering the time transfer stabilities, from 7680 s (~2 hrs) the stability of 

the MIDAS time transfer is roughly as stable as the dual-frequency time transfer. 

From 2.5E5 s (~3 days) the ‘no correction’ and Klobuchar time transfer solutions 

become as stable as the other techniques. In the medium term, the instabilities 

in the time transfers are due to the ionosphere. The long term instabilities in the 

time transfer appear to be dominated by clock noise and hardware, which is due 

to the characteristics of the clock and varying environmental conditions. 

The benefits in terms of stability, by using MIDAS for time transfer, as opposed 

to the ‘no correction’ or Klobuchar techniques, begin after averaging times of 

~500 s (~8 mins), but more notably after 1000 s (~16 mins). MIDAS offers 

virtually the same stabilities as the dual-frequency time transfer from ~2 hrs 

onwards. 

Interestingly, the Klobuchar time transfer is sometimes less stable than the time 

transfer with no correction. This concurs with the conclusions drawn from both 

Chapters 5 and 6, which found that the Klobuchar model can sometimes 

produce a worse result than if no ionospheric model were used at all. 
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The ionospheric impact on the GPS time transfer is less in comparison to the 

impact it has upon the differences computed between GPS Time and the clocks 

at PTBB and ONSA. This is as expected because for a baseline of 580 km, the 

ionosphere is not expected to vary greatly between the stations, in comparison 

to a baseline of say 2000 km. Future work would include the investigation of the 

potential benefits of using MIDAS for transatlantic GPS time transfers, whereby 

MIDAS would be expected to yield time transfers similar to the dual-frequency 

technique and with greater stability in comparison to the ‘no correction’ and 

Klobuchar techniques. 
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Chapter 8 

8.	 Conclusions and Future 

work 

8.1 Conclusions 

Single-frequency GPS receivers do not adequately compensate for the 

ionospheric delay, particularly during periods of severe geomagnetic storms. In 

general, these receivers use a broadcast ionospheric model that aims to provide 

at least a 50% RMS correction. This may be sufficient during periods of low 

ionospheric activity, such as solar minimum, but as many more applications now 

rely on GPS, since the last solar maximum, there is a need to explore the 

possible enhancement of single-frequency GPS receivers as the next solar 

maximum approaches. 

In this project, an established ionospheric tomography system, MIDAS, has 

been applied to a single-frequency GPS timing system for the first time. The aim 

was to improve the GPS timing accuracy, using MIDAS, when compared to 

standard single-frequency GPS systems. 

This study took place over Europe and results were presented when ionospheric 

delays were large and variable. Data were obtained from the last solar 

maximum: from 2002 to 2004, in addition to a particularly well known 

ionospheric stormy period in October 2003. Note that the last solar maximum 

(solar cycle 23) peaked between roughly 2001-2003 and 2004 lies on the 

downward slope (decreasing sunspot number) heading towards solar minimum. 

The Kp ranges from 0 to 9 during the investigated periods. Since this study 

looks at data during solar maximum, further improvements would be anticipated 

during solar minimum conditions. 
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The GPS data and products were sourced from the IGS/EPN network of ground-

based receivers, situated across Europe and were processed to produce 4D 

ionospheric maps, using MIDAS. Several IGS receivers were used as test 

stations for the results. Various GPS timing solution techniques were presented, 

each with a different method of ionospheric compensation. These include two 

single-frequency timing solutions: one that uses the standard broadcast 

Klobuchar model, and the other that uses MIDAS, to correct for the ionospheric 

error. The solutions were compared to a dual-frequency system. 

The application of 4D ionospheric imaging to improve GPS timing was 

investigated first in order to explore the potential of this technique and 

conclusions drawn as follows. MIDAS offers the most accurate and least 

variable single-frequency GPS timing solutions, for fixed and mobile based 

receiver techniques. MIDAS achieves accuracies comparable to the dual-

frequency system and is in some cases more robust as it is not vulnerable to L2 

losses of lock. In some cases the Klobuchar solution significantly reduces the 

ionospheric delays, whilst in other cases it can be highly variable over the 

course of a few minutes to a few hours and unreliable in severe conditions. 

Next, a more extensive study was presented that builds upon the previous work 

by incorporating elevation masks in addition to ionospheric tomography, with the 

aim of improving single-frequency GPS timing. Using MIDAS, accuracies to 

within 10 ns are achievable using fixed GPS receiver situations, even during 

periods of intense geomagnetic activity. For fixed GPS receivers, the greater the 

elevation mask, the less variable and more accurate the timing solution will be. 

This relationship continues up to and including the 40° elevation mask. This is 

because signals from high elevation satellites are typically subject to less 

multipath and less ionospheric delays. Good satellite geometry is not crucial to a 

fixed timing solution and a balance between the number of available satellites 

and those at high elevations should be found. However, an elevation mask of 

40° typically reduces the number of satellites in view to around 2 or 3 at any 

given time and since the average of all the RCB’s (calculated from all of the 

satellites in view) forms the fixed GPS timing solution, if just one of the satellites 

used is subject to a fault/error then it has the potential to seriously degrade the 

overall solution. 
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For mobile GPS receivers the best choice of elevation mask lies between 10° 

and 20°. A mask of 10° appears to reduce multipath, whereas a mask of 20° can 

exasperate some errors due to the degradation of the satellite geometry. There 

are times when there are not any low elevation satellites in view, say between 0° 

and 40°. These periods adversely affect the mobile timing solution. Depending 

upon application, a balance must be struck between elevation mask and its 

effect on satellite geometry to minimise the propagation delays and optimise the 

timing solution. The effects of acquiring/losing a satellite signal can lead to 

momentary fluctuations in timing accuracy and increases in TDOP. 

Timing comparisons were made across baselines ranging from 320 to 3760 km 

using four GPS solution techniques. The differences between the RCB wrt to the 

RCB calculated by CODE were calculated at each test station and then 

compared with each other to investigate the ionospheric impact and the 

performance of the 4D tomography system, MIDAS. Typically, the least to most 

accurate techniques were as follows: no correction, Klobuchar, MIDAS and dual-

frequency. Overall, MIDAS offered the most accurate and least variable single-

frequency results, which are not dissimilar to the dual-frequency results. The 

effect of the ionosphere increased with increasing baseline. 

GPS time transfer was also investigated. The medium term instabilities were 

shown to be dominated by the ionosphere, whereas the long term instabilities 

were likely due to clock noise and hardware. The stability of the MIDAS time 

transfer was shown to be roughly as stable as the dual-frequency time transfer 

after around 2 hours averaging time. Contrastingly, the ‘no correction’ and 

Klobuchar time transfers required an averaging time of around 3 days to 

become as stable as the dual-frequency and MIDAS techniques. MIDAS offers 

the most stable single-frequency time transfer and improves upon the other 

single-frequency methods from around 8 minutes averaging time. Interestingly, 

the Klobuchar time transfer is less stable than the ‘no correction’ transfer 

between averaging times of ~4 hours and ~3 days. 

MIDAS requires data from a reasonable network of GPS receivers in order to 

produce credible ionospheric maps. Such networks are in place across Europe, 

North America and parts of Asia. However these receivers are particularly 

sparse across Africa (and of course the oceans), which forms a limitation for 

MIDAS. 
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In summary, the application of the 4D ionospheric imaging system, MIDAS, to 

GPS timing has been shown to offer significant improvements in timing 

accuracy. These improvements have led to dual-frequency like accuracies being 

obtained, but from a single-frequency system. Ionospheric tomography has also 

been shown to reduce the variability of the timing solutions and to improve the 

stability in GPS time transfers. 

For fixed GPS receivers, the highest possible elevation mask should be 

employed, provided there are a sufficient number of satellites still in view, in 

order to obtain the most accurate solutions. For mobile GPS receivers, a mask 

between 10° and 20° should be used (e.g. 15°) to ensure that the satellite 

geometry is not compromised. 

It is important to note that solutions derived using the broadcast Klobuchar 

model may actually produce worse results, than if there were no ionospheric 

correction at all. Together with the GPS constellation, the future completion of 

the Galileo constellation will lead to a much larger number of satellites in view at 

any given time and will improve the overall satellite geometry. This will result in a 

more dependable and reliable GNSS era, leading to improvements in positioning 

and timing accuracies. 

8.2 Future work 

Real-time ionospheric corrections are currently generated by MIDAS and are 

available via the internet. It is intended that these real-time corrections will be 

broadcast across the UK in the near future. This opens up the possibility of 

synchronising devices using low-cost single-frequency GPS receivers, with 

greater accuracy and stability than is currently possible using the existing 

broadcast Klobuchar corrections (albeit with a modification that enables them to 

receive and make use of the MIDAS data). 

An extension to this project could include the development of a warning/alarm 

system that could detect satellite-specific anomalies and not only prevent the 

erroneous satellite from being included in the solution but also dynamically lower 

the elevation mask to increase the number of satellites in view. Furthermore, a 
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new GPS timing algorithm could also incorporate elevation dependent 

weightings. With this in mind, the resulting GPS solutions would be influenced 

most by those satellites that are expected to contribute the smallest errors to the 

solution (eg those at high elevations, whose signals are subject to less multipath 

and less atmospheric effects). All this, whilst maintaining the level of satellite 

geometry required, according to application: fixed or mobile scenario. 

Future work would be to extend the time transfer study to include transatlantic 

baselines. Data would be collected, using the existing networks of ground-based 

receivers, from across Europe and the USA. Ionospheric maps, encompassing 

the whole region, would be produced and hence used to mitigate the 

ionospheric delays for single-frequency GPS users. The time transfer accuracies 

and stabilities resulting from this method may then be compared to other single-

frequency and dual-frequency techniques. The performance of the MIDAS 

derived solutions would then be tested across baselines of tens of kilometres. 

MIDAS would be expected to yield time transfers similar to the dual-frequency 

technique and with greater stability in comparison to the ‘no correction’ and 

Klobuchar techniques. 

The feasibility of building a GPS timing receiver, that incorporates MIDAS, is 

currently being investigated. Conservatively, accuracies to within 10 ns would be 

achievable, even during highly variable and stormy ionospheric conditions. 

130 



Appendix A


A. TEC Maps 

Maps of the ionospheric Total Electron Content (TEC) are shown here for 

several days in 2002 and 2003. There are 12 images per day, illustrating the 

TEC at 2-hour intervals. The colours represent various levels of TEC. The top 

left image represents the start of the day at 00:00 hrs and the image to its right 

shows the TEC at 02:00 hrs. The TEC at 04:00 hrs is directly below the first 

image and so on. 
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January 2002
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A.2 13th 
February 2002


133 



A.3 11th 
May 2002
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A.4 21st November 2002
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December 2002
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A.6 27th 
December 2002
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A.7 27th 
October 2003
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A.8 28th 
October 2003
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A.9 29th 
October 2003
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October 2003
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A.11 31st October 2003
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Appendix B


B. Publications 

B.1 Journal Papers 

1.	 Rose, J.A.R., Allain, D.J., and Mitchell, C.N. (2009). Reduction in the 
ionospheric error for a single-frequency GPS timing solution using 
tomography. Ann. Geophys. 52(5), 469-486. 

2.	 Rose, J.A.R., Tong, J.R., Allain, D.J., and Mitchell, C.N. (2011). The use 
of ionospheric tomography and elevation masks to reduce the overall 
error in single-frequency GPS timing applications. Adv. Space Res. 
47(2), 267-288. 

B.2 Conference Proceedings 

1.	 Rose, J.A.R., Allain, D.J., and Mitchell, C.N. (2008). Ionospheric impact 
on GPS timing applications, URSI General Assembly. Chicago, USA. 

2.	 Rose, J.A.R., Oyeyemi, E.O., Cilliers, P., and Mitchell, C.N. (2008). GPS 
Scintillations: Recent results and future plans, HMO-UK GPS-based 
Space Weather Workshop. South Africa. 

3.	 Rose, J.A.R., Tong, J.R., Allain, D.J., and Mitchell, C.N. (2009). 
Relationship between GPS satellite elevations and GPS timing accuracy 
under variable ionospheric conditions, COSPAR 2nd International 
Colloquium - Scientific and Fundamental aspects of the Galileo 
Programme. Padua, Italy. 

4.	 Rose, J.A.R. (2010). GPS, The Sun and Ionospheric Tomography: 
British Innovation improving GPS integrity, SET for Britain. Houses of 
Parliament, London. 

5.	 Rose, J.A.R., Allain, D.J., and Mitchell, C.N. (2010). Reducing the 
Ionospheric error for GPS applications, European Space Weather Week 
2010, Bruge, Belgium. 
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