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The work presented in this thesis is believed to be original except for the parts carried 
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the supervision of Dr. Christopher van der Waal. Mr. Malheiro conducted and analysed 
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CD techniques. 

 

All the in-vivo studies performed on the mice brain and the in-vitro cell studies, 

presented in Chapter 7, were performed and analysed by Dr. Neil Barua, at the University 

of Bristol’s Functional Neurosurgery research group. 
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Summary 

 
The work in this thesis is focused on testing the accuracy of the gas sorption and NMR 

cryoporometry characterization techniques to estimate the key pore descriptors which 

affect the activity of porous materials used as catalyst supports and drug delivery 

systems. Both techniques, though, assume independent pores, neglecting advanced 

adsorption and melting phenomena that can specifically skew the pore size distribution 

and subsequently lead to inaccurate predictions of catalytic or therapeutic efficiency of 

the porous system. Firstly, the independent domain theory for both processes was 

studied by breaking down the pore-filling process of a mesoporous catalyst support, into 

steps. The system was partially saturated with water or cyclohexane at different 

pressures, via adsorption and desorption, followed by a cryoporometry experiment at 

each saturation fraction. Moreover, scanning curves and loops, together with PFG NMR 

and relaxometry were employed to ascertain the spatial arrangement of the liquid 

ganglia at each partial saturation and for certain molten fractions. It was shown that the 

configuration of the liquid condensates varied with position around the hysteresis loop, 

deviating from the single pore hysteresis mechanism for both adsorbates. Advanced 

melting of water was associated with a percolation-type transition in the connectivity of 

the ganglia, which could be curtailed to some extent by sample fragmentation. Also, 

some pores filled via advanced adsorption at lower pressures. On the contrary, advanced 

melting of cyclohexane arose from the liquid bridging the pore cross-sections of the 

partially filled pores. Secondly, an integrated nitrogen-water-nitrogen experiment was 

employed to test the source of sorption hysteresis and to compare the extent of 

advanced adsorption phenomena for nitrogen and water sorption, by isolating a subset 

of pores. It was found that the Kelvin-Cohan equations and the DFT algorithm 

overestimate the width of the sorption hysteresis in independent pores of the catalyst 

support studied in this work. Moreover, the adsorption mechanism of nitrogen differs to 

that of water, and advanced adsorption of nitrogen is less severe than that of water. 

Thirdly, cryodiffusometry and gas sorption techniques were used to estimate the pore 

space descriptors (surface area, pore size, tortuosity, porosity) of two different types of 

mesoporous silicas, candidates for drug delivery. The structure-transport relationships in 

these materials were investigated to interpret the drug release profiles obtained for 

release studies carried out in simulated gastrointestinal fluids. It was found that the 

release rate was mainly controlled by the size of the silica particles and the silica 

solubility itself in the environment present. Also, different synthesis routes were tested 

to optimize the drug loaded PLGA nanoparticles, for convection-enhanced drug delivery 

into the brain. Various model and real hydrophobic and hydrophilic drugs were tested. 

In-vitro and in-vivo studies showed that the dialysis method led to production of particles 

with the desirable characteristics, which were successfully distributed in the mice brain. 

The sensitivity of the cryoporometry melting, gas sorption and imaging techniques was 

found inadequate to resolve the inner structure of the polymer matrix. Last, the 

experimental time for the cryodiffusometry experiments in this work was long due to the 

high recycle delay times required to maximise the signal to noise ratio. It is though found 

that high delay times are unnecessary when BBP-LED pulse sequence is used, even when 

the fluid is imbibed in a mesoporous systems. 
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Introduction 

 

1. Characterization of porous materials 

 
Porous materials have a broad application ranging across industrial areas such as 

catalysis, health-care, ceramics and construction. Particularly in catalysis, robust 

microporous and mesoporous solids supports exhibiting a high surface area and porosity 

are needed to support heterogeneous catalysts. The chemical reaction occurs on these 

sites of the porous support, thus it is crucial for both the reactants and the products to 

be able to diffuse towards and away from these active sites in order to facilitate high 

activity and prevent catalyst deactivation. When this process is diffusion-limited a high 

concentration of reactants does not reach the active sites located within the centre of 

the particles, especially when their diffusion is hindered by narrow pores towards the 

particle’s exterior. When the process is reaction-limited, the reactants are more free to 

distribute throughout the porous matrix, and the concentration of the reactive sites 

needs to be high to improve the efficiency of the catalyst. Therefore, it is necessary to 

evaluate the pore structure of the catalyst in order to understand and improve its 

performance. One of the key descriptors of the void space is the pore size distribution 

conventionally estimated by gas sorption or more recently using the NMR cryoporometry 

technique. Although, much effort has been made to improve the sensitivity and accuracy 

of these techniques, the processes involved in sorption and thermoporometry are not 

completely understood, thus the calculation of pore sizes is subject to inaccuracies. Both 

macroscopic and microscopic approaches have been suggested to describe the 

mechanism of these processes, such as those that give rise to hysteresis. However, it has 

not yet been decided which pore characterization technique and data analysis algorithm 

is best able to probe the width of the pore size distribution in a porous system. In gas 

sorption the adsorption branch of the hysteresis loop is recommended by the 

International Union of Pure and Applied Chemistry (IUPAC) to be converted into pore size 

distribution, usually via the Barrett-Joyner-Halienda (BJH) or the density functional 

theory (DFT) algorithms. In NMR cryoporometry, the melting curve is used for the 

estimation of pore sizes via the Gibbs-Thomson equation. However, both of these 

approaches to characterization do not account for cooperative phenomena, which are
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said to arise when the key physical process probing the void space structure involves 

interactions between the pores of differenent characteristic dimension. These 

cooperative effects include advanced adsorption and advanced melting which can skew 

the apparent pore size distribution. It is therefore essential to evaluate the extent of 

these cooperative effects in order to measure the pore size distribution with the 

requisite accuracy to account for the activity of a porous material.  

 

Similar types of porous materials, that are used as catalyst supports, can also be used as 

drug delivery systems to improve the therapeutic efficiency of the free drug molecules, 

particularly those which cannot be administered efficiently to the target areas due to 

biological barriers or unfavourable conditions of the local environment. For example, 

highly hydrophobic drugs exhibit low bioavailability, and thence, increasing their 

dissolution in a controlled and sustained manner is critical. By loading the drug molecules 

into particles, higher drug dosage can be delivered to the site of interest, and with 

minimal side effects. Silica and polymer based porous particles are currently being used 

as drug carriers due to their easily tailored pore structure and their biocompatibility. The 

drug encapsulation efficiency and the drug release rate are controlled by the pore 

structure, the particle morphology and the environment present. Therefore it is 

necessary to use accurate pore characterization and imaging techniques to completely 

survey the drug delivery system, and subsequently understand its performance.  

 

In the case of drug encapsulation into biodegradable polymer systems, the release rates 

are also controlled by the movement of the polymer segments in the matrix (swelling, 

shrinking) when water penetrates through these systems, and their rate of degradation 

or erosion. Although many polymer systems, such as particles, films or foams, have been 

synthesised for drug delivery, only a few of them are currently available in the market 

because their release mechanism is not thoroughly understood. Thus, is it important to 

improve the sensitivity of current characterization techniques to gain a better insight into 

the interior space of these systems. Of specific relevance to their work described in this 

thesis is the use of biodegradable and biocompatible polymer particles as potential 

carriers of therapeutic agents for the treatment of diseases occurring in the central 

nervous system. For this application, convection-enhanced drug delivery (CED) is 
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suggested as a sophisticated method to deliver these nanoparticles directly into the 

target area by avoiding restrictions otherwise imposed by the blood-brain barrier, or 

their rapid clearance from the circulatory system. However, optimization of the 

nanoparticles with respect to their size and encapsulation efficiency for CED studies has 

not yet been done and needs to be investigated. Moreover, these systems have a low 

glass transition, or melting point temperature, and also the nature and the degree of 

intermolecular interactions between these polymers and different gases are not known. 

Hence, pore characterization using the gas sorption technique is difficult. NMR 

cryoporometry is, thus, suggested as an alternative technique to overcome these 

difficulties, although this method is still under development and its applicability to probe 

the void space of different polymer structures needs to be further tested.  

 

Other NMR techniques, such as pulse field gradient (PFG) NMR are also used to probe 

the pore connectivity of porous matrixes, and thence the effective diffusivity of diffusing 

molecules therein. However, this method often requires long experimental times, which 

could possibly be reduced if more sophisticated pulse sequences were used. 

 

 

2. Thesis structure 
 

This thesis will focus on the issues raised above and it is divided into nine chapters as 

follows: 

 

Chapter 1: This chapter introduces the reader into the fundamentals of gas sorption and 

the void space descriptors that can be obtained from this technique. Emphasis will be 

given to the errors induced when converting a sorption isotherm into a pore size due to 

cooperative effects which are ignored. A literature background is provided describing the 

recent advances to develop the method by firstly detecting the source of the errors and 

then by improving the (gas sorption) method. 

 

Chapter 2: This chapter will provide the reader with the background theory to NMR 

characterization techniques, namely NMR cryoporometry, PFG NMR and NMR 
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relaxometry. Then the cooperative effects in NMR cryoporometry will be discussed and 

compared to those in gas sorption. 

 

Chapter 3: This experimental chapter uses a combination of gas sorption and NMR 

techniques to probe advanced melting and advanced adsorption of water in a 

mesoporous silica support, with an ink-bottle pore shape. Cryoporomety scanning curves 

and loops are adopted to aid to their understanding of advanced phenomena. Moreover, 

pore blocking effects in desorption and freezing are detected and discussed.  

 

Chapter 4: This experimental chapter studies the sorption and cryoporometry melting 

and freezing mechanisms of cyclohexane, which has weak interactions with the silica 

surface hence, it is susceptible to different advanced phenomena to those observed for 

water. The results obtained are used to further interpret the cause of hysteresis and, a 

pore filling and melting mechanism will be proposed. Scanning curves and loops are used 

to provide more information about these processes. 

 

Chapter 5: This chapter uses an integrated nitrogen-water-nitrogen experiment to probe 

the extent of advanced phenomena for water and nitrogen and to compare their 

adsorption mechanism in a mesoporous catalyst support. 

 

Chapter 6: This work is part of a collaboration with the University of Strathclyde. Two 

porous silicas were synthesised by using two different templates. They were then used as 

drug delivery carriers to improve the dissolution of a highly hydrophobic protein in the 

gastrointestinal area. The aim of the work was the characterization of the porous silicas , 

using the characterization techniques discussed in the previous chapters, for the 

investigation of structure-transport relationships developed in these materials, able to 

control the drug release rates. 

 

Chapter 7: This work is part of a collaboration with the University of Bristol and it 

presents different synthesis methods for the optimization of drug loaded PLGA 

nanoparticles for CED studies. Moreover, pore characterization techniques are used to 

investigate the inner core of the nanoparticles, able to influence the drug delivery rates. 
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Chapter 8: This part investigates the possibility of reducing the experimental time of PFG 

NMR experiments, one of the main techniques used to study the porous materials, by 

maintaining the signal-to-noise ratio high. 

 

Chapter 9: This chapter provides a summary of the main findings discussed in the 

previous chapters and suggests possibilities for future work.
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Chapter 1 
An introduction to gas sorption characterization technique 

 
 
 
 
 
 

1.1 Introduction 
 
Gas sorption is a characterization technique which provides information about the 

surface area, the pore size distribution, the pore connectivity, and the pore volume of 

porous materials, which are widely used in catalysis and pharmaceutics. Although 

improvements have been introduced to the method to better understand the sorption 

mechanism and the origin of hysteresis, critical for accurate data interpretation, the 

method still relies on auxiliary assumptions which need further investigation about their 

validity.  

 

The main purpose of this chapter is firstly to introduce the reader into the fundamentals 

of gas sorption and the origin of hysteresis, and secondly to illustrate the drawbacks of 

this characterization technique specifically for calculating the pore size distribution. The 

most common algorithms used for estimation of pore sizes in industry assume the pores 

are independent of one another and neglect the possibility of any pore-pore interactions 

during gas adsorption. The reader is thus introduced to the ‘advanced adsorption’ 

mechanism, during which a filled pore enhances the filling of an adjoined empty pore at a 

lower pressure. Moreover, an introduction to sorption scanning curves is provided, as a 

test to examine the ‘independent domain theory’ and the extent of cooperative 

phenomena occurring in gas sorption.  

 

Some of the terms used for pore characterization in this work are stated in Table 1.1 and 

they are defined by IUPAC (Sing et al., 1985). 
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Term Definition 

Porous Solid 
Solid with cavities or channels which have a 
greater depth than width 

Open Pore 
Cavity of channel with access to the surface of 
the particle 

Interconnected Pore Pore which communicates with other pores 

Closed Pore Cavity not connected to the surface 

Void Space between particles 

Pore Size Pore width – minimum dimension 

Micropore Pore of internal width less than 2 nm 

Mesopore Pore of internal width between 2 and 50 nm 

Macropore Pore of internal width greater than 50 nm 

Pore Volume Volume of pores determined by stated method 

Porosity 
Ratio of pore volume to apparent volume of 
particle or granule 

Surface Area 
Extent of total surface area as determined by 
given method under stated conditions 

Specific Surface Area 
Surface area per unit mass of powder, area 
determined under stated conditions 

External Surface Area Area of surface outside pores 

Internal Surface Area Area of pore wall 

Tortuosity 
The path available for diffusion through a porous 
bed in relation to the shortest distance across 
the bed Table 1.1 Terms and definitions of porous materials by the IUPAC (Sing et al., 1985) 
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1.2 The adsorption mechanism 
 
When a porous solid is exposed to a gas at a certain pressure and temperature, the gas is 

adsorbed onto the surface until equilibrium is reached. Adsorption is brought about by 

the interactions between the solid and the gas molecules and can be divided into two 

categories, chemical adsorption and physical adsorption, depending on the strength 

between the adsorbed species (adsorbate) and the porous solid (adsorbent). The former 

process involves the formation of irreversible chemical bonds between the gas and the 

surface and requires high heats of adsorption (Rouquerol et al., 1999). The latter process 

is completely reversible and is driven by weak dispersion and dipole-dipole forces (also 

called London or van der Waals forces) which are associated with low heats of 

adsorption. For physical adsorption, when a gas molecule approaches the adsorbent 

surface, the electron cloud of the gas molecules overlaps with that of the solid surface, 

thus increasing the interaction potential at short distances. As the interactions between 

the gas and the surface are greater than those exhibited between the gas molecules, the 

gas molecules reside on the surface, forming a statistical monolayer. At very low relative 

pressures the more energetic sites are those to be covered first, such as narrow pores, or 

spaces between horizontal and vertical edges of surface steps where the gas molecules 

can interact with the surface atoms in two planes. As the pressure increases the surface 

will be filled up with more gas molecules which are progressively attracted by the 

previously formed layer, via van der Waal forces. This type of surface coverage is known 

as multilayer adsorption (Gregg and Sing, 1982). 

 

For the physical adsorption process to take place, the change in the Gibbs’ free energy, 

ΔG, must be negative and the overall process exothermic, shown by the following 

equation: 

 

                               STG ∆+∆=∆Η                                                    (1.1) 
                                                                                                              

where ΔS is the change in the entropy of the system (negative), ΔΗ  is the change in the 

heats of adsorption and T is the temperature (Gregg and Sing, 1982). 

 



Chapter 1 

4 

All the adsorption studies performed in this work are driven by a physical adsorption 

process, thus an interpretation of the chemical adsorption process will not be discussed. 

 

 

1.3 The adsorption isotherm 

  
The specific amount of gas adsorbed, n (volume of gas adsorbed per gram of solid), is 

controlled by the equilibrium pressure, P, temperature, T, and the gas-solid system. This 

is expressed by equation: 

                                                                ),,( systemTPfn =                                                      (1.2) 

 
Assuming that the gas sorption process is isothermal, then the amount adsorbed is solely 

dependant on the pressure and the following expression can be instead used: 

 
                                                                      )(Pfn =                                                                 (1.3) 

 
When gas sorption takes place below the critical temperature of the adsorbate, then the 

equation above becomes: 

                                                                    )/( 0PPfn =                                                             (1.4) 

 
where P0 is the saturation pressure of the gas at temperature T.  

 

As discussed earlier at low pressures the smaller pores fill before the larger ones. A plot 

of the amount adsorbed against the relative pressure produces a sorption isotherm. The 

shape of the isotherm provides information about the type of the pores (shape, size, 

structure ordering), and the pore filling and emptying mechanism. The IUPAC recognizes 

six main types of isotherms, shown in Figure 1.1. The reversible Type I isotherm is 

generally characteristic of a microporous material. The micropores are filled with gas at 

low relative pressures and as it approaches P/P0=1.0, the isotherm plateaus showing that 

all the pores are completely saturated with gas. The reversible Type II isotherm, is typical 

of a non-porous or a macroporous system, where once a statistical monolayer coverage 

(point B) is formed, a multilayer develops; its thickness increases progressively with 

pressure until P/P0=1.0, without plateauing. Type III isotherm is indicative of weak 

adsorbent-adsorbate interactions preventing gas deposition on the surface. Isotherms of 
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Type IV are characteristic of mesoporous materials. After the multilayer adsorption 

regime, the gas condenses within the pores and a sharp increase in the gas uptake is 

observed. All the pores are completely saturated before P/P0=1.0. By reversing the 

pressure, gas desorption takes place at lower pressures than adsorption, creating a 

hysteresis between the adsorption and desorption processes. Type V isotherm illustrates 

the pore filling and emptying mechanism in a mesoporous solid where weak 

adsorbent-adsorbate interactions exist. The Type VI isotherm is associated with layer-by-

layer adsorption on a highly uniform surface but it belongs to a relatively rare case. The 

porous systems studied in this work exhibit a Type I or Type IV isotherm. 

 

 

 
Figure 1.1 The IUPAC main types of gas adsorption isotherms (Sing et al., 1985) 

 
 
 
 

1.4 Assessment of microporosity 
 
Gas adsorption on the micropore walls occurs at very low pressures due to enhanced 

adsorption energy, resulting from strong interactions between the gas molecules and the 

pore surface. There exist two different micropore filling mechanisms. The first one occurs 
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below relative pressures of 0.01, where individual gas molecules access the very narrow 

micropores to form a monolayer. The second one appears between relative pressures of 

0.01 and 0.2 in wider pores and is a cooperative process involving additional interactions 

between the gas molecules themselves, leading to formation of more layers. It is possible 

for some materials to have mesopores in addition to micropores. In this case, a Type IV 

isotherm is expected to be seen, where the hysteresis loop verifies the presence of 

mesopores, and the high volume adsorbed at low pressures indicates the existence of 

micropores. 

 

 

1.4.1 Micropore surface area determination  

Micropore surface area is estimated using Langmuir equation, under the assumptions 

that monolayer adsorption has taken place at a constant heat of adsorption with 

coverage. This is expressed as follows: 

 

                                                                   
mm V

P

bVV

P += 1
                                                          (1.5) 

 

where V is the volume adsorbed at the equilibrium pressure, P, Vm is the monolayer 

capacity and b is the adsorption constant indicative of the interaction strength between 

the adsorbate and adsorbent. A plot of P/V versus P yields a straight line with a slope A 

and an intercept B which allows the estimation of Vm and b, as follows: 

 

                                                                        
A

Vm

1=                                                                  (1.6) 

     
BV

b
m

1=                                                                 (1.7) 

 
The Langmuir specific surface area, SL, is then determined by the expression: 

 

σAmL NVS =                                                              (1.8) 

 
Where NA is the Avogadro constant (6.023x1023 1/mol) and σ is the molecular 

cross-sectional area of the adsorbate. The value of σ depends on the temperature and 
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the adsorbent surface. Nitrogen adsorption is considered to be the most suitable 

adsorbate for surface area determinations as it is an inert gas which forms a close-packed 

monolayer at 77.3 K, with σ(N2)=0.162 nm2, although it may vary ~20% between different 

adsorbents. Arbitrary adjustments of the σ value have to be done for other adsorbates, 

in order to bring the estimated surface area into agreement with the value found from 

nitrogen adsorption. In some cases, ie for Krypton, the cross-sectional area calculated 

might differ appreciably from that of the closed-packed monolayer, depending on the 

density of the solid surface (Sing et al., 1985). 

 

 

1.4.2 Micropore volume 

 
The capacity of the micropores in a porous solid can be expressed in terms of micropore 

volume, Vp. Methods such as the t-plot, αs-plot, Hovarth-Kavazoe (HK), density functional 

theory (DFT) and Dubinin-Radushkevich (DR) can be used for the determination of the 

micropore volume.  

 

The t-plot method is more often adopted to estimate the micropore capacity in solids 

which exhibit additional mesoporosity. In this method, the multilayer thickness of a given 

porous solid is compared to that of a non-porous reference material, with similar surface 

chemistry. The multilayer thickness, t, of the reference material is estimated by the 

following relationship: 

 

m
mV

V
t σ=                                                                   (1.9) 

 
where V is the amount of gas adsorbed, σm is the thickness of the monolayer and Vm is 

the monolayer capacity. The thickness of a monolayer of nitrogen at 77.3 K is 3.45 Å 

(Lowell et al., 2004). The amount of gas adsorbed is then plotted versus the thickness. 

Horizontal departures from the straight line imply the existence of micropores, whereas 

more vertical plots reveal the presence of mesopores. The intercept obtained from 

extrapolation on the positive ordinate corresponds to the micropore volume.  
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For nitrogen adsorption at 77.3 K on surfaces which contain oxygen sites, Harkins and 

Jura, (1945) derived the following relationship to calculate the multilayer thickness: 

 
5.0

0 )/log(034.0

99.13









−
=

PP
t                                            (1.10) 

 
This t-plot method is used in Chapter 6 to measure the micropore volume in the silicas. 

 

 

1.4.3 Pore size distribution 

 

The size of the micropores is usually estimated by applying the HK or, the semi-empirical 

methods in the low pressure regime. The HK model is based on a quasi-thermodynamic 

approach, where micropores of a certain size fill at a certain pressure characteristic of 

the adsorbent-adsorbate interaction energy (Lowell et al., 2004; Rouquerol, 1999). The 

method was initially proposed for the evaluation of micropores in carbon molecular 

sieves via nitrogen adsorption, but it was then extended to cylindrical-type geometry 

pores by Saito and Foley, 1995. There are some drawbacks accompanying the HK model, 

as it assumes that a) the confined fluid behaves similarly to the bulk fluid, b) it ignores 

the local density change of the fluid in close proximity with the walls and c) it requires 

calibration of the interaction energy parameters using known materials, which may not 

be valid for all the porous materials. To overcome the averaged bulk properties and the 

change in the local density, the DFT method was proposed but this method again 

requires calibration of the interaction energy between the gas molecules and the surface, 

using specific ordered materials of known surface chemistry. HK method will be 

employed to estimate the size of the micropores in the silica materials studied in Chapter 

6 via nitrogen adsorption.  This is because for nitrogen adsorption in silicon oxide based 

materials, the interaction parameters are found to be similar to those of nitrogen on 

carbon surfaces, thereby the size of the micropores can be accurately calculated (Storck 

et al., 1998; Saito and Foley, 1995). 
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1.5 Assessment of mesoporosity 

 
Gas sorption in a mesoporous solid produces a Type IV isotherm, where the initial part of 

the isotherm follows the shape of the Type II isotherm but at higher pressures the 

volume adsorbed is much higher, and the isotherm swings upwards. This abrupt change 

in the volume adsorbed is due to capillary condensation in the mesopores. At low 

pressures, monolayer and multilayer adsorption of a vapour phase takes place but as the 

pressure increases there comes a point where the pores fill with a liquid-like phase 

separated by the vapour phase via menisci. Capillary condensation is necessary for the 

appearance of hysteresis in a gas sorption, in which case the pores empty at lower 

pressures than those that they filled.  

 
 

 
Figure 1.2 The IUPAC classification of hysteresis loops (Sing et al., 1985) 

 
 

The shape of the hysteresis loop provides information about the pore structures. 

Figure 1.2 shows the four types of hysteresis loops classified by IUPAC. Type H1 loops are 

associated with ordered mesoporous materials, exhibiting a narrow pore size distribution 

of well defined cylindrical pores, such as those in MCM-41 and SBA-15 systems. H2 type 
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hysteresis is characteristic of disordered material, such as Vycor, which have a broad 

pore size distribution and pore shape. H3 and H4 loops are both indicative of slit-like 

pore geometry but H4 type loop has a higher micropore volume. H3 and H4 hysteresis 

loops will not be seen in this thesis. 

 

 

1.5.1 Mesopore surface area measurements 

 

The most commonly used method for estimation of the surface area in mesoporous 

solids, is the method proposed by Brunauer, Emmett and Teller (BET), which extends the 

Langmuir single-layer adsorption adsorption to infinite adsorbed layers (Brunauer, 1938). 

The BET method assumes that the pore surface is flat and energetically homogeneous, so 

that all the adsorption sites are equivalent. Moreover, it is assumed that there are no 

lateral interactions between the adsorbed molecules, and the heat of adsorption is the 

same as the latent heat of vaporisation for all the layers above the first.  

 

The BET equation is applied on the multilayer region, in the relative pressures range that 

gives the best fit for equation 1.11, with a positive C constant. Usually this is between 

P/P0=0.05 and 0.3 to avoid the influence of the high adsorption potentials developed in 

any micropores present and to obtain the best fitting, which gives a positive C constant. 

The BET expression is given by: 

 








−+=
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                                                (1.11) 

  
where V is the volume of the gas adsorbed at a relative pressure P/P0, C is the BET 

constant and Vm is the monolayer capacity. The BET constant C is related exponentially to 

the heat of adsorption on the first monolayer and it is indicative of the magnitude of 

adsorbate-adsorbent interactions. When strong interactions are favoured, C is ~100 

whereas for weak interactions, C is <20. 
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A plot of (P/P0)/[V (1- P/P0)] versus P/P0 yields a straight line where Vm and C can be 

determined from the slope and the intercept of the curve. The BET (specific) surface 

area, SBET, is then calculated via the expression: 

 

σAmBET NVS =                                                        (1.12) 

 

The mass of the solid required for an adsorption experiment should have a surface area 

of (at least) 20 m2, such that adsorption on the sample is large compared to the ‘dead 

space’ correction (space around the particles, occupied by non-adsorbed gas). However, 

when the porous solids have a low specific surface area (i.e. <5 m2/g) and their amount is 

limited, adsobates with relatively low vapour pressure, such as krypton (Kr) or xenon (Xe) 

at 77.3 K  are used to minimise the ‘dead space’ correction. Chapter 7 will present 

krypton adsorption studies performed to measure the low surface area of polymer 

nanoparticles synthesised for drug delivery into the brain. As previously stated in Section 

1.4 the evaluation of the surface area becomes complicated because the cross-sectional 

area, σ, varies between solids. For example, σ(Kr)=0.17-0.23 nm2 and 

σ(Xe)=0.17-0.27 nm2 (Sing et al., 1985). It is generally accepted, though, that it remains 

nearly constant for nitrogen at 77.3 K and surface areas estimated via nitrogen 

adsorption are more accurate. Hence it was necessary, the surface area of the polymer 

nanoparticles obtained from krypton adsorption to be compared to that found from 

nitrogen adsorption. 

 

 

1.5.2 Pore volume 

 

The amount of gas adsorbed until a certain pore filling is converted to pore volume 

usually via the Gurvitsch rule as follows: 

 

MV
V

V
224140 =                                                         (1.13) 
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where V0 is the pore volume corresponding to an amount of gas adsorbed, V (at STP), 

with a molar volume VM. For example, for nitrogen adsorption at 77.3 K, VM is 

34.68 cm3/mol.  

 

The total pore volume is calculated at complete saturation conditions. The presence of 

micropores in addition to the mesopores, though, will contribute to the total pore 

volume estimated. In order to differentiate these pore volumes from one another the 

t-plot analysis can be adopted to estimate the micropore volume separately, as discussed 

in Section 4.2. 

 
 
 

1.5.3 Pore size distribution 

 

In the capillary condensation regime, according to the Cohan model, the pores fill 

progressively with a liquid-like phase via cylindrical type menisci initiated from the pore 

walls, whereas during the evaporation process, the liquid phase evaporates from the 

hemispherical menisci developed in contact with the vapour phase. The relative pressure 

where these processes occur can be related to the pore size via Kelvin equation as 

follows: 

 

p

M

RTr

Va

P

P θγ cos
ln

0

−=







                                                       (1.14) 

 
 
where rp is the pore radius, γ is the surface tension of the liquid, VM is the molar volume 

of the adsorbate, θ is the contact angle between the adsorbate and adsorbent, T is the 

temperature and R is the universal gas constant. The variant α is a geometry parameter 

and depends on the pore shape; for open cylindrical pores at both ends, α = 1, and for 

dead end pores, or desorption, α = 2.  

 

Before capillary condensation commences multilayer adsorption takes place and the 

adsorbed layer developed has to be taken into account for pore size measurements. 
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Therefore, equation 1.14 is modified into the following expression to account for the 

multilayer thickness: 
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                                                       (1.15) 

 
where t is the thickness of the multilayer. The contact angle θ ranges from 0o to 180o, 

and it is assumed to be 0o when the adsorbate wets the surface perfectly, although it is 

unrealistic on a molecular level. Hence the above equation is simplified to: 
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                                                        (1.16) 

 
 
The multilayer thickness of the adsorbed phase on silica surfaces is estimated via 

equation 1.10, assuming that the film covers the pore surface uniformly. The Kelvin 

equation and the film thickness are included as part of an algorithm developed by 

Barrett, Joyner and Halenda (BJH) to produce the pore size distribution at the capillary 

condensation region (Barrett et al., 1951). The BJH analysis is the most common method 

used in industry for estimation of pore sizes, although care should be taken as it follows 

the assumptions made for Kelvin equation, which may not be valid for all the porous 

material. The validity of Kelvin equation will be discussed in the next sections of this 

chapter and it will be experimentally tested in Chapters 3, 4, and 5. 

 

 

1.6 Fractals 
 
Fractals are structures that posses self-similarity when inspected at different 

length-scales and can be potentially a method to model complex geometries such as the 

rough surface of a porous material. The total surface area measured of a fractal pore 

surface is analogous to the resolution of analysis and it is expressed by the following 

power law:  

Surface area ∝ (resolution of analysis)
D                                      (1.17) 
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where D is the surface fractal dimension and for smooth surface is 2, whereas for a rough 

surface is 3. The spatial scale resolution of the analysis is usually the cross-sectional area 

of the adsorbed molecules used for the gas sorption studies. Thus the value of the total 

surface obtained may vary with the molecular size of the adsorbate used. This is because 

smaller molecules can enter small concavities, where big molecules (ie hydrocarbons) 

may not have access into. Moreover, the mechanism of adsorption is dependant on the 

gas-liquid-solid interactions, thus for materials with heterogeneous surface chemistry 

some molecules can adsorb locally and not uniformly into the pore surface. Based on 

these, the fractal approach can be adopted to study the change in the surface roughness 

after this surface has been modified, i.e. from the presence of a preadsorbed phase. 

 

The fractal BET theory and the Frankel, Halsey and Hill (FHH) theory are commonly used 

to estimate the fractal dimension assuming multilayer adsorption. The BET method 

describes how the surface available for adsorption decreases with the number of 

adsorbed layers. In the FHH method, it is the thickness of the multilayer which acts as the 

varying ruler size to measure the surface roughness and the fractal dimension is 

measured using the adsorption isotherm of only one adsorbate. At the very low 

pressures in the monolayer regime, gas adsorption is controlled by the van der Waal 

forces and the FHH model is expressed as follows: 
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where V is the adsorbed volume of gas at different pressures, Vm is the volume of one 

adsorbed monolayer, c is a constant and D is the fractal dimension (Ismail and Pfeifer, 

1994).  A plot of lnV with ln(ln(P0/P)), yields a straight line and D can be found from the 

slope gradient, S=(D-3)/3. 

 

As the number of layers, nL, increases with pressure, the surface tension will govern gas 

adsorption on the multilayer regime and the FHH fractal dimension is calculated as 

follows: 
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The number of layers is then calculated by: 
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=                                                               (1.20) 

 
In order to distinguish whether the van der Waal forces or the surface tension is the 

prevailing mechanism in adsorption, then the following test must be done: 

 
         SX 31+=                                                                     (1.21) 

 
where S is found by equation 1.18. If X>0, then the surface tension is negligible and 

equation 1.18 is used for fractal analysis. However, when X<0, equation 1.19 is used. 

 

FHH fractal analysis in the upper part of the multilayer regime was used to investigate 

the surface roughness of a mesoporous catalyst support, before and after partially 

saturating this system with water. The results are presented in Chapter 5. 

 

 

1.7 Hysteresis 

 
The Kelvin equation assumes that the system is at equilibrium, thus the pore size can be 

estimated at varying pressures. It is though necessary to distinguish which branch of the 

hysteresis loop (adsorption or desorption) is at true equilibrium for the Kelvin equation 

to be applied. This requires an understanding of the origin of the hysteresis loop and has 

been described by theories based on the macroscopic level or statistical mechanics and 

will be now discussed. 

 

The interpretation of the hysteresis loop based on thermodynamic fundamentals applied 

from the macroscopic level to the microscopic pore level, is termed as the ‘classical 

approach’ to hysteresis.  This approach assumes that phase transitions in the pores are 

the same as those developed in a macroscopic level, and the parameters describing this 
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change (i.e. surface tension in Kelvin equation), receive the values of the homogenous 

bulk liquid or homogeneous bulk gas. Zsigmondy (1911, cited in Rouquerol et al., 1999) 

proposed that hysteresis occurs due to different contact angles developed in adsorption 

and desorption processes. Zsigmondy suggested that since adsorption commences from 

the pore walls, any impurities present on the pore surface will increase the adsorbate-

adsorbent contact angle above 0o but these impurities will then be displaced at higher 

pore filling and the adsorbate will wet the surface. In desorption though, the adsorbate 

completely wets the surface, thus the contact angle is 0o. Therefore, Zsigmondy 

proposed that desorption is the equilibrium process, implying that the desorption branch 

must be used for pore size calculations. However, this interpretation is incorrect because 

by removing the impurities before gas adsorption, the adsorption and desorption 

branches must overlap, but this is not the case. 

 

McBain (1935) and Kraemer (1931, cited in Rouquerol et al., 1999) introduced the theory 

of pore blocking in the desorption process due to pore structural effects. McBain 

suggested that in an ‘ink-bottle’ pore model, where an open neck is connected to a 

bigger dead end pore, condensation initially occurs at the dead end wall, thus filling the 

big pore. This pressure though exceeds that required for the small neck to fill, therefore 

the neck fills automatically at the same pressure as the big pore. In desorption, the liquid 

phase in the big pore is not in contact with the gas phase, thereby this pore empties once 

the pressure is reduced enough for the small neck to empty first.  Based on this theory, 

Brunauer (1945) concluded that since the liquid is not in equilibrium with its vapour 

during the desorption process, adsorption must be considered as the equilibrium 

process. 

 

Foster (1932), Cohan (1944), de Boer (1958) and Findenegg et al. (1944) described the 

presence of hysteresis in terms of a different meniscus shape developed in adsorption 

and desorption processes. Foster suggested that when there are no dead end pores in 

the system, condensation in the pores is ‘delayed’. In the open pores condensation 

occurs from the multilayer developed on the pore walls. As the pressure is altered, the 

multilayer thickness increases, and there becomes a point where the layers from the 

opposite walls bridge, thus forming a hemispherical shape meniscus which propagates 
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through the pore. However, desorption is not delayed as there exist hemispherical 

menisci on both open ends of the pore. Foster then concluded that desorption is the 

equilibrium process. Cohan (1938) further developed this pore filling and emptying 

mechanism proposed by Foster. Cohan specified that the open pores will fill via a 

cylindrical or ‘sleeve’ type meniscus from the pore walls but they will empty via a 

hemispherical type meniscus as predicted by Kelvin equation for α=2. This difference in 

the pore geometry between adsorption and desorption is according to Cohan (1938) the 

reason for hysteresis.  If these are the only mechanisms involved and the pore radius is 

much bigger than the multilayer thickness, then Kelvin equation for adsorption and 

desorption is expressed as follows: 

 

p

M

ads
RTr

V

P

P 1

0

cos
ln

θγ
−=








                                                   (1.22) 

 

p

M

des
RTr

V

P

P 2

0

cos2
ln

θγ
−=








                                                (1.23) 

 
 
Where θ1 and θ2 is the adsorbate-adsorbent contact angle in adsorption and desorption, 

respectively. By dividing the above equations, then the following relationship is obtained: 
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When θ1=θ2=180o then the Kelvin-Cohan relationship is derived and the above 

relationship is simplified to: 
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The Kelvin-Cohan equation suggests that for independent pores filling and emptying the 

desorption branch can be predicted simply by squaring the relative pressures in 

adsorption. Thereby, the pore size can be calculated by either the adsorption or 

desorption branch.  
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Saam and Cole (1975), suggested that hysteresis in a cylindrical pore occurs due to 

different regimes of stability, metastability and instability on the multilayer film. 

According to Saam and Cole, the multilayer is stabilized by the van der Waals forces 

between the adsorbed film and the surface, but capillary forces between the film 

curvature and the vapour phase are responsible for gas condensation. The critical 

thickness at which the multilayer becomes metastable and the pore fills with condensate 

depends on the attractive adsorbate-surface interaction, the difference in the coexisting 

liquid and vapour bulk densities, and the surface tension. However, as evaporation takes 

places at lower pressures, the thickness of the multilayer is smaller. Therefore, this 

discrepancy in the film thickness between adsorption and desorption is the cause of the 

hysteresis. Findenegg et al. (1994) experimentally studied the Saam-Cole theory for 

adsorption in mesoporous Controlled-Pore Glass (CPG) material and found that it is 

qualitatively valid only, as it overestimates the width of the metastable region of the film. 

In this case, it is expected that θ2≠θ1 and the power value of equation 1.23 will be less 

than 2. Moreover, another approach to hysteresis was given by Broekhoff and de Boer 

which is a refined model to Cohan theory. The authors proposed that capillary 

condensation occurs due to a lack of stability of the adsorbed layer, and its thickness 

depends on both the pore radius and the pressure (Broekhof.Jc and de Boer, 1968a). 

Desorption on the other hand, starts from a stabilized capillary condensed liquid in the 

pores and this process is influenced by the adsorption forces from the pore walls 

(Broekhof.Jc and de Boer, 1968b). The curvature of the meniscus is then dependant on 

the distance from the walls and the pressure, thereby, its shape deviates from the well 

defined hemispherical one, as previously proposed by Cohan. Hence, both the different 

geometries of the menisci the film metastabilities are the causes of hysteresis. 

 

The macroscopic approach though, might not be always true in a pore level or sometimes 

it is not clear which form of Kelvin equation (hemispherical or cylindrical meniscus) has to 

be applied. For example Neimark and Ravikovitch (2001) found that the Broekhoff and de 

Boer model was invalid for pore sizes below 7 nm and the Kelvin equation was inaccurate 

for pores as large as 20 nm in MCM-41 materials. Thus the statistical mechanics approach 

has been developed to bridge the gap. This approach studies the phase transitions in the 

pores taking into account the fluid density fluctuations and the gas-liquid-surface 
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interactions in close proximity with the surface, along with the pore geometry. The main 

methods include the DFT, Monte Carlo simulations and Molecular Dynamics and they will 

be now discussed. 

 

In the DFT method, it is assumed that the pores are open, non-connected and the 

confined fluid is in thermodynamic equilibrium with the bulk fluid at a given temperature 

(Ball and Evans, 1989). The fluid in the bulk is homogeneous and has a constant density 

distribution whereas the confined fluid is subject to adsorption forces close to the pore 

walls, thus the density distribution is a function of the distance from the pore walls, as 

the pressure varies. The DFT treatment is adopted to determine the density profile of the 

confined adsorbate (at a given T) by minimising the grand free energy potential in the 

system, which is the difference between the intrinsic free energy potential of the 

adsorbed phase (developed from the gas-liquid-pore surface interactions), to the 

external energy potential of the bulk fluid. All the intermolecular interaction parameters 

are calibrated using standard materials with known surface chemistry. The simulated 

sorption isotherm is then generated from the surface excess number of molecules 

adsorbed per unit area, as a function of pressure (at a given T). Only one of the isotherm 

branches though, corresponds to an equilibrium phase transition. This is when the grand 

free energy potential of the gas and liquid phases are equal. The other branch is then 

indicative of a metastable phase transition which occurs at the limit of stability of the 

adsorbed film, and it is termed as ‘spinodal spontaneous transition’. Ball and Evans 

(1989) used DFT to simulate xenon sorption isotherms for Vycor, by modelling the 

adsorbent as a system consisting of independent or interconnected pores. The simulated 

and experimental isotherms overlapped when the system was considered to be a set of 

interconnected pores, suggesting that the DFT model is inaccurate when the sorption 

process is controlled by pore network effects. To avoid pore connectivity effects, 

Neimark and co-workers studied gas sorption in MCM-41 materials, which are though to 

consist of independent cylindrical pores. These authors found that DFT can describe 

equilibrium phase transitions in MCM-41 materials with a pore size of 2-4.5 nm 

(Ravikovitch et al., 1995; Ravikovitch et al., 1998; Neimark et al., 1998) and above 5 nm 

(Neimark et al., 2000; Neimark and Ravikovitch, 2000; Ravikovitch and Neimark, 2001). It 

was shown that equilibrium transition occurred during the desorption process and 
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spinodal transition occurred during the capillary condensation process. Kelvin-Cohan 

equation applied on the desorption branch, is only valid for pore sizes above 20 nm and 

the relative pressures in the desorption branch are a power of 1.8 of the relative 

pressures in the adsorption branch (Neimark and Ravikovitch, 2001). However, Kruk et al 

(1997) found that by applying the BJH model in the nitrogen adsorption curve of MCM-41 

samples (pore size of 2-6.5 nm) for a hemispherical type meniscus, and by adding an 

increment into the pore radius (i.e. 0.3 nm) then the PSD derived is in agreement to that 

predicted by the NLDFT model. This shows that Kelvin equation can be still applied in the 

small pores, but a modification is required. 

 

Monte Carlo simulations (MCS) have been utilized to study whether the desorption 

process is controlled by pore blocking or cavitation effects. As firstly described by McBain 

 (1935) pore blocking occurs when a big pore, located next to a small neck,  is not in 

contact with the gas phase and will only empty once the pressure is reduced enough for 

the small to empty first. Pore emptying via cavitation effects occurs when the pressure is 

as such to create regions in the pores with low and high density. For very low densities, a 

gas bubble is nucleated and the pore empties via the hemispherical menisci developed at 

the gas-liquid interface. If the desorption process is prone to cavitation effects, then this 

branch should not be used to collect information about the size of the necks. Monte 

Carlo simulations have shown that for high pore body to neck size ratios, desorption is 

controlled by pore blocking, whereas at lower body to neck size ratios cavitation is 

enhanced (Libby and Monson, 2004; Thommes et al., 2006). In disordered porous 

materials, such as Vycor, cavitation is favoured and it is controlled by the high 

surface-liquid interaction strengths and the pore size (Woo et al., 2004). This means that 

the pore size distribution derived from the desorption branch for various adsorbates and 

temperatures, should be the same if pore blocking (and no cavitation) only occurs 

(Thommes et al., 2006). Coasne et al. (2006) used MCS to study the effect of surface 

roughness for the argon filling/emptying mechanism on MCM-41 materials as density 

configurations close to the pore walls will differ between smooth and rough surfaces. The 

authors found that when the pores modelled a smooth surface, condensation in the 

pores occurs in a discontinuous step via a jump from the gas to the liquid state. On the 

contrary, when the surface was rough small voids were formed due to this roughness, 
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behaving like small pores where gas condensation occurred first and then acted as a 

nucleation seed for more gas adsorption. The heterogeneity in the surface roughness and 

chemistry are not taken into account by the DFT method. Hence, it is expected that the 

DFT treatment will not generate accurate gas sorption isotherms for porous materials 

with functionalized or rough surfaces, such as catalysts and drug delivery systems. 

Moreover, studies have shown that SBA-15 materials do not have perfectly shaped 

2D-hexagonal cylindrical pores, but they exhibit regions with irregular cross sections and 

undulates (Esparza et al., 2004; Tompsett et al., 2005). Hence, they should not be used as 

model systems to describe adsorption and desorption processes in cylindrical pores. 

Efforts have been made to statistically reconstruct irregular mesoporous systems, such as 

CPG, by incorporating topological and morphological properties in the pore model 

(Pellenq and Levitz, 2001). However, these properties are considered to be uniform in 

the material, which could not be the case for real systems. For example the S1 

mesoporous catalyst support studied in Chapters 3, 4, 5 and 8 is found to have 

macroscopic heterogeneities with long-range, spatial correlations in pore sizes 

(Hollewand and Gladden, 1995b).  

 

Despite all the advances made to interpret the adsorption and desorption processes by 

adopting macroscopic and simulation methods, it is recommended by IUPAC that the 

adsorption branch should be used for pore size measurements as the desorption branch 

is prone to pore blocking effects. The BJH algorithm, explained above, is then used to 

produce the pore size distribution values. 

 

 

 

1.8 Advanced adsorption  

 
All the sorption mechanisms described above, proposed to interpret the hysteresis, 

assume that the pores are independent of one another, and there are no pore-pore 

interactions. However, it has been shown that cooperative effects occur during the 

adsorption process and this mechanism is termed as ‘advanced adsorption’ or ‘advanced 

condensation’ (Esparza et al., 2004; Coasne et al., 2005).  A schematic presentation of the 
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independent pore filling and advanced adsorption mechanism is shown in Figure 1.3. For 

independent pore filling, initially a multilayer is formed on the pore walls at pressure P0. 

Then the small pore fills at pressure P1 via the cylindrical type menisci from the pore 

walls. The bigger pore next to the small pore fills at pressure P2>P1 via the cylindrical 

type menisci too. In the case of advanced adsorption, the small pore fills at pressure P1, 

via the cylindrical type menisci but the hemispherical meniscus developed on the edge of 

the pore, enhances adsorption in the bigger pore at pressure P1. If the radius of the small 

pore is greater or equal to half of the big pore radius, then the pressure for condensation 

in the big pore via hemispherical meniscus is exceeded by the time the small pore is filled 

at pressure P1. This practically means that when advanced adsorption occurs, a pore with 

a size 2r will fill at the same pressure as a pore with size r, thus the calculated pore size 

distribution via Kelvin equation can have an error as big as 100 %. 

 

 

  
Figure 1.3 Schematic presentation of independent pore filling (top row) and advanced adsorption 

(bottom row) mechanisms. The continuous arrows show the direction of pore filling 

 
Bruschi et al. (2010) studied the capillary condensation mechanism in nanoporous anodic 

aluminium oxides via molecular simulation studies.  The authors used a model of non-

interconnected pores with geometrical inhomogeneities along the pore axis. It was found 

that capillary condensation was driven by the smallest size pore/neck and actually for a 

pore neck to body size ratio equal to 2:3, both the pore body and the neck filled at the 

same pressure. This is true only when the pore body fills via advanced condensation 

mechanism. Hitchcock et al. (2010) utilized Magnetic Resonance Imaging (MRI) technique 
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to study water adsorption on an amorphous catalyst support. The authors found that the 

largest pores in the material, filled at the same time as the smaller pores by long-range 

cooperative adsorption effects. Moreover, DFT studies have shown that the critical ratio 

between the size of two neighbouring pores, where advanced condensation can occur, is 

also dependant on the adsorbate-adsorbent interaction strength (Rigby and Chigada 

2009).  

 

It is important to understand which is the geometry of the meniscus initiating 

condensation in the pores before applying Kelvin equation, as the discrepancy between 

the pore sizes calculated for cylindrical or hemispherical menisci, is a factor of 2 if the 

wrong meniscus is assumed to exist. Moreover, if the contact angles between the 

gas-liquid-solid interfaces in adsorption differ to those in desorption as proposed (θ2≠θ1) 

by Saam and Cole (1975), then it is expected that the relative pressure in desorption will 

be the relative pressures in adsorption raised into other than 2 power. The DFT method 

shows that this is a power of 1.8 for MCM-41 materials (Neimark and Ravikovitch, 2001), 

it is expected to vary for real samples with a different surface chemistry as the 

adsorbate-adsorbent interaction parameters might not be the same as those measured 

from standard samples. Also, a high surface roughness induces localized adsorption in 

the concavities, nucleating further adsorption into these sites possible to initiate 

advanced adsorption (Coasne et al., 2006). 

 

1.9 Independent domain theory and gas sorption scanning curves 

 
The concepts of independent domain theory of sorption hysteresis were introduced by 

Everett and coworkers (Everett, 1955; Everett, 1954; Everett and Whitton, 1952). The 

theory assumes that a porous network is an assemblage of independent pores which fill 

and empty independently of one another. Each pore domain fills at one step at a higher 

pressure than it empties, without multilayer adsorption taking place. This type of 

hysteresis recognized at a single pore level, is though to be representative of all the pores 

in the system and ignores pore-pore interaction effects. 
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Gas sorption scanning curves are curves obtained by reversing the pressure at a certain 

fraction of pore filling. A curve initiated part way up the adsorption boundary curve, in 

the capillary condensation region, is termed as ‘desorption scanning curve’. A curve 

initiated part way up the desorption boundary curve is termed as ‘adsorption scanning 

curve’. It is though that if a scanning curve crosses directly between the boundary 

sorption curves, then the pores behave like independent, but if it converges at the upper 

or lower closure point of the sorption isotherm, then the pores are prone to cooperative 

effects in adsorption or desorption. Figure 1.4 shows examples of adsorption and 

desorption scanning curves in a mesoporous material. The scanning curve between 

points A and C represents a diverging desorption scanning curve whereas the scanning 

curve between points B and E is a diverging adsorption scanning curve. The scanning 

curve passing through points A to B (or from B to A) is termed a crossing desorption (or 

adsorption) scanning curve. 

 

 
Figure 1.4 Examples of adsorption and desorption scanning curves, crossing over or diverging at 

the lower and upper parts of a gas sorption isotherm. The arrows show the direction in the 
change of the pressures 

 
 
According to Everett’s independent domain theory, in a network consisting of a small, a 

medium and a big pore, acting independently, if the pressure is reversed after the small 
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and the medium pores are filled (point A), then these two pores will empty at the same 

pressure (point B) as if desorption was initiated from a completely saturated network 

(point E). In a similar way, if the small and the medium pores have emptied  after partial 

desorption has taken place (point B), these pores will fill with condensate at the same 

pressure (point A) that would fill if adsorption was initiated from an empty system (point 

C). Morishige (2009) observed desorption crossing scanning curves for CPG porous 

material which the author attributed to independent pore emptying, although it consists 

of highly interconnected and disordered pores. On the contrary, Tompsett et al. (2005) 

showed that desorption crossing scanning curves for MCM-41 materials, can be also 

obtained due to pore blocking effects. This means that when the filled big pores are 

located between filled smaller pores, these big pores will only empty once the pressure 

of the small necks is decreased enough. Thus, it is possible that the scanning curve 

crosses into the desorption boundary curve rather converging at the bottom closure 

point of the hysteresis. Crossing adsorption scanning curves showing an early increase in 

the adsorption volume, but that eventually meet part way up the boundary adsorption 

curve are found for MCM-41 and ink-bottle shaped pores. Esparza et al. (2004) and 

Hitchcock (2011) interpreted this as a combination of advanced adsorption filling some 

set of pores via the hemispherical menisci initiated from already filled neighbouring 

pores, and independent pore filling into the rest of them. Ravikovitch and 

Neimark (2002a) employed the DFT method to show that for FDU-1 silicas, which have an 

ink-bottle pore geometry, desorption crossing scanning curves are also observed due to 

pore blocking effect. The blocked pores eventually empty spontaneously via cavitation 

when the pressure is reduced enough. Monte Carlo simulations were adopted by 

Puibasset (2008) to study the sorption hysteresis in a collection of disordered, 

non-interconnected tubular pores to mimic the pore structure of MCM-41. The author 

found that the pores behaved like independent when statistical homogeneity existed 

within and between the pores. When the heterogeneity within and between the pores 

increased, the scanning curves diverged (Puibasset, 2009).  

 

Tompsett et al. (2005) also found that when the size of the pores in the MCM-41 

increased from 2.55 to 5.1 nm, the scanning curves changed from crossing to converging. 

The authors explained this in terms of variation in filling/emptying mechanism of pores 
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with different dimensions due to different adsorbate-adsorbent interaction strengths 

(higher for smaller pores and lower for the bigger pores). On the contrary, Coasne et 

al. (2005) proposed that converging scanning curves in the big pores are due to the 

presence of more undulates and constrictions as compared to the small pores. These 

undulates cause pore blocking in desorption and can initiate advanced condensation in 

adsorption. This was in agreement with the interpretation provided by Kruk et al. (200b) 

who further suggested that the presence of some micropores in the pore walls can 

provide some degree of interconnectivity between the cylindrical mesopores in the 

MCM-41, thereby the pores do not empty according to the independent domain theory. 

Moreover Coasne et al. (2005) pointed out that scanning curves indicative of 

non-independent pores can additionally be explained by a variation in the pore film 

thickness during the adsorption process which is absent during the desorption. 

Multilayer adsorption is not taken into account in Everett’s theory, but it is highly 

possible to affect the shape of the scanning curves for small pore to film thickness ratios.  

Grossman and Ortega (2005) found that pores in SBA-15 samples do not empty 

independently of one another as converging desorption scanning curves were found. The 

authors though questioned pore blocking effects caused by intrawall pores, and instead 

attributed this to the state of the neighbouring filled pores and hence the history of the 

whole system, which goes through metastable states during desorption. In a later study 

Grossman and Ortega (2008a) showed that diverging desorption scanning curves are a 

common feature of both interconnected and non-interconnected pores, and they 

invoked elastic deformation in the porous silica matrix on the adsorption-desorption 

cycle (Grosman and Ortega, 2008).  

 

Mixed scanning curves, where the adsorption scanning curve converges and the 

desorption scanning curve crosses over, were found for argon sorption in MCM-41 

(Tompsett et al., 2005). This was explained due to pore network effects, for example if 

the system consists of small pores on the shell and bigger pores in the core of the 

sample. When the pressure is reversed the filled small pores provide constrictions to the 

big pores hence prohibiting them from emptying, but adsorption in the big pores is not 

restricted by the small pores. 
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Adsorption scanning loops are more complex scanning curves. Examples of adsorption 

and desorption scanning loops are shown in Figure 1.5. The desorption scanning loop 

(A→A’→A) is obtained by reversing the pressure from point A until point A’ to obtain a 

desorption scanning curve, but the pressure is then increased again before the 

desorption scanning curve reaches the boundary desorption curve. The adsorption 

scanning loop (B→B’→B) is obtained by reversing the pressure from point B until point B’ 

to obtain an adsorption scanning curve and then the pressure is reversed back, before it 

joins the boundary adsorption curve. If the adsorption and desorption scanning loops 

have the same shape and size when spanning the same pressure range and they 

superimpose by translocation or rotation, they are then termed as ‘congruent’. In this 

case the pores are considered to fill and empty independently.  

 
 

 
Figure 1.5 Examples of adsorption and desorption scanning loops. The arrows show the direction 

of the change in the pressure 
 
 
 
Grossman and Ortega (2005) performed scanning loops to test independent domain 

theory for nitrogen adsorption in SBA-15 samples. The authors found that the scanning 

loops were not congruent, so they concluded that the pores were not filling and 
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emptying independently. Coasne et al. (2005) predicted desorption scanning loops in a 

pore model consisting of an assembly of independent pores, with a cylindrical regular 

structure. The authors found that these loops must be reversible and horizontal, i.e. the 

desorption and adsorption branches of the loop overlap. For another pore model 

consisting of cylindrical pores, with constrictions and cavities, the predicted scanning 

loops were neither congruent, nor reversible, reflecting non-independent pore filling 

mechanism. Hitchcock (2011), though, found that for ink-bottle shaped pores, hysteresis 

in the scanning loops can be purged if it extends over a narrow pressure range. This was 

explained as adsorption and desorption taking place via a retreating hemispherical 

meniscus. Hence, reversible scanning loops are not a concrete evidence of independent 

pores. 

 

 

1.10 Summary 

 
This Chapter initially introduced the reader into the basic concepts of gas sorption. 

Moreover, the relationships used to determine surface area and pore size distribution 

measurements in this thesis were mentioned. The origin of hysteresis was discussed by 

providing dominant theories developed the last 100 years. Equilibrium and spinodal 

sorption processes were also discussed as it is necessary to know which mechanism takes 

place before selecting the appropriate algorithm for pore size measurements. Moreover, 

the reader was introduced to the independent domain theory proposed by Everett and 

the use of scanning curves as a tool to investigate this theory. It was shown that both 

interconnected and non-interconnected pores are prone to cooperative effects in 

adsorption and desorption, such as advanced adsorption and pore blocking. IUPAC 

recommends the adsorption curve for pore size measurements, and the most common 

algorithm used in industry is the BJH model. The advanced adsorption mechanism is 

though neglected, leading to incorrect pore size measurements. 

  

Chapters 3 and 4 will provide evidence that advanced adsorption takes place in ink-

bottled pores and its degree varies according to the pore connectivity and the adsorbate. 

Assumption following the Kelvin-Cohan equation and the DFT model to measure the pore 
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size will be also questioned in Chapter 5. Moreover, the sensitivity of gas sorption 

technique to probe the real probe size distribution will be compared to the NMR 

cryoporometry technique. Scanning curves and loops will be mainly used in the NMR 

cryoporometry studies, to probe co-operative effects in freezing and melting. However, 

as the concepts of scanning curves in cryoporometry were introduced based on the 

Everett’s independent domain theory in gas sorption, it was necessary to provide a 

background theory on the gas sorption scanning curves in this chapter first. Finally, it will 

be shown that neither the gas sorption, nor the NMR cryoporometry technique is 

sensitive to measure the size of the voids in polymer nanoparticles.  
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Chapter 2 

Introduction to Nuclear Magnetic Resonance characterization 

techniques 

 

 
 
 

2.1  Introduction 
 
Nuclear magnetic resonance (NMR) spectroscopy is a characterization technique, which 

in principle studies the behaviour of charged particles (nuclei), in the presence of a 

magnetic field.  The environment of specific nuclei is deduced from information obtained 

about these nuclei. This, along with the progress seen in the NMR pulse sequences 

adopted, gave rise to the application of this technique for more sophisticated 

investigations, such as for characterization of porous materials. In this work, NMR is 

primarily used to characterize porous systems, but a small section of work has been 

carried out for the analysis of chemical compounds synthesized (Chapter 7). Proton, (1H) 

liquid-state NMR has been utilised through out all this work, and this chapter will 

introduce the reader to the fundamentals of NMR spectroscopy and the basic concepts 

of the NMR techniques. 

 
 

2.2  Background theory  
 
Nuclear magnetic resonance (NMR) spectroscopy is a technique that studies the 

magnetic properties of certain nuclei in order to elucidate the physical and chemical 

properties of the molecules, or the environment in which they are present. It has been 

widely applied in different fields such as chemistry, physics, biology and medical science, 

where information about the structure, dynamics and reactions rates need to be 

obtained. Nuclei with odd atomic or mass numbers are thought to have a ‘spin’, which is 

characterized by a nuclear spin quantum number, I, being a multiple of ½. It is the 

magnetic properties of the atomic nuclei that form the basis of NMR spectroscopy (Bloch 

et al., 1946; Purcell, 1946). The nuclei, or more precisely its associated magnetic 

moment, can obtain 2I+1 possible orientations which are degenerate in energy in the 

absence of a magnetic field, but align themselves relative to the field, B0, applied either 
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in a parallel or anti-parallel direction. This is known as their equilibrium state. For 

example, the hydrogen nuclei have a spin quantum number of ½ and can obtain either a 

+½or a -½ spin state direction.  

 
The nuclei obtain the lowest energy when they are parallel to the magnetic field, giving 

this state a slightly higher excess of spin population, as compared to the higher energy 

state. A schematic diagram of the spins split between the two energy levels, after the 

magnetic field is applied, is provided in Figure 2.1. The difference between the high and 

low energy levels, ΔΕ, can be expressed as: 

 

ΔΕ=hν                                                                          (2.1) 

where h corresponds to Planck’s constant and ν is the frequency of radiation associated 

with the transition between these energy states (Claridge, 2009). When an external 

radiofrequency (r.f.) pulse is applied, the nuclei absorb a photon and are excited to a 

higher energy level. For this transition to occur, it is necessary that the photon has 

exactly the same frequency as the one required to match the energy gap, known as the 

Larmor procession frequency (Atkins and de Paula, 2010). This occurs at the frequency 

ν=γB0/2π and therefore, the following expression must be held for the nuclei to resonate:   

 

∆Ε=hν =hγΒ0/2π                                                  (2.2) 

where γ is the gyromagnetic ratio. 

 

                
 

Figure 2.1 Distribution of protons, with spin quantum number of ½, between the high and low 
energy levels in the presence of a magnetic field 
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+½ 
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The NMR spectrometer used for this project employs a static field strength of 9.4 T which 

for a gyromagnetic ratio of 2.675×108 1/Ts, yields a 400.13 MHz frequency for 1H nuclei. 

The static magnetic field B0 is applied along the +z-axis of a set of Cartesian co-ordinates. 

This means that the excess of nuclei present at the lower energy state, will produce a 

bulk magnetisation vector M along the +z direction, as a result of the sum of each excess 

individual magnetic moment in this state (Claridge, 2009).  

 

 

 

Figure 2.2 Schematic presentation of the magnetization vector, M, alignment before and after 
the application of the r.f. 90o pulse, in the presence of a static magnetic field B0 

 

 

The r.f. pulse, also known as a time-dependant magnetic field and denoted as B1, is 

transmitted via a coil surrounding the sample on the x-axis direction, which oscillates the 

spins at their Larmor frequency, thereby causing transitions between the energy levels. 

Its efficiency depends on the strength of the r.f. pulse and its length.  Application of a B1 

(r.f.) field actually rotates the bulk magnetization vector M around the x-axis. Application 

of a 90o or 180o pulse flips the magnetization vector onto the y- or -z-axis, respectively. 

This is seen in Figure 2.2. The stronger the r.f. pulse, the quicker the magnetization is 

tipped towards these directions. Once the r.f. field is turned off, the resultant 

magnetization vector rotates about the magnetic filed B0, sweeping out a cone with a 

constant angle and in a motion called Larmor procession. 

 

After switching off the r.f. radiation, the rotating bulk magnetisation vector M also starts 

recovering towards the +z-axis, until it reaches the equilibrium initial state for reasons 

that will be discussed below, termed as relaxation. During this precession of the 

magnetization vector, a weak oscillating voltage is produced in the coil and these 

electrical signals are detected. The plot of the decaying signal intensity with time is 
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known as Free Induction Decay (FID). This is then Fourier transformed into a frequency 

domain, called NMR spectrum, its intensity being proportional to the magnetization M 

(Gunther, 1995).  

 
 

2.3  T1 and T2 relaxometry NMR  
 
As discussed earlier, application of an r.f. pulse with a tilting angle of 90o will result in the 

alignment of the magnetic moment M along the x-y plane. The spins will then process 

about the z-axis at their Larmor frequency. However each spin will experience different 

magnetization due to magnetic field inhomogenities. Some spins that experience a 

greater magnetisation will creep ahead, whereas others that experience a smaller field 

will lag behind resulting in a fanning-out of the bulk magnetization vectors, thereby in the 

shrinkage of the vector M. This kind of relaxation is referred as spin-spin or translational 

relaxation (T2). In the latter case, where the magnetic moment M is on the x-y plane, the 

spins will loose their energy to their surroundings (the lattice) and the vector M will 

return to the equilibrium state, on the +z direction. This process is known as spin-lattice 

or longitudinal (T1) relaxation and is always slower or equal to T2 relaxation (ie, T1≥T2) 

(Claridge, 2009).  

 

 

2.3.1 T1 relaxation  

 
The longitudinal T1 relaxation time constant is measured via the inversion recovery 

experiment. Initially, a 180o pulse tilts the magnetization vector M from the +z-axis 

direction into the on the –z direction. As the energy is transferred into the lattice, with 

time, the magnetization vector starts decaying towards the z-axis. However, this signal 

can not be recorded as the detector coil is placed on the x-y plane. Therefore after a 

delay time, τ, a 90o pulse is applied, which flips the vector to the x-y plane. The system is 

left to relax back to the +z-axis and the FID signal is recorded. The intensity of this FID is 

therefore proportional to the signal present in the z direction immediately after the 

decay τ.  A schematic diagram of this pulse sequence is given in Figure 2.3.  
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Figure 2.3 Pulse sequence for the inversion recovery, T1, experiment 

 
 
 
The variation in the magnetization in the z-axis with time M(τ), assuming a uniform 

magnetic field, follows the first-order differential equation (Keeler, 2005): 
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where M(0) is the magnetization at time zero. A more simple version of equation 2.4 is 

the following equation:  
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Thus, a series of experiments can be run for different time intervals, τ, and an 

exponential curve described by equation 2.5 can be fitted to the spectra obtained. The 

higher the values of τ, the more the signal would decay (Keeler, 2005). The constant B is 

equal to 2, assuming that M(0)= -M0, as all the magnetization is initially inverted into the 

-z direction after a perfect 1800 pulse (Figure 2.3). 

 

2.3.2 T2 relaxation 

 
The translational relaxation on the x-y plane occurs due to the magnetic inhomogeneities 

in the magnetic field, which cause some spins to process at different rates, not having 

the Larmor frequency. The spin echo pulse sequence is used to remove these 
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inhomogeneities. Here a 90o
x pulse is initially applied and the spins are flipped from the 

z-axis onto the y-axis where they are allowed to relax for a delay time τ. Experiencing the 

defects on the magnetic field, the spins start to de-phase. In order to re-phase them, 

another 180o
y pulse is applied about the y-axis, thereby the slowly rotating individual 

vectors will exchange their position with the fast rotating ones. The system is left to relax 

for time τ and the FID is then recorded. As the spins will follow the same path as before, 

they are bound to meet and produce a refocused magnetization vector. This pulse 

sequence is known as spin echo (SE) (Claridge, 2009). 

 

The magnitude of the spin echo is a function of τ and for a homogenous system, obeys 

the following expression: 








 −=
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where M0 is the magnetization at time zero (Keeler, 2005).  
 
 
By repeating the 180o

y pulse, the overall experimental time (2τ, 4τ, etc) increases and the 

signal intensity decreases, as shown in Figure 2.4. This type of sequence is called 

Carr-Purcell-Meiboom-Gill pulse train (CPMG) and will be used to measure the T2 

relaxation times of the liquids studied.  

 
 
 

 
 
         Figure 2.4 Typical CPMG pulse sequence for n repeats of the 180o

y pulse 
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Typically one type of nuclei is examined per spectrum which provides information about 

the number of chemical environments that the nucleus is in and the ratio of nuclei in 

each environment. The nucleus examined in this work is hydrogen contained in the 

water, cyclohexane or heptane molecule, present either in the solid (frozen state) or 

liquid phase. Solids exhibit a short T2 relaxation time, of the order of several 

microseconds, while liquids experience larger relaxation times, of the order of 

milliseconds to seconds. Thus, by choosing a time delay τ for the detector coil, shorter 

than the liquid T2 relaxation time but higher than the T2 of the solid, the signal intensity 

detected will correspond to the liquid phase only (relaxation in the solid phase will have 

already occurred, so it will not be detected).  

 

In this work, the liquid will be either confined in porous materials or around them. T2 

relaxation within the pores is faster than that in the bulk external liquid. This is because 

the molecules present on a thin layer of liquid on the pore wall, are in fast exchange with 

the pore walls and the fluid molecules in the middle of the pore (bulk molecules). A 

schematic presentation of this is given in Figure 2.5. Within  the timescale of a typical 

NMR experiment, the root mean square displacement of the nuclei is of a micron order, 

which is bigger than the pore size of the materials studied, as they pore size is within the 

nanometer range (<30 nm). This subsequently leads to a rapid and multiple exchange 

between the molecules on the pore surface layer and those in the middle of the pores.  

 
 
 
 

 
 

Figure 2.5 Schematic representation of the surface thin liquid (of thickness λ) within a pore, 
interacting with the bulk fluid molecules and the pore surface 
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The T2 relaxation value measured is a mean value between the relaxations of the thin 

layer and the liquid in the remaining pore volume. The following expression describes 

this averaged T2 relaxation (Brownstein and Tarr, 1977): 
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where the T2S and T2B refer to the relaxation on the pore surface layer and bulk fluid in 

the middle of the pore, respectively, λ is the thickness of the surface-affected layer, and 

S/V  is the surface area to volume ratio of the pore. In general T2B>>T2S and thus S/V is 

given, approximately, by: 
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For example, for a completely saturated cylindrical pore, S/V would be equal to 2/r, 

where r is the radius. Therefore, T2 is then proportional to the pore size; the higher the T2 

value the bigger the pore size. Relaxation times can be measured in the range of 1 μs to 

2 s leading to a size range of 1 to 30 μm, which actually denotes the limits  for pore size 

measurements (Claridge, 2009). The T2 relaxation decay is monoexponential 

(equation 2.6) when the liquid molecules are homogenously distributed, and thus they all 

experience the same exchange interactions. For more heterogeneous systems, 

equation 2.6 becomes biexponential and its form will be provided in each chapter 

separately, according to the environment present. 

 
 

 

2.4  Pulse field gradient NMR 
 
All of the molecules of a fluid undergo Brownian motion which represents a random and 

continuous movement of the molecules driven by the thermal energy of the system. 

Pulsed field gradient (PFG) NMR can provide diffusion measurements based on the self 

diffusion that the molecules experience. This method relies upon the application of time 

and spatial dependant pulsed field gradients, G, (in addition to the static magnetic field 
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B0) to encode the physical location a molecule in a fluid and study its diffusion in the 

direction in which the gradients are applied.  In this work the gradients are applied in the 

z direction and consequently, the resonance frequency will vary with the magnetic field 

strength, B0, the nuclear spin position, z, and the gradient strength in the z direction, Gz, 

according to the expression: 
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)( 0 zzGB

z +=                                                    (2.9) 

 
There are different types of PFG NMR pulse sequences. The simplest one is the spin echo 

PFG (PGSE), depicted in Figure 2.6, for a pulse of length δ and diffusion time Δ between 

the gradients (Stejskal and Tanner, 1965). This sequence is used under the condition that 

T2 relaxation is not much faster than T1 relaxation. The first gradient causes an offset to 

the spins phase, dependant on the spin position along the applied field. After a time Δ, 

the second gradient is applied to re-phase the spins. If the molecules have diffused 

during that time course, they will experience a different local field. Therefore the signal 

will be only partially refocused and its signal attenuation will depend on the distance the 

nuclei diffused during the time Δ.   

 

 

 
               Figure 2.6 Spin echo PFG NMR pulse sequence 

 
 
 
PGSE experiments are severely affected by significant transverse relaxation process in 

the x-y plane, where the net magnetization is lost during the time Δ. This means that 
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when diffusion is slow, the use of long Δ, can lead to low signals. In most cases T2<<T1. 

This issue is therefore resolved by application of the stimulated echo sequence 

(PFG-STE). Here the 180o
x pulse is replaced by two 90o

x pulses. After the second 90o r.f. 

pulse the magnetization vector is tilted to the z direction, where there is no T2 relaxation 

but instead, there is only T1 relaxation, which is much slower than T2. After a time Δ, the 

magnetization is rotated back into the x-y plane via the third 90o r.f. pulse, where it is 

then recorded. The amount of signal attenuation for a certain diffusion length and 

gradient strength, depends on the distance the molecules diffused during the time Δ. 

 

In this work, a more advanced version of the PFG-STE sequence is used, called a bipolar 

pulse longitudinal eddy current delay (BPP-LED). A schematic presentation of this is given 

in Figure 2.7. Here, each magnetic field is replaced by two gradients, separated by a 180o
y 

pulse. The gradients are of equal but opposite magnitude and each of them is half the 

duration (δ/2) to those used in the PFG-STE. Their combined effect is the equivalent to 

the single gradient in the PGSE sequence. However, because the gradients are of equal 

but opposite sign, the eddy currents that they create-which generate undesired transient 

field inhomogeneities and therefore can result impairing the signal-are cancelled out. 

Furthermore, rather than acquire the FID immediately after the final gradient, as in the 

PFG-STE sequence, a pair of 90o pulses are employed before acquisition, separated by a 

short delay Te, during which the magnetization is stored longitudinally (z-axis) and any 

further eddy currents can decay. Finally, two small field gradients are applied to remove 

any unwanted residual magnetization remaining in the x-y plane at positions in the pulse 

sequence where all the magnetization should all be along the z-axis. The overall effect of 

this pulse program is to reduce to the phase cycling required to improve the spectrum 

line shape. 
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Figure 2.7 BPP-LED pulse sequence. The empty and grey filled lines placed on the pulse field 
gradients row, represent the applied magnetic and small field (crusher) gradients, respectively 

 
 
 
The observed signal intensity, I, at the end of a PFG experiment is related to the diffusion 

that the nuclei undergo within the observed diffusion time Δ. The signal attenuation is 

expressed as follows (Stejskal and Tanner, 1965; Claridge, 2009): 

 

                    














 −−∆−=
23

exp 0222
0

τδδγ gDII PFG                            (2.10) 

 

where I0 is the reference intensity, in the absence of gradient fields, and τ0 is correction 

time for the phasing and de-phasing between bipolar gradients (Kerssebaum, 2002). By 

plotting the equation 2.10 in a form of ln(I/I0) versus ζ=(-γ
2
g

2
δ

2
(Δ-δ/3-τ/2)) a straight line 

is obtained, where its slope is the diffusion coefficient required. For a heterogeneous 

system, though, where the molecules experience different magnetic fields, and as such 

significantly different local diffusivity, equation 2.10 becomes multi-exponential. In this 

work, both mono-exponential and bi-exponential logarithmic attenuations were 

observed, for the materials studied, and the type of the equation used, will be specified 

in each chapter.  

 

In a porous material, the diffusion coefficient of the imbibed liquid is an average between 

the individual diffusion coefficients experienced by all the spins. This means that DPFG has 

a spin density contribution, which is proportional to the voidage space, ε, and is related 
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to the effective diffusivity, Deff by the following expression (Hollewand and Gladden, 

1995a): 

 

p
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This allows the estimation of the tortuosity, τp, of the material as follows: 
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b
p D

D
=τ                                                          (2.12) 

 
where, Db is the diffusion coefficient of the molecules in the bulk liquid, experiencing free 

diffusivity, at the same temperature as the measured DPFG. These equations are valid only 

when δ<<Δ. Moreover, to account for the transverse and longitudinal relaxation of the 

magnetization vector, occurring in the x-y plane and z direction, respectively, it must be 

selected δ<<T2 and Δ<<T1. 

 

In the PFG experiments, it is assumed that the molecules diffusivity is isotropic, i.e. it is 

similar for all x,y,z directions. Hence, even though the molecules displacement over time 

in the 3D system is zero, their mean square displacement in a single direction <r
2

rms>, 

during a diffusion time Δ, is non-zero and it can be calculated from Einstein equation: 

 

∆=>< PFGrms Dr 62                                                   (2.13) 

 

In a porous material, diffusivity can be free, restricted or partially restricted. When the 

<r
2

rms> increases linearly with diffusion time, than the molecules experience a free 

diffusivity. This is true for the molecules in a bulk liquid, or for confined liquid studied in 

very short time scales. However, in the long-range diffusion regime, restrictions are 

induced into the mobility of the imbibed liquid from interaction with the pore walls, or its 

exchange with different phases present (ice, liquid, vapour), or the connectivity of the 

adsorbed phase is limited (such as in the case of partially saturated systems). Therefore 

PFG NMR is a technique that can provide information about pore topology and spatial 

distribution of the adsorbed phase.  
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Mitra et al. (1993) have shown that for a partially restricted diffusivity, the measured 

diffusion coefficient is related to the unrestricted diffusivity, D0, by the following 

equation: 
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where S/V is the external surface area-to-volume ratio of the liquid boundary layer. A 

straight line fit of PFG NMR data for the measured diffusivity against Δ
1/2 yields an 

intercept equal to the unrestricted matrix diffusion coefficient D0. This value can then be 

used to estimate the reciprocal tortuosity via equation 2.12. The equations used for the 

calculation of the diffusivity and tortuosity will be specified in the chapters when 

necessary.  

 

 

2.5  Magnetisation recovery in a PFG NMR experiment 
 

Longitudinal relaxation (T1) determines the time that must be left between two 

successive experiments in order to allow complete recovery of the magnetization vector 

M from the x-y plane into its equilibrium state, on the +z direction. This is important for 

the PFG experiments where gradient pulses are introduced into the pulse sequence and 

spins de-phasing is enhanced, leaving possible ‘spin residuals’ on the x-y plane after FID 

acquisition.  

 

Assuming that at the end of the signal acquisition in one experiment, the magnetization 

in the z-axis is zero, M(0)=0, and the magnetization vector needs a time τ to return to a 

fraction f of its complete equilibrium (f=1), then we can say that M(τ)=fMz, where Mz is 

the amplitude of the magnetization vector at fraction f. Then, following equation 2.4, it 

can be written (Keeler, 2005) that: 

 

1

ln
TM

MfM

z

zz τ−=








−
−

                                           (2.15) 

 
 
 which is simplified to: 
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)1ln(1 fT −−=τ                                                       (2.16)  

 
This means that for 99% of the magnetization to return to equilibrium, before the next 

pulse sequence is applied, the system must have a delay time of d1=4.6xT1. It must be 

noted that the total delay time between the experiments, includes also the FID 

acquisition time, taq, as longitudinal relaxation continues during the FID. This total time is 

called repetition time, tr=taq+d1. An illustration of how the spin recovery changes with 

multiples of relaxation time T1 (characteristic of the total relaxation delay time) is 

presented in Figure 2.8.  
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Figure 2.8 Magnetization recovery towards the equilibrium state for different multiples of T1 

relaxation times 

 

T1 relaxation, though, varies with the type of molecules and the environment present, as 

described in Section 2.3.1. Subsequently, diffusion measurements would require 

different delay times, specific to the system studied, that can increase the experimental 

times dramatically. Moreover, ‘spin residuals’ on the x-y plane are more prominent when 

simple pulse sequences, such as PGSE, are used, but are expected to reduce by 

application of more sophisticated pulse sequences such as BPP-LED PFG NMR. 
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2.6 Cryoporometry NMR 

 
The basic fundamentals of cryoporometry were set by Thomson and Gibbs (Thomson, 

1871; Thomson, 1888; Gibbs, 1928, cited at Mitchell et al., 2008a). The authors reported 

that the melting point of a small crystal is lower than its bulk, and its size is inversely 

proportional to the temperature. This is because the increase in the free energy of the 

surface area to volume ratio of the crystals becomes significant. Later, Jackson and 

McKenna (1990) and  Mitchell et al. (1998a) used this relationship to describe the 

melting point depression, ΔΤm, of frozen phases confined in porous materials using the 

expression: 
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where σsl is the surface tension at the crystal-liquid interface, Tm is the bulk melting point 

while Tm(x) is the melting point of the crystals inside the pores, x is the diameter of the 

crystals, ΔΗf is the bulk enthalpy of fusion (heat of melting) per g of material, ρs is the 

density of the crystal, and θ is the contact angle between the crystal and the pore wall. It 

is also assumed that most adsorbates will have weak interactions with the adsorbent 

surfaces, ensuring that the pore dimension is the parameter defining the melting point 

depression (Mitchell et al., 2008a). Moreover, it is assumed that θ is 180o which means 

that the crystal is not in contact with the pore wall (Jackson and McKenna, 1990), and 

equation 2.17 takes the form of: 
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This assumption can be correct, as it is found that there is liquid-like layer on the pore 

walls that never freezes (Schmidt et al., 1995; Schreiber et al., 2001; Overloop and 

Vangerven, 1993). Equation 2.18 is known as Gibbs-Thomson equation and a simplified 

version of it, is given by the expression:  
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where kGT is referred as Gibbs-Thomson constant and it is measured empirically. The kGT  

constant is characteristic of the imbibed liquid and the pore wall, via the contact angle, 

and sets limits to the pore size measured. This is because the imbibed liquid might not 

completely wet the pores during adsorption (i.e. because of their different hydrophilic 

nature), therefore some pores will remain empty leading to an incorrect PSD calculation. 

Moreover, surface chemical heterogeneity, such as in the case of coked catalysts or other 

grafted groups (Dosseh et al., 2003), changes the wetting efficiency of the liquid along 

the pore surface, due to variation of the contact angle between the pore wall surface and 

the liquid. Hence, liquid-solid phase transitions will not be solely controlled by the pore 

size, but also by the surface chemistry, assumed to be homogenous in a cryoporometry 

NMR experiment.  

 

The Gibbs-Thomson constant is empirically derived by plotting the ΔTm versus 1/x.  

Following equation 2.19, the gradient of the slope, gives the kGT (Strange et al., 1993). 

However, this requires estimation of the pore size by an independent method, such as 

gas adsorption. The latter method though, relies on a set of auxiliary assumptions made 

about the Kelvin equation, and it is prone to cooperative phenomena (Esparza et al., 

2004; Casanova et al., 2007) leading to an incorrect PSD. This error is then transferred 

from the gas adsorption to the cryoporometry NMR experiment, which in fact is 

influenced by its own cooperative phenomena during melting (Hitchcock et al., 2011) as 

it will discussed in Section 2.8. Moreover, a non-linear relationship between the melting 

point depression and the inverse pore size was observed by Hansen et al. (1997) who 

attributed this behaviour to the fact that the heat of fusion and the surface tension 

change with temperature. A corrected version of equation 2.19 was later proposed, 

which accounts for the unfrozen layer on the pore wall, likely to induce errors in the 

calculation of small pore sizes (Hansen et al., 1996a; Schreiber et al., 2001): 
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where t is the thickness of the liquid-like layer on the pore wall. Perkins (2009) suggested 

a more accurate method for the calculation of kGT constant, specific to the sample and 
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the probe liquid used. In this work, a mesoporous sol-gel silica (S1) pellet sample was 

initially fragmented to remove co-operative effects (such as pore blocking during 

cryoporometry freezing). The freezing curve obtained from cryoporometry NMR was 

directly compared to the intrusion curve from mercury porosimetry (Perkins, 2009). The 

Gibbs-Thomson parameter and the liquid-like layer of water were found to be 26 nmK 

and 0.4 nm, respectively. 

 

Different pore liquids have been used for porous characterization, such as water 

(Webber et al., 2001), benzene (Aksnes et al., 2001b), octamethylcyclotetrasiloxane 

(Vargas-Florencia et al., 2007), cyclohexane (Dore et al., 2004), acetonitrile (Aksnes et al., 

2001a) and nitrobenzene (Kondrashova et al., 2010). Liquids with high kGT  constants are 

used  to probe big pore sizes, as deduced from equation 2.19. Vargas and 

Florencia, (2007) used octamethylcyclotetrasiloxane to measure pores sizes up to a 

micrometer range within CPG samples.  

 

The basic idea of NMR cryoporometry is to detect the change in the phase transitions of 

a liquid confined into a porous material, with temperature variation, using NMR. The 

method relies on the fact that molecules present in different phases have different 

mobility, thereby relaxation times. Using a solution state NMR, as done in this work, the 

liquid phase will be detectable but the solid one will not be observed as its relaxation 

time is short. Some bulk liquids, such as cyclohexane, change their structure upon 

melting from crystalline to disordered plastic phase and then to liquid. Hence, it is 

possible that in a porous material, both the plastic and the bulk phase co-exist, requiring 

great care during conversion of the detected volume into a PSD, as strictly the molten 

liquid phase must be used for this calculation. In an NMR experiments the solid-liquid 

transition is detected upon increasing/decreasing the temperature, by applying a spin-

echo type pulse sequence. This means that the magnetization vector (or signal intensity) 

is T2-weighted. The crystalline and plastic phase have a faster T2 relaxation time, 

compared to the liquid, thus, the former phases can be suppressed by choosing a high 

delay time between the 90o and 180o pulses (Figure 2.4, for n=1), allowing only the 

molten liquid phase to be distinguished. In order to convert the variation of the molten 

phase volume with temperature, into a PSD, though, the correct kGT constant must be 
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selected. For this Webber (2000) firstly employed equation 20 to calculate the 

Gibbs-Thomson constant for cyclohexane, at a particular echo time (2τ). Then the author 

repeated the experiments at other echo times, and plotted all the kGT constants obtained 

versus the echo times. This way the author produced an expression where the kGT 

constant is an exponential function of 2τ (Webber, 2000). However, this method again 

relies on the accuracy of the PSD calculations derived from the gas adsorption studies, 

thus, it is subject to errors. 

 

 

2.7 Freeze-thaw hysteresis in cryoporometry NMR 

 

In a cryoporometry NMR experiment freezing and melting of the imbibed liquid occurs at 

different temperatures, referred to as freeze-thaw hysteresis. Different theories have 

been proposed to interpret this difference by Petrov and Furo (2009) based on the fact 

that the liquid within the pores is trapped in a metastable state, where phase transitions 

occur once the activation energy barrier, separating these states, is overcome. There are 

two reasons for metastabilities occurring during freezing. Firstly, the molten phase is not 

in contact with a frozen phase, which would act as nucleation site to initiate pore 

freezing. Therefore, the confined liquid has to be supercooled, or to freeze via 

homogeneous nucleation at lower temperatures than the equilibrium freezing 

temperature. Secondly, freezing can be seeded by frozen sites in contact with the molten 

ones (heterogeneous nucleation process), but the ice front propagation is hindered by 

confinement constrictions, such as pore necks. In this case, the temperature has to be 

lowered enough to promote freezing of the pore necks first, following the 

Gibbs-Thomson equation. This mechanism is analogous to pore blocking effects in gas 

desorption. However, melting is seeded by the liquid-like layer on the pore walls, which is 

always in contact with the frozen remaining phase. Another reason for the freeze-thaw 

hysteresis is the different geometry of the menisci commencing the two mechanisms. 

Melting process occurs via a sleeve-type meniscus and progresses radially (similarly to 

gas adsorption), whereas freezing occurs via a hemispherical-type meniscus and 

continues in an axial direction along the pore (analogous to gas desorption). Figure 2.9 

presents a typical freeze-thaw hysteresis of water confined in a mesoporous sol-gel silica 
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material along with the bulk freezing and melting curves. The whole system goes initially 

through supercooling until both the bulk and pore water freeze spontaneously at ~264 K. 

The temperature is then increased and pore melting commences via a sleeve-type 

meniscus from the liquid-like layer. If the temperature is inversed before the bulk water 

melting temperature (273 K), pore freezing commences via the propagation of the 

freezing front, into the molten phase via a hemispherical type menisci, originating from 

the frozen bulk.  

 

 

Figure 2.9 Typical freeze-thaw hysteresis (continuous line) for a mesoporous sample obtained via 
cryoporometry NMR. Bulk supercooling and melting are also shown (dotted line). Pore melting 
(bottom schematic) commences via the cylindrical-type menisci from the liquid-like layer (dark 
grey). Pore freezing (top schematic) is nucleated by the frozen front (light grey) propagating the 

molten phase via hemispherical menisci. Detailed explanation of the schematic diagram is 
provided in the text above 

 
 

It has been demonstrated that the freezing point depression, ΔΤf, depends on the 

surface-to-volume ratio, S/V, whereas the melting point depression, ΔΤm, is determined 

by the curvature of the pore surface, dS/dV, (Petrov and Furo, 2009; Vargas-Florencia et 

al., 2008) as follows: 
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where kc=VM σslTm/ΔΗ. Combining equations 2.21 and 2.22 and using the Steiner formula, 

the freezing point depression is related to the melting point depression via the 

expression: 
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where κ is the integral mean curvature of the pore surface, and the expression describes 

the single pore hysteresis in cryoporometry. Equation 2.23 can provide information 

about the pore geometry. For example, in the case of a cylindrical-type pore, the 

following relationship (Petrov and Furo, 2009) is derived: 
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which suggest that the freezing and the melting point depressions differ by a factor of 

two.  Perkins et al. (2008) compared the freezing and melting cryoporometry curves for a 

water saturated, whole pellet S1 material, which has an ink-bottle type geometry. The 

authors found that ΔTm/ΔTf ≠ ½ which they attributed to pore blocking effects in freezing. 

However, particle fragmentation lead to a ratio of ½. This was because some of the pore 

blocking effects during pore freezing were curtailed. 

 

 

2.8  Defining cryoporometry NMR scanning curves and advanced melting 

mechanism 

 
The sections above described the pore freezing and melting mechanism for single pore 

hysteresis. This part will introduce the reader into advanced melting phenomena 

occurring during cryoporometry pore melting, likely to induce errors in the calculation of 

pore size distributions as derived from the Gibbs-Thomson equation. Moreover, an 

introduction to cryoporometry scanning curves and scanning loops will be provided, as 
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they will be utilized in Chapters 2 and 3 to test the independent pore theory in the 

cryoporometry NMR freeze-thaw processes. 

 

Scanning curves are extensively used in gas sorption experiments as a tool to investigate 

the ‘independent domain theory’ of sorption hysteresis. The basic concepts of 

independent pore theory have been already provided in Section 1.9, thus a summary will 

be now provided. This theory assumes that adjacent pore domains behave like 

autonomous entities, which fill and empty at well-defined pressures independently of 

their connectivity, as firstly suggested by Everett and Smith (1954). There are two types 

of scanning curves referred to as desorption and adsorption scanning curves. The former 

is obtained by decreasing the pressure at any partial filling of the pores, within the 

capillary condensation region of the adsorption boundary curve. The latter is obtained 

after increasing the pressure, initiated from a partial pore filling on the desorption 

boundary curve. Everett and Smith (1954) assumed that pores of a certain size will fill at 

a specific higher pressure than that required for them to empty, ignoring the multilayer 

adsorption process.  This means that the sorption scanning curves ought to cross over 

between the boundary sorption curves, once the pressure is reversed (Ravikovitch and 

Neimark, 2002b; Morishige, 2009). However, experimental and simulation results have 

shown that it is possible for the scanning curves to converge, and thereby to meet the 

top and the bottom closure points of the hysteresis curve (Coasne et al., 2005, Rojas et 

al., 2002, Esparza et al., 2004). Moreover, mixed scanning curves, where one of the 

scanning curves converges and the other one crosses over, were found from Monte Carlo 

simulations studies (Puibasset, 2009) and argon sorption in MCM-41 (Tompsett et al., 

2005). Independent domain theory can also be tested using scanning loops. To obtain the 

desorption (or adsorption) scanning loop, the pressure in the adsorption (or desorption) 

boundary curve is lowered (or increased) from a particular pore filling and it is again 

increased (or decreased), to meet the boundary curve (Grosman and Ortega, 2005; 

Hitchcock, 2011). If the adsorption and desorption scanning loops, that span over the 

same pressure range, have the same size and shape, then they are termed as ‘congruent’ 

and the system is believed to be composed of independent pores. 
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Figure 2.10 Schematic presentation of cryoporometry NMR freeze-thaw hysteresis curves 
(continues line), shown in Figure 2.9, along with a crossing freezing (A→B) and crossing melting 

(B→A) scanning curves, a converging freezing curve (A→C) and a converging melting curve 
(B→E). The scanning curves are shown in dotted lines. The arrows show the direction of freezing 

or melting 
 

Cryoporometry NMR can be also adopted to test independent pore theory, as pore 

melting and freezing processes are thought to be analogous to adsorption and 

desorption processes (Jackson and McKenna, 1990; Schreiber et al., 2001). Figure 2.10 

shows some scanning curves within the boundary freeze-thaw hysteresis curves, of a 

mesoporous material. Here the freezing scanning curve is initiated from a partially 

molten fraction on the boundary melting curve (point A) by decreasing the temperature, 

whereas the melting scanning curve commences from a partially molten fraction on the 

boundary freezing curve (point B), by increasing the temperature. Similarly to gas 

sorption, it is expected that the scanning curves initiated from partially molten fractions 

will cross over between the boundary curves (A→B or B→A) if the pores were freezing 

and melting depending only on the temperature, irrespective of the interaction with the 

neighbouring pores. However, if co-operative phenomena during freezing and melting 

were to occur, then converging freezing (A→C) and melting (B→E) scanning curves would 

be obtained.  
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Moreover, it is possible to obtain cryoporometry scanning loops by reversing the 

temperature within the freeze-thaw hysteresis region, and a comparison between their 

shape and size over the same temperature range, can provide information about the 

validity of independent pore theory. In addition to this, scanning curves and loops can be 

used to study the configuration of the molten/frozen phase at different molten fractions 

and the freeze-thaw mechanism up to/from the fractions studied. A freezing (A→A’→A) 

and a melting (B→B’→B) scanning loop is shown in Figure 2.11.  

 

Figure 2.11 Schematic presentation of cryoporometry NMR freeze-thaw hysteresis curves 
(continuous line), shown in Figure 2.9, along with freezing (A→A’→A) and melting (B→B’→B) 

scanning loops. The arrows show the direction of freezing or melting 

 
 
In Sections 2.6 and 2.7, it was discussed that the freezing mechanism is prone to pore 

blocking effects, as the ice front propagation, via a hemispherical meniscus, is delayed by 

narrow necks that require a lower temperature to freeze. Moreover, it was mentioned 

that melting commences from the liquid-like layer via a cylindrical meniscus (Petrov and 

Furo, 2009). It is though possible that once a critical pore size is reached, then the 

hemispherical meniscus of the molten phase can initiate melting of an adjoining pore. 

This effect is called advanced melting and it is analogous to advanced condensation in 

gas adsorption (de Boer, 1958). Figure 2.12 shows a schematic representation of 

independent and advanced melting mechanisms for a set of adjoined pores, P1 and P2. If 
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the pores melt only according to their size, then the small pore P1 will melt at 

temperature T1 and the big pore P2 will melt at a higher temperature, T2 (Figure 2.12, 

top row). Both pores melt via the cylindrical menisci from the pore walls. However, if 

advanced melting occurs (Figure 2.12, middle row), then P1 will melt via the cylindrical 

menisci, but, once the hemispherical meniscus is formed, it will enhance immediate 

melting of pore P2 at the same temperature, T1.  Melting can additionally be initiated 

from dead end pores (Figure 2.12, bottom row), via the liquid-like layer at the end of the 

pore.  Both mechanisms lead to melting of bigger pores at lower temperatures, contrary 

to the melting point depression predicted by Gibbs-Thomson equation and consequently 

to a narrowing of the temperature width over which pores melting occurs. This leads to 

an underestimation of the pore size distribution because incorrect meniscus geometry, 

by a factor of 2, is assumed to initiate melting in some pores.  

 

Figure 2.12 Schematic presentation for pores (P1, P2) melting independently by size (top row), 
for P2 melting via advanced melting at the same temperature, T1, as P1, by the hemispherical 

meniscus (dashed line) developed on the small P1 pore mouth (middle row), and melting initiated 
from the liquid-like layer on a dead end pore, P2 (bottom row). The arrows show the mechanism 

of pore melting for each pore 
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Previous studies have shown an immediate melting upon increasing the temperature 

from a partially molten fraction on the boundary freezing curve, or within a scanning 

loop for different samples (Kondrashova et al., 2010; Hitchcock et al., 2011; Petrov and 

Furo, 2011a). Kondrashova et al. (2010), who used nitrobenzene confined in Vycor 

glasses (poorly interconnected and disordered pore structure), demonstrated that this 

was caused by the presence of some dead end pores in Vycor, but the overall melting 

process was a single pore property. Petrov and Furo (2011a) on the contrary, attributed 

the early melting of water in Vycor, to the presence of the liquid segments on the 

liquid-ice interfaces along the pore channels that will act as nucleation sites to accelerate 

melting of the solid phases next to them, at lower temperatures. Hitchcock et al. (2011), 

performed cryoporometry experiments in a water saturated sol-gel sample (S1), with a 

well connected pore structure. Hitchcock et al. firstly referred to this phenomenon as 

‘advanced melting’, speculating it to be equivalent to the advanced condensation 

mechanism in gas sorption. Hitchcock et al. explained this in terms of hemispherical 

meniscus geometry developed at the liquid-solid interface, between a small and a bigger 

pore, able to enhance melting of both pores in one step. The authors also pointed out 

that advanced melting in a well connected pore system is more severe than that in a 

poorly connected system. Indeed, advanced melting was curtailed by particle 

fragmentation (Hitchcock et al., 2011). Petrov and Furo (2011a) compared the melting 

scanning curves and loops for water confined in Vycor to water imbibed in CPG glasses. 

CPG glasses have an ordered and well connected pore structure, thus, they would have 

had greater potentials for advanced melting to occur. However, melting scanning curves 

for CPG were less steep than Vycor glasses. These authors interpreted this as a slower 

exchange between the solid-liquid phases (Petrov and Furo, 2011a). Freezing initiated 

from the boundary melting curve or within the scanning loops, was found to be 

controlled by percolation effects and pore topology (Kondrashova et al., 2010; Hitchcock 

et al., 2011; Petrov and Furo, 2011a).  
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2.9 Summary 

 

This chapter firstly introduced the reader into the basic principles of NMR spectroscopy. 

Then a background theory to the T1, T2, PFG and cryoporometry NMR experiments was 

provided, and will be used in this work, mainly for characterization of porous materials. A 

more detailed literature review on co-operative phenomena in cryoporometry NMR will 

be provided in the experimental chapters, according to the purpose of study.  Moreover, 

some equations introduced in this chapter will be presented again in the following 

chapters for clarity. 
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Chapter 3 
 

Probing the impact of cooperative phenomena on the accuracy of 

pore size distribution derived from cryoporometry NMR and gas 

sorption techniques 
 
 
 
 
 
 

3.1 Introduction 

 
The pore size distribution (PSD) is a key descriptor for characterising the void space of a 

porous solid, such as a heterogeneous catalyst (Rouquerol, 1999). The PSD can be the 

main factor determining important features of porous solids, such as the overall activity, 

or coking-resistance, of a heterogeneous catalyst. Hence, it is important to obtain an 

accurate determination of the PSD. A number of different techniques, such as gas 

adsorption, mercury porosimetry, NMR cryoporometry, DSC thermoporometry and NMR 

relaxometry can be used to determine pore size information. Each of these techniques 

depends on a different physical process, and relies upon a different theory, and 

accompanying set of auxiliary assumptions, with which to transform raw experimental 

characterisation data into a PSD.  

 

For a porous solid the PSD can be obtained from the nitrogen adsorption isotherm using 

an algorithm, such as the BJH model which is widely adopted in industry (Barrett et al., 

1951). This algorithm makes the assumption that pores of different sizes are 

thermodynamically independent. This is equivalent to treating the individual ‘pores’ 

within an irregular, interconnected void space as if they were located within a 

hypothetical parallel pore bundle. Even assuming it is possible to obtain a physically 

meaningful definition of a ‘single pore’ within an irregular, interconnected void space, 

this assumption neglects the possibility of interactions between neighbouring pores, or 

even over much larger length-scales. Alternative methods, such as non-local density 

functional theory (NLDFT) (Neimark and Ravikovitch, 2001), improve on the pore-scale 

physics of the phase transition in a single pore but subsequent calculations of pore size 
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distributions still make the same assumptions regarding thermodynamically independent 

pores as with the BJH method.  

 

From considerations of basic adsorption theory, involving the Kelvin equation, it is 

possible to deduce that cooperative pore-pore interaction phenomena will occur during 

adsorption (de Boer, 1958). It is proposed that, for a through (open in both sides) 

ink-bottle pore geometry, if the radius of the two shielding pore necks is greater than 

half that of the intermediate pore body then all will fill at the same pressure. In this case, 

the pressure required is equivalent to that given by the Cohan equation (Cohan, 1938) 

for a cylindrical meniscus in the pore neck. This is because once condensate has filled the 

pore neck, filling of the pore body may then proceed via ingress of the, now 

hemispherical, meniscus from the end of the pore neck. If the pore neck radius is over 

half that of the pore body, then the pressure for condensation within the pore body, for 

a hemispherical meniscus, is exceeded by the pressure required to condense in the neck 

with a cylindrical meniscus. This process is known as the ‘advanced adsorption’ or 

‘advanced condensation’ effect (Esparza et al., 2004). Grand canonical Monte-Carlo 

(GCMC) simulations (Coasne et al., 2007) of argon adsorption in model, unconnected 

pores possessing corrugations have confirmed the aformentioned general picture as 

originally proposed by de Boer (de Boer, 1958). Mean-field density functional theory 

(MFDFT) simulations of adsorption, in disordered models for silica aerogels, have shown 

that an initially localized condensation event can trigger further collective condensation 

in neighbouring cavities, such that the independent pore model is completely 

inappropriate for these materials (Detcheverry et al., 2004). In gas desorption, the 

condensate empties via a hemispherical meniscus, at the liquid-vapour interface. 

However, when big pores are shielded from small necks, desorption is delayed until these 

necks are emptied, thus the PSD derived from gas desorption is not accurate. If 

cylindrical pores were filling and emptying independently, as proposed by the ‘single 

pore’ theory, then the relative pressure during desorption would be a power of two of 

the relative pressure in adsorption. Hitchcock (2011), showed that they are correlated by 

a power of 1.85. 
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In cryoporometry the melting process for the solid is initiated from the existing molten 

phase, such as the liquid-like layer that is retained at the pore wall even when that in the 

centre of the pore is frozen. However, it is possible that if a small radius cylindrical pore is 

attached to a larger radius cylindrical pore at one end, in a funnel-like arrangement, 

then, once the smaller pore melts via its cylindrical sleeve meniscus, a hemispherical 

meniscus will be formed at one end of the larger pore. If the larger pore radius is smaller 

than the critical size for melting via a hemispherical meniscus at the current temperature, 

then the larger pore will also melt at the same temperature as the smaller pore. 

Hitchcock et al. (2011) have shown that such advanced melting effects can lead to a 

dramatic skew towards smaller pores in PSDs for mesoporous sol-gel silicas, determined 

from cryoporometry melting curves. Cryoporometry freezing follows a similar 

geometrical mechanism, known as heterogeneous nucleation. Here pore freezing is 

nucleated by the frozen external bulk layer which penetrates the molten phase via a 

hemispherical meniscus, but is prone to pore blocking effects, caused by the small necks. 

If cylindrical pores were freezing and melting independently, as proposed by the ‘single 

pore’ theory, then the freezing point depression would differ from the melting point 

depression by a factor of two. This relationship is not true for the whole pellet sample S1, 

as shown by Perkins et al. (2008).  

 

In this chapter cryoporometry and water vapour sorption are combined to study the 

onset of advanced melting effects in a sample partially-saturated with different volumes 

of condensate, in turn, by pre-equilibration at different vapour pressures of the 

adsorbate. NMR relaxometry and diffusometry have been used to independently study 

the size and connectivity of adsorbed liquid ganglia at different molten fractions. These 

studies will enable the critical pores governing the advanced processes to be identified, 

and the likely errors in PSDs arising from advanced effects to be quantified. Moreover, 

the freezing mechanism of the partially saturated samples will be studied and discussed 

in terms of pore blocking and supercooling effects. The role of pore connectivity in 

cooperative phenomena occurring during melting/freezing and adsorption/desorption 

processes will be further elucidated by sample fragmentation and scanning loops 

initiated from partially molten fractions on the boundary melting curves of the samples. 
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3.2 Previous studies 

 
The filling of mesoporous silica materials with water has been studied previously using 

cryoporometry, T2 relaxation and PFG NMR techniques, but, usually, only using each 

technique individually, or in concert with just one other method, and not using all three 

simultaneously. In early work, Allen et al. (1998) studied the filling processes of water 

and cyclohexane in porous silica using NMR relaxometry and cryoporometry, and 

interpreted their data in terms of a ‘puddle pore-filling model’, whereby condensed 

liquid initially collects in particular concavities within the void space. These authors only 

considered growth in puddle size and geometry, and not the manner of that growth. 

More recently, Troyer et al. (2005) have interpreted similar datasets in terms of a so-

called ‘plug model’ of pore-filling. Farrher et al. (2007) have used MRI without pre-

conditioning and magnetization grid rotating frame imaging (MAGROFI) to study the 

spatial distribution of liquid within partially saturated silica samples. Their MRI studies 

demonstrated a heterogeneous spatial distribution of liquid on macroscopic length-

scales. Naumov et al. (2008) have studied the spatial arrangement of condensate within 

the void space, on the adsorption and desorption branches of the hysteresis loop region 

of the isotherm, for cyclohexane sorption in Vycor porous glass. They found that the 

diffusivity differed between the boundary adsorption and desorption branches of the 

hysteresis loop at the same degree of pore-filling. In addition they also found that the 

spatial arrangement of condensate at the same saturation level differed for scanning 

loops, when compared with the boundary curves. These results suggested that the 

spatial arrangement of condensate within pores was dependent upon the adsorption-

desorption history of the sample.  

 

Partially saturated KIT-5 systems, with a pore size of ~10-19 nm and ink-bottle shape, 

were studied by Morrishige et al. (2007) via DSC. The authors found that by decreasing 

saturation and the pore size, both freezing and melting point depression increases. This 

was because, when the molten pore bodies are isolated from the frozen menisci by necks 

smaller than 4 nm, or when the systems are partially saturated and the molten pores are 

surrounded by empty pores, then they will freeze spontaneously close to the 

homogenous nucleation temperature of bulk water  between 230-240 K (Morishige et al., 
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2007).  The authors thus concluded that freezing is a percolation controlled process, 

highly dependant on the neck size, whereas melting is controlled only by the cavity size. 

Bogdan et al. (1998) found that water adsorption (from 1-4 nominal statistical 

monolayers) on a layer of fumed silica particles with a low number of silanol groups, 

occurs in clusters which will merge and form a population of droplets with a wide size 

distribution, as opposed to the fully hydroxylated surfaces, where adsorption occurs in 

monolayers. They suggested that the small droplets will require a lower temperature to 

freeze due to the lower probability of the density and configuration fluctuations 

favouring freezing of small size water droplets as reported by Pruppacher (1995). This 

will appear as a “tailing” towards low temperatures, for a DSC peak, whereas the 

asymmetric and wide DSC peak invokes the presence of droplets with a wide size 

distribution (Bogdan et al., 1998). DSC studies on the freeze/thaw mechanism of water 

confined in regularly structured materials, such as MCM-41 and SBA-15, of sizes 

2.9-3.7 nm and 4.4-11.7 nm respectively, and at different saturations levels were 

conducted by Schreiber et al. (2001). These authors found that the melting point 

depression was sensitive to the pore size (i.e. decreased when the cavity size increased), 

but was only slightly dependant on the pore filling (only a small shift to higher 

temperatures was observed when saturation increased). On the contrary, freezing was 

more sensitive to probe the different states of the condensed phase in the partially 

saturated samples. For example in these systems, when the temperature is decreased 

the completely filled pores freeze first, followed by the liquid bridges and then the thick 

water layers on the pore walls (Schreiber et al., 2001). Morishige and Iwsaki (2003) found 

that melting in partially saturated SBA-15 (pore size ~7.8 nm) was independent of pore 

filling but freezing differed according to the state of the condensed phase. These studies 

(Morishige et al., 2007; Morishige and Iwasaki, 2003; Schreiber et al., 2001) suggest that 

the freezing is more sensitive to detect the different states of the condensed phase in the 

pores, but it is prone to pore blocking and supercooling effects, thus the boundary 

freezing curve in a cryoporometry experiment must not be used to calculate PSDs. 

Moreover, melting occured over a narrow temperature range, depending only slightly on 

the pore filling, due to the narrow PSD of these ordered materials. Hence, studies of 

cooperative effects within model porous solids with controlled pore size and geometry, 

achieved either by templating (such as SBA-15 or MCM-41) or electrochemically-etching 
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(such as alumina or silicon membranes), are of limited value in understanding the extent 

of the cooperative effects in more commonly used catalyst support materials, such as 

γ-alumina or sol-gel silica pellets, because of the limited size, and reduced complexity, of 

the controlled unit cell within the model materials. In a later study, Liu et al. (2010) 

studied the freeze/thaw mechanism of water in partially saturated Vycor and completely 

saturated samples with regular (MCM-41, SBA-15) and irregular (Vycor, sol-gel silica, 

Develosil) pore structure. The authors found that freezing is associated with the radius of 

curvature for high pore fillings but remains constant for low pore fillings. On the 

contrary, melting is more sensitive to the geometrical structure of pores, as a different 

correlation between the melting temperature and the surface-to-volume ratio was 

obtained for regular and irregular pores. Moreover, Liu et al. found that the melting 

temperature for Vycor saturated via adsorption is lower than that saturated via 

desorption, attributing this behaviour to the water redistribution in the pores during the 

collective freezing processes. However, these authors ignored the effect of the different 

spatial arrangement of the condensate in the pores and the size of the pores filled, on 

the freezing mechanism, at each saturation level. They also invoke water distribution in 

strong and weaker adsorption sites, to interpret the broad melting DSC peak patterns 

observed, not taking into account the size of the pores filled and their connectivity. 

 

Pore size distributions though are critical descriptors used to aid the understanding of 

the performance, and design, of porous heterogeneous catalysts, and it is important to 

know their limitations.  The only way to establish the extent and importance of the 

cooperative effects, particularly those of longer range, within amorphous materials is to 

study them directly. Hence, it is necessary to be able to isolate the individual stages in 

the inception, growth and pervasion of cooperative processes within complex pore 

networks using highly sophisticated characterisation techniques. Therefore, in this work, 

it is proposed to study the progressive adsorption of water vapour within a mesoporous 

sol-gel silica, denoted as S1, using NMR cryoporometry, NMR relaxometry and NMR 

diffusometry at different relative pressures. Further, the particular material selected for 

this study possesses highly pronounced, macroscopic correlations in the spatial 

distribution of pore size (Rigby and Gladden, 1996; Hollewand and Gladden, 1995b), 

which makes it appropriate for studies of long-range effects, well beyond the unit-cell 
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size of templated or etched model materials. MRI studies show that there are 

macroscopic heterogeneities in the spatial distribution of pore size in the S1 material 

(Rigby and Gladden, 1996; Hollewand and Gladden, 1995b), capable of inducing pore 

blocking in freezing and advanced melting, analogous to pore blocking in desorption and 

advanced adsorption in gas sorption, respectively. Perkins et al. (2008) showed that by 

fragmenting the S1 material, it is possible that pore shielding effects in freezing can be 

reduced. Hitchcock (2011) used scanning curves on the same material to further show 

that particle fragmentation also decreased advanced melting phenomena. 

 

Cryoporometry scanning curves and loops, initiated from partially molten phase were 

previously reported by Kondrashova et al. (2010). The authors demonstrated that pore 

melting of nitrobenzene imbibed in Vycor, occurs independently, in the radial direction. 

However, they attribute the immediate melting upon increasing the temperature from 

the partially molten fractions on the boundary freezing curve, to melting initiated via the 

hemispherical meniscus offered by the liquid-like layer on some dead end pore walls. 

Hitchcock et al. (2011) showed that hysterisis in the cryoporometry scanning loops for 

water imbibied in S1 material, can be purged over small temperature ranges, indicative 

of axial freezing and melting mechanisms, and as such advanced melting process. They 

further showed that although a ratio of two between the melting and freezing point 

depression on the arms of the scanning loops, indicative of single pore hysterisis, does 

not exist, pore blocking during freezing and advanced melting during melting can lead to 

identical connectivity and pore sizes of the molten phase. Petrov and Furó (2011) used 

NMR cryoporometry scanning curves and loops and T2 relaxometry, to ascertain the 

interconnectivity of the porous structure on well and poorly connected sol-gel materials 

(CPG and Vycor, respectively). The authors found that for CPG, at equal molten fractions, 

there exists similar interconnectivity between the frozen pores, no matter if it reached 

there via freezing or melting. On the contrary, for Vycor, spatial distribution of frozen 

pores changes upon freezing and melting due to topological restrictions during freezing, 

and the fast exchange between the frozen and molten phases. Here the molten menisci 

are able to initiate melting in the neighbouring frozen pores. 
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In this work cryoporometry, T2 relaxation and PFG NMR techniques will all be used to 

study each stage in the progressive equilibrium adsorption and desorption of water 

vapour within a mesoporous silica pellet (denoted as S1) , with an explicit aim to detect 

and study advanced phenomena during water vapour sorption and freeze/thaw 

mechanisms. In particular, the nature of the pore-filling process will be followed to 

determine how and when the advanced phenomena arise. In addition, cryoporometry 

scanning loops will be used to assess the reversibility of the melting process, and the 

connectivity of the condensed phase following vapour sorption at different relative 

pressures. A partially saturated fragmented sample will be also studied to elucidate the 

advanced phenomena for pore filling/emptying and melting/freezing mechanisms, 

operating during vapour sorption and liquid/solid phase transitions, respectively, when 

pore connectivity is diminished.   

 

 

3.3 Experimental procedure and methodology 

 
 The material studied in this work was a batch of commercially-available sol-gel silica 

spheres, denoted S1, of diameter ~2-3 mm. The batch average BET specific surface area 

is ~200 m2/g, and the batch average specific pore volume estimated from the sample 

studied in this work is ~0.80-0.92 cm3/g, as there are some differences between 

individual pellets due to intra-batch variability.  This material has been extensively 

characterised by Rigby and co-workers, including calculation of pore size distributions 

obtained from gas sorption, mercury porosimetry and NMR cryoporometry (Rigby et al., 

2008; Hitchcock et al., 2011). Sodium hydroxide (NaOH) (99.99% trace metals basis) was 

purchased from Fluka.  Prior to the adsorption experiments, the samples were pre-

soaked in ultra pure water, and then the bulk and physisorbed moisture was removed by 

degassing for 2 h at 363 K, followed by 10 h at 393 K. These conditions were chosen to 

avoid any partial dehydroxylation of the silica surface, since only water physisorption is 

required.  
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3.4 Water adsorption 

 
In order to obtain relative pressures of water vapour of 0.81-1.0 (capillary condensation 

region), the sol-gel pellets were suspended above NaOH solutions of different 

concentrations (Perry and Green, 1997). The samples were then left to equilibrate for 

5-7 days at 294 K, over a ‘large’ solution reservoir, in order to permit the assumption that 

the concentration of NaOH remains constant throughout the adsorption process. The 

points of the water isotherm were obtained by gravimetrically measuring the water 

uptake of thirty similarly sized pellets, at each relative pressure.  

 

For the NMR experiments, a given sample, consisting of a single pellet, was prepared 

identically to as described above, and then was quickly transferred to an NMR tube 

(Figure 3.1a). The experimental set-up and procedures were as described below. Single 

pellet samples were weighed before and after the experiments, to check that no 

significant liquid evaporation occurred during the experiment and the course of transfer 

into the NMR tube. Sets of cryoporometry experiments were performed at different 

saturation levels for the same single pellet sample. For the NMR experiments, two 

different single pellet samples from the same batch were used.  

 

Pellet 1 was used to generate cryoporometry melting curves, T2 and tortuosity values for 

fully molten samples saturated via adsorption at each relative pressure in the range 

between 0.81-0.94. Pellet 2 was also partially saturated via the same procedure between 

P/P0=0.84-1.0. This sample was then used to generate both freezing and melting 

boundary curves, T2 and tortuosity values for fully molten sample, after equilibrium 

adsorption with water vapour at P/P0=0.84-1.0 and equilibrium desorption at P/P0=0.86. 

For the fully saturated pellet 2, further T2 and tortuosity values were obtained along its 

boundary melting curve, at molten fractions equal to the volume of the adsorbed phase 

for the partially saturated samples. Moreover, freezing and melting boundary curves 

were obtained for the case of pellet 2 partially saturated via equilibrium desorption at 

P/P0=0.86. Scanning loops and scanning curves were performed for pellet 2 saturated via 

adsorption at P/P0=0.92 and 1.0, but only a scanning curve was performed for this sample 

after equilibrium desorption at P/P0=0.86. 
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Whole dry S1 pellets, from the same batch as above, were fragmented using a pestle and 

mortar. Their particle size was determined using a microscope and they were found in 

the range of 5-40 μm. Then, 5 mg of this sample were placed within a plastic pipette tip 

and was partially saturated above NaOH solutions at the range of P/P0=0.83-1.0 via 

equilibrium adsorption and at P/P0=0.85-0.86 via equilibrium desorption. The same NMR 

experiments as for pellet 2 were performed for this fragmented sample. A schematic 

representation of the experimental set up is provided in Figure 3.1b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Schematic representation of the experimental set up for the equilibrium water 
sorption above NaOH solutions at 294 K and for the NMR experiments for the a) whole and b) 

fragmented samples 

 

 

 

 

3.5 NMR cryoporometry 

 

All NMR experiments were carried out on a Bruker Avance 400 MHz spectrometer with a 

static field strength of 9.4 T, yielding a resonance frequency of 400.13 MHz for 1H 

nucleus. The temperature control unit within the probe uses a controlled flow of cool 

nitrogen gas evolved from liquid nitrogen, in combination with a heating element below 

the sample in the gas flow stream. Temperature control was achieved using a Bruker 

BVT3200 temperature control unit, able to measure and maintain the probe temperature 

within ±0.1 K within the range of 123–423 K. The chosen pulse sequence was a simple 

spin-echo sequence, a more basic form of the Carr–Purcell Meiboom–Gill (CPMG) 

whole S1 
pellet 

NaOH solution 

metallic 
grid 

NMR tube NMR tube glass vial glass vial 

fragmented S1 
within a pipette 

tip 

polyester 
thread 

NaOH solution 

susceptibility 
plugs 

susceptibility 
plugs 

theromocouple 
theromocouple 

a b 



Chapter 3 

66 

sequence (Fukushima and Roeder, 1981). The choice of the simple spin echo pulse 

sequence was made according to literature (Khokhlov et al., 2008, Strange et al., 1993) as 

it accounts for small magnetic field inhomogeneities that are present within the sample, 

therefore enhancing the quality of the signal obtained.  A CPMG sequence was not used 

due to the hardware limitation not permitting the delay time between the successive 

180° pulses to be less than 1.2 ms, while the echo time (2τ) had to be kept at 2 ms to 

suppress the signal from the liquid like layer on the pore surface.  

 

A single saturated pellet, or the fragmented sample within the pipette tip, was placed 

within a 5 mm NMR tube, between two susceptibility plugs to reduce the water 

evaporation from the pores (Figures 3.1a and b) and to hold the sample in the middle of 

the active region of the radiofrequency coil. A thermocouple was used to measure the 

real temperature of the sample and it was placed on to the top of the pellet, via a hole in 

the centre of the top susceptibility plug. The thermocouple calibration was previously 

described by Hitchcock (2011). The sample was frozen down to 225 K, and then the 

temperature was increased stepwise. At each step, it was then allowed 15 min to reach 

equilibrium and a series of proton spin-echo spectra was taken for each saturation, at 

each temperature.  This time proved to be sufficient for the system to complete any 

phase transition at each temperature change. All the molten fractions are normalized to 

the 100% molten fraction at the top of the pellet or the fragmented sample melting 

curve for the 100% saturated sample (at P/P0=1.0). It was noticed that for samples 

saturated below P/P0=0.81, the free induction decay (FID) was inadequate to be recorded 

due to the fast relaxation of the water molecules in close proximity with the pore walls; 

hence, all the samples used for the cryoporometry experiments were saturated at higher 

relative pressures. As there is no bulk liquid on the surface of the pellet, the total FID at 

~273 K corresponds only to the total water adsorbed within the pores. Application of a 

suitable correction of the results for the Curie law was found to make no significant 

difference.  

 

The pore size distribution from cryoporometry boundary melting curves for pellet 2 and 

the fragmented sample were calculated via Gibbs-Thomson equation 2.19. However, 

cryoporometry is an indirect pore size characterisation technique, since to obtain 
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absolute pore sizes, it requires a calibration of the Gibbs-Thomson parameter against 

pore size measures from another technique that may encounter other cooperative 

phenomena. Hence, we have used the cumulative PSD as a function of the reduced pore 

radius (r/rref). For this, firstly the cumulative PSD was plotted for each melting curve and 

a point of inflexion, rref, was found for each of them. The pore size was then divided by 

rref. 

 

 

3.6 T2 relaxometry  
 

NMR relaxometry is used to probe the adsorbed ganglia sizes. For the relaxometry 

experiments, the samples were prepared as described in Section 3.2 and T2 relaxation 

was measured, using a CPMG sequence. T2 relaxation is calculated according to the 

expression: 

I = I0 exp(-t / T2)                                    (3.1) 

 

where t is the echo time and I is the FID signal intensity. For more heterogeneous 

samples a two-component relaxation model was used: 

 

I = I0 [a exp(-t / T
f
2) + (1-a) exp(-t / T

S
2)]                    (3.2) 

 

where T
f
2 and T

S
2 are the relaxation times for the fast and slow components, with 

fractions a and (1-a), respectively. 

 

As discussed in Section 2.3 the value of T2 may be converted to a surface area to volume 

ratio by the adoption of a relaxation model. For a liquid imbibed within a confined space, 

the relaxation rate is enhanced. This is due to the particular thin layer of liquid in close 

proximity to an interface being affected by its presence, thereby increasing the relaxation 

rate. There is also diffusional exchange between the surface-affected layer and the 

remainder (bulk) of the liquid. In the case, as here, where the liquid ganglia are several 

orders of magnitude smaller than the rms displacement of the probe water molecules 

during the course of the experiment, the ‘‘two-fraction fast exchange model’’ of 
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Brownstein and Tarr can be used (Brownstein and Tarr, 1977). The measured value of T2 

is then expressed by equation 2.7. 

 

For pellet 1 of S1, relaxation time measurements were performed at the 100% molten 

fraction, for each relative pressure, at ~273 K. For pellet 2 and the fragmented sample, 

relaxation time measurements were obtained at various positions around the scanning 

loops, and the boundary freezing and melting curves. The time between 180° pulses in 

the CPMG sequence, for all relaxation experiments, was 1.2 ms. It was found that the 

single component model (equation 3.1) gave a good fit to data for fully molten samples, 

while the greater heterogeneity of the partially molten samples required a fit to the two-

component relaxation model (equation 3.2). 

 

 

3.7 NMR diffusometry 

 
All PFG-NMR experiments were carried out using the NMR system described above. The 

pulse sequence used was a stimulated echo with bipolar longitudinal eddy current delay 

(BPLED) developed by (Wu et al., 1995). The values of δ and τ were 0.002 and 0.0001 s, 

respectively, and the diffusion times, Δ, used, were 0.05, 0.1, 0.15 and 0.2 s. For each 

diffusion experiment, 10 data points were taken at increasing gradient strengths 

between 0.674 and 33.143 G/cm, and each point was obtained with 16 scans. The 

apparent diffusion coefficients were measured at ~273 K, corresponding to the 

completely molten state for all samples and at lower temperatures for the partially 

molten state when they are fully saturated. Their values were calculated from the signal 

attenuation observed during the experiment. To account for any temperature 

dependency of the apparent diffusion coefficient between the experiments, a calibration 

curve of bulk water was used based upon literature data (Holz et al., 2000) and 

determined by Perkins (2009).  

 

Pulsed field gradient (PFG) NMR can be used to determine the effective diffusion 

coefficient of a molecule within a sample calculated according to equation 2.10. In the 

experiments considered in this work, diffusion is occurring within the molten, adsorbed 
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ganglia of water, as any bulk water will be frozen. Adsorbed ganglia may be complex in 

geometry and topology, and extend beyond a single pore. At the very shortest diffusion 

times, the diffusing molecule is free to explore the localised ganglia topology, and will 

henceforth be referred to as unrestricted diffusion (though, of course, it will still be 

confined due to local pore walls and menisci). At slightly longer diffusion times, the 

motion of the molecule within each ganglion may become restricted by collision with the 

outer, boundary perimeter (i.e. edge) of the ganglion formed by the vapour-liquid 

meniscus and/or solid walls of the pore, and, therefore, the measured effective diffusion 

coefficient is indicative of the overall ‘cavity size’ of the confining ganglion. At the longest 

diffusion times, if the ganglia are all isolated, all molecular motion will become 

completely restricted, or, if the ganglia are interconnected, the molecule may find (a 

potentially narrow exit and) leave the cavity formed by the proximity of various nearby 

pore walls and menisci, and begin to probe the wider interconnected ganglia network. In 

this case the measured diffusion coefficient is indicative of the overall tortuosity of the 

continuous, adsorbed phase. In between these limits, it is likely that there will be a 

combination of restricted and unrestricted diffusion. For diffusion within the adsorbed 

phase, the tortuosity of the ganglia network may be obtained using equation 2.12. 

 

In this work, the self-diffusion of molten phase (water) will be studied within the ganglia 

of adsorbed phase. The root mean square (rms) displacements of the water molecules 

during the PFG NMR experiments will typically be smaller than the overall spatial extent 

of particular ganglia, but diffusion times will be employed such that a fraction of the 

diffusing molecules sense the outer perimeter at the edge of a ganglion. Hence, following 

the suggestion of Gjerdåker et al. the short time diffusion model of Mitra et al. will be 

applied to the PFG NMR. Mitra et al. have shown that a perturbation expansion of the 

measured diffusivity will deviate from the macroscopically unrestricted intra-ganglion 

diffusion coefficient, thus equation 2.14 can be applied for the estimation of the 

unrestricted diffusivity (or reciprocal tortuosity) within the liquid ganglia. The PFG 

experiments conducted in this thesis require a substantial amount of time (~2 hr for a set  

of PFG experiments at Δ=0.05-0.2 s), as based on the literature the delay time between 

the pulses has to be 5xT1 to ensure complete magnetization recovery into the z-axis. 

Chapter 9 will show that this time can be reduced ~5 times. 
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3.8 Nitrogen sorption 
 
Nitrogen adsorption studies were performed using a Micrometric Accelerated Surface 

Area and Porosimetry (ASAP) 2010 apparatus, at 77.35 K. Initially the whole pellet sample 

of ~0.14 g was degassed as described in Section 3.3 and the adsorption isotherm was 

obtained at the relative pressure range between 0.003-0.99, with 45 s equilibration time. 

Again the cumulative PSD was plotted against r/rref, where rref is the point of inflexion in 

the cumulative PSD calculated from the BJH model for cylindrical type pores using the 

adsorption curve.  

 

 

3.9 Results 
 

3.9.1 Water adsorption 
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Figure 3.2 Normalized water isotherms for a sample of 30 whole pellets obtained at 21oC. The 
water uptake was measured gravimetrically. The arrows show the direction of the water sorption 

process 
 
 

Figure 3.2 shows the equilibrium water sorption isotherms obtained gravimetrically for a 

sample of 30 pellets from batch S1 used in this work. The shape of the hysteresis loop is 

Type H2, which is similar to that generally obtained for nitrogen adsorption in 
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disordered, mesoporous solids (Rouquerol, 1999). In Chapter 5 it will be shown that 

nitrogen sorption isotherm for this material is more Type H1. 

 

 

 

3.9.2 NMR cryoporometry boundary melting curves. T2 relaxometry and diffusometry 

studies 
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Figure 3.3 NMR cryoporometry melting curves for the adsorbed phase in a single pellet sample 
(pellet 1) at P/P0=0.81, 0.84, 0.91, 0.92, 0.93, 0.94 and 1.0 of water vapour. The inset shows a 

close-up view of the steep parts of the melting curves for saturation at P/P0=0.91 and 0.92 

 
 

Figure 3.3 shows the boundary melting curves obtained for the adsorbed phase within a 

single pellet sample, denoted pellet 1, at various different relative pressures of water 

vapour in the range 0.81-0.94. The molten volume fractions, at different relative 

pressures, are measured relative to the total pore volume of this pellet, and, thus, the 

ultimate molten volume fractions achieved for experiments below total saturation are 

less than unity. It can be seen that, with increasing relative pressure, the melting curves 

move to higher temperatures and the steps up in intensity become more abrupt (i.e. 

spread over a smaller temperature range). In particular, it is noted that the melting 

curves for relative pressures of 0.91 and 0.92 generally overlay each other up to 
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~269.5 K, after which they diverge. The 0.92 relative pressure curve rises more abruptly 

than that for the 0.91 relative pressure curve, as highlighted in the inset in Figure 3.3. 

However, it is noted that the 0.91 relative pressure curve shows a significantly larger 

increase in signal intensity over the higher temperature range ~270.3-270.7 K than the 

P/P0=0.92 curve, despite the larger overall final intensity of the latter. 

 
Figure 3.4 shows the variation in T2 of the adsorbed phase with relative pressure 

(humidity) for the same pellet sample as used to obtain the data in Figure 3.3 (pellet 1). It 

can be seen that after an initial rise up to a relative pressure of 0.84, the T2 value stays 

roughly constant until a relative pressure of 0.92, when it begins to rise steeply. All the 

data from the relaxation experiments for fully molten samples exhibited mono-

exponential log-attenuation behaviour, suggesting that extensive diffusional averaging of 

the size of the liquid ganglia, arising at each pressure, was occurring.  Figure A1.1, in the 

Appendix shows an example of the log-attenuation plot, fitted to the raw relaxation data, 

obtained for pellet 1 at low saturation (P/P0=0.84).  
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Figure 3.4 Variation of NMR spin-spin relaxation time (T2) and unrestricted diffusion tortuosity for 

the adsorbed phase, obtained at the top of the melting curves (all at 273 K), with relative 
pressure of water vapour used to obtain the data in Figure 3.3 (pellet 1). The errors in the T2 

values are smaller than the size of the symbols 
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The raw log-attenuation data were obtained for diffusion within the molten phase at the 

top of the melting curve (where any bulk liquid in the thin external film would still have 

been frozen if any had existed) for pellet 1. These data were fitted to a monoexponential 

model according to equation 2.10, and were found to give rise to good fits with respect 

to the small standard and fitting errors observed. For each relative humidity, the set of 

values of diffusivity thus obtained at different diffusion times, were then fitted to the 

model for partially restricted diffusion (D0) as given by equation 2.14. These data all gave 

rise to good fits to the partially restricted diffusion model. The limiting values of the 

apparent tortuosity for unrestricted (but confined) diffusion were then obtained using 

the value of bulk (free) diffusivity appropriate to the relevant temperature. The rms 

displacements calculated from the unrestricted diffusivity are consistent with liquid-

phase only mass transport, as there was no indication of diffusion apparently occurring 

faster than for bulk liquid. Figure 3.4 also shows the variation of unrestricted diffusion 

tortuosity with relative humidity (pressure) for the same pellet sample used to obtain the 

data in Figure 3.3 (pellet 1). It can be seen that the tortuosity is roughly constant until a 

relative pressure of 0.91, and thereafter it declines rapidly with increasing relative 

pressure.  

 
During the PFG experiments it is likely that there was negligible exchange between the 

vapour and liquid phases within the pores, even at the very low saturation levels where a 

larger fraction of the void space was occupied by vapour. This is because, as shown in the 

typical data-set for a sample saturated at relative pressure of 0.84 given in Figure A1.2, 

Appendix, a mono-exponential fit (equation 2.10) to the log-attenuation data was found 

to be sufficient, which would have been unlikely if significant exchange was occurring 

between the liquid and vapour phases. Moreover, when there is an exchange between 

the liquid and vapour phases, the diffusivity observed would be significantly higher than 

that of the bulk pure liquid itself (Crank, 1975). This means that the tortuosity estimated 

via equation 2.12 would be lower than one. However, this is not the case as seen from 

Figure 3.4, where for the partially saturated systems had a tortuosity higher than two. 
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3.9.3 NMR cryoporometry scanning curves for the whole and the fragmented samples 

 

The whole pellet 2 was used to obtain a closer insight into the melting and freezing 

mechanism of partially saturated samples, when they are saturated via equilibrium 

adsorption and desorption. Both boundary freezing and melting curves for pellet 2 for 

adsorption at P/P0=0.92 and desorption at P/P0=0.86 are presented in Figure 3.5. From 

Figure 3.5 it can be seen that the boundary melting curve, for the sample equilibrated at 

P/P0=1.0, begins to rise at a significantly lower temperature, and rises more steeply, than 

that for the same sample equilibrated at P/P0=0.92 and P/P0=0.86. This is in good 

agreement with the results presented in Figure 3.3 for pellet 1. However, some 

interbatch variability between pellet 1 and 2 regarding the pore connectivity would 

possibly induce a different distribution in the adsorbed water ganglia and therefore pore 

water melting. Moreover, it is shown that for the partially saturated samples, the 

presence of an external bulk layer is not necessary to initiate pore freezing upon 

reversing the temperature at the end of the boundary melting curves. Indeed the 

imbibed pore water in the partially saturated system starts freezing at 269 K, which is 

slightly lower than the temperature where the 100% saturated system begins to freeze 

(~269.2 K). However, complete pore freezing for the 100% saturated sample is achieved 

at 268.3 K, whereas the partially saturated ones show an abrupt freezing until 268.8 K 

and then the pores freeze over a wide temperature range in a form of a “tail”, until they 

all freeze at ~265 K.  

 

Scanning curves initiated from partially molten fractions along the boundary melting 

curve are also included in Figure 3.5. It is seen that upon reversing the temperature 

freezing commences immediately for all samples. The scanning curve of the partially 

saturated sample via adsorption at P/P0=0.92, though, crosses over the boundary 

freezing curve at 267.9 K, in contrast to the fully saturated sample at P/P0=1.0 (even 

though the scanning curves commence from the same molten fraction of ~0.51), and the 

one saturated via desorption at P/P0=0.86 which meet the boundary curve on the closure 

point of the hysteresis. This shows that different pathways of freezing are followed for 

each sample. 
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Figure 3.5 Freezing scanning curves for whole pellet 2 saturated at P/P0=0.92 and 1.0 via 
equilibrium adsorption and via desorption at P/P0=0.86 within their freezing and melting 

boundary curves. The arrows show the direction of the change in temperature 

 
 
Boundary melting and freezing curves were also obtained for the fragmented sample 

saturated via adsorption at P/P0=0.92 and 1.0, and via desorption at P/P0=0.85, and the 

results are presented in Figure 3.6. The boundary melting curves for the samples 

saturated via adsorption show that pore melting starts at the same temperature, 266 K, 

but it is steeper for the fully saturated sample. The sample saturated via desorption 

generated a melting curve where the pores started melting at higher temperature 

(267 K) although the volume of the adsorbed phase was lower than that of the samples 

saturated via adsorption. This shows that some of the small pores filled with water at 

P/P0=0.92 and 1.0 have emptied after desorption at P/P0=0.85, and as such a higher 

temperature is required to initiate melting of the remaining bigger filled pores. Moreover 

Figure 3.6 shows that pores start freezing at higher temperature for the fully saturated 

sample (269.8 K), in contrast to the partially saturated samples at P/P0=0.92  and 0.85  

where freezing starts at 269 K and 268.5 K, respectively. For all these samples freezing 

extend over a wide temperature range, exhibiting a long “tail” similar to that observed 

for the whole partially saturated pellet 2, shown in Figure 3.5, although the pores of the 
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100 % saturated fragmented sample eventually all freeze at only slightly higher 

temperature (261.3 K) than the partially saturated ones. Furthermore, all the freezing 

scanning curves meet the closure point of their respective hysteresis (Figure 3.6). 
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Figure 3.6 Freezing scanning curves for a fragmented sample saturated at P/P0=0.92 and 1.0 via 

equilibrium adsorption and via desorption at P/P0=0.85 within their freezing and melting 
boundary curves. The arrows are shown to guide the eye. 

 
 

 

3.9.4 NMR cryoporometry scanning loops for the whole pellet and the fragmented 

samples. Relaxometry studies  

 

Figure 3.7 shows a set of scanning loops, for pellet 2, following equilibration with water 

vapour at P/P0=0.92 and 1.0. For both saturation levels, the scanning loops have the 

same starting point, which is ~51% of the total pore volume in the molten state. For the 

sample equilibrated at a relative pressure of unity, two scanning loops are shown, 

namely one which ends at the same temperature as the loop for the sample equilibrated 

at P/P0=0.92 (wide loop), and one ending at the same molten fraction as the loop for the 

sample equilibrated at P/P0=0.92 (small loop). It is also noted that, while the freezing 
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(upper) arm of the scanning loops for the sample equilibrated at P/P0=1.0, more or less 

overlay the upper arm of the scanning loop for the sample equilibrated at P/P0=0.92 for 

the range of temperatures ~270.5-269.5 K, they drop below it at lower temperatures. 

Hence, a larger volume of pores is frozen over the same drop in temperature for the 

sample equilibrated at a higher relative pressure. Also, from Figure 3.7, it can be seen 

that the melting arms of the scanning loops for the sample equilibrated at P/P0=1.0 begin 

to rise at a lower temperature than the corresponding boundary melting curve. However, 

an early rise is not so evident in the melting arm of the scanning loop for the sample 

equilibrated at P/P0=0.92, where the lower temperature section is much flatter.  
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Figure 3.7 Scanning loops for a single whole pellet saturated at P/P0=0.92 and 1.0 via equilibrium 
adsorption within their freezing and melting boundary curves 
 
 

Studies of the variation in T2 values with temperature, along the flat plateau at the top of 

the boundary freezing curve for a fully saturated sample, suggest that there is 

insignificant temperature dependence of T2 values (±0.12 ms maximum error) over the 

narrow temperature range of interest between the boundary curves. Table 3.1 shows the 
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results of fitting a two-component relaxation time model (equation 3.2) to the 

relaxometry data obtained at different positions around the scanning loops for pellet 2, 

shown in Figure 3.7. It is noted that the average T2 value at the top of the scanning loop, 

for the sample equilibrated at P/P0=0.92, is higher than that at the top of the scanning 

loop for the sample equilibrated at P/P0=1.0. Also, the average T2 value at the bottom of 

the scanning loop, for the sample equilibrated at P/P0=0.92, is higher than that 

corresponding to the same temperature (within experimental error) at the bottom of the 

scanning loop for the sample equilibrated at P/P0=1.0 but equal to that corresponding to 

the same molten fraction. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1 Results of the 2-component fit to the T2 data obtained at various positions around the 

scanning loops of the whole pellet 2, shown in Figure 3.7 using equation 3.2  

 

 

Scanning loops, initiated from the same molten fraction of ~0.46, were also obtained for 

the fragmented sample at P/P0=0.92, 0.93 and 1.0 in order to study the variation in the 

melting and freezing processes for freezing initiated from partially molten states, and the 

variation in the water ganglia connectivity, for less adjacent molten pores in proximity 

with frozen ones (as compared to the whole pellet 2). Figure 3.8 shows that freezing 

starts immediately upon reversing the temperature contrary to the boundary freezing 

P/P0 Loop position T
f
2 

(ms) 

α T
S

2 

(ms) 

1-α T2ave 

(ms) 

0.92 Top 4.7 0.85 2.20 0.15 4.30 ± 0.30 

1.0 Top 5.5 0.45 2.10 0.55 3.60 ± 0.10 

0.92 Bottom 2.9 0.54 1.06 0.46 2.10 ± 0.10 

1.0 

Bottom (equal 

temperature to 

0.92 loop) 

1.7 0.46 0.50 0.54 1.06 ± 0.01 

1.0 

Bottom (equal 

molten fraction to 

0.92 loop) 

3.0 0.42 1.40 0.58 2.1 ± 0.10 
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curve over the same temperature range. The freezing (upper) arm of the loops, for 

samples saturated at P/P0=0.93 and 1.0 overlap along the same temperature range and 

the same rate of freezing (ie change in the molten fraction with temperature change) is 

observed for the sample saturated at the lower relative pressure of 0.92. The melting 

branch of the loops is nearly flattened until 268.8 K, for all the samples, similar to the 

boundary melting curves, but becomes steeper as saturation increases, even though the 

bottom of the loops correspond to the same molten fraction, and as such pore volumes.  
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Figure 3.8 Scanning loops for the fragmented sample saturated at P/P0=0.92, 0.93 and 1.0 via 
equilibrium adsorption within their freezing and melting boundary curves. The bottom of each 

loop terminates at the same molten fraction 

 
 
Figure 3.9 compares the scanning loop of sample saturated at P/P0=1.0 with the sample 

saturated at P/P0=0.93 for freezing terminating at the same temperature on the loops, 

and as such, at the same pore size. It is seen that further freezing led to a slightly lower 

molten fraction and only a small change in the steepness of the melting branch of the 

loop which corresponds to the sample saturated at P/P0=1.0.  
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Figure 3.9 Scanning loops for the fragmented sample saturated at P/P0=0.93 and 1.0 via 

equilibrium adsorption within their freezing and melting boundary curves. The bottom of both 
loops terminates at the same temperature 

 

 

 

T2 relaxation measurements at the top of the loops for the fragmented sample, Table 3.2, 

show that bigger pores are melted at the same molten fraction, but at a lower 

temperature, in the 100% saturated sample compared to the lower saturated one at 

P/P0=0.93. Also, slightly bigger pores remain molten (on average) at the bottom of the 

loop for the sample saturated at P/P0=1.0, at the same molten fraction or temperature, 

as the partially saturated sample at P/P0=0.93.  
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P/P0 Loop position 
T

f
2 

(ms) 
α 

T
S

2 

(ms) 
1-α 

T2ave 

(ms) 

0.93 Top 2.02 0.60 6.73 0.40 3.90±0.10 

1.0 Top 1.78 0.50 6.66 0.50 4.21±0.15 

0.93 Bottom 1.56 0.66 6.69 0.34 3.28±0.09 

1.0 
Bottom (equal 

temperature to 0.93 
1.50 0.58 6.84 0.42 3.74±0.11 

1.0 
Bottom (equal molten 

fraction to 0.93 loop) 
1.43 0.59 6.57 0.41 3.56±0.10 

Table 3.2 Results of the 2-component fit to the T2 data obtained at various positions around the 
scanning loops of the fragmented sample, shown in Figures 3.8 and 3.9 using equation 3.2 

 
 
 
3.9.5 Further diffusion and relaxation studies. Comparing adsorption/desorption to the 

melting/freezing mechanisms 

 

Similar ganglia connectivity and pore size, between a partially melted 100% saturated 

sample (on the boundary melting curve) and a fully molten partially saturated sample, at 

equal fractions would be indicative of similar melting and adsorption mechanisms, up to 

the volume fractions studied.  

 

Table 3.3 shows the values of tortuosity and T2 relaxation values obtained from PFG NMR 

experiments conducted on pellet 2 when fully molten, following equilibration at 

P/P0=0.92 and P/P0=1.0, and when partially molten (on the boundary molting curve), 

following equilibration at P/P0=1.0, where the overall molten volume is the same as 

when fully molten following equilibration at P/P0=0.92. It can be seen that tortuosity and 

T2 relaxation are higher for the sample with the lower saturation level when it is fully 

molten, compared to the partially molten, fully saturated sample at the same (or higher) 

molten fraction. This indicates a better connectivity of water ganglia in the partially 

molten state in the completely saturated sample, located in smaller pores than those 

filled at P/P0=0.92. From Tables 3.1 and 3.3, it can be seen that, while the T2 value at the 

top of the scanning loop for whole pellet 2, for the sample equilibrated at P/P0=0.92, is 

higher than that at the top of the scanning loop for the sample equilibrated at P/P0=1.0, 
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when the molten fraction increases to 0.72, the T2 value for the sample equilibrated at 

P/P0=1.0 becomes higher than that at the top of the scanning loop for the sample 

equilibrated at P/P0=0.92, despite still corresponding to a lower melting temperature. If 

T2 was solely dependant on the temperature, then T2 values measured at the lower 

temperatures, would be smaller than those at higher temperatures, hence the opposite 

behaviour to what is found, would have been observed. 

 

 

Sample P/P0 
Molten 

fraction 
Tortuosity 

T2 

(ms) 

0.92 0.72 2.25±0.07 7.6±0.20a 

1.0 0.72 1.86±0.06 4.6±0.10a,b Whole pellet 

1.0 1.0 1.82±0.05 9.95±0.02a 

0.92 0.69 1.91±0.09 7.2±0.10a 

0.93 0.75 2.04±0.06 7.4±0.20 

1 0.69 2.1±0.07 6.0±0.20a,b 

1 0.75 2.08±0.07 6.5±0.10 

Fragmented 

1 1 2.0±0.06 9.2±0.10a 

Table 3.3 Results of PFG NMR experiments, and 1- and 2-component fits to the T2 data, obtained 
at some points on the boundary melting curves, obtained at different condensate saturations 
from adsorption. Notes: a 1-component fit, b 2-component fit gives same mean as 1-component. 
The values in bold and italics on this table are compared to those in Table 3.4 

 

 
Table 3.3 also shows that tortuosity for the partially filled fragmented sample saturated 

at P/P0=0.92 is smaller than that of the partially molten sample saturated at P/P0=1.0, at 

equal volume fractions (0.69). However as saturation increases to P/P0=0.93 and the 

adsorbed phase is increased to a fraction of 0.75, tortuosity increases and its value 

becomes similar to that of the partially molten sample saturated at P/P0=1.0, at equal 

molten fraction. T2 relaxation data for those samples proves that melting of a larger 

volume of smaller pores is favoured until 0.75 molten fraction of the sample saturated at 

P/P0=1.0 as compared to the partially filled ones. However, T2 relaxation at 0.75 molten 

fraction of the sample equilibrated at P/P0=1.0 was higher than the T2 value measured at 
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the top of the scanning loop of the sample saturated at P/P0=0.93 (Table 3.2), despite the 

fact that the former was measured at a lower temperature than the latter (Figure 3.8). 

 
 

Sample  P/P0 Molten 

fraction  

Tortuosity T2  

(ms) 

0.86 0.52 2.45 ± 0.08 6.45 ± 0.10a 
Whole pellet 

1.0 0.52 1.80 ± 0.07 7.50 ± 0.40a,b 

0.86 0.69 2.09 ± 0.07 7.70 ± 0.50a 
Fragmented 

1.0 0.69 2.05 ± 0.06 7.40 ± 0.20a,b 

Table 3.4 Results of PFG NMR experiments, and 1- and 2-component fits to the T2 data, obtained 
at some points on the boundary freezing curves, obtained at different condensate saturations 
from desorption process. Notes: a 1-component fit, b 2-component fit gives the same mean as the 
1-component fit. The values in bold and italics on this table are compared to those in Table 3.3 

 
 
In order to compare the process of pore water freezing during NMR cryoporometry, to 

that of pore emptying during water vapour desorption, tortuosity and T2 relaxation were 

measured along the freezing boundary curve of the sample saturated at P/P0=1.0, at 

molten fraction equal to the volume of the condensed phase of the sample saturation via 

desorption at P/P0=0.86. The tortuosity and the T2 value of the latter were measured at 

the end of its boundary melting curve. The results are presented in Table 3.4 for both the 

whole pellet 2 and the fragmented sample. It is seen that much bigger pores remain 

unfrozen within the whole pellet 2 saturated at P/P0=1.0, at 0.52 molten fraction during 

freezing (T2=7.5±0.4 ms), as compared to the pores that remain filled with water during 

desorption at P/P0=0.86 (T2=6.45±0.1 ms). Moreover, the connectivity of the water 

ganglia within the pellet, as denoted by the tortuosity value, is higher when the same 

molten fraction is achieved by freezing for the sample saturated at P/P0=1.0 

(τp=1.8±0.07) than that achieved via desorption at P/P0=0.86 (τp=2.45±0.08). On the 

contrary, for the fragmented sample only slightly smaller pores remain molten during 

freezing of the sample saturated at P/P0=1.0 (T2=7.4±0.2 ms), as compared to those that 

remain filled with water after desorption at P/P0=0.86. The tortuosity though, for both 

the partially frozen and partially filled fragmented samples are equal (within 
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experimental error), showing that the connectivity of the water ganglia during freezing 

and the adsorbed phase (in desorption) are similar in the fragmented sample.  

Tables 3.3 and 3.4 (tortuosity values in italics), show that the connectivity of molten 

water in both the boundary melting and freezing curve, at equal molten fractions (0.69), 

are similar for the fragmented sample saturated at P/P0=1.0. Moreover, when water 

adsorption at P/P0=0.92 and desorption at P/P0=0.86 led to equivalent volumes of 

adsorbed phase (0.69), the pore connectivity was slightly higher on adsorption 

(tortuosity values in bold), and pores filled are smaller.  
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Figure 3.10 Normalized T2 relaxation values of pellet 2 and the fragmented sample measured at 
the end of the boundary melting curve for saturations at different relative pressures. Error bars 
for the whole pellet 2 are smaller than the size of the symbols. All the T2 measured values are 

normalized to the T2 value of the completely molten samples (fragmented or whole pellet), 
saturated at P/P0=1.0 

 
 
 

The T2 relaxation values measured at the end of the boundary melting curve for pellet 2, 

after water adsorption at the relative pressure range of 0.81-1.0, are compared to those 
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of the fragmented sample, saturated via adsorption on the relative pressure range of 

0.83-1.0. Figure 3.10 shows the normalized T2 values, found by dividing each T2 value 

measured with the T2 of the completely molten sample, saturated at P/P0=1.0 . It is seen 

that the fragmented sample shows a more gradual increase on the T2 over the whole 

relative pressure range, as compared to the whole pellet 2 sample, which shows a 

gradual increase between P/P0=0.81-0.91, but an abrupt increase thereafter between the 

relative pressures of 0.91 and 0.92, showing that a big fraction of big pores is filled at 

P/P0=0.91 in the whole pellet 2. Moreover, the normalized T2 values of the fragmented 

sample are higher (at least) until P/P0=0.92 implying that the pores (on average) filled 

with water during adsorption in the fragmented sample, are bigger than those in the 

whole pellet 2 at the same pressures.  

 

Figure 3.11 shows the T2 values of the fragmented and whole pellet 2 samples, measured 

at different molten fractions along the boundary melting curve, when the samples are 

saturated at P/P0=1.0. Each of these molten fractions is equal to the adsorbed volume 

fraction when these systems are partially saturated at different relative pressures. For 

example, a molten fraction of 0.72 in the boundary melting curve for the sample 

saturated at P/P0=1.0, corresponds to an adsorbed volume fraction of 0.72 when the 

system was partially saturated at P/P0=0.92. Therefore the x-axis in Figure 3.11 is 

labelled as ‘equivalent P/P0’ (a virtual variable), to show that each of the relative 

pressures correspond to an equivalent molten fraction in the boundary melting curve 

when the sample is completely saturated. By plotting the normalized T2 values measured 

at different molten fractions versus the equivalent P/P0 (rather than the molten fraction 

itself) provides ease of comparison between Figures 3.9 and 3.10. For example, one can 

compare the size of the pores filled with condensate via adsorption to those molten via 

cryoporometry melting, when equivalent adsorbed/molten fractions are occupying the 

void space. 

The results in Figure 3.11 show that the size of the molten pores are roughly similar for 

both the fragmented and the whole pellet 2 sample until the molten fraction is equal to 

the volume of the adsorbed phase in the P/P0=0.90 saturated sample (0.22 molten 

fraction). An abrupt increase in the T2, similar to that seen in Figure 3.9, is observed in 
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the whole pellet sample for melting fractions between 0.31-0.72, equal to the adsorbed 

volumes between P/P0=0.91-0.92. At a molten fraction of 0.72 the T2 value of the whole 

pellet 2 has already jumped into a higher value to that of the fragmented sample, which 

follows a smoother increase along the melting curve.  
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Figure 3.11 Normalized T2 relaxation values of pellet 2 and the fragmented sample saturated at 

P/P0=1.0, measured along the boundary melting curve, at molten fractions equivalent to the 
adsorbed volume fraction after partial saturation at different relative pressures. All the T2 

measured values are normalized to the T2 value of the completely molten samples (fragmented 
or whole pellet), saturated at P/P0= 1.0 

 
 

Figure 3.12 compares the tortuosity values between the whole pellet 2 and the 

fragmented samples, for fully molten partially saturated samples. It is seen that while the 

tortuosity of the whole pellet decreases gradually up to P/P0=0.91, it then follows an 

abrupt decrease until P/P0=0.92, and a smoother one for higher relative pressures. This is 

consistent with the results found for pellet 1, presented in Figure 3.4. The fragmented 

sample has a quasi constant tortuosity until P/P0=0.91 followed by a small drop at 

P/P0=0.92, but it remains constant at higher pressures. Moreover, the tortuosity of the 

fragmented sample is lower than that of the whole pellet over the whole range of 
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pressures measured, showing that the (average) connectivity of the adsorbed phase in 

the fragmented sample, at each corresponding relative pressure, is higher than that of 

the whole pellet 2. 
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Figure 3.12 Variation of unrestricted diffusion tortuosity for the adsorbed phase, obtained at the 

top of the melting curves (all at 273 K), with relative pressure of water vapour for the whole 
pellet 2 and fragmented sample 

 
 
 
3.9.6 Pore size distributions 

 

The PSDs derived from the boundary melting curves were compared to that obtained 

from nitrogen adsorption using the BJH algorithm and the results are shown in 

Figure 3.13. From Figure 3.13, it can be seen that the cryoporometry PSD of the partially 

saturated sample (P/P0=0.91) is wider than that for the fully saturated sample, as the 

former expands between the reduced pore radius of 0.4-1.5, whereas the latter has a 

width between 0.6-1.2. On a similar way, a comparison of the PSD obtained from 

cryoporometry for a fully saturated sample, and that from gas adsorption, shows clearly 

that cryoporometry underestimates the width of the PSD and, thus, that advanced 

melting and advanced adsorption are not completely analogous in complex materials. 

The PSD for the fragmented sample from cryoporometry is also included and shows the 
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increase in the width of the PSD. This further suggests that advanced adsorption can be 

curtailed if the pore connectivity is reduced. 
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Figure 3.13 PSDs derived from the melting curves of the whole pellet 1 saturated at P/P0=0.91 

and 1.0, and the fragmented sample saturated at P/P0=1.0 calculated via Gibbs-Thomson 
equation. PSD derived from nitrogen adsorption for the whole pellets, using the BJH algorithm is 

also included 
 

 

 

3.10 Discussion 
 

3.10.1 Advanced phenomena studies on whole pellet S1 samples 

 

Advanced melting occurs when the molten phase occupying a small pore immediately 

adjoins the frozen phase in a larger pore. The effect is thus facilitated by increased inter-

connectivity of the occupied void space, since then more pores would have increased 

numbers of neighbours also filled with condensate that might potentially aid their own 

melting. Hence, a pore network with a lower pore connectivity will have less potential 

connections via which advanced melting could occur. Steadily increasing the liquid 

saturation level towards complete pore-filling will progressively fill pores within the 

network, thereby also progressively improving the level of pore interconnections within 
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the network. Hence, it would be expected that the opportunities for advanced melting 

would increase with increased pore filling. This procedure also allows the study of the 

importance of the various individual pores to the overall connectivity of the network in 

the fully saturated state. If a critical pore becomes filled at a given relative pressure then 

the connectivity of the adsorbed ganglia will rise significantly. In a fully saturated sample, 

it is these critical pores that will also permit the rapid transmission of the advancing 

meniscus as the melting front percolates the network following a temperature increase. 

Hence, the study of the partially saturated samples allows the identification of these 

critical pore sizes that greatly impact the advanced melting process in the fully saturated 

sample. It is these critical pore sizes that would feature prominently in a cryoporometry 

PSD.  

 

The PFG NMR data for pellet 1, Figure 3.4, suggest that there is a relatively rapid decline 

in tortuosity of the adsorbed phase between P/P0=0.91-0.92. Decreasing tortuosity is 

associated with increased inter-connectivity of the diffusing phase, since it facilitates 

easier diffusion. Hence, the PFG NMR data suggests that the large increase in the 

adsorbed phase interconnectivity, which would be necessary to facilitate advanced 

melting, did occur when the melting curves indicated that the influence of advanced 

melting had increased. The abrupt increase in phase connectivity, observed after 

P/P0=0.91, is akin to the similar sharp transition generally observed during the formation 

of the sample-spanning cluster at the onset of percolation of the vapour phase during gas 

desorption. For pellet 2, the tortuosity for the fully molten sample was 2.25±0.07 and 

1.82±0.05, when the sample had been equilibrated at P/P0=0.92 and 1.0, respectively. 

Higher tortuosities are generally associated with lower connectivities. Hence, the 

interconnectivity of the adsorbed phase is probably higher at higher relative pressure, as 

might be expected. A higher interconnectivity of condensed phase at P/P0=1.0 is also 

consistent with the differences observed in the form of the scanning loops when pellet 2 

had been equilibrated at P/P0=1.0, compared with that at P/P0=0.92. A higher 

connectivity of the condensed phase would better facilitate initiation of advanced 

melting, from the molten remnant, on the melting arm. Higher interconnectivity would 

also lead to less shielding during invasion percolation of the freezing front, and thus 

more pores freezing, on the freezing arm of the scanning loops. The higher T2 value at 
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the lower temperature end of the freezing arm of the P/P0=0.92 loop, compared with the 

equivalent location for the P/P0=1.0 loop ending at the same temperature, suggested 

that some larger pores remain shielded in the former, despite the same neck sizes 

potentially being frozen.  

 
The melting curve data for pellet 1 for P/P0=0.91 and 0.92 are consistent with the onset, 

between these relative pressures, of significant advanced melting at the point where 

they diverge (~269.5 K) as seen from Figure 3.4. The steeper shape of the upper part of 

the melting curve for the sample saturated at P/P0=0.91, compared to that saturated at 

P/P0=0.92, suggests that the larger pores, melting between ~270.3-270.7 K, occupied by 

condensate at the lower pressure, are, apparently, no longer occupied at the higher 

pressure. The range of this discrepancy greatly exceeds the size of the estimated, 

potential error in the temperature measurement of 0.1 K. Since this lack of occupation at 

higher pressure seems unlikely (as higher pressures tend to increase occupancy of larger 

pores by condensate, not reduce it), the alternative interpretation is that the steep 

deviation upwards, at ~269.5 K, in the melting curve for the sample saturated at 

P/P0=0.92, from that saturated at P/P0=0.91, represents the onset of a significant 

advanced melting effect. This would mean that pores melting at a lower temperature 

than ~270.3 K, for saturation at P/P0=0.92, have also facilitated the lower temperature 

melting of those pores that originally melted between ~270.3-270.7 K for saturation at 

P/P0=0.91. Since this effect only arose once the relative pressure had increased from 0.91 

to 0.92, leading to an increase in ultimate fractional saturation from ~0.3 to ~0.5, this 

would suggest that some of the pores filling between those pressures enabled the 

advanced melting to occur.  

 

For pellet 2, the melting curves for P/P0=0.92 and 1.0 (Figure 3.5) bear a similar 

relationship to each other, in terms of overall form and relative position, as the melting 

curves for P/P0=0.91 and 0.92 do for pellet 1. In each case, the higher relative pressure 

melting curve deviates from the lower relative pressure curve at a low molten fraction, 

and then rises steeply on the lower temperature side of the lower relative pressure 

curve. For pellet 2, the change in molten fraction in the range 270.7-271.2 K is much less 

for the higher relative pressure curve. As with the analogous result for pellet 1, this 
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discrepancy has arisen because advanced melting has meant that some of the pores that 

previously melted in this higher temperature range, at lower relative pressure, have, at 

higher relative pressure, melted at lower temperatures despite their large size. There 

was an increase in the T2 values, occurring between molten fractions of 0.51 and 0.72 on 

the boundary melting curve obtained at P/P0=1.0, to beyond the T2 value for a molten 

fraction of 0.51 on the P/P0=0.92 curve (Table 3.2). This increase in the T2 values, 

occurring despite the corresponding melting temperature not also, concomitantly, 

increasing beyond that point for the P/P0=0.92 curve, suggested significant advanced 

melting was occurring on the P/P0=1.0 curve between molten fractions of 0.51 and 0.72. 

The difference, between pellet 1 and pellet 2, in the relative pressure range over which 

boundary melting curves have a similar form must reflect differences in the spatial 

disposition of adsorbed phase, at the same relative pressure, between these samples. As 

mentioned above, a more interconnected adsorbed phase would better facilitate 

opportunities for advanced melting. Hence, advanced melting effects are a definitive 

probe for the development of interconnectivity of adsorbed phase for a given sample. 

Moreover, the difference found in the connectivity of the water ganglia and the pore size 

at a molten fraction of 0.72, between the sample saturated at P/P0=1.0 and that the 

sample saturated at P/P0=0.92, further indicates that the mechanism of water melting in 

cryoporometry differs to that in water adsorption. 

 

The above findings enable an assessment to be made of which particular pores facilitate 

the advanced melting of which other pores, and thus the likely inaccuracies in the final 

cryoporometry PSD over a given pore size range. The pore size distribution for S1 can be 

determined from the melting curve using a value of 26 nm K for the group of physical 

constants in the relationship between melting point depression and pore core size 

(Mitchell et al., 2008b). This value was assumed since advanced melting occurs via a 

hemispherical meniscus. It was assumed that the thickness of the pore surface layer left 

as unfrozen liquid-like phase was 0.4 nm (Schreiber et al., 2001). Using these parameters 

this would suggest that particular advanced melting identified for pellet 1 in Figure 3.3, 

would mean that at least 37 % of the pores in the range 9.9-11.4 nm would be missed 

using NMR cryoporometry. This missing pore volume would be attributed to smaller pore 

sizes in the range 7.9-9.9 nm. For pellet 2, the advanced melting seen in Figure 3.5 would 
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lead 26 % of the total pore volume that actually consists of pores in the size range 

11.4-14.1 nm being falsely attributed to pores in the size range 9.1-11.4 nm, if the 

boundary melting curve for the fully saturated sample were used to derive the PSD. 

 

The cryoporometry, relaxometry and diffusometry data obtained here can also shed light 

on the pore-filling mechanism for S1 sol-gel silica. Previous work, using solid-state 1H 

NMR, has suggested two different pore-filling mechanisms for water adsorption in silica-

based materials (Grünberg et al., 2004; Vyalikh et al., 2007). Pore filling in SBA-15 and 

controlled pore glass (CPG) involved, after initial coverage of the surface, a radial growth 

in the surface film towards the pore axis. However, for MCM-41, the proposed 

mechanism involved initial wetting of the surface, then a coexistence of filled pores, or 

pore segments, with wetted pores, or pore segments, and then further filling occured as 

a growth of the filled pores involving an axial filling of the pores. Grünberg et al., (2004) 

suggested that the observed difference in pore-filling mechanism arose because of the 

difference in pore sizes between SBA-15 and MCM-41. Further, as mentioned above, 

Troyer et al. (2005) proposed an alternative, ‘plug-model’, pore-filling mechanism, for 

water adsorption in silicas, distinct from the puddle-growth model of Allen et al. (1998). 

Troyer et al. suggested that adsorption began as an adsorbed film, that then grew into 

undulates, that then met to form a plug of liquid bridging the pore cross-section 

completely. The pore then filled by axial growth of this plug. These workers then used 

relaxometry data to study pore-filling in CPG.  

 

The data obtained for pellet 1 of S1 can be considered in the light of this previous work. 

The gradual shift to higher temperature in the melting curves up to P/P0=0.91 is 

consistent with a growth in the thickness of an adsorbed film, or the growth in size of 

adsorbed puddles. However, the steep increase in relaxation time of the adsorbed phase, 

between P/P0=0.91-0.92, would be consistent with the onset of the meeting and merger 

of adsorbed films, or undulates, from opposite sides of a pore. This is because, if this 

merger were to occur, the characteristic size of the adsorbed phase, governing relaxation 

rate, would then jump from the film, or undulate, thickness, to the diameter of the pore, 

since the liquid molecules would suddenly then be able to traverse the pore 

diametrically, through a large zone of bulk-like phase, rather than around the walls in 
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closer proximity to the surface-affected layer. This change in freedom of motion might 

also be partly associated with the above observed decrease in the tortuosity of the 

adsorbed phase, as well as that originating from increased connectivity due to increased 

saturation. Once formed, the adsorbate plug could fill the pore radially, thereby giving 

rise to the hemispherical menisci that facilitate advanced melting and advanced 

adsorption.  

 

However, the variation in the shape and position of the melting curves between relative 

pressures of 0.92 and 1.0, observed for pellets 1 and 2 suggests a difference in the pore-

filling process between the two samples for the respective critical pores governing 

advanced melting. The shift to higher temperature of the ‘lift-off’ point (where the 

gradient increases steeply) of the melting curves for pellet 1, between relative pressures 

of 0.92 and 0.93, suggests that the critical neck of condensed phase that initiates melting 

at P/P0=0.92 probably only occupies part of a pore cross-section. The shift in the position 

of the lift-off point is thus associated with the complete-filling by P/P0=0.93, and thus a 

larger ice crystal size, for the critical pore. The subsequent changes in the shape of the 

melting curve for pellet 1, between relative pressures of 0.93 and 0.94, just represent the 

filling of more larger (than the existing critical neck size) pores connected to the original 

cluster of filled pores present at relative pressure of 0.93. However, for pellet 2, 

previously empty critical necks completely fill between P/P0=0.92 and 1.0, leading to a 

large interconnected condensate network, and thus there is a shift in only the body of 

the boundary melting curve (and not the base) with increased relative pressure, and that 

shift is towards lower temperature. 

 

The results shown in Figure 3.13 indicate, in general, advanced melting is more acute 

than advanced adsorption for the S1 material. However, the above data can also be used 

to gain insight into advanced adsorption processes. If adsorption was occurring without 

advanced adsorption and pores simply filled in order of increasing size, the melting 

curves for successive relative pressures would be expected to show the form seen for the 

boundary melting curves obtained at P/P0=0.93 and 0.94  for pellet 1. As the relative 

pressure is increased, without advanced adsorption, only larger pores fill with 

condensate, and, thus, the melting curve for the higher relative pressure then only 
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deviates from the curve obtained at lower relative pressure towards the top of that 

curve, thereby simply reflecting the melting of the additional larger pores at higher 

temperature. However, if some smaller pores fill with condensate only at higher relative 

pressure than some larger pores, then there is the potential that the newly-filled smaller 

pores can act as a nucleation site for advanced melting that did not exist previously (at 

lower pressure). In that situation, the melting curve obtained at higher relative pressure 

would be expected to deviate from that obtained at lower relative pressure towards the 

lower end (at lower molten fraction) of that curve (in contrast to the scenario above 

without advanced adsorption), where the critical new small pore melts, and rise more 

steeply (over a narrower and lower temperature range) than that for lower relative 

pressure melting curve. This is what has been observed for the boundary melting curves 

obtained for pellet 2 equilibrated at P/P0=0.92 and 1.0. Hence, this suggests that the 

larger pores, melting at temperatures ~271 K in the melting curve for P/P0=0.92, fill at a 

lower pressure than the smaller pore that melts at ~270.2 K, in the curve obtained at 

P/P0=1.0, that represents the critical size where the steep rise of the higher pressure 

melting curve starts.  

 

From Figure 3.5 it is seen that freezing of the partially saturated pellet 2 occurs over a 

broad temperature range. As saturation increases though, freezing commences at a 

slightly higher temperature and the temperature width of the boundary freezing curve 

decreases. In particular, it is seen that pore freezing commences at ~269 K for the 

partially saturated samples at P/P0=0.92 (via adsorption) and at P/P0=0.86 (via 

desorption), and at 269.2 K for the sample saturated at P/P0=1.0. Here it must be noted 

that the partially saturated samples are free from any bulk water layer, which would 

have provided nucleation sites to the molten pore water, to initiate freezing via 

heterogeneous nucleation, such as that in the sample saturated at P/P0=1.0. These 

results suggest that freezing in the pellet 2, saturated below P/P0=1.0, will be initiated 

due to supercooling effects when all the pores are molten. At low saturations, there are 

small pores completely filled with condensate, but some others will be partially filled 

with a thick film of water, or liquid bridges and undulates. When the water is 

supercooled, the bigger filled pores freeze first at higher temperatures (Pruppacher, 

1995), which will provide nucleation sites to the smaller pores next to them. This is 
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obvious from the boundary freezing curves presented in Figure 3.5 for the whole pellet 

where at low saturations pore freezing occurs at lower temperatures than the 

completely filled one, and all the pores freeze within the narrow temperature range of 

268.8-269 K. However, if the molten water is isolated from these frozen sites, or is 

hindered by narrow necks, further pore freezing will be delayed by percolation controlled 

penetration of the ice front and pore blocking, and as such it will freeze due to further 

supercooling at lower temperatures. Moreover, the freezing point depression increases 

for the liquid film and bridges, due to their different metastability relative to the frozen 

pore water, and the freezing temperature will be determined from the liquid thickness 

rather than the pore diameter (Schreiber et al., 2001). This is observed as a ‘tail’ over the 

temperature range of 265-268.8 K. These results are consistent with the DSC findings by 

Schreiber et al. (2001) for MCM-41 and SBA-15 materials which are partially saturated 

with water. However, it is also likely that some of the pores or narrow necks and layers 

(<4 nm), will freeze due to homogenous nucleation from the spontaneous occurrence of 

ice nuclei and growth as found by Morishige and co-workers in partially saturated SBA-15 

and KIT samples (Morishige and Iwasaki, 2003; Morishige et al., 2007). When the samples 

were completely saturated, in the presence of an external bulk (frozen) layer, pore 

freezing commenced via heterogenous nucleation. Although initially freezing in pellet 2 

was delayed by pore blocking effects, it then progressed within a narrow temperature 

range, due to the higher connectivity of the molten water ganglia with the frozen 

menisci. During desorption at P/P0=0.86 (Figure 3.5), it is unlikely for water films to be 

present in the pores, as pores empty via the hemispherical menisci at the liquid-vapour 

interface. Therefore, the ‘tail’ observed, is due to supercooling of small isolated pores.  

 

For both the partially and the completely saturated samples, pore freezing commences 

immediately upon reversing the temperature part way up the boundary melting curve, 

from the same molten volume. This is because the presence of freezing fronts from 

frozen pores adjacent to molten ones inhibited pore blocking and initiated pore freezing 

of the molten pores. Also, a higher volume of pores freeze over the same temperature 

range for the sample saturated at P/P0=1.0 as compared to the one partially saturated at 

P/P0=0.92. This is due to the better connectivity of the molten ganglia with the frozen 

pores in the higher saturated sample, which enhanced easier penetration of the freezing 
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fronts compared to the partially saturated one. The fact that the freezing scanning curve 

of the sample saturated via adsorption at P/P0=0.92 crosses over the freezing boundary 

curve at 267.9 K is due to the presence of some small isolated pores (or very thick films), 

which required supercooling over the same temperatures range no matter if freezing 

occurred from a partially molten or a fully molten state. On the contrary, the freezing 

scanning curve of the sample saturated via desorption at P/P0=0.86 converges, possibly 

due to the presence of some well connected pores which freeze by nucleation induced 

from the already frozen pores, and the absence of water layers and/or isolated pores 

that would have frozen via supercooling. 

 

 

3.10.2 Advanced phenomena studies after fragmentation of S1 sample 

 

Accurate pore size distributions are essential if they are to be used successfully in 

understanding phenomena such as relative catalyst activities. The above findings suggest 

that pore-size distributions obtained using the typical experimental methods (employing 

boundary curves alone, for whole samples), and usual analysis techniques, are likely to 

be inaccurate in the presence of advanced phenomena. As shown above, these 

phenomena can be detected using additional cryoporometry experiments run on 

partially saturated samples. Hence, it is recommended that these experiments are run in 

addition to the standard experiment. Alternatively, for those materials, such as S1 that 

are known, or suspected to have macroscopic heterogeneities in the spatial distribution 

of pore size (Rigby and Gladden, 1996; Hollewand and Gladden, 1995b), the presence of 

advanced phenomena can also be detected and removed (to some degree) by obtaining 

the pore size distribution for the fragmented sample. 

 

Fragmentation of the sample and saturation at P/P0=1.0 leads to pore melting over a 

wider temperature range, characteristic of wider pore size distribution. The melting 

curves of the fragmented sample saturated between P/P0=0.93-1.0, Figure 3.8, deviate at 

268.2 K and as saturation increases the melting curves become steeper. This suggests 

that only a part of advanced melting was curtailed by fragmentation and that there are 

still frozen pores, connected to already molten ones that would melt via hemispherical 
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menisci. Pores with a size of 5.4 nm (268.2 K), have initiated melting of larger pores filled 

after equilibration at the higher pressure of P/P0=1.0. This is confirmed by the T2 

relaxation data, Table 3.2, where the T2 values on the partially molten fractions of the  

fragmented sample saturated at P/P0=1.0, are higher than the T2 value at the top of the 

loop of the sample saturated at P/P0=0.93, although the melting temperatures of the 

former is lower. It is possible that in the partially saturated sample at P/P0=0.93, some of 

the pores that melted between fractions of 0.46 and 0.57 in the boundary melting curve, 

or/and new medium sized pores filled after the pressure is increased up to P/P0=1.0, are 

now melting before the fraction of 0.46, on the boundary melting of the sample 

saturated at P/P0=1.0, via advanced melting. 

 

From Figure 3.8 it is observed that for melting initiated from the same molten volume at 

the bottom of the scanning loops, only a few small pores melt until ~268.5 K for 

saturations at P/P0=0.93 and 1.0, similar to the molten pores on boundary melting curves 

for the same temperature range, but once pore melting commences it then progresses at 

a narrower temperature range as saturation increases. For lower saturation at P/P0=0.92, 

rapid melting starts at the higher temperature of ~270.1 K. This suggests that small pores 

of sizes until 5.9 nm will initially melt independently for the higher saturations of 

P/P0=0.93 and 1.0, but their free menisci enhance melting of bigger pores, well 

connected to them. On the contrary, at the lower saturation of P/P0=0.92, where 

connectivity of the water ganglia is worse and fewer big pores are filled with condensate, 

advanced melting is curtailed until bigger size pores of ~13.8 nm melt, and an abrupt 

pore melting is thereafter seen. The higher T2 value for the saturated sample at P/P0=1.0, 

measured at the bottom of the scanning loop, at equal volume of molten phase as the 

partially saturated sample at P/P0=0.93 (Table 3.2), shows that shielding of big pores by 

necks, is inhibited for the saturation at P/P0=1.0 when the sample is partially frozen. 

These pores can provide bigger menisci and facilitate melting of neighbouring pores at 

lower temperatures upon reversing the temperature, for the sample saturated at 

P/P0=1.0, compared to those saturated at P/P0=0.92 and 0.93. The melting arm of the 

scanning loop, initiated from similar temperatures, Figure 3.9, is only slightly steeper for 

the saturated sample at P/P0=1.0 as compared to the one saturated at P/P0=0.93, due to 

bigger pores on the former (and thus meniscus size) that remained molten at the bottom 
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of the loop, as shown in Table 3.2, upon reversing the temperature. Moreover, the 

freezing arm of the loops either overlap over the same temperature range (for saturation 

at P/P0=0.93 and 1.0), or have the same freezing rate over these temperatures 

(saturation at P/P0=0.92, 0.93 and 1.0), showing that the freezing mechanism within 

similar sized pores is the same for all these saturations.  

 

Figure 3.6 shows that sample fragmentation, saturated at P/P0=1.0 permits initiation of 

pore freezing at higher temperatures. This is due to less pore shielding by the narrow 

necks that require lower temperatures to freeze. Thus, penetration of the ice front from 

the external water, into the molten phase was encouraged, similarly to the results shown 

by Perkins et al. (2008) for this material. MRI images of water vapour saturated S1 pellets 

(Hollewand and Gladden, 1995b) show a heterogeneous spatial distribution of the big 

and small pores, therefore particle fragmentation will lead to severing of pore 

connectivity between these pores. In the partially saturated samples, where the bulk 

frozen layer is absent, fragmentation is also expected to inhibit the progression of the 

freezing front towards the molten pores (apart from advanced melting). Therefore, 

supercooling will firstly initiate pore freezing of individual big pores that are completely 

filled, likewise in the whole pellet 2 described in Section 3.10.1. These pores will then 

nucleate freezing of smaller filled pores next to them only. However, if small pores of the 

same size are located in different particles, where there exist no bigger pores frozen next 

to them, or are isolated in the same particle by empty pores, then supercooling at lower 

temperatures is required for their freezing. 

 

Pore freezing in both partially saturated samples, via adsorption and desorption, and the 

completely saturated samples, extends over a broad temperature range, that reaches 

265 K for the partially filled sample, but increases up to 268.4 K for the 100% saturated 

sample, as seen from Figure 3.6. The abrupt decrease in the molten fraction, seen for the 

partially saturated whole pellet 2 in Figure 3.5, once pore freezing commenced, is not 

observed here. This is firstly because particle fragmentation disconnects the clusters of 

frozen pores to the molten ones, thereby frozen fronts in big pores can not initiate 

freezing of smaller pores, which were previously located next to them in the whole pellet 

sample. Moreover, there will be fewer big pores filled in the fragmented sample, as part 
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of advanced adsorption is curtailed. For the fragmented sample, the ‘tail’ is attributed to 

the freezing of small pores (and perhaps isolated) which required cooling until very low 

temperatures for both samples saturated via adsorption and desorption.  

 

Fragmentation of the pellets and subsequently a reduction in the pore connectivity, 

during pore filling, caused water adsorption to occur over a slightly wider pore size range 

at the capillary condensation region, as seen by the T2 relaxation measurements at the 

end of the boundary melting curves in Figure 3.10. Moreover, connectivity of the 

condensed phase in this sample remains constant until P/P0=0.91, followed by a small 

increase at P/P0=0.92 and again remains constant until P/P0=1.0 as seen the tortuosity 

measurements presented in Figure 3.12. This is because initially the pores will fill like the 

plug model proposed above for the whole pellets, but then advanced adsorption is less 

severe than that in the whole pellet, and condensation in the pores expands over a wider 

pressure range. This means that advanced adsorption can only occur in very well 

connected pores, within the same fragmented particle 

 

 

3.10.3 Comparing advanced melting to advanced adsorption, and pore blocking in 

freezing to pore blocking in vapour desorption 

 

The whole pellet 2 sample, saturated at P/P0=1.0 at a molten fraction of 0.72, exhibits a 

higher connectivity of the water ganglia but a smaller pore size, as compared to the 

adsorbed phase in the partially saturated sample at P/P0=0.92 when it is fully molten, 

Table 3.1. This suggests that melting and adsorption mechanisms caused a different 

spatial distribution of the liquid water phase up to the volumes studied. As discussed in 

Section 3.10.1, advanced melting mechanism is more severe than advanced adsorption in 

whole pellets 1 and 2. Moreover, Table 3.4 shows that partial melting of the fragmented 

sample saturated at P/P0=1.0 up to a fraction of 0.75, which is equal to the adsorbed 

phase in the partially saturated sample at P/P0=0.93, leads to similar connectivity of the 

molten phase, but the size of the pores in the partially molten phase (at P/P0=1.0) 

smaller than those in the fully molten phase (P/P0=0.93). Again this indicates that sample 

fragmentation did not completely remove advanced adsorption at lower relative 

pressures (P/P0=0.93) and therefore the two mechanisms are not equivalent up to those 
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pore volumes. However, Table 3.4 shows that sample fragmentation led to similar 

connectivity of the molten phase and sizes of molten pore, for the sample saturated via 

desorption at P/P0=0.86 and the sample saturated at P/P0=1.0 which was partially frozen 

until a molten fraction of 0.69 (Figure 3.6). For the whole pellet 2 it is shown that well 

connected big pores remain molten after freezing up to a fraction of 0.69, in contrast to 

the lower pore connectivity and size, caused after desorption at P/P0=0.86. These 

indicate that particle fragmentation can lead to similar mechanisms of freezing and 

desorption once the pore blocking effects are removed but, advanced melting and 

advanced adsorption can not completely be curtailed. Moreover, they show that both 

advanced melting and advanced adsorption are more severe than pore blocking effects 

during freezing and desorption, even if the pore connectivity is reduced. This could be 

due to the geometry of the menisci that initiates and controls each mechanism. Both 

freezing and desorption are initiated and progress via hemispherical menisci only, 

commencing from the frozen bulk water and the water vapour, for the two mechanisms 

respectively. On the contrary, pore melting and adsorption are initiated via cylindrical 

menisci, but they progress via combined cylindrical and hemispherical menisci.  

 

As shown from Figure 3.10, a large volume of big pores is filled between relative 

pressures of 0.91 and 0.92 in the whole pellet sample, causing an abrupt increase in the 

T2 relaxation values measured at the end of boundary melting curves. This is indicative of 

advanced adsorption in the whole pellet 2, which is less pronounced in the fragmented 

sample. The pore filling of the latter is smoother and expands over regions with similar 

connectivity, as supported by the tortuosity data presented in Figure 3.12. Figure 3.11 

shows a sudden increase in the amount of big pores melting at a molten fraction of 0.72, 

which is not observed for the fragmented sample and suggests that fragmentation 

curtailed (at least) some of the advanced melting phenomena.  

 

Figure 3.13 shows the PSD derived from the cryoporometry melting curves, for a fully 

saturated S1 whole pellet 1 sample and the fragmented sample, for comparison. It can be 

seen that the pore size distribution for the fragmented sample is much wider than that 

for the whole sample, which is what would be expected if (at least some of) the effects of 

advanced phenomena had been removed by fragmentation because regions of larger 
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pores were no longer connected to those of smaller pores. Moreover, Figure 3.13 

includes the PSD derived from the cryoporometry melting curve of the partially saturated 

pellet 1, which is again wider than the sample saturated at P/P0=1.0, indicative of less 

advanced melting caused for adsorption in smaller and less connected pores. The wider 

PSD derived from nitrogen adsorption data than that estimated from cryoporometry 

melting on the whole pellet, signifies that fewer pores fill via hemispherical menisci 

during nitrogen adsorption as compared to those that melt via hemispherical menisci, n 

cryoporometry melting. This shows the higher sensitivity of the nitrogen adsorption 

technique to detect the difference between the pore sizes and subsequently to probe the 

real PSD of the whole pellets in S1 material.  

 

 

3.11 Conclusions 
 

In this Chapter, advanced phenomena occurring during water vapour sorption and water 

freeze/thawing in a mesoporous silica S1 material before and after fragmentation, are 

studied using NMR cryoporometry, T2 relaxomentry and PFG NMR. It is found that as 

fractional saturation increases, the onset of particular advanced melting effects of the 

adsorbed phase can be discerned using NMR cryoporometry. For the whole pellet 

samples, NMR relaxometry and diffusometry data have also shown that the surface area 

to volume ratio, and the inter-connectivity of the condensed ganglia, decreased and 

increased, respectively, at the saturation levels associated with significant onset of 

advanced melting. Pore blocking during freezing and desorption were also detected. 

After particle fragmentation, these techniques showed that a large part of the advanced 

melting was curtailed and adsorption occurred over similarly connected pore clusters. 

Moreover, sample fragmentation led to less pore blocking during freezing, possibly 

similar to that in vapour desorption. It is thus supposed that the onset of advanced 

melting is associated with a percolation-type transition in the connectivity of the ganglia. 

The breakdown of the pore-filling process into steps, that can be monitored 

independently, enables the particular subsets of pores, and their relevant inter-

connections, that control advanced melting to be discerned. On the contrary, pore 

freezing is governed by a percolation-controlled penetration of the freezing front via 



Chapter 3 

102 

heterogeneous nucleation, and additional supercooling effects for the partially saturated 

systems, which are more severe at low saturations.  Therefore, a combination of these 

NMR techniques, allows the deduction of which sets of pore sizes are most likely to be 

either over-represented, or under-estimated, when calculating the PSD. 
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Chapter 4 

Probing hysteresis during sorption of cyclohexane within 

mesoporous silica using NMR cryoporometry and relaxometry 

 

       

 

4.1 Introduction 

As previously mentioned in Chapter 1, in order to convert an isotherm, for a disordered 

porous material, into a PSD it is necessary to make particular assumptions about the 

filling or emptying mechanisms for the pores, within the chosen theoretical approach. 

The Barrett-Joyner-Halenda (BJH) algorithm (Barrett et al., 1951), requires the choice of 

either cylindrical-sleeve menisci, or hemispherical type menisci (Rouquerol, 1999), and 

the non-local density functional theory (NLDFT), requires the option of either spinodal or 

equilibrium processes to be assumed (Neimark and Ravikovitch, 2001). Both these 

techniques assume a thermodynamically independent pore filling mechanism, neglecting 

the possibility of co-operative adsorption effects, such as advanced condensation 

(Hitchcock et al., 2010). Mean-field density functional theory (MFDFT) simulations of 

adsorption on irregular pore structural models have suggested that condensation for 

disordered void spaces may even occur part way between the equilibrium and spinodal 

pressures (Kierlik et al., 2002). MFDFT simulations also suggest that the difference in 

pore sizes, between neighbouring pores, required before they behave 

thermodynamically independently is a function of the adsorbate-adsorbent interaction 

strength (Rigby and Chigada, 2009). Hence, the impact of using different adsorbates 

needs to be explored.  

Chapter 3 showed that cooperative phenomena, likely to induce errors in the calculation 

of PSDs derived from water (vapour) sorption and cryoporometry melting can be probed 

by concomitantly applying NMR cryoporometry, T2 relaxometry and PFG techniques, 

after step-wise equilibrium sorption at different relative pressures. Also in Chapter 3 

cryoporometry scanning loops assessed the reversibility of the melting process, and the 

connectivity of the condensed phase of water at the relative pressures studied. However 
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this work was limited to the adsorption of water, which has significant dipole-dipole 

interactions with the hydroxylated silica surface. As mentioned above, the likely 

prevalence of advanced condensation effects is influenced by the strength of adsorbate-

adsorbent interactions. Hence, there is a need to study experimentally the impact of 

varying intermolecular interactions on advanced adsorption processes.  

 

In this chapter, NMR cryoporometry and T2 relaxometry will be used to study the 

configuration of the cyclohexane condensate within the S1 sol-gel silica material, at 

different pore fillings in the adsorption and desorption isotherm. This will allow the 

interpretation of the cause of the sorption hysteresis, for varying amounts adsorbed. 

Cryoporometry scanning loops will be used to study the geometry of the menisci 

governing pore freezing and melting mechanisms, thereby the validity of the 

Gibbs-Thomson equation for different subsets of pores. Scanning curves, initiated from 

different partial fillings in the cyclohexane sorption isotherm, will be further performed 

to investigate the validity of the independent pore theory during cyclohexane vapour 

sorption.  

 

 

4.2  Previous studies 

NMR relaxation studies at different pore fillings were previously done by Strange and 

co-workers in order to detect the filling mechanisms of water and cyclohexane in 

mesoporous silicas (Allen et al., 1997; Strange et al., 1996). The authors found that water 

saturation commenced with the formation of a monolayer over the pore surfaces, and 

with puddles of a minimum size in the silica interstices, that grew in size and joined one 

another before complete pore filling. However, saturation with cyclohexane led to 

complete pore filling, rather than surface coating with liquid layers, with the smaller 

pores being filled before the larger ones as the filling fraction increased. Simina et al. 

(2011) found that for different filling fractions of water and cyclohexane in silica glass, 

there were more water molecules present on the surface layer in fast exchange with the 

remaining bulk-like molecules, as compared to cyclohexane, indicative of the different 

configuration of the solvents in the silica. This is because cyclohexane has non-specific 
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interactions with silica surfaces, in contrast to water which strongly adsorbs on the 

hydroxyl groups.  

NMR cryoporometry has been utilized to study the phase transitions of cyclohexane 

imbibed in porous silicas with different nominal sizes, at temperatures well below the 

bulk phase transition from monoclinic crystal to plastic ice (187 K), and above the plastic 

to liquid transition temperature (279 K) (Booth and Strange, 1998). Aknes and Gjerdåker 

(1999) using T2, T1 and PFG NMR found that the plastic ice formed in the centre of the 

silica pores with a nominal size of 4-50 nm, is in fast exchange with the liquid-like layer, 

or glassy component, at the pore surface which never freezes, even below the ordered 

monoclinic to plastic phase transition temperature (187 K). Non-freezing cyclohexane 

within pores less than 4 nm, was also reported by Jackson and McKenna (1990). In a later 

study the authors were able to distinguish two more phases arising from the slow 

exchange between the well separated liquid states of cyclohexane confined in the 

mesopores and the small pores of CPG materials (Aksnes et al., 2004). Moreover they 

found that as the pore filling and the pore size increased, T2 relaxation decreased due to 

higher contribution of the plastic phase formed. The liquid layer was approximately one 

molecular layer thick, i.e. 0.65 nm (Aksnes et al., 2005). Gizatullin and Pimenov, (2009) 

found that cyclohexane adsorption on a monolayer level, occurred in clusters which form 

different phases upon freezing, exhibiting different T2 relaxation times.  

 

In the above NMR studies, cyclohexane was always introduced to the silica by liquid 

imbibition or drying, rather than controlled pressure, vapour-phase 

adsorption/desorption. As many sorption studies have shown, the particular history of 

the pore-filling process can substantially impact the spatial arrangement of adsorbate for 

a given saturation state (Valiullin et al., 2009). Hence, it seems, that no previous work has 

been done to follow cyclohexane equilibrium adsorption and desorption using combined 

NMR cryoporometry and T2 relaxometry. Also, given that previous work has indicated 

that the advanced melting phenomenon is more prevalent than the corresponding 

advanced adsorption phenomenon in disordered materials, then NMR cryoporometry 

can be used as a sensitive probe of the spatial arrangement of condensate and its 

changes with relative pressure.  



Chapter 4 

106 

4.3  Experimental procedure and methodology  

 
The material studied in this work was an S1 pellet which was used for all the NMR 

studies. The batch average specific pore volume, estimated from the sample studied in 

this work, is ~0.70-0.97 cm3/g. All of the sol-gel pellets used in this study are from the 

same batch, but there are some differences between individual pellets due to intra-batch 

variability.  

 

 

4.3.1 Cyclohexane sorption   

 

Cyclohexane sorption experiments were performed on a Hiden intelligent gravimetric 

analyser (IGA) using IGASwin software.  The sample (15 pellets; 70 mg) was initially 

degassed and the adsorption isotherm was obtained at relative pressure range 

P/P0=0.09-0.97, at 294 K. Desorption and adsorption scanning curves initiating from the 

boundary adsorption and desorption curves, respectively, then followed. 

 

Equilibrium sorption experiments of partially saturated samples were performed by 

suspending another sample of ~29 sol-gel pellets (0.14 g) above cyclohexane/mineral oil 

solutions of different concentrations. The sample was well sealed and left to equilibrate 

for ~24 hours, at 294 K, above a ‘large’ solution reservoir to allow the assumption that 

the cyclohexane concentration remains constant throughout all the adsorption process. 

The points of the cyclohexane isotherm were obtained by measuring gravimetrically the 

cyclohexane uptake at different cyclohexane concentrations. No mineral oil adsorption 

can occur during this timescale due to the low vapour pressure of mineral oil at this 

temperature. This was further tested by suspending a batch of pellets above pure 

mineral oil for an even higher equilibration time (5 days), but no mineral oil adsorption 

occurred. The cyclohexane/mineral oil solution approach for measuring sorption 

isotherms was validated as follows. The relationship between the cyclohexane 

concentration in the mixture with mineral oil, and the relative pressure of cyclohexane 

produced above, was obtained by assuming that points on the adsorption isotherms 

produced on the IGA, and using cyclohexane/mineral oil solutions, with the same specific 

amount adsorbed, were equivalent. This calibrated relationship between cyclohexane 
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concentration and relative pressure was then tested by using it to directly compare the 

respective desorption isotherms, produced by the two methods, on a relative pressure 

scale. It was found that the calibrated relationship led to the superposition of the two 

desorption isotherms.  

 

For the NMR experiments, a given sample, consisting of a single pellet (5.4 mg), was 

partially saturated identically to as described above, and it was then quickly transferred 

into an NMR tube. The mass of the partially saturated pellet was weighed before and 

after experiments to check that no significant cyclohexane evaporation occurred during 

the course of pellet transfer into the NMR tube. Severe kinetic limitations on desorption 

meant that the sample did not deviate from equilibrium saturation. All NMR experiments 

were performed on the same single pellet to avoid intra-batch variability effects. 

Cryoporometry boundary melting curves of partially saturated samples were thus 

generated and T2 values were measured for fully molten samples for each saturation 

level. Also, scanning loops were performed at a particular molten fraction on the 

boundary melting curves (~0.18) for each saturation level and the T2 relaxation time was 

measured at the top of each scanning loop. A thin layer of bulk cyclohexane was left on 

the 100% saturated sample and the sample was subject to supercooling and then pore 

melting and freezing. For this sample, scanning curves and scanning loops were also 

obtained at higher molten fractions on both boundary curves.  

 

 

4.3.2 NMR cryoporometry 

 

All NMR experiments were carried out on a Bruker Avance 400 MHz NMR spectrometer  

as described in Chapter 3.  For the cryoporometry experiments, the echo time (2τ) was 

16 ms to account for the plastic phase of cyclohexane formed below its bulk melting 

point (280 K) and the delay time for spin recovery was 13 s (~5×T1, where T1 is the 

relaxation time of cyclohexane imbibed in the pellet).  

 

A single saturated pellet was placed within a 5 mm NMR tube, between two 

susceptibility plugs to reduce cyclohexane evaporation from the pores. A thermocouple 



Chapter 4 

108 

passing through a hole at the centre of the top susceptibility plug was used to measure 

the real temperature of the sample. The sample was frozen down to 225 K, and then the 

temperature was increased stepwise. At each step, it was then allowed 15-18 min to 

reach thermal equilibrium and a spin-echo spectrum was then recorded.  This time 

proved to be sufficient for the system to complete any phase transition at each 

temperature change.  

 

 

4.3.3 T2 relaxometry 

 

NMR relaxometry will be used to probe adsorbed ganglia sizes. The intensity of the 

transverse magnetisation in NMR, I, decays, from an initial value of I0, with a time 

constant known as the spin-spin relaxation time, denoted T2, according to the expression. 

 

I = I0 exp(-t / T2)                                               (4.1) 

where t is the time. For more heterogeneous samples a two-component relaxation 

model was used: 

I = I0 [a exp(-t / T
f
2) + (1-a) exp(-t / T

S
2)]                    (4.2) 

where T
f
2 and T

S
2 are the relaxation times for the fast and slow components, with 

fractions a and (1-a), respectively. 

 

For the relaxometry experiments, the samples were prepared as described above and T2 

relaxation was measured, using a CPMG sequence. The time between 180° pulses in the 

CPMG sequence, for all relaxation experiments, was 3.4 ms. This time is short enough to 

detect the plastic phase of cyclohexane (compared to 16 ms used to obtain the 

cryoporometry melting curves). The single component model (equation 4.1) gave a good 

fit to data for fully molten samples, while the greater heterogeneity of the partially 

molten samples along with the liquid and plastic phases formed, required a fit to the 

two-component relaxation model (equation 4.2). The slow and the fast components, of 

the two-component fit, are attributed to the liquid and the plastic phase present at each 

saturation level, respectively.  
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4.4 Results 

4.4.1 Cyclohexane sorption  

 

Cyclohexane sorption isotherms for a batch of S1 sample, at 294 K are presented in 

Figure 4.1. In Figure 4.1 the desorption isotherm seems not to join the adsorption 

isotherm at its bottom part, possibly due to temperature fluctuations over that range.  
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Figure 4.1 Cyclohexane sorption isotherm for a batch of S1 pellets measured gravimetrically at 
294 K via equilibrium adsorption above different concentrations of cyclohexane/mineral oil 

mixtures 
 

 
 

Figure 4.2 shows examples of adsorption and desorption scanning curves obtained upon 

reversing the pressure at partial fillings of 0.82 and 0.74 on the adsorption and 

desorption curves, respectively. It is noted that adsorption and desorption on the 

scanning curves commences immediately upon reversing the control variable, pressure, 

and the curves are of the converging type, since they head towards their respective 

hysteresis closure points. 
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Figure 4.2 Cyclohexane sorption isotherm for a batch of S1 pellets measured via a vapour 

analyser (IGA) including an adsorption and desorption scanning curves initiated from partially 
filled systems. The lines shown are to guide the eye. The arrows show the direction of the change 

in pressure 

 
 
 
4.4.2 NMR cryoporometry  

 

The boundary freezing and melting curves, for a sample completely saturated with 

cyclohexane are shown in Figure 4.3. A melting scanning curve and a melting scanning 

loop originating from the boundary freezing curve when the molten fraction was 0.73 are 

also included in this figure. It can be seen that melting begins immediately upon 

reversing the control variable and starts before (at lower temperature) any significant 

melting starts on the boundary melting curve for the fully saturated sample. A freezing 

scanning loop originates from the same molten fraction (0.73) on the boundary melting 

curve. Both the freezing and melting scanning loops are reversible for all of their 

temperature range studied. Also shown is a freezing scanning curve, originating part way 

up the boundary melting curve. For the scanning curves, it can be seen that freezing 

starts immediately on reversing the direction of change of temperature, unlike the 

boundary freezing curve at the same temperature.  
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Figure 4.3 Boundary melting and freezing curves for a fully saturated sample of batch S1. Also 
shown are a reversible freezing scanning loop and a freezing scanning curve originating from 

different molten fractions on the melting boundary curve, along with a melting scanning curve 
and a reversible melting scanning loop originating from the boundary freezing curve. The arrows 

show the direction of the change in temperature. The lines are shown to guide the eye 
 

 

Figure 4.4 shows the boundary melting curves and scanning loops for partially-saturated 

samples filled by equilibrium adsorption to different partial pressures. It can be seen 

that, as the saturation level is increased the boundary melting curves shift to higher 

temperature and become steeper. It can also be seen that all of the freezing scanning 

loops are reversible. 
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Figure 4.4 Boundary melting and freezing curves for a fully saturated sample of batch S1. 
Attached to the boundary melting curve for the fully saturated sample is a freezing-melting 

scanning loop originating at low (0.186) molten fraction. Also shown are the boundary melting 
curves obtained for partially saturated samples after equilibrium adsorption of cyclohexane at 

different partial pressures to give ultimate fractional saturations of 0.194, 0.268, 0.351, and 
0.356. Individual freezing-melting scanning loops, starting from each of these boundary melting 
curves, were also obtained that originated at molten fractions of 0.183, 0.183, 0.185, and 0.184, 

respectively. The lines shown are to guide the eye 
 
 

 
Figure 4.5 shows the boundary melting curves and scanning loops for different saturation 

levels obtained via equilibrium vapour desorption. To facilitate easier comparison with 

the corresponding adsorption data, these curves are shown against the backdrop of the 

same boundary melting and freezing curves for the fully saturated sample as shown in 

Figure 4.3. The inset in Figure 4.5 shows a close-up of the boundary curves obtained for 

ultimate saturation levels of 0.343 and 0.416. It can be seen that, in contrast to what 

occurs for the corresponding adsorption data over a similar saturation range in 

Figure 4.4, as the saturation level decreases, the bottom sections of the melting curves 

remain superimposed, rather than shifting to lower temperature with lower ultimate 

saturation. As the saturation level decreases the upper, higher temperature, portion of 
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the melting curve is simply lost. However, at lower saturations levels still the melting 

curve does shift to lower temperatures.  
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Figure 4.5 Boundary melting and freezing curves for a fully saturated sample of batch S1. Also 

shown are boundary melting curves obtained for partially saturated samples obtained by 
equilibrium desorption of cyclohexane to different partial pressures to give ultimate fractional 

saturations of 0.242, 0.343 and 0.416. Individual freezing-melting scanning loops originating from 
molten fractions of 0.182, 0.182, and 0.185, on the boundary melting curves with fractional 
saturation between 0.343-1.0, are also included. The inset shows a close-up of the boundary 

melting curves and scanning loops for partially saturated samples. The lines shown are to guide 
the eye 

 

 

4.4.3 T2 relaxometry 

 

Table 4.1 shows the T2 relaxation times obtained by fitting a two-component model to 

the relaxometry data obtained at the top of the scanning loops (where there was a very 

similar molten fraction of ~0.18 for all curves) shown in Figure 4.4 for various different 

ultimate saturation levels on the adsorption isotherm. It can be seen that the slow-

component T2 values declined with increased ultimate saturation level. The T2 values of 

the fast component are ~7-8 ms, which is consistent with the value obtained at a similar 

temperature for the cyclohexane in the plastic ice phase by Booth and Strange (1998). 
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Table 4.1 T2 relaxation times obtained by fitting a two-component model to the relaxometry data 
obtained at the top of the scanning loops (where there was a very similar molten fraction of 
~0.18 for all curves) shown in Figure 4.4 for various different ultimate saturation levels on the 
adsorption isotherm. The error in the fraction of the slow and the fast component varies 
between 0.01-0.06 ms 
 
 
 

Table 4.2 shows the T2 relaxation times measured at the end of the boundary melting 

curves, shown in Figure 4.4, for various different ultimate saturation levels on the 

adsorption isotherm. It can be seen that the T2 value for the slow component was 

constant, within experimental error, at ~36 ms for ultimate saturation values in the range 

~0.26-0.37. However, the T2 value increased to 74.8 ms for the completely saturated 

sample. 

 

Table 4.2 T2 relaxation times measured at the end of the boundary melting curves, shown in 
Figure 4.4, for various different ultimate saturation levels on the adsorption isotherm.d: the error 
is ±0.38 ms. All the other errors in the fraction of the slow and the fast component vary between 
0-0.06 ms 

 

Fractional 

saturation 

Molten fraction T 

(K) 

T2
s
 

(ms) 

(1-a)
 

T2
f 

(ms)
 

a
 

T2
av 

(ms)
 

0.194 0.183 262.2 24.7±0.3 0.82 10.8±1.0 0.18 22.2±0.7 

0.268 0.183 262.8 21.5±0.2 0.60 7.9±0.2 0.40 16.1±0.3 

0.351 0.185 264.3 20.3±0.4 0.44 7.7±0.2 0.56 13.2±0.5 

0.356 0.184 265.7 18.0±1.0 0.44 7.9±0.5 0.56 12.4±0.1 

Fractional saturation T 

(K) 

T2
s
 

(ms) 

(1-a)
 

T2
f 

(ms)
 

a
 

T2
av 

(ms)
 

0.194 272.5 43.3±6.5 0.82d 23.9±14.8 0.18d 40.0±20 

0.268 268.2 35.8±0.9 0.8 18.1±2.1 0.19 32.5±2.4 

0.351 268.5 35.0±0.2 0.93 9.8±1.4 0.07 33.2±0.4 

0.356 269.2 36.6±0.4 0.91 10.5±2.1 0.09 34.2±0.8 

1.0 272.5 74.8±0.2 0.98 10.6±1.8 0.02 73.2±0.2 
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Table 4.3 shows the T2 relaxation times measured, at approximately the same 

temperature as each other, at the end of the boundary melting curves, shown in Figure 

4.5, for various ultimate saturation levels on the desorption isotherm. It can be seen that 

the T2 values for the slow component decrease slightly with saturation. It is noted that 

while the spread (standard deviation/mean) in the T2 values for the adsorption isotherm 

(in Table 4.2) is ~0.2, for those in Table 4.3 the spreads are ~0.5, and so there is a much 

wider distribution in T2 values for the desorption isotherm. 

 

 

Table 4.3 T2 relaxation times measured at the end of the boundary melting curves, shown in 
Figure 4.5, for various different ultimate saturation levels on the desorption isotherm. The error 
for the slow and fast component fractions varies between 0.01-0.1  

 

 

4.4  Discussion  

 
The pattern of change in the shape and position of the cryoporometry melting curves at 

different saturations obtained by adsorption is similar to that observed, for cyclohexane 

at different filling fractions and pore size in silicas, by Strange and co-workers (Strange et 

al., 1996; Strange et al., 1993; Allen et al., 1998). They attributed this behaviour to the 

growth in liquid puddle size with increasing saturation. However, it is noted that, 

assuming that the average liquid T2 value for the fully saturated sample (73.2 ms) 

corresponds to the volume-weighted average pore size for sample S1 (having a modal 

pore radius of 7 nm) the liquid ganglion size corresponding to the liquid T2 value for an 

ultimate saturation level of ~0.19 (40 ms) corresponds to a pore radius of ~4 nm, which is 

much larger than the smallest pore radius observed in S1 using mercury porosimetry. 

Hence, it seems likely that, for the liquid saturation levels considered here, condensation 

of cyclohexane in a given pore results in complete pore-filling. Thus an alternative 

Fractional 

saturation 

T 

(K) 

T2
s
 

(ms) 

(1-a)
 

T2
f 

(ms)
 

a
 

T2
av 

(ms)
 

0.343 273.9 52.9±0.9 0.70 11.9±0.2 0.30 40.4±1.0 

0.416 273.9 58.6±1.0 0.71 13.5±0.1 0.29 45.4±1.1 
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scenario, underlying the shapes of the melting curves, is proposed here. It is suggested 

that, at least in some part of the network, as the relative pressure is raised, cyclohexane 

condenses in progressively larger pores, as shown in Figure 4.6. Where a filled small pore 

(P1, low saturation) adjoins an empty larger pore, freezing of the liquid in the small pore 

would leave an ice wall, filling the cross-section of the end of the small pore at the join 

with the larger pore P2. Since molten cyclohexane should wet its own ice, it seems likely 

that a liquid film would spread from the surrounding walls of the unfilled larger pore to 

coat the ice wall at the end of the small pore P1. Previous work has also suggested that 

bulk ice is covered in a liquid-like film (Rosenberg, 2005; Doppenschmidt and Butt, 2000). 

This liquid film, bridging the complete pore cross-section between pore P1 and P2, could 

then act as a seed for initiating advanced melting of the small pore via a hemispherical 

meniscus. Hence, both freezing and melting would be expected to occur by piston-like 

movement of a liquid-ice front down the long axis of the pore. This is consistent with the 

reversible nature observed for the cryoporometry scanning loops for partially saturated 

samples where the pores are freezing and melting via a hemispherical meniscus. 

 

 

Figure 4.6 Schematic diagram depicting the different melting mechanisms described in the text 
for a set of pores with different sizes (P1, P2, P3), at a low and higher partial saturation. The dark 

grey represents liquid, light grey represents ice and the grey texture on the background 
represents the silica solid walls. The arrows show the direction of the direction in melting 

 

As the equilibrium vapour pressure is raised the larger pore P2 adjoining the smaller pore 

P1 will also fill with condensate as presented in Figure 4.6 for the higher saturation set of 
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pores. If the temperature is lowered sufficiently to freeze both small and large pores 

then the liquid-like film across the pore cross-section, between P1 and P2, would now be 

situated at the far end of the larger pore, between P2 and P3. While the larger pore P2 

would be able to initiate melting via the hemispherical meniscus at its terminus end, the 

small pore P1 would only now be able to initiate melting via the cylindrical sleeve-shaped 

meniscus at the pore wall. Hence, the temperature required to melt the smaller pore 

would increase, since it would only melt via its own cylindrical-sleeve meniscus, or 

following melting of the larger pore via a hemispherical meniscus. This would result in a 

shift towards higher temperatures for the composite melting curve. Therefore, melting 

via a hemispherical meniscus can be initiated from liquid bridging pore cross-sections for 

either partially saturated samples, as described above, or for fully saturated samples 

where melting is initiated in a partially frozen sample. This would suggest that boundary 

melting curves for partially saturated samples and melting scanning curves for fully 

saturated samples should potentially begin to rise over similar ranges of temperature. 

Indeed, this is what has been observed in Figures 4.3 and Figure 4.4 for batch S1.  

 

It has been seen that the changes in shape and position of the cryoporometry melting 

curves, with varying saturation, for fluid saturation levels in the range ~0.34-0.42 are 

different depending upon whether the particular saturation level was obtained by 

equilibrium adsorption or desorption. This suggests that the spatial distribution of 

condensate is different between adsorption and desorption at these saturation levels. 

This finding is consistent with the presence of hysteresis, at these saturation levels, 

between the sorption isotherms shown in Figures 4.1 and 4.2. The particular form of the 

desorption melting curves is what would be expected if melting is initiated, as 

temperature is raised, strictly in the order of increasing pore size. This suggests that no 

‘pore-blocking’ in melting, as described above for adsorption melting curves, is occurring. 

This would be the case if the remaining filled pores during desorption are more 

independent than the pores filled at the equivalent saturation level in adsorption, which 

may mean more spatial segregation between pores of different sizes, or the differences 

in size between adjacent pores exceeded the critical value for advanced melting to occur. 

It is noted that the spreads in T2 values, measured at the end of the desorption melting 

curves, exceeded those of the corresponding adsorption melting curves. This suggests 
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that some desorption pore-blocking was occurring on the desorption branch. This is 

because, if pore-blocking is occurring on the desorption branch, then larger pores that 

should have desorbed remain filled with liquid, and, thus, the spread of filled pore sizes is 

artificially high. It thus seems likely that the blocked pores are much larger than their 

blocking pore necks. However, it is noted that, in contrast, as the fractional saturation 

level drops to ~0.25 on desorption, the boundary melting curve does shift to lower 

temperature. Indeed the form of the melting curves for a saturation level ~0.25 is very 

similar for both adsorption and desorption. This would suggest that the liquid spatial 

distribution on the adsorption and desorption isotherms becomes similar as the 

saturation drops to the lower level. Given that there is still hysteresis in the sorption 

isotherms at a saturation level of ~0.25, this may be due to single pore hysteresis. 

Condensation of liquid into a through, cylindrical pore neck, guarding a larger cylindrical 

pore body, would occur via a cylindrical-sleeve meniscus on adsorption and a 

hemispherical meniscus on desorption (or spinodal condensation and equilibrium 

desorption), leading to hysteresis in the sorption isotherms. However, the local liquid 

distribution detected by cryoporometry would be identical. Together, the above findings 

suggest that the pore sizes derived for at least ~8-17% of the porosity of S1 would be 

wrong if spinodal condensation (or a cyclindrical sleeve meniscus) was assumed for the 

adsorption branch. 

 
As the ultimate adsorption saturation level decreases, the scanning loops starting at a 

molten fraction of 0.18 become closer in slope to the corresponding boundary curve 

suggesting that the melting-freezing process is becoming more dominated by reversible 

processes, and levels of shielding are declining. This would be consistent with the 

condensation at lower saturation levels of the sorption hysteresis loop being associated 

with independent, through necks. The reversibility of the melting scanning loop in Figure 

4.3 and the freezing scanning loops, Figures 4.4 and 4.5, initiated from the partially 

molten fractions on the boundary curves, is attributed to the hemispherical menisci 

initiating both pore melting and freezing, independently of the thermal pathway 

followed. This differs to the water scanning loops, obtained for the same S1 material, 

when they are initiated from the boundary freezing and melting curve (Hitchcock et al., 

2011). 
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The delay time parameters of the NMR relaxometry experiment are such that both the 

slow component, corresponding to the liquid phase, and the fast component 

corresponding to the plastic ice phase were detected. At around 268.5 K, at the end of 

the boundary melting curves for saturations in the range ~0.26-0.37 achieved by 

equilibrium adsorption, the T2 values for the majority slow component were constant, 

within experimental error. This suggests that the average size of pores filling as the 

relative pressure is raised is not increasing. This would be consistent with the occurrence 

of advanced condensation such that there was not a simple monotonic relation between 

condensation pressure and pore size. 

 

It was noted above that the T2 values for the slow-relaxing component, obtained at the 

top of the scanning loops at a fractional saturation of ~0.18 on the boundary melting 

curves for adsorption, declined with increased saturation (and thence temperature). The 

fraction, in the two-component fit, attributed to this component also declined, despite 

the fact that the molten fraction was the same. It is suggested that these findings arise 

because the slow-relaxing component consists of liquid phase in exchange with plastic 

ice. As the total saturation level increases, the amount of plastic ice phase in contact with 

the constant molten fraction of ~0.18 will increase, leading to more exchange with the 

molten phase. As mentioned above the T2 value for the isolated plastic ice phase is much 

less (~8 ms) than the isolated liquid, and thus exchange would lead to a reduction in the 

observed relaxation time. The self-diffusivity of cyclohexane in the plastic phase, at the 

melting point, is 1.9×10-13 m2/s (Aksnes et al., 2004). Hence, the typical rms displacement 

during the characteristic time T2 (of the slow component) is ~0.16 μm, which is much 

larger than the pore size. Thus it seems likely that exchange between plastic and molten 

phases is possible.  

 
The hysteresis for cyclohexane sorption seen in Figures 4.1 and 4.2 is Type H1 

(Rouquerol, 1999). The immediate reversibility of the desorption scanning curve, upon 

lowering the pressure, in contrast to the desorption boundary curve (over the same 

pressure range), suggests that pore blocking is initially curtailed and the pores empty via 

hemispherical menisci arising from the presence of empty neighbouring pores. However, 
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as the scanning curve meets the boundary curve at the hysteresis closure point, this 

suggests that not all pore blocking effects are removed. The immediate initiation of pore-

filling, as shown by the adsorption scanning curve, is consistent with the form of the 

boundary adsorption curve, but, as the pressure increases, the scanning curve does not 

cross over to the boundary curve, implying that some pores are filling via an equilibrium 

process, and some via delayed condensation. Hence, gas sorption scanning curves alone 

are not enough to extract the information needed to determine an accurate PSD. Hence, 

the data from the NMR techniques described above are also required. 

 

 

4.5  Conclusions 

 
Cryoporometry melting curves have shown that, depending on the amount adsorbed, at 

corresponding positions on the adsorption and desorption branches of the cyclohexane 

sorption isotherm for a mesoporous silica, the configuration of the liquid condensate 

could be identical, or different. This implied that the particular local source of sorption 

hysteresis varied with position around the hysteresis loop. This work has thus shown that 

PSDs derived using conventional analysis methods, which presume a single mechanism 

for pore filling and hysteresis, are likely to have significant errors. Obtaining accurate 

PSDs for disordered porous materials requires more information than can be provided 

from just boundary adsorption and desorption isotherms, or sorption scanning curves. 

Advanced condensation also occurs in the adsorption of cyclohexane on silica.  
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Chapter 5 
Testing single pore hysteresis for S1 material via an integrated 

N2-H2O-N2 sorption experiment 

 

 
 
 

 

5.1 Introduction 
 

Chapter 2 gave an introduction to the single pore hysteresis mechanism and the models 

used to analyse the adsorption and desorption isotherms. It was suggested by Cohan 

(1938) that the gas and the fluid during gas sorption processes are in equilibrium, and 

that hysteresis is caused due to the different type geometry of the menisci filling 

(cylindrical) and emptying (hemispherical) the pores. Based on this, the BJH algorithm 

was developed to calculate the pore size distribution in adsorption and desorption. Other 

models describe the cause of hysteresis as the difference between the gas-liquid-surface 

interactions between the sorption processes, termed as spinodal sorption. DFT 

simulation models were then developed to interpret the hysteresis and were adopted to 

calculate the PSD. 

 

In Chapters 3 and 4 it was shown that NMR cryoporometry and vapour sorption in S1 

material, are prone to advanced melting and advanced adsorption phenomena which are 

different for water and cyclohexane. This means that S1 sample is not solely comprised 

of independent set of pores which both the BJH and DFT models assume to exist. 

Moreover, comparison between the PSD obtained from the cryoporometry melting curve 

of water and nitrogen adsorption, showed that nitrogen adsorption is a more sensitive 

technique to probe the PSD in a porous material with ink-bottle shaped pores, as 

compared to the cryoporometry melting. However, Hitchcock (2011) used scanning 

curves to show that for a whole pellet S1 material nitrogen adsorption is prone to 

advanced condensation phenomena too. 
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This chapter will further test the validity of independent (single) pore theory for water 

and nitrogen, utilizing an integrated N2-H2O-N2 experiment, performed in a whole pellet 

S1 material. In previous studies integrated experiments, which involved saturation with a 

gas phase after another pre-adsorbed phase, such as mercury, were conducted to isolate 

pores and study them separately from the remaining void space (Rigby and Chigada, 

2009; Hitchcock, 2011), or to modify the surface heterogeneity of the pores to probe its 

impact onto the gas sorption mechanism (Pfeifer et al., 1991). This is because the 

gas-liquid-surface interactions change after pre-adsorbed species. Thus, it would be of 

interest to know firstly, whether nitrogen adsorption is sensitive to pre-adsorbed water 

interfaces on the S1 sample, and secondly whether water has isolated sets of pores with 

a critical size that would have promoted advanced adsorption of nitrogen if the silica 

surface was dry. Moreover, an FHH fractal analysis will be adopted to detect the way 

water has condensed on the pore walls. 

 

 

5.2 Previous studies 

 
Integrated experiments involving nitrogen adsorption following mercury porosimetry, 

have been already adopted by others authors de-convolve the pores that enhanced 

advance adsorption and pore blocking of nitrogen in mesoporous silicas (Rigby and 

Chigada, 2009; Rigby et al., 2008; Rigby and Fletcher, 2004). The authors found that 

entrapment of mercury into the big pores turned the smaller adjacent pores into dead 

end pores, where advanced condensation of nitrogen can commence via the 

hemispherical menisci at the dead ends. Hitchcock (2011) further introduced sorption 

scanning curves after mercury porosimetry and found that, for an S1 pellet material, 

mercury remained entrapped into sets of pores that fill and empty like independent 

pores. The relative pressures for nitrogen desorption into the mercury entrapped pores 

were equivalent to the relative pressures for nitrogen adsorption to a power of 1.5. This 

was because nitrogen does not perfectly wet the surface of S1 (Hitchcock, 2011). This 

finding contradicts the sorption mechanism shown by Kelvin-Cohan relationship, 

equation 1.25, which assumes that the gas perfectly wets the surface and that cylindrical 

pores fill and empty via cylindrical and hemispherical menisci, respectively and this 
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geometrical difference of the menisci produces a power of 2. Moreover, it shows a lack 

on the accuracy of the DFT model to predict the correct interactions between the gas, 

surface and solid, for pores higher than 20 nm, as the power is found to be 1.8 by 

Neimark and Ravikovitch, (2001). 

 

Mercury, though, was entrapped in some big pores of S1 which were shielded by smaller 

pores. However, subsets of pores can also be isolated and their filling mechanism can be 

studied by equilibrating the system with a vapour phase. For example, Giacobbe et al. 

(1972) studied the pore filling mechanism of argon on Vycor glasses after pre-adsorption 

of water at a multilayer level. It was found that capillary condensation of water in the 

pores occurred after adsorption of three statistical monolayers of water, although some 

micropores and necks had already filled at lower pressures. In addition to this, argon 

adsorption post water adsorption, occurred at lower relative pressures than that 

required for adsorpton on bare surface, but the authors did not explain this behaviour. If 

the pores were filling independently, via the same pore filling mechanism, irrespective of 

the adsorbate, then it would have been anticipated that argon adsorption would occur at 

a higher relative pressures regime, as the small pores/necks would have been already 

filled with water at lower pressures. Morishige and co-workers examined the cage-like 

structured of SBA-16 and KIT-5 using integrated gas sorption experiments following 

water adsorption, at different pore fillings (Morishige and Kanzaki, 2009; Morishige and 

Yoshida, 2010). These authors found that the volume of nitrogen and argon adsorbed in 

the large cavities reduced as the frozen water located in the narrow necks blocked the 

entrance to these gases. When the size of the necks increased via longer hydrothermal 

treatment of the materials, it was found that fewer void cavities remained unfilled with 

gas, as water adsorbed simultaneously in the necks and the large cavities. For all these 

materials, gas sorption following water adsorption, spanned over the same relative 

pressure as before water adsorption.  

 

Changes in the surface chemical heterogeneity and roughness are also expected to affect 

the adsorption mechanism of various gases. This is because gas deposition at the early 

stages of adsorption is controlled by the interaction strength and the contact angle 

between the adsorbate and the surfaces, capable of driving a uniform layer-by-layer 
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adsorption or a more irregular one. Fractal analysis is utilized to detect these changes 

caused in the surface roughness. Pfeifer et al. measured the change in the surface area 

via nitrogen adsorption, post water and heptane adsorption at different surface coverage 

degrees, for Vycor, CPG and silica xerogel materials. They found that the decrease of the 

film area on a fractal surface is described by a power law of the increasing film volume, 

governed by the fractal dimension (Pfeifer et al., 1991). In a later study, Hua and Smith 

(1992) increased the surface hydrophobicity of these porous materials by silylation, at 

different fractions of alkylchlorosilane molecules and for a wide range of alkyl groups 

molecular weight. Fractal analysis showed that the alkylchlorosilane molecules were 

located in the big pores and that silylation smoothened the surface roughness of the 

silicas (Hua and Smith, 1992). Neimark et al. (1993) performed nitrogen sorption 

experiments to study the deposition of different amounts of polybutadiene polymer 

within LiChrospher Si 300 silica material. The authors found that the fractal dimension 

detected by nitrogen molecules, changed insignificantly with the amount of pre-loaded 

polymer, although the surface and the pore volume of the material decreased. They 

attributed this to the complete bulk filling of random sets of pores with polymer, rather 

then uniform surface coverage by the polymer, which would have changed its roughness. 

Thus, it seems that fractal analysis can be adopted to study the way water deposition 

occurs on the pore surface of the S1 material. 

 

In summary, previous work has shown that both the Kelvin equation and the DFT 

algorithm overestimate the width of hysteresis in cylindrical pores, and that pore-pore 

interactions can lead to advanced adsorption phenomena. An integrated N2-H2O-N2 

experiment is utilised in this chapter to test the single pore hysteresis theory for 

ink-bottle shaped pores filled with water and the validity of the independent domain 

theory in these type of pores, when they are saturated with nitrogen and water.  Fractal 

analysis is performed, to study the morphology of the adsorbed frozen water on the silica 

walls, as detected by nitrogen molecules after water adsorption. 
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5.3 Experimental procedure 
 

The integrated N2-H2O-N2 experiment was initially performed for the whole pellet sample 

of S1 material. For this ~0.14 g of S1 pellets were transferred in a gas sorption tube and 

the sample was degassed as described in Chapters 3 and 4. The nitrogen sorption 

isotherm, at 77 K, was then obtained using an ASAP 2020 apparatus. At the end of the 

experiment and following helium free-space analysis, the sample was degassed again, 

and it was partially saturated with water vapour via equilibrium adsorption, up to a water 

relative pressure of 0.913, at 294 K, as described in Section 3.3. This corresponds to a 

nitrogen relative pressure of 0.922 (Appendix, A3) and will be referred into all the 

sections below as partial saturation with water at a relative pressure of 0.922. The 

sample was left to equilibrate for 10 days above a NaOH solution, and it was then quickly 

transferred within a gas sorption tube (sealed with a seal frit to prevent water 

evaporation) and the mass of the sample was measured in a weigh balance. The 

adsorption/desorption isotherm for water obtained from equilibrium sorption 

experiments was presented earlier, in Figure 3.1. The mass of the adsorbed water was 

calculated from the difference between the mass of the partially saturated sample and 

that before water adsorption. The tube was connected to the ASAP 2020 apparatus and a 

Dewar filled with liquid nitrogen was manually raised to cool the system down to 77.3 K, 

for 20 min. This allowed the condensed water in the pores to freeze and behave like a 

solid phase before the system was evacuated for the next nitrogen sorption experiment 

to start. This ensured that no condensed water would be degassed prior to the gas 

sorption experiment. The equilibration time used for nitrogen sorption was 45 s, which 

was proved to be sufficient by Hitchcock (2011). The error in the volume adsorbed, for 

each pressure point is ±0.30 cm3/g and it is calculated by ASAP 2020 apparatus. This 

sample was then fragmented to a particle size of 5-40 μm (measured in a microscope) 

and the nitrogen sorption isotherm was obtained. 
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5.4 Data analysis 

 
5.4.1 Pore volume 

 

The specific volume of nitrogen adsorbed was measured by the ASAP 2020 apparatus 

which uses units of cm3/g at standard temperature and pressure (STP). However, the 

volume of water adsorbed is measured gravimetrically and has weight units (g). The 

Gurvitsch rule was used to convert nitrogen (1) and water data (2) into liquid volumes, V0 

(cm3/g) as follows: 
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where V is the total volume of nitrogen adsorbed (STP), VM is the molar volume of liquid 

nitrogen at 77.3 K (34.61 cm3/mol), Vn is the molar volume of nitrogen gas at STP, 

(22,414 l/mol), ma is the mass of water adsorbed, ρ is the water density at 294 K  and ms 

is the mass of the dry silica sample. It was assumed that the density of water in the pores 

remains constant (1 g/cm3) after the partially saturated system was frozen at 77.3 K. 

 

 

5.4.2 Change in the incremental nitrogen volume 

 

The difference between the change in the incremental nitrogen volume adsorbed for two 

consecutive pressure points before water adsorption, and that after water adsorption, 

for the same set of pressure points, can be used to detect the location of adsorbed 

phases and this methodology was previously adopted by Rigby et al. (2008), for an 

integrated N2-Hg-N2 sorption experiment. By cumulatively adding the change in the 

incremental volumes of nitrogen obtained, a nitrogen isotherm can be produced, 

representative of the pores filled with water. If the gas sorption mechanism in cylindrical 

pores is driven only by the macroscopic characteristics such as the surface tension and 

pore geometry, then the pores would fill with nitrogen via cylindrical menisci and empty 
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via hemispherical menisci, and Kelvin-Cohan equation takes the following form (as 

discussed in Chapter 1): 
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It was already shown by Hitchcock (2011) that the pores that entrapped mercury in a 

whole pellet S1 material would empty with nitrogen at relative pressures equal to a 

power of 1.5 of the relative pressures in adsorption, thus the pores filled with mercury 

would not fill and empty with nitrogen by the menisci geometries proposed by Kelvin-

Cohan relationship, equation 5.3. These pores behave like independent cylindrical pores, 

as shown by the similar (parallel) shape of the adsorption and desorption curves, of H1 

type isotherm, which fill and empty at a higher contact angle.  

 

The error in the change of incremental volume of nitrogen is calculated as follows. It was 

assumed that capillary condensation for both nitrogen and water does not occur below a 

relative pressure of 0.71. Any difference between the incremental volumes adsorbed 

before and after water adsorption was attributed to noise. The standard deviation (SD) of 

the noise was then estimated for the changes in the volumes below a relative pressure of 

0.71 as shown in Section A2.2, Appendix. Any fluctuations observed, below the double 

value of the SD, was attributed to noise.  

 

 

5.4.3 Fractal analysis 

 

The surface roughness of the S1 samples (whole and fragmented) before and after partial 

saturation with water was investigated via FHH fractal analysis in the multilayer region 

between P/P0 =0.14-0.77, where the surface coverage is high and the surface tension 

between the liquid/gas interface is not negligible. This is described as follows: 
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where V is the adsorbed volume of nitrogen for different pressures at STP (cm3/g), Vm is 

the volume of one adsorbed monolayer, c is a constant and D is the fractal dimension 

(Ismail and Pfeifer, 1994).  A plot of lnV with ln(ln(P0/P)), yields a straight line and D can 

be found from the gradient, (D-3),  of the slope. An increase in the fractal dimension after 

partial saturation with water would indicate that the water adsorbed did not 

smoothened the bare silica surface, but in fact it was deposited in a disordered manner, 

along the pores. 

 

 

5.5 Results and discussion 

 

The sorption isotherms for nitrogen pre and post partial saturation with water are shown 

in Figure 5.1. It is seen that nitrogen hysteresis starts at a relative pressure of 0.758 

before the sample is partially saturated with water and ends at a relative pressure of 

0.975. However, after the system is partially filled with water, hysteresis starts at the 

higher relative pressure of 0.825, but ends at the same relative pressure as before 

(P/P0=0.975). The shift to higher relative pressure post water adsorption is explained by 

the fact that water has filled the small pores where previously nitrogen would condense 

between the relative pressures of 0.758 and 0.825. As the sample is saturated under 

equilibrium adsorption with water up to P/P0 =0.922, it would have been, however, 

expected that nitrogen condensation in the pores, post water adsorption, would start 

above a relative pressure of 0.922 if the pore filling mechanism for water at 294 K was 

the same as that of nitrogen at 77 K. In Chapter 3 it was shown from Figure 3.1 that the 

water sorption isotherm was of H2 type in contrast to the nitrogen sorption isotherm 

which is H1 type, Figure 5.1. This suggests that nitrogen filling and emptying mechanisms 

are those characteristic of independent cylindrical through pores, whereas water 

experiences more co-operative phenomena in adsorption and desorption, due to 

pore-pore interactions. Thus, water has filled different pores to those that nitrogen 

would fill, until the same relative pressure. Moreover, it can be the case where some 

pores are partially filled with water layers, that they now appear now as pores with a 
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smaller radius, therefore their filling with nitrogen occurs at lower relative pressures than 

0.922.  
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Figure 5.1 Nitrogen sorption isotherms pre and post partial saturation with water of the whole 

pellet S1 material. The arrows are shown to guide the eye 

 
 
 

Table 5.1 Pore volumes and surface area occupied with adsorbates pre and post partial 
saturation with water 

 
 
 
 
Table 5.1 presents the Gurvitsch pore volumes occupied by water and nitrogen, pre and 

post water adsorption. The available BET surface area for nitrogen adsorption is also 

Measurements Adsorbate  V0 

(cm
3
/g) 

SBET 

(m
2
/g) 

C Vm 

(cm
3
(STP)/g) 

Pre water Nitrogen 0.89 199.2 216 46.3 

Nitrogen 0.29 25.2 100.5 5.9 
Post water 

Water 0.51 – – – 
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presented in Table 5.1. It is seen that water has filled a pore volume of 0.51 cm3/g, 

nitrogen has filled a volume of 0.29 cm3/g but there is a pore volume of 0.09 cm3/g which 

remains empty after nitrogen adsorption in the partially saturated sample. This is 

possible if water is located on both sides of some empty pores, and after freezing it 

converts into solid state, thus blocking the access of nitrogen molecules into a pore 

volume of 0.09 cm3/g. 

 
 
It is also observed from Figure 5.1 and Table 5.1 that the amount of nitrogen adsorbed in 

the multilayer regime decreased. This is because the available surface for multilayer 

nitrogen adsorption is reduced after partial saturation with water. Figure 5.2 shows the 

nitrogen isotherms presented in Figure 5.1, but the isotherm following saturation with 

water is adjusted upwards by 110 cm3(STP)/g, which is the difference between the 

adsorbed nitrogen volume in the multilayer region, before and after water adsorption. 

An overlap of the plots in the multilayer regime would mean that all the adsorbed water 

is located within the completely filled pores, and there do not exist partially saturated 

pores with water layers, where the nitrogen multilayer would start forming. However, as 

this is not observed, it must mean that nitrogen, post water adsorption, starts adsorbing 

on a surface where frozen water fractions are present in the form of puddles, thereby, 

the contact angle and the interactions between the nitrogen and silica surface have 

changed. Also, the BET constant of nitrogen, as seen from Table 5.1 has decreased 

following water adsorption, suggesting that (at least some of) the silica surface is covered 

by frozen water.  
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Figure 5.2 Nitrogen sorption isotherm post water adsorption adjusted upwards by a volume of 

110 cm3(STP)/g. The nitrogen sorption isotherm pre water saturation is also included 
 
 
 
 

 
Moreover, it is seen from Figure 5.2 that the nitrogen isotherms do not overlap in the 

lower part of the hysteresis loop suggesting that the pores occupied with water fill and 

empty over the whole relative pressure range of the nitrogen capillary condensation 

regime. In Figure 5.3 the nitrogen isotherm in the partially filled system is adjusted 

upwards by 380 cm3(STP)/g.  This isotherm overlaps that obtained before water 

adsorption at the upper part, but diverge at lower pressures. This divergence means that 

the pores occupied by water would fill and empty at relative pressures below 0.952 and 

0.913, respectively. 
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Figure 5.3 Nitrogen sorption isotherm post water adsorption adjusted upwards by a volume of 

380 cm3(STP)/g. The nitrogen sorption isotherm pre water saturation is also included 
 

 
 

 

From Figures 5.1, 5.2 and 5.3, it is seen that the nitrogen isotherm in the partially 

saturated sample is H1 type, indicative of open cylindrical pores which fill and empty like 

independent pores. By raising all the relative pressures in the adsorption curve to a 

power of 1.8, as shown in Figure 5.4, the adsorption and desorption plots overlay. This 

power value is the same as the one predicted by the DFT model, previously adopted by 

Neimark and Ravikovitch (2001) for empty MCM-41 and SBA-18 samples. 
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Figure 5.4 Plots of adsorption and desorption curves of nitrogen in S1, post partial saturation 

with water. All the relative pressures in adsorption has been raised to a power of 1.8 
 
 
 

To study the wetting efficiency of nitrogen in a bare surface of S1 sample, and thereby 

the hysteresis width, the whole pellet sample was fragmented in order to curtail 

advanced adsorption and pore blocking effects in nitrogen sorption. Perkins et al. (2008) 

used a fragmented S1 sample to reduce pore blocking induced in cryoporometry NMR 

freezing and compared the menisci geometry initiating melting to that seeding freezing. 

Rigby et al. (2008) used a fragmented S1 sample to curtail pore shielding of mercury. 

Figure 5.5 shows the adsorption and desorption curves for nitrogen sorption when the 

whole pellets are fragmented, and all the relative pressures in adsorption are raised to a 

power of 1.65, which results in them overlaying the relative pressures in desorption. 

Hitchcock (2011) found that pores which entrapped mercury would fill with nitrogen 

independently and a power of 1.5 was required for the nitrogen sorption curves to 

overlay. These findings suggest that the DFT model overestimates the wetting efficiency 

of the adsorbed gases into the pore surface, and as such the width of the gas sorption 

hysteresis. The DFT model is an adsorption model developed to take into account the 

gas-gas, gas-liquid, gas-solid and liquid-solid interactions along with the pore geometry. 

The microscopic characteristics arising during gas sorption are included in the pore filling 
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and emptying mechanisms, as Kelvin-Cohan equations are only taking into account 

surface tension and the contact angle of the liquid with the pore walls, resulting in 

inaccuracies for pores smaller than 20 nm. However, these microscopic interactions 

adopted in the DFT model are calibrated by using reference porous materials with 

different interactions as well as by the pore geometry. It is thus possible that they are 

inconsistent with the interactions developed within an empty S1 material. The similarity 

in the isotherm width, shown by the power of 1.8, occurs when nitrogen is adsorbed on 

the partially saturated with water system. This proves that DFT applies only to a range of 

porous materials with specific miscroscopic and geometrical characteristics and must not 

be generalized to all the types of porous systems. 

 
 
 
 
 

 
Figure 5.5 Plot of the adsorbed amount of nitrogen in an empty fragmented S1 sample, where 
the relative pressures in the adsorption curve are raised into a power of 1.65. The inset shows 

the nitrogen sorption isotherm 
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Figure 5.6 Derived nitrogen sorption isotherm for the pores occupied by water 

 
 
 

By cumulatively adding the change in the incremental volumes adsorbed pre-water 

sorption and post-water adsorption, the gas sorption isotherm presented in Figure 5.6 

for the pores that are filled with water, is then generated. From Figure 5.6 it is seen that 

water has filled pores over a relative pressure of 0.825-0.952. If equilibrium water 

adsorption occurred independently until the relative pressure of 0.922 and the water 

adsorption mechanism was similar to that of nitrogen, then the water filled pores would 

fill with nitrogen strictly at the range of P/P0=0.758-0.922. Pore filling above P/P0=0.922, 

is associated with water condensation in some bigger pores via advanced condensation. 

Nitrogen condensation at lower pressures than 0.922 post water adsorption means that 

water has not filled some small pores, where nitrogen has access into at the same 

relative pressures. These small pores will fill with water at higher relative pressures than 

0.922, where water vapour adsorption was terminated. This is consistent with the 

findings in cryoporometry studies presented in Chapter 3, where advanced melting is 

some big pores was favoured when the previously empty smaller neighbouring pores 

filled at higher saturations. It was discussed that condensation into small pores at higher 
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pressures than those required if they were only filling by size, increased the water ganglia 

connectivity, and as such advanced melting.  

 
 

Table 5.2 Change in the fractal dimension before and after water adsorption calculated by 
equation 5.4, at P/P0~0.14-0.77. The error values correspond to the standard error from 
regression for data fitting in Excel  
 

 

During gas sorption at low pore fillings, surface coverage is governed by the surface 

chemical heterogeneity and roughness whereas at higher fillings, surface tension plays 

the key role in flattening the liquid interface. Therefore, estimation of FHH fractal 

dimension before and after water adsorption provides information about the way water 

is deposited on the surface. The fractal dimensions measured pre and post water 

adsorption are presented in Table 5.2. It is seen that the surface roughness in the pores 

that are filled with nitrogen post partial saturation with water, increased beyond the 

error range. This indicates that water has not smoothened the silica surface by 

homogeneously covering it, as in this case the fractal dimension would decrease. Thus, 

the adsorbed nitrogen can experience different interfaces and as such the contact angle 

between gas-silica, gas-ice and gas-gas and gas-liquid differ to that of nitrogen adsorbing 

on the bare silica surface, before partial saturation with water.  

 

 
 

5.6 Conclusions 

 
In this chapter the integrated N2-H2O-N2 experiment was used to study the validity of 

independent domain theory for water and nitrogen sorption. The water was introduced 

into the system by equilibrium adsorption. It was found that the nitrogen adsorption 

mechanism differs to that of water, in the way that less advanced condensation occurs 

Measurements FHH fractal dimension,  

D±error 

Pre water 2.63±0.003 

Post water 2.81±0.011 
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for nitrogen compared to that of water. Moreover it was shown that the DFT model and 

the Kelvin-Cohan equations overestimate the width of the nitrogen sorption isotherm in 

an S1 material, although the DFT model correctly predicts this width when the sample is 

partially saturated with water. This implies that the DFT model must not be generalized 

for all porous materials. 
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Chapter 6 
Release of Cyclosporin-A from Casein and Lutrol Templated 

Porous Silica Particles 

 
 

 

 

 

 

6.1 Introduction 
 

The previous chapters gave initially an introduction to the fundamentals of gas sorption 

and NMR cryoporometry techniques, and then their sensitivity to probe the real PSD was 

investigated. For those studies, a well characterized, mesoporous, silica catalyst support, 

with an ink-bottle pore shape, was used as a model system to investigate the cooperative 

effects in gas adsorption and cryoporometry melting, likely to induce an error in the 

calculation of the PSD.  

 

Porous materials are also used as drug delivery systems, thus an incorrect prediction of 

the pore size can lead to misinterpretation of the structure-transport relationships in 

these materials, and therefore their therapeutic activity. The objective of this chapter is 

to firstly characterize the porous structure of two different templated silicas, which were 

used as potential carriers of a poorly soluble drug in order to improve its solubility in the 

gastrointestinal area, and secondly to investigate how the pore structure characteristics 

and the particle morphology influence the dissolution rates of the drug in the 

environment present.  

 

Highly ordered porous silica materials have been synthesised in the past from ionic and 

non-ionic surfactants, in both acidic and basic media, however, there is an extensive 

need for other non-toxic and cheap templating agents. The reader will be firstly 

introduced to a background literature review on the most common synthesis methods 

and the current templating agents used to produce porous silica particle, which are then 

used as drug carriers. The ability of a milk protein, sodium casein as a templating agent to 

obtain porous silica particles, is then studied as an alternative to the commonly used 
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non-ionic surfactant, Lutrol. Both the sodium casein and Lutrol templated silicas were 

synthesised under acidic conditions, and the porous particles formed were tested in-vitro 

as potential drug carriers of a highly hydrophobic protein, cyclosporin-A (CsA), with an 

aim to improve its poor solubility in the gastrointestinal area. Gas sorption, NMR 

cryoporometry, PFG NMR and SAXS characterization techniques were employed 

following SEM and TEM imaging, CD, FTIR and HPLC analysis. The dissolution profiles 

generated from the drug release studies will be fitted into the experimental CsA release 

profiles obtained, to investigate which parameters influence the release rate and to what 

extent. 

 

The synthesis of silica particles, the in-vitro CsA loading and release profiles experiments, 

the FTIR, CD, DLS particle size measurements and SEM, TEM imaging techniques were 

conducted by Mr. Paulo Malheiro. Nitrogen gas sorption, NMR cryoporometry, PFG NMR 

and SAXS characterization techniques along with the diffusion model fittings were 

accomplished as part of this thesis work. The results were interpreted by both groups. 

 

 

6.2 Synthesis and application of mesoporous silica particles as drug 

delivery systems 
 
Over the past decade, ordered mesoporous silica materials gave been gaining increased 

interest for biomedical applications.  Their size, morphology and porous structure can be 

tailored to achieve controlled and sustained drug release (Wang, 2009; Zeng et al., 2005) 

or increase solubility of drugs with low bioavailability (Van Speybroeck et al., 2009, 

Thomas et al., 2010). The synthesis of these periodic mesostructures is a 

template-directed process which involves the development of noncovalent bonds 

(hydrogen bonds, van de Waals forces) and electrocovalent bonds between the organic 

template and the inorganic silica precursors in aqueous media. A mesostructured hybrid 

is thus formed where the removal of the organic template leads to the formation of 

pores with surface areas reaching the order of 1000 m2/g, Figure 6.1. 
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Figure 6.1 Synthesis steps of template-mediated mesoporous materials (Soler-Illia et al., 2003) 

 
 
 

The organic template is a surfactant consisting of hydrophobic and hydrophilic groups 

capable to self-assemble in solvents, where one of these parts is insoluble, and form 

micellar systems. They are categorized as anionic, cationic, non-ionic and amphoteric 

according to their charge. The packing order of these micelles into spherical, cylinder, 

lamella, inverse cylinder or other geometrical structures is dependent on: the 

hydrophobic interactions between the organic groups, the molecular exchange between 

aggregates, the electronic repulsion between polar heads and the ratio between the 

polar head surface area to the hydrophobic volume (Israelachvili et al., 1976). Silica has a 

good compatibility and it is accepted as a “Generally Recognized As Safe” material by the 

FDA organization.  Inhalation of crystalline silica causes silicosis and disorders associated 

with lung cancer, or heart and kidney diseases (Rice et al., 2001; W.H.O, 2000) dependant 

on the shape and the size of the particles (Mattson, 1994; Dufresne et al., 1998; Borm et 

al., 2011). However, small and smooth particles of silica have been already used in 

cosmetics and as a food additive. It exhibits an isoelectric point at ~pH 2, so for higher pH 

values conditions bears a negative charge, thus promoting electrostatic interactions with 

positively charged surfactants. The mostly used silica precursors are sodium silicate, 

tetraethoxysilane (TEOS) and tetramethoxysilane (TMOS). Beck et al. proposed two 

mechanisms, for high surfactant concentration, leading to the synthesis of silica porous 

structures, a)  the liquid crystal phase initiated templating, where at high surfactant 
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concentration the surfactant interacts with the solvent resulting in ordered micelle 

formation, around which silica precursor condenses creating silica wall, and b) the silicon 

anion mediated templating route where the silica precursor coats the surfactant micelles 

in more dilute solutions, that then aggregates to form an ordered mesostructure (Beck et 

al., 1992). Firouzi et al. (1995) suggested a co-operative mechanism of formation, based 

on charge interactions between the species and it is valid for dilute surfactant systems 

too. Here, surfactant micelles and free molecules initially co-exist in dynamic equilibrium, 

but introduction of silica precursor leads to ion exchange between the silica oligomers 

and the surfactant, forming inorganic-organic aggregates, that can self-assemble and 

arrange in perhaps a different structure to the initial micellar one. Frasch et al. (2000) 

though reported that the charge effect is overemphasised due to the lack of organization 

in the system prior to precipitation. The authors suggested that perhaps the most critical 

step in the process is the formation of siliceous pre-polymers that coat the surfactant 

molecules leading to the micelle growth and then reorganization of the silica/micelle 

complexes into an ordered structure. More recently, a liquid-liquid phase separation 

mechanism of both the surfactant and precursor species into unordered liquid droplets is 

proposed. These droplets undergo an ordering transition due to the high concentration 

in the droplet, leading to the final organized mesostructure (Chan et al., 2001). 

 

In any of these pathways, the surfactant is removed by calcination and a porous structure 

is consequently obtained. The pore size and structure, specific surface area and surface 

roughness, and the particle size, will therefore be controlled by the type of the organic 

template (charge, chain length, hydrophilicity) and the inorganic precursor (Sel et al., 

2006; Yang and Edler, 2009) , the ratio between the template and the silica precursor 

(Bagshaw et al., 1995; Witoon et al., 2010), the pH of the hydrothermal solution (Hsu et 

al., 2006), its aging temperature and time (Ertan et al., 2009; Galarneau et al., 2001; 

Prouzet et al., 2009) and the method of template removal (washing or calcination). Zhao 

et al. synthesized highly ordered mesoporous silica materials and found that a small, an 

intermediate and a big PEO/PPO ratio in triblock copolymers leads to lamellar, hexagonal 

and cubic structure respectively. Moreover, in acidic conditions, silica precipitation 

occurs faster for weaker and higher concentration of acids (Zhao et al., 1998a). Ethanol 

or methanol biproducts produced from silica hydrolysis (i.e. from TEOS, TMOS) during 



Chapter 6 

142 

synthesis increase surfactant solubility in the water thus making their self-assembly more 

difficult leading to less ordered structures. Therefore sodium silicate is alternatively used 

to prevent alcohol production. Furthermore, silica materials synthesized from low 

molecular weight cationic surfactants at basic conditions (i.e. MCM-41) are less thermally 

stable than those formed from non-ionic surfactants at acidic conditions (i.e. SBA-15) due 

to formation of thinner walls in former case. The macroscopic shape of the material 

synthesized under the same conditions depends mainly on the stirring rate of the 

template-precursor mixture (Zhao et al., 1998b), but also on the presence of other small 

molecules (alcohols, amines, surfactant impurities) and salts, the pH of the environment 

and the monodispersity of the surfactant. 

  

The aforementioned silica’s unique properties, along with their easily functionalized 

surface, make them ideal candidates for drug delivery applications, where controlled 

release is required over a period of time. Their biodegradability depends on the particle 

size and the local fluid flow conditions (Finnie et al., 2009). Vellet-Regi et al. (2000) firstly 

introduced the application of MCM-41 mesoporous silica material as a drug release 

system of ibuprofen. The pores in this material are highly ordered and cylindrical, 

arranged in a 2D-hexagonal structure. Later on, SBA-15 with cylindrical 2D-hexagonal 

structured pores, thicker walls and micropores interconnecting adjacent mesopores was 

used for gentamicin and amoxicillin controlled delivery (Doadrio et al., 2004; Vallet-Regı́ 

et al., 2004). Further functionalizing of their porous surface provided controlled release 

rate and improved drug loading efficiencies of drugs (Manzano et al., 2008) and proteins 

(Yiu et al., 2001; Song et al., 2005). Encapsulation of poorly water soluble drugs within 

ordered mesoporous structures also increased their oral bioavailability (Mellaerts et al., 

2008; Thomas et al., 2010). Drug loading efficiency within the silica particles is controlled 

by the pore size and pore volume, surface area and its roughness, the presence of 

functional groups and the particle size.  These factors along with the release medium will 

also influence the drug release rate and its solubility.  Qu et al. (2006) found that the 

loading efficiency of water-soluble Captopril in MCM-41 and SBA-15 particles was higher 

for higher SBET. Its release rate was faster from bigger sized pores, smaller particles, and 

for dispersion in gastric fluid rather than intestine fluid. Similar results were found for 

ibuprofen release (Horcajada et al., 2004).  Riikohen et al. (2009) found that ibuprofen 
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loaded MCM-41 particles contain a crystalline phase of drug outside the pores but a 

crystalline and disordered ibuprofen layer within the pores, which is thicker for the 

thermally carbonized surfaces compared to the hydrogen terminated ones. The size of 

the pores had no substantial effect on the size of this layer. Two physical states 

(crystalline, glassy) of adsorbed itraconazole in SBA-15 were observed by Mellaerts et al., 

(2007) after a critical drug loading and the concomitant presence of these phases led to 

slower drug release rates. Moreover, the increase in pore width after a certain value had 

no effect on the drug release kinetics implying that diffusion from small pores is retarded 

by the steric hindrance of guest molecules. Song et al. (2005) reported that unfolding of 

charged proteins can be hindered by the small pore size and the pH of the environment. 

However, the protein is able to orientate co-axially with the pore, hence being able to 

diffuse through the very narrow pores. 

 

 

6.3 Lutrol and casein templates  

 
The structural order of the pores in a porous material depends mostly on the way the 

templating agents, arrange themselves in the environment present, to form micelles. 

Therefore, it is necessary to understand what parameters control the self organization of 

the Lutrol and casein micelles and what are the interactions induced between the 

micelles, the silica precursor and any other groups present, from findings reported in the 

literature precedence.  

 

Lutrol® F-127 (Polaxomer 407) is a non-ionic triblock copolymer consisting of a central 

hydrophobic polypropyleneoxide (PPO) block and two lateral hydrophilic 

polyethyleneoxide (PEO) blocks (PEO106PPO70PEO106, MW=12,500 g/mol). It has been 

extensively used for synthesis of silica porous materials such as SBA-16 to obtain cubic 

structures, with a narrow pore size distribution and specific surface area reaching 

740 m2/g. In aqueous environment and above their critical micellar concentration (CMC) 

the PEO chains point towards the water whereas the PPO ones form the inner core of a 

micelle. In fact the PEO groups are responsible for the complimentary microporosity in 

the walls of silicon materials, whereas the PPO groups assemble to form the mesopores 
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(Kruk et al., 2000). Elevating the synthesis temperature, the hydrophibicity of the PEO 

groups increases, hence, there will be fewer interactions with the water molecules and 

their penetration into the silica framework will be limited. This is also expected to 

promote an increase in the pore size as the hydrophobic domain volumes will be 

increased.  In an acidic environment silica precursor after hydrolysis gains a positive 

charge and the PEO chains are also able to interact with the hydronium H+ ions. The 

interaction between the silica and the PEO is thus ascribed to strong H-bonding between 

them. 

 

Caseins are proteins present in mammalian milk and represent 80% of its composition. 

There are three types of proteins, αS1-, aS2-, β- and κ-casein, with a molecular weight 

ranging between 20-25 kDa and a high net charge (Chakraborty and Basak, 2007). In the 

bovine sodium casein, they exist in a ratio of 4:1:3:0.7. Caseins exhibit a pI=4-5.8 and 

they gain an amphiphilic character from the hydrophilic N-terminal polar aminoacid 

groups and the C-terminal non-polar hydrophobic units. This amphiphilicity is responsible 

for their self assembly into micelles, resembling the classical surfactant micelles.  By 

lowering the pH from 7 to 2.6, the net charge redistributes along the peptide chain, 

consequently changing the hydrophilicity of the molecule. It is thus important to 

understand the structure of the casein submicelles at different pH conditions because 

the way they are arranged will influence their templating properties. 

 

In particular, β-casein peptides have an elongated conformation and have some degree 

of secondary structure. Portnaya et al. (2008) showed that at pH 2.6, it obtains an 

intermediate state between globular and random-coil structure, and above its CMC 

(1.8 mg/ml) it self-assembles to disk-like geometry micelles (~5.5 nm) with 6 monomers 

per micelle. On the contrary, at pH 7, the micelles are spherical and constitute of 20 

monomers. β-caseins are highly temperature responsive and at neutral conditions an 

increase in the temperature leads to morphological change from flat disk to spherical, 

with a higher aggregation number (more monomers) (Moitzi et al., 2008; de Kruif and 

Grinberg, 2002). This change though is not observed at low pH suggesting that they do 

not exactly mimic the block-copolymer surfactant self-assembly. αS2-caseins, form 

spherical micelles (3.7 nm) through a series of consecutive association steps (Snoeren et 
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al., 1980) whereas the shape of the aS1-casein micelles is proposed to be either wormlike 

(Thurn et al., 1987) or spherical (Schmidt, 1970). κ-casein micelles have a bigger spherical 

size (~25 nm) consisting of 30 monomers (Vreeman et al., 1981) or, elliptic 

(5 nmx10.2 nm) (Ossowski et al., 2012). 

 

It is important to distinguish the difference between milk casein micelles and αS1-, aS2-, β- 

and κ-casein micelles. Actually, the milk casein micelles are formed by aggregation and 

connection of αS1-, aS2-, β- and κ-casein micelles by calcium phosphate molecules (CP). 

Both α- and β-caseins are highly phosphorylated, so they get easily attached onto the CP 

present in the milk whereas κ-caseins are CP insensitive. There are different models 

proposed for the milk casein organization into micelles. One model presents micelles as 

spheres (100-120 nm) where the shell consists of hydrophilic κ-casein rich submicelles 

and the inner core has α- and β- casein closely packed submicelles (~7-9 nm) attached 

through a calcium phosphate molecule (Hansen et al., 1996b). These submicelles swell 

slightly at decreasing pH leading to an increase of their volume. Others utilized SEM 

imaging technique and showed that micelles are spherical but with tubular submicelles 

of ~10-20 nm, protruding from the bulk of the particle (Dalgleish et al., 2004). On the 

contrary, Holt describes the micelles as structures solely formed by crosslinking of 

calcium phosphate nanoclusters (NC) with α- and β-caseins, resulting in an extended 3D 

regular network, where the C-terminal region of κ-caseins protrudes like a hairy layer on 

the surface of the micelles (Holt et al., 1998). The NC core is ~2.3 nm and the peptide 

shell is ~4 nm, separated at an average distance of 18.6 nm. De Kruif further extended 

this model into NC co-consisting with denser protein regions (mini-clusters) with a total 

volume of 5 times higher than the NC.  Mini-cluster are ~2 nm and formed by some 

entangled hydrophobic tails of caseins facing out of the clusters, separated by a distance 

of 6 nm (de Kruif et al., 2012). The dual binding model had also been suggested by Horne 

where α- and β-caseins obtain a train-loop-train and train-loop structure, respectively. 

Bonding between α- and β- and κ- caseins takes place in their hydrophobic regions while 

the phosphorylated groups of α- and β-caseins are attached via a CP molecule (Horne, 

1998). 
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Milk micelle integrity in general is accomplished by an interplay of hydrogen bonds, 

hydrophobic and electrostatic interactions between the casein peptides and the CP. 

Acidification at pH=4.6 would lead to CP dissolution and consequently into micelle 

destabilization and caseins precipitation. This would mean that a mixture of αS1-, aS2-, β- 

and κ-caseins dispersed in acidic aqueous solution, in the absence of CP, would not 

regain the milk micellar structure. Instead each type of casein would form its own 

micelles, separated from one another. However, Liu and Guo showed that casein micelles 

can still be formed at pH 2-3 due to hydrophobic and H-bonding interactions between 

the α- and β- and κ- caseins molecules and their size can reach ~120 nm (Liu and Guo, 

2008). Most recently, Post and co-workers showed that sodium casein solubility is high 

below and above pH 4.6, and the particle size is independent of pH (Post et al., 2012a; 

Post et al., 2012b).  

 

Recently Shchipunov and Shipunova used caseins as a novel biocompatible templating 

agent to synthesize silica aerogels at pH above casein pI (Shchipunov and Shipunova, 

2008). The nanocomposites consisted of crossed-linked clusters whose size decreased by 

increasing the pH. The cluster size was ~100 nm, thus the authors concluded that these 

must have been micelles, similarly arranged to those in the milk, covered with silica. To 

our knowledge, no (other) work has been reported on synthesis of casein-templated 

porous silica materials in acidic conditions, below the casein pI. Sodium casein 

solubilisation at pH 3-6, leads to formation of aggregates to a point that is unsuitable for 

templating purposes, thus pH 2-2.5 can be chosen (Liu and Guo, 2008). Also mild acids, 

such as acetic acid (CH3COOH), have to be chosen to lower the pH in order to prevent 

precipitation of the protein. At this interval sodium casein is positively charged and is 

expected to interact with the negatively charged silica via electrostatic interactions. If 

casein has sufficient hydrophobic groups to exclude silica, they will aggregate together 

and try to reorganize forming the final mesostructure.  

 

6.4 Cyclosporin-A 

 
Cyclosporin-A (CsA, MW: 1202.61 g/mol), is a highly hydrophobic and nonpolar cyclic 

protein, with molecular dimensions 0.21 Å x 9 Å x 8 Å (The Protein Data Bank, processed 
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in HyperChem). It has a high immunosuppressive activity and it is mainly used to prevent 

organ rejection after transplantation or for several autoimmune diseases. The protein 

consists of 11 aminoacids; 7 are N-methylated and 4 are linked via intramolecular 

hydrogen bonding between an N-H group and a C=O group (Figure 6.2). The latter 

provides advanced stability to the molecule when present in a nonpolar solvent. 

 
 
 
 

 
 
 

Figure 6.2 Molecular structure of CsA. Re-drawn from Zijlstra et al. (2007) 

 
 
 
Oral administration of CsA is limited by its poor bioavailability in aqueous media 

(solubility 6.6-25.67 μg/ml) and its low permeability across the biological barriers 

including the gastrointestinal one. Also, variation of pH does not alter its solubility due to 

lack of ionisable sites within the molecule. Indeed, Ismailios et al. (1991) found its 

solubility to be similar in buffer solutions of pH 1.2 and 6.6, but it was inversely 

proportional to the temperature. Hydrophobic drugs can, however, increase their 

solubility in water by means of cosolvency, micellization and complexation. Introduction 

of water miscible cosolvents with small hydrocarbon regions reduces the polarity of the 

water and hence improve the solubility of nonpolar CsA. Incorporation of the drug into 

the core of surfactant micelles will also increase its solubility, initiated by hydrophobic 

interactions between the protein and the hydrophobic part of the surfactant. Moreover, 

recently cyclodextrins have recently been used as complexes for drug inclusion into their 

matrix. Ran et al. studied the aforementioned methods but none of these routes 
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increased the drug solubility. The authors suggested that CsA  in water is potentially 

arranged in a unimolecular micelle with the methyl groups pointing towards the interior 

of the cyclic structure and the polar carboxyl groups along with the H-bonded ones face 

the water (i.e. the inverse to Figure 6.2 morphology) (Ran et al., 2001; El Tayar et al., 

1993). However, the H-bonds between the amide and the carbonyl groups are quite 

metastable and interact stronger with water or ethanol molecules, providing the 

molecule with many slowly interconverting conformations (el Tayar et al., 1993). Other 

DDS systems for CsA transportation such as liposomes, microemulsions and polymer 

nanoparticles were used and reviewed by (Czogalla, 2009). Only very recently, Lodha et 

al. (2012) synthesized amorphous silica nanoparticles from zwitteronic surfactant SB3-12 

for encapsulation of CsA. Although at pH 6.6 the CsA solubility increased from 8 to 85 %, 

the protein loading efficiency was only 15 %. Moreover, the authors observed a slow 

release which they attributed to the hindrance effects encountered by the protein, as its 

hydrodynamic radius was similar to the pore size of the silicas.  

 

 

6.5 Drug release data analysis 

 
From both a pharmaceutical and engineering point of view, the first step before 

designing a potential drug delivery system is to study and then predict, the release 

mechanism of the drug molecules from this system into the target area. In general, drug 

diffusivity is controlled by the morphological characteristics of the drug (pI, size, 

solubility, stability), the drug carrier (material, shape, size, porosity, stability) and the 

release medium (pH, enzymes, barriers). Different models have been already applied to 

determine the extent of contribution of those parameters into the release kinetics of the 

therapeutic agents from porous materials. Higuchi was the first to derive an equation 

describing the time dependant release of a drug from the surface of an ointment film, 

based on Fickian diffusion considering perfect sink conditions and a pseudo-steady state 

diffusion (Higuchi, 1963): 

 

               ( ) 2/1
1tkQt =                                                                (6.1) 
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An alternative approach to this equation was then used (Strømme et al., 2009) to take 

into account the porosity, εp, of the drug carrier:  
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where Qt is the amount of drug released, A is the external surface area of the drug 

carrier, k1(Cs, Cm, Dintra) is a release rate constant, Dintra is the drug diffusivity within the 

particle, Cs is the drug solubility within the aqueous phase, Cm is the drug content per 

drug carrier unit volume, V0 (cm3/g) is the total pore volume (cumulative pore volume 

from Horvath-Kawazoe method) and ρs is the solid density of the silica (2.2 g/cm3). 

Molecular diffusion through an isotropic porous sphere can also be determined from 

Fick’s second law in radial coordinates described by: 
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which for drug release fractions of  less than 0.4  is reduced to: 
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For drug release fractions higher than 0.4, equation 6.4 becomes: 
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which is known also as the Linear Driving Force model (LDF) (Glueckauf, 1955; Glueckauf 

and Coates, 1947). Q∞ is the total amount of the drug released after infinite time, r is the 

radius of the spherical drug carrier and k2 is a release rate constant, equivalent to 

15Dintra/r
2 for a sphere. 

  

 Another empirically derived equation to describe drug release/dissolution profiles is the 

Weibull equation, simplified to equation: 
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Although parameters k3 and b lack any physical meaning, it was found from Monte Carlo 

simulations that it can describe Fickian diffusion  of drug release from both Euclidian and 

fractal spaces (Kosmidis et al., 2003). Parameter k3 is a release rate constant and b 

defines the shape of the release curve, characteristic of the diffusion mechanism. For 

diffusion in Euclidian matrices, 0.69<b<0.75, for diffusion in a fractal geometry or 

disordered structure, b<0.69 and for a combined diffusion in Euclidian space with 

contribution from another release mechanism, b>0.75 (Papadopoulou et al., 2006). As k3 

constant determines the release rate, it is likely to be controlled by the intraparticle 

diffusivity and the particle size, and be similarly expressed by 15Dintra/r2, likewise k2. All 

the particles are assumed to be perfectly spherical (for modelling purposes), with even 

drug distribution across the matrix and isotropic drug diffusion. Drug release is assumed 

to be driven by the difference in the drug concentration within and outside the particles, 

and it is also pore diffusion controlled. 

 

The free bulk diffusion, DB, of a drug in a solute can be calculated from the 

Einstein-Stokes equation: 
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where kB is the Boltzman constant, T is the temperature, μ is the dynamic viscosity of the 

drug within the solvent (μCsA = 0.93 mPa s, 293 K, aqueous solution) and rd is the radius of 

the diffusing drug. 

 

For drug diffusion within a porous matrix Dintra will deviate from that in a bulk liquid as 

the system’s tortuosity, τp, has to be taken into account, hence the following equation is 

used: 
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The τp can either be found by PFG NMR using equation 6.10 or from the empirical 

expression 6.11 (Veith et al., 2004), where DPFG and Db are the diffusion coefficients of 

the solute imbibed in the particles and in the bulk, respectively, due to Brownian 

motions. 
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However, when the ratio between the radius of the drug or solute molecule to the radius 

of the pore (λ=rd/rp) exceeds 0.1, then the diffusing molecules are subject to hindrance 

and friction resistance from the pore walls. Therefore, the Dintra is likely to decrease and 

the transportation of the molecules through the porous matrix will be retarded. To 

account for these effects, a restrictive factor F(λ) is added to eq. (9) : 
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When adsorbed species (i.e. drugs) encounter steric hindrance in the pore mouth due to 

the accumulation of other drug molecules, i.e. when they are attached more strongly 
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onto the pore surface, then the diffusivity of the former will be retarded and the general 

following equation is used to account for this effect (Spry and Sawyer, 1975, cited in 

Mace and Wei, 1991): 

  

                                           4)1()( λλ −=F                                                     (6.13) 

 

For spherical diffusing molecules in cylindrical channels and for 0.1<F(λ)<0.5, equation 

6.14 (Karger and Ruthven, 1992) or equation 6.15 (Beck and Schultz, 1970) can be 

adopted: 

 

         )52.6exp()18.483.11()( 2 λλλλ −+−=F                             (6.14) 

 

        )95.009.214.21()1()( 522 λλλλλ −+−−=F                      (6.15) 

 

The radii of pores and diffusing species are calculated from gas sorption studies via BJH 

method and from equation 6.8, respectively. However, it must be noted that all the 

aforementioned models are not accounting for any physicochemical interactions of the 

diffusing species with the porous medium and the solute, which are likely to contribute 

into the drug release rate. 

 

The aim of this work is to investigate the potential of sodium casein to be used as a 

templating agent for the synthesis of porous silica particles, at pH~2 and to compare 

their structure to Lutrol templated silicas, synthesized under the same experimental 

conditions. Particle size, morphology and porous structure will be characterized via SEM 

and TEM imaging, DLS, nitrogen gas sorption, NMR cryoporometry, PFG NMR and SAXS 

techniques. Furthermore the casein and Lutrol templated particles synthesized will be 

used for CsA encapsulation with an aim to increase CsA solubility in the simulated 

intestinal fluid (IF) and gastric fluid (GF). 

 

The impact of silica morphology on the CsA release behaviour in IF and GF will be then 

investigated. For this, equations 6.2, 6.5, 6.6 and 6.7 will be firstly fitted into the 
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experimental release profile data, using Excel Solver, to obtain the experimental release 

constant. A combination of equations 6.9 and 6.11 (Model I), equations 6.11, 6.12 and 

6.14 (Model II), equations 6.10, 6.12 and 6.13 (Model III), and equations 6.10, 6.12 and 

6.15 (Model IV) will be then used to calculate the Dintra. The values obtained will be 

further used for the estimation of the theoretical release rate constants (k=15Dintra/r
2) 

and will be compared to the experimental ones. The ratio between the Lutrol and casein 

experimental release constants for each model, and in each release medium will be then 

compared to the ratio of the theoretically calculated ones. 

 

 

6.6 Materials 

 
Sodium silicate solution (‘water glass’, 17 % SiO2), sodium casein (composition αS1:aS2:β:κ 

= 4:1:3:1), Cyclosporin-A (CsA), hydrochloric acid (HCl), sodium chloride (NaCl), sodium 

hydroxide (NaOH), heptane and dichloromethane (DCM) were purchased from 

Sigma-Aldrich. Lutrol® 127 was purchased from BASF, acetic acid from Reidel-de-Haёn, 

sodium dodecyl sulphate (SDS), sodium taurocholate, L-α-Phosphatidylcholine (lecithin) 

and sodium phosphate from Fluka Biochemika and HPLC grade ethanol (EtOH) from 

Fisher Scientific. 

 

 

6.7 Experimental procedures and characterization methods 

 
6.7.1 Synthesis of casein and Lutrol templated silicas 

 

The experiments described in this section were conducted by Mr. Paulo Malheiro. The 

mesoporous Lutrol templated silicas were synthesized as previously reported by (Kosuge 

et al., 2004a). For Lutrol templated silicas, 6 g of Lutrol were dissolved in 180 ml of HCl 

solution (2 M) under constant stirring at 298 K. 15.3 g of sodium silicate were dissolved in 

45 ml deionised H2O and this mixture was added dropwise into the polymer solution, 

under continuous stirring that was maintained for 24 h. The final solution had a pH 1. 

Precipitated silica particles were recovered, washed with deionised H2O and calcined in 

the furnace at 873 K, for 8 h, for complete removal of the template. At the end of the 
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process, porous silica particles were obtained. The casein templated silicas were 

prepared in the same way except that HCl solution was replaced by acetic acid (2 M) 

solution. Casein was initially dissolved in this acid media (pH 2) under rigorous agitation 

speed, at 303 K. Addition of sodium silicate solution increased the pH to ~2.5.  

 

 

6.7.2 Simulated gastrointestinal fluids 

 

The experiments described in this section were conducted by Mr. Paulo Malheiro. The 

simulated intestinal fluid (IF) was prepared according to the patent developed by 

Dr. Jennifer Dressman of the J.W. Goethe University, Germany to simulate fasted state 

conditions. Firstly, a stock IF solution was prepared by dissolving 0.348 g of NaOH, 3.95 g 

of sodium phosphate and 6.19 g of NaCl in 1 l of deionised H2O. Within 125 ml of this 

solution were subsequently added 0.825 g of sodium taurocholate and 2.95 ml of a 

solution containing 100 mg/ml lecithin in DCM. The resulting emulsion was placed in a 

rotary evaporator to remove the DCM and the remaining emulsion obtained was 

completed to a volume of 500 ml by adding stock IF solution. 

 

The simulated gastric fluid (GF) was prepared by dissolving 1.25 g of SDS, 1g of NaCl and 

3.5 ml of HCl in deionized H2O to a total volume of 500 ml with vigorous stirring (British 

Pharmacopoeia 2004, A51). This fluid was then immediately used for the drug release 

studies. 

 

 

6.7.3 Cyclosporin-A loading 

 

The experiments involving CsA loading in the paticles and its release were conducted by 

Mr. Paulo Malheiro. Briefly, CsA solution (10 mg/ml) was firstly prepared by dissolving 

20 mg of CsA in 2 ml of EtOH. 1 ml of this solution was added into 90 mg of silica particles 

(Lutrol or casein templated) placed in a glass vial. The system was capped and sealed 

with parafilm and was then placed in a platform shaker for 24 h providing a gentle 

stirring to allow CsA absorption into the silica. The vial was uncapped and the particles 

were left to air dry at 298 K under continuous stirring. 
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6.7.4 Determination of loading efficiency of CsA and in-vitro release studies 

 
To determine the CsA loading efficiency, 5 mg of loaded silica particles were placed in a 

flask with 5 ml EtOH. The mixture was bath sonicated for 30 min and vigorously stirred 

under a vortex for 3 min. 1 ml of the resulting solution was collected and centrifuged at 

14,000 rpm for 3 min and the supernatant was removed for High Performance Liquid 

Chromatography analysis (HPLC) analysis (refer to Appendix A2 for further information 

on the HPLC analysis system and the CsA calibration curve, Figure A4.2). 

 

CsA release from Lutrol and casein templated silicas was studied in both IF and GF 

mediums at 298 K. For this 15 mg of drug loaded silicas were placed in an Eppendorf tube 

and filled with 1.5 ml of either IF or GF.  These tubes were then placed in a rotating 

wheel under gentle stirring to ensure homogenization of the system. At certain time 

intervals, over 48 h of release studies, the samples were centrifuged at 7,000 rpm for 

30 s and all the supernatant was collected and replaced with fresh medium. The 

collected medium was then centrifuged one more time to ensure the suspension was 

free of silica particles. 200 μl of this solution were removed and diluted with water to a 

total volume of 1 ml and used as such for HPLC analysis. 

 

To compare the dissolution of free CsA to the CsA released after encapsulation into the 

mesoporous silica, a control study was additionally conducted by dissolving powdered 

CsA in both media, under the same experimental conditions. For this, 1.5 mg of CsA was 

placed in an Eppendorf tube which was then filled with 1.5 ml of intestinal or gastric 

fluid. The CsA was collected by centrifugation at a higher speed (14,000 rpm, 1 min) due 

to the low density of the bulk CsA powder. These samples were directly introduced into 

the HPLC without further dilution. 

 

All samples were run in triplicate and the average value of these measurements was used 

to obtain the dissolution profiles. The SD error was estimated as described in Section 

A2.2, Appendix. 
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6.7.5 SEM and TEM imaging 

 

SEM images of Lutrol and casein templated silicas were obtained by using a Company 

Quanta 200 F Field Emission Scanning Electron Microscope, with backscattered electron 

detection. These imaging experiments were conducted by Mr. Paulo Malheiro. The 

samples were gold plated and fixed into aluminium stubs before their placement on the 

microscope chamber. The TEM images of silica samples were obtained by using a Jeol 

JEM 2011 HRTEM Transmission Electron Microscope with a maximum accelerating 

voltage of 200 kV, and a GATAN CCD camera attached to it. 

 

 

6.7.5 Particle size measurements 

 

The particle size of silicas was measured by diffraction light scattering using a Malvern 

Mastersizer 2000 instrument. Three successive measurements were obtained for each 

sample and the average particle size is reported. The SD error in the average particle size 

value obtained was estimated as described in Section A2.2, Appendix. 

 

 

6.7.6 Nitrogen sorption 

 

Nitrogen sorption experiments were performed in a Micrometric Accelerated Surface 

Area and Porosimetry (ASAP) 2010 apparatus, 77.35 K. For this, 0.12-0.14 g of dry silica 

particles were degassed at 500 K for 2 h to remove any physisorbed species from the 

surface of the particles. The PSD of the mesopores was calculated from the adsorption 

curve by applying the BJH algorithm in the capillary condensation region assuming 

cylindrical pore type geometry. The PSD of the micropores was evaluated by the 

Horvath-Kawazoe (HK) algorithm for cylindrical pore geometry and their volume, Vp, was 

assessed by using t-plot analysis. Micropore surface area, SL, was calculated from 

Langmuir equation.  
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6.7.7 NMR cryoporometry  

 
NMR cryoporometry was used as an alternative method to measure the PSD of silicas. 

For this, ~20 mg of silica particles were placed within a plastic pipette tip which was then 

filled with water. The bottom and the top of the tip were sealed with Parafilm avoid 

water leakage and the tip was placed within an NMR tube (5 mm) between two 

susceptibility plugs. The system was left for ~2 d at room temperature, to allow water 

adsorption into the pores. A nonmagnetic thermocouple was used to measure the real 

temperature within the sample. The tube was then placed into the 400 MHz NMR 

machine and the sample was subjected to supercooling, pore melting and pore freezing 

to obtain the hysteris loop. The system was left to reach thermal equilibrium for 11 min 

at each temperature point and each spectrum was recorded with 4 scans. The PSD was 

calculated from the melting curve, using Gibbs-Thomson equation for cylindrical type 

meniscus geometry and kGT=26 nmK.  

 

 

6.7.8 PFG NMR 

 

PFG diffusion NMR experiments were performed to determine the tortuosity, τp, of the 

silica particles following equation 6.10. The heptane molecules (or any other alkane) lack 

polar groups, hence there will only be weak dipole-dipole interactions with the silica 

surface and heptane diffusivity within the porous matrix is inherently dependant only on 

the pore connectivity. This means that it can provide a good estimation of the τp 

(D’Agostino et al., 2012). Also, heptane molecular size (diameter: 5.46 Å) (Doetsch et al., 

1974) is similar to the molecular size of CsA assuming the protein retains a spherical 

geometry (diameter: 7.12 Å). This makes heptane an ideal candidate to further mimic 

protein restricted mobility facilitated by the low pore to molecular size ratio. 

 

Initially, pure heptane was placed into a glass capillary tube with ~1.5 mm diameter and 

the top of the tube was sealed by heating it with a Bunsen burner to prevent any 

heptane evaporation during the time course of the experiment. The sample was then 

placed within a 5 mm NMR tube for PFG measurements. This experimental set up was 

also found as the most appropriate to eliminate convection effects arising from the 
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temperature difference along the NMR tube, to which PFG NMR is very sensitive. The 

diffusion experiments were carried out in a 400 MHz NMR, at 25oC. The diffusion time (Δ) 

was 0.1 s, the diffusion length (δ) was 1.5 ms and the relaxation delay time was 15 s 

(~5xT1). For each diffusion experiment, 8 data points were taken at increasing gradient 

strengths between 0.674-33.143 G/cm, and each data point was obtained with 16 scans. 

 

The silica samples were first dried in the furnace at 500 K for 2 h to ensure complete 

removal of any water molecules physisorbed on the silicas. Then, ~10 mg of silicas were 

placed in the capillary tube and the sample was filled with an excess amount of heptane. 

Similarly to the bulk heptane sample, the top of the tube was sealed and it was then left 

to equilibrate at room temperature for 1-8 d. The PFG experiments were performed 

every ~24 h to ensure that complete saturation of the sample was achieved. An average 

diffusivity value between the saturated samples was taken for the calculation of the root 

mean square displacement (rrms) expressed by the Einstein equation: 

 

       ∆= PFGrms Dr 6                                                             (6.16) 

 

This is done to determine the distance the heptane molecules diffuse within the porous 

matrix. The bulk diffusion coefficient, Db, was estimated via the monoexponential 

expression: 

 

                                                            )exp(0 ξbDII =                                                             (6.17)    

 

The diffusion coefficient in the pores, DPFG, were calculated by fitting the data into the 

biexponential expression 

 

      )exp()1()exp([0 ξξ PFGb DxDxII −+=                                   (6.18) 

 

where I0 is the signal intensity with no field gradient applied γ is the gyromagnetic ratio, g 

is the field gradient strength, Δ is the diffusion time, τ is the correlation time between 

bipolar gradients, x is the fraction of bulk heptane and ξ=γ
2
δ

2
g

2
(Δ-δ/3-τ/2). This was due 
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to the presence of excess bulk heptane around the particles contributing onto the overall 

diffusivity of the liquid phase. The calculated Db was used as a fixed value in the 

biexponential model to describe the diffusivity in the excess (bulk) heptane. The error in 

the diffusivity and tortuosity values were found as described in Section A2.1. 

 

   
                                                                                         

6.7.9 Small Angle X-ray scattering (SAXS) 

 

Small Angle X-ray scattering measurements were performed to obtain information about 

the mesostructure of the silicas. A thin film of dry silica particles was placed between two 

pieces of sellotape®, held together by the two copper plates of the sample holder. The 

background arising from the sellotape® was then measured by exposing solely the 

sellotape® in the X-rays for the same amount of time as the silica samples, and it was 

subsequently subtracted from the scattering profile of the silica samples The 

experiments were conducted in an Anton Paar SAXSess small and wide angle X-ray 

scattering instrument with a measurable q range of 0.077 – 27.0 1/nm. A Pin-hole X-ray 

source operated at 40 kV and 50 mA was used. Collimation is achieved using a block 

collimator with 0.14 μm/cm flatness, where the X-ray flight path from the source to the 

detector is maintained in a chamber evacuated to below 5 mbar. The scattered profile is 

collected into a reusable image plate with 42.3 μm2 pixels which is then read into cyclone 

reader via Optiquant software, and processed in a SAXSquant 1.01 program. A 

theoretical background on SAXS technique is provided in the Appendix, Section A4.1. 

 

 

 

6.8 Results 

 
6.8.1 Particle size and morphology of silica materials 

 

Silica particles obtained using Lutrol and casein templating agents had different size, 

morphology and porous structure. Figure 6.3d shows that casein templated silicas had a 

bimodal particle size distribution with two distinct modal sizes at ~15 μm and 660 μm. 

For modelling purposes though, the average particle size will be used (653± 9 μm) from 
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the DLS measurements assuming monomodal distribution/fit. The external surface is 

very rough and consists of small silica clusters of ~300 nm, each of them exhibiting a 

disordered, highly microporous internal structure. Circular dichroism (CD) spectroscopy 

was further performed to study the secondary structure of casein and monitor its 

structural changes under the silica synthesis conditions. The results are presented in 

Figure A4.3, in the Appendix, and they show that casein structure changed from α-helix 

at pH 7 into a random coil at pH 2.  

 

 

 
Figure 6.3 SEM (a, b) and TEM (c) images of a casein templated silica particle showing the particle 
morphology and its internal porous structure, respectively. The histogram (d) shows the particle 

size distribution obtained from DLS measurements (SD error bars: ±1% volume) 
 

 

 

The Lutrol templated silicas had a monomodal particle size distribution (Figure 6.4c) with 

a mean value of 75±9 μm. These particles had a smoother external surface and a more 

ordered microporous structure (Figures 6.4a and 6.4b) compared to the casein templated 

ones.  
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Figure 6.4 SEM (a) and TEM (b) images of a Lutrol templated silica particles showing the particle 
morphology and its internal porous structure, respectively. The histogram (c) shows the particle 

size distribution obtained by DLS (SD error bars: ±1% volume) 
 

  
 
The chemical composition of both types of silicas was characterized by FTIR  and are 

shown in Figures A4.4 and A4.5, in the Appendix. The results are representative of the 

formation of amorphous Lutrol and casein templated silica particles. Both types of silicas 

contain approximately the same amount of silicon oxide, with a conversion efficiency of 

96 % of the initial sodium silicate solution used. 

 

 
6.8.2 Nitrogen sorption and NMR cryoporometry studies 

 

Nitrogen sorption isotherms for casein and Lutrol templated silicas, Figure 6.5, show 

nearly reversible adsorption/desorption curves. Both materials have a high gas uptake in 

the micropore region (P/P0 <0.01), corresponding to ~2/3 of the total pore volume of the 

particles. The volume uptake increases slightly in the multilayer adsorption region and 

capillary condensation only occurs between P/P0 =0.35-0.51. These indicate that both 

materials are highly microporous and exhibit only a low mesoporosity.  
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Figure 6.5 Nitrogen adsorption isotherms for casein and Lutrol templated silicas 

 
 
 
The micropore size distribution extends over the range of 0.86-2 nm for both materials, 

but casein templated silicas have a rather more ordered microporous structure than the 

Lutrol ones, exhibiting a mean size of ~0.94 nm, as shown from Figure 6.6a. Similarly to 

this, casein templated silicas show a slightly narrower mesopore size distribution, with a 

mean PSD of 2.93 nm compared to 2.75 nm for the Lutrol, Figure 6.6b.   
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Figure 6.6 a) Micropore and b) mesopore size distribution of casein and Lutrol templated silicas 

calculated from HK and BJH algorithms, respectively 
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When casein was used as a templating agent, the silica particles had a lower total pore 

volume, V0, micropore volume, Vp, and a lower Langmuir surface area SL compared to 

Lutrol templated silicas as shown from Table 6.1.  

 
 

Template 

 

Micropore 

volume,  

Vp (cm
3
/g)  

Langmuir 

surface area, 

SL (m
2
/g) 

Mean size of 

mesopores  

d (nm) 

Total pore 

volume, 

V0 (cm
3
/g) 

Porosity, 

ε 

Casein  0.13 488.88 2.93 0.21 0.31 

Lutrol  0.18  518.33 2.75 0.27 0.37 

Table 6.1 Porosity and surface area measurements of casein and Lutrol templated silicas 
 

 
 

Figure 6.7 represents the freeze/thaw curves of water imbibed in Lutrol and casein 

templated silicas. It is obvious that ice within the pores of Lutrol templated silicas melts 

over a wider temperature range compared to the casein templated ones. This indicates 

that Lutrol silicas contain a wider pore size distribution than casein templated ones, 

extending over a diameter size of 0.6-1.2 nm (inset in Figure 6.7). However, the PSD 

estimated by cryoporometry, for both types of silicas, is narrower compared to the one 

obtained from nitrogen adsorption (Figure 6.6). This is because cryoporometry NMR is an 

indirect pore size characterization technique, since, the calculation of absolute pore 

sizes, requires a calibration of the kGT parameter against pore size measures from 

another technique. Also, it was shown in Chapter 3 that cryoporometry suffers advanced 

melting phenomena, which are more severe than the advanced adsorption effects in 

nitrogen sorption studies, therefore it is likely that the PSD derived by this method to be 

underestimated. 
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Figure 6.7 Cryoporometry hysteresis loops obtained from freeze-thawing of water imbibed in the 

casein and Lutrol templated silicas. Molten fraction of 1 corresponds to the total pore volume. 
The inset shows the pore size distribution, as a change of the molten fraction with the pore 

diameter, where the diameter is calculated via the Gibbs-Thomson equation from the boundary 
melting curves of the silicas 

 
 

 
 
 
6.8.3 PFG NMR 

 

As presented in Table 6.2, the two silicas exhibit different tortuosities and the heptane 

molecules are able to diffuse at different length-scales at the same time. In particular, 

casein templated silicas have a smaller (average) tortuosity compared to Lutrol silicas, 

indicating better pore connectivity. The rms displacement within casein silica particles is 

longer than the Lutrol ones, suggesting that heptane molecules encounter less 

restrictions allowing them to diffuse up to ~93.36 μm. As the rms displacement values for 

both silicas exceed their pore size (0.5-2.94 nm), this would mean that the molecules are 

free to diffuse along the pore channels at all possible directions. However, heptane 

molecular motion in casein silicas is restricted to an (average) distance shorter than the 

silica particle size (650 μm) itself indicating that species present at the centre of the 

particles will not be able to reach the edges of the particles. On the contrary, the 

molecules within the Lutrol templated silicas can cross over onto a length-scale 
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comparable to the silica particle size (~75 μm) and as such diffuse more easily into the 

bulk. These results show a more heterogeneous porous structure in the casein silicas, 

where the casein particle could potentially comprise of similar sized clusters (ie of a 

93.36 μm diameter) of well connected pores, but the channels connecting these clusters 

are more complex, prohibiting the free diffusivity of the molecules through the whole 

particle. On the contrary pores within Lutrol particles have an evenly distributed 

complexity which is averagely higher than casein. 

 
 
 

Heptane 
DPFG (x10

9
)  

±error (m
2
/s) 

 

Tortuosity,τp 

±error 

rms displacement, rrms 

±error (μm)  

Bulk 3.18 ± 0.04  – – 

Casein 1.46 ± 0.19 2.22 ± 0.30 93.36 ± 8.83 

Lutrol 0.71 ± 0.15 4.48 ± 0.94 65.36 ± 9.63 

Table 6.2 Tortuosities and rms displacement values of heptane within casein and Lutrol 
templated silicas for Δ=0.1 s and δ=0.0015 s. The error is found as described in Section A2.1, in 
the Appendix 

 
 
 

6.8.4 Small angle X-ray scattering (SAXS) 

 

The SAXS results seen from Figure 6.7, show that both casein and Lutrol templated silicas 

have a distinct diffraction peak at 0.636 and 0.649 1/nm and a broad peak with a mean at 

~1.105 and 1.092 1/nm, respectively.  

 

These peaks are close to having the relationship 1:√3 (particularly for the casein 

templated silica) suggesting that the structures could be composed of hexagonally close 

packed micelles. However, it is not excluded the case of having broad diffraction peaks 

consisting of several merged peaks of a polydisperse cubic-like (although their 

relationship is not closer to 1:√2). Also, it should be mentioned that it is quite surprising 

that such a high mesostructure order is observed for casein silicas as compared to the 

more unordered form depicted in the TEM images (Figure 6.3c). 
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Figure 6.8 Diffraction peaks of the casein and Lutrol templated silica powders. Casein scattering 
intensity has been shifted on the y-axis by a multiple of 12. The values displayed on the graph, 

show the mean q value of each diffraction peak 
 

 

 Usually silica particles synthesized from Lutrol template under acidic conditions have a 

cubic structure, similar to SBA16 (Im3m). However, a slight modification of the 

experimental synthesis conditions, such as the silica source, pH, aging temperature and 

time or, the polydispersity in the MW of the polymer can inherently lead to a different 

structural organisation of the porous material. Sodium casein comprises of a mixture of 

α-, β- and κ- casein proteins, and each of them contains a different amount of hydrophilic 

and hydrophobic groups. The charge distribution along the chain differs hence in the 

presence of acidic conditions the ionisable groups will cause different protein 

conformations, characteristic of each protein. Therefore, the structure of casein 

templated silicas is expected to be more disordered compared to Lutrol, as the proteins 

are likely to form micelles with different shapes and sizes.  

 

The interplanar d-spacing of the casein and Lutrol templated silicas is 9.87 nm and 

9.68 nm, respectively calculated from the first diffraction peak via Bragg’s law for cubic 

structure (Equation A4.3, Appendix). Taking into account that the size of the mesopores 

is 2.93 and 2.75 nm (Table 6.1) then, the wall thickness of the silicas is 6.94 and 6.93 nm 

for casein and Lutrol silicas, respectively. However, if we assume 2D-hexagonal phases, 

casein 

Lutrol 

Wavevector (1/nm) 
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d-spacing is 11.40 nm and 11.17 nm for casein and Lutrol silicas, respectively, with wall 

thicknesses, 8.47 nm and 8.42 nm. Similar wall thickness would mean similar mechanical 

properties for both silicas. TEM images though (Figures 6.3c and 6.4b) reflect a wall 

thickness of ~2.5 nm for casein and ~3.9 nm for Lutrol silicas. Overall, the real structure 

of both silicas is ambiguous and their mesostructure can be either 2D-hexaganal or cubic.  

 
 
 
6.8.5 CsA loading and in-vitro drug release studies  

 

CsA mean loading efficiency in the Lutrol and casein templated silicas was 54±7% and 

61±5%, respectively, as measured by HPLC analysis. It would be expected that CsA 

loading will occur in a multilayer form in an amorphous structure. As ethanol evaporates, 

some particle regions will be saturated with CsA and deposition may occur through 

crystallization. Therefore it is possible that CsA exists in different forms, likely to affect 

the drug release rate.  Moreover, CsA may adopt different conformations within the 

silicas, due to its particular H-bonding pattern and the large size of the molecule as 

compared to the pore size of the silicas. FTIR spectra may detect those conformations, 

thus FTIR measurements were performed for the drug loaded Lutrol templated silicas. 

However, the contributions from the silica in the IR region were higher than the 

contribution from the CsA, so further analysis was not possible.  

 

The conformation of the purchased CsA (in powder form) was compared to the loaded 

CsA being recovered and re-crystallized after sonication of Lutrol particles in ethanol. It 

was found that encapsulation of CsA in these particles did not degrade the peptide 

structure. The results are presented and further discussed in Section A4.4, Appendix. 

Drug dissolution studies were performed in simulated intestinal and gastric fluid. The 

dissolution of free CsA is compared to the encapsulated CsA in Lutrol and casein 

templated silicas. The results are shown in Figures 6.9 and 6.10. It is shown that drug 

solubility in the IF is slower and overall lower than in GF for the 3 types of formulations. 

Furthermore, a burst drug release occurs from the silicas within the first 2 h of dispersion 

in the GF, but a more gradual one is facilitated in the IF. It is also observed that 

encapsulation of CsA in the silicas increased its solubility by ~5 times in the IF and ~1.5-2 
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times in the GF, against the free drug in each respective dispersion medium. In addition 

to this, CsA loaded in Lutrol silicas had a high release over the first 3 h which becomes 

more steady at later times. On the contrary, CsA in the casein silicas followed a gradual 

release over the whole period of time. The total drug released from all the formulations 

in IF is likely to be increased over 28% at longer experimental times, judging by the trend 

of the dissolution profiles in Figure 6.9. CsA dissolution profiles in GF, Figure 6.10, show 

that both free and CsA loaded in Lutrol silicas, exhibit a high burst release within 1 h, 

which remains constant afterwards. On the contrary, only 35 % of the loaded CsA in the 

casein silicas is released within 3 h and its amount alters gradually over higher time 

intervals.   
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Figure 6.9 Drug release profile of CsA from casein and Lutrol templated silicas in simulated 

intestinal fluid. Solubility of the encapsulated CsA is compared with that of the free CsA. Error 
bars show the SD error for release studies performed in triplicate 
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Figure 6.10 Drug release profile of CsA from casein and Lutrol templated silicas in gastric fluid. 

Solubility of the encapsulated CsA is compared with that of the free CsA. Error bars show the SD 
error for release studies performed in triplicate 

 
 
 
 
 
 
6.8.6 Drug release models fitted into the CsA release profiles 

 

Drug release models predicted by Higuchi (equation 6.2), Model 2 (equation 6.5), LDF 

(equation 6.6), and Weibull (equation 6.7) are presented in Figures 6.10-6.13. CsA release 

profiles from Lutrol and casein templated silicas in intestinal and gastric fluids are best 

described by the LDF and Weibull models. Higuchi and Model 2, derived by assuming a 

planar system and for drug release up to ~0.4 relative fraction (although sometimes it is 

accurate for higher fractions as well), respectively, fail to predict the CsA release from the 

systems studied.  
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Figure 6.11 Drug release profile models fitted into the raw data of CsA released from Lutrol 
templated silicas in intestinal fluid using Higuchi (equation 6.2), Model 2 (equation 6.5), LDF 

(equation 6.6), and Weibull (equation 6.7) models 
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Figure 6.12 Drug release profile models fitted into the raw data of CsA released from casein 
templated silicas in intestinal fluid, using Higuchi (equation 6.2), Model 2 (equation 6.5), LDF 

(equation 6.6), and Weibull (equation 6.7) models 
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Figure 6.13 Drug release profile models fitted to the raw data of CsA released from Lutrol 
templated silicas in gastric fluid, using Higuchi (equation 6.2), Model 2 (equation 6.5), LDF 

(equation 6.6), and Weibull (equation 6.7) models 
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Figure 6.14 Drug release profile models fitted to the raw data of CsA released from casein 
templated silicas in gastric fluid, using Higuchi (equation 6.2), Model 2 (equation 6.5), LDF 

(equation 6.6), and Weibull (equation 6.7) models 
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In Table 6.3 are presented only the time constants predicted from the LDF and Weibull 

models, as these models were found to best fit into the CsA release profiles observed 

with respect to the fitting error. It is seen that the b constant lies between 0.6-0.65 for 

Lutrol silicas and 0.77-0.87 for caseins. This indicates that diffusion in Lutrol silicas may 

follow that in a fractal or disordered space, whereas drug release from caseins is driven 

by a normal Euclidiean diffusion disturbed by contributory release mechanisms.    

 

 LDF Weibull 

Sample/ 

Release medium 

 

Time constant, 

k2 (1/min) 

Time constant, 

k3 (1/min) 
b 

Lutrol/IF 0.011±0.002 0.048±0.014 0.65±0.07 

Casein/ IF 0.002±0.0002 0.006±0.001 0.77±0.03 

Ratio/IF 5.30 8.39  

Lutrol/GF 0.184±0.006 0.459±0.018 0.60±0.02 

Casein/ GF 0.0067±0.0006 0.012±0.006 0.87±0.11 

Ratio/GF 27.02 38.19  

Table 6.3 Parameters predicted by LDF (k2) and Weibull (k3, b) models. The number in bold is to 
show that its value is quasi-similar to the one predicted from Model III, Table 6.4 
 
 

The time constants, k, calculated from Models I-IV are presented in Table 6.4 to account 

for the particle porosity, hindrance, particle size and tortuosity of the particles.   

However, Models I-IV do not take into consideration the release medium characteristics, 

thus only one value for each templated silica is estimated. The ratio between the time 

constant of Lutrol and casein templated silicas for each release medium, found from LDF 

and Weibull fitting curves, can be compared to the ratio of the time constants between 

the silicas, calculated from Models I-IV. From Tables 6.3 and 6.4, it is observed that only 

CsA release into the gastric fluid, predicted from the empirical Weibull equation 

(k=38.19 1/min) can be described by Model III (k=35.26 1/min). This shows that the faster 

drug release rate from Lutrol silicas compared to the casein ones in GF, is affected by 

their different pore connectivity, pore size, particle porosity and particle size in a 

relationship proposed by Mace and Wei (equations 6.10, 6.12 and 6.13). Drug release in 

intestinal fluid must be influenced by additional parameters, or a different relationship of 

the aforementioned ones. For instance IF alkalinity increases the solubility of silica 

particles themselves as opposed to the GF acidity, implying that drug release in IF was 
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essentially controlled by the silicas dissolution rates rather than their pore 

characteristics. Moreover, the dissolution rate of the Lutrol silica particles is possibly 

faster than the casein silica particles, due to the smaller size of the Lutrol particles, 

although their pore walls are thicker (3.9 nm) than the casein pore walls (2.5 nm) as seen 

from the TEM images, Figures 6.3 and 6.4. 

 
 
 

 Model 

I 

 

Model 

II 

 

Model 

III 

 

Model 

IV 

 Sample 

 

 

k 

(1/min) 

k 

(1/min) 

k 

(1/min) 

k 

(1/min) 

Lutrol 58.58 2.34 0.93 0.67 

Casein 0.64 0.03 1.97 0.02 

Ratio 91.17 79.17 35.26 34.66 

Table 6.4 Time constants for Lutrol and casein templated silicas, calculated from k=15Dintra/r2, 
where Dintra was estimated from equations 6.9 and 6.11 (Model I), equations 6.11, 6.12 and 6.14 
(Model II), equations 6.10, 6.12 and 6.13 (Model III), equations 6.10, 6.12 and 6.15 (Model IV). 
The number in bold is to show that its value is quasi-similar to the one found from the fit of 
Weibull model into the GF release profiles, Table 6.3 

 

 

6.9 Discussion 

 
In this work, amphiphilic sodium casein was successfully used as a templating agent for 

the synthesis of porous silicas particles under acidic conditions with 96 % silicon 

conversion into particles (Section A4.4, Appendix). The CD measurements (Section A4.3, 

Appendix) showed that casein peptides obtained a random coil conformation at pH 2 and 

2.5 similarly to the results observed by other authors (Chakraborty and Basak, 2007; 

Portnaya et al., 2008). As the total concentration of the casein used for the synthesis 

(26 mg/ml) is higher than its CMC (1 mg/ml), casein must have self assembled initially 

into micelles (~120 nm) composed by α-, β- and κ-caseins submicelles (or nanoclusters), 

even in the absence of interactions with calcium phosphate (Liu and Guo, 2008) at 

pH 2-2.5. Gas sorption (Figure 6.6, Table 6.2), cryoporometry (Table 6.2) and TEM 

(Figures 6.3c and 6.4b) characterization techniques show that casein templated silicas 

are highly microporous with a low mesopore volume. These findings suggest silica 
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precursor penetrated within the micelles through the void spaces, and condensed over 

the submicelles (or nanoclusters) forming the pore walls. This further implies that 

electrostatic interactions between the silica and α-, β- and κ-caseins dominated over the 

hydrophobic and H-bonding interactions between the casein submicelles, responsible for 

the integrity of the larger micelle. 

 

As previously reported, β-caseins obtain a flat disk-like structure, αs1-caseins are 

arranged into a wormlike or spherical structure, and as2- and κ- caseins into a spherical or 

ellipsoidal shaped submicelles, with sizes of ~7-25 nm. The size of these submicelles 

again extends over the pore size obtained from gas sorption and cryoporometry 

experiments. This implies that casein micelles consisted of nanoclusters with denser 

regions of peptide mini-clusters, as proposed by de Kruif rather than submicelles 

proposed by Hansen et al. After calcination the nanoclusters formed the small 

mesopores (~2.9 nm) and the mini-clusters along with the κ-casein hairy layer, formed 

the micropores. Although calcium phosphate is dissolved under acidic conditions, 

hydrophobic interactions between the caseins must have kept unchanged the 3D 

architectural morphology of these clusters. This templating model can explain the 

disordered porous structure and the roughness of the external surface of casein 

templated silica particles.  

 

Lutrol templated silicas have a smaller particle size (75 μm) and a smoother external 

surface than casein silicas (650 μm), shown by Figures 6.3 and 6.4. The different 

macroscopic structure is not only affected by the properties of each amphilphilic 

template but it is also due the variation in the temperature, pH, counterions and 

agitation speed used for each synthesis. Elevation of synthesis temperature at pH>7, 

increases silica solubility and inherently silica growth, by dissolution of many small 

particles and their deposition into larger ones (Brinker, 1990). Kosuge et al., observed 

that increasing the temperature under acidic conditions, the shape of the particles 

change from aggregated (298 K) to fiber-like (303 K) whereas by increasing the stirring 

rate silicas shape changes from monodisperse rod-like to fiber-like with a bigger size 

(Kosuge et al., 2004b). Moreover, it seems that amphiphilic Lutrol decreases the surface 

tension on the growing particles more than casein, and as such Lutrol is able to stabilize 
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the particles at a smaller size. Moreover, Teixeira et al. (2011) found that (under the 

same templating conditions) the higher the polarizability of the counterions, the smaller 

and better-defined particles are formed. Thus [Cl-] counterions are expected to give 

smaller silica particles as compared to [CH3COO-].  

 

The mesostructure of silicas is mainly influenced by the templating agent. Pluronics such 

as Lutrol (F127) within acid media usually favour the formation of cubic structures such 

as SBA-16 (Im3m), SBA-11 (Pm3m) (Zhao et al., 1998a) as opposed to caseins whose 

micellar structure is disordered. TEM images (Figures 6.3c and 6.4b) show that Lutrol 

silicas can have either a cubic or a 2D-hexagonal structure whereas a wormlike structure 

is seen for the casein ones. Their SAXS patterns though (Figure 6.8), are characteristic of 

materials with poor long range order, with Lutrol silicas showing a slightly higher disorder 

than casein ones, judging by their wider diffraction peaks. This is in accordance to the 

XRD results found by Kosuge et al. showing a disordered structure for F127 templated 

silicas in HNO3 media. Gas sorption studies showed a wider mesopore and micropore size 

distribution for Lutrol silicas (assuming cylindrical pores) (Figure 6.6b). The contradicting 

results in the pores arrangement can be explained by a model where the pores of Lutrol 

particles have many interconnections or wall regions with lower silica density as is 

commonly seen in pluronic templated silicas due to the EO groups penetrating into the 

walls during synthesis, thus mimicking disordered phases (Reichhardt et al., 2011). 

Moreover, counterions have other effects as well. [Cl-] anions cause dehydration of the 

PEO groups of Lutrol by an osmotic effect depleting the concentration of water in the 

corona on these sites, hence increasing their hydrophobicity (Kabalnov et al., 1995; 

Teixeira et al., 2011). This facilitates an increase in the aggregation number of the 

polymer chains forming the micelles, causing the EO groups to collapse into the core or 

just collapse together, and subsequently increases the pore size in the silica walls and 

decreases the mesostructure order. Therefore, the mesostructure of the materials under 

study, was not solely dependent on the amphiphilicity of the templating agent used but 

on the pH and counterions present in each synthesis as well. 

 

As shown by SAXS, the wall thickness of both materials was similar (6.94 nm), implying 

that casein silicas can exhibit similar thermal and mechanic properties to Lutrol block 
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copolymer. The N2 sorption studies show that micropores occupy ~67 and 63 % of the 

void space of Lutrol and casein silicas, respectively, and the remaining ones are 

mesopores (Table 6.1). PFG NMR shows a higher tortuosity for Lutrol silicas (4.46) 

compared to the casein ones (2.28). This is consistent with Kosuge et al. studies who 

found that block copolymers with PPO groups having a MW>3000 g/mol, lead to 

formation of highly tortuous particles comprising of both meso- and micropores. 

Therefore it must be the case that mesopores in the Lutrol silicas are arranged into most 

probably a cubic phase with a high amount of interconnecting micropores, as discussed 

earlier, however a 2D-hexagonal structure is suggested by SAXS results, thus further 

investigation with TEM images obtained at different directions to the micelle lattice are 

necessary to disambiguate the real structure of these Lutrol-templated silicas. The 

mesopores are formed from the hydrophobic PPO groups and the micropores from the 

PEO chains of the polymer, extending through the silica walls. In the casein silicas a 

model of casein arrangement into clusters was proposed above; the micropores are 

formed from the mini-clusters and the hairy layer of the κ-caseins, and the mesopores 

from clusters formed by association of α- and β-caseins. As κ-caseins form only ~8 % of 

the sodium casein, then 55 % of the micropores must have been formed by the 

crosslinking of some hydrophilic parts of α- and β-caseins, facing out the clusters. Of 

course it is not excluded the case where some of the α- and β-casein clusters shrunk 

during silica condensation, forming some additional micropores. It should be though 

pointed out that the mean pore size of both materials, found from nitrogen adsorption is 

higher than that calculated from cryoporometry melting curve, assuming cylindrical 

pores in both techniques. This is indicative of the error induced in the PSD from 

inaccurate assumptions on Kelvin and Gibbs-Thomson equations as previously discussed 

in Chapters 3 and 4, and it is further likely to affect equations 6.13-6.15, applied in the 

CsA release models.    

 

Encapsulation of highly hydrophobic CsA into the casein and Lutrol templated silicas 

increased drug solubility by 4-4.5 times in the simulated intestinal fluid, and 1.5-2 times 

in gastric fluid, as compared to the free drug (Figures 6.9 and 6.10), showing great 

potential as drug delivery carriers. As CsA is pH insensitive, it must be the presence of 

SDS surfactant in the GF that increases CsA solubility. In fact, SDS concentration in GF 
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(8.7 mM) exceeds its CMC in acidic environment (<8.2 mM), therefore it exists in a 

micellar form and as such promotes CsA solubility in this media by drug incorporation 

into the micelle core. This is further justified by the fact that solubility of the free drug in 

GF is ~6 times higher than that in IF. The SDS micelles formed in the presence of salts 

obtain an elongated disk-like or a tablet-like shape, where the width and the length reach 

up to 2.4 and 4.6 nm, respectively (Bergstrom and Pedersen, 1999). This mean that some 

of the micelles can diffuse through the biggest mesopores (4 nm), if the latter are placed 

on the surface of the particles, and facilitate CsA solubility within the particles as well.  

Moreover, any non-micellar SDS can enhance drug solubility by adhering their 

hydrophobic tail group onto the CsA peptide and enhance peptide solubility. 

 

 CsA release from casein silicas has a gradual, controlled release as compared to the 

faster one induced by Lutrol silicas at the early stages of release, in both media. This is 

either due to the bigger particle size of casein silicas, hence there is a longer distance for 

CsA to diffuse, or due to the pore structure characteristics.  Forsgren et al. (2010) found 

that Fentanyl release was faster from crushed pellets rather than the intact ones of the 

same batch. The authors attributed this to the larger external surface area of smaller 

particles exposed to the dissolution media. This is in agreement with CsA release from 

Lutrol silicas, whose particle size is ~10 times smaller than caseins, hence higher external 

surface area arising from all the particles.  

 

The Higuchi model, most commonly used to describe drug release kinetics, did not fit to 

any of the release profiles obtained, and neither did Model 2. This implies that CsA 

peptides undergo a more complicated diffusion path than that experienced in a planar, 

or a spherical system for drug released fractions >0.4. A better fit was observed from 

application of Weibull and LDF equations, especially at the early release times (3 h). In 

particular, the b constant for Lutrol is <0.69 (Table 6.3), implying that CsA release from 

Lutrol is mediated by a highly disordered/fractal structure (Papadopoulou et al., 2006). In 

fact, these particles have many interconnections between the mesopores and 

micropores as seen from the TEM and SAXS patterns, along with the tortuosity value 

found independently via PFG NMR (Table 6.1). On the contrary, casein silicas consist of 

less micropores and mesopores and its tortuosity is half that of Lutrol, with b>0.75 from 
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the Weibull model. Hence, diffusivity in the casein silicas appears as a hindered form of 

diffusion in Euclidian mass. The ratio between the release constants of Lutrol and casein 

silicas in IF, calculated from Models I-IV (Table 6.4), deviated from those found from both 

LDF (5.3) and Weibull models (8.4). This implies that the true relashionship(s) between 

the tortuosity, porosity, particle size and molecular hindrance, which describe the CsA 

release, are other than those applied in Models I-IV, as it is likely that the different 

dissolution rate of each silica matrix in alkaline fluids influences the release of CsA too.  

 

Similar behaviour is seen in GF for the LFD model. A better correlation though between 

these parameters and the release kinetics obtained from Weibull equation is found for 

CsA release in GF. Here, the difference in the CsA dissolution, enhanced by the two types 

of silica, is concomitantly controlled by the particle size, the molecular hindrance of the 

protein and the total pore volume in a relationship described by Model I (Spry and 

Sawyer, 1975; Mace and Wei, 1991). These models though assume that the shape of the 

protein molecules within the silicas is spherical and does not change during protein 

adsorption/release into/from the pores. However, proteins go through structural 

conformations dependant on the polarity of the solvent and the size of the pore 

channels. CsA exposes the H-bonded groups on the surface, in the presence of polar 

ethanol during drug loading, and aqueous media during drug release studies (el Tayar et 

al., 1993). Also, the peptide bond between the 9th and 10th aminioacids (Figure 6.2) is 

uncharged in water but has a large dipole moment and CsA can line up in certain 

secondary structures. This, in conjunction with the repulsive interactions between the 

hydrophilic silica and hydrophobic CsA, and the competitive adsorption between the 

drug and water molecules into the silica pore surface, enhances drug diffusivity out of 

the particles (Mellaerts et al., 2007). Its penetration through narrow pores, eventually 

causes stretching of the protein, and turns the CsA shape into a worm-like one which 

diffuses more easily. Monte Carlo simulations show that polymers passing through a 

series of connected chambers and pores (equivalently pores and necks), line up and 

diffuse fast during their translocation through small sized chambers, but they wrap up 

within big sized chambers (Saltzman and Muthukumar, 2009). Consequently the degree 

of CsA stretching into Lutrol silicas can possibly be higher than that in casein silicas if 

these pore sizes and connectivity conditions are satisfied.  
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Furthermore, there is a more rapid CsA release from Lutrol particles than casein particles 

within 3 h, in both the IF and GF. Apart from the particle size effect and the pores 

characteristics, this effect is further attributed to a higher concentration of CsA present 

in the shell and outer part of the Lutrol silicas as compared to that in casein particles. In 

the presence of micellar SDS in the GF, this effect is favoured as some drug is directly in 

contact with the micelles surrounding the particles in the dispersion medium, elevating 

drug solubility. Comparing the total dissolution of CsA in silicas, it is obvious from the 

graphs that drug solubility continues to increase after 48 h in IF. CsA though released 

from Lutrol silicas in GF, remains constant after 3 h. This means that a fraction of 

encapsulated CsA exists in a crystal form in supersaturated pore regions, unable to 

penetrate through the porous matrix, as compared to that entrapped in the casein 

silicas, but further investigation via XRD or DCS techniques is required.  

 

 

6.10 Conclusion 

 
In this study the potential of sodium casein as a templating agent for synthesis of porous 

silica materials, under acidic conditions was first investigated. It was found that although 

caseins have a random coil conformation at low pH, at concentrations above their CMC 

they are able to form clusters of different sizes driven by their amphiphilic nature. 

Attractive electrostatic and hydrophilic interactions between caseins and silica 

precursors led to the production of worm-like mesostructures, with high microporosity 

and surface area. Lutrol templated silicas, synthesized under the same conditions, 

showed a disordered cubic or 2D-hexagonal mesostructure with higher microporosity 

and worse overall interconnectivity than casein silicas. The yield of silica particles was 

high for both templating agents indicating that they can be scaled-up at a low cost.  

CsA loading efficiency reached ~60% and 54% for casein and Lutrol silicas, respectively, 

without being denatured. Drug solubility in simulated intestinal and gastric fluids was 

improved, with Lutrol silicas achieving more rapid release in both media compared to 

casein silicas. Drug solubility in gastric fluid was higher for both the free and 

encapsulated drug as compared to that in intestinal fluid, but to different degrees for 

each system. It was also found that CsA release from porous silicas is driven by Fickian 
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diffusion, represented equally well from the LDF and Weibull models. Further 

investigations on the effect of the particle size and pores characteristics into the release 

kinetics showed that drug release is mainly controlled from the particle size but 

confinement effects (pore connectivity, PSD, mesostructural disorder), and silica 

dissolution and protein conformations in the different pH, should be taken into account.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 



 

       181 

Chapter 7 
Synthesis and characterization of poly(lactic-co-glycolide) 

nanoparticles for convection-enhanced drug delivery into 

the brain 

 
 
 
 

 

7.1 Introduction 
 

In Chapter 6 gas sorption and NMR cryoporometry techniques were adopted to study the 

pore structure characteristics of two different templated silicas, with an aim to interpret 

their drug release kinetics into the environments present, and therefore their 

therapeutic activity. However, gas sorption technique requires thermal pretreatment of 

the sample at high temperatures, to ensure complete removal of any physisorbed 

species (i.e. water), before the actual experiment is performed. Hence the method is 

subject to inaccuraces for porous systems which exhibit low melting or glass transition 

temperatures, such as polymer particles, and therefore the samples are thermally 

pretreated  close to room temperatures. Moreover, imaging techniques, such as TEM, do 

not provide sufficient information about the porous structure, due to the limited 

resolution of the technique in the nanoparticle scale. For this, NMR cryoporometry 

technique is proposed instead for pore size measurements, under the assumption that 

the polymer structure and morphology remain unchanged at low temperatures.  

 

Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable and biocompatible polymer, which 

can be easily functionalized to provide additional properties to the material. Due to these 

properties, it can be used for transportation and controlled release of therapeutic agents 

in the area of interest. However, the presence of biological barriers and the 

hydrophilicity of the target area do not permit the free passage of all the drugs and their 

wide distribution, thus more sophisticated drug delivery methods are required. Drug 

delivery into the brain is of particular interest, as the blood brain barrier (BBB) prevents 

the diffusion of hydrophilic molecules with a mass bigger than 500 Da, thus intravenous 
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injections are not efficient for the treatment of Alzheimer’s disease or brain cancer. For 

this, convection-enhanced drug delivery (CED) into the brain was suggested, where the 

drug loaded vehicles are infused directly and continuously, under pressure using 

neurosurgically-placed microcatheters in order to enhance their distribution over a large 

tissue volume. However, successful CED into the brain can only be achieved if the size 

(radius) of the nanoparticles (NPs) is less than 100 nm, to ensure that the catheter will 

not block, and the charge of the particles is negative, to prevent strong attachment of 

the NPs onto the negatively charged cell membrane, at the site of injection. 

 

In this chapter, the reader will be initially introduced to the importance of PLGA NPs as 

drug delivery systems and the current synthesis methods, with an aim to optimize their 

size and charge by adopting various synthesis protocols. The most promising synthesis 

methods are then chosen for further drug encapsulation studies, and the therapeutic 

activity of the NPs is then examined via in-vitro cell studies and in-vivo direct CED into the 

mice brain. The sensitivity of gas sorption and NMR cryoporometry techniques to 

characterize the porous structure of the NPs, aiding to the understanding of drug loading 

efficiency and release mechanism is also tested. 

 

 

7.2 Background theory to poly(lactic-co-glycolic acid) polymer and 

synthesis methods for nanoparticles 

 
Poly(lactic-co-glycolic acid) (PLGA) is a random copolymer synthesized by 

co-polymerization of two different types of monomers, lactic acid and glycolic acid, 

linked together by ester bonds (Figure 7.1) or lactide and glycolide to obtain PLGA 

polymer with a high MW. It has been approved for medical use by the FDA organization 

due to its biodegradability and biocompatibility thus making it of great interest in the 

biomedical area as drug delivery systems (DDS) (Benoit et al., 2000; Menei et al., 1999; 

Chen et al., 1997; Rafati et al., 1997; Zhang et al., 2012; Xie et al., 2011). PLGA exhibits a 

glass transition temperature in the range of 313-333 K and can be either ester end-

capped or acid end-capped. Poly (DL-lactic-co-glycolide) (50:50) with MW ~50,000 g/mol, 

such as that used in this Chapter, exhibits a glass transition temperature of 313-220 K 
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and an approximate degradation time of 2 months. Hydrolysis is the main degradation 

mechanism but polymer formulations present in intra- or extracellular spaces are also 

subject to enzymatic degradation (Anderson and Shive, 1997). Hydrolysis is facilitated 

when polymer molecules exposed to water initiate the formation of carboxylic acid 

groups. These acids then will catalyse the cleavage of ester bonds (autocatalytic 

degradation) to form non-toxic  monomers (Li et al., 2008) (Figure 7.2) which will be 

further metabolized to carbon dioxide and water, or excreted from the body via the 

kidneys (Liu et al., 2003). The time required for degradation is related to the ratio of the 

two monomers, the pH of the environment and the presence of other agents (ie drugs, 

stabilizers or enzymes). The higher the content of glycolide monomer, the more acidic 

the conditions and the greater the presence of acid-ended PLGA polymer, the faster the 

degradation will be (Miller et al., 1977; Park, 1995; Engineer et al., 2011). Thus by varying 

the polymer composition, the manipulation of its degradation becomes possible. In 

principle, matrices disappear either by surface or/and bulk erosion (García-Contreras et 

al., 1997).  

 

 

 

 

Figure 7.1 Chemical structures of poly(lactic acid) (left) and poly(glycolic acid) (right) 

 
 

 
Figure 7.2 a) Hydrolytic and b) autocatalytic degradation of PLGA co-polymer 

 

 

PLGA nanoparticles (NPs) can be used as DDS systems due to their small size 

(radius<0.5μm) and big surface to volume ratio (Astete and Sabliov, 2006; Hans and 
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Lowman, 2002). They are spherical particles ranging in size from a few nanometers to 

several hundred nanometers according to the preparation technique, solvents, 

surfactants, presence of active molecule (ie. drug) and the molecular weight of the PLGA 

polymer. They have tunable surface properties which can modulate the interactions of 

the particles with blood proteins and mucosa thus controlling their in-vivo fate (Vauthier 

and Bouchemal, 2009).  

 

PLGA NPs can be formulated by several techniques, which can be classified into the 

bottom-up methods (emulsion, microemulsion polymerisation, interafacial 

polymerisation, and precipitation polymerisation) which employ a monomer as a starting 

point and the top-down methods (emulsion evaporation, emulsion diffusion, solvent 

displacement, salting out) in which the particles are formed from the pre-formed 

polymer. During the preparation of PLGA nanoparticles it is possible to incorporate active 

agents such as drugs (Xie et al., 2011), vitamins (Mu and Feng, 2002), proteins and RNA 

(Wang et al., 2009), which will be released once the environment is changed and the 

PLGA finally degrades. The drug release rate will be affected by the particle size (Jeong et 

al., 2002), degradation rate and the environment it is delivered to (García-Contreras et 

al.; 1997, Menei et al., 1999). 

 

A common technique for NP formulation is the oil in water (o/w) or water in oil in water 

(w/o/w) emulsification-solvent evaporation method, in which emulsions are created with 

polymer solutions prepared in volatile solvents (oil phase) such as dichloromethane, 

chloroform and ethylacetate. An additional water phase containing a surfactant is 

introduced in the system and thus the water miscible polymer solvent starts diffusing 

slowly. Once the limiting concentration for the polymer precipitation is reached, phase 

separation occurs and, while the solvent diffuses through the emulsion phase, finally 

evaporates. This way each emulsion droplet forms a particle (Song et al., 1997). The 

method comprises a fast and a slow evaporation period for the complete removal of the 

solvent (Allemann et al., 1993). During the fast evaporation, 90% of the polymer solvent 

evaporates and the size of the particles decreases, while during the second slow period, 

the dispersed particles increase their size again due to coalescence of droplets. A 

surfactant is used to stabilize the oil-water interface by reducing the interfacial tension 
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between the two phases, and minimizing the adsorption of polymer into it. A high speed 

homogenizer, a probe sonicator (Song et al., 1997) or a high pressure homogenizer (Dong 

and Feng, 2007; Julienne et al., 1992) can be used to further reduce the size of the 

particles by applying high shear stress during the emulsification stage. The o/w emulsion 

is usually used for the entrapment of hydrophobic compounds whereas w/o/w is more 

preferentially used for hydrophilic drug encapsulation. Important parameters to be 

considered are polymer molecular weight, concentration, co-polymer end-groups, 

surfactant nature (Mu and Feng, 2002), phase ratio, solvent nature, shear stress and the 

drug encapsulated (Panyam et al., 2004). Julienne et al. ( 1992) found that an increase of 

the surfactant concentration and the speed or pressure of the homogenizers, reduces 

the particle size. The decrease of the oil/water ratio and organic phase in the mixture, 

also led to a decrease in the particle size. 

 

Another procedure for NP formulation is the emulsification-solvent diffusion method, in 

which the polymer is dissolved in a partially miscible organic solvent. The organic phase is 

mixed with the water phase containing a suitable surfactant, under stirring. The 

formation of particles is obtained by diffusion of the organic solvent and the counter 

diffusion of water into the emulsion droplets (Niwa et al., 1993). It is suggested that NPs 

are formed because of a physicochemical instability produced by solvent transport. The 

mechanism is similar to the one that occurs during the spontaneous emulsification 

processes. In principle, diffusion of solvent from the globules formed during o/w 

emulsification carries molecules into the aqueous phase, creating regions of 

supersaturation from which new globules or polymer aggregates are formed. A stabilizer 

is crucial to avoid particle coalescence and the formation of agglomerates and it remains 

at the liquid-liquid interface during the diffusion process. Then NPs will form after 

complete diffusion of solvent. This method is suitable for hydrophobic active 

components. The hydrophilic ones have a high migration tendency due to the diffusion of 

the polar solvent to the aqueous phase therefore, the encapsulation efficiency is low. 

Parameters that affect the nanoparticle size are PLGA co-polymer ratio (Konan et al., 

2003), polymer concentration (Kwon et al., 2001), solvent nature (Song et al., 2006), 

surfactant and polymer MW (Choi et al., 2002; Kumar et al., 2004b; Kumar et al., 2004a) 

viscosity (Ahlin et al., 2002), stirring rate, solvent nature and the flow of water added 
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(Choi et al., 2003). Niwa et al., (1993) found that addition of acetone into the organic 

phase and a lactic/glycolide ratio of 50:50 decreases the particle size and that 

encapsulation efficiency (EE) of hydrophilic drugs (5-Flouroracil) is increased with water 

miscible solvents but decreases with loading content due to a higher leakage of drug into 

the water phase. The latter is consistent with findings by Govender et al. (1999) who 

used nanoprecipitation method (described earlier) to encapsulate procaine 

hydrochloride, and showed the importance of decreasing drug water solubility and its 

ionization, in the EE. For this, the authors increased the pH of the aqueous phase and 

replaced procaine hydrochloride with procaine dihydrate (base form).  Higher ionization 

of the carboxyl groups of the polymer will also lead to smaller particle size due to higher 

repulsive forces between these groups. Higher EE of Nafarelin acetate was achieved by 

(Niwa et al., 1994) who co-mixed PLGA with low and high MW to improve the ionic 

interactions between the carboxyl groups of the polymer and drug. These results are in 

contrast to Govender et al. who found that addition of PLA or Poly(methyl methacrylate-

co-methacrylic acid) did not significantly improved the EE where the drug might have 

precipitated separately from the PLGA polymer. The presence of fatty acid salts (i.e. 

lauric acid), increased the EE as lipophilicity was increased (Govender et al., 1999). 

 

A third method for NP formation is the dialysis method. This is a precipitation, surfactant 

free, technique based on interfacial deposition of the polymer, following displacement of 

the water miscible polar solvents from a lipophilic solution. It consists of a dialysis tube in 

which the solvent, the polymer and the active component are placed. The organic 

solution is dialyzed against water and particle formation is enhanced while the organic 

phase is exchanged with the aqueous phase. The exact mechanism of nanoparticle 

formation by a dialysis method is not fully understood at present, but it is thought that it 

may be based on a mechanism similar to that of nanoprecipitation proposed by (Fessi et 

al., 1989). This process involves interfacial hydrodynamic phenomena. Diffusion of water 

into the tube results in a spontaneous emulsification of the oily solution in the form of 

nanodroplets due to a decrease in interfacial tension and rapid diffusion. Interfacial 

turbulence or agitation of the interface between the two unequilibrated liquid phases 

involving flow, diffusion and surface processes (the Marangoni effect) leads to the 

formation of nanoparticles (Jeong et al., 2001). Turbulence is prompted when the organic 
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solvent is transferred towards the solution with lower viscosity. To achieve this, steep 

concentration gradients near the interface and an interfacial tension sensitive to the 

solvent’s concentration, also helps. As the water diffuses in the tube, hydrophobic 

interactions between the polymer chains increase due to a decrease in the polymer 

solubility in the organic solvent-water mixture. Also, interfacial tension decreases and the 

hydrophobic polymer migrates towards the o/w interface leading to the formation of a 

nanodroplet and thereafter a nanoparticle. Stabilization of the particles will be solely due 

to the presence of charged groups at the surface of the nanoparticles in the absence of 

the surfactant (Govender et al., 1999). The size will be affected by the miscibility of the 

solvent with the water (Jeon et al., 2000), the ratio between hydrophilic/hydrophobic 

chains (Jeon et al., 2000) and the drug loading efficiency (Kim et al., 1999). Studies on the 

particle formation from PLA polymer, at different concentrations, in various solvents, and 

with or without initial water in the dialysis tube were performed by (Liu et al., 2007). 

These authors found that high concentration of polymer lead to large particle sizes and 

initial addition of water in the tube lead to smaller but more aggregated particles for 

over 60%water content. It was also possible to encapsulate hydrophilic Epirubicin 

hydrochoride drug, which led to a bigger particle size compared to the blank spheres.  

 

Finally, nanoprecipitation is a solvent diffusion or displacement method, adopted for 

both hydrophilic and hydrophobic drugs. The polymer is dissolved in a water miscible 

solvent such as acetone, acetonitrile or ethanol and poured drop-wise on an aqueous 

solution containing a stabilizer (ie polyvinylalcohol, poly-L-lysine, lipid, etc). Slight 

modification of this method by using PEGylated lipids and fast sonication leads to 

formation of lipid-polymer hybrid nanoparticles and it will be referred as the simple 

mixing synthesis method. The solvent diffuses into the water and is eventually removed 

by pressure reduction. Similar to the above methods, the parameters to be considered 

for particle size and encapsulation efficiencies are the polymer/surfactant ratios and the 

type of surfactant and solvent. 
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7.3 Drug delivery to the central nervous system and recent studies 

 
Effective drug delivery to the central nervous system (CNS) is achieved when the drug has 

access to the brain, is stable, its dose is controllable and also it is localized to a specific 

area. Nowadays, drug delivery to the CNS has become a challenging research area due to 

the difficulty that the drug encounters in penetrating the blood-brain barrier (BBB) and 

the spinal cord. The impact of the BBB, shown in Figure 7.3 (left), in the drug therapy of 

CNS has been reviewed by Pardridge (Pardridge, 2003; Pardridge and Boado, 2012; 

Pardridge, 2007). The brain extracellular fluid is separated from the blood by two cellular 

barriers, the brain capillary endothelial cells that form the BBB, and the 

blood-cerebrospinal fluid barrier (BCSFB), which is composed of endothelial cells and 

choroid epithelial cells. In both cases junctions between the epithelial or endothelial cells 

restrict the passive diffusivity of drugs from the blood to the extracellular fluid. Only 

drugs with molecular mass less than 500 Da and high lipophilicity (Kamphorst et al., 

2002) can pass through the BBB via passive diffusion but unfortunately, many types of 

brain diseases such as Alzheimer’s, brain and spinal cord injury, brain cancer, HIV 

infection of the brain, various ataxia-producing disorders, amytrophic lateral sclerosis 

(ALS) etc might be cured only by large molecule drugs. The BCSFB barrier, Figure 7.3 

(right), is slightly more permeable than the BBB but given the large number of capillaries 

and their position close to neuronal cells, studies are concentrated on either increasing 

the transport of the drug through the BBB or circumventing it.  

 
 

 
Figure 7.3 Blood – Brain Barrier and Blood-Cerebral Spinal Fluid Barrier (re-drawn from Zhang and 

Miller, 2005) 
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Drug delivery to the CNS is conventionally achieved 1) via systemic administration 

(intravenous injection for targeted action), 2) directly by introduction into cerebrospinal 

fluid pathways, cerebral arterial circulation or brain substances and 3) by manipulating 

the BBB junctions.  High doses of drugs are often required which can cause significant 

side effects and toxicity. Recently, more novel administration techniques have been 

developed such as direct injection or intracranial implantation of drug loaded 

formulations (conjugates, liposomes, nanoparticles, microparticles, gels) (Fernandez-

Fernandez et al., 2011). Also, drug delivery devices such as pumps or catheters for 

specific targeting into the brain parenchyma to bypass the BBB are in use. However, drug 

diffusivity from the injection or implantation site to the target area, is limited by the 

tissue affinity. 

 

Bobo et al. (1994) introduced convection-enhanced delivery (CED) to the brain. The 

principle feature of this method is the direct, continuous infusion of agents under 

pressure through neurosurgically-placed microcatheters as a means to enhance their 

distribution over a large tissue volume. Bobo et al. found that 24 h post infusion, sucrose 

and transferrin (359 Da and 80 kDa) were well distributed and delivery of higher 

concentrations of drug than could conventionally be achieved was accomplished. CED 

also facilitates highly accurate anatomical targeting and has therefore been widely 

adopted in pre-clinical and clinical trials for treatment of tumours (Sampson et al., 2008; 

White et al., 2012) and Parkinson’s disease (Gill et al., 2003; Lam et al., 2011; Kells et al., 

2010). In this method, the main parameters to be controlled to achieve predictable and 

clinically relevant volumes of drug distribution are the surface charge, the size and the 

tissue affinity (MacKay et al., 2005). The brain tissue is lipophilic and exhibits negative 

charge hence CED is currently limited to anionic, hydrophobic drugs which are effectively 

distributed over large brain tissue volumes. However, some infusates are prone to rapid 

clearance, resulting in a limited therapeutic efficacy.  

 

To overcome these obstacles, nanotechnology was then applied to directly deliver drug 

loaded nanocarriers, such as liposomes or polymer nanoparticles, into the brain through 

CED (Yang, 2010; Patel et al., 2012). MacKay et al. (2005) studied the effect of the size 

and charge of liposomes into their distribution in the brain. The authors used CED to 
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deliver radiolabelled and fluorescent liposomes, and found that positively charged 

liposomes remained at the site of infusion, in contrast to neutral and negatively charged 

liposomes that perfused outwards easily. They also found that liposomes’ systemic 

circulation half life could be increased by PEGylation but liposomes of radius ~100 nm 

undergo retention at the site of infusion. However, PEGylated liposomes can lead to 

activation related pseudoallergy, which can potentially be life-threatening. Grahn and co-

workers  used CED of non-PEGylated liposomal formulations to deliver the anticancer 

drug topotecan and paramagnetic gadodiamide to directly visualize their distribution in 

the brain using Magnetic Resonance Imaging (MRI) (Grahn et al., 2009; Luz et al., 2009). 

These authors found excellent co-convection of these two agents, an increased median 

overall survival of the rats compared to the free topotecan delivery and lack of drug 

toxicity at the clinical doses studied.  

 

PLGA co-polymer drug encapsulation has not yet been optimised for 

convection-enhanced drug delivery to the brain on a nanometric scale. PLGA NPs  could 

potentially be effective drug carriers for CED due to the ease of manipulation of their 

surface charge, size and morphology. Intracranial injection of imatinib mesylate loaded 

PLGA microspheres was performed by Benny et al. (2009). The authors used PLGA 

polymer with different PL/PG ratios and found that drug release can range from weeks to 

months according to the polymer ratio used. This was justified by means of the 

degradation rate each polymer type exhibits. Cirpanli et al. synthesized camptothecin 

loaded PLGA nanoparticles, with a radius of 90 nm, for brain tumour treatment via 

nanoprecipitation method (Cirpanli et al., 2011) and studied the survival time of rats 

treated with each of the formulations post CED. They found that PLGA nanoparticles had 

only 6 %w/w EE and survival time did not increase significantly compared to the 

untreated rats. Sawyer et al. also synthesized camptothecin loaded PLGA nanoparticles, 

with a radius of less than 50 nm, via a single emulsion method and found that EE was 

significantly increased to 26%w/w (Sawyer et al., 2011). The survival time of the rats 

increased 6-50% compared to the drug-free spheres. However, neither of the groups 

analysed volumes of drug distribution in the brain. The inconsistency in the results 

between the two groups can be attributed to the significant difference in the drug 
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loading efficiencies, particle size, particle charge and/or the area of distribution within 

the brain.  

 

In this Chapter the following hypothesis will be tested. Firstly, encapsulation of lipophilic 

and hydrophilic agents in PLGA NPs can facilitate effective CED in the brain by reducing 

the tissue affinity. Secondly, PLGA nanoparticles can promote cellular uptake of the 

encapsulated agent and thirdly, these nanocarriers can prevent drug clearance from the 

brain. However, NP infusion via microcatheters is restricted to a NP radius that has to be 

less than 100 nm to prevent blockage of the microcatheters. As mentioned in Section 7.2, 

particle size and drug encapsulation efficiency vary according to the synthesis method, 

polymer, solvents, drug hydrophilicity and stabilizer. For concomitant optimization of NP 

size and drug EE for in-vivo CED in the brain, o/w, emulsion-solvent diffusion, dialysis, 

nanoprecipitation and simple mixing synthesis methods were adopted, as reported in the 

literature. The effect of ester and acid-ended PLGA polymer and PLGA-PEG in the 

presence of various organic solvents and non-ionic, positively charged and lipid 

stabilizers are also tested. Nile Red (NR) was chosen as a highly lipophilic fluorescent 

model drug and Paclitaxel as clinically used drugs for cancer treatment.  

Trifluoromethylumbelliferone, fluorescein isothiocyanate dextran and Rhodamine B were 

used as hydrophilic fluorescent model drugs whereas 5-Fluororacil and Neprilysin are 

therapeutic agents for brain tumor and Alzheimer’s disease treatment. A detailed 

description of each formulation will be given at the method Section, 7.5, and the NPs will 

be characterized for size, charge, morphology and EE. Their influence on the in-vitro drug 

release profiles, in-vitro cell uptake and in-vivo CED will be then discussed.  

 

All the formulations and the in-vitro particle characterisation experiments were carried 

out and analyzed by me, whereas all the cell studies and the in-vivo experiments in the 

rats brain were carried out and analyzed by Dr. Neil Barua.  
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7.4 Materials  

Poly(DL-lactic-co-glycolic acid) (PLGA) polymer with lactic/glycolide molar ratio of 50:50 

having either ester end groups (RG504, MW:52,600 g/mol) or acid end groups (RG504H, 

MW:59,100 g/mol) were a gift from Boehringher Ingelheim. [N-(carbonyl-

methoxypolyethyleneglycol-2000)-1,2-distearoyl-sn-glycero-3 phosphoethanolamine, 

Sodium Salt] (mPEG 2000–DSPE, Sodium Salt) lipid was a gift from Lipoid. Polyethylene 

glycol (11,300) monomethyl ether amino terminated (NH2-PEG-CH3) was purchased from 

Lancaster Synthesis. Dichloromethane (DCM), acetonitrile (MeCN), dimethylformamide 

(DMF), filter membranes (pore size 0.45-0.8 μm) and centrifuge filter tube (0.7 ml, 

MCOFF:12,000) were purchased from Fisher. Dimethyl sulfoxide (DMSO) was purchased 

from Alfa Aesar and polyvinyl-alcohol (PVA) from MP Biomedicals. Dialysis tubes 

(MWCO:12,000 g/mol), Nile Red (NR), 5-Fluorouracil (5-FU), 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC), N,N-diisopropylethylamine (DIEA), Poly-L-

Lysine hydrobromide (PLL) (MW: 30,000-70,000 g/mol) and Phosphate buffered saline 

tablets, pH 7.4 (PBS)  were purchased from Sigma Aldrich. Rhodamine B and N-

hydroxysuccinimide (NHS) were purchased from Acros Organics and 4-(trifluoromethyl)-

umbelliferone (TFMU) was purchased from Bio Chemicals.  Ultra pure water (resistivity 

18 mΩ) was generated from a Milli-Q water purification unit.  

 

Paclitaxel (LC Laboratories), Neprilysin (110 kDa, R&D Systems), artificial spinal fluid 

(AcSF, refer to Section A5.5, Appendix, for AcSF composition) and fluorescein 

isothiocyanate dextran (FITC-Dextran, 70 kDa and 150 kDa, Sigma Aldrich) were provided 

by Dr. Neil Barua. The cell line was an SNB19 Human glioblastoma and was donated by 

Professor Geoff Pilkington, Department of Neuro-oncology, University of Southampton, 

to Dr. Neil Barua who then conducted all the in-vitro cell studies. The molecular structure 

of the drugs and stabilisers used for the synthesis of NPs are presented in Figures 7.4 and 

7.5. Additional instruments used for NPs synthesis: bath ultrasonicator (Elmer Transonic, 

T310/H, 35 kHz) probe sonicator (Sonics & Materials, VC 600, 20±3 kHz), rotaevaporator 

(R-125, BUCHI, Switzerland), high speed homogenizer (Ultra Turrax IKA T18 basic), freeze 

drier (Mini Lyotrap, LTE Scientific), cell disrupter (one shot cell disruption system-version 

No V4-53-5/97), ultracentrifugator (Beckman L8-7014 Ultracentrifuge). 
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Figure 7.4 Molecular structure of the drugs encapsulated in the PLGA NPs 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5 Molecular structure of stabilizers used for NPs synthesis 
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7.5 Experimental procedures 

 
PLGA NP formulations are summarized in Tables 7.1, 7.2 and 7.3 and a detailed 

description of the synthesizing procedure for each of them will be provided. Incubation 

of in-vitro glioma cell with drug loaded NPs and in-vivo CED of NP into the brain 

parenchyma is also described. 
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Synthesis 

 method 

Polymer Stabilizer Solvent Loaded 

agent 

O/W emulsion-solvent 

evaporation (probe sonicator) 

RG504 

RG504H 
PVA 

DCM 

Acetone 
- 

O/W emulsion-solvent 
evaporation (cell disrupter) 

RG504 

RG504H 
PVA DCM - 

Emulsion-solvent diffusion 

 
RG504 PVA 

DCM 

Acetone 

MeOH 

- 

RG504 

RG504Η 
- 

DMSO 

MeCN 

DMF 

           

           - 

 

RG504 

RG504Η 
- 

DMSO 

MeCN 

DMF 

NR 

TFMU 

RG504 PVA DMSO           - 

RG504 PVA DMSO 
Paclitaxel 

NEP 

Dialysis 

RG504 - DMSO FITC-Dextran 

RG504 

RG504Η 
- 

DMF 

DMSO 
5-FU 

RG504 

RG504Η 
mPEG-DPSE MeCN - 

RG504 

RG504Η 
mPEG-DPSE MeCN TFMU 

Simple mixing 

 

RG504 

 

mPEG-DPSE MeCN 
NR 

Rhd 

Table 7.1 Summary of PLGA NP formulations, using acid (RG504H) and ester-ended (RG504) 

polymer 
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Synthesis  

method 

Polymer Solvent Initial water content in 

the dialysis bag (% v/v)  

Dialysis RG504 DMSO, MeCN, DMF 0 

Dialysis RG504 DMSO, MeCN, DMF 20 

Dialysis RG504 DMSO, MeCN, DMF 80 

Table 7.2 Summary of experimental conditions used to investigate the effect of initial water 
content on PLGA NP size and morphology, using dialysis method 

 

 

 

Synthesis  

method 

Conjugated 

copolymer 

Solvent Loaded agent 

Dialysis PLGA-PEGa DMSO, DMF TFMU 

Nanoprecipitation 

 

PLGA-PEGa DMF TFMU 

Table 7.3 PLGA-PEG NP formulations. a PLGA-PEG was synthesized according to (Cheng et al., 
2007). Stepwise description is provided in Section A5.1, Appendix. 
 

 

7.5.1 Ο/W emulsion-solvent evaporation: Use of probe sonicator 

 
The experimental procedure followed for nanoparticle synthesis was that proposed by 

Song et al. (1996). The effect of the polymer end-group upon the application of shear 

stress, was tested. Briefly, PLGA polymer (RG504 or RG504H) was dissolved in an organic 

mixture of DCM and acetone (8:2 v/v) at a final concentration of 25 mg/ml. Then, 10 ml 

PVA solution (2.5% w/v) were mixed with the organic solution under stirring and 

sonicated for 10 min with a probe sonicator at 13.1 W/cm2 power intensity. The o/w 

emulsion formed was stirred for 20 h and left under reduced pressure for 1 h to ensure 

complete evaporation of the solvents. The particles were collected by 

ultra-centrifugation at 46,000 rpm, washed 3 times with ultra pure water and freeze 

dried. 

  

 

7.5.2 O/W emulsion-solvent evaporation: Use of cell disrupter 

 

High pressure homogenization was employed in the current procedure to prepare PLGA 

nanoparticles as described by (Dong and Feng, 2007). High pressure was provided by a 
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cell disrupter which converts each volume of emulsion exposed to consistent forces 

(turbulence and cavitation) into fine particles having a narrow polydispersity. Briefly, 

PLGA polymer (RG504 or RG504H) was dissolved in DCM (22 mg/ml). Then, 25 ml PVA 

solution (1% w/v) were added into the mixture and a primary o/w emulsion was formed. 

5 ml of emulsion were pressurised by the cell disrupter at 155 MPa three times to form a 

secondary emulsion and left still for 12 h until the DCM evaporated. The particles were 

collected by centrifugation at 11,000 rpm.  

 

 

7.5.3 Emulsion-solvent diffusion 

 

PLGA nanoparticles were synthesized according to the method previously described by 

Niwa et al. (1993). In detail, PLGA (RG504) polymer was dissolved in DCM:Acetone:MeOH 

(1:50:10 v/v) mixture to form the oil phase (3.93 mg/ml). The resultant organic solution 

was emulsified into nanodroplets by addition of 25 ml of aqueous PVA solution 

(2.0% w/v) under mechanical stirring at 17,500 rpm using a high speed homogenizer. The 

organic solvents were removed by continuously stirring the mixture for 12 h, and then 

under reduced pressure using a rotary evaporator for 6 h and a vacuum line for 13 h. The 

big particles were filtered out from the solution using membrane filters, 0.45 and 0.8 μm, 

and the small ones were freeze dried. 

 

 

7.5.4 Dialysis method 

 

A combination of the synthesis methods proposed by Jeon et al. (2000) and Liu et al. 

(2007) was adopted to investigate the influence of solvent nature, polymer end group 

and initial water concentration within the dialysis tubes on the mean size of the 

drug-free particles formed, and their morphology. Briefly, PLGA polymer (RG504 and 

RG504H) was dissolved in an organic solvent (DMSO, DMF or MeCN) under stirring for 

20 min and then amounts of water were added to the mixture, to give a final 

concentration of 0%, 20%, 80% v/v. The concentration of the polymer in the 

solvent/water mixture was kept constant at 2 mg/ml. The dialysis tubes were immersed 
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into 500 ml ultra pure water and left to dialyse at room temperature for 2 days as shown 

from Figure 7.6.  

 

 

 

 
 

Figure 7.6 RG504/DMSO mixture within the dialysis tubes, dialysed against water. Left bottle: 
mixture at the beginning of dialysis (t=0 min). Right bottle: mixture after ~2 days of dialysis 

showing the emulsion formed 

 
 

Hydrophobic and hydrophilic agents used as model or clinically used drugs were then 

encapsulated into the polymer for 0 % initial water content. For Nile red encapsulation, 

PLGA polymer (RG504 or RG504H) was first dissolved in DMSO, MeCN or DMF to a final 

concentration of 2 mg/ml. Nile red from 1 mM stock solution was added to the mixture 

to obtain PLGA:NR=1:2500 w/w, and left under stirring for 30 min. 12.5 ml of the mixture 

was transferred into a dialysis tube and immersed in 500 ml pure water. The TFMU and 

5-FU loaded PLGA and PLGA-PEG nanoparticles were synthesized in same way except 

that polymer:drug ratio was 10:1 w/w. The same procedure was followed for 

encapsulation, with PLGA:Paclitaxel=10:1 w/w. The PVA/DMSO solution was also added 

into the PLGA/DMSO mixture to a final PVA concentration of 0.05 % and 0.1 %w/v, to 

avoid Paclitaxel denature and subsequent polymer precipitation. For Neprilysin loading, 

100-200 μl of stock NEP solution (1 mg/ml in PBS) were added drop-wise into the 

PLGA/DMSO solution to obtain ratios of PLGA:NEP=125:1, 151.5:1 and 250:1 w/w and 

the mixtures were stirred for 3 h. PVA/DMSO solution was also added to a final 

concentration of 0.1 %w/v, to avoid protein denaturation and polymer precipitation. The 

mixtures were continuously stirred for another 2 h. 
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All samples were then left to dialyse (under water stirring) at room temperature. The 

water was changed initially after 2 h and then every 1 h until the organic solvent was 

completely removed. This was further tested by 1H NMR (300 MHz) on dialysing water 

samples. The emulsions formed were collected by ultracentrifugation at 46,000 rpm for 

25 min, washed 3 times to remove any remaining traces of solvent, drug or PVA within 

the dialysis bags and then they were freeze dried. A fine powder of PLGA nanoparticles 

was formed and stored at 277 K. 

 

 
7.5.5 Simple mixing  

 

Hybrid polymer-lipid  nanoparticles from RG504 and RG504H polymer  and mPEG-DSPE 

lipid  were synthesized via simple mixing as described by (Fang et al., 2010). The 

mPEG-DSPE:PLGA ratio was 3:10 w/w and water:MeCN was 10:1 v/v to obtain the 

smallest particle size possible. PLGA serves as a hydrophobic core for encapsulation of 

hydrophobic molecules while mPEG-DSPE provides electrostatic and steric stabilization, a 

longer circulation half life for in-vivo studies and offers functional end-groups for possible 

attachment of hydrophilic molecules or peptides, antibodies, etc onto the NP.  

 

Blank nanospheres were synthesized as follows: 6 ml of mPEG-DSPE solution (1 mg/ml 

aqueous solution) were added drop-wise under stirring into 8 ml PLGA/MeCN solution 

(2.5 mg/ml) and stirred for 20 min. To adjust the aqueous:MeCN solution to 10:1 v/v, 

74 ml more water were then added. The final mixture was bath sonicated for 5 min and 

then probe sonicated for 1 min (power intensity 14.25 W/cm2). MeCN was removed 

under reduced pressure using a rotary evaporator at 225 rpm, for 40 min. The NR and 

Rhd loaded spheres were synthesized following the same procedure except that 

NR/MeCN solution (1 mM) was added into the PLGA/MeCN mixture, or Rhd/water 

solution (1 mM) was added into the lipid aqueous solution, before polymer and lipid 

were mixed. For NR and Rhd model drug encapsulation, the PLGA:drug ratio was 

1:2500 and 1:8333 w/w, respectively. All NPs were collected by centrifugation at 45,000 

rpm for 25 min and washed 3 times to remove any unencapsulated agent and free 

polymer or lipid. The samples were freeze dried and stored at 277 K. 
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7.5.6 Nanoprecipitation  

 

Empty and TFMU loaded PLGA nanoparticles were synthesized via nanoprecipitation 

method in the presence of PVA and PLL stabilizers as proposed by Yallapu et al. (2010).  

The following ratios between the ingredients and phases were selected  to obtain the 

smallest particle size possible, as found by Yallapu at al.: 

PLGA:Acetone:TFMU:PLL=10:1.1:1:1 w/v/w/w, acetone/aqueous solution=0.47:1 v/v. 

Briefly, for drug-free NP formulation, 30 mg PLGA polymer (RG504 or RG504H) were 

dissolved in 3.3 ml acetone and the mixture was added drop-wise into 7 ml of aqueous 

solution containing 1% w/v PVA and 3 mg PLL, under stirring. The system was left 

overnight under continuous stirring for acetone evaporation. TFMU loaded NPs were 

synthesized in the same way, except that 3 mg TFMU were first dissolved in acetone and 

then added into the PLGA solution. 

 

The TFMU loaded PLGA-PEG NPs were synthesized as proposed by Cheng et al. (2007); 

20 mg of PLGA-PEG conjugate were dissolved in 3 ml DMF following 1 ml of TFMU/DMF 

(2 mg/ml) solution. The system was stirred for 45 min and then added drop wise into 

40 ml ultrapure water under continues stirring. It was then left overnight under stirring 

and DMF was further removed under reduced pressure using a rotary evaporator for 1 h. 

All PLGA formulations were firstly centrifuged at 6000 rpm for 10 min, to remove the big 

NPs formed. The small NPs were collected by centrifugation at 45,000 rpm for 20 min 

and washed 3 times. The PLGA-PEG NPs were directly centrifuged/washed at 45,000 rpm. 

The mass of the nanoparticles retained was ~30% of the initial PLGA polymer used. The 

collected samples were freeze dried and stored at 277 K for further use. 

 

 

7.5.7 In-vitro analysis of glioma cell uptake of nanoparticles 

 

These studies were performed and analysed by Dr. Neil Barua. SNB-19 cell cultures were 

used for the study of cellular uptake of PLGA nanospheres by tumour cells. SNB-19 is an 

established glioblastoma (GBM, grade IV) cell line derived from a 47-year old male. Cell 

cultures were grown in modified Eagle’s medium containing antibiotics (penicillin and 

streptomycin) and L-glutamine (InVitrogen, Carlsbad, CA, USA). Cells of passages 15 to 18 
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were grown to confluence then 10,000 cells per well were incubated with 50 μl of 

0.5 mg/ml RG504/NR nanospheres for 2, 24 and 48 h on cover slips at 310 K in a 5 % CO2 

incubator.  The same procedure was followed for RG504/Paclitaxel, PLGA-PEG/TFMU and 

Rhd, NR loaded RG504/mPEG-DSPE NPs for 24 h incubation time. At the pre-determined 

incubation times, cells were washed with PBS, fixed with 2 % paraformaldehyde and 

washed twice with PBS. Fluorescence microscopy was performed with a Leica DM5500 

microscope, (Leica Microsystems, Wetzler, Germany) and digital camera (CX9000 

Microbrightfield, VT, USA). 

 

 

7.5.8 In-vivo CED in the brain parenchyma 

 

All the in-vivo studies were performed in accordance with the University of Bristol animal 

care policies and with the authority of appropriate Home Office licences, by Dr. Neil 

Barua. Adult male Wistar rats (B&K, UK, 225 to 300 g) were anaesthetised with 

intraperitoneal (i.p.) ketamine and medetomidine, and then placed in a stereotactic 

frame (Stoelting, Illinois, USA). All CED procedures were performed using a custom-made 

catheter with an outer diameter of 0.22 mm and inner diameter of 0.15 mm. The cannula 

was attached to a 1 ml syringe (Hamilton, Switzerland) and placed at stereotactic co-

ordinates derived from the Paxinos and Watson stereotactic rat brain atlas (0.75 mm 

anterior and 3 mm lateral to bregma, depth 4.5 mm) in order to target the striatum.  

 

Nile red and RG504/NR NPs were suspended in phosphate buffered solution (PBS) in 

1 mg/ml, 0.5 mg/ml and 0.1 mg/ml concentration. RG504/NR solutions were sonicated 

for 1 h in a Grant Ultrasonic Water Bath prior to delivery (Grant Instruments, Cambridge, 

UK). A total volume of 10 μl of NR or PLGA/NR was delivered into the striatum. All CED 

procedures were performed at 2.5 μl/min infusion rate. On completion of CED the 

cannula remained in situ for 10 min in order to minimise reflux, then it was withdrawn at 

a rate of 1 mm/min. The wound was closed with 4/0 Vicryl, a dose of intramuscular 

buprenorphine was administered (30 μg/kg) and the anaesthetic reversed with 0.1 mg/kg 

i.p. of atipamezole hydrochloride (Pfizer, Kent, UK). Rats were terminated by anaesthetic 
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overdose at either 1 h or 24 h after infusion and brains were removed and placed fresh in 

10% w/v formalin for 24 h, then cryoprotected in 30 %w/v sucrose.  

 

The RG504/FITC-Dextran NPs were infused unilaterally into rat brain at a concentration 

of 1 mg/ml. Rats were terminated at 3 h after withdrawal of the cannula (n=3). The 

brains were explanted following transcardial perfusion fixation. Fluorescence microscopy 

was subsequently performed on 35 μm brain tissue coronal sections using a Leica 

DM5500 microscope and Microbrightfield digital camera to study NR and FITC-Dextran 

distribution.  

 

The volume of distribution was calculated for NR or PLGA/NR only, using NIH Image J 

software by tracing contours around the outer margins of fluorescence on serial sections. 

The RG504/NEP loaded NPs were infused unilaterally into rat brain at a concentration of 

1mg/ml. The rats were euthanized at 0, 1, 2, 3, 4, 5 & 6 h (n=3 per time point). NEP ELISA 

was performed on 200 mg dissected samples of fresh frozen brain tissue from the 

infused hemisphere, and compared to the contralateral non-infused control hemisphere. 

NEP concentration in the infused hemisphere was then compared to the control one. 

 

 

7.6 Nanoparticle characterization methods  

 
7.6.1 Electron microscopy 

 

Scanning electron microscopy (SEM) imaging was used to investigate the structure of the 

PLGA particles (RG504, RG504H) synthesized via o/w emulsion-solvent evaporation. The 

freeze dried samples were placed on an alumina plate and sputter-coated with gold to 

complete the electric circuit required for electron transfer. SEM experiments were 

conducted on a JEOL JSM6480LV system operating at 15 kV (University of Bath, UK). 

Transmission electron miscroscopy (TEM) imaging was used to investigate the structure 

of drug-free PLGA particles (RG504) synthesized via the dialysis method, for 0-80 %v/v 

initial water content in the dialysis tubes. The freeze dried samples were suspended in 

pure water and sonicated for 20 min. A drop of particles’ suspension was placed onto a 

carbon/plastic grid and stained with phosphotungstic acid (0.01% w/v) (PTA) for 2 min.  
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TEM experiments were conducted at room temperature on a JEOL 1200EXII instrument, 

operating at maximum voltage of 120kV (University of Bath, UK). 

 

Scanning transmission electron microscopy (STEM) was used to obtain information about 

the surface and morphological structure of RG504 nanoparticles synthesized via dialysis 

into 100 % DMSO or in a DMSO/PVA mixture, and for RG504/mPEG-DPSE nanoparticles 

synthesized via simple mixing. For this, samples were taken from nanoparticle emulsion 

(prior to freeze drying) as high particle dispersion is required. A drop of particle 

suspension was placed on a carbon grid pre-coated with gold particles. Tomographic 

STEM technique (tomo-TEM) in particular was used to visualize a single RG504 

nanoparticle and investigate the presence of pores within the NP core and surface. This 

was achieved by obtaining xy-plane image slices from the top of the sphere to the 

bottom of the carbon film and by tilting it at different angles. The images obtained were 

reconstructed to produce a movie of the xy-plane slices and a 3D volume texture rotating 

movie. The program used for the image alignment was IMOD, for the 3D reconstruction 

(using the SIRT algorithm) was Inspect3D and for the visualization, Amira. The thickness 

of the particles is calculated from the projected shape of the gold particles. 

RG504/mPEG-DPSE nanoparticles were also visualized to investigate the morphology of 

the NP and the location of mPEG-DSPE lipid in the hybrid NP. For this, a single sphere was 

tilted until 70o angle, however, no 3D or xy-plane reconstructed movie was produced for 

this. The intensity profile from one edge of the particle to the other, reflecting the 

projected mass-thickness of the particle, was produced to study its core/shell density. All 

experiments were conducted on a FEI Titan 80-300 (aberration corrected) STEM at 

Karlsruhe Institute of Technology (KIT), Germany. Dr. Di Wang prepared the sample grids 

and performed the STEM experiments in my presence but reconstructed the images for 

the tomo-TEM in my absence. The imaging results were also interpreted by Dr. Wang and 

Dr. Christian Kuebel. 
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7.6.2 Dynamic and electrophoretic light scattering 

 

The mean hydrodynamic particle size (intensity average) was measured by dynamic light 

scattering (DLS) using a Malvern 4700, nano-s, autosizer. The charge measurements were 

performed with a Zetaplus zeta potential analyser (Brookhaven Instruments). The size 

and charge were measured before and after freeze drying when stated. The freeze dried 

particles were re-suspended in pure water (~0.1% w/v) and sonicated for 30 min prior to 

the size and charge measurements. The refractive index was 1.59 and both the size and 

charge measurements were run in triplicate.  

 

 

7.6.3 Fluorescent and spectrometry techniques 

 

Drug encapsulation efficiencies and their release in different media were measured 

fluorometrically or spectrophotometrically depending on the sensitivity of each 

technique. A detailed description for each sample preparation prior to each 

measurement will now be given. 

 

The encapsulation efficiency of FITC-Dextran loaded nanoparticles was measured 

fluorimetrically by an extraction method described previously by Pistel et al. (2001). 

Briefly, 7.4-10 mg of 70 kDa and 150 kDa loaded NPs were dissolved in 0.5 ml DCM. This 

was followed by the addition of 4 ml of water and stirring for 24 h at room temperature. 

The mixture was then left in a static condition for 2 h. The two immiscible solvents were 

thus separated and the concentration of the water soluble FITC-Dextran in the aqueous 

phase was measured fluorimetrically (excitation: 495 nm, emission: 505 nm, Fluorosens, 

Gilden pλotonics). The calibration curves for FITC-Dextran in ultrapure water are 

presented in Figures A5.4, Appendecis. 

 

NR, TFMU, 5-FU and Rhd encapsulation efficiencies in the nanoparticles were measured 

spectrophotometrically using a UV-vis spectrometer (Agilent 8453). For this, 2.7-4.3 mg 

of NR loaded NPs were dissolved in 1.5 ml DMSO, 1.3-4.7 mg of TFMU loaded NPs were 

dissolved in DMF, or 1.8-3.4 mg 5-FU loaded NPs were dissolved in DMF, and their 

absorbance was measured at 553 nm, 336 nm and 266 nm wavelengths, respectively. 



Chapter 7 

       205 

3.9 mg Rhd loaded NPs were firstly dissolved in DMSO, which was then removed under 

reduced pressure.  The solid mixture (polymer and Rdh) was re-suspended in 2 ml water 

and Rhd absorbance was then measured at 554 nm wavelength.  

 

NR release from RG504/NR NPs (synthesized in DMSO and MeCN) in AcSF was tested 

over 37 days, to investigate whether AcSF can facilitate the mass transport of NR through 

the polymer matrix. The results will be used to interpret partially the in-vivo findings 

performed in the rat brain. For this, 8-12.3 mg of RG504/NR nanoparticles were 

suspended over 0.7 ml AcSF and placed within a centrifuge filter tube (MCOFF:12,000), at 

38°C. The AcSF induced a slight particle aggregation during the course of the release 

studies, implying that the nanoparticles can be charge stabilized and the presence of salts 

in the AcSF solution causes their aggregation. At certain periods of time, the samples 

were centrifuged at 11,000 rpm for 15 min and all the AcSF solution was collected and 

replaced with a new aliquot of AcSF solution. The former was then freeze dried and 2 ml 

DMSO was added to dissolve any possibly released NR. Its concentration was measured 

at 553 nm absorbance wavelength. At the end of the release studies the amount of 

unreleased NR was compared to the encapsulated one by re-freeze drying the NPs and 

dissolving them in DMSO.  

 

TFMU release studies were performed by NP suspension in PBS for 180 h, to mimic the 

extracellular environment of the in-vitro glioma cells incubated with TFMU loaded NPs. 

For this, 8.4-10.6 mg of TFMU loaded NPs (summarized in Table 7.11) were suspended 

over 0.7 ml PBS (pH 7.4) and placed within a centrifuge filter tube (MWCOFF: 12,000). 

The samples were centrifuged at 11,000 rpm for 15 min and all the PBS solution was 

collected and replaced with a new one. The former was then freeze dried and 

re-suspended in 2 ml DMF. TMFU concentration was measured at 336 nm absorbance 

wavelength. The solvent background was removed by performing a ‘blank’ experiment of 

the suspension liquid itself prior to each UV-vis measurement. 

 

The encapsulation efficiency of Paclitaxel within RG504 nanoparticles was measured by 

liquid chromatography coupled with ultraviolet and mass spectrometric detectors 

(LC-UV-MS). The dry NPs were first dissolved in 0.6 ml MeCN and then 0.4 ml water were 
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added. A micrOTOF electrospray time-of-flight (ESI-TOF) mass spectrometer (Bruker 

Daltonik GmbH, Bremen, Germany) was used coupled to an Agilent 1200 LC system 

(Agilent Technologies, Waldbronn, Germany) with C18 column (50x2 mm, 20oC) as an 

autosampler. 10 μl of 5 mM sodium formate were injected before the sample. This acted 

as a calibrant over the mass range 50-1500 m/z. The observed mass and isotope pattern 

perfectly matched the corresponding theoretical values as calculated from the expected 

elemental formula. Paclitaxel concentration was measured at 227 nm absorbance 

wavelength with 30 μl injected sample volume and 0.4 ml/min flow rate. 

 

The theoretical drug loading (TDL), actual drug loading (ADL) and %EE are defined as 

follows:  

TDL = mass of total drug / mass of (total drug + polymer) 

ADL = mass of encapsulated drug / mass of (encapsulated drug + polymer) 

%EE= ADL/TDL x 100 

 

 

7.6.4 Gas sorption studies 

 

Nitrogen and krypton sorption studies were performed using a Micrometric Accelerated 

Surface Area and Porosimetry (ASAP) 2010 apparatus at 77 K. The porous structure of 

RG504 nanoparticles synthesized via dialysis method in DMSO, was investigated. Before 

each analysis, 0.219 g of (the same) dry sample was degassed for 48 h at 298 K to remove 

any physisorbed species from the surface of the nanoparticles. This temperature was 

chosen to prevent thermal transition of the sample (Tg=319-323oC, manufacturer’s 

product specification). Firstly, the BET surface area was measured from N2 sorption, 

SBET (N2). A krypton sorption experiment was then performed due to the low surface area 

of the material. The molecular cross-sectional area, σ, for nitrogen and krypton were 

0.162 nm2 and 0.210 nm2, respectively, assuming closed-packed liquid monolayer 

adsorbed on the surface. The pressure range for the SBET(N2) calculation was 

P/P0=0.037-0.314 and for SBET(Kr), P/P0=0.221-0.301. 
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7.6.5 NMR cryoporometry 

 

NMR cryoporometry was used to measure the pore size distribution (PSD) of the RG504 

nanoparticles, synthesized in DMSO via dialysis, and investigate any possible structural 

change of the particles after 1-4 days of immersion in pure water. The experiments were 

conducted on a 400 MHz Bruker Avance (9.4 T) and 1H NMR was used as previously 

described in Chapter 3.  

 

The sample preparation and cryoporometry experiment was performed as follows: ~7 mg 

of PLGA NPs were placed in a plastic pipette tip and 70 μl of ultrapure water were added. 

This ensures that the NMR tube will not break below 0oC due to water expansion on 

freezing. Both the top and the bottom of the tip were sealed with Parafilm to avoid water 

leakage. The tip was left at room temperature for 1-4 days, before it was placed in a 

5 mm NMR tube between two susceptibility plugs. A nonmagnetic thermocouple 

(provided by Bruker) was used to measure the real temperature within the sample. The 

tube was then placed into the NMR spectrometer and the sample was subjected to 

supercooling, pore melting and finally bulk melting. The system was left to reach thermal 

equilibrium for 12 min at each temperature point and spectra were recorded with 4 

scans. Both values were chosen based on the NMR cryoporometry experiments on C10 

mesoporous silica samples and it was assumed that this time is sufficient for thermal 

equilibrium within the PLGA system. Increase of equilibration time or number of scans 

would increase the experimental time which is limited by the capacity of the liquid 

nitrogen container used for cooling the sample. The same PLGA sample was used for all 

the series of freeze-thaw experiments. It is possible that repetitive freezing cause particle 

aggregation, however, this could not be tested due to the resolution limits of the 

experimental set-up. If particles aggregate, the external surface area is reduced relative 

to the dispersed samples, thereby the rate of their breakdown changes.  
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7.7 Results. Drug free nanoparticles 

7.7.1 Morphology of drug-free particles  

 
Particles formulated via o/w emulsion (using a probe sonicator), dialysis and simple 

mixing methods led to formation of particles with different morphological characteristics 

and sizes. However, the use of a cell disrupter, as an alternative way to induce high shear 

stress instead of using high speed homogenization was not efficient. The volatile solvent, 

DCM, reacted with the rubber O-rings within the cup and contaminated the sample. In 

addition, the emulsion-solvent diffusion method employed, led to large particles. Indeed, 

during filtration, particles synthesized from ester-ended group polymer (RG504), were 

unable to pass through the 0.45 μm pore size membranes, leading to the conclusion that 

most of the particles obtained had a diameter higher than 0.45 μm or they are highly 

aggregated. Despite the fact that particles formed by acid-ended polymer (RG504H) 

could pass through the same size membranes the yield was extremely low. Thus, this 

synthesis procedure was found inefficient to generate particles less than 100 nm. 

 

 
 

   
Figure 7.7 SEM images of PLGA spheres synthesized via o/w emulsion-solvent evaporation (probe 

sonicator) method from a) acid-ended (RG504H) and b) ester-ended (RG504) PLGA polymer 

 
 

Figure 7.7 shows SEM images of the particles formed by acid and ester-ended PLGA 

polymer, via o/w emulsion method. It is seen that the particles synthesized with 

acid-ended PLGA polymer (Figure 7.7a) have variable sizes, with a radius between 50 nm 

to 20 μm. In contrast, ester ended PLGA polymer formed particles with a smaller size 
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(radius=50-100 nm) but they were highly aggregated or they were possibly incompletely 

formed  as seen from Figure 7.7b. 

 
TEM images of ester-ended PLGA nanoparticles (Figure 7.8) synthesized via the dialysis 

method show the effect of solvent and initial water content in the dialysis bag on the 

particle size and structure. Polymer solubility and interaction with each of the organic 

solvents along with solvent miscibility and interaction with dialysing water, influenced 

the thermodynamic and kinetic energy of the system, thus resulting in different sized 

NPs. The presence of initial water content within the dialysis bags favoured formation of 

smaller particles (Figures 7.8 b, d, e, h and k) whose polydispersity changed according to 

fraction of water and solvent used. The size of particles for 0% water content increased 

in order DMSO<MeCN<DMF. For 20-80% initial water content in the bags the systems 

were aggregated when they were synthesized in DMSO or DMF but they were better 

formed, stable NPs when MeCN was used. 
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Figure 7.8 TEM images of PLGA nanoparticles prepared from a) 100% DMSO and 0% H2O, b) 20% 
DMSO and 80% H2O, c) 100% DMF and 0% H2O, d) 80% DMF and 20% H2O, e) 20% DMF and 80% 
H2O, f) and g) 100% MeCN and 0 % H2O, h) 80% MeCN and 20 % H2O, k) 20% MeCN and 80 % H2O 

v/v, and dialyzed against H2O 

 
 
 
The surface roughness and the inner structure of the NPs synthesized from ester-ended 

PLGA polymer in 100% DMSO were studied via tomo-TEM due to the high resolution 

imaging that this technique offers. Two xy-plane slices of a single NP are presented in 

Figure 7.10 showing that densely packed nanoparticles are formed and that PLGA 

0.05 µm 0.05 µm 0.10 µm 

0.10 µm 0.10 µm 
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polymer is homogeneously distributed within the core of the sphere. Figure 7.9 and 

Figure 7.10 show that the NPs exhibit a rough surface or, they have regions with different 

polymer density; however, there is no concrete evidence of internal or surface porosity 

up to the resolution limitations of the instrument. The staining agents, such as uranil 

acetate (1% w/v) (not shown here), did not increase further the imaging contrast (in 

discussion with Dr. Di Wang, KIT, Germany). 

 

 
 

 
Figure 7.9 Snapshot image from a re-constructed 3D volume texture rotating movie of a single 
PLGA NP synthesized via dialysis, from ester-ended PLGA polymer in DMSO, using tomo-TEM.  

 

 

                  Figure 7.10 Snapshot images taken from a re-constructed movie of a single PLGA NP 
synthesized via dialysis, from ester-ended PLGA polymer in DMSO, using tomo-TEM. Each image 

represents a slice (inner structure) of the NP at two different positions, perpendicular to the 
carbon grid 
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Introduction of PVA solution within the dialysis bag, using the same synthesis method 

and ester terminated polymer as all the particles above, also led to formation of spherical 

NPs (Figure 7.11) of a radius ~100 nm as it will be further proved by DLS results. 

 

 
 

 
Figure 7.11 STEM image of a single RG504 nanoparticle synthesized via dialysis in 0.05 %w/v 

PVA/DMSO mixture. The black dots are gold nanoparticles coating the carbon grid 

 
 
 

Simple mixing of RG504 polymer with mPEG-DSPE lipid also resulted in formation of 

spherical nanaparticles, which are shown by the STEM images (Figures 7.12a and b) to 

have a radius of ~100 nm. The intensity profile from one edge of the particle to the other 

(Figure 7.12c) reflects the projected mass-thickness of the particle which is proportional 

to the particle density. The intensity remains ~1400 throughout the particle showing that 

densely packed polymer spheres are formed. The lipid is expected to form a shell around 

the dense polymer core with the hydrophilic head group (PEG) (attached onto the 

phosphate group of the lipid) facing the aqueous phase and the hydrophobic acyl tails of 

the lipid  attached onto the PLGA polymer (Fang et al., 2010). However, a significant 

difference in the intensity profile throughout the particle slice is not seen, possibly due to 

the similar densities of PLGA and mPEG-DSPE chains. A slight only increase is seen 

towards the edges of the particle, which might be attributed to a thin layer of PEG 

formed around the pellet, of 10-20 nm thickness assuming that an extended PEG group 

of MW=2000 mol/g is ~20 nm long 

20 nm 
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Figure 7.12 STEM image at a) 0o and b) 70o tilted angle of a single RG504/mPEG-DPSE 
nanoparticle synthesized by simple mixing and c) intensity profile measured at the region shown 

by the blue rectangle on the sphere 
 
 
 
7.7.2 Size and charge of drug-free nanoparticles 

 

Nanoparticles synthesized via the dialysis method had a small size and a narrow size 

distribution as shown from the TEM images which is necessary for CED. Moreover, these 

particles are stabilized without the presence of stabilizers, which may be toxic for drug 

delivery into the brain, if any residues are left. Hence, the size and the charge of the NPs 

formed via dialysis method are studied in this section in more detail. It was found that 

these NPs exhibited different size and surface charge depending on the polymer 

end-groups, solvent and the initial concentration of water within the dialysis tubes, as 

seen in Figure 7.8 and Table 7.4. For some formulations, the NP size was measured 

before (E) and after freeze drying (FD) to investigate the effect of FD in particle 

agglomeration and the results are given in the Appendix, Table A5.1. For 0% v/v initial 

water content in the dialysis tubes, NPs synthesized from acid end-groups (RG504H) had 

a smaller mean size than the ester ended ones (RG504), as shown in Table 7.4.  The 

former NP size increased in order DMSO>MeCN>DMF whereas the latter increased in the 

inverse order. Size also decreased as the initial concentration of water within the dialysis 

mixture increased from 0-80% v/v as shown from Figure 7.8.   

 

 

20 nm 
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Solubility 

parameter 

difference, 

(MPa
1/2

) 

Interaction 

parameter 

Polymer Solvent Mean particle 

size, 

 r±SD (nm) 

Zeta potential, 

ζ±SD (mV) 

Δδps Δδsw χps χsw 

RG504 DMSO 112.8±2.3 -46.2±1.4 8.64 32.23 0.59 13.20 

RG504 MeCN 107.5±3.4 -43.2±0.6 12.30 36.26 0.36 11.98 

RG504 DMF 116.0±0.8 -5.8±0.8 5.81 31.14 0.38 16.71 

RG504H DMSO 96.7±2.8 -42.9±1.0 8.65 32.23 0.58 13.20 

RG504H MeCN 88.6±10.3 -19.7±0.5 12.31 36.26 0.36 11.98 

RG504H DMF 85.7±1 -17.2±0.4 5.82 31.14 0.38 16.71 

Table 7.4 Comparative analysis of NP size and charge synthesized from ester and acid ended 
PLGA polymer via dialysis, at 0% v/v initial water content. Effect of solubility and interaction 
parameters between polymer-solvent and solvent-water on the particle size and charge  

 

 
To study the influence of the polymer-solvent-water interactions on the NP size, the 

solubility parameter difference Δδ by Hansen’s approach, and the modified Flory-Huggins 

interaction parameter, χ, between polymer-solvent and solvent-water (Δδps, Δδsw, χps, 

χsw) were calculated and displayed in Table 7.4 (Hansen, 2007; Brandrup et al., 2005). 

Following the rule of thumb, the lower the values of these parameters, the better the 

affinity and miscibility between the solvent-water and solvent-polymer systems providing 

ease of solvent diffusion, which thus should result in smaller particles. However, the 

results show that there is no clear relationship between the size of the particles and the 

interaction and solubility parameters. Only for RG504 nanoparticles, χsw appear to 

maintain a correlation with particle size, leading to its decrease in solvent order 

MeCN<DMSO<DMF. Furthermore, comparing RG504 to RG504H, there is insignificant 

difference between their Δδ and χ values.  
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Synthesis 

method 

Nanoparticle 

formulation 

Solvent Mean particle 

size,  

r±SD (nm) 

Zeta potential, 

ζ±SD (mV) 

RG504 (0.05 %PVA) DMSO ~60-90a  
Dialysis 

RG504 (0.1 %PVA) DMSO ~65-80a  

RG504/mPEG-DSPE MeCN 115.8±0.8 -26.5±0.5 
Simple mixing 

RG504H/mPEG-DSPE MeCN 120.9±6.1 -25.2±0.9 

RG504 (PVA, PLL) Acetone 124.9±1.1 -11.9±0.8 Nanopreci- 

pitation 

 
RG504H (PVA, PLL) Acetone 134.1±1.9 -4.1±0.3 

Table 7.5 NP size and charge synthesized by simple mixing (MeCN) and nanoprecipitation 
(Acetone) in the presence of lipid or PVA/PLL mixture, respectively. a: size of NPs as visualized via 
TEM  

 
 
 
The size of PLGA nanoparticles decreased when initial water content within the dialysis 

tube was increased, however, less compact (Figures 7.8d and g) or less uniform (Figures 

7.8d, e and h) particles were formed with respect to size and shape depending on the 

solvent. The zeta potential of the NPs increased in solvent order, DMF<MeCN<DMSO for 

both types of polymers. This proves that the molecular arrangement of the polymeric 

chains differs according to the solvent nature. Introduction of PVA surfactant within the 

dialysis bag resulted in formation of smaller particles which decreased in size as PVA 

concentration increased to 0.1%. This means that PVA prevented aggregation of smaller 

particles initially formed, by decreasing the surface tension between the solvent and 

water, or by steric stabilization from adsorbed PVA polymer chains. The presence of lipid 

and PVA and poly-L-lysine (PLL) composites as a mean to stabilise and provide hydrophilic 

functional groups on the surface of the NPs also resulted in negatively charged 

nanoparticles (Table 7.5). Hydrophilic poly-L-lysine decreased the surface charge of NPs 

and also led to slightly bigger size particles. 

 
 
7.7.3 Nitrogen and krypton sorption studies for pore characterization of nanoparticles 

 

Gas sorption studies for determination of pore size distribution and specific surface area 

(SBET) of polymer microparticles and nanoparticles were reported in the past (Sant et al., 
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2005; Sant et al., 2007; Buske et al., 2012). These authors studied the drug release 

behaviour from different formulations of PEGylated PLA and PLGA particles and 

correlated it to the differences obtained in the surface area of the particles and their size. 

It is thus expected that controlled drug release can be achieved by manipulating the void 

space characteristics of the particles.  

 

The SBET and the BET constant measurements for nitrogen and krypton adsorption are 

presented in Table 7.6. The results are compared to the total external surface area of all 

the NPs in the sample, calculated geometrically, assuming that they are monodisperse 

and spherical, with an average radius of ~100 nm, as found by DLS and TEM, and polymer 

density 1.414 g/cm3.  As shown from Table 7.6, SBET (N2) is within the experimental error 

of the surface area estimated geometrically. This means that all the N2 molecules were 

adsorbed on the external surface of the NPs. Comparing the SBET(N2) with the SBET(Kr), it is 

seen that the latter is underestimated. This suggests that the packing of the molecules in 

the liquid monolayer is looser than the one assumed for close-packed liquid monolayer, 

with σ(0.21nm2) (Karnaukhov, 1985). This is because the interaction of the krypton 

molecules with the PLGA polymer might be different to that found for silicon oxide 

surfaces. As discussed in Chapter 1 the cross-sectional area is affected by the nature of 

the adsorbant. The SBET(N2) and SBET(Kr) become equal by correcting the cross-sectional 

area of krypton with σ(0.345nm2). The low BET constant for both gases suggests a low 

energy of adsorption on the polymer, thus weak interactions between adsorbate and 

adsorbent. The adsorption isotherms for nitrogen and krypton are presented in the 

Appendix, Figures A5.2 and A5.3. 

 

 

Adsorbate C SBET  ± error 

(m
2
/g) 

Total geometrical surface 

area of all NPs in the sample 

(m
2
/g) 

N2, σ(0.165 nm2) 20.54 20.57±0.20 

Kr, σ(0.21 nm2) 

      Kr, σ(0.345 nm2) 

 

4.06 

 

12.44±0.40 

     20.44±0.65 

 

21.22 

Table 7.6 BET constant and surface area values estimated from gas adsorption and geometrically  
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7.7.4 NMR cryoporometry studies for pore characterization of nanoparticles 

 

NMR cryoporometry technique was used to investigate the presence of pores within the 

PLGA NPs via freeze-melting the water imbibed within the sample. Its advantage relies on 

the fact that the sample does not require high temperature pre-treatment. The random 

distribution of polymer chains within the particle can lead to the creation of void spaces - 

pores - that will be filled with water once immersed in aqueous solution. Any changes in 

the structural organization of those chains, thus pores, over time of immersion in water 

will be detected as a change in the melting temperature and fraction of molten phase 

since they are relative to the pore size and pore volume, respectively via Gibbs-Thomson 

equation 2.19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.13 NMR cryoporometry melting curves of water in the PLGA NPs after 2 and 4 days of 

immersion in water. The molten fraction is normalized to the total volume of water melting at 

272.8 K after 2 days of immersion in water 
 

 

 
For both periods of immersion time in water, melting starts at 241 K. It is seen that after 

2 days in water, melting occurs at the temperature range of 241-262 K, and then flattens, 

whereas after 4 days, water melts continuously at the temperature range of 241-273 K. It 
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is also observed that the volume of molten water at 273 K which would correspond to 

the total water within the voids, increased after 4 days in water. Above 255 K this 

increase is gradual and continues until the bulk melting (273 K). 

 

 

7.8 Discussion. Drug free nanoparticles 
 

7.8.1 Effect of synthesis method on particle size and morphology  

 

The purpose of utilizing different techniques for NPs synthesis was to investigate which 

of these synthesis methods provides the optimal particles for drug delivery into the brain 

via CED. Specifically the aim was the synthesis of negatively charged particles with a 

radius of less than 100 nm. For this, blank spheres were synthesized following o/w 

emulsion-solvent evaporation (probe sonicator and cell disrupter), emulsion-solvent 

diffusion, dialysis, simple mixing and nanoprecipitation techniques. Each formulation was 

prepared by adopting the optimum combination and concentrations of polymers, 

stabilisers and solvents as previously reported in the literature that would lead to the 

desired particle size. Further to this, the effect of different polymer end groups on 

particle morphology was also tested. 

 

 It was found that particles formed via the o/w emulsion-solvent evaporation method, 

using an ultrasound probe sonicator as a high energy source for solvent-nonsolvent 

homogenization, were either not well formed (ester-ended polymer) or polydisperse 

(acid-ended polymer) (Figure 7.5). The use of PVA stabilizer, did not prevent particle 

collisions and coalescence, nor reduced the interfacial tension between the diffusing 

liquids. Also, addition of water soluble acetone in the primary mixture inadequately 

increased DCM water miscibility to promote its diffusion through the aqueous phase. 

Therefore, polymer precipitation and thereafter, phase separation of water-solvent 

mixture led to aggregated systems. The results are consistent with Song et al. (2006) and 

Kwon et al. (2001) who found that aggregated particles are formed when water 

immiscible (such as DCM) or completely miscible solvents are used during particle 

formation. Particle size might have decreased if the sonication time was higher, as 

proposed by Feczkó et al. (2011). Acid-ended PLGA polymer (RG504H) precipitation led 
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to more polydisperse systems compared to ester-ended PLGA polymer (RG504). The 

slightly more hydrophilic RG504H is better dispersed into the aqueous phase, resulting in 

slower precipitation than RG504. It must also be noted that the local pressure within a 

liquid changes over time and place when ultrasonic waves propagate through the liquid 

(Riesz et al., 1985). A cavitation bubble present in the liquid will expand and contract in 

response to these pressure changes generating free radicals (ie .H, .OH, .Cl) produced 

from water, DCM, MeOH and acetone involved in NP synthesis. Moreover, radicals might 

be produced from the polymers depending on the bond dissociation energy and, 

reactions can occur within a collapsing bubble involving all free radicals. Therefore, it 

would be expected that carboxyl groups of RG504H polymer would provide an .H easier 

than ester-ended RG504 polymer, thus offering free sites for interaction with the other 

radicals. Alternatively, it could be that an acid ended polymer due to higher 

amphiphilicity than the ester ended polymer, is located around the edges of the bubbles 

rather than in the hydrophobic droplets-being at the interface it is more susceptible to be 

attacked by radicals in the aqueous phase. These random polymer-solvent-radicals 

interactions will influence their thermodynamic and kinetic state, hence leading to more 

polydisperse particle sizes, compared to the more stable ester-ended PLGA polymer. 

 

The o/w emulsion-solvent evaporation method, using a cell disrupter to induce shear 

stress, as an alternative to the high pressure homogenizer proposed by Dong and Feng 

(2007) was not efficient as seen in the experimental Section 7.5.2. Even though the 

pressure applied was the same for both types of equipment, the cell disrupter contains 

rubber parts that react with DCM, thus restricting NP formation into a particular type of 

device or requires the choice of other solvents, non-reactive with rubber. 

 

Samples synthesized via emulsion-solvent diffusion technique also led to formation of 

large particles (>225 nm). These results are inconsistent with literature (Niwa et al., 1993; 

Kwon et al., 2001) implying that this method is not highly repeatable. Parameters that 

could have increased the particle size were the long time required for complete solvent 

evaporation (~40 h) compared to Niwa et al. (~4 h) or the lower molecular weight of 

PLGA employed here.  
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Simple mixing of PLGA polymer (RG504) with mPEG-DSPE lipid also led to spherical 

nanoparticles (Figure 7.10) with a radius ~115 nm whereas acid-ended polymer (RG504H) 

led to slightly bigger NPs (Table 7.5). This could be attributed to competitive interaction 

forces between the carboxylic end groups of the PLGA and the lipid during particle 

formation that resulted in less adsorption of lipid on the shell, hence slightly less 

stabilized NPs. However, Fang et al. (2010) obtained particle sizes of less than 80 nm for 

the same polymer/lipid/solvent ratios. Nevertheless, hybrid PLGA NPs synthesized via 

this method can be used as potential hydrophobic and hydrophilic drug carriers due to 

their hydrophobic core and hydrophilic shell.  

 

Nanoprecipitation of PLGA polymer in the presence of PVA and PLL stabilizers generated 

bigger NPs than simple mixing. PLL chains are attached on the surface of the particles 

with the hydrophilic amine groups facing the aqueous phase. Again acid-ended polymer 

led to bigger particles and this is explained by means of additional electrostatic 

interactions between negatively charged carboxyl groups of the polymer and the 

positively charged amine groups of the PLL. Less negative charge on the particles, by 

neutralising some of them by the PLL, prevent their fusing. 

 

Nanoparticles synthesized via dialysis method were spherical and had a mean radius of 

~100 nm. RG504 polymer formed smaller NPs in the most polar solvents (MeCN, DMSO) 

and bigger for the less polar DMF. The results are consistent with those found by Jeong 

et al. (2001) and Nah et al. (2000). The inverse behaviour occurs for the RG504H NPs. 

Mora-Huertas et al. (2011) gave a critical review of the approaches proposed to explain 

emulsification following solvent displacement. The authors concluded that the size of the 

particles is controlled simultaneously by the interfacial tension differences between the 

solvent/nonsolvent and the energetically more favourable (spontaneous) nucleation of 

the polymer molecules forming small particles. Solubility and/or interaction of the 

polymer with the solvent and nonsolvent do not govern the particle size. These findings 

are consistent with those presented in Table 7.4. Moreover, the size of the PLGA 

nanoparticles decreased when the initial water content within the dialysis tube was 

increased. This is consistent with Liu et al. (2007), who studied the effect of initial water 

content on PLA particle formation in DMF. The authors attributed this to the different 
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conformations of the polymer chains in various water/solvent mixtures and the slow 

speed of dialysis at high water contents. However, these authors found that for 80% v/v 

initial water content, polydispersity decreased and particles formed were more uniform 

than 0% water content. As seen from Figure 6.6e, the particles formed from 80 % v/v 

water content in DMF, were not uniform and possibly there were polymer chains that did 

not result in particle formation at all. This could be due to the different polymer (hence 

hydrophilicity) used in our studies. PLGA polymer contains glycolide chains which will 

favour hydrophilic interactions with water compared to the highly hydrophobic PLA. Liu 

et al. proposed the following stepwise mechanism for nanoparticle formation: 1) 

aggregation of the polymer, 2) formation of particles and their disruption while water 

diffuses into the dialysis tubes and 3) solidification of the particles; PLGA chains turn 

from dispersed to compressed solid state. During the first step, aggregates start to form 

at the inner surface of the dialysis membranes once the water diffuses within the tube. 

During the second step, a supersaturated layer is created, while the water displaces the 

solvent and primary particles are formed (Errico et al., 2009). Collisions due to Brownian 

motions result in the aggregation of the primary particles and the formation of secondary 

particles having a bigger size (Molina-Bolivar and Ortega-Vinuesa, 1999; Privman et al., 

1999). As the water further penetrates into the membrane, stabilization of particles is 

obtained (step 3). Two factors are responsible for that effect, surface charge and 

hydration.  

 

It is thus possible that solvent miscibility with water will initially play the key role on the 

speed of water diffusivity within the tubes, affecting the aggregates’ size; migration of 

water into DMSO and MeCN will be faster compared to DMF. Thereafter, concurrent 

hydrophobic and repulsive forces, between polymer chains and polymer-water, 

respectively, will control the primary particle size. The exact lactic/glycolide ratio would 

strongly impact on their size. Finally, distribution and amount of charged groups on the 

particle surface will facilitate interparticle repulsive or attractive electrostatic 

interactions, resulting in smaller and more defined NPs or bigger and more aggregated 

NPs. For 0% initial water content, the dialysis speed is fast due to the big difference in 

osmotic pressure and large droplets were formed. When initial water content is higher 

than 20%, smaller nanoparticles are formed but they are less uniform for DMSO and 
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MeCN as seen from Figures 7.8b,e and h. In this case, both aggregation and formation of 

the particles seem to happen simultaneously. The initial addition of water into the 

solvent provides a lower energy path for hydrophobic interactions between the polymer 

chains and their polar heads are exposed onto the surface of the particles. As DMF is the 

less water miscible solvent, hydrophobic interactions will be delayed and it will require 

further water penetrating into the tubes for complete particle formation. This could be 

the reason that particles at 80% initial water content, shown in Figure 7.8e, were less 

uniform compared to the “abruptly” formed DMSO and MeCN ones for the same water 

content. In general samples prepared in the presence of initial water had some 

amorphous structures formed (Figure 7.8e and k). These can be polymer chains that did 

not result in particle formation due to non-efficient decrease of interfacial tension in 

certain areas of the tube. Another explanation would be that these were pieces of 

particles which were destroyed during sonication prior to TEM imaging. 

 

 Even though the advantage of dialysis method is the ability to form monodisperse 

nanoparticles without a stabilizer, the presence of Paclitaxel and Neprilysin drugs led to 

polymer agglomeration. This can be caused if Paclitaxel and Neprilysin break down 

during water penetration into the dialysis tubes, thus creating charged groups which 

interact with the charged polymer via electrostatic forces, and cause polymer 

agglomerates/precipitates before particle formation. The addition of PVA possibly 

stabilized the particles by coating them. Zhang and Feng (2006) synthesized Paclitaxel 

loaded NPs via dialysis but no reference to drug denaturation was given. Drug free 

nanoparticles prepared in the presence of PVA stabilizer, were spherical (Figure 7.11) 

with less than 90 nm radius (Table 7.5). They are smaller than surfactant free NPs (Table 

7.4) implying that PVA decreased polymer-solvent interactions and increased diffusivity 

of the organic solvent into the aqueous phase. Indeed, PVA acted as a stabilizer similarly 

to w/o emulsion-diffusion or evaporation synthesis techniques where an 

emulsifier/stabilizer is required to prevent particle aggregation. An increase in the PVA 

concentration up to 0.1% led to even smaller particles which is consistent with other 

studies (Feng and Huang, 2001; Feczkó et al., 2011). 
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Summarizing, it was found that dialysis method leads to formation of small particles, as 

compared to the other methods, therefore it seems a promising method for CED studies.  

For this reason, it will be studied in more detail in the following sections for 

encapsulation of hydrophobic and hydrophilic drugs. However, as the presence of drugs 

can influence the size of the particles, but at the same time the synthesis method has a 

great effect on the drug encapsulation efficiency, the other formulation techniques will 

be also adopted but in less extent.  

 

 

7.8.2 Charge of nanoparticles 

 

The NPs used for CED studies must have a high negative charge to ensure particle 

stability and allow high volumes of distribution in the brain. As the charge of the cell 

membrane is negative, formulation of positively charged particles would result in the 

distribution of particles only at the site of injection. Moreover, if the particles are not 

stable, for example they have a low charge, they will agglomerate/precipitate easily.  

 

All formulations synthesized via simple mixing, nanoprecipitation and dialysis resulted in 

negatively charged NPs. During particle formation the more hydrophilic (negatively 

charged) carboxyl groups of the polymer are predominantly facing the water-polymer 

interface during water migration into the polymer-solvent mixture. This explains why in 

the dialysis method, the highest hydrophilic solvent, DMSO (dielectric constant: 46.7, 

298 K (anone)) resulted in higher negatively charged NPs compared to DMF (dielectric 

constant: 32.7, 298 K (anone)). Surprisingly, the acid-ended polymer resulted mainly in 

lower charge compared to the ester-ended polymer (Table 7.4). This suggests that there 

are additional to the electrostatic solvent behaviour factors accounting for the surface 

charge of the NPs. For example it could be the lactic/glycolide monomer ratio present in 

each polymer, affecting the number of the hydrophobic/hydrophilic groups respectively. 

Even though, both polymers have a 50:50 monomers ratio (company specification) the 

real value might differ, depending on the batch co-polymerization efficacy. Nanoparticles 

synthesized via simple mixing exhibit less negative charge compared to dialysis when 

PLGA polymer is dissolved in MeCN (Table 7.5). This is because the carboxyl groups of the 



Chapter 7 

224 

PLGA polymer are shielded by the mPEG-DSPE lipid.  RG504 and RG504H nanoparticles 

have similar charge (within the error range) suggesting that similar amount of lipid was 

required to stabilize and coat the different polymers. Nanoprecipitation, led to much 

lower negative charge and this is due to the positively charged PLL, coating the PLGA 

core. Less PLL was required to stabilize the ester-ended NPs compared to the acid-ended 

ones (Yallapu et al., 2010).  

 

To sum up, NPs formed via the aforementioned methods were all negatively charged, 

however, the charge decreased in the presence of stabilizers, especially when positively 

charged ones were used.  

 

 

7.8.3 Pore characterization of nanoparticles synthesized via dialysis method 

 

Regarding, the morphological and pore characterization of the NPs synthesized from 

ester-ended PLGA polymer dissolved in DMSO via dialysis, nitrogen and krypton sorption 

studies provide evidence that all the gas molecules were adsorbed on the external 

surface of the NPs.  There are three possible reasons for this 1) there exist no pores 

within the NPs, 2) there are weak interactions between the gas molecule and the 

polymer chains, preventing multilayer adsorption, or 3) NPs consist of a porous core but 

a nonporous shell, hence gas molecules will only be adsorbed on the NP outer surface or 

within the interparticle voids created from particle agglomeration after freeze-drying. 

Tomo-TEM experiments of the same formulation prove that NPs are spherical and have a 

rough external surface. However, there exists no evidence of pores in the core, down to 

the resolution limits (4 nm) of this imaging technique. The porous structure of PLGA 

particles is created when internal water droplets evaporate after drying leaving behind 

void spaces. If NP solidification during synthesis is rapid or/and the polymer walls 

collapse after drying, it is possible that these pores will not be accessible to water when 

re-dispersed in aqueous phase due to the high hydrophobic nature of the polymer (Yang 

et al., 2000). Moreover, Messaritaki et al. (2005) found that freeze drying decreases the 

number of core pores, restricting water penetration. Other authors conducted nitrogen 

and krypton sorption studies to characterize the porous structure of PLGA nanoparticles  
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synthesized via emulsion solvent evaporation or double emulsion techniques (Wu et al., 

2012; Wang et al., 2010; Sant et al., 2008; Buske et al., 2012; Sant et al., 2005). These 

authors though, ignored the possibility of gas condensation within the interparticle space 

despite the fact that their observed specific pore volumes were small or the pore size 

distribution was contradicting the DLS particle size measurements and the imaging 

results. 

 

NMR cryoporometry melting curves (Figure 7.14) show an increase in the total volume of 

water melting before the bulk, after 4 days of immersion in water. This could be 

interpreted as an increase in the amount of water diffusing within the polymer matrix. 

However, the signal-to-noise-ratio of the NMR spectra for the low temperature range 

(241-258 K) was low (~9). At higher temperatures and after 4 days, water melts close to 

the bulk melting. Applying the Gibbs-Thompson equation to both melting curves using 

kGT =26 nmK (Perkins et al., 2010), the size of the ice crystals melting at 241-262 K and 

241-272.9 K would correspond to void spaces of 0.9-2.36 nm and 0.9-260 nm 

respectively. However, pores over 4 nm were not observed in the tomo-TEM imaging 

technique.  

 

Therefore, it is not certain whether water melting at low temperatures can be attributed 

to the presence of small pores and necks ~0.9 nm not visible in the TEM or tomo-TEM 

imaging. At higher temperatures, there will possibly be interparticle water melting 

instead of water within big pores. Particles after freeze drying become aggregated 

(Figure 7.8a) thus forming void spaces of diameter at least of 1/6 of the particle size 

(200/6=33 nm); these will freeze and melt (at 272.22 K) similarly to big pores. The 

increase in volume fraction of molten water is explained as redistribution of NPs within 

the aqueous suspension, due to interaction of surface polymer groups with water. 

Alternatively, it can be due to structural change of NPs themselves after repeated freeze-

thaw cycles (Allen et al., 1998). It must be noted that these results were not reproducible 

for other samples synthesized via the same method where only insignificant NMR signal 

(with respect to S/N ratio) was observed below 273 K. Petrov et al. (2006)  also used 

NMR cryporometry to investigate pore size distribution of PLGA microparticles in 

aqueous environment after 1-4 days. These authors though, used different samples to 
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study the hydration levels of the polymer matrix for each period of time neglecting the 

intra-batch variability effect and NP aggregation levels. Moreover, optimization of the 

NMR receiver gain (RG) parameter, will differ according to the total amount of water 

present in the NMR tube, leading to false interpretation of molten fractions (thus pore 

volumes) at each temperature, if precise calibration of signal intensity had not been 

done. 

 

Summing up, a combination of pore characterization techniques such as TEM and 

tomo-TEM imaging, nitrogen and krypton sorption and NMR cryoporometry, were used 

to investigate the morphological and intraparticle structural organization of PLGA NPs 

synthesized via dialysis method. The external surface of the NPs was rough, but there 

was no concrete evidence of pores present within these NPs up to the resolution limits of 

each technique adopted.  

 

 

7.9 Results. Drug loaded nanoparticles 

 
7.9.1 Size and surface charge of nanoparticles 

 

In Section 7.7 it was shown that dialysis, simple mixing and nanoprecipitation methods 

gave promising results for creating NPs of the desired shape, size and charge for 

convection-enhanced drug delivery into the brain. Therefore these methods were further 

used to synthesize drug loaded NPs with an aim to optimize their size, charge and 

encapsulation efficiency for CED studies. Hydrophobic (NR) and hydrophilic (TFMU, Rhd, 

FITC-Dextran) model drugs, and clinically used hydrophobic (Paclitaxel) and hydrophilic 

(5-FU, NEP) drugs were loaded into the NPs. 

 

The ester-ended NR loaded nanoparticles synthesized via the dialysis method, increase in 

size and negative charge in the order DMSO<MeCN<DMF (Table 7.7). NR loaded NPs 

formulated in DMSO and MeCN decrease in size and charge compared to the drug-free 

NPs (Table 7.4), whereas NPs formed in DMF increase in size and charge. Although the 

zeta potential is not a direct measure of the surface charge density it self, it changes 

when the surface charge changes. Any added species, such as NR, change the surface 
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chemistry and thus will cause some change on the zeta potential. The acid-ended NR 

loaded particles increase in size in order MeCN<DMSO<DMF but their charge increases in 

the inverse order. This shows that the charge is controlled primarily by the 

solvent-polymer-NR interactions during particle formation and the subsequent 

arrangement of carboxylic groups within the NP core.  Also, both the size and the charge 

of RG504H NPs increased after NR encapsulation. When Paclitaxel was present in the NP 

synthesis, the size also increased proving that Paclitaxel allows the particles to fuse more 

readily, instead of stabilizing small particles. Increasing the PVA concentration, the size 

decreased, indicating that PVA stabilized the interface between the particles and 

droplets better, preventing their fusion and as such formation of larger particles. Nile 

Red encapsulation on the RG504/mPEG-DSPE NPs increased their size and charge too 

(Tables 7.7 and 7.8). 

 

 

Synthesis 

method 

Nanoparticle 

formulation 
Solvent 

Loaded 

agent 

Mean particle 

size, 

r±SD (nm) 

Zeta 

potential, 

ζ±SD(mV) 

RG504 DMSO NR 98.15±2.1 -30.4±0.7 

RG504 MeCN NR 109.9±4.9 -34.7±1.0 

RG504 DMF NR 147.1±0.8 -40.1±2.7 

RG504H DMSO NR 99.66±2.4 -40.2±1.2 

RG504H MeCN NR 93. 90±4.1 -47.4±2.1 

RG504H DMF NR 115.0±0.7 -35.3±0.7 

RG504  

(0.05 % PVA) 
DMSO Paclitaxel 133.7±0.02  

 

 

 

 

 

 

Dialysis 

 

RG504  

(0.1 % PVA) 
DMSO Paclitaxel 129.9±1.8  

Simple mixing RG504  

/mPEG-DSPE 
MeCN NR 137.9±1.0 -64.9±1.2 

Table 7.7 Mean (hydrodynamic) radius and zeta potential of NPs  loaded with hydrophobic 
agents  
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Synthesis 

method 

Nanoparticle 

formulation 
Solvent 

Loaded 

agent 

Mean particle 

size, 

r±SD(nm) 

Zeta 

potential, 

ζ ±SD(mV) 

RG504 DMSO TFMU 179.9±4.1  

RG504 MeCN TFMU 167.1±7.4  

RG504 DMF TFMU 104.5±1.7  

RG504H DMSO TFMU 135.7±19.5 -28.4±0.8 

RG504H MeCN TFMU 247.5±9.5 -57.6±0.7 

RG504H DMF TFMU 167.2±3.8  

PLGA-PEG DMSO TFMU 159.6±3.3 -48.9±1.4 

PLGA-PEG DMF TFMU 152.7±5.9 -36.5±0.7 

RG504 DMSO 
FITC-Dextran 

(70 kDa) 
108.2±15.0  

RG504 DMSO 
FITC-Dextran 

(150kDa) 
104.1±3.4  

RG504 DMSO 5-FU 105.5±17.8  

RG504 DMF 5-FU 118.8±3.4  

RG504H DMSO 5-FU 108±5.2  

RG504H DMF 5-FU 102.1±3.5  

RG504 DMSO NEP (125:1)a 145.5±1.3  

RG504 DMSO NEP (151.5:1)a 157.7±3.9  

 

 

 

 

 

 

 

 

 

 

 

   Dialysis 

RG504 DMSO NEP (251:1)a 119.9±1.8  

Table 7.8 Mean size and zeta potential of NPs loaded with hydrophilic agents as synthesized via 
dialysis method. a: refers to PLGA:NEP ratio 
 
 

Encapsulation of hydrophilic drugs into PLGA nanoparticles, as synthesized via dialysis, 

generally increased the particle size (TFMU, NEP) or they influenced it slightly (5-FU, 

FITC-Dextran) as shown in Table 7.8.  Again, the particle size is highly dependant on the 

solvent, the polymer end group and the MW of the drug. There is no specific trend of the 

solvent behaviour when comparing ester and acid ended polymers, although it obvious 

that the size of PLGA particles is smaller for small MW molecules such as 5-FU (MW: 130 

g/mol) compared to high MW proteins such as NEP (110 kDa). TFMU loaded 

nanoparticles formed from conjugated PLGA-PEG polymer had similar sizes in DMF and 
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DMSO, showing the insignificant effect of solvent nature on the NP size. All types of 

formulations led to negatively charged NPs and its value was following the trend of 

particle size. 

 

Encapsulation of hydrophilic molecules via simple mixing increased the size of NPs as 

seen form Table 7.9. TFMU decreased only slightly the negative charge of the NPs which 

is expected if the molecules are adsorbed on the surface of the NPs. Rhodamine B loaded 

NPs despite their smaller size (~129.3 nm) compared to the TFMU loaded ones 

(~157-198 nm), exhibit higher negative charge (~-50.3 mV). Rhodamine B is a positively 

charged molecule and it would be expected to be adsorbed on the lipid shell by 

hydrophilic interactions with the PEG groups, thus reducing the total surface charge, 

compared to the drug free nanoparticles (~-26 mV). Also, if the electrostatic interactions 

were stronger and Rhd was attached onto the carboxyl groups of the PLGA or the 

methoxy and phosphate part or of the lipid, their negative charges would be cancelled 

out.  

 

 

Synthesis 

method 

Nanoparticle 

formulation 

Solvent Loaded 

agent 

Mean particle 

size, 

r (nm) ± SD 

Zeta 

potential, 

ζ (mV) ± SD 

RG504 

/mPEG-DSPE 
MeCN TFMU 157.5±5.2 -23.45±0.5 

RG504H 

/mPEG-DSPE 
MeCN TFMU 198.1±7.8 -23.94±0.6 

 

 

Simple 

mixing 

RG504 /mPEG-

DSPE 
MeCN Rhd 129.3±3.8 -50.29±1.1 

RG504 

(PVA, PLL) 
Acetone TFMU 86.39±2.2 -6.16±0.3 

RG504H 

(PVA, PLL) 
Acetone TFMU 106.3±8.8 +1.96±0.5 

 

 

Nanopreci-

pitation 

 
PLGA-PEGa DMF TFMU 82-268 +35±0.9 

Table 7.9 Mean size and charge of NPs  loaded with hydrophilic agents as synthesized via simple 
mixing and nanoprecipitation methods. Bold font is used to emphasize (the only) positively 
charged NPs formulated. a: there was no PVA or PLL used for this formulation 
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The use of PVA and PLL stabilizers during nanoprecipitation decreased the surface charge 

with the RG504H and PLGA-PEG polymer particles exhibiting positive charge. PLL is a 

positively charged amino acid polymer whereas PVA is non-ionic polymer. An increase 

towards positively charged surface means that there is a thick PLL shell covering the 

RG504H core. Moreover, there was more PLL polymer required to stabilize the 

acid-ended PLGA compared to the ester-ended one (RG504). Such a high positive charge 

value of PLGA-PEG NPs was unexpected as the PEG groups would neutralize the particles. 

It could be possible that the sample was contaminated with positively charged ions (ie, 

from water), but the measurement was not repeated to confirm this result due to time 

limitations. 

 

 
7.9.2 Encapsulation efficiencies 

 
Total theoretical drug loading and encapsulation efficiencies for hydrophobic and 

hydrophilic agents are summarized in Table 7.10 and Table 7.11 respectively. Loading 

efficiencies varied according to the formulation method adopted, solvent, polymer 

end-group and hydrophilicity and size of drug molecule.  

 

 

Synthesis 

method 

Nanoparticle 

formulation 

Solvent Loaded 

agent 

TDL % EE 

RG504 DMSO NR 0.0004 11.09 

RG504 MeCN NR 0.0004 50.35 

RG504H DMSO NR 0.0004 25.95 

RG504H MeCN NR 0.0004 63.39 

RG504 (0.05% PVA) DMSO Paclitaxel 0.09 IEa 

Dialysis 

 

RG504 (0.1% PVA) DMSO Paclitaxel 0.09 IEa 

Simple mixing RG504/mPEG-DSPE MeCN NR 0.0004 26.87 

Table 7.10 Theoretical drug loading (TDL) and encapsulation efficiency (EE) of hydrophobic drugs 
for different nanoparticle formulations. IEa: insufficient encapsulation as determined from 
LC-UV-MS and in-vitro cell citotoxycity studies 
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Synthesis 

method 

Nanoparticle 

formulation 

Solvent Loaded 

agent 

TDL % EE 

RG504 DMSO TFMU 0.09 0.34 

RG504 MeCN TFMU 0.09 3 

RG504 DMF TFMU 0.09 0.66 

RG504H DMSO TFMU 0.09 0.50 

RG504H MeCN TFMU 0.09 3.23 

RG504H DMF TFMU 0.09 0.94 

PLGA-PEG DMSO TFMU 0.09 0.77 

PLGA-PEG DMF TFMU 0.09 0.92 

RG504 DMSO 5-FU 0.1 0.0004 

RG504 DMF 5-FU 0.1 0.02 

RG504H DMSO 5-FU 0.1 0.0057 

RG504H DMF 5-FU 0.1 0 

RG504 DMSO 
FITC-Dextran  

(70 kDa) 
0.09 5.94 

RG504 DMSO 
FITC-Dextran 

(150 kDa) 
0.09 2.67 

RG504 DMSO NEP (125:1)b 0.008 IE a 

RG504 DMSO NEP (151.5:1)b 0.007 IE a 

Dialysis 

RG504 DMSO NEP (251:1)b 0.004 IE a 

RG504/mPEG-DSPE MeCN TFMU 0.07 4.70 

RG504H/mPEG-DSPE MeCN TFMU 0.07 3.82 Simple mixing 

RG504/mPEG-DSPE MeCN Rhd 0.0001 1.25 

PLGA-PEG DMF TFMU 0.09 2.17 

RG504 (PVA, PLL) Acetone TFMU 0.08 6.75 

Nanopreci- 

pitation 

 RG504H (PVA, PLL) Acetone TFMU 0.08 5.93 

Table 7.11 Theoretical drug loading and encapsulation efficiency of hydrophilic drugs for 
different NP formulations.  IEa: insufficient encapsulation as determined from the in-vivo brain 
tissue studies (ELISA assay). 

 

 
Nile red loading efficiency was higher when nanoparticles were formed in MeCN and 

acid-ended PLGA polymer. On the contrary, hydrophobic Paclitaxel was not efficiently 
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encapsulated in the NPs regardless the concentration of PVA used, indicating that the 

presence of the stabilizer only participated on the emulsification process to prevent 

polymer aggregation rather than improve Paclitaxel adherence onto the polymer. 

Paclitaxel molecules must have either broken down, or diffused out of the dialysis bag 

(due to its small MW) before the particles were formed. 

 

TFMU loaded spheres increased their EE in the synthesis method order: dialysis < simple 

mixing < nanoprecipitation, as shown from Table 7.11, implying that use of emulsifiers 

such as PVA, PLL and lipids are necessary to improve drug EE. For the dialysis method, 

samples prepared from acid-ended PLGA polymer in MeCN resulted in the highest EE, 

similarly to the Nile red. Conjugation of PEG groups onto the PLGA polymer increased 

only slightly the EE to 0.77-0.92%, compared to the pure PLGA polymer, 0.34-0.94% as 

synthesized via dialysis, but led to 2.17% for nanoparticles prepared via 

nanoprecipitation, without the presence of stabilizers. On the contrary, hydrophilic 5-FU 

loading efficiency was low (0-0.02%). Overall, small MW hydrophilic drug molecules 

diffused rapidly out of the dialysis tube (MWCO: 12,000) before particle formation. 

Introduction of lipid as molecular moieties offering hydrophilic sites onto the PLGA 

polymer shell, increased the TFMU encapsulation efficiency, but this was not the case for 

Rhodamine whose EE was poor (0.37%).  

 

In order to comprehend whether it is the fast migration of small drug molecules before 

particle stabilization or the affinity of the drug molecule towards the polymer the key 

parameter to control EE, in dialysis method, FITC-dextran (MW: 70-150 kDa) and NEP 

(MW: 110 kDa) were used as loading agents. Table 7.11 shows that both dextran and 

protein had poor EE, implying that both molecules had low affinity towards the 

hydrophobic PLGA polymer. 

 

 

7.9.3 In-vitro TFMU and NR release studies 

 
TFMU release studies in PBS (pH 7.4, 311 K) were conducted for four different 

nanoparticle formulations to investigate the effect of emulsifiers and hydrophilic groups 

onto the TFMU release. Table 7.11 shows both EE and the total drug released increased 
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as the NP size decreased and that PLGA-PEG had the lowest amount of TFMU released 

within 187 h.  

 

 

Synthesis 

method 

Nanoparticle 

Formulation 

/solvent 

Size,  

r±SD(nm) 

%EE % Total 

drug 

released
a
 

% Drug 

unreleased
b
 

%Drug 

loss
c
 

 

Dialysis 
RG504 

/ MeCN 
237.2±7.7 3 36 58 6 

Simple 

mixing 

RG504 

/mPEG-DSPE 

/ MeCN 

157.5±5.1 4.70 34 52 14 

PLGA-PEG 

/ DMF 
82-268 2.17 11 87 2 

Nanopreci- 

pitation 

 
RG504 

(PVA, PLL) 

/Acetone 

86.4±2.2 6.75 44 17 39 

Table 7.12 Fractions(%) of encapsulated, released and unreleased TFMU from NPs synthesized 
from ester-ended PLGA polymer and conjugated PLGA-PEG polymer. a: Total drug released(%) = 
100x(mass of cum. drug released)/(mass of encapsulated drug), b: Measured via UV-vis by 
dissolving the NPs in DMF at the end of the release studies, c: Drug loss(%) = 100-(total drug 
released + drug unreleased) 
 
 
 

 
All the formulations gave a burst release (Figure 7.14) within the first 4 h and then a 

retarded controlled release. This means that a high concentration of TFMU was located 

onto the surface of the NPs. However, only 11% of the encapsulated drug was released 

from the PLGA-PEG NPs suggesting high hydrophilic interactions of TFMU with the PEG 

groups of the polymer or that TFMU is mainly distributed within the PLGA core. 

Alternatively, its burst release could be initiated from the small particles and delayed by 

the big ones, as the NPs have a wide particle size range (82-268 nm). 
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Figure 7.14 Cumulative TFMU release profile from different NP formulations in PBS (pH 7.4, 38oC) 

over time. The inset graph shows a burst release of TFMU within the first 4 h 

 

 
On the contrary, hydrophobic NR was not released from RG504 (DMSO and MeCN) NPs 

suspended in AcSF, at 311 K over 1.2 months. UV-vis measurements performed on the 

collected AcSF aliquots at different periods of time, showed no absorbance in the UV-vis. 

Total concentration of NR within the nanoparticles remained the same before and after 

the release studies as further measured by UV-vis. This shows that hydrophobic NR-

polymer interactions prevented NR diffusivity throughout the polymer matrix and that no 

polymer degradation, that would facilitate NR release, occurred during this period of 

time. Blanco et al. (2006) found that drug-free PLGA microspheres (lactic:glycolic=50:50, 

MW~39,000 g/mol), had a fast degradation rate the first 1.4 months of incubation and a 

slower degradation thereafter. Complete degradation was reached within 2 months of 

incubation, although, the particle degradation time are subject to vary according to the 

size of the particles and the MW of the polymer used.    

 

7.10 Discussion. Drug loaded nanoparticles 

 
 This section will discus the experimental results obtained from the drug encapsulation 

and the in-vitro release studies. The synthesis methods will be compared in order to 
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evaluate which of them is the most efficient to optimize the encapsulation efficiency, the 

size and the charge of the NPs for CED studies. Moreover, an interpretation of the effect 

of the encapsulated hydrophilic and hydrophobic drugs drugs, or their presence during 

the synthesis, in the morphological characteristics of the particles as compared to the 

drug-free particles will be provided in this section. 

 

 

7.10.1 Size and charge of nanoparticles   

 

Drug loaded NPs can be successfully formulated having the desired size and charge 

required for CED into the brain. However, the size and charge of the drug loaded NPs are 

influenced by a combination of factors namely synthesis method, solvent, polymer end 

group, the hydrophilicity of the loaded/present agent, its molecular weight and the drug 

encapsulation efficiency, rather than by each of them separately.  

 

Encapsulation or the presence of hydrophobic molecules (NR, Paclitaxel) into NPs 

synthesized via dialysis and simple mixing, overall led to an increase of the particle size. 

This is attributed to the different interactions between the polymer and drug and their 

solubility in water or organic solvent as previously reported by others (Panyam et al., 

2004; Govender et al., 1999). The zeta potential of NPs also increased showing that any 

intraparticle interactions between the polymer chains and NR, changed the surface 

chemistry of the particles after NR encapsulation. The zeta potential of the PLGA/mPEG-

DPSE NPs increased after NR encapsulation, providing more stability to the particles. It is 

therefore seen that encapsulation or the presence of hydrophobic drugs during NP 

synthesis overall increases the size and the charge of the particles, enhancing their 

stability in aqueous suspensions.  

 

Encapsulation or presence of hydrophilic drug molecules during NP synthesis via dialysis 

increased (TFMU, NEP) or had little effect (5-FU, FITC-Dextran) on the particle size. It 

must be the size of the drug molecule itself and its concentration that increased the 

overall size of the particles- the hydrophobic PLGA polymer chains are more spread as 

they will be opposing the hydrophilic drug molecules, hence the NP will tend to ‘swell’. 
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Especially in the case of FITC-Dextran, the MW is higher (70 kDa, 150 kDa) than that of 

the PLGA polymer it self, thus the molecular size of the drug will contribute onto the total 

particle size. The EE of NEP and 5-FU was insignificant, as seen from Table 7.11, but their 

presence during synthesis influenced the equilibrium and solvent-drug-polymer 

interactions and consequently the mean size of the NPs. The TFMU and Rhodamine 

loaded NPs formed via simple mixing were bigger than those formed via 

nanoprecipitation possibly due to less stabilization of the former by the lipid as 

compared to the PVA and PLL in the latter system.  

 

Positively charged TFMU loaded NPs (+1.96 mV) were formed via nanoprecipitation 

implying that positively charged PLL is highly adsorbed onto the NP surface and in 

combination with PVA are shielding the carboxyl polymer groups. This type of NPs can 

easily adhere onto the negatively charged membrane-bound oligosaccharides of the cells 

and get taken up through endocytosis at the site of injection, rather than distribute at 

high volumes of brain tissue.   

 

Conjugation of PEG groups onto PLGA polymer also increased the particle size via dialysis 

(152-159 nm) and led to a wide size distribution after nanoprecipitation (82-268 nm). 

Avgoustakis et al. (2003) reported a decrease in the size and charge of drug-free PLGA 

NPs after PEGylation but an increase in NP flocculation as the PEG:PLGA ratio increased. 

It is thus possible that PEG groups in conjunction with the TFMU presence result in more 

aggregated structures. 

 

 

7.10.2 Drug encapsulation efficiencies and release profiles 

 

Drug loading efficiencies varied according to the synthesis method, drug hydrophilicity 

and structure, polymer end-group, solvent and stabilizers (Tables 7.9 and 7.10). NR and 

Paclitaxel as highly hydrophobic molecules were expected to strongly attach onto the 

PLGA polymer. However, there was no detectable Paclitaxel encapsulated into the 

spheres compared to NR which had ~11-63% EE, depending on the formulation (Table 

7.9). It must be that Paclitaxel was more miscible with the solvent compared to the 
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polymer (Panyam et al., 2004) and hence it diffused out of dialysis bag before particle 

formation. This is in contrast to the results found by Zhang and Feng (2006) who 

measured 60% EE for Paclitaxel loaded in NPs synthesized via the same method but in 

the absence of PVA in the dialysis bag. PVA was chosen to prevent polymer precipitation 

prior to NP formation.  Higher NR loading efficiency for slightly less hydrophilic 

acid-ended PLGA polymer is perhaps due to a higher microporous area compared to the 

ester-ended polymer, rather than stronger NR-polymer interactions. Also, during dialysis, 

it is likely that NR is more soluble in DMSO compared to MeCN thus it is diffusing out of 

the dialysis bag faster compared to NR dissolved in MeCN. The presence of lipid during 

nanoprecipitiation also led to fast stabilization of the NPs reducing NR precipitation into 

the aqueous phase.  NR did not release from ester-ended PLGA NPs synthesized in DMSO 

or MeCN, within 1.2 months of release studies into AcSF medium, which could be due to 

1) stronger NR-polymer hydrophobic interactions compared to its mass transport into 

the aqueous phase, 2) highly tortuous microporous matrix that restricts NR diffusivity out 

of the particle, and 3) no polymer degradation under those experimental conditions. 

   

Hydrophilic molecules had, overall, low encapsulation efficiency via dialysis, 0.33-3.2 % 

for TFMU, 2.7-5.9% FITC-Dextran and less than 0.02% for 5-FU. This shows that molecules 

with similar molecular structure (Figure 7.4) such as the fluorinated drugs have different 

affinity towards the polymer and solvent. Ester-ended PLGA polymer is slightly less 

hydrophobic, hence, TFMU loading is lower compared to the acid-ended polymer. 

Dextran molecules do not diffuse out the dialysis membrane (MW higher than MCOFF of 

the membrane) and subsequently the probability of colliding with the polymer is high. 

This explains their high EE compared to the small molecules. Low loading efficiencies of 

FITC-Dextran (~0.24 %w/w) in microspheres was reported by Kim and Park (2004) 

following w/o/w emulsion but, 55-100% EE was reported by Mao et al. (2007) depending 

on the polymer end-group, PVA and PLGA concentration, the MW of the drug and the 

theoretical drug loading. Mao et al. also found that dextran loaded microparticles had a 

high internal and low external porosity for ester-ended polymer, but the inverse porosity 

for acid-ended polymer, which could be manipulated by varying the particle drying 

process. 5-FU loaded nanoparticles were also prepared by other authors (Boisdroncelle 

et al., 1995) who found that EE of 5-FU is predominantly controlled by the solvent ratios 
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and the size of the microparticles–the faster the polymer deposition, the higher the EE. 

For NEP loaded nanoparticles, NEP ELISA assay performed in brain tissue, post infusion in 

the brain, showed that there was no detectable increase in the NEP concentration in the 

infused hemisphere compared to the contralateral non-infused control hemisphere. This 

indicates there was low or no encapsulation of NEP into the nanoparticles, or there was 

no NEP release enhanced by particle degradation under this experimental conditions 

(experiments were performed and analysed by Neil Barua). PVA was introduced in the 

dialysis tube prevented polymer precipitation, but it is possible that NEP degraded in the 

presence of DMSO. Degradation of proteins in high concentrations of DMSO has been 

previously reported by (Arakawa et al., 2007) or, by other degradation mechanisms 

previously reviewed by van de Weert et al. (2000) (i.e. interactions with DMSO, storage, 

NP drying). Alternatively, NEP may have remained at the solvent/water interface, 

attached onto the PVA rather than being adsorbed onto the PLGA polymer, if more 

preferential interactions with PVA were facilitated. 

 

It is apparent that smaller sized TFMU loaded NP had higher EE, which is true when 

intraparticle surface area is big (Table 7.11). The micropore size is dependent on the size 

of water droplets during NP synthesis. Their connectivity though, is controlled by the 

pathway undertaken by the vapour phase formed from ice crystals following sublimation 

(Mao et al., 2007), which is further affected by the presence of any groups attached onto 

the NPs. Burst drug release is attributed to the presence of drug molecules on the 

particle surface whereas the sustained release is controlled by their inner morphology 

and the presence of additional functional groups onto the particle, that would increase 

or decrease particle hydration. Thus, it is both the core and the shell morphology, and 

the size of the NPs that controls the TFMU release. Figure 7.12 shows that all NPs initially 

had a fast release within 4 h but a similarly sustained release afterwards. The latter is 

true when the diffusion time constant (15Deff/r2), and thus the ratio of the drug effective 

diffusivity to the particle size, is similar for all types of formulations as described by the 

Linear Driving Force model, shown by equation 6.6. Inherently this would mean that the 

small NPs (RG504(PVA, PLL)) have highly tortuous interconnected micropore channels 

that provide pronounced restrictions to TFMU diffusivity compared to the bigger NPs 

(PLGA-PEG). The TFMU concentration on the NP surface decreased in order 
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PLGA-PEG<RG504/lipid<RG504<RG504(PVA,PLL) whereas their pore sizes are expected to 

decrease in the inverse order to explain the release profiles obtained. Alternatively to 

this, TFMU release is also controlled by the PEG, PVA and PLL groups. Slow release from 

PLGA-PEG NPs can be attributed to possible arrangement of hydrophilic PEG groups 

along the pore surface, where water droplets were present. Thus a higher concentration 

of hydrophilic TFMU attached onto those groups will have a retarded release. For 

PLGA/mPEG-DSPE nanoparticles the lipid shell must be acting as a fence to prevent PLGA 

core hydration and subsequently TFMU diffusivity out of the spheres via polymer 

degradation (Chan et al., 2009), hence delaying its release. Hydrophilic PVA and PLL 

polymer, attached onto the NP surface, as synthesized by nanoprecipitiation, have 

additionally increased NP hydration and as such more drug released. The dialysis method 

resulted in low EE of TMFU which most probably was attached onto the surface of the NP 

judging by the high concentration released at early stages. A third possible interpretation 

can be given taking into account partial crystallization of TFMU within the NPs, 

depending on the formulation method, which will decrease its diffusivity towards the 

aqueous phase (Gref et al., 1994). Messaritaki et al. (2005) reported 29-36% EE of TFMU 

in microspheres synthesized by w/o/w double emulsion method. The authors found that 

50% of the loaded drug was released over 2.5 h. It is thus possible that by varying the 

synthesis method and stabilizing agents, hydrophilic drug concentration and release can 

be controlled. 

 

In summary, it was found that dialysis method seems promising for encapsulation of 

hydrophobic molecules whereas nanoprecipitation method is more efficient for 

encapsulation of hydrophilic drugs. The encapsulation efficiency of hydrophilic molecules 

via dialysis, can be increased by conjugating PEG groups in the PLGA polymer, although 

the size of the nanoparticles is beyond the required one for CED into the brain. In 

general, encapsulation or the presence of hydrophobic drugs during the NP synthesis led 

to negatively charged particles, and in principle it increased as compared to the drug-free 

NPs. On the contrary, encapsulation of hydrophilic drugs or introduction of stabilizers, 

which posses a positive charge, decreased the negative charge of the particles which 

would make them more unstable. Moreover, hydrophobic NR was not released within 

the time course of the experiment, in contrast to the hydrophilic TFMU which released 
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rapidly from all types of formulations. This suggests that more prolonged drug release 

can be achieved for hydrophobic drugs as compared hydrophilic drugs. As the NR and 

TFMU molecules fluoresce, apart from good hydrophobic and hydrophilic model drugs, 

they can be used as tracing agents to detect the location of the NPs in the brain or to test 

the NP uptake from the cells. Therefore, these two agents will be further used in the later 

sections for in-vivo studies  

 

 

7.11 Results. In-vitro and in-vivo studies 

 
 The previous sections showed that NR loaded NPs synthesised via dialysis had the 

desired size, charge and encapsulation efficiency for CED studies. Therefore these 

particles will be further used for CED studies. The slightly bigger NPs, synthesised via 

simple mixing or after PEG conjugation will be only used for in-vitro cell studies to test 

their uptake from glioma cells. It will be shown that NR loaded particles are efficiently 

distributed in the brain, at high tissue volumes in contrast to free NR it self, which is only 

distributed at the site of injection. These results seem promising for further CED studies.  

 

 

7.11.1 In-vitro analysis of glioma cell uptake of drug loaded nanoparticles and 

cytotoxicity studies 

 

Brightfield and fluorescence images of glioma cells, 24 and 48 h post incubation with 

drug loaded nanoparticles, were merged to show the degree of intracellular uptake of 

NP. Figure 7.15 shows that glioma cell uptake of NR loaded RG504 nanoparticles was 

detected as early as 2 h post incubation. Cell uptake of nanoparticles continued to 

increase over 48 h as cells are rapidly dividing.  
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Figure 7.15 Brightfield, fluorescence and merged images of glioma cells incubated with 
RG504/NR nanoparticles (synthesized via dialysis in DMSO) at 2 h (a, b, c) and 48 h (d, e, f). 
Magnified image of boxed area in d: Brightfield, fluorescence and merged images (g, h, i) 

 

 

 

 

 
PLGA-PEG TFMU loaded NPs synthesized via nanoprecipitation, and Rhodamine, NR 

loaded hybrid RG504/mPEG-DSPE nanoparticles synthesized via simple mixing show 

different degrees of fluorescence and intracellular uptake 24 h post incubation as seen 

from Figure 7.16. This is firstly, due to the different encapsulation efficiency of each drug 

(2.17, 1.25 and 26.87%, respectively) and secondly, due to their charge (+35, -50.29, 

-64.87 mV) and shell type.   

 

 

 

 

 

 

25 µm 

25 µm 



Chapter 7 

242 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.16 Brightfield, fluorescence and merged images of glioma cells incubated with TFMU 

loaded PLGA-PEG nanoparticles (synthesized via nanoprecipitation) (a, b, c), Rhodamine loaded 
RG504/mPEG-DSPE (synthesized via simple mixing) (d, e, f) and Nile red loaded 

RG504/mPEG-DSPE (synthesized via simple mixing) (g, h, i), at 24 h post incubation 

 

 
Paclitaxel loaded nanoparticles were incubated with a glioma cell line and a 

methylthiazol tetrazolium (MTT) citotoxicity assay was performed. No increase in 

cytotoxicity compared to control (PBS) was detected at 24, 48 or 72 h post incubation 

indicating low (or no) drug encapsulation efficiency. Moreover, MAS spectroscopy 

measurements showed that there was no Paclitaxel encapsulated in the NPs, down to 

the resolution limits of this technique. 

 
 
 
7.11.2 In-vivo CED studies of drug loaded nanoparticles 

 

Convenction-enhanced delivery studies into the rat brain were conducted for 

unencapsulated NR and NR loaded nanoparticles, as well as for NEP and FITC-Dextran 

loaded nanoparticles. A summary of the infusions is shown in Table 7.13. 

a b c 

d f e 

g h i 

25 µm 

25 µm 

25 µm 
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Infusate Solvent Concentration 

(mg/ml) 

Volume 

(μl) 

Rate 

(μl/min) 

Target Number 

of 

infusions 

 
MeOH 1 10 2.5 Striatum 2 

MeOH 0.5 10 2.5 Striatum 2 NR 

MeOH 0.1 10 2.5 Striatum 2 

DMSO 1 10 2.5 Striatum 6 

RG504/NR 

DMSO 0.5 10 2.5 Striatum 6 

RG504/FITC-Dextran 

(70 kDa) 
DMSO 1 10 2.5 Striatum 3 

RG504/FITC-Dextran 

(150 kDa) 
DMSO 1 10 2.5 Striatum 3 

RG504/NEP DMSO 1 10 2.5 Striatum 3a 

Table 7.13 Summary of CED infusions into the rat brain. a: Number of rats euthanized at 
0,1,2,3,4,5 and 6 h post infusion 

 

 
 

CED of unencapsulated NR resulted in minimal distribution with the majority of NR 

restricted to within 500 μm of the cannula track (Figure 7.17). CED of RG504/NR NPs 

resulted in widespread distribution throughout the striatum and also into the adjacent 

cortex. Fluorescence microscopy of rat brain sections from animals sacrificed at 1 h 

(Figure 7.18) and 24 h (Figure 7.19) post infusion confirmed the continuous presence of 

RG504/NR NPs. There was no evidence of haemorrhage or tissue trauma related to 

delivery of PLGA NPs in any animal.  
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Figure 7.17 CED of 1 mg/ml unencapsulated Nile red into the striatum of rat brain. The images 

show a) the site of injection and b) the Nile red distribution around it 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.18 CED of 0.5 mg/ml Nile red loaded RG504 NPs (synthesized via dialysis in DMSO). 
Brightfield (a) and fluorescence images at different maginifications (b,c,d) 1 h post infusion 
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Figure 7.19 CED of 0.5 mg/ml Nile red loaded RG504 NPs (synthesized via dialysis in DMSO) 

Brightfield (a) and fluorescence images at different maginifications (b,c, d) 24 h post infusion 

 

 

 

 
The mean volume of distribution following CED of 0.5 mg/ml unencapsulated NR was 

4.14 mm3, and 0.91 mm3 for 1 mg/ml NR. The volume of distribution following CED of 

0.5 mg/ml PLGA/NR was 51.02 mm3, and 42.58 mm3 for 1 mg/ml PLGA/NR. There was 

therefore a statistically significant increase of distribution for CED of 0.5 mg/ml 

RG504/NR compared with unencapsulated NR (p=0.01, Student’s t-test). The volumes of 

distribution (Vd) and the ratio of Vd to the volume of infusion (Vi) are shown in 

Figures 7.20 and 7.21.  
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Figure 7.20 Volumes of distribution (Vd) following CED of NR and RG504/NR NPs (synthesized via 

dialysis in DMSO) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.21 Ratio of volume of distribution /volume of infusion (Vd/Vi) following CED of NR and 

RG504/NR NPs (synthesized via dialysis in DMSO) 
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For FITC-Dextran loaded nanoparticles there was no detectable increase in the 

fluorescence in the infused brain hemisphere compared to the control brain hemisphere 

indicating that the encapsulation of FITC-Dextran was lower than the threshold 

detectable by standard fluorescence microscopy of brain tissue sections. 

NEP ELISA assay (as discussed in Section 7.10.2) showed that there was no detectable 

increase in NEP concentration in the injected part of the brain revealing that EE of NEP in 

PLGA NPs was insignificant. 

 

 

7.12 Discussion. In-vitro and in-vivo studies 

 
Successful convection-enhanced drug delivery into the brain was achieved by using 

biodegradable, negatively charged PLGA nanoparticles of radius ~100 nm. Encapsulation 

of NR into the NPs as a model hydrophobic drug, increased its volume of distribution in 

the brain tissue by 5 times compared to the injected free NR. The effect of NP size in the 

CED was studied by MacKey et al. (2005) and Allard et al. (2009). The authors reported 

that CED of polystyrene NPs (10-100 nm) led to Vd=1-9 mm3 due to the restricted 

mobility of NPs in the small extracellular space in normal rat brain (35-64 nm). However, 

~100 nm sized PLGA/NR NPs led to Vd=40-50 mm3 showing an improved CED via PLGA 

spheres (Figure 7.18). Non-specific binding onto negatively charged structures in the 

brain parenchyma was also prevented due to their repulsive electrostatic interactions 

with the negatively charged NP (~-30 mV). Drug remained in the striatum for at least 24 h 

post infusion (Figure 7.19) and the in-vitro studies on glioma cells, showed a high 

intracellular uptake of NR.  However, the in-vitro release studies of NR from PLGA NP in 

AcSF showed that there was no drug released within 1.2 months via diffusivity through 

the polymer matrix, or by polymer degradation. This indicates that PLGA does not 

degrade in AcSF by polymer interactions with the ions present in the release medium 

(Na+, K+, Ca2+, Mg2+, Cl-, SO4
2-, PO4

3-, HCO3
-, refer to Appendix, Section A5.5 for ions 

concentration) and inherently there is no free NR present in the extracellular space.  

Moreover, efflux through the leaky endothelial cells and their drainage from the brain via 

systemic circulation is prevented by the large size of the NP. Therefore, NR loaded PLGA 

nanoparticles must have been taken up by the cells indicating they can potentially be 
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used as effective drug delivery systems of highly hydrophobic therapeutics. Even though 

the exact mechanism of NP uptake is not exactly known, other authors (Wang et al., 

2011, Fonseca et al., 2002) have previously reported uptake of both hydrophobic 

(Paclitaxel) and hydrophilic (Doxorubicin) drug loaded PLGA NP by tumor cells. It is 

though believed that NPs are engulfed by either endocytosis or receptor mediated 

phagocytosis. Intracellular PLGA nanoparticels are then subject to hydrolysis or 

enzymatic degradation due to the presence of lytic enzymes and the drug itself, that 

create an acidic intracellular environment (Anderson and Shive, 1997; Xu et al., 2009). 

The shorter polymer chains will eventually efflux from the cells and drain out of the brain 

whereas the drug itself will cause cell death.  

 

Paclitaxel loaded nanoparticles did not increase in-vitro cell cytotoxycity because of the 

insufficient drug encapsulation efficiency as further shown by MAS spectroscopy. 

However, by modifying the experimental conditions (ie synthesis method, stabilizer, 

solvent) it would be possible to increase Paclitaxel EE and successfully deliver drug 

loaded PLGA NPs via CED, over high brain tissue volumes. NEP was not expressed in the 

brain tissue as found by ELISA assay and NEP encapsulation in PLGA NPs has not been 

reported before in the literature. Further studies are required to examine the protein 

stability under the experimental conditions chosen and its affinity towards the PLGA 

polymer. FITC-Dextran loaded NPs had encapsulation efficiency of 2.67 and 5.94 % 

(Table 7.10) measured by fluorescent spectroscopy. However, following in-vivo CED in 

the brain and at 24 h post infusion, the NPs exhibited low fluorescence intensity. This is 

either because FITC-Dextran molecules were released in the extracellular space before 

the NPs were taken up by the cells or, NP fluorescence was below the threshold of the 

imaging technique adopted. The former case is likely to occur only if all the dextran 

molecules were adsorbed on the surface of the PLGA NP, in direct contact with spinal 

fluid, as drug encapsulation within the NP core would require polymer degradation, 

which is not observed within 24 h of in-vivo studies. Hence it is possible that (most of) 

the FITC-Dextran is located in the NP shell, and due to its low encapsulation efficiency, it 

fluoresces little. 
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The in-vitro glioma cell uptake of TFMU loaded PLGA-PEG NPs and Rhd loaded 

PLGA/mPEG-DSPE NPs (Figure 7.14) shows that surface modification of particles with 

hydrophilic groups does not prevent their influx within the cells. Moreover, NP uptake 

was not restricted by their positive and negative charge, respectively showing that NP 

uptake is not surface charge mediated (at least) in the presence of PEG or lipid groups. 

However, for in-vivo CED in the brain negatively charged NPs are required to facilitate NP 

distribution into big tissue volumes, unless extension of drug systemic circulation is more 

crucial. In the later case, PEGylated NPs can be used to reduce the interactions with 

proteins or tissue affinity (Allard et al., 2009). NR loaded PLGA/mPEG-DSPE NPs were also 

taken up by the cells, indicating that these hybrid NPs can efficiently be used for drug 

delivery of both poorly (NR) and water soluble agents (Rdh), for advanced systemic 

circulation time. Vij et al. (2010) also used NR stained PLGA/mPEG-DSPE NPs for 

intranasal drug delivery into the lungs, and they observed more efficient NP uptake by 

the cells compared to PLGA/DSPE NPs.  

 

Summing up, successful convection-enhanced drug delivery into the brain, over a wide 

tissue volume, was achieved using negatively charged Nile red loaded PLGA NPs. The 

In-vitro cell studies showed intracellular uptake of PLGA, PLGA-PEG and 

PLGA/mPEG-DPSE NPs, loaded with both hydrophilic and hydrophobic agents. Further 

experimental studies will be needed to reduce the size of these NPs for potential CED 

into the brain, where fluorescent staining agents are required to investigate the drug 

location. 

 

 

7.13 Conclusions 

 
This chapter explored different synthesis routes and conditions that would lead to NP 

formation with the desired properties, for CED into the brain. The NPs produced, were 

loaded with fluorescent hydrophilic (TFMU, Rhd) and hydrophobic (NR) agents to trace 

the location of the NPs in the brain and their uptake by the cells. The encapsulation of 

these agents also suggested the possibility that real drugs, other than those tried, can be 

encapsulated via the same mechanism if the synthesis method was the same. Moreover, 
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the NPs with the features required were also characterized via gas sorption, NMR 

cryoporometry and tomo-TEM imaging techniques, to further investigate whether the 

polymer matrix contained any void spaces.  

 

It was found that the dialysis method led to formation of NPs with the size and charge 

required for CED studies, and this synthesis method is mostly recommended for 

encapsulation of highly hydrophobic drugs and drugs with a high molecular weight, to 

prevent drug diffusivity out of the dialysis tube. In this method, the size, the charge and 

drug encapsulation efficiency of both NR and TFMU could be modified by varying the 

solvent and polymer end groups. NPs formed from acid ended PLGA had a higher 

encapsulation of both NR and TFMU compared to the ester ended PLGA, whereas the 

presence of hydrophilic drugs or stabilizers, in general decreased the negative charge of 

the NPs. Furthermore, nanoprecipitation seems a better synthesis method for the 

encapsulation of hydrophilic drug molecules, compared to dialysis and simple mixing, as 

seen by the higher TFMU loading achieved via this technique. In-vitro glioma cell studies 

also showed that all types of NPs, loaded with model drugs, were taken up by the cells, 

irrespective of their size and surface charge. However, undetectable amounts of real 

drugs (as Paclitaxel, NEP and 5-FU), were observed via spectroscopy and in-vitro/vivo 

studies for the NPs synthesized via dialysis, possibly due to the rapid diffusion of the 

small drug molecules through the dialysis bag, or drug degradation/denaturation by the 

solvents used. Direct infusions of NR loaded NP into the mice brain via CED facilitated NP 

distribution at high tissue volumes which remained in the brain for at least 24 h post 

infusion, in contrast to the free drug which was concentrated at the site of injection. This 

shows that direct infusion of negatively charged NPs, with a radius of less than 100 nm, is 

a promising drug delivery technique for the treatment of brain diseases although further 

investigations are needed to improve the loading efficiency of the real drugs (Paclitaxel, 

NEP and 5-FU). 
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Chapter 8 
Reducing the time of PFG diffusion NMR experiments 

 
 
 
 

 
8.1 Introduction  

 
The PFG NMR experiments in this thesis, and elsewhere in the literature, often take a 

substantial amount of time. For example, a set of PFG measurements (performed at four 

different diffusion times), requires ~80-150 min depending on whether it was bulk or 

imbibed liquid, and the type of molecule. As discussed in Section 2.5 this is because the 

(recycle) delay time, d1, required for ~99 % of the phase to be recovered from the x-y 

plane onto the z-axis between two successive scans, is 4.6xT1. Therefore, a value of 5xT1 

is often chosen for PFG studies to obtain higher accuracy on the measurements. In this 

chapter it will be shown that by using a bipolar pulse longitudinal eddy current delay 

(BPP-LED) sequence to perform a PFG NMR experiment the recycle delay time can be 

significantly reduced, speeding up the experimental time. 

 

 

8.2 Literature review 

 
If a value less than 5xT1 is used between the scans of an NMR experiment, the 

magnetisation only has time to partially recover back to its equilibrium position along the 

z-axis before the next scan. After each successive scan, the magnetisation will therefore 

recover to a slightly lower level, until after several scans it will reach a steady state, 

always returning to this value. Therefore, NMR experiments are often conducted using 

dummy scans at the start of each run – this is where the pulses are applied as normal and 

the magnetisation left to relax, but no data is acquired. In this way, the magnetisation 

reaches a steady state before any data are collected. Earlier work by Strait-Gardner et al. 

(2008) has shown that when using a simple PGSE experiment for diffusion studies, the 

magnetisation does indeed reach steady-state equilibrium. These authors used 16 

dummy scans although they showed, theoretically, that one should have been sufficient. 
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They also pointed out that as long as a steady state is achieved between scans, the 

diffusion coefficient observed should be independent of the recycle time used. 

Moreover, they added a crusher gradient to the PGSE sequence to eliminate the rogue, 

unwanted magnetisation, remaining in the x-y plane before each scan. They were then 

able to reduce the recycle delay time to slightly less than 5xT1, with no significant change 

on the observed diffusion coefficient for the solvents studied (Stait-Gardner et al., 2008). 

However, when the recycle delay was reduced to less than 3xT1, deviations to the 

diffusion values were observed. These variations could be somewhat eliminated by 

omitting the data acquired at the low gradient strength values from the 

monoexponential data fitting (equation 8.2), or by fitting all the data into a biexponential 

model, however, they were not completely understood. In addition, such data fitting is 

not suitable for routine use. In later study Sørland et al. (2011) put a spoiler recovery 

sequence, comprising of two 90o r.f. pulses and a pair of bipolar gradients, in front of a 

PGSE pulse sequence and a PFG-STE pulse sequence to remove any magnetization 

remaining on the z-axis. The authors used these sequences to measure the diffusion 

coefficient of pure water at various delay times. They found that the diffusion 

coefficients of water remained nearly constant and the logarithm of the attenuation was 

linear for both pulse sequences regardless of the delay time between the scans. 

Moreover, other modified versions of the PFG-STE sequence, such as the bipolar 

alternating pulse gradient stimulated echo (APGSTE) pulse sequence, have been adopted 

to measure diffusion coefficients of imbibed liquids in porous media (Mitchell et al., 

2008a). The bipolar gradients are important in the case of porous media where internal 

magnetic gradients can be produced in the presence of high magnetic fields (>1 T), due 

to the inhomogeneous distribution of the liquid phase. 

 

More sophisticated pulse sequences, though, such as the BPP-LED sequence, which is 

currently in widespread use, have been developed where the crusher gradients are 

already built in the pulse sequence to remove residual magnetization on the x-y plane, 

hence, no further modification is required. Moreover, data acquisition is routinely 

performed after the use of dummy scans, where the magnetization vectors have already 

reached an equilibrium steady-state along the z-axis before the acquisition scans are 

performed. A background theory to the BPP-LED sequence was already provided in 
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Chapter 2, Section 2.4, and the schematic diagram of the pulse sequence applied is 

presented again in Figure 8.1 for ease of access.  

 

 

 
Figure 8.1 BPP-LED pulse sequence. The empty and grey filled lines placed on the pulse field 

gradients row, represent the applied magnetic gradients and the small field (crusher) gradients, 
respectively 

 
 
 
Achieving complete magentization recovery was of high importance particularly for the 

partially saturated or partially molten systems in Chapters 3 and 4, where the 

signal-to-noise ratio needed to be maximized. However, for many systems, where the 

signal-to-noise level is reasonably high, full recovery of the magnetisation is not needed, 

and lower recycle times could be employed to speed up data acquisition. The aim of this 

chapter is to study whether accurate diffusion experiments can be performed at lower 

than 5xT1 delay times, using a BPP-LED pulse sequence, in order to eliminate the time of 

the PFG experiments. The repetition time, tr=taq+d1, is taken as the total (recycle) delay 

time, though, which is made up of the time during data acquisition, taq, and the time 

between the acquisition ending and the next scan starting, d1. Diffusion experiments are 

performed for bulk liquids and for liquids imbibed into a fully saturated mesoporous S1 

material, where the signal-to-noise ratio is lower compared to the bulk liquids. The 

efficiency of the BPP-LED sequence to measure the correct diffusivity values at repetition 

times below the conventionally used ones has not been studied in the literature, 

therefore it was of interest to investigate the case. It will be shown that the repetition 

time for all the samples studied can be reduced with confidence below 3xT1, which is 

180
o

x 90
o

x 

FID 

∆ 

δ/2 

g 

r.f 
pulses 

Pulse field 
gradients 

90
o

x 90
o

x 180
o

x 90
o

x 90
o

x 

-g 

Te 



Chapter 8 

254 

useful to speed up the time of the NMR cryodiffusometry experiments, for adequate 

signal-to-noise ratios.  

 

 

8.3 Experimental procedure and methodology  

 
The cyclohexane and cyclooctane bulk liquids used for these experiments were 

purchased from Acros Organics (≥99%) and Alfa Aesar (≥99%), respectively. All the 

experiments were performed at 298 K on a 500 MHz Bruker Avance II+ spectrometer 

which has a static field strength of 11.75 T.  

 

The bulk liquids (cyclohexane or cyclooctane or water) were initially placed in a glass 

capillary tube sealed at the top with a Bunsen burner to prevent liquid evaporation 

during the course of the experiments. This tube was then placed within an NMR tube for 

the T1 and PFG NMR measurements.  

 

 

                    
                   

Figure 8.2 Experimental set-up for the T1 and PFG NMR measurements performed on the 
saturated whole S1 pellet 

 
 

A single whole pellet of a mesoporous S1 material was chosen as an adsorbant of 

cyclohexane, cyclooctane and water and the experimental set up was as follows. The 

Whole S1 pellet 

Drops of bulk liquid 

Nylon wire 
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pellet was degassed under vacuum, at 393 K. Then the pellet was fully saturated with 

liquid and placed within an NMR tube containing a few drops of the same bulk liquid at 

the bottom of the NMR tube. A nylon wire was used to keep the pellet in place by 

preventing its direct contact with the solution at the bottom of the tube, and thereby 

eliminating the bulk layer fraction developed around the pellet. This fraction would 

otherwise contribute to the overall T1 relaxation and diffusivity values. The NMR tube 

was then tightly sealed at the top with Parafilm and the system was left to equilibrate for 

20 min, as shown in Figure 8.2. These conditions ensured that the pellet remained fully 

saturated throughout the course of the experiments without any vapour exchange with 

the atmosphere. 

 
Initially, the T1 relaxation time was measured using an inversion recovery pulse sequence 

employing a sequence of 15 delay times varying between 0.1 and 15 s. The decay in the 

signal intensities was plotted against the delay times. The estimation of T1 relaxation 

time was then found by the following relationship: 
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where I is the signal intensity measured after a delay time, τ. The signal intensity at time 

zero is I0 and P is a constant which takes a value of 2 for a perfect 180o pulse. It must be 

noted that T1 relaxation measurement for water suffered radiation dumping effects at 

high concentrations. This is because the water signal induces currents in the NMR coil, 

generating magnetic fields that will cause the magnetization spins to recover at different 

rates. Such an effect is observed as a broadened NMR spectrum peak, where the outer 

parts of the peak have recovered at a different speed to central ones, resulting in the 

estimation of much lower T1 relaxation values (i.e. 0.3 s as compared to the real value of 

3.64 s). This problem was resolved by using a modified version of the inversion recovery 

pulse sequence where a gradient pulse of 10 ms duration and 50% power is introduced 

between the 180o and 90o pulses to destroy any magnetization present on the x-y plane. 

Figure 8.3 shows a schematic diagram of the modified pulse sequence used. 
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Figure 8.3 Modified inversion recovery pulse sequence. A gradient pulse is introduced after the 
180

o pulse to destroy any transverse magnetization created 

 

 

The PFG experiments were performed at an acquisition time of 5.45 s and different 

repetition times, so that tr/T1 varies from ~0.1 to 5. The lower values of this range were 

obtained by reducing the acquisition time down to 0.5 s, ensuring though that the FID 

signal was completely recorded. Ten data points were taken at increasing gradient 

strengths between 1.7 and 33.1 G/cm, and each point was obtained with 16 scans. Also, 

16 dummy scans were performed at the start of each acquisition. The diffusion length, δ, 

was kept constant at 0.002 s for all the experiments whereas the diffusion time, Δ, varied 

between the samples at the range of 0.05-0.15 s for optimization of the signal decay 

function, which is important to obtain a good absolute diffusion coefficient, DPFG. The 

reduction in the signal intensity with increasing gradient strength squared, g
2, was 

monoexponential and it was thus fitted into the following equation (introduced to the 

reader in Chapter 2):  

 
















 −−∆−=
23

exp 0222
0

τδδγ gDII PFG                                   (8.2) 

 
 
The absolute diffusion coefficient measured at each repetition time is then divided by 

that obtained at 5xT1, D5T1, and this value will be referred to as relative diffusion time, 

DPFG/D5T1. 

  

The raw data was fitted into Origin program and the fitting error was estimated as 

described in the Appendix, Section A2.1. 
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8.4 Results and discussion 
 
The T1 relaxation values of the bulk and imbibed liquids in the S1 pellet are included in 

Table 8.1.  The plots of the absolute diffusion coefficients are presented in Figure 8.4. 

Moreover, the relative diffusion coefficients are presented in Figure 8.5 to make clearer 

the change in the diffusion coefficients with the repetition times. 

 

 

Table 8.1 T1 relaxation values of the bulk liquids and when imbibed in the S1 pellet, measured at 
298 K 

 
 
 
It is seen that the diffusion coefficient of the bulk hydrocarbons remains constant for 

repetition times (at least) down to 1.2xT1. Water diffusivity also, remains constant within 

the error range until ~2.5xT1, but then a small hump occurs at ~0.5xT1, where the 

diffusion value increases to 2.35x10-9 m2/s, as compared to that at 5xT1 which is 

2.21x10-9 m2/s. Strait-Gardner et al. (2008) measured the diffusion coefficient of 

semiheavy water (HDO) in deuterated water and observed a similar hump at ~0.5xT1, 

however, the diffusion coefficient increased up to ~10x10-9 m2/s as compared to that at 

5xT1 which was 1.9x10-9 m2/s. Although the authors managed to diminish this 

discrepancy in the diffusion value by including crasher gradients in the PGSE pulse 

sequence, the measured diffusion coefficient at the top of the hump was still high ( ~2.8 

x10-9 m2/s). 

 

 

Sample  T1  

(s) 

water 3.64±0.002 

cyclohexane 5.32±0.002 

cyclooctane 2.96±0.014 

S1-water 0.35±0.009 

S1-cyclohexane 2.95±0.006 

 S1-cyclooctane 2.14±0.014 
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Figure 8.4 Absolute diffusion coefficients of the bulk liquids, measured at 298 K. The error bars 

included in the figure are smaller than the symbols. The lines are shown to guide the eye 
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Figure 8.5 Relative diffusion coefficients of the bulk liquids found by dividing the absolute 

diffusion coefficients by the diffusion coefficients value measured for tr/T1=5, for each respective 
bulk liquid. The error bars are included. The lines shown are to guide the eye 
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Figure 8.6 Absolute diffusion coefficients of the imbibed liquids within a S1 pellet, measured at 

298 K. The error bars are included in the figure. The lines shown are to guide the eye 
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Figure 8.7 Relative diffusion coefficients of the imbibed liquids in the S1 pellet found by dividing 
the absolute diffusion coefficients with the diffusion coefficients value measured for tr/T1=5, for 
each respective imbibed liquid. The error bars are included in the figure. The lines shown are to 

guide the eye 
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The diffusion coefficient of water, cyclohexane and cyclooctane imbibed in S1 

mesoporous silica pellet are shown in Figures 8.6 and 8.7. It is seen that DPFG remained 

constant for the hydrocarbons as repetition time decreased down to 0.54xT1, whereas 

for the imbibed water, it was constant until 1.8xT1 and increased only slightly (~5%) for 

lower repetition times.  

 

The results observed for both the bulk and imbibed liquids suggest that when a BPP-LED 

pulse sequence is used, diffusion coefficients remain constant down to repetition times 

much lower than those predicted by the theory. In fact, for the bulk and imbibed 

hydrocarbons studied, the repetition time can be reduced to ~ 1xT1 with no significant 

change in the observed diffusion coefficient. For water, reducing the repetition time 

below 2-3xT1 results in small but significant deviations of the observed diffusion 

coefficient from the correct one. This means that the experimental time required for a 

PFG can be significantly decreased with confidence. This is especially important for the 

PFG measurements performed on hydrocarbons, such as cyclohexane, which has a high 

T1 relaxation time therefore the repetition time has to be increased to allow complete 

recovery of the magnetization vector into the z-axis, before the next gradient is applied. 

For example, when cyclohexane was imbibed into an S1 pellet, the experimental time 

required for a PFG experiment using a repetition time of 5xT1 (δ=0.002 s, Δ=0.05 s) was 

~20 min, but by reducing the repetition time down to 0.54xT1, the experiment was 

performed within 4 min. The results have also shown that the BPP-LED pulse sequence is 

less prone to diffusion errors at short repetition rates than the simple PGSE sequence. 

 

 

8.5 Conclusions 

 
In this chapter, it was tested the efficiency of the BPP-LED sequence to perform accurate 

diffusion coefficient measurement at fast repetition times has been tested. It was found 

that the repetition time in the bulk liquids studied can be reduced even below 2.5xT1, 

without inducing any major errors (<5%) in the calculation of the diffusion coefficient. 

Moreover, it was found that diffusivity within a S1 porous pellet, remains constant even 

when the repetition time decreases down to 1.8xT1. In the case of hydrocarbons, which 
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have a high T1 relaxation time, the diffusion coefficient did not vary until 0.54xT1. 

Therefore, the time required for diffusion experiments can confidently be reduced by 

significantly shortening the repetition time. This has the potential to speed up 

time-demanding experiments such as the cryodiffusometry experiments described in this 

thesis, along with a whole range of diffusion NMR experiments which have become very 

common in industry and academia. 
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Chapter 9 
Conclusions and proposed future work 

 
 

 
 
 
9.1 Conclusions 

 
In this work, the sensitivity and accuracy of gas sorption and NMR techniques for 

characterization of a void space were tested. The independent domain theory as applied 

to adsorption and cryoporometry melting, was studied by concomitantly using the 

cryodiffusometry and NMR relaxation techniques along the capillary condensation and 

evaporation branches of the isotherm. Further information on the sorption mechanism 

was obtained by adoption of an integrated N2-H2O-N2 experiment. The void space 

descriptors (surface area, pore size, pore volume) were also used further to investigate 

the structure-transport relationships in drug delivery systems, in order to interpret the 

drug release rates observed in simulated gastrointestinal fluids. Moreover, the efficiency 

of both techniques to characterize the void space of biodegradable polymer 

nanoparticles, synthesized to improve drug delivery into the brain, was investigated. The 

following subsections will provide the main finding of this work in more details. 

 

 

9.1.1 Probing cooperative effects in water vapour sorption and NMR cryoporometry  

 

The adsorption isotherm and melting curve from a gas sorption and NMR cryoporometry 

experiment, respectively, were used for derivation of pore size distributions emplying the 

assumption of thermodynamic independent pores. Gas desorption and pore freezing are 

prone to pore blocking effects that can lead to inaccurate calculation of pore sizes, and 

thus are not generally recommened for pore size estimations by IUPAC. Assuming that 

both adsorption and melting occur via a cylindrical type meniscus the BJH and 

Gibbs-Thomson equations are fouynd to be applied in the literature to convert the 

adsorption and melting curves into pore sizes. However, advanced adsorption and 

melting are known to occur (Esparza et al., 2004; Hitchcock et al., 2011), where the pore 
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fill and melt via hemispherical menisci initiated from the neighbouring pores. In this work 

it is suggested that gas sorption, NMR cryodiffusometry and relaxation techniques can 

concomitantly be used to study the onset and the progress of these advanced 

phenomena, at different pressures on the water sorption hysteresis curve. The study of 

the partially saturated samples allowed the stepwise identification of the critical pore 

sizes that greatly impact the advanced melting process in a fully saturated sample, and 

therefore produce uncertainty. The cryoporometry melting curves along with the PFG 

and T2 relaxation measurements at the end of the boundary melting curve showed that 

the onset of advanced melting, in a whole pellet S1 sample, is associated with an 

increased interconnectivity of the adsorbed ganglia and the filling of big pores. T2 

relaxation studies also showed that some big pores have already filled at lower pressures 

via advanced condensation and some small pore filled at higher pressures. Freezing 

scanning loops and curves initiated from a certain molten fraction on the boundary 

melting curve, and T2 measurements along the loops further showed that advanced 

melting becomes more severe as saturation increases and that the new pores filled 

change the melting mechanism of the previously filled pores. By fragmenting the sample 

the necks and bodies were separated, and the pores melted over a wider temperature 

range compared to the whole pellet sample, as shown by the cryoporometry melting 

curves, suggesting that (at least) part of advanced melting was curtailed. This was further 

supported by the shape of the scanning loops observed and the PFG and T2 results. 

Moreover, it was shown that freezing is governed by a percolation-controlled 

penetration of the freezing front via heterogeneous nucleation, for both the whole and 

fragmented samples, with additional supercooling effects in the absence of nucleation 

sites. Particle fragmentation, though, can lead to similar mechanisms of cryoporometry 

freezing and vapour desorption, once the pore blocking effects are removed. These 

findings overall suggest that by breaking into steps the sorption process, it was possible 

to detect the extent of the cooperative effects in both vapour sorption and NMR 

cryoporometry and show that gas sorption is a more sensitive technique to probe the 

real pore size distribution in disordered mesoporous systems.  
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9.1.2 Probing the cyclohexane sorption hysteresis  

 
The pore filling and emptying mechanism varies for different strengths of 

adsorbate-adsorbent interaction and the spatial arrangement of the adsorbate is also 

affected by the history of the pore filling/emptying processes. The hysteric and 

cooperative effects in gas sorption, influenced by the intermolecular interactions, were 

probed in this work via NMR cryoporometry and T2 relaxometry. Cryoporometry melting 

curves showed that the configuration of the liquid condensate varied with the amount 

adsorbed at corresponding positions on the adsorption and desorption branches of the 

hysteresis loop, suggesting that assumptions about single pore filling and emptying 

mechanism can be invalid. Subsequently, this means that the derived pore size 

distribution, based on these assumptions, is subject to major errors. Moreover, the 

reversible scanning loops proved that freezing and melting in some pores occurred via a 

retreating hemispherical meniscus, suggesting that some pores melted via advanced 

melting mechanism. The non monotonic relationship between condensation and pore 

size, as shown from the nearly constant T2 values measured at the end of the boundary 

melting curves when the pressure is raised, is evident of some advanced condensation 

taking place at low pressures, whereas higher T2 values measured for the systems 

saturated via desorption, showed that pore blocking effects have prevented the 

emptying of some big pores. The presence of advanced adsorption and pore blocking 

effects were further proved via the sorption scanning curves. These findings show that 

both cryoporometry and cyclohexane sorption are influenced by cooperative effects. 

Hence, care must be taken when converting an adsorption or melting curve into a pore 

size distribution as equilibrium adsorption via cylindrical menisci (or spinodal 

condensation), or independent melting, respectively, may not be the only mechanisms 

taking place. 

 

 

9.1.3 Testing independent (single) pore theory and the cause of hysteresis via an 

integrated N2-H2O-N2 experiment 

 

The aim of this work was to compare the mechanism of water sorption to that of 

nitrogen, and to test the validity of the Cohan and DFT approaches to explain the real 
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cause of hysteresis, as such the real pore size distribution derived from the sorption 

curves, by applying either these approaches. The Kelvin-Cohan equations are based on 

macroscopic approaches assuming that the gas and liquid phases are in equilibrium, 

thereby the cause of hysteresis is due to the different geometry shapes of the menisci 

developed during adsorption and desorption. The relative pressures in desorption and 

adsorption are related by a power of 2. However, these equations were suggested not to 

be applicable for pores greater than 10 nm. The DFT model assumes spinodal adsorption 

and equilibrium desorption processes in open cylinders, arising from the differences in 

the gas-liquid-solid interactions, but this method has been calibrated from standard 

materials, of known surface chemistry and it has been validated only for ordered 

materials (MCM-41 and SBA-15) thought to fill and empty like independent pores. The 

DFT method (Neimark and Ravikovitch) predicts that for pore sizes between 10-20 nm 

the relative pressures in desorption and adsorption are related by a power of 1.8. 

However, Hitchcock (2011) performed an integrated N2-Hg-N2 experiment in a S1 sample 

and found that pores occupied by mercury filled and emptied with nitrogen like 

independent pores, but the relative pressures were instead related by a power of 1.5, 

proving that the DFT method is not always valid or the interactions parameters are rather 

more sample specific than thought. From the integrated N2-H2O-N2 experiment it was 

shown that the pores which were not filled with water, behaved like independent pores 

and the relative pressures in the adsorption and desorption processes were related by a 

power of 1.8. However, FHH fractal analysis showed that the pore surface where N2 

adsorbed, was wetted by water molecules, thereby additional intermolecular 

interactions were developed between the nitrogen, ice and silica. Moreover, when the 

pellets were fragmented, and the pore blocking effects in desorption were curtailed, the 

relationship between the nitrogen desorption and adsorption relative pressures, taking 

place in a non-partially saturated sample, became a power of 1.65. These findings show 

that the DFT model can predict the hysteresis width in the S1 sample, only when the 

surface chemistry of the silica is modified, suggesting that the DFT model needs further 

calibration before it is applied for the calculation of PSD in disordered porous material. 

Moreover, it was shown that water adsorption took place in some big pores, which 

nitrogen would fill at higher pressures, suggesting that the water and nitrogen filling 

mechanisms are not the same, with water adsorption exhibiting more severe advanced 
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phenomena within the relative pressure range studied. Furthermore, water 

pre-adsorption in the pores promoted independent pore filling with nitrogen into the 

remaining pores, which previously (at least some of them) would be influenced by 

cooperative effects in adsorption and desorption. In summary, these findings proved 

experimentally that water and nitrogen sorption mechanism are different, and that 

Kelvin and DFT models are not valid for disordered materials with a PSD between 

15-20 nm such as that used in this work. 

 

 

9.1.4 Structure-transport studies for interpretation of CsA release profiles 

 
The aim of this work was firstly the pore characterization of two types of silicas, one 

templated with Lutrol (F127) and one templated with casein. These materials were used 

for encapsulation of CsA protein, in order to improve its dissolution in the 

gastrointestinal fluids. The in-vitro release studies in simulated fluids, showed that CsA 

release rate from the Lutrol and casein templated silicas differed between silicas and the 

release medium. Therefore, the second aim of the work was to investigate the influence 

of the structure-transport relationships of these porous media on the CsA release profiles 

obtained, taking also into account the size of the particles, and the local environment. 

The gas sorption and NMR cryoporometry studies showed that both silicas were 

mesoporous, with a high micropore volume and the PFG NMR measurements showed 

that the pore connectivity in Lutrol silicas was higher. The SAXS results showed a possibly 

cubic structure for Lutrol silicas and a wormlike structure for the casein silicas. Taking 

into account the porosity, pore size, tortuosity and particle size, different diffusion 

models were applied into the release profiles. It was found that CsA release was 

governed by Fickian diffusion, where the major factor controlling the release was the 

particle size of the silicas. Moreover, it was found that the pH of the environment 

affected the silicas dissolution itself, thereby contributing into the release rate of the 

CsA. Also, the presence of surfactant micelles in the gastric fluid, to mimic the role of the 

bile salts in the gastric area, might have enhanced further solubility of the CsA by either 

penetrating into the silicas through the pores, or by prolonging the chains into the 

entrance of the pores, thus transporting the protein outside the pores.  To sum up, the 

studies suggested that the pore characteristics alone, only slightly influenced the CsA 
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release rates of CsA. The process was mainly controlled by the particle size and the 

release medium. 

 

9.1.5 Optimization of PLGA nanoparticles for convection-enhanced drug delivery into 

the brain 

 

PLGA NPs are biocompatible and biodegradable polymer systems which can potentially 

be used as drug delivery systems when controlled and sustained release is required.  

Therefore, their applicability as carriers of therapeutic and fluorescent agents via 

convection-enhanced delivery into the brain was tested in this work. To prevent the 

catheter blockage and ensure high volumes of distribution in the brain, the radius of the 

NPs had to be less than 100 nm and the charge had to be negative. For their optimization 

different synthesis methods and experimental conditions were initially tested for the 

formation of drug-free NP and the most promising conditions were used for 

encapsulation of hydrophobic (NR) and hydrophilic fluorescent (TFMU, Rdh) model drug 

molecules. This was done to investigate their location via imaging techniques, after their 

in-vivo infusion into the mice brain and their in-vitro uptake by the glioma cells. It was 

found that the dialysis method led to formation of NPs with the morphological 

characteristics required and with high NR loading efficiency. The in-vivo and in-vitro 

studies showed that a large distribution volume of NPs, and as such model drug in the 

brain, was achieved as opposed to the free NR which was attached into the brain tissue 

around the injection site only. The NR loaded NPs remained in the brain at least 24 h post 

infusion and the cell studies showed that they were taken up by the glioma cell, without 

causing cell death. These finding suggest that these formulations can be used as potential 

drug carriers via CED. However, the method needs further improvement to increase the 

loading efficiency of real hydrophobic drugs, such as Paclitaxel. Moreover, the 

encapsulation of hydrophilic molecules was found to be low, due to weak interactions 

with the hydrophobic PLGA polymer chains and rapid diffusivity of the molecules with 

small molecular weight through the dialysis bags. For example 5-FU loading was very low 

as measured by the UV-vis spectrometry technique. Conjugation of hydrophilic PEG 

groups into the PLGA polymer, increased the encapsulation of the hydrophilic TFMU via 

the dialysis method although the size of the particles was big. In-vitro cytotoxicity studies 
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in the cells also showed that hydrophilic NEP was not efficiently loaded in the NPs or at 

least in concentrations with therapeutic activity. The other methods, such as 

nanoprecipitation and the simple mixing were more efficient for encapsulation of TFMU 

molecules although their size or charge was not the desirable one. The in-vitro release 

studies of TFMU from the NPs in PBS, showed that all the NPs exhibited a burst release at 

the early times, however, the release from the bigger NPs extended over longer periods 

of time, indicating that TFMU release from the NPs is possibly driven by the size of the 

particles, rather than the evolution of the internal polymer matrix. On the contrary, NR 

was not released from the NPs in the AcSA medium, within 1.2 months probably due to 

the high hydrophobic interactions with the polymer, and the absence of polymer 

degradation in the period of time studied. The gas sorption and TEM imaging techniques 

were not sensitive to detect any possible porosity in the NPs synthesised via dialysis. 

NMR cryoporometry was further adopted to probe the structure of the polymer matrix 

and its evolution in pure water with time, which is thought to contribute into the drug 

release rate. From the melting curves obtained it was not certain whether the change in 

the structure was caused by the freeze/thaw cycles which may affect the NP structure, or 

due to interparticle rather than intraparticle water. Summarizing, the studies showed 

that dialysis method can potentially be used for formation of NPs for 

convection-enhanced drug delivery, although the method requires further improvement 

to increase the loading efficiency of real drugs. Moreover, the pore characterization 

techniques were not sensitive enough to provide information about the internal 

structure of the NP. 

 

 

9.1.6 Reducing the experimental time of a PFG NMR experiment 

 

The PFG NMR experiments in this thesis took a substantial amount of time because the 

(recycle) delay time required for ~99 % of  the magnetization to be recovered from the x-

y plane onto the z-axis between two successive scans, is at least 4.6xT1. This was done to 

obtain accurate PFG values. In this part of work, the PFG values of bulk and imbibed (into 

a porous S1 pellet) water, cyclohexane and cyclooctane, were measured at at repetition 

times between 0.1xT1 and 5xT1. It was shown that the PFG values of the bulk liquids were 
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constant down to 2.4xT1 and 1.8xT1 for the water and hydrocarbons, respectively. For the 

fast relaxing imbibed fluids the repetition time could be reduced even lower, down to 

~0.54xT1. These findings suggest that the time of the PFG experiments can be reduced 

with confidence by ~80% if the BBP-LED sequence is used. 

 

 

9.2 Proposed future work 

 
This section will discuss some possible experiments to be carried out in the future based 

on the findings in this thesis. 

 

9.2.1 Comparing the influence of the meniscus geometry and surface chemistry for 

nitrogen condensation via an integrated N2-H2O-N2 experiment 

 

Integrated experiments involving two successive adsorbates can be used to isolate pores 

with certain characteristics and study them separately. When a S1 pellet sample is 

partially saturated with water via adsorption, a part of the adsorbed phase resides in the 

completely filled pores, whereas another fraction remains on the pore walls as puddles 

or films with non-uniform thickness. The former type of pore water is expected to create 

dead ends in the neighbouring pores, where nitrogen will condense at lower relative 

pressures than those in the absence of these dead ends. The latter type of pore water 

will (further) change the microscopic interactions developed at the silica-ice-nitrogen 

interfaces and as such change the wetting angle in both adsorption and desorption 

mechanisms. To study these effects separately, it is proposed that an integrated 

experiment is run for the S1 material when the sample is partially saturated with water 

up to a few monolayers where there are no completely saturated pores. If the nitrogen 

adsorption curve post-water saturation occurs over a narrower pressure range than that 

pre-water saturation, then it must mean that the surface wetting properties are more 

severly changing the adsorption mechanism, compared to those generated by advanced 

adsorption from the created dead end pores. 
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9.2.2 Studying the effect of pore connectivity into water and nitrogen sorption via an 

integrated N2-H2O-N2 experiment 

 

From cryoporometry NMR experiments it was found that less advanced melting and 

advanced condensation occurred when the pellet sample was fragmented. This was 

because the S1 pellet has macroscopic heterogeneities in the spatial distribution of the 

pore size, leading to advanced melting effects which were curtailed after the sample 

fragmentation. It would be thus of interest to investigate the water sorption mechanism 

in the fragmented S1 sample via equilibrium adsorption and compare it to that of 

nitrogen. Then, an integrated N2-H2O-N2 sorption experiment can be performed when 

the sample is partially saturated with water, following the experimental procedure 

described in Chapter 5. 

 
 
 

Table 9.1 Pore volume and surface area of the fragmented S1 pellet sample, pre and post partial 
saturation with water at water relative pressure of 0.91. The values in brackets correspond to the 
whole pellet sample, presented in Table 5.1 
 
 
 

 Table 9.1 shows some preliminary findings for this type of experiment. It is seen that the 

pore volume of the fragmented sample which is occupied with water is less than that 

occupied in the whole pellet sample, implying that advanced adsorption for water is 

reduced. However, nitrogen adsorption post partial saturation with water occurred over 

a very narrow relative pressure range as seen from Figure 9.1. This is expected to occur 

when water condensation creates dead ends into the empty neighbouring pores, 

enhancing advanced adsorption of nitrogen into these empty pores.  These dead ends 

formed at both sides of the water filled pores, can initiate advanced adsorption for 

nitrogen into both the adjoining empty pores, and therefore they will fill at lower 

pressure via the hemispherical menisci. 

Measurements 
Adsorbate occupying 

the pores 

V0 

(cm
3
/g) 

SBET 

(m
2
/g) 

Vm 

(cm
3
(STP)/g) 

Pre water Nitrogen 0.89  (0.89) 198.43 (199.2) 46.12 (46.3) 

Nitrogen 0.60 (0.29) 71.46 (25.2) 16.51 (5.9) 
Post water 

Water 0.3 (0.51)   
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Figure 9.1 Nitrogen adsorption and desorption isotherms of the fragmented S1 sample pre-water 
saturation, along with the adsorption isotherm post-water saturation. The arrows show the 

direction in the change of the pressure 
 

 
 

 

9.2.3 Probing the location of CsA in the pores of Lutrol and casein templated silicas 

 

From the CsA encapsulation and release studies, it was not clear in which pores CsA was 

encapsulated. Therefore the accomplishment of an integrated N2-CsA-N2 and a 

CO2-CsA-CO2 sorption experiments in both casein and Lutrol templated silicas are 

proposed. In detail, a N2 sorption experiment (77.3 K) in the drug free silicas could be run 

to probe the total pore volume, the pore size distribution and the specific surface area of 

the porous silicas. Afterwards, the samples can be loaded with CsA as previously 

described in the experimental section. Another nitrogen sorption experiment following 

CsA loading, could then be run on the same sample. The difference observed on the pore 

volume, PSD and surface area pre- and post-CsA loading will be attributed to the space 

occupied by CsA and as such would provide information about the location of CsA in the 

pores. Also, an additional fractal analysis may show the way CsA resides on the surface of 

the pores. If the pore surface roughness is retained or smoothened, then it will mean 

that the protein adsorbed on a ‘layer-by-layer’ form. However, if the roughness increased 
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this would mean that protein-protein attractive interactions dominated the protein-silica 

ones. Moreover, as the silica particles showed a high microporous volume, CO2 

adsorption (273 K) pre and post CsA loading can be run. CO2 is also a useful adsorbate 

due to its ability to get adsorbed on the amine sites. Therefore CO2 is expected to adsorb 

on the amine groups of the CsA and as such produce a better understanding of any CsA 

located in the micropores.  

 

 

9.2.4 Synthesis of PLGA NPs for magnetic resonance imaging (MRI)  

 

PLGA NPs synthesised in this thesis were loaded with fluorescent agents (NR, TFMU) in 

order to trace their location in the mice brain post CED. The volume of NP distribution in 

the brain was then estimated as follows. The brain tissue, where the NPs were infused 

via a catheter, was sliced into layers of equal thickness and each layer was then placed 

into a fluorescence microscope to detect the tissue surface covered by NPs. The surface 

and the depth of the tissue that NPs diffused through were then converted via a software 

to a volume of distribution. However, this method is time consuming and it may 

underestimate the value of the volume of distribution. Therefore it is proposed the use 

of T1 or T2-weighted MRI technique, to probe the location of the PLGA NPs in the brain, 

without the need of tissue slicing. For this the NPs have to be loaded with a contrast 

agent which decreases either the T1 or T2 relaxation time of the water on the site of the 

brain where they are delivered into. For example gadolinium-based contrast agents (Gd) 

contain a paramagnetic centre which binds into the water molecules and reduces mainly 

the T1 relaxation at the site where it is delivered. Gd3+ ion is toxic as a free ion, therefore 

chelated compounds such as gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) 

are used, which can be delivered as bulk solutions or alternatively they are encapsulated 

into polymer particles for more controlled release (Chen et al., 2005). Usually Gd is either 

loaded in the particles via w/o/w synthesis method or it is conjugated in the polymer 

chains in advance, before particle formation. As dialysis method led to formation of NPs 

with the size and charge required for successful CED into the brain, the same method is 

thus suggested for the synthesis of PLGA NPs for MRI studies. The contrast in the MRI 

procedures is generated by the morphological changes in the tissue, and not by specific 
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intermolecular interactions between Gd and the damaged tissue. As via CED the NPs are 

delivered directly into the damaged tissue, the Gd-loaded NPs will provide further 

information of which part of this tissue is covered by NPs and potentially the exact 

location of the drugs. 
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Appendices 
 
 

Appendix A1 Examples of log-attenuation plots from a T2 and a PFG NMR experiment  

 

Figure A1.1 shows an example of a log-attenuation plot for the data from a T2 

relaxometry experiment, from the partially saturated at relative pressure 0.84. Figure 

A1.2 shows an example of a log-attenuation plot of a PFG-NMR experiment. Both graphs 

show monoexponential decay, implying that there is no exchange between the liquid and 

vapour phase of water within the pores, at very low saturation levels. 
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Figure A1.1 Log-attenuation plot of data from a T2 relaxation experiment conducted on the 100% 

molten fraction of the single S1 pellet, at 273 K. The sample was saturated at P/P0=0.84, 294 K. 
The solid line shows the fit to equation 3.1 
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Figure A1.2. Log-attenuation plot of data from a PFG experiment (Δ=0.15 s and δ=0.002 s) 

performed for pellet 1. The sample was partially saturated at P/P0=0.84 and the diffusion value 
was measured 273 K when the sample was completely molten. The raw data (diamonds) are 

fitted to equation 2.10 

 
 
 
Appendix A2 Calculation of errors 

 

 A2.1 Levenberg-Marquardt error analysis  
 
The error in the T2 relaxation values and the diffusion coefficients from the data fitting 

into one or two component model are determined from non-linear curve fitting function 

using Origin program. The standard error for each of the fitting parameters is calculated 

within the fitting process via the Levenberg-Marquardt algorithm. The aim of the method 

is to minimise the reduced Chi-squared, X2, as follows: 

 

2

1

2 ][
1

i

n

i
iij EYw

DoF
X −= ∑

=

                                         (A2.1) 

 
where wij is the weight of the experimental points (taken as unity) , Yi are the raw data 

collected, Ei are the values predicted by the model and DoF represents the degrees of 

freedom, calculated by: 

DoF=neff - nprm                                                             (A2.2) 
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where neff is the total number of the experimental data points and nprm is the number of 

the parameters fitted into the model.  

 

The error in the calculation of the free diffusion coefficient of bulk water at low 

temperatures was estimated by Perkins (2009) to be 3% of the calculated value, whereas 

the diffusion coefficient of the diffusion coefficient of water in the pores was estimated 

by the Levenberg-Marquardt algorithm from Origin. Both these errors were combined for 

the estimation of the total error in the tortuosity, e(τp), via the following equation: 
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where e(DPFG) is the error of the diffusion coefficient of water in the pores, and e(Db) is 

the error of the free diffusion coefficient in the bulk water. 

 

 
A2.2 Standard deviation error (SD) 
 
This method was used to discriminate the true change in the incremental volume of 

nitrogen from that attributed to noise, in Chapter 5. Also, it was used to estimate the 

error in the average concentration of CsA released, measured via HPLC, the average 

particle size of the silicas and PLGA NPs measured via DLS, and the average zeta potential 

measurements.  

 

The SD method is indicative of how spread out the numbers are, by using as a measure 

the squared differences of the values from the mean value. For this, the following 

algorithm is applied: 

( )
N

N

x
x
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N
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2

12

2σ                                                     (A2.4) 

 
where σ is the SD error for a population N of values x. 
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A2.3 Cumulative error in a gas sorption experiment  
 
Gas sorpion studies performed with ASAP 2020, have an error in the volume adsorbed of 

±0.30 cm3/g, at each pressure point. This is because at each pressure point, successive 

doses of gas are introduced into the sample, until the system reaches its equilibrium and 

the change in the adsorbed volume between two doses is lower than 0.30 cm3/g. The 

cumulative error, ΔΕ, in the total volume adsorbed is a summary of the errors at each 

pressure point and it is calculated as follows: 

 

ΔΕ=(ΔΑ
2
+ΔΒ

2
+…)

1/2 
                                                      (A2.5) 

 
where ΔΑ, ΔΒ, etc are the errors at each pressure point. 

 
 
Appendix A3 Conversion of the relative pressure of water into relative pressure of 

nitrogen  

 
Capillary condensation in the pores is predicted by Kelvin equation, expressed as follows: 
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RTr
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0

ln                                                     (A3.1) 

 

For saturation with water at 294 K, γ=72.8 N/m, T=294 K and VM=18 cm3/mol. For 

saturation with nitrogen at 77.3 K, γ=8.85 N/m, T=77.3 K and VM=34.6 cm3/mol. By 

substituting these values into equation A3.1 for both nitrogen and water, and by dividing 

the relations obtained, the relative pressure of water can be converted into nitrogen 

relative pressure as follows: 
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Appendix A4 Background theories  

 

A4.1 Small angle X-ray scattering (SAXS) 
 

Small angle X-ray scattering technique is applied for characterization of small structures 

on the regime of 10-100 nm. X-ray radiation, having a typical wavelength range of ~1 Å, is 
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used to interact with the matter and scatter towards all directions. There exist two types 

of scattering; the Compton (or incoherent scattering) and Rayleigh (or coherent 

scattering). The former is produced when photons interact with the electrons of the 

matter but are bounced away, leading to a loss of energy and therefore does not carry 

any structural information about the material. The latter is produced by photons colliding 

onto the electrons, initiating their oscillation at the same frequency as the radiation 

beam and emitting radiation containing all the structural information of the material. 

These re-emitted waves, interfere with one another constructively or destructively 

producing a diffraction pattern. Bragg diffraction is produced for constructive 

interference and can be represented in a simple model presented in Figure A4.1 

 
 

                                 
Figure A4.1 Representation of Bragg’s diffraction of two X-ray beams, from two parallel plans of a 

crystal lattice 

 

Here the X-ray beams (with identical wavelength) approach a crystalline solid, exhibiting 

high lattice periodicities and consisting of parallel plans separated with a spacing d. They 

will then both scatter, with the lower beam having a path length of 2dsinθ. When this 

length is equal to an integer multiple (n) of the wavelength radiation (λ), constructive 

interference occurs and it is described by Bragg’s law: 

 
θλ sin2dn =                                                            (A4.1) 

 
Where, θ is the angle (<2° for small angle scattering) between the beam and the 

scattering planes as depicted in Figure A4.1. An alternative expression of equation A4.1 is 

equation A4.2 which correlates the diffraction angle to the wavevector, q: 

 

d 

dsinθ 

θ 

θ 

θ 

θ 
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λ
θπ sin

4=q                                                           (A4.2)                               

where  
q=2π/d                                                                 (A4.3) 

 
The scattering pattern observed is dependant on the electron density of the species and 

as such contains information about individual molecules (ie polymer chains, lipid 

molecules) or bigger aggregated moieties (ie polymer micelles, liposomes). The scattered 

intensity I(q) of the particles present in a solvent is shown by the following relationship: 

 

backgroundqSqPNVqI +∆= )()()()( 22 ρ                             (A4.4) 

 
where N and V is the number and the volume of the particles, Δρ is the difference in the 

scattering length density between the particle and the solvent, P(q) is the scattering of a 

single particle, S(q) is the structure factor due to interparticle interactions (=1 for dilute 

systems) and the background is the scattering arising from the solvent itself.  

 

As scattering occurs at the boundaries between phases with differences in electron 

density, in a porous inorganic system diffraction occurs between the planes containing 

the pores and on the surface of the pores. Therefore it is possible to study the lattice 

structure and pore surface roughness on the low and high q range, respectively. The 

pores can be arranged in an amorphous, worm-like, lamellar, hexagonal or cubic 

structure defined by the Miller indices (h, k, l) at each diffraction peak. The d-spacing, in a 

porous system is calculated from the 1st order diffraction peak via equation A4.3 and it is 

characteristic of the space between the centres of the pores.  For a cubic system the unit 

cell value, a,  is equal to the d-spacing of the 1st order peak but for a 2D-hexagonal phase 

the distance between the pore centres is the d-spacing x 2/√3. 

 

 

A4.2 High Performance Liquid Chromatography (HPLC) analysis 
 
The CsA concentration present in the collected aqueous solutions was determined using 

a Surveyor PlusTM HPLC system from Thermo Electron Corporation. This analysis was 

performed using a Hypersil Gold 5 μm x 4.6 mm x 150 mm size exclusion column, from 

Thermo Scientific, on the HPLC device. The column used has a pore size of 175 Å, suitable 
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for measuring peptides up to 2 KDa. For each run, a mobile phase consisting of a 

EtOH/H2O mixture was used, at a flow rate of 3.5 ml/min. Each run duration was 16 min 

with the mobile phase being ethanol/water 60:40 v/v for the first 4 min, and then 

gradually linearly increasing the concentration of EtOH to 100% until the 12th minute of 

the run. In the remaining 4 min, the volume fraction of EtOH was decreased gradually 

back to the initial ratio of 60:40 v/v, and was maintained as such until the end of the run. 

A calibration curve for CsA solubility in EtOH as measured by HPLC was produced using as 

standard concentrations 5, 10, 25, 50, 75 and 100 μg/mL of CsA in EtOH. The curve 

obtained is presented in Figure A4.2. 
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Figure A4.2 CsA standard calibration curve obtained by HPLC 

 
 
 
A4.3 Circular Dichroism (CD) 
 

As casein conformation is expected to influences its templating activity, circular 

dichroism (CD) was used to determine the peptide backbone structure (Whitmore and 

Wallace, 2008) under the templating experimental conditions. Although casein was 

initially dissolved in acetic acid solution at pH 2, addition of silica precursor will increase 

the pH to 2.5. Therefore CD spectra are recorded at both pH values. The results are 

compared to the casein structure at neutral condition.  For this CD spectra were obtained 

in the far UV range (180-250 nm). The scans were recorded using a ChirascanTM circular 
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dichroism spectrometer from Applied Photophysics. The casein solution was placed in a 

quartz cell of 0.5 mm path length to be scanned with a step size of 1 nm bandwidth, 3 s 

time per point and 3 repeats. The solutions were prepared at a concentration of 

0.5 mg/ml of sodium casein. For each pH, the background scans of acetic acid were 

removed from the sample scans. The recorded results are presented in Figure A4.3.  

 

 
Figure A4.3 Far-UV CD spectra of sodium casein in media with a) pH 7 and b) pH 2 and pH 2.5. 

The ellipticities are expressed in (deg cm2 d/mol) 

a pH=7 

pH=2 
pH=2.5 

b 
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In Figure A3a it is seen that CD spectra of casein at pH 7, exhibits a large negative 

ellipticity at ~208 nm, a positive ellipticity at ~190 nm and a small negative ellipticity at 

~222 nm, which are indicative of an α-helix structure. However, the transition seen at 

~222 nm is not very clear, suggesting that there is a large degree of disorder in the 

structure, arising from the different structures of α- (mainly helix), β- and κ-caseins 

(mainly random coils). From Figure A3b it is seen that casein structural elements at pH 2 

are completely replaced by random coils. This is shown by the weak minima of the 

spectrum at ~230 nm with no ellipticities at ~190-208 nm which would be characteristic 

of α-helix or β-sheet/turn. At pH 2.5, only slight conformational changes are observed 

with casein, suggesting that addition of sodium silicate does not affect the overall 

structure of sodium casein-the conformation remains a random coil. Similar variations in 

protein conformation from helix to random coils, with decreasing pH from 2.5 to 1.5, 

were found by Chakraborty and Basak who studied each type of casein separately 

(Chakraborty and Basak, 2007). 

 
  
A4.4. Fourier transform infrared spectroscopy (FTIR) 

 
Initially, the final amount of dry silica obtained for each template used was measured 

gravimetrically. This amount varied slightly between batches but it could be assumed as 

approximately 2.5 g of dried silica. The sodium silicate solution used has ~17% of SiO2, 

meaning that there is 2.6 g of SiO2 in the 15.3 g used to prepare the batches. This 

corresponds to 96% efficiency of the method. 

 

Infrared spectroscopy was then adopted to confirm amorphous silica formation for both 

templated particles. For this FTIR experiments were performed on drug-free silica 

particles after calcination. Also, FTIR spectrum was recorded to study the CsA 

conformation when deposited on the silicas. This can be either amorphous or, crystalline 

or, a mixture of both, and conformations may appear as changes in the FTIR spectra due 

to a particular H-bonding pattern. For this reason, we attempted to acquire FTIR spectra 

for CsA in situ (loaded in the silicas). However, the contributions from silica in the IR 

region were far greater than the contributions from CsA, and further analysis was not 
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possible (data not shown). FTIR spectra, though, were recorded to characterize bulk 

cyclosporin before (as purchased) and after re-crystallization in absolute ethanol. This 

was done to detect any alteration into the drug structure during the loading process into 

the silica particles. For this CsA loaded silica particles were initially sonicated in ethanol 

to collect all the encapsulated drug and then, the suspension was left until all the ethanol 

was evaporated and the dry re-crystallized CsA was obtained. The measurements were 

performed a Thermo-ScientificNicolet iS10 FT-IR Spectrometer, in the range of 400-

4000 1/cm. The Smart iTR accessory allows the reading of samples without the need of 

mixing a potassium bromide pellet with the sample. For each sample the mean of 16 

consecutive readings was calculated. 

 

The recorded IR spectra for the dry silicas are shown in Figure A4.4. Spectra from both 

silicas display a peak around 1100 1/cm which can be representative of the formation of 

siloxane bonds in the Si-O-Si condensed silica network and a peak around 800 1/cm 

indicating Si-OH stretching, indicative of an amorphous silicon network. 

 

 

 
Figure A4.4 FTIR spectra of a) Lutrol (F127) and b) sodium casein templated silicas 
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Figure A4.5 FTIR spectra of a) purchased and b) re-crystallized CsA recovered from absolute 
ethanol dissolution 

 
 
The data for the purchased and re-crystallized CsA are shown in Figure A4.5. Here the 

characteristic bands for the amide-I and ester groups are examined. The amide-I bands 

ranging between 1600-1700 1/cm are particularly important in protein IR spectroscopy 

due to the fact that they are native to all proteins and influenced by secondary structure, 

without being strongly influenced by side chains (Ganim et al., 2008). In this study the 

FTIR spectrum for bulk CsA re-crystallized from ethanol, displays an intensity for all peaks 

similar to the spectrum of the purchased bulk CsA. The position and shape of the peaks, 

particularly that for the β sheet structure absorption band near 1625 1/cm remains 

unaltered. Therefore, the dissolution of CsA in ethanol for loading into the mesoporous 

silicas did not degrade the peptide structure. 
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Appendix 5 Experimental results 

 
A5.1 Synthesis of PLGA- PEG copolymer 
 
Carboxylate-functionalized PLGA-PEG co-polymer was synthesized by conjugation of acid 

ended PLGA into NH2-PEG-CH3 as proposed by Cheng et al., (2007). Specifically, 5 gr 

(0.105 mmol) PLGA-COOH (Purac, MW:47,581 g/mol, PD: 1.65, GPC, THF and 

lactic:glycolid acid=1:0.84, 1H-NMR, 300 MHz, CD3CN) was dissolved in 27ml dehydrated 

DCM and converted into PLGA-NHS in the presence of 47.43 mg (0.412 mmol) NHS and 

70.73 mg (0.45 mmol) EDC. PLGA-NHS was then precipitated in 5ml dehydrated ethyl 

ether and washed at with ice-cold 50/50 mixture of MeOH/ethyl ether. The precipitate 

was dried under vacuum for 3hrs. Thereafter, 1 gr (0.021 mmol) of PLGA-NHS were left to 

dissolve overnight in 8ml dehydrated CHCl3. To this, 0.298 mg (26.3 μmol) NH2-PEG-CH3 

(MW:11,300 g/mol) was added in the presence of 10.097 mg (0.078 mmol) DIEA and 

stirred for 12 hrs. The CH3-ended PLGA-PEG copolymer was precipitated and washed 

with ice-cold MeOH to remove any unreacted PEG and then dried under vacuum. There 

was 50.1% wt. product yield and the resulting copolymer was stored at -20 oC for 

nanoparticle formulations. PLGA-PEG polymer was characterized with regard to its 

composition by 1H-NMR and its Mn and MW distribution, PD=MW/Mn, by gel 

permeation chromatography (GPC).  

1H NMR (CD3CN, 300 MHz) (Figure A5.1): δ 1.5 [d, (OCH(CH3)C(O)OCH2(CO))x–

(CH2CH2O)y], 3.6 [s, (OCH(CH3)C(O)OCH2(CO))x–(CH2CH2O)y], 4.8 [m, 

(OCH(CH3)C(O)OCH2(CO))x– (CH2CH2O)y],  5.2 [m, (OCH(CH3)C(O)OCH2(CO))x– (CH2CH2O)y].  

The CH, CH2 and CH2CH2 groups are representative of the lactic, glycolic, and PEG 

monomers, respectively. It was found that in the PLGA-PEG conjugated polymer, the 

lactic:glycolic:PEG monomer ratio is  1:0.84:0.05 (i.e. for every 100 groups of lactic there 

exist 84 groups of glycolic and 5 groups of PEG). This was calculated by taking the ratio 

between the integrated spectrum intensity at 5.2, 4.8 and 3.6 ppm, for lactic acid, 

glycolic acid and PEG, respectively. The MW of PLGA-PEG was 27,171 g/mol and PD=1.72, 

which is smaller than the starting PLGA polymer used for conjugation, or the sum of the 

starting PLGA (47,581 g/mol) and PEG (11,300 g/mol) polymers, and the literature report 

itself (Cheng et al., 2007). This shows that the PLGA or/and PEG polymer chains broke in 

one of the synthesis steps, and this is due to an interplay of the polymerization 
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conditions adopted (i.e. reactions time, polymer purity) (Beletsi et al., 1999). The 

synthesis of PLGA-PEG polymer was only done once, and the same polymer was used for 

all the NP formulations in this thesis. 

 
 
 
 

 
 

Figure A5.1 1H NMR (300MHz) spectra for NH2-PEG-CH3 and PLGA-COOH polymers and 
conjugated PLGA-PEG copolymer 
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A5.2 Gas sorption studies for PLGA NPs 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure A5.2 Nitrogen sorption isotherm (77.3 K) of PLGA NPs synthesized via dialysis method in 

DMSO. The high nitrogen uptake above P/P0=0.96 corresponds to the interparticle nitrogen 
condensation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure A5.3 Krypton adsorption isotherm (77.3 K) for PLGA NPs synthesized via dialysis method in 

DMSO 
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A5.3 Calibration curves from UV-vis and fluorescent spectroscopy studies 
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Figure A5.4 Calibration curves for a) 70 kDa and b) 150 kDa FITC-Dextran in ultrapure water 

measured fluorimetrically (wavelength excitation: 495nm, emission: 505nm) 

 

 

 

 
 
 



Appendices 

 289 

y = 8E-05x

R2 = 0.9987

0

20

40

60

80

100

120

140

160

180

200

0.0 0.5 1.0 1.5 2.0 2.5 3.0
IAbs <337nm>

C
 (

μ
M

)

y = 2.93E-02x

R2 = 9.99E-01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.0 0.5 1.0 1.5 2.0 2.5
Iabs <553nm>

C
 (

m
M

)

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure A5.5 Calibration curve of TFMU dissolved in DMF measured via UV-vis spectroscopy at 

337 nm absorbance wavelength 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure A5.6 Calibration curve of Nile Red dissolved in DMSO measured via UV-vis spectroscopy at 

553 nm absorbance wavelength 
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A5.4 Size of PLGA NP after freeze-drying measured by DLS 

 

Polymer/solvent Loaded agent 
Mean particle size, 

r±SD(nm) 

RG504/DMSO - 114.8±0.8 

RG504/DMSO NR 108.3±1.5 

RG504/DMF - 133±20.1 

RG504/DMF NR 141.2±17.8 

RG504H/DMSO NR 164.60±4.1 

RG504H/DMF - 120.48±5.7 

RG504H/DMF NR 129.8± 2.5 

RG504 (0.05% PVA) /DMSO Paclitaxel 140±0.02 

RG504 (0.1% PVA) /DMSO Paclitaxel 151.9±9.2 

RG504/DMSO TFMU 179.9±4.1 

RG504/MeCN TFMU 167.1±7.4 

RG504/DMF TFMU 132.4±2.8 

RG504H/DMF TFMU 167.2±3.8 

RG504/DMSO 
FITC-Dextran 

(70 kDa) 

108.0±0.3 
 

RG504/DMSO 
FITC-Dextran 

(150 kDa) 

95.71±0.4 
 

Table A5.1 Size of nanoparticles synthesized via dialysis, with and without loaded agent, after 
freeze drying  

 

 
A5.5 Composition of AcSF  

 

The AcSF was composed of the following salts: sodium (148 mM), potassium (4.02 mM), 

magnesium (1.22 mM), calcium (1.36 mM),  chloride (133.8 mM), phosphate  (0.58 mM), 

sulfate (1.22 mM), and bicarbonate (22 mM) 
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