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Summary

This thesis is concerned with exploring how cell heterogeneity and drug resistance can
cause long term persistence of HIV. We examine models of multiple viral strains to as-
sess the impact of drug resistance on viral persistence and extend our cell heterogeneity
models to include multiple strains.

Chapter 1 summarises the nature of HIV infection within host. The key barriers to
HIV eradication within host and the role of mathematical models to help understand
these issues are discussed.

In Chapter 2 we analyse models that include cell heterogeneity. We find robust
long term viral persistence is possible on therapy and differences in viral load between
body compartments explained by cell heterogeneity. The inclusion of a drug sanctuary
also allows low level viral load on treatment.

Competition and evolutionary models of wildtype and drug resistant strains of virus
are described in Chapter 3. We analyse two models containing three strains of virus
with different mutation mechanisms. We find that the proportion of the minority
strains of virus is determined by the number of mutations away from the dominant
strain.

In Chapter 4 we extend our cell heterogeneity models from Chapter 2 to include a
drug resistant strain of virus. We find that when a drug sanctuary is present coexis-
tence is possible in the absence of an evolutionary mechanism. The two compartment
model also shows differential dominance whereby a different strain is dominant in each
compartment.

Chapter 5 is concerned with the impact of latently infected cells on the viral strain
distribution within the host. We find the latent cell reservoir acts as an archive for
previously dominant viral strains when there is a mechanism for latent cell maintenance
and that the balance between ongoing viral and latent cell replication determines the
longevity of the archive.
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Chapter 1

Introduction

1.1 Background

HIV was first identified in 1983 as the causative agent of acquired immunodeficiency
syndrome (AIDS) [Levy, 1995]. Since then it has been studied extensively in order to
produce effective treatments. The prevalence of HIV is growing globally. In 2006 there
were an estimated 39.5 million people living with HIV or AIDS of which 2.3 million
were children and in the same year an estimated 4.3 million people became infected
with HIV [UNAIDS, 2006].

1.1.1 The Life Cycle of HIV

HIV is present in the body fluids of an infected individual (blood, semen, vaginal fluid,
breast milk) and can be contracted intravenously, by sexual contact, during birth or
from breast feeding. Once in the body HIV particles infect host cells by binding to a
specific protein (CD4) on the cell surface to promote cell fusion. The ribonucleic acid
(RNA) genome and other proteins present in the core of the HIV particle are taken into
the cell. One of these proteins is reverse transcriptase which reverse transcribes the
RNA genome into deoxyribonucleic acid (DNA). The DNA genome is then inserted into
the host cell genome by another viral protein called integrase. The virus uses the host
cell machinery to transcribe the DNA genome into RNA in order to produce proteins
and copies of the viral RNA genome. Another important viral protein, protease, cleaves
the long polyproteins produced into the required proteins. New virus particles are
assembled in the cell, which then bud from the cell surface incorporating the viral
envelope glycoproteins which have migrated there. These new virus particles are then
free to infect new host cells [Lever, 1996]. A schematic of the life cycle of HIV can be
seen in Figure 1-1.
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Many different cell types can be infected by HIV, including CD4+ T cells, CD8+
T cells, macrophages and dendritic cells [Levy, 1995]. The characteristics of these cells
mean that there are differences in the death rate of infected cells and the production
rate of new virions. Some cells can even be latently infected whereby the viral DNA
lies dormant and no viral protein production takes place [Levy, 1995]. This allows the
cells to escape detection and is thought to be a reservoir which is not affected by drug
therapy [Lever, 1996].

1.1.2 Treatment of HIV

Treatment is initiated when a patient has a CD4+ cell count between 200 and 350
cells/µl [Gazzard, 2006]. First-line therapy is based on virus phenotyping which should
be carried out as soon as the infection is diagnosed [Gazzard, 2006]. Viral phenotyping
finds all of the wild type and drug resistant strains of virus which are present above the
level of 20% of the total population. In order to treat HIV the viral load in the blood
needs to be decreased, meaning drugs need to inhibit steps in the virus life cycle.

Drugs inhibit either reverse transcriptase, protease or integrase, all of which are
viral proteins encoded on the virus genome. There are three different classes of reverse
transcriptase inhibitor (RTI) : nucleoside (NRTI), non-nucleoside (NNRTI) and nu-
cleotide inhibitors. These inhibitors generally have a low genetic barrier to resistance,
meaning that only a few mutations are needed to confer resistance to a specific drug
[Pillay et al., 2000]. Cross resistance, where a mutation confers resistance to more than
one drug in the same class is a problem with reverse transcriptase inhibitors. This is
due to the sites of action for the drugs being too similar.

Protease inhibitors (PIs) act against the enzyme responsible for cleaving the viral
polypeptide into separate viral proteins. Protease inhibitors work better if they are
boosted by a drug called Ritonavir which helps reduce degradation of the drug and so
maintain an effective concentration. Mutations conferring resistance to these inhibitors
have also been seen but it takes longer for mutations to occur if the drug is boosted
with Ritonavir [Reeves and Pifer, 2005].

There is currently only one integrase inhibitor, called Raltegravir, that is licensed
for use in the UK. This acts to stop integration of the converted viral DNA into the
host cell genome [Reeves and Pifer, 2005].

Inhibitors of maturation are another class of drugs being developed. These inhibit
the maturation of viral particles by targeting the polypeptide substrate of the protease
enzyme [Reeves and Pifer, 2005].

The final class of drugs in development are entry inhibitors which prevent HIV
envelope proteins from binding to and fusing with target cells [Reeves and Pifer, 2005].

11



Figure 1-1: Schematic of the HIV life cycle in host adapted from Brock [1997]
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There are a number of entry inhibitors in clinical trials at the moment. However
most are large protein molecules that need to be administered by intravenous infusion
and therefore will remain options for salvage cases only (where a patient has no other
treatment options available). One exception to this is the co-receptor (CCR5) binding
inhibitor Maraviroc; however it is also likely to be reserved for salvage patients.

Both single drug therapies and dual drug therapies were tried when drugs against
HIV first became available; drug resistance quickly developed in these cases [Larder
et al., 1989, Miller et al., 1998, Pillay et al., 2000]. Highly active antiretroviral therapy
(HAART) comprising of three drugs was introduced in the late nineties and has a much
better record against the development of resistance mutations; viral reproduction is
suppressed to a very low level with viral loads typically below 100 copies/ml. A triple
drug regimen based on NNRTI’s is generally used for initial therapy with boosted PI
regimens reserved for when the patient fails initial therapy due to accumulation of
mutations. A change in regimen is typically considered if the viral load increases from
less than 50 copies/ml to persistently above 400 copies/ml. Treatment experienced
patients, who have no options left in terms of available drug classes, are supported by
a maintaining regimen until a novel drug class is made available [Gazzard, 2006].

1.1.3 Mathematical Modelling

The first mathematical modelling of within host HIV aimed to describe what happened
to the viral load after initial infection and once treatment was initiated [McLean et al.,
1991]. Nearly all contemporary models used to describe viral load are constructed from
the original model which is outlined below.

The Basic Model

The simplest structure to explore virus production within the body comprises of three
components; the concentration of uninfected and infected target cells and cell free
virions per ml, given by S, I and v respectively. Uninfected cells are produced at a
constant rate λ cells per day and die at a rate d per day. The uninfected cells and
virions interact to produce infected cells at rate β per virion per day (using a mass
action assumption). Infected cells produce new virions at a burst rate of k per day and
die at a rate a per day. Virions die at a rate c per day. Combining these elements gives
the basic model form:

Ṡ = λ− dS − βSv,

İ = βSv − aI,

v̇ = kI − cv

(1.1)
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[McLean et al., 1991, Nowak and May, 2000, Perelson et al., 1996, Britton, 2002].
Model behaviours are determined through the calculation of R0, the basic reproductive
ratio, and steady state analysis (an overview of the methods involved can be found in
[Edelstein-Keshet, 1988]). The basic reproductive ratio, R0, is the expected number of
virions that one virion gives rise to in an uninfected cell population, where S = λ

d . One
virion gives rise to βS infected cells in a time 1

c . Each of these infected cells gives rise
to k virions in a time 1

a . This gives the reproductive ratio to be

R0 =
βλk

acd
.

If R0 > 1 the virus spreads throughout the population of target cells, otherwise the
virus becomes extinct.

Setting the left hand sides of the model equations (1.1) to zero and solving for each
variable gives the steady states of the system: the disease free steady state (S, I, v) =
(λ/d, 0, 0) and the endemic steady state (S, I, v) = (S∗, I∗, v∗) where

S∗ =
λ

dR0
:=

S0

R0
,

I∗ =
dc

βk
(R0 − 1),

v∗ =
d

β
(R0 − 1),

where S0 = λ
d is the value of S in the disease free steady state (I = v = 0).

The stability of the steady states is determined by the Jacobian of the system:

J =

 −d− βv 0 −βS
βv −a βS

0 k −c

 .

evaluated at the steady state. The characteristic polynomial is the determinant of
(xI − J)v = 0, the roots of which are the eigenvalues of the system (1.1). If the real
parts of each eigenvalue are negative the steady state is stable, otherwise it is unstable.
This can be determined using Descartes rule of signs which states that if the terms of
a single-variable polynomial with real coefficients are ordered by descending variable
exponent, then the number of positive roots of the polynomial is either equal to the
number of sign differences between consecutive nonzero coefficients, or is less than it
by a multiple of 2. Therefore there are no positive roots if all of the coefficients are
either all positive or all negative, meaning the steady state is stable.
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The characteristic polynomial of the disease free steady state is

(x+ d)((x+ a)(x+ c) + ac− βλk

d
) = 0.

This has negative roots, which means the disease free steady state is stable, if and only
if R0 < 1.

The characteristic polynomial of the endemic steady state is

x3 + (a+ c+ dR0)x2 + (a+ c)dR0x+ acd(R0 − 1) = 0.

This has negative roots, which means the endemic steady state is stable, if and only if
R0 > 1.

The behaviour of the system (1.1) over time when R0 > 1 is shown in Figure 1-2.
The basic model (1.1), gives a good comparison with data for the first few months

of infection, however in real life the behaviour of the viral load and CD4+ cell count in
the long term does not remain static. For some reason after a period of time (months
or years) in undiagnosed and untreated patients, the CD4+ cell count goes down and
the viral load goes up. Patients become susceptible to opportunistic infections and
develop full blown AIDS. One hypothesis to explain this observation is that another
population of immune cells called CD8 cells control the infection but over time HIV
mutates and evolves to escape the immune response [Nowak et al., 1991].

Including drug treatment into this model is simple. In order to model reverse
transcriptase inhibitors the infection rate β is premultiplied by a factor (1− e), where
e is the drug efficacy. This changes the results of the long term analysis and it becomes
theoretically possible to eradicate the disease if

Re0 =
(1− e)βλk

acd
< 1

giving a critical level of drug efficacy

ec = 1− 1/R0.

Protease inhibitors can be included in the same way by premultiplying the burst size
k.

If the efficacy of the drug is assumed to be 100% the basic system (1.1) is reduced
to a linear system. The viral load decays away to zero and the CD4+ cell count rises to
its pre-infection level. This assumption allows the estimation of the infected cell death
rate a and the virus death rate c. In reality on treatment viral loads are maintained
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(a) susceptible cells, S

(b) infected cells, I

(c) virus, v

Figure 1-2: Graph showing the behaviour of the basic model for HIV (1.1) over time
when R0 > 1. Parameter values: λ = 104 cells ml−1, d = 0.01 day−1,β = 2.4 × 10−8

virions−1 day−1,a = 1 day−1, k = 3000 virions cell−1 day−1, c = 23 day−1.
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at a very low, in most cases undetectable levels, for some period of time before viral
rebound occurs due to the accumulation of drug resistant mutations. If the drug is not
considered to be 100% effective the system settles to another steady state with higher
CD4+ cell concentrations and lower viral load (than the system with no treatment),
as long as the R0 value for the system incorporating drug is above 1. However the
steady state viral load is very sensitive to drug efficacy, either being unreasonably high
on treatment or zero. This means that the low level viral loads (< 100 virions per ml)
seen in patients on treatment cannot be adequately modelled with this simple system.

1.2 Thesis Outline

This thesis seeks to investigate some of the reasons why drug therapy is not a cure for
HIV using biologically realistic models. Particular attention is given to the problem
of drug resistance. It is important when attributing a result to a particular feature
of a model, that the neutral null model is studied also [Lipsitch et al., 2009]. The
neutral null model is one where the mechanism in question is not included in order
to check that the behaviour you are interested in comes from the mechanism you are
studying, not the underlying model. Throughout this thesis we analyse baseline model
behaviours in order to be sure of the cause of interesting results.

Chapter 2 presents models which allow low level viral load on treatment through
the examination and improvement of models by Callaway and Perelson [2002]. Drug
resistance models are the focus of Chapter 3, which describes models that include
either two or three strains of virus as well as a mutation mechanism. The results from
this work and that in Chapter 2 are combined in Chapter 4 to analyse systems that
allow low level viral load with two strains of virus. Chapter 5 investigates a different
reason for the failure of drug therapy, namely the presence of latently infected cells.
We analyse models including two strains of virus to find the cause of persistent viral
archives. The discussion is contained in Chapter 6.

Parts of the work from chapters 2,3 and 4 have been published in Ward et al. [2009]
and sections of Chapter 5 have been submitted for publication.
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Chapter 2

Single Strain Models

2.1 Chapter Outline

This chapter is concerned with modelling the low level viral loads seen in patients on
treatment. To this end we will begin with an overview of the relevant biology and the
mathematical modelling by Callaway and Perelson [2002] which investigates a range
of biological scenarios. The presence of a drug sanctuary allows the most robust low
level viral load on therapy and we extend this work by considering what other facets
of the models can bring about the same behaviour. In addition we include host cell
heterogeneity in the models in order to make them more biologically realistic.

In order to understand the behaviour of a two compartment system we first consider
a single compartment system with a constant external input. Following on from that
we consider a two compartment system (the blood and genital tract) in which one
compartment can act as a drug sanctuary. Finally we discuss a two target cell model
(blood compartment only) which allows one of the target cells to be a drug sanctuary.

2.2 Background and Motivation

It is well known that viral loads go undetectable in patients on highly active antiretro-
viral therapy (HAART) but the virus is not eradicated [Wong et al., 1997, Chun et al.,
1997a,b]. One likely reason is the presence of drug sanctuaries [Cohen et al., 2007]. A
drug sanctuary is a place, either an infected cell or a body compartment, that does not
absorb the drug to the same extent as CD4+ T cells in the blood allowing the virus a
possible mechanism for evading the effect of the drug.

The viral load and quasispecies complement seem to differ between the semen and
the blood [Kalichman et al., 2008, Zhang et al., 1998, Craigo et al., 2004]. This has im-
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PI NNRTI nucleotide RTI
Above 100% indinavir (100%) lamivudine (600%)

tenofovir (500%)
zidovudine (200%)
abacavir (150%)

Below 100% amprenavir (20%) nevirapine (70%) stavudine (2%)
lopinavir (5%) efavirenz (3%)
nelfinavir(5%)
ritonavir (3%)
saquinavir (3%)

Table 2.1: Antiretroviral drug concentrations in the male genital tract relative to blood
plasma concentrations adapted from Cohen et al. [2007]

plications in the transmission of HIV to other individuals. For example if blood plasma
viral load is negligible, semen viral load could still be high enough that transmission
could occur. Moreover, the infecting virus could be of a different genotype to that seen
in the blood [Tirado et al., 2004, Zhu et al., 1996, Liuzzi et al., 2004].

There is evidence that the genital tract of males and females is a reservoir for HIV
[Tirado et al., 2004, Byrn et al., 1997], both in terms of drug escape and separate
evolution of drug resistant strains. Lowe et al. [2004] argued against the male genital
tract (MGT) being a drug sanctuary site saying that some drugs have good penetrance
in the male genital tract and therefore it is not a sanctuary site for HIV during drug
treatment. However, there are more drugs where this is not the case. Protease in-
hibitors are well known to be found at lower concentrations in semen. Table 2.1 shows
the relative concentrations of some common drugs in the semen compared with the
blood.

Similar differences in drug efficacies have been noted between CD4+ T cells and
monocyte derived macrophages. In particular protease inhibitors seem to be less effec-
tive in macrophages. This could also be a possible source of ongoing viral replication
on treatment [Perno et al., 1998, Puddu et al., 1999, Kim et al., 1998].

The basic model (1.1) predicts the virus will be eradicated once critical drug efficacy
is surpassed. The problem with the basic model in this context is that the behaviour of
the steady state viral load is very sensitive to the efficacy of the drug. The steady state
viral load remains high near the critical value of drug efficacy then drops dramatically to
zero once the critical value is reached. Callaway and Perelson [2002] modelled possible
biological reasons the virus is not eradicated and some viral replication remains. A
number of different modifications to the basic model have been analyzed including
latently infected cells, different drug treatments (reverse transcriptase and protease
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inhibitors) and using density dependent infected cell death rates. With the latter model
the rationale is that infected cells should be cleared by the immune system at a rate
dependent on the number of infected cells present. Although the density dependent cell
death model gave low level viral loads at steady state it also showed an unrealistically
low level of infected cells and a high level of CD4+ target cells. Also investigated were
two models that allowed target cells with different responses to antiretroviral drugs
creating a drug sanctuary: a two compartment model with identical target cells similar
to that in Kepler and Perelson [1998] and a model with two distinct populations of
target cells in one compartment. Both of these models were capable of having low level
steady state viral load for a range of drug efficacies. The possibility that the differences
in target cell life cycle parameters might also allow low level viral loads to occur was
not considered, in Sections 2.4 and 2.5 we rectify this.

2.3 One Compartment Model with a constant input

Our first model is based on the single strain blood plasma model of Perelson et al. [1996]
that was analysed in Chapter 1. The only addition is of a constant input/output into
the virus differential equation which represents an input from, or output into, a separate
body compartment which replicates viral particles independently. Including this extra
parameter allows us to understand the implications of the presence of compartments
in the body that harbour HIV infection as well as the blood.

2.3.1 Model Equations

A one compartment model adapted from the basic model (1.1) is given by

Ṡ = λ− dS − βSv,

İ = βSv − aI,

v̇ = kI − cv + δ,

(2.1)

where δ is a constant parameter which when positive denotes an input of virions and
when negative denotes loss of virions. All other parameters have the same definitions
as the basic model (1.1).

2.3.2 Steady State Analysis

When δ = 0 the steady states and stability criteria are the same as the basic model
given in 1.1.3. That is the disease free steady is stable for R0 < 1 and the endemic
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steady state is stable for R0 > 1. When δ 6= 0 the situation is more complicated; the
steady state level for v is given by the root of the following quadratic equation

v2 + x1v + x0 = 0,

where

x1 =
d

β

(
1−R0 −

βδ

dc

)
,

x0 = − δd
βc
,

(2.2)

and R0 = λβk
acd . The steady state expressions for susceptible cells, S and infected cells,

I can be written as the following functions of the steady state value of v,

S =
λ

d+ βv
,

I =
cv + δ

k
.

The behaviour of the solutions of the quadratic for steady state virus are explored in
Figure 2-1 using the parameter values found in Table 2.2. We can see that solutions
of (2.2) can be positive, negative or complex depending on the parameter values used.

When R0 > 1− βδ
dc + 2

√
βδ
dc we obtain two positive viral steady states even when δ < 0,

corresponding to an output of viral particles from the blood compartment. When δ > 0
there is only one possible positive steady state value for v. There is also a range of
values of δ for which there are no real values of v, corresponding to negative values
of the discriminant. We are only interested in the biologically realistic steady state
solutions where all of the variables are positive or zero. The stability of the steady
states was analysed numerically.

2.3.3 Numerical Results

From Figure 2-2a we see that when R0 > 1, it is possible to have two positive steady
states, however for large negative values of δ there are no stable positive steady states.
Indeed when δ takes large negative values which give a negative discriminant or no
stable positive steady states the system goes to negative infinity. It is possible to have
a stable positive steady state for small negative values of δ, the extent of this range
depends on the size of R0. When R0 is larger the viral population can withstand a
larger constant output δ from the system. When δ > 0 there is only one positive
solution of the quadratic for steady state virus which is stable. The negative root is
unstable. When R0 < 1 and δ > 0 as seen in Figure 2-2b there is one positive root of
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Figure 2-1: Graph showing the possible steady states of v for varying values of R0 and
the input/output rate δ. R0 was varied by changing the value of the burst size k; other
parameter values used are given in Table 2.2.

the quadratic for steady state viral load which is stable.

2.3.4 Summary

This model gives us an idea of what would happen if there were two compartments in
which the virus could proliferate and migrate between. If you imagine two connected
compartments which allow virus migration you would expect, from the results of the
constant input model, that if R0 < 1 in both compartments the virus will become
extinct as neither compartment will produce viral particles to sustain either compart-
ment. You would also expect that if one of the compartments has an R0 < 1 and the
other an R0 > 1 the virus population will be maintained in both compartments at some
level. The next step is to model two linked compartments that allow virus migration
between them.

2.4 Two Compartment Model

We now wish to consider a model with two separate body compartments with virus
migration between the two compartments. This will allow us to look at the effect of
a drug sanctuary on viral load as well as investigating the effects of different types
of target cells on steady state viral load both before and after therapy. Callaway
and Perelson [2002] used a two compartment model that had identical target cells to
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(a) R0 > 1

(b) R0 < 1

Figure 2-2: Bifurcation diagrams for virus steady state and the parameter δ. Solid lines
denote stable steady states. Dotted lines denote unstable steady states. Parameter
values as in Table 2.2.
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Susceptible
S1

λ1

d1S1

Infected I1a1I1

Susceptible
S2

λ2

d2S2

Infected I2 a2I2

Virus v1c1v1 Virus v2 c2v2

Compartment 1 Compartment 2

β1S1v1 β2S2v2

k1I1 k2I2

D(v1 − v2)

Figure 2-3: Schematic of the Two Compartment Model which allows virus diffusion
between two separate body compartments. The diffusion between compartments is
along a concentration gradient. In compartment 1 the diffusion term is L

1−u(v2 − v1)
and in compartment 2 we have L

u (v1 − v2), where L is the transport coefficient and u
is the scaled size of compartment 2.

investigate the role of a drug sanctuary in maintaining low level viral loads on therapy.
By identical target cells we mean that both the susceptible and infected target cell
parameters had the same values in each compartment. Here we relax that assumption
in order to investigate the effects of target cell heterogeneity between compartments.

2.4.1 Model Equations

We assume that only viral particles can move between the body compartments and
that we have distinct target cell types in each compartment. A diagram of the model
is given in Figure 2-3. The ordinary differential equations for the system are:

Ṡi = λi − diSi − βiviSi,

İi = βiviSi − aiIi,

v̇i = kiIi − civi +Di(vî − vi),

(2.3)

where i = 1, 2 and î means “the other one”, for example v1̂ = v2. We model diffu-
sion of viral particles between compartments using a discrete derivation of Fick’s Law
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[Macheras and Iliadis, 2006] which gives

D1 =
L

1− u
,D2 =

L

u

where L is the transport coefficient day−1; the total volume of the two compartments
is scaled to 1 and u is the proportion of that volume occupied by compartment 2. With
this choice of diffusion coefficients, the system exhibits symmetry between compart-
ments. This method of modelling the diffusion of viral particles between compartments
is different from that in Kepler and Perelson [1998] in order to obtain symmetry in the
model. The meanings of the parameters are the same as for all previous models.

There are a number of different cases that we could look at for this model depending
on the component we wish to study in detail:

1. Null neutral model; the cell parameters are the same between compartments
allowing us to establish baseline behaviour.

2. Cell heterogeneity model; target cell and infected cell parameters are allowed to
vary between compartments in order to model different cell types and immune
responses respectively.

3. Drug sanctuary model; the infection rate parameter β is allowed to differ between
compartments in order to model a drug sanctuary.

We consider each case in turn, investigating the steady state behaviours analytically
where possible and numerically otherwise.

2.4.2 Null Neutral Model

The simplest case of the two compartment model has all the parameters the same
between compartments so that λi = λ, di = d, βi = β, ai = a, ki = k and ci = c and
(2.3) becomes

Ṡi = λ− dSi − βviSi,

İi = βviSi − aIi,

v̇i = kIi − cvi +Di(vî − vi).

(2.4)

Steady State analysis

There are four possible steady states:
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1. The disease free steady state

(S1, S2, I1, I2, v1, v2) =
(
λ

d
,
λ

d
, 0, 0, 0, 0

)
.

2. The endemic steady state

(S1, S2, I1, I2, v1, v2) =
(
S0

R0
,
S0

R0
,
cd

βk
(R0 − 1),

cd

βk
(R0 − 1),

d

β
(R0 − 1),

d

β
(R0 − 1)

)
,

where S0 = λ/d and R0 = λβk
acd . This is the same as that of the basic one

compartment model (1.1) regardless of the value of u. If R0 > 1 then all variables
in the endemic steady state will be positive.

3. Two further steady states are possible; they are determined from the roots of the
quadratic equation in v1,

x2v
2
1 + x1v1 + x0 = 0, (2.5)

where

x2 =aβ2(c+D1)(c+D1 +D2),

x1 =β(c+D1 +D2)(ad(c+D1)− λβk),

x0 =dD1(ad(c+D1 +D2)− λβk).

Expressions for the other variables given in terms of v1 and v2:

S1 =
λ

d+ βv1
,

I1 =
λβv1

a(d+ βv1)
,

v2 =
v1(a(c+D1)(d+ βv1)− λβk)

aD1(d+ βv1)
,

S2 =
λ

d+ βv2
,

I2 =
λβv2

a(d+ βv2)
.

The quadratic in v1 (2.5) has at least one solution with a positive real part when
x1 < 0, the condition for which is λβk

ad(c+D1) > 1. Conditions on x0 then determine
the number of solutions with a positive real part. If x0 > 0 there could be two
solutions with positive real parts, however if x0 < 0, meaning λβk

ad(c+D1+D2) > 1
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there is only one positive real solution. The other variables are positive if and
only if v1 > max{0, dβ

(
λβk

ad(c+D1) − 1
)
}.

The Jacobian matrix for this system is

J =



−d− βv1 0 −βS1 0 0 0
βv1 −a βS1 0 0 0
0 k −c−D1 0 0 D1

0 0 0 −d− βv2 0 −βS2

0 0 0 βv2 −a βS2

0 0 D2 0 k −c−D2


.

1. The characteristic polynomial for the disease free steady state can be factorized
and the polynomial factors are

(Λ + d)2 = 0,

Λ2 + (a+ c)Λ + ac− λβk

d
= 0,

Λ2 + (a+ c+D1 +D2)Λ + a(c+D1 +D2)− λβk

d
= 0.

The coefficients of these polynomials are all positive and therefore the disease
free steady state stable if R0 < 1.

2. The characteristic polynomial for the disease steady state can be factorized into
the two cubic equations:

Λ3 + (dR0 + c+ a)Λ2 +R0d(a+ c)Λ + adc(R0 − 1) = 0,

Λ3 + (a+ c+ dR0 +D1 +D2)Λ2 + (a(R0d+D1 +D2) + dR0(c+D1 +D2))Λ+

+ acd(R0(1 +
D1 +D2

c
)− 1) = 0.

The coefficients of these cubic equations are positive if R0 > 1. Therefore the
disease steady state is stable if R0 > 1.

3. The stability of the further two steady states was explored numerically and were
found to be locally unstable. The existence and stability of the steady state values
for v1 are shown in Figure 2-4. The bifurcation diagram shows that when R0 > 1
the only stable steady state is the endemic steady state.

These results show that the viral load in two compartments will be the same if the
target cell parameters and viral parameters are the same prior to treatment. However
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Figure 2-4: Bifurcation Graph of steady state v1 against R0 for the null neutral two
compartment model. The solid lines denote a stable steady state, the dotted lines
unstable steady states. The thick red lines are the disease free steady state, the light
blue line is the endemic steady state and the remaining thin dark blue lines are the
steady states that are solutions of the quadratic in v1 given by (2.5). Parameter values
used as given in Table 2.2 with u = 0.5 and L = 2 and varying β.
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in reality the viral load in two compartments is rarely the same. A good example of
this is in the male genital tract where the viral load is different to that in the blood
[Craigo and Gupta, 2006]. There are a number of possible explanations why the two
compartment model with identical target cells is not a good one in this case. One
possible reason is that the model does not contain latently infected cells, that is cells
that have been infected but are not actively producing virus. It has been shown that
in the male genital tract there is a higher concentration of latently infected cells than
in the blood [Craigo and Gupta, 2006]. Another possible reason could be that the
target cells in the second compartment are different and therefore should have different
values for parameters relating to cell growth and death. For example viral particles in
semen originate from both the prostate and seminal cells in the epididymis [Craigo and
Gupta, 2006].

This model is sufficient for drugs that act equally in both compartments. It predicts
that the viral load would be the same in both compartments after treatment, although
at a lower level than prior to treatment, in the same way as the basic model (1.1).

2.4.3 Cell Heterogeneity Model

In order to study the effects of cell heterogeneity on viral load we need to allow the
parameter values to differ between the two compartments. The two compartment model
with different parameters (2.3) is a more complicated system. In order to analyse the
system we allow only the infection rate β and the infected cell death rate a to vary
between compartments. In this section we will consider numerical solutions where
β1 = β2 in order to concentrate on the effects of cell heterogeneity.

Steady State Analysis

There are four possible steady states:

1. The disease free steady state

(S1, I1, v1, S2, I2, v2) =
(
λ

d
, 0, 0,

λ

d
, 0, 0

)
.

2. The endemic steady state and two further steady states are solutions of a cubic
in v1

y3v
3
1 + y2v

2
1 + y1v1 + y0 = 0
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where

y3 =β2
1β2ca2a

2
1(c+D1)(c+D2 +D1),

y2 =β1a1(a1a2cd(2β2(c+D1)(c+D1 +D2) + β1D1(c+D1 +D2))

− λβ1β2k(a1D1(c+D1) + a2(2c(c+D1 +D2) +D1D2))),

y1 =a2
1a2d

2c((c+D1)(2β1(D1 +D2) + β2D2) + β2(c2 +D2
1))

− λkda1a2(2cβ1β2(c+D1 +D2) + β1D1(β1(c+D2) + β2D2)))

− λkda2
1β1β22D1(c+D1) + λ2k2β2

1β2(a2(c+D2) + a1D1),

y0 =λ2k2β1β2a1dD1 + a2
1a2cd

3D1(c+D1 +D2)

− λkd2a1D1(a2β1(c+D2) + a1β2(c+D1)).

Expressions for other variables given in terms of v1 and v2 are

S1 =
λ

d+ β1v1
,

I1 =
λβ1v1

a1(d+ β1v1)
,

v2 =
v1(a1(c+D1)(d+ β1v1)− λβ1k)

a1D1(d+ βv1)
,

S2 =
λ

d+ β2v2
,

I2 =
λβ2v2

a2(d+ β1v2)
.

The Jacobian matrix for this system is given by

J =



−d− β1v1 0 −β1S1 0 0 0
β1v1 −a1 β1S1 0 0 0

0 k −c−D1 0 0 D1

0 0 0 −d− β2v2 0 −β2S2

0 0 0 β2v2 −a2 β2S2

0 0 D2 0 k −c−D2


.

1. The characteristic polynomial for the disease free steady state is

(Λ + d1)(Λ + d2)(Λ4 + x3Λ3 + x2Λ2 + x1Λ + x0),
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where

x0 =a1a2c1c2

((
1 +

D1

c1
−R01

)(
1 +

D2

c2
−R02

)
− D1D2

c1c2

)
,

x1 =a1c1

((
1 +

D1

c1
−R01

)
(D2 + a2 + c2)− D1D2

c1

)
+

+ a2c2

((
1 +

D2

c2
−R02

)
(D1 + a1 + c1)− D1D2

c2

)
,

x2 =a1c1

(
1 +

D1

c1
−R01

)
+ a2c2

(
1 +

D2

c2
−R02

)
+

+ (a1 + c1 +D1)(a2 + c2 +D2)−D1D2,

x3 =a1 + c1 +D1 + a2 + c2 +D2,

and

R0i =
λiβiki
aicidi

.

The disease free steady state is stable if all of the coefficients xi are positive. The
coefficient x3 is always positive and if x0 and x1 are positive then so is x2. The
R0 for this system as calculated using the next generation method [Heffernan
et al., 2005] (see the appendix for a worked example) is the positive root of the
following quadratic equation

R2
0 −

(
λk(a1β2(c+D1) + a2β1(c+D2))

a1a2dc(c+D1 +D1)

)
R0 +

β1β2λ
2k2

a1a2cd2(c+D1 +D2)
= 0.

The bifurcation diagram for this system is shown in Figure 2-5. We can see that
the disease free steady state is stable if and only if R0 < 1.

2. It is not possible to derive a characteristic polynomial for the other steady states.
Figure 2-5 shows that when the disease free steady state is unstable the endemic
steady state is stable. As with the null neutral two compartment model there are
two other steady states which are unstable.

In contrast to the null neutral model we find the viral load differs between the
two compartments. From Figure 2-6 we can see that when the infected cell death rate
differs between the compartments the viral load differs also. By changing the parameter
values between compartments we can model a drug sanctuary or cell heterogeneity.

2.4.4 Drug Sanctuary Model

If we set u < 0.5 then the second compartment will be the smaller of the two compart-
ments. We can then investigate whether the presence of a small compartment that is
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Figure 2-5: Bifurcation Graph of steady state v1 against R0 for the cell heterogeneity
model. The solid lines denote a stable steady state, the dotted lines unstable steady
states. The thick red lines are the disease free steady state, the dark blue line is the
endemic steady state and the thin green lines are the steady states that the remaining
solutions of the cubic in v1. Parameter values used as given in Table 2.2 with u =
0.5, a2 = 0.2 and L = 2 and varying β1 = β2.

more difficult for drugs to reach has an effect on the dynamics of the HIV infection.
Both reverse transcriptase inhibitors and protease inhibitors can be modelled easily in
HIV infection by lowering the values of the infection rate β and the burst size k respec-
tively. We can model the effect of the drug differently in each compartment to see what
effect a lower drug concentration in the smaller compartment has on the dynamics of
the system. We can model the effect of a reverse transcriptase inhibitor by changing
the value of β in the presence of the drug as given below.

β1 = (1− e)β,

β2 = (1− eh)β,

where β1 is for compartment 1 and β2 is for compartment 2, with the drug efficacy, e and
drug penetrance, h, varying between zero and one. Figure 2-7a shows the viral steady
state of the large compartment in the two compartment model compared with a one
compartment model when the drug efficacy is varied. The presence of the second smaller
compartment (with a lower drug efficacy) allows the virus to persist in the system even
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Figure 2-6: Graph showing the viral load when the infected cell death rates differ
between compartments. Parameters are the same as those in Table 2.2 with a2 =
0.2, a1 = 1, u = 0.05, L = 2.

if the drug is 100% effective in the main compartment. This agrees with work by
Callaway and Perelson [2002] which also included a subset of chronically infected cells.
These were found to dampen the oscillations to the disease steady state making it less
likely that the viral population would become extinct due to stochasticity. Low steady
state viral loads can also be obtained when modelling a protease inhibitor, which acts
on k in the model, as shown in Figure 2-7b. Notice that the relationship between viral
load and drug efficacy is now linear up until a critical value of drug efficacy. This
can be explained by looking at the steady state expression for viral load in the one
compartment model which is given by

v∗ =
d

β

(
λβk

acd
− 1
)
.

The viral load is a linear function of k and inverse linear function of β, hence explaining
the behaviour of the steady state value up to a critical value of drug efficacy. Protease
inhibitors lower the steady state viral load over a large range of drug efficacies whereas
reverse transcriptase inhibitors have a much smaller effective range. This could have
an impact on the emergence of drug resistance. The lower the viral load the less likely
a resistant mutant will arise in the population.

The size of the smaller sanctuary compartment also influences the steady state viral
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load as can be seen in Figure 2-8. The larger the sanctuary compartment is compared to
the main compartment the higher the steady state viral load in the main compartment
for all drug efficacies.
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(a) Reverse transcriptase inhibitor acting on β

(b) Protease inhibitor acting on k

Figure 2-7: Graphs showing how drug efficacy changes the steady state viral load in the
large compartment of a 2 compartment model compared with a one compartment model
for (a) reverse transcriptase inhibitors and (b) protease inhibitors. The parameter
values used are the same as those in Table 2.2 with u = 0.1, h = 0.5, L = 2.
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Figure 2-8: Graph comparing the steady state viral load for different drug efficacies
and values of u. Drug acts in both compartments with compartment 2 acting as a drug
sanctuary, giving β1 = (1 − e)β and β2 = (1 − eh)β. Parameter values used are the
same as those in Table 2.2 with h = 0.7, L = 2.
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2.4.5 Combined Model

It has been suggested that cell-free virions in semen originate from the prostate whereas
cell-associated virions in semen originates from the testis [Craigo and Gupta, 2006].
However the cellular origin of the virions in semen is as yet unknown. There are some
data that suggest that viral clearance in the semen is at a slower rate than the blood
during antiretroviral therapy suggesting that infected cell death rates may be lower
in the semen compartment [Craigo and Gupta, 2006]. The two compartment model
can also be used to look at the possibility that the smaller compartment is not a
drug sanctuary but instead has different target cell types or that the target cells have
different behavours in different compartments.

Considering different target cell types in a two compartment model (and hence using
different parameter values for cell growth and death) can produce behaviour similar to
that observed in the previous section provided that R02 = λ2β2k2

a2c2d2
> R01 = λ1β1k1

a1c1d1
. This

is shown in Figure 2-9 where the target cells vary between compartments. Increasing
the value of λ2 or decreasing the value of d2 or a2 produce the same qualitative results:
low level viral load at a wider range of drug efficacies than in the one compartment
model. These results suggest that even if drug penetrance is good it is still possible to
get persistent, low-level steady state viral loads if there are small compartments with
a higher viral replicative capacity than the main blood compartment.

The interplay of the main parameters we are interested in here, drug penetrance,
drug efficacy and infected cell death, is explored in Figure 2-10. The parameter space
between the Re0 = 1 lines for the one compartment model (1.1) and the two compart-
ment model (2.3) in Figures 2-10a and 2-10b is where low level viral load occurs. In
Figure 2-10c the Re0 = 0 for the one compartment model (1.1) as the drug is completely
effective, i.e. e = 1. Low level viral load is seen for a wide range of values of infected
cell death, a2, and drug penetrance, h. The presence of cell heterogeneity widens the
range of values of drug penetrance for which low level viral load can be observed and
vice versa.

2.4.6 Summary

The two compartment model is capable of allowing low level viral in a number of situa-
tions: firstly when there is a drug sanctuary in the smaller compartment in agreement
with the work of Callaway and Perelson [2002] and secondly when there is a difference
between the cell parameters in the two compartments that means that the small com-
partment has a higher replicative capacity even before treatment is initiated. When
there is both cell heterogeneity and a drug sanctuary present low level viral load can be
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seen for a wider range of drug efficacies up to and including the drug being completely
effective in the large compartment, e = 1.
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(a) a2 = 0.2

(b) λ2 = 3× 104

(c) d2 = 0.005

Figure 2-9: Graph comparing the steady state viral load in the large compartment
for different drug efficacies (protease inhibitor) when there is cell heterogeneity. Other
parameters are the same as in Table 2.2 with u = 0.1, h = 1 and L = 2.
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(a)

(b)

(c)

Figure 2-10: Graphs showing how drug penetrance, drug efficacy and infected cell death
rates affect the steady state behaviour of the two compartment model. a) a2 = 0.2, b)
h = 0.9, c) e = 1. In all of the graphs the parameters are as given in Table 2.2 with
L = 2 and u = 0.1.
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2.5 Model with two target cell populations

Callaway and Perelson [2002] also considered a model with two co-circulating distinct
target cell populations with chronic infection. We follow their work and present a
similar model (which does not include chronically infected cells), a schematic of which
is shown in Figure 2-11, to ascertain whether low level viral load can be seen without
the presence of a drug sanctuary. The primary target cells are assumed to be the ones
most commonly associated with HIV, CD4+ T cells. The secondary target cells are
assumed to be macrophages with a much lower concentration in the blood but a higher
infection rate compared with primary target cells. This is due to lack of activation
needed for infection of macrophages to occur [Stevenson and Gendelman, 1994].

Virus vcv

Infected I2 a2I2Infected I1a1I1

Susceptible
S1

λ1

d1S1
Susceptible

S2

λ2

d2S2

β1S1v β2S2v

k1I1 k2I2

Figure 2-11: Schematic of the Two Target Cell Model.

The equations are given as:

Ṡ1 = λ1 − d1S1 − β1S1v,

Ṡ2 = λ2 − d2S2 − β2S2v,

İ1 = β1S1v − a1I1,

İ2 = β2S2v − a2I2,

v̇ = k1I1 + k2I2 − cv,

(2.6)

where parameters are as defined in the basic model (1.1) and Table 2.3.
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2.5.1 Steady State Analysis

Setting the left hand side of the ordinary differential equations (2.6) to zero we can
find the steady states of the system.

1. The disease free steady state of this system is (S1, S2, I1, I2, v) = (λ1
d1
, λ2
d2
, 0, 0, 0).

2. The endemic steady state is found by solving the following quadratic in v

v2 + x1v + x0 = 0, (2.7)

where

x1 =
d1

β1
(1−R01) +

d2

β2
(1−R02),

x0 =
d1d2

β1β2
(1−R01 −R02),

and R0i = λiβiki
aicdi

for i = 1, 2. Provided that R01 + R02 ≥ 1, we obtain a single
positive solution for v; in particular when R01 +R02 = 1,

v =
d1

β1
(R01 − 1) +

d2

β2
(R02 − 1).

This is the minimum value of the steady state viral load as x0 becomes negative
when R0 = R01 +R02 > 1. The expressions for the other variables are

S1 =
λ1

d1 + β1v
,

S2 =
λ2

d2 + β2v
,

I1 =
β1vλ1

a1(d1 + β1v)
,

I2 =
β2vλ2

a2(d2 + β2v)
.

The Jacobian matrix for this system is

J =


−d1 − β1v 0 0 0 −β1S1

0 −d2 − β2v 0 0 −β2S2

β1v 0 −a1 0 β1S1

0 β2v 0 −a2 β2S2

0 0 k1 k2 −c

 .
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1. The characteristic polynomial for the disease free steady state is given by

(Λ + d1)(Λ + d2)(Λ3 + y2Λ2 + y1Λ + y0) = 0,

where

y2 = c+ a1 + a2,

y1 = c(a1 + a2) + a1a2 −
k1β1λ1

d1
− k2β2λ2

d2
,

y0 = ca1a2 −
k1β1λ1a2

d1
− k2β2λ2a1

d2
.

The condition for which all the eigenvalues are negative and the steady state
stable is

R01 +R02 < 1.

2. The stability of the endemic steady state was investigated numerically and the
bifurcation diagram is shown in Figure 2-12. The endemic steady state becomes
positive and stable when R0 > 1, corresponding to when the disease free steady
state becomes unstable.

2.5.2 Numerical Solutions

Parameter values used for numerical solutions of the two target cell model can be
found in Table 2.3. In order to investigate the behaviour of the steady state viral load
when drug was present we replace β1 and β2 with β̂1 = (1− e)β1 and β̂2 = (1− eh)β2

respectively in (2.6). Values for the cell production rate, λ2, and the infection rate, β2,
for the secondary target cells were calculated using the following constraints [Callaway
and Perelson, 2002]. Constraint 1: given e = 1 and h = 0 (drug 100% effective in main
target cell and completely ineffective in second target cell) the viral load should be 100
virions per ml. Constraint 2: given e = 1 and h = 0.5 (drug half as effective in second
target cell) the viral load should be 0 . Assuming e = 1 and all the other parameters
are the same between target cells gives

vw =
λ2k

ac
− d

β2(1− h)
.

Using the two constraints and parameter values from Table 2.3 we find λ2 = 1.533 and
β2 = 10−4.

The behaviour of the model when the susceptibility of the two populations of cells
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was the same (h = 1) or different(h < 1) was investigated. The results can be seen in
Figure 2-13. The parameter values used in this example give R02 > 1, meaning that if
the second population of cells was the only population of target cells they would allow
the disease to be maintained. If a different set of parameter values is used which gives
R02 < 1 the same concave behaviour can be obtained, but the critical value of drug
efficacy e, at which the disease free steady state becomes stable is much closer to that
of the basic model (1.1). Decreasing values of drug penetrance, h, allow low level viral
load at steady state for a larger range of values of drug efficacy, e, which can be seen
in Figure 2-14.

2.5.3 Summary

The two target cell model is capable of allowing low level viral load in a number of
situations: firstly when the secondary target cells act as a drug sanctuary in agreement
with the work of Callaway and Perelson [2002] and secondly when there is a difference
between the cell parameters in the two types of target cell. This is an important result
as it means that low level viral load can happen in the absence of external input.
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(a)

(b)

Figure 2-12: Bifurcation Diagram for the Two Target Cell Model (2.6). Solid lines
denote stable steady states and dashed lines unstable ones. The thick black line and
thin grey lines are the roots of the quadratic in v (2.7) and the thin black line is the
disease free steady state. Graph a is a close up of the region around R0 = 1 of graph
b. Parameter values used are given in Table 2.3 and varying drug efficacy e.
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Figure 2-13: Graph showing the effect of drug susceptibility of two different populations
of cells, h, on the steady state viral load for different drug efficacies. For the range of
drug efficacies shown here the disease free steady state would be stable in the basic
HIV model (1.1). Parameter values use are as given in Table 2.3.

Figure 2-14: Graph showing how two parameters, drug penetrance,h, and drug efficacy,
e, affect the behaviour of the model at steady state. Parameter values used are as given
in Table 2.3.
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2.6 Conclusions

From our investigation of robust models of low lovel steady state viral loads we have
a number of new results. Firstly that the two compartment model with identical
parameters (2.4), does not describe the differences in viral loads seen in the blood
and male genital tract before therapy and is therefore not necessarily a good model
for these body compartments during therapy. Secondly the two compartment model
with identical cell parameters can be used to model a drug sanctuary and that the
steady state viral load profile for protease inhibitor therapy shows that this drug is
more effective than reverse transcriptase therapy over a larger range of drug efficacies.
Thirdly a two compartment model with distinct target cell parameters (2.3), can be
used to model blood and male genital tract compartments before therapy as it gives
different viral loads in each compartment. This model also allows a low level steady
state viral load in the blood under drug therapy even if drug penetrance into the smaller
compartment is the same as the blood. Finally a model with co-circulating distinct
target cells in one compartment (2.6), where one of the populations of target cells is at
a lower concentration, can also show low level steady state viral loads when the drug
is equally effective in both populations as it allows viral replication for a wider range
of drug efficacies.
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Chapter 3

Multistrain Models

3.1 Chapter Outline

This chapter is concerned with modelling drug resistance in HIV patients and is im-
portant as background for the rest of the thesis. It is mainly a review of previous work
adapted to fit in with the other models described in this thesis, with novel work on
models containing three strains of virus.

We begin with a summary of the relevant biology.
We then describe both competition and evolutionary models to investigate the

effect of drug resistance on the viral load of a HIV patient. Competition models have
no mechanism of mutation from one strain to another and are therefore useful for
comparison with the more complicated evolutionary models. Two and three strain
competition models are described in Section 3.3.

The next step on from competition models are evolutionary models which are de-
scribed in Section 3.4. Here we include mutation in two and three strain models in
turn. We consider two different ways of modelling mutation in the three strain models:
linear mutation, whereby a strain can mutate only to a neighbouring strain, and jump
mutation, whereby a strain can mutate into either of the other two strains.

3.2 Background and Motivation

3.2.1 Biological Background on Drug Resistance

A great deal of research has been carried out to look at HIV drug resistance and how
and when it arises [Craigo and Gupta, 2006, Tirado et al., 2004, Lowe et al., 2004,
Mansky, 2002, Pillay et al., 2000, Tang and Pillay, 2004].

HIV has an average mutation rate of one mutation per newly synthesized virion
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[Mansky, 2002]. This means that mutations arise frequently in the life cycle of HIV.
Some of these mutations will confer advantages and some disadvantages. The wild type
virus is assumed to have the highest fitness in the absence of drug selective pressure.
There will be a number of closely related viral strains within the whole population
termed quasispecies. Mutations which confer resistance to antiretroviral drugs arise
at the same rate as any other mutation but the likelihood of these mutants becoming
dominant in the quasispecies depends on the magnitude of the relative fitness of the
mutant. A primary resistance mutation is defined as one which is sufficient to cause
drug resistance. A secondary resistance mutation is defined as one which compensates
for the reduced fitness caused by a primary resistance mutation [Tang and Pillay, 2004].

Due to the high mutation rate it is likely that drug resistance mutations are present
in the viral quasispecies even in the absence of therapy [Bonhoeffer et al., 1997]. Once
antiretroviral therapy starts it is likely that resistance will emerge and current practice
is to suppress viral replication as much as possible [Gazzard, 2006]. Anything which
lowers drug efficacy - differences in potency, pharmacological effects, compartmental-
ization, adherence and drug resistance - can cause a drug regimen to fail. These factors
differ according to the specific drug regimen and the behaviour of individual patients
[Pillay et al., 2000].

Drug resistance mutations have been found for all of the common antiretroviral
drugs. Unsurprisingly the mutations seen in individual cases will depend on the regimen
history of the patient, where different resistance pathways can be seen according to the
order and length of time which the patient was exposed to different drugs [Pillay et al.,
2000]. If a patient has been on the same therapy for a long time, primary and secondary
resistance mutations may have emerged so that the resistant strain is dominant. In
some cases these resistant strains can be as fit as the wild type strain in in vitro
experiments [Pillay et al., 2000].

Transmission and Persistence of Drug Resistance

The transmission of drug resistant strains has been documented for most methods of
transmission including sexual transmission, intravenous transmission (blood donors,
needlestick injury and drug users) and vertical transmission from mother to baby.
Resistance has major implications for the treatment options available to the newly
infected individual [Grant et al., 2002, Weinstock et al., 2004, Little et al., 2002]. The
prevalence of transmitted drug resistance is currently around 8% of all new diagnoses
in the United Kingdom [Resistance et al., 2007] which has dropped from 14% in 2001.
The persistence of drug resistant strains depends on whether the infection is from a
mix of wild type and drug resistant strains or from drug resistant strains only. In the
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former case the wild type strain would be expected to re-emerge as the dominant strain
as the patient would not be receiving therapy. In the latter case, back mutation to wild
type would need to occur. This would seem unlikely for resistant strains of high fitness
that are separated from wild type by a number of mutations. A good example of this
is the T215Y 3-azido 3-deoxythymidine (AZT) drug resistant mutation. This differs
from wild type by two mutations and the intermediate mutations (there are a number
of different possible intermediates) although resistant to drug are as fit as wild type
[Tang and Pillay, 2004].

Reversion to wild type has been seen in some case studies [Gandhi et al., 2003,
Brenner et al., 2002]. In Gandhi et al. [2003] a patient infected with multiple drug
resistant virus was followed for a year with regular monitoring of the mutations present
in the viral quasispecies. Phenotypic assays for drug resistance and fitness assays
compared with a laboratory wild type strain were also carried out. Over the course of
the year, five of the twelve resistance mutations reverted to wild type and an increase
in overall fitness was seen. This patient was not on any drug therapy meaning that
replicative fitness was the overiding selective pressure. In contrast a study by Brenner
et al. [2002], which included the source partners of infection, showed that although in
the source partners wild type outgrowth was seen once therapy was interrupted, the
recipient partners showed the presence of resistant mutations for long periods from 6
weeks to 5 years. This suggests a role for latent infection of compartments of cells by
wild type in the source partners allowing rapid outgrowth of wild type. It also suggests
that the recipient partners were infected by the dominant resistant strain in the source
partners.

When resistance mutations to a certain drug are present, treatment with that drug is
unlikely to be successful so it is important that newly diagnosed individuals are screened
for mutations before commencing therapy. However, routine tests are not able to detect
minority mutants below 20% prevalence in the viral quasispecies [Palmer et al., 2005].
This could mean that transmitted drug resistance is not always picked up and that in
some cases drug resistance is present and treatment will fail. New techniques are being
developed to detect prevalence at a lower level. One such technique is allele specific
polymerase chain reaction (PCR). An interesting study using this method followed
mothers who took single dose Nevaripine to prevent mother to baby transmission of
HIV [Palmer et al., 2006]. Allele specific PCR was used to detect the presence of
mutants down to 0.1% in the quasispecies. It was found that mutants persisted for
over one year at levels undetectable by standard methods after 2 months.

In summary, drug resistance mutations can arise before treatment and are present
in the quasispecies. Once therapy starts resistant strains can emerge and become
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dominant if the viral load is not suppressed sufficiently. Transmission of drug resistant
strains between partners is of concern and screening needs to occur in order to start the
patient on the best therapy. The long term presence of resistant strains is determined
by their fitness both on and off therapy.

3.2.2 Mathematical Modelling of Drug Resistance

There have been many models that investigate the effect of drug resistance on HIV
infection and an excellent review of the body of work up until 2000 can be found in
Nowak and May [2000]. Here we will pick out the models relevant to the thesis from
the last two decades since the research into this area began. The first multistrain
models of HIV infection were interested in the effect of drug resistance on viral load
after treatment commenced and the time to emergence of the resistant strain [McLean
and Nowak, 1992, McLean and Frost, 1995, Frost and McLean, 1994]. Later models
were concerned with the frequency of virus before treatment commenced [Bonhoeffer
et al., 1997, Ribeiro et al., 1998]. More recent models investigate how other important
biological aspects of HIV infection affect the emergence of drug resistance such as how
drug concentration and adherence to therapy affects the emergence of drug resistance
[Smith and Wahl, 2005, Smith, 2006, Rong et al., 2007a]. Rong et al. [2007b] include
a non-productive eclipse phase to investigate how drug resistance develops during HIV
infection. In later chapters we will consider the impact of cell heterogeneity and the
presence of latently infected cells on drug resistance. For now we will describe the sim-
plest versions of competition and evolutionary models of HIV infection with reference
to the relevant papers as necessary background to the later chapeters.

We will obtain the steady states and stability criteria for each model as well as
investigate the frequency of mutants before therapy is commenced in addition to the
time to emergence of mutants after therapy is initiated. In the case of two strain models
this has been shown before by others [Ribeiro et al., 1998, Nowak et al., 1997, Nowak
and May, 2000], whereas the three strain model work is novel.

3.3 Competition Models

Competition models such as those in Nowak and May [2000] aim to investigate the effect
that a strain of virus resistant to drug treatment has on viral load and CD4+ T cell
levels. They contain no mechanism for the mutation of one strain of virus to another.
Competition models almost always show competitive exclusion, a phenomenon whereby
the strain with the largest replicative capacity outcompetes the other strain and drives
it to extinction. First we present and analyse a two strain model of drug resistance
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and then go on to describe a three strain model.

3.3.1 Two Strain Competition Model

This model has two strains of virus present, which are assumed to differ only in the
value of the infection rate β. This is to model the difference between RTI sensitive
and RTI resistant strains. The value of β for the sensitive strain will be assumed to be
greater than that of the resistant strain when there is no drug present. A similar model
looking at PI resistance could be modelled by allowing the value of the burst size, k, to
be different for each strain. It should be pointed out that in models without mutation
you cannot get a steady state of a particular strain if that strain wasn’t present to start
with.

Model Equations

A system with two viral strains (differing in their β values only), adapted from the
basic model (1.1) is given below:

Ṡ =λ− dS − βwSvw − βmSvm,

İi =βiSvi − aIi,

v̇i =kIi − cvi,

(3.1)

for i = w,m and where i = w for the wildtype drug sensitive strain and i = m for the
resistant strain.

Using the next generation matrix method (see appendix for details) to find the R0

for this system gives R0 = maxi{R0i} where R0i = λβik
acd for i = w,m.

Steady State Analysis

There are three steady states for this system (3.1).

1. The disease free steady state is(
S =

λ

d
= S0, Iw = 0, Im = 0, vw = 0, vm = 0

)
.
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2. The wildtype strain only endemic steady state is

S =
S0

R0w
,

Iw =
cd

kβw
(R0w − 1),

vw =
d

βw
(R0w − 1),

Im =0,

vm =0,

which is biologically realistic when R0w > 1.

3. The mutant strain only endemic steady state is

S =
S0

R0m
,

Im =
cd

kβm
(R0m − 1),

vm =
d

βm
(R0m − 1),

Iw =0,

vw =0,

which is biologically realistic when R0m > 1.

The Jacobian matrix for this system is
−d− βwvw − βmvm 0 0 −βwS −βmS

βwvw −a 0 βwS 0
βmvm 0 −a 0 βmS

0 k 0 −c 0
0 0 k 0 −c

 ,

with corresponding eigenvalues Λ.

1. The disease free steady state characteristic polynomial can be factorised into
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smaller polynomials:

Λ + d = 0,

Λ2 + (a+ c)Λ + ca− λβwk

d
= 0,

Λ2 + (a+ c)Λ + ca− λβmk

d
= 0.

Therefore the disease free steady state is stable if R0w < 1 and R0m < 1 as this
gives positive coefficients. Combining these results for each polynomial we find
the disease free steady state is stable when R0 is less than unity.

2. The wildtype strain only endemic steady state characteristic polynomial can be
factorised into a quadratic and a cubic:

Λ2 + (a+ c)Λ + ca

(
1− βm

βw

)
= 0,

Λ3 +
(
a+ c+

λβwk

d

)
Λ2 +

(
λβwk

c
+
λβwk

a

)
Λ + λβwk − acd = 0.

Through consideration of the behaviour of these polynomials, we see that the
wildtype strain only endemic steady state is stable if βw > βm and R0w > 1.

3. Similarly the mutant strain only endemic steady state is stable if βm > βw and
R0m > 1.

This model shows competitive exclusion which means that one viral strain, the one
with the highest R0 value, will always outcompete the other so that at steady state
only the fittest viral strain is present. Before treatment we would expect the wildtype
strain to be the fittest, with βw > βm and once treatment has started the drug resistant
strain may or may not be fitter than the wildtype strain. If we assume that treatment
is modelled in the same way as the previous chapter with βew = (1 − e)βw and βm

unaffected by treatment then the wildtype strain will outcompete the mutant strain
when drug efficacy e < 1− βm

βw
, otherwise the mutant strain will win as long as R0m > 1.

3.3.2 Three Strain Competition Model

Modelling three strains is also very straightforward. The assumption is made that one
strain is sensitive to RTI’s and two are resistant.
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Model Equations

The model equations can be written in the same form as the two strain equations.

Ṡ =λ− dS − βwSvw − βm1Svm1 − βm2Svm2,

İi =βiSvi − aIi,

v̇i =kIi − cvi,

(3.2)

for i = w,m1,m2. Here strain w is the wildtype drug sensitive strain and strains m1
and m2 are drug resistant.

The next generation matrix method gives three possible values of R0 depending on
which strain R0i = λβik

acd is the largest. Therefore R0 = maxi{R0i}.

Steady State Analysis

There are 4 different steady states, one disease free and three with disease (one for each
strain of virus) which can be written in exactly the same form as for the two strain
system (3.1).

1. The disease free steady state is(
S =

λ

d
= S0, Iw = 0, Im1 = 0, Im2 = 0, vw = 0, vm1 = 0, vm2 = 0

)
.

2. The endemic steady states are given by

S =
S0

R0i
,

Ii =
cd

kβi
(R0i − 1),

Iî =Iǐ = 0,

vi =
d

βi
(R0i − 1),

vî =vǐ = 0,

where i = w,m1,m2 and î and ǐ are the two other strains, so if i = w then
ŵ = m1 and w̌ = m2.
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The Jacobian matrix for this system is

−d− βwvw − βm1vm1 − βm2vm2 0 0 0 −βwS −βm1S −βm2S

βwvw −a 0 0 βwS 0 0
βm1vm1 0 −a 0 0 βm1S 0
βm2vm2 0 0 −a 0 0 βm2S

0 k 0 0 −c 0 0
0 0 k 0 0 −c 0
0 0 0 k 0 0 −c


,

with corresponding eigenvalues Λ.

1. The disease free steady state characteristic polynomial can be factorised into
smaller polynomials:

Λ + d = 0,

Λ2 + (a+ c)Λ + ca− λβwk

d
= 0,

Λ2 + (a+ c)Λ + ca− λβm1k

d
= 0,

Λ2 + (a+ c)Λ + ca− λβm2k

d
= 0.

Therefore the disease free steady state is stable if R0 < 1 as this gives positive
coefficients.

2. The characteristic polynomial for the all the endemic steady states can be written
generally and factorised into two quadratics and a cubic:

Λ2 + (a+ c)Λ + ca

(
1−

βî
βi

)
= 0,

Λ2 + (a+ c)Λ + ca

(
1− βǐ

βi

)
= 0,

Λ3 +
(
a+ c+

λβik

d

)
Λ2 +

(
λβik

c
+
λβik

a

)
Λ + λβik − acd = 0,

for i = w,m1,m2. Therefore each one strain only endemic steady state i is stable
if βi > βî and βi > βǐ and R0i > 1.

Drug treatment can be modelled in the same way as for the two strain system (3.1)
and gives the same results. In order to model drug resistance we can assume that the
drug resistant strains have larger β values than the drug sensitive strain and that one
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of the R0i for strains m1 and m2 is greater than unity. Whichever strain is fittest
outcompetes the rest showing competitive exclusion as in the two strain model (3.1).

3.4 Evolutionary Models

In order to model the situation more realistically a number of features should be in-
cluded in the model. Firstly, new mutants should arise at the reverse transcription
stage, as this is where errors causing mutations occur, giving rise to a cell that is in-
fected with a mutant virus. Secondly, mutations should only occur at a high rate; HIV
mutates at a high rate equivalent to one base pair per round of replication. Thirdly,
mutations are assumed to cause a change in efficiency of the protein encoded by the
mutated gene. This can be modelled by each viral strain either having a different value
for β or k depending on whether the protein affected is reverse transcriptase or protease
(as in the competition models).

A number of different models will be considered in this section. The first is a two
strain model with mutation detailed in Section 3.4.1. The final two models given in
Section 3.4.2 describe two different ways of modelling mutation with three strains, along
a linear genotype or by assuming all mutants differ by one mutation.

Analytical Techniques

Evolutionary models are more complicated to analyse than competition models and the
results obtained are harder to relate to the biology, due to the inclusion of mutation. As
the mutation rate is very small we can use this parameter to carry out a perturbation
analysis on the exact solutions of each model to obtain an approximate solution. These
approximate solutions are more easily related to the underlying biology than the exact
solutions. We show both the exact and approximate solutions for the two strain model
where it is possible to obtain the solutions analytically and the approximate solutions
for the three strain models.

3.4.1 Two Strain Evolutionary Model

Modelling mutation at the reverse transcription stage and assuming that there is an
equal probability of mutating from wild type to the resistant or from resistant to
wildtype gives a symmetric two strain model. With only two viral strains there is no
difference between mutation modelled as a linear genotype or as a difference of only
one mutation. This model can be used to look at the emergence of a resistant strain
on treatment and the factors which affect this happening. It can also be compared
with the two strain competition model to see whether modelling mutation changes the
behaviour of the model.
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Model Equations

A system with two viral strains and mutation adapted from Bonhoeffer et al. [1997] is
given below:

Ṡ =λ− dS − βwSvw − βmSvm,

İi =(1− ε)βiSvi + εβîSvî − aIi,

v̇i =kIi − cvi,

(3.3)

for i = w,m. The symbol î means the other strain of virus and ε is the mutation rate.
Using the next generation matrix method there are two possible eigenvalues which

could be the R0 for this system. Using perturbation theory and assuming ε � 1 the
expressions can be simplified to give R0w ' λβwk(1−ε)

acd and R0m ' λβmk(1−ε)
acd . Therefore

R0 = maxi{R0i}. These expressions are not valid very near βw = βm as the system
collapses to a one strain model.

Steady State Analysis

There are three steady states for this system (3.3): disease free and two endemic steady
states.

1. The disease free steady state is(
S =

λ

d
, I1 = 0, I2 = 0, v1 = 0, v2 = 0

)
.

2. The endemic steady states can be found be solving the quadratic for S,

(2ε− 1)βwβmS2 + (1− ε)(βw + βm)
ac

k
S − a2c2

k2
= 0, (3.4)

and substituting the solutions for S into the following expressions for the other
variables

vw =
kε(λ− dS)

kβw(2ε− 1)S + ac
,

vm =
vw
εβmS

(ac
k
− (1− ε)βwS

)
,

Iw =
acvw
k

,

Im =
acvm
k

.

Figure 3-1 shows how the roots of the quadratic in S, (3.4), change with the
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value of βw. Similar results can be seen when βm is varied. The values of the
other variables obtained from substituting in the roots of (3.4) showed that root 1
(calculated by adding the discriminant), though positive, never gives biologically
realistic (non-negative) values for the other steady state variables: it is associated
with the unstable endemic steady state. This can be seen in Figure 3-1 where
root 1 of the quadratic in S gives vm < 0 then vw < 0 as the infection rate
βw increases. Root 2 (calculated by subtracting the discriminant) is associated
with the prevailing stable endemic steady state. When βw = βm the above
expressions are not valid as root 2 of the quadratic in S, gives a zero denominator
in the expression for vw at steady state. When the infection rates are equal
(βw = βm = β) we obtain the same steady state expressions as the one strain
system (1.1.3) with vm = vw = v and Iw = Im = I at steady state.

In order to obtain more useful steady state expressions for S a pertubation analy-
sis was performed assuming that S could be represented as a polynomial function
of the small parameter ε

S = S0 + εS1 + ε2S2 +O(ε3),

which was then substituted into the quadratic (3.4) and the coefficients of ε
equated. This gave the solutions to O(ε)

S =
ac(1 + ε)
kβi

, (3.5)

for i = w,m. Figure 3-1 shows how these values compare with the roots of the
quadratic obtained in the normal way. Here the perturbation root containing
βw corresponds to first root 1 then root 2 of (3.4) as βw becomes greater than
βm. The approximation is not valid when βw = βm as the system has a simpler
solution not involving the mutation rate.

Substituting in these approximations for the value of S, (3.5), gives the following
approximate solutions for vw and vm to O(ε),

S ' ac(1 + ε)
βwk

, S ' ac(1 + ε)
βmk

,

vw '
d

βw
(R0w − (1 + ε)) , vw ' ε

d

βw
(R0m − 1) ,

vm ' ε
d

βm
(R0w − 1) , vm '

d

βm
(R0m − (1 + ε)) ,
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(a) Quadratic Roots of S (b) Solutions of vw

(c) Solutions of vm (d) Perturbation Solutions of S

Figure 3-1: Graphs showing roots of quadratic in S calculated numerically and from
approximations using perturbation theory (dashed lined indicate unstable steady states
and solid lines stable steady states): a) Solutions of the quadratic in S, b) vw steady
state solutions calculated using each root of the quadratic in S, c) vm steady state
solutions calculated using each root of the quadratic in S, d) Steady state perturbation
solutions of S. Other parameter values were βm = 1.4−8 and ε = 0.0005, and values
given in Table 2.2.

where R0i are defined as in the two strain competition model (3.1). A number
of interesting things can be seen from these approximations. Firstly, the disease
steady states are only positive if the corresponding R0i > 1 + ε (or alternatively
with R0i defined as including ε, R0i > 1). Secondly, for each of the two disease
steady states one viral strain is of O(ε) and is therefore much smaller than the
other one. This means that as long as one of the strains has an R0i > 1 + ε both
strains will coexist albeit with one strain dominant over the other.
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The Jacobian matrix for this system is
−d− βwvw − βmvm 0 0 −βwS −βmS

(1− ε)βwvw + εβmvm −a 0 (1− ε)βwS εβmS

(1− ε)βmvm + εβwvw 0 −a εβwS (1− ε)βmS
0 k 0 −c 0
0 0 k 0 −c

 .

1. The disease free steady state characteristic polynomial can be factorised

(Λ + d)(x4Λ4 + x3Λ3 + x2Λ2 + x1Λ + x0) = 0,

where

x4 =1,

x3 =2a+ 2c,

x2 =(a+ c)2 + 2ac− λk

d
(1− ε)(βw + βm),

x1 =(a+ c)
(

2ac− λk

d
(1− ε)(βw + βm)

)
,

x0 =a2c2

(
1− λk

acd
(1− ε)(βw + βm) +

λ2k2βwβm
a2c2d2

(1− 2ε)
)
.

For the coefficients of the characteristic polynomial to be positive

(R0w +R0m)(1− ε) < 2 and (1−R0w(1− ε))(1−R0m(1− ε)) > R0wR0mε
2,

where R0i is defined in the usual way. When ε is zero these criteria reduce to both
R0i < 1 as in the corresponding system without mutation (3.1). When ε << 1
then R0i < 1 + ε for i = w,m are necessary conditions for the disease free steady
state to be stable.

2. The stability of the two endemic steady states was checked numerically by ex-
perimenting with different values of βw and βm to obtain a picture of when the
various steady states for this system were stable. Figure 3-2 gives the results in
diagrammatic form. The endemic steady state with strain w dominant is stable
when βw > βm and R0w > 1 + ε, whereas the strain m dominant steady state
is stable when βm > βw and R0m > 1 + ε. This can be seen in Figure 3-3. The
disease free steady state is stable when both R0i < 1 + ε.
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R0m

R0w

R0w = R0m

1 + ε

1 + ε

disease free

mutant dominant

wildtype dominant

Figure 3-2: Diagram showing the regions where each of the three steady states of the
two strain evolution model are stable. These conditions were checked numerically.

Figure 3-3: Graph showing the steady state values of both strains of virus for different
values of R0w. R0w was varied by changing the value of βw with βm = 1.4 × 10−8,
ε = 0.0005 and other variables the same as in Table 2.2 (R0m = 1.8261). Here R0w is
defined as in the competition model (3.1).
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Frequency of the Mutant Prior to Therapy

It is possible to obtain an analytical expression for the frequency of a resistant mutant
prior to the commencement of therapy. This is achieved by assuming that the system is
in dynamic equilibrium, that the mutant does not back mutate and that there is a cost
for the mutant of resistance. Here we present a summary of the work by Ribeiro et al.
[1998] for single mutation resistant mutants changing variable names to be consistent
with the body of our work. Ignoring back mutations gives a simplified system:

Ṡ =λ− dS − βwSvw − βmSvm,

İw =(1− ε)βwSvw − aIw,

İm =βmSvm + εβwSvw − aIm,

v̇w =kIw − cvw,

v̇m =kIm − cvm.

Setting the left hand sides of the simplified system to zero and solving for S using İw = 0
and v̇w = 0 gives S = ac(1+ε)

βwk
. Rearranging the equation İm = 0 and substituting in

the solution for S gives
vm
vw

=
εvm

1− βm
βw

.

If we assume that βm = rβw where r is a resistance factor between 0 and 1 then we
can write

vm
vw

=
ε

1− r − ε
' ε

1− r
, (3.6)

as ε << 1. This means that the frequency of the mutant prior to therapy depends on
the mutation rate and the cost of being resistant to therapy. Figure 3-4 shows that
the mutation rate has a much greater affect on the proportion of the mutant prior
to therapy than the resistance factor. However when the resistance factor is close
to 1, meaning that the mutant is almost as fit as the wildtype prior to therapy, the
proportion of mutant rises dramatically. The numerical result using the full system is
almost identical to the analytical approach and is therefore not plotted on Figure 3-4.
This suggests that the assumption of no back mutations is valid prior to therapy.

Time to Emergence of the Resistant Strain

Here we are concerned with finding an expression for the time taken for the drug
resistant strain to become dominant in the viral population, in order to find out which
of the parameters governing viral dynamics is important in the timing of emergence of
the resistant strain. This section is a summary of the work by Nowak et al. [1997] with
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Figure 3-4: Contour plot showing the behaviour of the frequency of mutants, vm/vw,
before therapy with varying resistance factor, r (ε = 0.0005)and mutation rate, ε
(r = 0.58). Parameter values are as given in Table 2.2.

variable name changes to fit with our nomenclature.
To make any progress analytically it is necessary to make some assumptions with the

model. We consider the two strain evolutionary model with the following assumptions:

• As c >> a we can assume that the concentration of each viral strain can be
approximated by the expression kIi

c .

• The mutation rate ε = 0 once drug treatment is initiated.

• Drug treatment is 100% effective therefore βw = 0

• As the initial value of Im at the start of drug therapy is of the order ε the infection
term in Ṡ can be ignored.

These assumptions taken at the disease steady state before drug treatment is initi-
ated give us the following revised system:

Ṡ =λ− dS,

İw =− aIw,

İm =
βmkImS

c
− aIm.

66



Solving for Iw gives
Iw(t) = Iw(0)e−at.

Non-dimensionalising by substituting S = λ
d Ŝ and Im = dc

βm
Îm gives

˙̂
S =d(1− Ŝ),

˙̂
Im =(

λβmk

cd
Ŝ − a)Îm.

Therefore
Ŝ(t) = 1− (1− 1

R0w
)e−dt,

where R0w = λβwk
acd . Substituting this into the ODE for Îm gives the following solution

Îm(t) = Îm(0)exp
[
a

{
(R0m − 1) t− R0m

d
(1− 1

R0w
)(1− e−dt)

}]
,

where R0m = λβmk
acd .

In order to find out when the switch over happens we need to calculate when the
number of wildtype infected cells equals the number of mutant infected cells. Therefore
we take

Im
Iw

=
Im(0)
Iw(0)

exp
[
a

{
R0mt−

R0m

d
(1− 1

R0w
)(1− e−dt)

}]
.

Using the taylor expansion of (1− e−dt) = (dt− d2t2/2 . . .) we obtain

Im
Iw
≈ Im(0)
Iw(0)

exp
[
a

{
1
R0w

t+
R0m

2
(1− 1

R0w
)dt2 . . .

}]
.

When this ratio is 1 we can solve the following quadratic to get the time tI when each
type of infected cell is present at 50%.

R0m(1− 1
R0w

)
2

adt2I + a
R0m

R0w
tI − ln

[
Iw(0)
Im(0)

]
= 0.

From Figure 3-5 we can see that the analytical solution and numerical solutions agree
closely for a range of values of R0m. The time it takes for the mutant to emerge is very
small, less than 20 days for the parameter values chosen here. When the drug is not
100% effective (e < 1, βw > 0), the time to emergence will increase as shown in Figure
3-6 (calculated numerically), showing the closer the two R0i values, the longer the time
to emergence.

This system, whereby the wild type strain and a single mutant strain are considered,
is sufficient to model examples of where a single nucleotide polymorphism is all that is
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Figure 3-5: Graph showing how time to emergence of the mutant strain is affected by
the value of R0m. R0m is varied using βm, with βw = 2.4× 10−8 prior to therapy and
βw = 0 on therapy. Other parameter values are as given in Table 2.2.

Figure 3-6: Graph showing how time to emergence of the mutant strain is affected by
the value of R0w. R0w is varied using βw, with βm = 1.4×10−8 (R0m = 1.8261). Other
parameter values are as given in Table 2.2.

68



necessary for drug resistance to occur. However in cases where two or more mutations
are necessary for resistance or where compensatory mutations develop, a model with
more mutants present is needed.

3.4.2 Three Strain Evolutionary Models

There are two models analysed in this section differing in the way in which mutation is
modelled. In the first, mutation is modelled so that it is equally likely that a mutation
can occur to change one strain to any other strain. This model will be referred to as
the ‘jump model’. The assumption here is that all of the strains differ by only one
mutation from the wild type strain. There is redundancy in the mechanism encoding
for most amino acids; for example, histidine is encoded by the nucleotide sequences
CAT and CAC [Brock, 1997]. Therefore we allow a strain to mutate to itself. This
approach was used by Ball et al. [2007] to model the evolution of virulence in HIV.

In the second model we assume that evolution can only occur along a linear genotype
so that only mutation to a neighbouring strain is possible. Mutants will be conserved
by using zero flux boundary conditions similar to that found in Gudelj et al. [2007],
which modelled evolution in microbes. This model will be referred to as the ‘serial
model’.

The total probability of a useful mutation occuring is taken to be ε. Therefore in
the jump model the probability that a mutation occurs to change from one strain to
another is ε

3 . In the serial model mutation can only occur linearly and so the probability
that mutation occurs from one strain to the neighbouring strain is ε

2 .

Model Equations

The jump model is given by

Ṡ =λ− dS − βwSvw − βm1Svm1 − βm2Svm2,

İi =
ε

3

3∑
i=1

βiSvi + (1− ε)βiSvi − aIi,

v̇i =kIi − cvi,

(3.7)

where i = w,m1,m2.
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The serial model is given by

Ṡ =λ− dS − βwSvw − βm1Svm1 − βm2Svm2,

İw =(1− ε

2
)βwSvw +

ε

2
βm1Svm1 − aIw,

İm1 =
ε

2
βwSvw + (1− ε)βm1Svm1 +

ε

2
βm2Svm2 − aIm1,

İm2 =
ε

2
βm1Svm1 + (1− ε

2
)βm2Svm2 − aIm2,

v̇i =kIi − cvi,

(3.8)

where i = w,m1,m2.

Steady State Analysis

1. The disease free steady state for both the jump model and the serial model are
the same (

S =
λ

d
, Iw = 0, Im1 = 0, Im2 = 0, vw = 0, vm1 = 0, vm2 = 0

)
.

2. The disease steady states in both models depend on cubics in S similar to the
quadratic in S, (3.4), for the two strain system with mutation. For the sake of
clarity this will be omitted and the simplified expressions obtained using pertur-
bation analysis using ε as the small parameter will be presented.

Due to the symmetry in the system it is possible to write the three endemic
steady states generally for the jump model:

S ' ac

kβi

(
1− 2ε

3

)
,

vi '
d

βi
(R0i − 1)

(
1 +

ε

3

(
β2
w − βm1βm2

(βw − βm1)(βw − βm2)
− 1
))

+
ε

3
2λkβ2

w

ac(βw − βm1)(βw − βm2)
,

vî '
ε

3
d

βi − βî
(R0i − 1),

vǐ '
ε

3
d

βi − βǐ
(R0i − 1),

where i = w,m1,m2 and î and ǐ are the other two strains of virus. R0i is taken
to be λβik

acd in this section. From the expressions it is easy to see that as ε is small
the dominant strain is i and the other two strains are present at O(ε).

The serial model has two different types of endemic steady state: one for each
of the two end point strains being dominant and one for the midde strain being
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dominant. The endemic steady state for the wildtype orm2 strain being dominant
can be generalised and is given as

S ' ac

kβi

(
1 +

ε

2

)
,

vi '
d

βi
(R0i − 1)(1 +

ε

2
),

vm1 '
ε

2
d

βm1
(R0i − 1),

vî '
ε2

4
d

βi − βî
(R0i − 1),

where i = w or i = m2, and î is the strain at the other end of the linear genotype.
Here it should be noted that the strain that is two mutations away, î, is present
at O(ε2) whereas the strain that is only one mutation away is present at O(ε).

The endemic steady state for the middle strain, m1, is

S ' ac

kβm1
(1 + ε),

vw '
ε

2
(R0m1 − 1)
βm1 − βw

,

vm1 '
d

βm1
(R0m1 − 1)

(
1 +

ε

2
βwβm2

(βm1 − βw)(βm1 − βm2)

)
− ε

2

(
d

βm1
(R0m1 + 1)− βm1

(βm1 − βw)(βm1 − βm2)

)
,

vm2 '
ε

2
(R0m1 − 1)
βm1 − βm2

.

In this steady state expression the two end strains are only one mutation away
from the middle strain and are therefore found at O(ε).

1. The Jacobian matrix for the disease free steady state of the jump model is

−d 0 0 0 −βwS −βm1S −βm2S

0 −a 0 0 (1− 2ε
3 )βwS ε

3βm1S
ε
3βm2S

0 0 −a 0 ε
3βwS (1− 2ε

3 )βm1S
ε
3βm2S

0 0 0 −a ε
3βwS

ε
3βm1S (1− 2ε

3 )βm2S

0 k 0 0 −c 0 0
0 0 k 0 0 −c 0
0 0 0 k 0 0 −c


.

When ε = 0 the Jacobian has the same form as for the disease free steady state of
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the three strain competition model (3.2). This means that the stability criteria
will be a perturbation of those for the three strain competition model, namely
R0i < 1 for the disease free steady state to be stable.

2. Given the complicated nature of this system it is not possible to obtain stability
criteria analytically. However, it would seem likely that the criteria will be a
perturbation of the three strain competition model (3.2), namely the strain with
the largest R0i > 1 will be the stable dominant strain endemic steady state. This
has been verified numerically as shown in Figure 3-7. In Figure 3-7a βm1 > βm2

meaning that as βw increases first vm1, then vw is the dominant strain with vm2 at
O(ε). In figure 3-7b βm2 > βm1 therefore as βw increases vm2 is the first dominant
strain, then vw.

1. The Jacobian matrix for the disease free steady state of the serial model is

−d 0 0 0 −βwS −βm1S −βm2S

0 −a 0 0 (1− ε
2)βwS ε

2βm1S 0
0 0 −a 0 ε

2βwS (1− ε)βm1S
ε
2βm2S

0 0 0 −a 0 ε
2βm1 (1− ε)βm2S

0 k 0 0 −c 0 0
0 0 k 0 0 −c 0
0 0 0 k 0 0 −c


.

When ε = 0 the Jacobian has the same form as for the disease free steady state
of the three strain competition model (3.2). Therefore the stability criteria will
be a perturbation of those for the disease free steady state for the three strain
competition model, namely if R0i < 1 for i = w,m1,m2 then the disease free
steady state will be stable.

2. It is not possible to obtain the endemic steady state criteria analytically. However,
numerical solutions show that the strain with the largest R0i > 1 has the stable
endemic steady state as seen in Figure 3-8. In Figure 3-8a βm1 > βm2, therefore as
βw increases, first vm1, then vw is the dominant strain. When vm1 is the dominant
strain both the losing strains are at O(ε) as they are both one mutation away
from the vm1. However when vw is dominant the strain two mutations away, vm2

is at O(ε2). In Figure 3-8b where βm2 > βm1 this behaviour can also be seen:
when βm2 > βw the wildtype strain is at O(ε2) and when βw > βm2 the m2 strain
is at O(ε2). The m1 strain remains at O(ε) as it is always one strain away from
the dominant strain.
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(a)

(b)

Figure 3-7: Graphs showing the steady state behaviour of the jump mutation model
for two cases a)Infection rate of strain m1, βm1 = 1.7×10−8 and infection rate of strain
m2, βm2 = 1.4×10−8, with βw varying, b)Infection rates of strain m1 and m2 reversed
with βw varying. All other parameters are as given in Table 2.2.
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(a)

(b)

Figure 3-8: Graphs showing the steady state behaviour of the serial mutation model
for two cases a)Infection rate of strain m1, βm1 = 1.7×10−8 and infection rate of strain
m2, βm2 = 1.4×10−8, with βw varying, b)Infection rates of strain m1 and m2 reversed
with βw varying. All other parameters are as given in Table 2.2.
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Frequency of the mutants before therapy

Using the same method [Ribeiro et al., 1998] as for the two strain model (3.3), neglecting
back mutations from the mutants, we obtain for the jump model:

vm1

vw
=

ε

3(1− 2ε
3 − r1)

' ε

3(1− r1)

and
vm2

vw
=

ε

3(1− 2ε
3 − r2)

' ε

3(1− r2)
,

where r1 and r2 are the resistance factors for strains m1 and m2 respectively. This
shows that the frequency of the two mutants will be of O(ε), with the mutant with the
highest resistance factor being at a higher frequency.

The serial model gives different results:

vm1

vw
=

ε

2(1− ε
2 − r1)

' ε

2(1− r1)

and
vm2

vw
=

ε2r1

(1− ε
2 − r1)(1− ε

2 − r2)
' ε2r1

(1− r1)(1− r2)
.

Here the closest strain to the wildtype, m1, will be at a higher frequency than strain
m2 unless r2 > 1− εr1

2 . As this condition would give a number very close to 1, this is
unlikely to be the case.

After treatment has commenced the same method could be used to calculate the
proportion of the minority strains among the population. In the jump model we would
see both of the minority strains at O(ε), with the fitter of the two at a higher proportion
as in Figure 3-7. In the serial model we would see the nearest neighbouring strain at
a higher frequency than the one further away, unless the strain m1 was the dominant
strain, in which case the minority strains would both be present at O(ε) with the fitter
of the two at a higher frequency. Both these cases can be seen in Figure 3-8.

Time to Emergence of the Dominant Mutant

There are a number of questions about emergence of new strains that a model with
three strains can answer such as does the number of mutations between the wildtype
strain and the new dominant strain on treatment affect the time until that new strain
emerges? Also does the fitness of the intermediate strain affect the time to emergence?
The three strain system is too complicated to obtain an analytical expression for the
time to emergence of the dominant mutant so numerical experiments have been carried
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out using the serial model of mutation. Figure 3-9a shows that it takes longer for a
strain that is two mutations away from the wildtype to emerge than a strain that is
only one mutation away; the other resistant strain had the same fitness in both cases.
Figure 3-9b shows that although a fitter intermediate strain of virus means the time
to emergence of the new dominant strain is less, the effect is minimal.

3.5 Conclusions

The competition models show competitive exclusion behaviour. In order to model drug
resistance initial conditions for all viral strains need to be non-zero. The fittest viral
strain, which is the one with the largest R0 value, is the one that outcompetes all the
others.

Competition models are useful for modelling the premise that drug resistant strains
are already present at very low prevalences in the viral quasispecies before treatment, in
which case initial conditions need to be the drug sensitive strain disease steady state,
perturbed slightly with the presence of resistant strains. However the modelling of
evolution before, during and after treatment is not possible with competition models.
Instead they are useful as a reference base case for evolutionary models where the
minority strains are always present at very low levels of O(ε) or smaller. However given
that the long term behaviour of the models is the same, an argument can be made
for using the simpler competition models, which can be analysed more easily, in some
cases. A good example of this would be when drug treatment commences. In contrast,
evolutionary models will be needed in order to model ongoing evolution of HIV strains
where the selection pressure changes over time, for example when a patient changes
their drug regimen.

Both methods of modelling mutation discussed in this chapter (jump mutations
and serial mutations) give the same qualitative results; the fittest strain (measured by
R0 value) dominates the other strains. In a model with only two strains the method
by which mutation is modelled is the same, however when there are three or more
strains the way in which you model mutation becomes important. The same qualitative
outcome occurs for both models of mutation, the fittest strain dominates, however the
amounts of the less fit strains differ: the jump model of mutation allows one strain
to dominate and all other strains to be present at the same order of magnitude O(ε),
however the serial model of mutation shows different orders of magnitude for the losing
strain depending on how many mutations away the losing strain is from the fittest
strain. In practice this means that if a strain differs by more than one or two mutations
from the fittest one it is unlikely to be seen in the quasispecies.
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(a)

(b)

Figure 3-9: Graphs showing the time to emergence of the dominant mutant strain on
therapy in different cases of the serial model a) m1 strain (βm1 = 1.4 × 10−8, βm2 =
1.1×10−8) or m2 strain dominant (βm1 = 1.1×10−8, βm2 = 1.4×10−8) on therapy, b)
m2 strain dominant with different fitnesses of m1 (βm2 = 1.4×10−8). Other parameters
as given in Table 2.2.
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The serial model of mutation also showed that the time to emergence is increased
when the number of mutations required to get to the new dominant strain is larger.
Increasing the fitness of the intermediate strain only marginally decreased the time to
emergence but this effect may be more pronounced when a larger number of mutations
is needed.

Neither the jump or serial models of mutation are particularly useful for different
reasons. The jump model doesn’t give anymore insight into drug resistance than the
two strain model of evolution, with the added negative of a strain mutating to itself.
As mentioned earlier there is some redundancy in amino acid encoding, however some
amino acids only have one codon, for instance methionine and tryptophan [Brock,
1997]. Also we don’t allow mutating to the same strain in the two strain model of
evolution. The serial model does not consider that there are two ways to get a double
mutant: mutation 1, then mutation 2 or the other way around. This would neccesitate
a four strain model such as that used by Ribeiro et al. [1998]. The mutation rates
in their model differed between strains so that it was possible to go from wildtype to
double mutant in one round of replication, at a very low rate. This model makes better
biological sense. Ribeiro et al. [1998] also calculated the frequency of the mutants
before therapy, obtaining identical results for the two strain and jump models when
taking the difference in modelling the mutation rate into account. The frequency of
the double mutant before therapy using the four strain model was

vm3

vw
=

ε1ε2
1− rm3

(
1

1− rm1
+

1
1− rm2

− 1
)
,

where m3 is the double mutant, and m1 and m2 are the two single mutants with the
respective ri resistance factors. The mutation rates to produce single mutants are εi for
i = 1, 2 for the m1 and m2 strains respectively. The two expressions for double mutant
frequency are both of O(ε2), however the four strain model gives a more realistic result,
with the frequency depending on both of the intermediate single mutants.

As both of the three strain models described in this chapter are either not biologi-
cally sensible or more enlightening for the extra complexity, and the four strain model
[Ribeiro et al., 1998] is too cumbersome, we will only include two strains of virus in
our models from now on.

Clinicians currently cannot routinely detect members of the quasispecies that are
below 20% prevalence in the population of viruses [Palmer et al., 2005]. Using one
compartment models of mutation would suggest that minority mutants would never be
seen in test results as the mutation rate ε is not big enough to give greater than 20%
prevalence. It is likely that the presence of some minority mutants found in samples
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is due to the proliferation of a new fitter mutant strain before “fixation” has occurred.
However, it could also be that these minority mutants in patient samples could be
coexisting at higher levels with the fitter strains. This is not explained by these one
compartment models of evolution and may be due to some other mechanism acting
on the system. Extensions to the two strain competition and evolution models will be
considered in the following chapters.
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Chapter 4

Multistrain Models with

Heterogeneity

4.1 Chapter Outline

This chapter is concerned with models that include two strains of virus as well as cell
heterogeneity and a drug sanctuary to see what effect each component has on drug
resistance.

We begin by discussing previous work that models other interesting biological phe-
nomena thought to have an effect on drug resistance.

We then describe two different models that include cell heterogeneity and a drug
sanctuary with two strains of virus: a two target cell two strain model in Section 4.3
and a two compartment two strain model in Section 4.4. Both models are extensions
of those seen in Chapter 2. For each model we employ both analytical and numerical
techniques to investigate steady state, long term, behaviour.

4.2 Background and Motivation

A number of groups have investigated the impact of biological phenomena on drug
resistance [Smith and Wahl, 2005, Smith, 2006, Kepler and Perelson, 1998, Rong et al.,
2007a,b]. Most involve modelling some aspect of drug treatment more realistically,
either by including drug concentration [Smith and Wahl, 2005], non-compliance with
treatment [Smith, 2006, Rong et al., 2007a] or a drug sanctuary [Kepler and Perelson,
1998] into the model.

By modelling drug concentration impulsively, Smith and Wahl [2005] investigated
the effect of different levels of drug on the emergence of a drug resistant strain. They
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allowed target cells to be saturated with drug at different levels: low, intermediate or
high, depending on the drug concentration, with susceptibility to infection governed
by the level of drug saturation. The wildtype and resistant strains were sensitive to
either intermediate and high or high levels of drug respectively. Steady state analysis
was carried out for the three levels of drug saturation and drug resistance was found to
emerge at both intermediate and high drug levels. At intermediate drug levels coexis-
tence of the two strains occured whereas at high drug levels either the resistant strain
emerged or both strains were driven extinct. At low levels of drug the wildtype only
steady state was stable. One of the limitations of this model was that it assumed the
drug effects were instantaneous and therefore there is no peaking of drug concentra-
tion. This has the biggest impact when dosing intervals are short. This model assumes
that the mutant is already in the total population of free virus. It does not model the
actual emergence of the mutant. The model also assumes that each dose is taken and
does not include the effects of non-compliance. A further paper by this group [Smith,
2006], investigated how non-compliance with drug regimen affected the emergence of
drug resistance using patient data and a model similar to their previous one. They
calculated both the length of drug holiday (time not taking the drug) and the length
of 100% adherence after the drug holiday in order for resistant mutants not to emerge.
This paper looked specifically at non-protease inhibitor regimens and showed that for
some drugs missing more than one dose was enough for resistance, whereas for others
missing up to 40 doses would not result in resistance emerging as long as adherence
after this was 100%. One possible extension to this work may be to look at whether
sporadic adherence, missing an occasional dose, has an effect on resistance emerging
for different drugs. It would also be interesting to look at what new threshold level
dose arises for protease inhibitors.

Kepler and Perelson [1998] analysed a two compartment model for HIV dynamics
to investigate the effect of a drug sanctuary on the emergence of resistant mutants in a
similar model to that described in Chapter 2. The physiological and virological parame-
ters in each compartment were taken to be the same in both compartments and the aim
was to find the mean time for a resistant mutant to arise. It was found that the drug
concentration range that allows mutants to arise and take over widens with inclusion
of a drug sanctuary where drug concentration is lower than the main compartment.
These results were obtained by using probabilities from the model which contained
only one strain of virus, rather than looking at steady states and the behaviour of the
model itself. As already noted in Chapter 2, this model is not symmetrical between
compartments, a flaw corrected in our model. We analyse an explicit two strain model
with the inclusion of a drug sanctuary in this chapter.
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Rong et al. [2007a] analysed a basic model with 2 strains of virus, wild type and drug
resistant, whereby new drug resistant mutants are produced when there is a mutation
at the reverse transcription stage of the life cycle. The reproductive ratios, Rs and Rr,
for wild type and drug resistant strains respectively, were calculated and used to infer
results for the system. A disease free steady state is only stable if both reproductive
ratios are less than unity. A resistant strain only steady state is found if Rr > 1 and
a co-existence steady state is also possible for a range of values of Rs and Rr. The
resistant strain only steady state is not possible if back mutation to the wild type is
allowed to occur, giving a two strain evolution model identical to the one described in
Chapter 3. A pharmacokinetic model of drug treatment is then used by Rong et al.
[2007a] to describe drug concentration in blood and cell compartments taking processing
necessary for activation of the drugs into account. This model is used in conjunction
with the viral life cycle model to look at the effect of adherence on the proportion of
wildtype to resistant strain present in the body. Their model suggests that perfect
adherence will suppress wildtype virus but allow drug resistant virus to replicate very
slowly. When adherence is not perfect the proportion of drug resistant strain rises more
rapidly. These results closely mirror those of Smith and Wahl [2005], which analyses a
competition model to a similar end. There are a number of assumptions made in this
model. As previously mentioned back mutation is not considered which means that
the model is more of a competition model than one looking at evolution. The model
also assumes that the resistant strain is resistant to reverse transcriptase inhibitors and
protease inhibitors to some degree. This is not a likely scenario in reality as more than
one mutation would be necessary for this to occur. This model also shows that at high
drug efficacy the viral population dies out. This is not the case in reality [Furtado
et al., 1999].

Rong et al. [2007b] analysed a competition model of HIV dynamics that included a
non-productive eclipse phase to investigate how drug resistance developes during HIV
infection. The eclipse phase separates out entry into the cell from later stages of the
life cycle including reverse transcription and integration into the host cell genome. The
eclipse phase consisted of infected cells that are yet to have proviral DNA incorporated
into the genome of the cell and can revert back to susceptible cells. Due to the inclusion
of another variable (cells in eclipse phase of infection) the model has a slightly different
reproductive ratio. One strain of virus was taken to be wildtype whilst the other
strain was resistant to both reverse transcriptase inhibitors and protease inhibitors.
The reproductive ratios of the two strains (when drug is present) were calculated and
found to be functions of RTI drug efficacy and PI drug efficacy. The effects of the
different types of drug were separated out and the effects on the fitness of the strains
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was assessed. It was found that an optimal progression rate (from eclipse phase to
productively infected) and optimal production rate of virions maximizes the fitness of
a drug resistant strain in the presence of drugs. It was also shown that higher levels of
drug efficacy allow a wider range of drug resistant strains to invade provided that level
is not high enough to eradicate both strains.

What seems clear from these models is that regardless of how drug concentration
is modelled, the likelihood of drug resistance emerging is greatly increased for high
levels of drug efficacy where the wildtype strain is less fit than the resistant strain.
Coexistence is seen when mutation is included in the model whereby one strain is
dominant and the other is found at very low levels (O(ε)). In this chapter we analyse
two models which include both a wildtype and resistant strain and a drug sanctuary
to examine the effect of heterogeneity on drug resistance. The two target cell model is
considered first as it has a more tractable form. We then extend the two compartment
model to see the effect of a drug sanctuary in a more heterogeneous environment.
Analysis is carried out in the absence of mutation in order to understand the underlying
behaviour of the models.

4.3 Two Target Cell Two Strain Model

In order to assess the effect of cell heterogeneity on the presence of drug resistant strains
of virus we extend the two target cell model from Chapter 2 to include two strains of
virus. This is done in the same manner as the evolutionary two strain model, (3.3),
from Chapter 3.

4.3.1 Model Equations

We consider two strains of virus in the model: a wild-type and a drug resistant strain
taken to be strain w and m respectively. The concentration of susceptible cells, in-
fected cells and free virions for each type of target cell are given by Si, Iij , and vj

respectively, where i = 1, 2 indicates the target cell type and j = w,m denotes the
viral strain. We keep the assumptions of a primary target cell, S1, which is wholly
susceptible to drug (CD4+ T cells) and a secondary target cell, S2, which acts as a
drug sanctuary (macrophages) and model drug treatment in the same manner as before
with the addition that the resistant strain is not affected by the drug, but that there is
a cost to this resistance represented by the resistance factor, 0 < r < 1. These elements
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combine to give us the model equations:

Ṡ1 =λ1 − dS1 − S1((1− e)β1vw + rβ1vm),

Ṡ2 =λ2 − dS2 − S2((1− eh)β2vw + rβ2vm),

İ1w =S1((1− ε)(1− e)β1vw + εrβ1vm)− aI1w,

İ1m =S1(ε(1− e)β1vw + (1− ε)rβ1vm)− aI1m,

İ2w =S2((1− ε)(1− eh)β2vw + εrβ2vm)− aI2w,

İ2m =S2(ε(1− eh)β2vw + (1− ε)rβ2vm)− aI2m,

v̇w =k(I1w + I2w)− cvw,

v̇m =k(I1m + I2m)− cvm.

(4.1)

A diagrammatic representation is shown in Figure 4-1.

4.3.2 Steady State Analysis

It is not possible to obtain explicit expressions for steady states when ε > 0. However
we can find series solutions of the form T =

∑∞
i=0 ε

iTi, where T = S, I, v is a given state
variable. Below we give the O(1) solutions which are equivalent to finding the steady
states of the corresponding competition model (ε = 0). We obtain the following four
steady states: disease free, dominant wild type, dominant resistant and ‘coexistence’.

Steady State Levels

1. The disease free steady state is S1 = λ1
d , S2 = λ2

d with all other state variables
equal to zero.

2. The wild type dominant steady state depends on the roots of the quadratic:

v2
w + x1vw + x0 = 0,

x1 =
d

(1− e)β1
(1−R01w) +

d

(1− eh)β2
(1−R02w) ,

x0 =
d2

(1− e)β1(1− eh)β2
(1−R0w) ,

(4.2)

where the basic reproductive ratios are R01w = λ1(1−e)β1k
acd , R02w = λ2(1−eh)β2k

acd
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Susceptible
S1

λ1dS1

Infected
I1m

aI1m

Infected
I1w

aI1w

Virus vwcvw Virus vm cvm

Infected
I2w

aI2w
Infected
I2m

aI2m

Susceptible
S2

λ2
dS2

(1− ε)(1− e)β1vw + εrβ1vm ε(1− e)β1vw + (1− ε)rβ1vm

kI1w kI1m

kI2w kI2m

(1− ε)(1− eh)β2vw + εrβ2vm ε(1− eh)β2vw + (1− ε)rβ2vm

Figure 4-1: Schematic of two target cell two strain model. See text and Table 2.3 for
futher details of parameters and variables.
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and R0w = R01w +R02w. The other variables are

S1 =
λ1

d+ (1− e)β1vw

I1w =
(1− e)β1S1vw

a
,

S2 =
λ2

d+ (1− eh)β2vw
,

I2w =
(1− eh)β2S2vw

a
,

vm =Lm = I1m = I2m = O(ε).

All variables also have O(ε) terms.

WhenR0w > 1 there is a single real positive root of the quadratic in vw (5.5),leading
to a biologically realistic wildtype dominant steady state.

3. The mutant dominant steady state depends on the roots of the quadratic:

v2
m + y1vm + y0 = 0,

y1 =
d

rβ1
(1−R01m) +

d

rβ2
(1−R02m) ,

y0 =
d2

r2β1β2
(1−R0m) ,

(4.3)

where R01m = λ1rβ1k
acd , R02m = λ2rβ2k

acd and R0m = R01m + R02m. The other
variables are

S1 =
λ1

d+ rβ1vm

I1m =
rβ1S1vm

a
,

S2 =
λ2

d+ rβ2vm
,

I2m =
rβ2S2vm

a
,

vw =Lw = I1w = I2w = O(ε).

Again all variables have O(ε) terms.

When R0m > 1 there is a single real positive root of the quadratic in vm (5.7),
leading to a biologically realistic mutant dominant steady state.

86



4. The coexistence steady state only exists if h 6= 1 and is given by:

S1 =
ac((1− eh)− r)

krβ1((1− eh)− (1− e))
,

S2 =
ac(r − (1− e))

kβ2((1− eh)− (1− e))
,

vw =
r (β1S1 (λ2 − dS2)− β2S2 (λ1 − dS1))

S1S2β1β2((1− eh)− (1− e))
,

vm =
β2(1− eh)S2 (λ1 − dS1)− β1(1− e)S1 (λ2 − dS2)

S1S2β1β2((1− eh)− (1− e))
,

I1w =
S1(1− e)β1vw

a
,

I1m =
S1rβ1vm

a

I2w =
S2(1− eh)β2vw

a
,

I2m =
S2rβ2vm

a
.

All variables have additional terms of O(ε).

The steady state expressions for S1 and S2 are both positive if (1 − e) < r <

(1 − eh). In addition providing vw and vm are positive the remaining variables
are also positive. Therefore in order to ascertain whether the coexistence steady
state is biologically realistic the constraints for vw > 0 and vm > 0 need to be
investigated.

Local Stability Criteria

1. The Jacobian for the disease free steady state is

−d 0 0 0 0 0 − (1−e)β1λ1

d − rβ1λ1

d

0 −d 0 0 0 0 − (1−eh)β2λ2

d − rβ2λ2

d

0 0 −a 0 0 0 (1−e)β1λ1

d 0
0 0 0 −a 0 0 0 rβ1λ1

d

0 0 0 0 −a 0 (1−eh)β2λ2

d 0
0 0 0 0 0 −a 0 rβ2λ2

d

0 0 k 0 k 0 −c 0
0 0 0 k 0 k 0 −c


.
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The characteristic equation for this matrix can be factorised into the following
polynomials:

(Λ + d)2 = 0,

Λ3 + x2Λ2 + x1Λ + x0 = 0,

where

x2 = 2a+ c,

x1 = 2ac+ a2 − k

d
((1− e)β1λ1 + (1− eh)β2λ2),

x0 = a

(
ac− k

d
((1− e)β1λ1 + (1− eh)β2λ2)

)
,

and

Λ3 + y2Λ2 + y1Λ + y0 = 0,

y2 = 2a+ c,

y1 = 2ac+ a2 − kr

d
(β1λ1 + β2λ2),

y0 = a

(
ac− kr

d
(β1λ1 + β2λ2)

)
.

All coefficients are positive and the disease free steady state is stable if and only
if the basic reproductive ratio max(R0w, R0m) < 1.

2. The characteristic polynomials for the wildtype only steady state can be factorised
into the following polynomials:

(Λ + a)2 = 0,
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Λ4 + x3Λ3 + x2Λ2 + x1Λ + x0 = 0,

where

x3 = c+ a+ (1− eh)β2 + (1− e)β1 + 2d,

x2 = ca− k(1− e)β1S1 − k(1− eh)β2S2

+ d(2(a+ c) + d) + (a+ c+ d)((1− e)β1 + (1− eh)β2)vw

+ (1− e)(1− eh)β1β2v
2
w,

x1 = (a+ c)(1− e)(1− eh)v2
w

+ ((ac+ cd+ ad)((1− e)β1 + (1− eh)β2)− k(1− e)(1− eh)β1β2(S1 + S2))vw

+ d(ad+ cd+ 2ac− 2k((1− e)β1S1 + (1− eh)β2S2)),

x0 = ac(1− e)(1− eh)β1β2v
2
w

+ (acd((1− e)β1 + (1− eh)β2)− dk(1− e)(1− eh)β1β2(S1 + S2))vw

+ d2(ac− k((1− e)β1S1 + (1− eh)β2S2)),

(4.4)

and

Λ2 + y1Λ + y0 = 0,

where

y1 = a+ c,

y0 = ac− krβ1S1 − krβ2S2.

(4.5)

The quartic polynomial (4.4) has positive coefficients when the intercept x0 > 0.
The intercept condition can be rearranged to give

v2
w + z1vw + z0 > 0,

z1 =
d

(1− e)β1
(1−R01w(Sw1 )) +

d

(1− eh)β2
(1−R02w(Sw2 )) ,

z0 =
d2

(1− e)β1(1− eh)β2
(1−R0w(Sw1 , S

w
2 )) ,

(4.6)

where Sw1 and Sw2 denote the wildtype dominant steady state expressions for S1

and S2. This quadratic has the same form as the steady state expression for vw
(5.5), with λi

d replaced with the wildtype dominant steady state expressions for
Si. At steady state, R0w(Sw1 , S

w
2 ) ≡ 1, and therefore the coefficient z0 = 0. Also

as R0w(Sw1 , S
w
2 ) = R01w(Sw1 ) + R02w(Sw2 ) = 1, the coefficient z1 > 0. Therefore

when R0w > 1, meaning there is a real positive vw, the intercept of the quartic
polynomial (4.4) will also be positive.
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The quadratic polynomial (4.5) has positive coefficients if

rk

ac
(β1S

w
1 + β2S

w
2 ) = R0m(Sw1 , S

w
2 ) < 1,

where Sw1 and Sw2 denote the wildtype dominant steady state expressions for
S1 and S2. When h = 1 this condition becomes R0m < R0w or equivalently
r < (1− e).

Therefore the wildtype dominant steady state is stable when R0w > 1 and
R0m(Sw1 , S

w
2 ) < 1. The basic reproductive ratio, R0w > 1, specifies when wildtype

virus can invade a totally susceptible population. The expression R0m(Sw1 , S
w
2 ) <

1 specifies that mutant virus cannot invade a susceptible population at the wild-
type steady state level.

3. The mutant only steady state characteristic polynomial has the same form as
that for the wildtype only steady state and is therefore stable when R0m > 1 and
R0w(Sm1 , S

m
2 ) < 1, where Sm1 and Sm2 denote the steady state expressions of S1

and S2 at the mutant dominant steady state.

4. It is not possible to obtain a tractable characteristic polynomial for the coexis-
tence steady state.

Figure 4-2 shows when each of the steady states is stable as we vary the drug
efficacy e. The coexistence steady state is only stable for a very small range of
R0w inbetween the two other endemic steady states being stable. It is only seen
when drug penetrance h < 1 as in Figure 4-2. In Figure 4-2 R0m < R0w when
the mutant only endemic steady state becomes stable.

However, we can infer the stability conditions from when the other steady states
are unstable; when R0w > 1, R0m > 1, R0w(Sm1 , S

m
2 ) > 1 and R0m(Sw1 , S

w
2 ) > 1

the coexistence steady state is stable. This can be seen in Figure 4-3. Numerical
testing showed that when the other steady states were unstable both strains of
virus were present at the levels given by the coexistence steady state expressions.

From Figures 4-2 and 4-3 we can see that coexistence can only occur for a very
small range of parameter values and as such it is not likely to be biologically
significant. In addition if we include mutation in the model all of the steady
states show coexistence with one strain dominant over the other, as shown in
Figure 4-4, however the point at when the switch in dominance occurs is the
same.
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Figure 4-2: Figure showing when the three endemic steady states are stable. The
wildtype strain vw is denoted by the thick red line and the mutant strain vm by the
thin blue line. The dashed lines denote the mutant only endemic steady state, the
solid lines the wildtype only endemic steady state and the asterisk marks denote the
coexistence steady state. R0w is varied by changing the value of the drug efficacy e,
r = 0.25, R0m = 1.2825; parameters are as given in Table 2.3.
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(a)

(b)

Figure 4-3: Graph showing the stability of the endemic steady states when R0m > 1
(r = 0.25). a)drug penetrance h and drug efficacy e, varied, b)close up of region where
R0w > 1 to show that when R0w(Sm1 , S

m
2 ) > 1 and R0m(Sw1 , S

w
2 ) > 1 the coexistence

steady state is stable. Other parameters as in Table 2.3.
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Figure 4-4: Figure showing the steady state viral loads in the target cell model with
mutation. R0w is varied by changing the value of the drug efficacy e, r = 0.25, R0m =
1.2825, ε = 0.0005; parameters are as given in Table 2.3.

The biologically interesting feature from the two target cell model (2.6): that it
allowed low level viral loads at steady state with high levels of drug efficacy whether
in the presence of a drug sanctuary (drug penetrance h < 1) or not (h = 1), can be
found in the two strain version of the model (4.1) under certain circumstances. These
being when R0w > 1 > R0m and when R0m > R0w with R0m very close to 1 as shown
in Figure 4-5a and Figure 4-5b respectively. Additionally when h < 1 we have that low
level viral load is possible when R0m < R0w for certain parameter values that allow the
mutant virus to dominate.

4.3.3 Summary of Results

The two target cell two strain model is capable of showing coexistence in a competition
version of the model. However, the range of parameters that allow coexistence to
occur is so small that this steady state is unlikely to be seen in vivo. However, the
presence of a drug sanctuary does cause some interesting behaviour. The switch over in
stability from wildtype to mutant does not occur when the R0w = R0m as in previous
two strain models. The usual condition for disease free steady state stability holds,
R0i < 1, however the mutant can outcompete the wildtype even when R0m < R0w.
Conditions for when the coexistence steady state is stable were found by analysing
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(a) R0w > 1 > R0m

(b) R0m > R0w > 1

Figure 4-5: Graphs showing two target cell two strain model behaviour for two different
parameter cases: a) R0m < 1, R0w > 1 (r = 0.1)and b) R0m > R0w (r = 0.21). The
dotted line is the detection threshold for viral load tests. Other parameter values as in
Table 2.3. Drug treatment commenced at 200 days post infection.
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the characteristic polynomials for the both the wildtype only and mutant only steady
states and numerically checking that when the disease free, mutant only and wildtype
only steady states are unstable the coexistence steady state is stable. The coexistence
steady state is stable when invasion of one of the single strain only steady states is
possible with the conditions R0i(S î1, S

î
2) > 1, where i = w,m and î is the other strain.

These criteria for coexistence have previously been seen in Roberts [2007] in relation to
a model of a fatal infection with two variants in a wild animal. The evolutionary version
of the model shows the same behaviour as the competition model, i.e. the results are
a perturbation of the competition model, as seen in the two strain evolutionary model
analysed in Chapter 3.

The evolutionary version of the model still allows low level viral load to occur with
the winning strain having the larger R0i and this being close to but greater than 1.
This model will be extended to include latently infected cells in Chapter 5.
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4.4 Two Compartment Two Strain Model

We now explore the impact of a drug sanctuary and cell heterogeneity on drug resistance
in a more complex setting: the two compartment model (2.3), from Chapter 2. As this
model is more complicated we concentrate our analysis on the competition version of
the model.

4.4.1 Model Equations

The model comprises of a system of non-linear ordinary differential equations and is
based on that of Kepler and Perelson [1998]. It models the viral load in two body
compartments: the blood and the male genital tract, taken to be compartment 1
and compartment 2 respectively. We assume that the volume of compartment 1 is
greater than that of compartment 2 and with the inclusion of drug treatment, that
compartment 2 may behave as a drug sanctuary with lower drug efficacy.

We consider two strains of virus in the model: a wild-type and a drug resistant
strain taken to be strain w and strain m respectively. The concentration of susceptible
cells, infected cells and free virions in each compartment are given by Si, Iij , and
vij respectively, where i = 1, 2 indicates the compartment and j = w,m denotes the
viral strain. The virions are allowed to move between the blood and genital tract
compartments. A schematic of the model is shown in Figure 4-6 for which we have the
system of equations:

Ṡi =λi − diSi − βiwSiviw − βimSivim,

İij =βijSivij − aiIij ,

v̇ij =kijIij − civij +Di(vîj − vij).

(4.7)

The symbol î means the other compartment. Modelling diffusion of viral particles
between compartments using a discrete derivation of Fick’s Law [Machouf et al., 2006]
gives

D1 =
L

1− u
, D2 =

L

u
,

where L is the transport coefficient and where the total volume is scaled to 1 and u

is the volume of compartment 2. With this choice of diffusion coefficients, the system
exhibits symmetry between compartments.

Drug treatment can be modelled implicitly by assuming that treatment directly re-
duces the corresponding viral parameter: βij for reverse transcriptase inhibitors and kij
for protease inhibitors. Drug treatment is represented by scaling the relevant parame-
ter (βij or kij) by a factor (1− e), where e is the efficacy of the drug and ranges from 0
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to 1. Drug penetrance in the second, smaller compartment is modelled by scaling drug
efficacy e in compartment 2 by a factor h, where h is the drug penetrance ranging from
0 to 1. A summary of the parameters along with values used in numerical solutions can
be seen in Table 4.1. The system (4.7) can be broken down into a number of simpler

Parameter Meaning Value
λi birth rate of new cells 104 cells ml−1 day−1

di death rate of susceptible cells 0.01 cell−1 day−1

βij infection rate 2.4× 10−8 virion−1 day−1

ai death rate of infected cells 1 cell−1 day−1

kij number of new virions produced 3000 virions cell−1 day−1

ci death rate of virions 23 day−1

L scaled transport coefficient 0.05 day−1

u scaled volume of small compartment 0− 0.5
e Drug efficacy in compartment 1 0− 1
h Drug penetrance in compartment 2 0− 1
r resistance factor 0− 1

Table 4.1: Two compartment two strain model parameter descriptions and values.

systems to give insight into the behaviour of the full system. The full system (4.7) can
be reduced to the basic model (1.1), of blood plasma dynamics with one strain of virus
by setting L = v1m = I1m = 0. The blood plasma model with two strains of virus
can be obtained by setting L = 0; analysis of this model can be found in Chapter 3.
The main result from the two strain model is that the strain with the largest R0 value
outcompetes the other strain. The more interesting model of two compartments and
one strain of virus, obtained by setting all of the mutant strain variables to zero, is
analysed in Chapter 2. This model allows low level viral load at high drug efficacies
with or without the presence of a drug sanctuary, due to the inclusion of cell hetero-
geneity to ensure the smaller compartment has a higher R0 value under treatment. Cell
heterogeneity also causes the viral load to differ between compartments which is more
biologically realistic.

4.4.2 Steady State Analysis

Steady state analysis of the competition model is not possible when you allow all of
the parameters to vary between compartments. However, if u = 0.5 (meaning the two
compartments are the same size) and only the transmission parameters are allowed to
vary, steady state expressions can be obtained. When u = 0.5, the diffusion coefficients
D1 = D2 = 2L so we will substitute D1 = D2 = D. There are 4 possible steady states:
disease free, wildtype strain only, mutant strain only and coexistence.
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1. The disease free steady state is

S1 =
λ

d
, S2 =

λ

d
, I1w = I1m = I2w = I2m = v1w = v1m = v2w = v2m = 0.

2. The wildtype strain only steady state is determined by the solution of a cubic
equation in S1:

x3S
3
1 + x2S

2
1 + x1S

2
1 + x0 = 0,

where

x3 =β1wβ2wk
2d(D + c),

x2 =(−(2D + c)λβ2wk
2 + (D2 +Dc)adk)β2

1w − (2c2 + 4Dc+D2)adβ2wkβ1w,

x1 =((2c2 + 2D2 + 5Dc)aλβ2wk + (−Dc2 − 2D2c)a2d)β1w

+ (3Dc2 + 2D2c+ c3)a2dβ2w,

x0 =− λa2β2wc(2D2 + c2 + 3Dc).

Other variables can be written in terms of S1 and S2 to give

S2 =
a(β1wkS1(c+D)− ac(c+ 2D))

kβ2w(β1wkS1 − a(c+D))
,

v1w =
λ− dS1

β1wS1
,

v2w =
λ− dS2

β2wS2
,

I1w =
β1wS1v1w

a
,

I2w =
β2wS2v2w

a
.

Note that x3 > 0 and x0 < 0 meaning that there is always at least one positive
real root. The condition for S2 > 0 is S1 <

ac
β1wk

(
1 + D

c+D

)
.

3. The mutant only steady state is determined by the solution of a cubic equation
in S1:

y3S
3
1 + y2S

2
1 + y1S

2
1 + y0 = 0,
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where

y3 =β1mβ2mk
2d(D + c),

y2 =(−(2D + c)λβ2mk
2 + (D2 +Dc)adk)β2

1m − (2c2 + 4Dc+D2)adβ2mkβ1m,

y1 =((2c2 + 2D2 + 5Dc)aλβ2mk + (−Dc2 − 2D2c)a2d)β1m

+ (3Dc2 + 2D2c+ c3)a2dβ2m,

y0 =− λa2β2mc(2D2 + c2 + 3Dc).

Other variables can be written in terms of S1 and S2 to give

S2 =
a(β1mkS1(c+D)− ac(c+ 2D))
kβ2m(β1mkS1 − a(c+D))

,

v1m =
λ− dS1

β1mS1
,

v2m =
λ− dS2

β2mS2
,

I1m =
β1mS1v1m

a
,

I2m =
β2mS2v2m

a
.

Note that y3 > 0 and y0 < 0 meaning that there is always at least one positive
real root. The condition for S2 > 0 is S1 <

ac
β1wk

(
1 + D

c+D

)
.

4. The coexistence steady state is determined by the solution to a quadratic con-
taining S1:

z2(
kS1

a
)2 + z1(

kS1

a
) + z0 = 0,

where

z2 =β1wβ1m(β2w − β2m)(c+D),

z1 =D2(β1wβ2m − β2wβ1m) + (c2 + 2Dc)(β1w + β1m)(β2m − β2w),

z0 =(β2w − β2m)(3cD + 2D + c2).

The expression for S2 is the same as in the strain 1 only steady state, however
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the expressions for the viral variables are considerably more complex:

v2w =

(
(λ− dS1)− β1mS1

β2mS2D
(c− kβ2mS2

a +D)(λ− dS2)
)

β1wS1

(
D

c− kβ1wS1
a

+D
− β2w

β1wD
(c− kβ2mS2

a +D)
) ,

v1w =
v2wD

c− kβ1wS1

a +D
,

v2m =
λ− dS2 − β2wS2v2w

β2mS2
,

v1m =
v2m

D

(
c− kβ2mS2

a
+D

)
,

I1w =
β1wS1v1w

a
,

I2w =
β2wS2v2w

a
,

I1m =
β1mS1v1m

a
,

I2m =
β2mS2v2m

a
.

The sign of z2 and z0 depend on the same factor (β2w − β2m), meaning there
are either no roots with positive real parts or 2 roots with positive real parts
depending on the sign of z1. If β2w > β2m and β2w

β2m
> β1w

β1m
then there are two roots

to the quadratic with real parts. The condition implies that the wildtype strain
has a greater advantage in compartment 2 than in compartment 1. Conversely,
if β2w < β2m and β2m

β2w
> β1m

β1w
then the mutant strain has a greater advantage in

compartment 2 than in compartment 1. With the usual assumptions regarding
drug therapy and drug resistance we have two roots with positive real part if
(1 − eh) > r and (1 − eh) > (1 − e). The other condition, r > (1 − eh) and
(1 − e) > (1 − eh) is never satisfied as 0 < h < 1. This means that in order
for the quadratic in S1 to have roots with positive real parts the wildtype strain
must be fitter than the mutant strain in compartment 2 and there must be a drug
sanctuary present, i.e. h < 1.
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1. The Jacobian for the disease free steady state is

−d 0 0 −β1w
λ
d −β1m

λ
d 0 0 0 0 0

0 −a 0 β1w
λ
d 0 0 0 0 0 0

0 0 −a 0 β1m
λ
d 0 0 0 0 0

0 k 0 −c−D 0 0 0 0 D 0
0 0 k 0 −c−D 0 0 0 0 D

0 0 0 0 0 −d 0 0 −β2w
λ
d −β2m

λ
d

0 0 0 0 0 0 −a 0 β2w
λ
d 0

0 0 0 0 0 0 0 −a 0 β2m
λ
d

0 0 0 D 0 0 k 0 −c−D 0
0 0 0 0 D 0 0 k 0 −c−D



.

The characteristic polynomial for the disease free steady state can be factorised
into

(Λ + d)2(Λ4 + x3Λ3 + x2Λ2 + x1Λ + x0)(Λ4 + y3Λ3 + y2Λ2 + y1Λ + y0) = 0,

where

x0 =a2c2

((
1 +

D

c
−R01w

)(
1 +

D

c
−R02w

)
− D2

c2

)
,

x1 =ac
((

1 +
D

c
−R01w

)
(D + a+ c)− D2

c

)
+

+ ac

((
1 +

D

c
−R02w

)
(D + a+ c)− D2

c

)
,

x2 =ac
(

1 +
D

c
−R01w

)
+ ac

(
1 +

D

c
−R02w

)
+

+ (a+ c+D)2 −D2,

x3 =a+ c+D + a+ c+D,

R0iw =
λβiwk

acd
,
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and

y0 =a2c2

((
1 +

D

c
−R0m

)2

− D2

c2

)
,

y1 =2ac
((

1 +
D

c
−R0m

)
(D + a+ c)− D2

c

)
y2 =2ac

(
1 +

D

c
−R0m

)
+ (a+ c+D)2 −D2,

y3 =a+ c+D + a+ c+D,

R0m =
λβmk

acd
.

The disease free steady state is stable when all of the coefficients xi and yi are
positive. This occurs when R0m < 1 and R0w < 1. It is possible to obtain R0w,
using the next generation method, as the positive root of the quadratic:

R2
0w −

(
λk(c+D)(β2w + β1w)

acd(c+ 2D)

)
R0w +

β1wβ2wλ
2k2

a2cd2(c+ 2D)
= 0.

2. It is not possible to obtain stability criteria for the other steady states analytically,
however numerical solutions showed that when the disease free steady state was
unstable one of the three endemic steady states was stable as can be seen in Figure
4-7. The coexistence steady state is seen inbetween the wildtype and mutant only
steady states as in the two target cell two strain model (4.1). Additionally the
bifurcation points from wildtype to coexistence to mutant do not correspond to
conditions on R0i for i = w,m. The nature of the coexistence steady state is
explored more in the next section where the full model is considered.

4.4.3 Numerical Analysis

The full system (4.7) was investigated numerically to see how the combined effects of
drug heterogeneity (i.e. a drug sanctuary) and cell heterogeneity affect steady state
solutions. This model has a disease free steady state and three possible disease steady
states. The disease steady states are strain 1 only (v1m = v2m = I1m = I2m = 0), strain
2 only (v1w = v2w = I1w = I2w = 0) and coexistence, where all viral strain variables
are non-zero.

We follow our previous work and assume the mutant strain (strain m) is not affected
by drug treatment but that this comes at a cost so we set β1m = β2m = βm = rβw.
Also, in the absence of drug we assume the wildtype has the same values in both
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Figure 4-7: Graphs showing how the steady state stability changes with drug efficacy, e
and resistance factor, r. The black region is the disease free steady state, the red (dark
grey if greyscale) region is wildtype only, the yellow (light grey if greyscale) region is
mutant only and the white region is coexistence. Parameter values were the same in
each compartment with u = 0.5 and drug penetrance h = 0.9. Other parameter values
as in Table 4.1.
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compartments i.e. β1w = β2w = βw. We assume that in that absence of drugs, strain w
is fitter than strain m by setting 0 < r < 1. This scenario leads to competitive exclusion
in the full model such that the wildtype strain outcompetes the mutant strain. This
result holds for all sizes of compartment 2 and values of the infected cell death rate in
compartment 2 a2, which we varied in the numerical analysis.

If there is no drug sanctuary in compartment 2 and the drug is above critical efficacy
to give

(1− e) < r

then the mutant strain m outcompetes the wildtype w, again regardless of the values
of the other parameters in the model. This is because the other parameters affect both
strains equally and without a drug sanctuary the drug also affects the wildtype strain
the same in both compartments.

When a drug sanctuary is included in the model in the same way as in Chapter 2 i.e
β2w = (1− eh)βw, where h < 1, we see the most interesting results: both competitive
exclusion and strain coexistence are possible depending on the values of the key model
parameters r, u and a2. When r < 1 − e we again get competitive exclusion with the
wildtype outcompeting the mutant strain, conversely when r > 1− eh the wildtype is
outcompeted. However when

1− e < r < 1− eh

we can see competitive exclusion or strain coexistence depending on the other param-
eters in the model. This can be seen in Figure 4-8. When coexistence was seen further
investigations were carried out to determine the dominant strain in each compartment.
Given certain parameter conditions we see differential dominance between the two com-
partments. By this we mean that the mutant strain is dominant in compartment 1 and
the wildtype is dominant in compartment 2. In Figure 4-8a the resistance factor is quite
low (r = 0.33) meaning that the mutant cannot be dominant in both compartments
or competitively exclude the wildtype. As the advantage to the wildtype increases
with decreasing infected cell death rate in compartment 2 and increasing relative size
of compartment 2, the wildtype can dominate the mutant in both compartments, or
outcompete the mutant entirely.

In Figure 4-8b the resistance factor is high (r = 0.7) so the opposite occurs: the wild-
type cannot outcompete the mutant. When the advantage to the wildtype decreases,
a2 increasing and u decreasing, the mutant can dominate in both compartments, or
outcompete the wildtype. Figure 4-9 shows how the steady state stability is affected
by the drug efficacy and resistance factor in more detail for varying cases of hetero-
geneity. Parameters were chosen so that all of the five steady state behaviours are

105



(a) e = 0.75, r = 0.33

(b) e = 0.5, r = 0.7

Figure 4-8: Viral load steady state and dominance. Graphs showing the steady state
behaviour and dominance of strains in the 2 compartment model for a range of values
of u and a2 : a) drug efficacy e = 0.75 and drug penetrance h = 0.5 and resistance
factor r = 0.33 and b) drug efficacy e = 0.5, drug penetrance h = 0.5 and resistance
factor r = 0.7. Key: 1 - wildtype only, 2 - wildtype dominant in both compartments,
3 - mutant dominant in compartment 1 and wildtype dominant in compartment 2, 4 -
mutant dominant in both compartments, 5 - mutant only. Other parameter values as
in Table 4.1.
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possible. Figure 4-9a is the base case with both compartments the same size, with no
cell heterogeneity (a1 = a2). As the resistance factor r is increased the fitness of the
mutant increases, changing the stable steady state from wild type only, to wildtype
dominant, differential dominance, mutant dominant and mutant only. For small val-
ues of r < 1 − e the wildtype outcompetes the mutant. For larger values of r we see
the same behaviour moving through the steady state behaviours as the drug efficacy
decreases corresponding to less fit wildtype virus. When the second compartment is
small in relation to the blood, as shown in Figure 4-9b the range of values of e and r for
which we see coexistence decreases. This is because the wildtype has a much smaller
advantage than before. In Figure 4-9c the infected cell death rate in compartment 2
is smaller than in compartment 1 (a2 = 0.5, a1 = 1) giving an extra advantage to the
wildtype virus, widening the range of values of r for which coexistence is seen.

An interesting feature of the coexistence steady state is the magnitude of the viral
loads in each compartment, as shown in Figures 4-10 and 4-11. From Figure 4-10 we can
see that as the relative size of compartment 2 increases the concentration of the wildtype
increases in both compartments whereas the concentration of mutant decreases. This
is due to the advantage the wildtype gains when the second compartment, acting as
a drug sanctuary, is larger. Figure 4-11 shows similar behaviour with the wildtype
increasing as the second compartment becomes more advantageous for strain w, i.e.
when the infected cell death rate a2 decreases. A further interesting point is that each
strain is found at a relatively high amount in both compartments. In the evolutionary
models in Chapter 3 we showed that the minority strain is found at O(ε) relative to
the dominant strain (in the two strain model). Here there is no mutation and we have
coexistence with both strains present at above the threshold of detection (100 virions
per ml).

4.4.4 Summary of Results

The two compartment two strain model is capable of showing coexistence under certain
parameter conditions. Cell heterogeneity is not capable of allowing coexistence in
isolation, this is because the cell heterogeneity affects both strains equally. When the
second compartment is modelled as a drug sanctuary coexistence can occur. Increasing
the relative size of the drug sanctuary, u, allows coexistence to occur for higher values
of drug efficacy. When cell heterogeneity is also present, modelled here by allowing the
infected cell death rate to vary between compartments, the parameter ranges for which
coexistence is seen are also increased. The bigger the advantage that the wildtype strain
has over the mutant strain in compartment 2, due either to the drug sanctuary being
larger (u larger), the drug penetrance being lower (lower h) or the cell heterogeneity
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(a) u = 0.5, a2 = a1

(b) u = 0.05, a2 = a1

(c) u = 0.05, a2 = 0.5

Figure 4-9: Graphs showing the steady state behaviour and dominance of strains when
drug efficacy e, and resistance factor r are varied for different parameter sets: a)No
cell heterogeneity and a drug sanctuary the same size as the blood compartment, b)No
cell heterogeneity and a small drug sanctuary, c)Cell heterogeneity and a small drug
sanctuary. Other parameter values as in Table 4.1 with h = 0.5.
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(a) compartment 1

(b) compartment 2

Figure 4-10: Graphs show how the steady state viral load in the two compartments is
affected by the relative size of the second compartment, u. a2 = a1 = 1, h = 0.5, e =
0.75, r = 0.33, other parameter values as in Table 4.1.
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(a) compartment 1

(b) compartment 2

Figure 4-11: Graphs showing how the steady state viral load in the two compartments
is affected by the infected cell death rate in compartment 2, a2. u = 0.5, h = 0.5, e =
0.5, r = 0.7, other parameter values as in Table 4.1.
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being more prononounced (a2 smaller than a1) the larger the ranges of resistance factor
r or drug efficacy e for which coexistence is seen.

The viral load of the minority strains in compartment 1 when coexistence occurs
are larger than would be expected from a two strain evolutionary model, which are of
the order of the mutation rate.

4.5 Conclusions

The two target cell two strain model is an extension of the model described in Callaway
and Perelson [2002]. Although coexistence is possible in the model, the range of param-
eters for which it can be seen means that it is not likely to be biologically significant.
However the presence of a drug sanctuary in this model allows the mutant strain to
outcompete the wildtype strain even when the basic reproductive ratio is smaller than
that of the wildtype. This is due to the mutant strain being able to invade the wildtype
only steady state when R0m(Sw1 , S

w
2 ) > 1. This is significant as it would mean that

mutant strains will be seen in vivo at higher drug efficacies than their fitness derived
from in vitro experiments would suggest as these use only one target cell type [Holland
et al., 1991].

Inclusion of a drug sanctuary and cell heterogeneity in a two compartment model
allows resistant and wildtype viral strains to coexist under certain circumstances (Fig-
ure 4-8). This novel result casts doubt on previous model assumptions [Kepler and
Perelson, 1998] that the fitter drug resistant strain would competitively exclude the
weaker, wildtype strain. However, it should be noted that this assumption would hold
true for the very small sizes of compartment 2 and identical cell parameters used in the
analysis by Kepler and Perelson [1998].

When coexistence occurs, differential dominance of strains in the two compartments
can also be seen, meaning that different proportion of strains occurs in the blood and
semen. This is also a new result which has implications for the transmission of drug
resistant strains to other individuals. Given that only blood plasma viral strains are
monitored on therapy, the clinician may not get a full picture of the population of
viral strains likely to be transmitted. Interestingly the viral loads seen in compartment
1 (blood compartment) when coexistence occurs show the minority strain at a much
higher concentration than in evolutionary models in one compartment such as the two
strain model from Chapter 3. This suggests that the presence of a drug sanctuary could
account for the higher prevalences of strains seen in vivo.

Further clinical study of blood and semen viral resistant strains could be carried out
to check the validity of these mechanisms, of which the most pressing is to determine
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the nature of target cells for HIV in the male genital tract.
This model could be extended to investigate the consequences of increased drug

effectiveness in the male genital tract, for drugs such as zidovudine and lamuvidine
[Cohen et al., 2007]. This could be accomplished by allowing u > 0.5 and relabelling
the compartments so that the drug sanctuary compartment is the blood plasma com-
partment. Another extension could be to model the effects of triple drug therapies
(where different drug types are used concurrently) on drug resistance patterns.
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Chapter 5

Modelling Latently Infected Cells

5.1 Introduction

5.1.1 Chapter Outline

The previous chapter was concerned with modelling the effect of drug sanctuaries on
drug resistance. In this chapter we turn our attention to a different biological phe-
nomenon which produces an heterogeneous environment, latent infection of susceptible
cells. This has been suggested as the cause of viral persistence on suppressive therapy
[Chun et al., 1995, 1997a] and we shall present the relevant biological background here.
The composition of the latently infected cell reservoir is also of interest. The wildtype
viral strain can be found in the reservoir for years after commencement of therapy and
drug resistant strains are typically only seen when treatment has been interrupted or
there have been bouts of non-compliance resulting in high viral loads [Ruff et al., 2002].

The aim of this chapter is to explore the impact of latent cells on viral strain struc-
ture within the host. To this end we investigate the interaction between two viral
strains and latently infected cells for different ways of modelling the activation and
maintenance of the latently infected cell reservoir. As it is unclear what happens once
cells are activated, in terms of cell replication, three scenerios are presented. The first
is a model with constant activation and a constant death rate, i.e. no replication mech-
anism for latent cells. The second includes bystander proliferation. The final scenario
describes asymmetric cell division upon activation whereby the daughter cells produced
can be latently or actively infected cells. We also analyse the same mechanisms with
the two target cell two strain model as the underlying system, to see whether a model
with a more robust mechanism for obtaining low level viral load has an impact on our
results. For each model steady states are found, the stability of these analysed where
possible and numerical solutions determined for a range of interesting parameter sets.
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We begin by reviewing recent work involving latent cells and HIV; we end by drawing
biological conclusions from the model analysis.

5.1.2 Motivation and Background

One of the main reasons that HIV cannot be eradicated by antiretroviral therapy is
the presence of a cellular reservoir consisting of infected memory CD4+ T cells [Chun
et al., 1995, 1997a]. These cells have integrated HIV provirus but are not actively
producing virions and are therefore called latently infected cells. The cells become
activated through contact with antigens (particles or organisms foreign to the body)
which they are specific for and start producing virus [Chun et al., 1997b, 1998]. A
memory cell is created by proliferation of an active CD4+ T cell and its job is to allow
the immune system to act quickly next time it encounters the same antigen. Only a
few memory cells are produced when a T cell is activated and so the number of latently
infected T cells is very small compared to that of actively infected T cells [Chun et al.,
1995].

Once treatment is initiated three distinct viral decay phases are seen in patients
[Ho et al., 1995, Perelson et al., 1995, Arnaout et al., 2000, Müller et al., 2002]. The
first phase is proportional to the death rate of infected cells, whereas the second phase
is proportional to the death rate of long-lived infected cells such as macrophages. The
third phase of decay has been linked to the decline of the latent cell reservoir [Finzi
and Siliciano, 1998]; this phase has a long half-life of 6-44 months [Zhang et al., 1999,
Siliciano et al., 2003]. This reservoir may include infected cells which could generate
infective virions in the future.

The latent cell reservoir may also play a role in the production of viral blips [Rong
and Perelson, 2009a,b,c]. These are a phenomenon seen in patients on otherwise sup-
pressive therapy [Di Mascio et al., 2003]. The viral load rises from below the threshold
level for detection (50 copies per ml) for a short period of time, then falls again. A
number of causes of viral blips have been suggested, including the activation of memory
cells, either latently infected [Rong and Perelson, 2009a,b,c] or susceptible [Jones and
Perelson, 2005, 2007], due to the presence of specific antigens. Both cases would result
in an increase in the number of actively infected cells which would release more virus
into the body.

In addition to the connection with viral blips the latent cell reservoir provides
information on the viral strains that have circulated in an individual during infection
[Ruff et al., 2002]. Ruff et al. [2002] examined the genetic characteristics of clones of
HIV-1 from the latent cell reservoir. They showed that wild type virus was present in
the latent reservoir despite many years on therapy and that resistance mutations seen
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were generally those selected by non-suppressive therapy due to treatment interruptions
and non-compliance. This suggests that the latent reservoir can act as an archive for
strains of virus seen during infection.

In recent years there has been interest in using mathematical models to explain the
impact of latent cells on the behaviour of viral loads on therapy [Müller et al., 2002,
Kim and Perelson, 2006, Rong and Perelson, 2009a,b,c]. Of these, several mathematical
models have been derived to offer explanations why the third stage of decay is so slow
[Müller et al., 2002, Kim and Perelson, 2006]. Müller et al. [2002] found that the rate
of decay was proportional to the latent cell death rate. The activation rate of latent
cells was modelled as a distribution in order to take into account that antigens that
are more common are likely to be encountered early on leaving latent cells specific
for rarer antigens during the latter stages of infection. Their aim was to explain the
deccelerating rate of viral decay seen in patients. Although the model assumed 100%
effective treatment, it only considered reverse transcriptase inhibitors. Suppressive
therapy usually consists of a protease inhibitor and two reverse transcriptase inhibitors.
Completely effective protease inhibitors would mean that no new infectious virions
would be produced from newly activated latently infected cells. This does not happen
suggesting that treatment is less effective; this is borne out by evidence that circulating
virions are capable of replication [Sahu et al., 2010] and that the third stage of decay
of the virus is so slow.

Kim and Perelson [2006] concluded that when drug efficacy is greater than some
critical efficacy the contribution of virus to the latent cell reservoir is insignificant, and
that the latent cell reservoir can perservere in the long term if the activation rate is close
in value to the net proliferation rate. Kim and Perelson [2006] modelled latent cell acti-
vation using a negative exponential term. This was to mimic the activation of latently
infected cells specific to common antigens early in infection. They also allowed latent
cells to undergo bystander proliferation whereby latent cells could replicate without
being activated. The effect of reverse transcriptase inhibitors and protease inhibitors
were reduced to a single parameter acting on the infection rate. The main results were
that when drug efficacy is greater than the critical efficacy the contribution of virus to
the latent cell reservoir is insignificant. If the minimum activation rate is zero and the
drug is completely effective, viral and latent reservoir persistence could be obtained if
the death rate of latent cells is slightly greater than the bystander proliferation rate.
When the minimum activation rate is greater than zero and the drug is completely
effective then both latent cells and virus can be maintained if the net proliferation rate
is equal to the minimum activation rate. The results of this model when drug treat-
ment is completely effective do not make sense biologically in that the infectious virus
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population would decay quickly leaving only non-infectious virus.
Other models have been derived to investigate the role of latent cells in producing

viral blips [Rong and Perelson, 2009a,b,c]. Rong and Perelson [2009b] analysed a latent
cell model with activation modelled using a switch mechanism to imitate the patient
encountering antigens. They also assumed that the latent cells divided upon activation
and that the daughter cells could either be latent cells or actively infected cells with
the proportion of each produced being modelled by a given parameter. This allowed
the latent cell reservoir to be maintained and the switching mechanism for activation
allowed viral blips to occur. The parameters affecting the switching mechanism and the
proportion of new actively infected cells produced during activation could be altered
to give varying half-lives of the latent cell population as seen in the literature. The
authors used a density dependent death rate for infected cells to obtain low level viral
loads on therapy. As discussed in a previous chapter this method of obtaining low level
viral load can give unreasonable target cell levels depending on the degree of density
dependence used. The value used in this paper was very high and gives unrealistically
large numbers of target cells prior to therapy and very low numbers of infected cells
throughout. The authors make no mention of this, however they assume the patient
has reached the treatment steady state prior to using this model.

A second model using an alternative mechanism for latent cell reservoir mainte-
nance, programmed expansion and contraction, has also been analysed by the same
group [Rong and Perelson, 2009c]. An intermediate state upon activation between la-
tent cells and activated cells was modelled from which cells can undergo proliferation,
return to latency, die once the antigen is no longer present or become actively infected.
This model also included the same switching mechanism and density dependent death
rate of infected cells as Rong and Perelson [2009b]. Similar results were obtained also
with viral blips created upon activation.

All of these models have different mechanisms for latent cell reservoir maintenance
or persistence as the real one is unknown, but what seems clear is that the latent cell
reservoir cannot be maintained simply by ongoing viral replication on therapy.

We now present models which include latent cells and multiple viral strains to
consider the impact of latently infected cells on the viral strain structure within a
host. We first consider a simple one target cell model to explore the links between
strain variation, latent cell composition and time to strain switchover in the latent cell
archive. We then consider the same latent cell mechanisms in the two target cell model
which gives more realistic underlying HIV dynamics within the host.
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5.2 Base Model with Latent Cells

We consider two strains of virus, wildtype and mutant, in the model in the same way as
the two strain evolution model (3.3) from Chapter 3. We include latently infected cells
in the model, produced when susceptible cells become infected. We analyse a general
model whereby the latent cell dynamics are assumed to be given by generic parameters
then carry out numerical experiments for each scenario: no proliferation, bystander
proliferation and asymmetric cell division.

5.2.1 Model Equations

The concentration of latent cells is given by Li where i = w,m denotes the viral strain.
The corresponding model equations are given as:

Ṡ =λ− dS − βwSvw − βmSvm,

L̇i =f((1− ε)βiSvi + εβîSvî)− PLi,

İi =(1− f)((1− ε)βiSvi + εβîSvî) +QLi − aIi,

v̇i =kIi − cvi,

(5.1)

where i = w,m and î is the other one. A summary of the parameters is given in Table
5.1. A schematic of the model is shown in Figure 5-1. The proportion of new infections
that become latent is given by f , the mutation rate is ε, the net loss of latent cells is
given by P and the rate at which latent cells become actively infected is given by Q.
The forms of the functions P and Q for each model scenario can be found in Table 5.2.

We wish to determine how the latent reservoir impacts on viral strain distribution
within a host that is subject to a drug regime. To achieve this, we analyse a cascade
of models derived from the full model (5.1), defined in terms of the functions P and Q
as follows:

• Model 0: No latent cells. The null neutral model case, derived from (5.1) simply
by setting to zero the proportion, f , of infected cells becoming latently infected.
This is a two strain evolution model which we analysed in Chapter 3. The main
results from this model were that the strain with the largest R0i value was dom-
inant, provided that R0i > 1, and the losing strain is present at O(ε).

• Model 1: No latent cell proliferation; constant latent cell activation rate. In this
case P = α + dl where α is the constant per capita activation rate and dl is the
per capita death rate of latent cells. The corresponding per capita rate at which
latent cells become active, Q = α.
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Figure 5-1: Schematic of the Basic Latent Cell model (5.1).

Parameter Description Value
λ, Birth rate of new cells 104 cells ml−1 day−1

βw, Infection rate 2.4× 10−8 virion−1 day−1

βm, Infection rate 0.33× βw virion−1 day−1

ε, Proportion mutating 0.0005
d, Death rate of target cells 0.01 day−1

a, Death rate of infected cells 1 day−1

dl, Death rate of latently infected cells 0.004 day−1

c, Death rate of virions 23 day−1

k, Production rate of virions 3000 virions cell−1 day−1

e, Drug efficacy 0.8
r, Resistance factor 0.33
α, Activation rate 0.01 day−1

f , Proportion becoming latent cells 0.0001
p, Proliferation rate of latent cells 0.012 day−1

pl, Probability that a daughter cell will be latent 0.48

Table 5.1: Base model with Latent cells parameter descriptions and values.
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Model 1 Model 2 Model 3
P α+ dl α+ dl − p α(1− 2pl) + dl
Q α α 2α(1− pl)

Table 5.2: Table showing definitions of P and Q for different models. See model sections
for more information.

• Model 2: Bystander proliferation; ongoing proliferation of latent cells. Here
P = α + dl − p where p is the per capita proliferation rate. The rate at which
latent cells become actively infected remains the same as Model 1.

• Model 3: Asymmetric latent cell division; activation linked to cell division. This
model includes a different process of cell proliferation based on the model of
Rong and Perelson [2009b]. Proliferation is linked to activation resulting in P =
α(1− 2pl) and Q = 2α(1− pl), where pl is the probability that a daughter cell is
latently infected.

A steady state analysis is performed on the general model and numerical solutions
are presented for each case.

5.2.2 Steady State Analysis

If f 6= 0 and ε = 0, a competition model with 2 strains of virus and latently infected
cells is obtained. There are three possible steady states of the general model, the disease
free steady state and two endemic steady states.

1. The disease free steady state has all variables zero except S = λ/d.

2. There are two endemic steady states, one for each strain of virus w and m, which
are

S =
Pac

((1− f)P +Q)kβi
,

vi =
d

βi
(R0i − 1),

Ii =
c

k
vi,

Li =
acf

k((1− f)P +Q)
vi,

(5.2)

for i = w,m, where

R0i =
λβik

acd

(
(1− f)− fQ

P

)
.
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An important point to note is that the latent cell steady state is proportional to
the viral load steady state.

The Jacobian matrix for this system is

−d− βwvw − βmvm 0 0 0 0 −βwS −βmS
fβwvw −P 0 0 0 fβwS 0
fβmvm 0 −P 0 0 0 fβwS

(1− f)βwvw Q 0 −a 0 (1− f)βwS 0
(1− f)βmvm 0 Q 0 −a 0 (1− f)βmS

0 0 0 k 0 −c 0
0 0 0 0 k 0 −c


.

1. The characteristic polynomial in Λ for the disease free steady state can be fac-
torised to give

Λ + d = 0,

Λ3 + x2Λ2 + x1Λ + x0,

where

x2 = a+ d+ P,

x1 = (a+ c)P + ac− (1− f)λβwk
d

,

x0 = acP − λβwk((1− f)P + fQ)
d

,

and

Λ3 + y2Λ2 + y1Λ + y0,

where

y2 = a+ d+ P,

y1 = (a+ c)P + ac− (1− f)λβmk
d

,

y0 = acP − λβmk((1− f)P + fQ)
d

.

The coefficients of each of the polynomials are positive, and the disease free steady
state stable, if and only if max(R0w, R0m) < 1.

2. The characteristic polynomial in Λ for each endemic steady state can be gener-
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alised and factorised to give

Λ4 + x3Λ3 + x2Λ2 + x1Λ + x0 = 0,

where

x3 = P + a+ c+R0i,

x2 = R0i(P + a+ c) + P

(
a+ c− (1− f)ac

(1− f)P + fQ

)
+ a(a+ c),

x1 = R0i(d(a+ c)P + ac)− acP (1− f)d
(1− f)P + fQ

,

x0 = acdP (R0i − 1),

and

Λ3 + y2Λ2 + y1Λ + y0 = 0

where

y2 = P + a+ c,

y1 = (a+ c)P + ac

(
1−

βî(1− f)P
βi((1− f)P + fQ)

)
,

y0 = acP

(
1−

βî
βi

)
.

for i = w,m, where î is the other strain. The disease steady state i is stable if
R0i > 1 and βi > βî. This model shows competitive exclusion.

If f 6= 0 and ε 6= 0 the resulting model is a 2 strain mutation model with latently
infected cells. As with the two strain evolution and competition models studied pre-
viously (Chapter 3) we expect that the endemic steady states will be perturbations of
those found in the competition model (ε = 0). The disease free steady state is again
S = λ/d and all other variables equal to zero. Again there are two endemic steady
states, however both strains of virus are present in both steady states. The endemic
steady state expressions can be found using perturbation analysis around the small
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parameter ε. The steady state expressions to the order of ε are

S =
Pac

((1− f)P + fQ)kβi
(1 + ε),

vi =
d

βi
(R0i − 1)

(
1 + ε

βi
β2
î

(βî − βi)

)
− ε d

βi
,

vî =ε
(
d

βî
(R0i − 1)− βi

βî

)
,

Ii =
c

k
vi,

Li =
acf

k((1− f)P + fQ)
vi,

(5.3)

for i = w,m. Note that as vî is O(ε) both Iî and Lî are O(ε). These steady state
expressions have the same R0i expressions as the competition model. The real R0i for
this system is a perturbation by a factor of 1− ε to O(ε).

5.2.3 Numerical Solutions

For all three models to be discussed we have modelled drug treatment and drug resis-
tance as in previous chapters. Numerical solutions of the model were carried out using
the parameter values given in Table 5.1.

The composition of the latent cell reservoir, i.e. which viral strain the latently
infected cells have integrated into their genetic code, is affected by the viral population
in the blood plasma. From the steady state expressions (5.3) it can be seen that the
latent cell reservoir will be made up predominantly of cells infected with the dominant
strain of virus. Therefore if any archiving of viral strains occurs it must be transient
and the length of time the archive is present for will be determined by parameters in
the model that affect both viral and latent cell dynamics. We measure archive length
as the time between the dominance swapping over in the free virus and the latent cell
reservoir (from wildtype to resistant strain dominant).

We chose values of drug efficacy, e, and the resistance factor, r, to give R0m > R0w

on treatment with R0m greater than but close to 1 to obtain low level viral loads at
steady state.

Model 1: No Proliferation

Figure 5-2 shows that there is a delay between the switchover of strains in the viral and
latent cell reservoirs once treatment is commenced; there is a short-lived archive in the
latent cell population. In this simple model with no proliferation there are only three
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latent cell parameters: the rate at which latent cells are created through infection, f ,
the activation rate, α and the death rate, dl. Figure 5-3 shows the effect that each
parameter has on the length of time the archive is present once treatment commences
and the resistant strain steady state becomes stable. Increasing the activation rate, α,
decreases the time to switchover. This makes intuitive sense; activation results in a
cell being lost from the latent cell reservoir to become an actively infected cell. Also
the difference between an order of magnitude of α changes the switchover time from
around 300 days (α = 0.01) to less than 100 days (α = 0.1). In contrast, the death
rate of latent cells, dl has a much smaller effect: from around 255 days (dl = 0.001) to
215 days (dl = 0.01). The largest value for the death rate in Figure 5-3b, dl = 0.01, is
the same as the death rate of susceptible cells. This would not be a sensible value for
the death rate of latently infected cells as they are memory cells and should therefore
have a longer lifespan than actively infected cells. An increase in the death rate of
latently infected cells decreases the amount of time an archive is present for as does
increasing the proportion of cells that become latently infected, f as shown in Figure
5-3c. Increasing f means that the ongoing viral replication has a bigger effect on latent
cell dynamics, with the resistant strain taking less time to infiltrate the latent cell
reservoir.

The activation rate α has the largest impact on the time to the loss of the archive
out of the three latent cell parameters in this simple model. However a very small
value of α would be needed to obtain an archive length in the region of years as has
been shown in vivo [Ruff et al., 2002]. Thus we explore the potential of a maintenance
mechanism to lengthen the time that the archive is present for.
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(a)

(b)

Figure 5-2: Model 1: Graphs showing a numerical solution where the mutant strain is
dominant after treatment is initiated at 200 days; a) viral load, b) latent cell reservoir.
Parameter values are as in Table 5.1.
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(a)

(b)

(c)

Figure 5-3: Model 1: Graphs showing how latent cell parameters affect the archive
time: a) Varying the activation rate α, b) Varying the latent cell death rate dl, c)
Varying the proportion of cells that become latent, f . Parameter values used can be
found in Table 5.1.
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Model 2: Bystander Proliferation

We now consider a simple replication mechanism for latent cells, known as bystander
proliferation, based on the one strain model by Kim and Perelson [2006]. This means
that no outside stimuli such as the binding of antigens, are needed in order for prolif-
eration to occur. We replace dl with dl − p. As we now have a negative part to the
function P we must ensure that the proliferation rate p < α + dl so that P > 0. This
is so that the steady state expressions remain valid. If P < 0 then the ordinary dif-
ferential equations for latent cells are entirely positive and only the disease free steady
state is possible.

Numerical solutions of this model show that longer archive times are possible as
shown in Figure 5-4. In Figure 5-4a the proliferation rate, p = 0.012 so that all the
values of α allow endemic steady states to occur. As with Model 1, an increase in α

corresponds to a decrease in archive duration. However in this case, for small values
of α we have very long archive times of around 1000 days. This is because of the
bystander proliferation of latent cells. In Figure 5-4b we see that as the proliferation
rate increases up to p = 0.012 (α = 0.01) the archive time also increases. There is a
vertical asymptote at p = 0.014 due to the condition on P as mentioned above.

Also of note is that the archive time is affected by the fitness of the mutant strain
as seen in Figure 5-5. As the resistance factor r increases, reflecting a rise in fitness, the
archive time decreases. This is because there is more ongoing viral replication which
then dominates the latent cell dynamics.
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(a)

(b)

Figure 5-4: Model 2: Graphs showing how latent cell parameters affect the archive
time: a) Varying the activation rate α, b) Varying the latent cell proliferation rate p.
Parameter values used can be found in Table 5.1.
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Figure 5-5: Model 2: Graph showing how the resistance factor r affects the archive
time. Parameter values used can be found in Table 5.1.
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Model 3: Asymmetric cell division upon activation

The final scenario that we will analyse is based on the one strain asymmetric cell division
model proposed by Rong and Perelson [2009b] which assumes that upon activation by
an antigen the latent cells divide to produce two daughter cells. We assume that the
parent cell is lost when the daughter cells are created. The forms of P and Q can be
derived as follows: if we take the probability of a daughter cell being latently infected
to be pl then the expected number of new latent cells upon activation is

(
2× p2

l + 1× 2pl(1− pl)− 1
)
Li = (2pl − 1)Li

and the expected number of active cells is

(
2× (1− pl)2 + 1× 2pl(1− pl)

)
Li = 2(1− pl)Li.

As these events only happen when the cells encounter antigen the expressions are
multipied by a factor of α, therefore P = α(1− 2pl) + dl and Q = 2α(1− pl).

The model by Rong and Perelson [2009b] included a switching mechanism to imitate
latent cells encountering antigen. This was to enable viral blips to be created upon
activation of the latent cells. Figure 5-6 shows how using an average value for α

compares with a switching version of the model; using an average value for α gives
the mean solution of the switching version of the model. As we are not interested in
modelling viral blips we will use an average value for α in our numerical solutions.

In Figure 5-7 we can see that the asymmetric division mechanism allows archiving
of viral strains in the latent cell reservoir.

Figure 5-8 shows how the different model parameters affect the archive time. In
Figure 5-8a we see that the value of pl, the probability that a daughter cell will be
latent, has different effects on the time to the loss of the archive: when pl < 0.5, the
value of P increases as the activation rate, α is increased, resulting in decreasing time
to strain switchover in a similar manner to models 1 and 2. However, when pl > 0.5, the
value of P decreases as α is increased and the archive time increases once a threshold
value of α is reached. It is unclear why there is this threshold behaviour.

As we saw previously in model 2, increasing the resistance factor, r, decreases the
archive time as in Figure 5-8b. The longer archive times are very dependent on the
value of the resistance factor. This is due to the nature of the dependence of the
magnitude of viral load on r. The decrease in the archive time is not monotonic with
increasing r. Again the reason for this is unclear.
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Figure 5-6: Model 3: Graph comparing the model with activation switching on and off
(on for 5 days, off for 50 days) and the model with an average value for α = 1/11×0.1.
Drug treatment commenced at 200 days. See Table 5.1 for other parameter values.

5.2.4 Summary

The latent cell model without a maintenance mechanism cannot support a long term
archive of wildtype virus in the latent cell reservoir.

The bystander proliferation model is the simplest mechanism for latent cell pro-
liferation and does allow longer term archiving of wildtype virus. The fitness of the
mutant strain has a big effect on the length of time the archive is present for, with
larger values of the resistance factor, r, decreasing the archive time.

The asymmetric cell division model also allows archiving of viral strains in latently
infected cells. Interestingly, the behaviour of the model with regards to the activation
rate depends on whether a daughter cell is more likely to be latently or actively infected,
with a larger proportion of daughter latent cells upon division causing an increase in
the archive time for higher activation rates.
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(a)

(b)

Figure 5-7: Model 3: Graphs showing a numerical solution where the mutant strain is
dominant after treatment is initiated at 200 days; a) viral load, b) latent cell reservoir.
Parameter values are as in Table 5.1.
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(a)

(b)

Figure 5-8: Model 3: Graphs showing how the archive time is affected by various model
parameters: a) activation rate, α (r = 0.32) and b) resistance factor (α = 0.01). Other
parameter values are as given in Table 5.1.
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5.3 Two target cell model with latent cells

5.3.1 Model Equations

Rong and Perelson [2009b] used a one strain model with a density dependent death rate
for infected cells (which was discussed in Chapter 2) as their underlying model when
incorporating asymmetric division. The qualitative behaviour of a density dependent
death rate model depends on the degree of density dependence. The values used by
Rong and Perelson [2009b] give unreasonable solutions before treatment is started.
However, the initial conditions used were after therapy had been initiated. It would
be better to use a more robust model to obtain low level viral load on therapy. We
therefore adapt the two target cell model for each of the different latent cell scenarios
to see how this affects our results.

We have extended the two target cell two strain model, analysed in Chapter 4,
to include latent cells. The primary target cells are assumed to be the ones most
commonly associated with HIV, CD4+ T cells. The secondary target cells are assumed
to be macrophages which are found at lower concentrations in the blood compared with
CD4+ T cells [Stevenson and Gendelman, 1994] and which do not require activation to
become infected [Wodarz et al., 1999] thereby having a higher infection rate. There is
evidence that macrophages can be latently infected [Embretson et al., 1993, Stevenson
and Gendelman, 1994]. However we assume that only the primary CD4+ cells can
be latently infected to make the model more tractable; our results therefore provide
baseline behaviours which are likely to be enhanced by the inclusion of latently infected
macrophages. The equations given here include drug treatment in order to show the
presence of a drug sanctuary. A schematic for the model without mutation can be seen
in Figure 5-9.

Ṡ1 =λ1 − dS1 − S1((1− e)β1vw + rβ1vm),

Ṡ2 =λ2 − dS2 − S2((1− eh)β2vw + rβ2vm),

L̇w =fS1((1− ε)(1− e)β1vw + εrβ1vm)− PLw,

L̇m =fS1(ε(1− e)β1vw + (1− ε)rβ1vm)− PLm,

İ1w =(1− f)S1((1− ε)(1− e)β1vw + εrβ1vm) +QLw − aI1w,

İ1m =(1− f)S1(ε(1− e)β1vw + (1− ε)rβ1vm) +QLm − aI1m,

İ2w =S2((1− ε)(1− eh)β2vw + εrβ2vm)− aI2w,

İ2m =S2(ε(1− eh)β2vw + (1− ε)rβ2vm)− aI2m,

v̇w =k(I1w + I2w)− cvw,

v̇m =k(I1m + I2m)− cvm,

(5.4)

133



Parameter Description Value
λ1, Birth rate of primary target cells 104 cells ml−1 day−1

λ2, Birth rate of secondary target cells 1.533 cells ml−1 day−1

β1, Infection rate 2.4× 10−8 virion−1 day−1

β2, Infection rate 10−4 virion−1 day−1

r, Resistance factor 0.21
ε, Proportion mutating 0.0005
d, Death rate of target cells 0.01 day−1

a, Death rate of infected cells 1 day−1

dl, Death rate of latently infected cells 0.004 day−1

c, Death rate of virions 23 day−1

k, Production rate of virions 3000 virions cell−1 day−1

α, Activation rate 0.05 day−1

f , Proportion becoming latent cells 0.00001
e, Drug efficacy 0.9
h, Drug penetrance 0.7
p, Proliferation rate 0.05 day−1

pl, Probability of a latent daughter cell 0.48− 0.51

Table 5.3: Table showing parameter values used in numerical solutions.

where 0 < r < 1 describing the cost of resistance to the drug and the expressions P
and Q are as defined in Table 5.2. The other parameters are as described in previous
models, a summary is given in Table 5.3. As with the base model with latent cells (5.1),
we analyse three different scenarios: no latent cell proliferation, bystander proliferation
and asymmetric cell division upon activation. For analysis of the model without latent
cells (f = 0), see Chapter 4 and for the one strain two target cell model see Chapter 3.
The steady state analysis is carried out on the general model and numerical solutions
are obtained for each scenario.

5.3.2 Steady state analysis

From the differential equations for latently infected cells (5.4), it is clear that if f > 0
and P is negative there are no endemic steady states. This is because the left hand
side of the differential equation would be positive meaning that the concentration of
latent cells will always grow. The analysis below assumes that if f > 0 then P > 0.

It is not possible to obtain explicit expressions for steady states when ε > 0. How-
ever we can find series solutions of the form T =

∑∞
i=0 ε

iTi, where T = S, I, v is a given
state variable. Below we give the O(1) solutions which are equivalent to finding the
steady states of the corresponding competition model (ε = 0). Setting ε = 0 and the
left hand sides of the system of ordinary differential equations (5.4) to zero we obtain
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Susceptible
S1

λ1dS1

Infected
I1m

aI1m

Infected
I1w

aI1w

Latent Lw

PLw

Latent Lm

PLm

Virus vwcvw Virus vm cvm

Infected
I2w

aI2w
Infected
I2m

aI2m

Susceptible
S2

λ2
dS2

(1− f)(1− e)β1vw (1− f)rβ1vm

f(1− e)β1vw frβ1vm

kI1w kI1m

kI2w kI2m

QLw QLm

(1− eh)β2vw rβ2vm

Figure 5-9: Schematic of two target cell two strain model with latent cells. See text
and Table 5.3 for futher details of parameters and variables.
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the following four steady states: disease free, dominant wild type, dominant resistant
and ’coexistence’. The steady state and R0i expressions for each model can be obtained
by substituting in the relevant forms for P and Q.

1. The disease free steady state is S1 = λ1/d, S2 = λ2/d with all other state variables
equal to zero.

2. The dominant wild type steady state depends on the roots of the quadratic:

v2
w + x1vw + x0 = 0,

x1 =
d

(1− e)β1
(1−R01w) +

d

(1− eh)β2
(1−R02w) ,

x0 =
d2

(1− e)β1(1− eh)β2
(1−R0w) ,

(5.5)

where the basic reproductive ratios are R01w = λ1(1−e)β1k
acd

(
1− f + fQ

P

)
, R02w =

λ2(1−eh)β2k
acd and R0w = R01w +R02w. The other variables are

S1 =
λ1

d+ (1− e)β1vw

Lw =
fS1(1− e)β1vw

P
,

I1w =
(1− e)β1S1vw

a
(1− f +

fQ

P
),

S2 =
λ2

d+ (1− eh)β2vw
,

I2w =
(1− eh)β2S2vw

a
,

vm =Lm = I1m = I2m = 0.

(5.6)

All variables also have O(ε) terms and are therefore non-zero. When R0w > 1 the
quadratic in vw, (5.5), has one positive real root and the steady state is therefore
biologically realistic.

3. The dominant mutant steady state depends on the roots of the quadratic:

v2
m + y1vm + y0 = 0,

y1 =
d

rβ1
(1−R01m) +

d

rβ2
(1−R02m) ,

y0 =
d2

r2β1β2
(1−R0m) ,

(5.7)
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where R01m = λ1rβ1k
acd

(
1− f + fQ

P

)
, R02m = λ2rβ2k

acd and R0m = R01m + R02m.
The other variables are

S1 =
λ1

d+ rβ1vm

Lm =
fS1rβ1vm

P
,

I1m =
rβ1S1vm

a
(1− f +

fQ

P
),

S2 =
λ2

d+ rβ2vm
,

I2m =
rβ2S2vm

a
,

vw =Lw = I1w = I2w = 0.

(5.8)

Again all variables have O(ε) terms and are non-zero. When R0m > 1 the
quadratic in vm, (5.7), has one positive real root and the steady state is therefore
biologically realistic.

4. The coexistence steady state is given by:

S1 =
Pacβ2((1− eh)− r)

((1− f)P + fQ)krβ1β2((1− eh)− (1− e))
,

S2 =
acβ1(r − (1− e))

kβ1β2((1− eh)− (1− e))
,

vw =
r (β1S1 (λ2 − dS2)− β2S2 (λ1 − dS1))

S1S2β1β2((1− eh)− (1− e))
,

vm =
β2(1− eh)S2 (λ1 − dS1)− β1(1− e)S1 (λ2 − dS2)

S1S2β1β2((1− eh)− (1− e))
,

I1w =
(1− f)S1(1− e)β1vw +QLw

a
,

I1m =
(1− f)S1rβ1vm +QLm

a

I2w =
S2(1− eh)β2vw

a
,

I2m =
S2rβ2vm

a
,

Lw =
fS1(1− e)β1vw

P
,

Lm =
fS1rβ1vm

P
.

(5.9)

All variables have additional terms of O(ε). The coexistence steady state only
exists if h 6= 1. As the parameter values used give both P and Q positive the
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steady state expressions for S1 and S2 are both positive if (1− e) < r < (1− eh).
In addition providing vw and vm are positive the remaining variables are also
positive.

1. The Jacobian matrix for the disease free steady state is

−d 0 0 0 0 0 0 0 −(1− e)β1S1 −rβ1S1
0 −d 0 0 0 0 0 0 −(1− eh)β2S2 −rβ2S2
0 0 −P 0 0 0 0 0 f ∗ (1− e)β1S1 0
0 0 0 −P 0 0 0 0 0 frβ1S1
0 0 Q 0 −a 0 0 0 (1− f)(1− e)β1S1 0
0 0 0 Q 0 −a 0 0 0 (1− f)rβ1S1
0 0 0 0 0 0 −a 0 (1− eh)β2S2 0
0 0 0 0 0 0 0 −a 0 rβ2S2
0 0 0 0 k 0 k 0 −c 0
0 0 0 0 0 k 0 k 0 −c


The characteristic equation for this matrix can be factorised into the following
polynomials in Λ:

(Λ + d)2 = 0,

(Λ + a)2 = 0,

Λ3 + x2Λ2 + x1Λ + x0 = 0,

where

x2 = P + a+ c,

x1 = ac+ P (a+ c)− k

d
((1− f)(1− e)β1λ1 + (1− eh)β2λ2),

x0 = P

(
ac− k

d
((1− f +

fQ

P
)(1− e)β1λ1 + (1− eh)β2λ2)

)
,

and

Λ3 + y2Λ2 + y1Λ + y0 = 0,

where

y2 = P + a+ c,

y1 = ac+ P (a+ c)− kr

d
((1− f)β1λ1 + β2λ2),

y0 = P

(
ac− kr

d
((1− f +

fQ

P
)β1λ1 + β2λ2)

)
,

All coefficients are positive and the disease free steady state is stable if and only
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if the basic reproductive ratio max(R0w, R0m) < 1.

2. The characteristic polynomial for the wildtype only steady state can be factorised
into 2 linear factors, a cubic factor and a fifth order polynomial. The fifth order
polynomial is not tractable so only the three smaller polynomial factors in Λ are
shown here.

(Λ + a)2 = 0

Λ3 + x2Λ2 + x1Λ + x0,

where

x2 = P + a+ c,

x1 = ac+ P (a+ c)− kr((1− f)β1S1 + beta2S2),

x0 = P

(
ac− kr

((
1− f +

fQ

P

)
β1S1 + β2S2

))
.

For the cubic factor to have roots that have negative real parts we require that
R0m(Sw1 , S

w
2 ) < 1, where Sw1 and Sw2 are the values of S1 and S2 respectively

at the wildtype only steady state. This requirement is similar to that for the
two target cell two strain model (4.1). When drug penetrance is equal in both
compartments, h = 1, this condition becomes (1 − e) > r. The fifth order
polynomial yields the condition that R0w > 1 for this steady state to be stable.

3. The characteristic polynomial for the mutant only steady state is similar in form
to the one for the wildtype only steady state. Therefore the mutant only steady
state will be stable when R0m > 1 and R0w(Sm1 , S

m
2 ) < 1, where Sm1 and Sm2

are the mutant only steady state values of S1 and S2. When h = 1 we require
R0m > 1 and r > 1− e for stability.

4. The characteristic polynomial for the coexistence steady state is not tractable,
it factorises to give two linear factors and an eighth order polynomial. It is
sensible to assume that, as for the two target cell two strain model (4.1), the
coexistence steady state is stable when min(R0w, R0m) > 1, R0m(Sw1 , S

w
2 ) > 1

and R0w(Sm1 , S
m
2 ) > 1. When h = 1 the coexistence steady state no longer exists.

5.3.3 Numerical Solutions

As with the base model examples the values of the drug efficacy and resistance factor
were chosen to give low level viral load on therapy with the mutant strain dominant.
Due to the presence of the secondary target cells these values are not the same as the
values from the base model.
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Model 1: No proliferation

The composition of the latent cell reservoir, i.e. which viral strain the latently infected
cells have integrated into their genetic code, is affected by the viral population in the
blood plasma. The steady state expressions for the latent cell population show that
the latent cell reservoir will consist mainly of cells infected with the dominant strain of
virus with the weaker strain present at O(ε).

We can assume that under treatment the value of R0w varies, whereas R0m remains
constant, reflecting resistance of the mutant strain to treatment. As the value of R0w is
decreased (meaning more effective treatment) the concentration of vw decreases. When
R0w becomes less than R0m dominance of the two strains reverses and the mutant strain
vm becomes dominant as shown in Figure 5-10. This change in strain dominance is also
seen in the latently infected cell reservoir at steady state. However, before the steady
state is reached, the viral strain that is dominant in the blood is different to that in the
latent cell reservoir for a short period of time. Figure 5-11 shows how the activation
rate of the latent cells affects the difference in the time taken for the strain switch over
to occur in the blood and latent cell reservoir. The lower the activation rate the longer
the time to strain switch over. One explanation for this is that the lower activation
rate slows the rate at which latent cells become actively infected and feed into the cycle
of new viral replications.

This model does not allow the archiving of viral strains in the latent cell reservoir
for long periods of time. For the range of activation rates shown (α = 0.01− 0.1), the
latent cell reservoir can archive wild type virus for short periods of around one year.
The dominant strain in the plasma at steady state is also the dominant strain in the
latent cell reservoir.

Model 2: Bystander proliferation

Figure 5-12a shows how the time to strain switch over in the latent cell population is
affected by both the latent cell activation rate α (0.01-0.1), which reduces the size of
the pool, and cell proliferation rate p, which increases it. Activation rates used here are
the same as in Figure 5-11 but result in a much longer lived archive than for Model 1,
even at very low prolifation rates, p. Figure 5-12b shows how the time to strain switch
over is affected by the resistance factor r. As r increases, reflecting a fitter mutant
virus, the time to strain switch over initially increases then decreases. The decreasing
phase is thought to be due to the increase in ongoing viral replication; further work is
needed explain the initial increase.

Numerical solutions were also obtained using different values of f , the proportion of
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(a)

(b)

Figure 5-10: Model 1: Figure showing a numerical solution where the mutant strain is
dominant after treatment is initiated at 200 days; a) viral load (dotted line is detection
threshold), b) latent cell reservoir. Parameter values are as in Table 5.3.
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Figure 5-11: Model 1: Graph showing how the activation rate α affects the archive
time in the latent cell reservoir. Parameter values are given in Table 5.3.

infected cells to become latent (not shown). As f increases the concentration of latent
cells rises. However even large increases in f (eg 100 times the value used above) had
little effect on the time to change in strain dominance; we suggest that this is because
changes in f affect both types of latent cell equally.

Analysis of this model with its simple replication mechanism for latently infected
cells indicates that archiving of wild type virus over a long time period even on therapy
is possible.

Model 3: Asymmetric latent cell division upon activation

Numerical solutions for this model are shown in Figure 5-13. Time to strain switch
over is greatly increased in this model compared with the previous models. This is due
to the linkage between proliferation and activation.

The time it takes for the change in dominance within the latent cell population
is affected by both the latent cell and the viral parameters. A number of numerical
solutions were obtained for a range of the parameters α (activation rate), pl (probability
a daughter cell will be latent) and r (resistance factor). The results are shown in Figure
5-14. The behaviour of the model with respect to α changes depending on the value of
pl as shown in Figure 5-14a. When pl < 0.5 (P increasing) the archive time decreases
as α increases in a similar way to models 1 and 2. However if pl > 0.5 (P decreasing)
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(a)

(b)

Figure 5-12: Model 2: Graphs showing how the archive time changes with different
parameters: a)α and p are varied, b) r is varied (p = 0.05). Other parameters are
given in Table 5.3.
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(a)

(b)

Figure 5-13: Model 3: Graph showing strain composition of the free virions and latent
cell reservoirs before and after treatment; a) viral load (dotted line is detection thresh-
old), b) latent cell reservoir. Treatment was commenced at 200 days. Parameter values
used are from Table 5.3 with pl = 0.5.
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the archive time increases once a threshold level of α is reached. The reason for this
threshold is unclear at present. In models 1 and 2 the value of P always increases as
the activation rate α increases.

In Figure 5-14b we see that the time to change in dominance initially increases then
decreases as the value of r increases, in a similar way to model 2. An increase in the
resistance factor r means that the resistant virus can replicate more quickly once it is
the fittest strain, in turn creating more Lm latently infected cells and decreasing the
time until Lm > Lw. Initial investigation has not provided a clear explanation for the
impact of increasing r, for small r on the time to switch over. It should be noted that
if the resistance factor r is close to 1 and the mutant is only slightly less fit than the
wild type strain in the absence of drugs, the switch over in dominance in the latent cell
population will happen very quickly.

We have shown that the asymmetric division mechanism also allows archiving of
wildtype virus.

5.3.4 Summary

We obtain the same qualitative results with the two target cell two strain model as the
basic model. Namely that a maintenance mechanism is required for long term archiving
of wildtype virus in the latent cell reservoir.

In order to obtain low level viral load with the two target cell two strain model we
used a different parameter set to the basic model. This means that we cannot directly
compare the two models. However we can see from comparing the archive times of
the bystander proliferation mechanism for both models in Figures 5-5 and 5-12b that
the two target cell two strain model allows longer archive times than the basic model
for a wider range of values of r. The same behaviour can be seen for the asymmetric
cell division mechanism in Figures 5-8b and 5-14b. This is most likely due underlying
behaviour of the two target cell model which allows low level viral load for a wider
range of values of drug efficacy and resistance factor.

5.4 Conclusions

We have demonstrated that a replication mechanism allows archiving of virus in the
latent cell reservoir on treatment. This archiving is due to the fact that more latently
infected cells are created by replication than by new infections. Other work has shown
that the long life of the latent cell reservoir on treatment is unlikely to come from
ongoing viral replication and is almost certainly due to replication of latently infected
cells [Kim and Perelson, 2006, Müller et al., 2002]. It is not yet known whether this
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(a)

(b)

Figure 5-14: Model 3: Graphs showing time to latent cell strain switch over with
varying a) α (r = 0.21) and b) r in Model 3. See Table 5.3 for the other parameter
values.
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self-renewal is upon activation of cells with their specific antigen or through bystander
proliferation. We have shown that either mechanism allows archiving of virus. We have
also seen that the replicative capacity of the dominant strain of virus has a role to play
in the composition of the latent cell reservoir. The more fit the virus, the quicker the
latent cell reservoir reflects the viral composition of the blood. This agrees with the
observation that resistant virus is seen in the latent cell reservoir in patients on failing
therapy where viral load is high [Ruff et al., 2002].

Unfortunately direct comparison of the two models containing a maintenance mech-
anism (when the underlying models are the same) is not possible due to the linking of
proliferation and activation in model 3. However, for a certain set of parameters both
models will give the same results. This is when p = α in model 2 and pl = 0.5 in model
3 (with α and dl the same in both models). In this case, proliferation and activation
balance in both models with no net growth occuring, so that the density of latent cells
will only increase if viral replication is ongoing at a high enough level.

There is some evidence that infected macrophages can evade the immune response,
which implies that the death rate of an infected cell is similar to that of a healthy cell
[Aquaro et al., 2002]. This would increase the replicative capacity of HIV in macrophage
target cells. In addition, Weinberg et al. [1991] suggest that macrophages have a similar
activation rate to CD4+ T cells which would decrease the replicative capacity. Both
taken together would in effect cancel each other out to some degree, meaning our
qualitative results would hold.

We have shown that it is possible to obtain the same qualitative results concerning
an archive of viral strains with the basic model and two target cell models of HIV
infection. What seems necessary in both models is ongoing viral replication at a very
low level, which we can obtain with both models with a sufficiently small value of the
resistance factor, r. Comparing the qualitative results from the two models suggests
that the two target cell two strain model is more robust, giving longer archive times
for a wider range of values of resistance factor.

One drawback to the models discussed here is that we only consider one drug and
a single strain of virus resistant to that drug. As modern treatment practice is with
HAART - typically three different drugs acting on two drug targets - we are unable to
capture all of the relevant behaviour. The systems we have analysed are adequate for
when someone is maintaining low level viral load, albeit with a mutant strain dominant,
however they are not sufficient for a two drug target regimen. Obtaining low level viral
loads with our models, when the resistant virus is dominant, is very sensitive to the
value of the resistance cost factor, r. Expanding our models to include a second drug
target, the protease enzyme, and a strain of virus resistant to the drug used could
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facilitate a more robust mechanism for obtaining low level viral load. We anticipate
that qualitatively similar results would be obtained for strain archiving in this more
complicated setting.

Once the mechanism for latent cell proliferation has been discovered, parameter
estimates for the growth rate as well as the activation rate of latently infected cells,
would allow us to exploit our results in order to quantify viral strain archiving in the
latent reservoir of HIV infection.
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Chapter 6

Conclusions

The aim of this thesis is to investigate how, despite treatment, cell heterogeneity and
drug resistance can cause long term persistence of HIV. We consider how cell hetero-
geneities, either through differing target cell behaviours or secondary target cell types,
affect the long term behaviour of HIV infection. We examine models of multiple vi-
ral strains to assess the effect of drug resistance on viral persistence and extend our
cell heterogeneity models to include multiple strains. Baseline model behaviours are
studied throughout to correctly assign the cause of interesting results.

In Chapter 2 we study three different models. The first is a simple model of HIV
infection with a constant input/output of virions, to assess the impact of another
body compartment producing virions. The second is a two body compartment model
which is analysed for different cases of cell heterogeneity. We find that when there
are no differences between cells in each compartment, viral loads at steady state are
equal and therefore this is not a biologically realistic scenario. The presence of a drug
sanctuary in one of the compartments shows that protease inhibitors are more effective
than reverse transcriptase inhibitors but that both drug types allow low level viral
load at steady state for a large range of drug efficacies. Distinct target cell parameters
between the two compartments give different viral load between compartments both
prior to, and after commencing treatment. Cell heterogeneities also allow low level
viral load without the presence of a drug sanctuary, which is important as some drugs
are equally effective in both compartments. The inclusion of a drug sanctuary when
cell heterogeneities are present widens the range of drug efficacies which enable viral
persistence. The final model considered in Chapter 2 includes a secondary target cell
with different birth process characteristics which can also facilitate viral persistence
on treatment without the presence of a drug sanctuary. This is interesting as it gives
viral persistence in the absence of external stimuli. The inclusion of a drug sanctuary
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in the secondary target cell population increases the range of drug efficacies for which
low level viral load can be seen.

In Chapter 3 we analyse competition and evolutionary models of multiple strains
of virus where the additional strains are drug resistant mutants. We show that the
competition models exhibit competitive exclusion with the fittest viral strain given by
the largest basic reproductive ratio, R0 outcompeting other strains. The behaviour
of evolutionary models can be considered a perturbation of competition models with
the losing strain/s present at the order of the level of mutation or less depending
on the type of mutation model considered. If a mutant is more than two mutations
away from the dominant strain it is not likely to be seen in the viral quasispecies due
to the population size. Two different models of mutation were considered for three
strain systems. The time to emergence is calculated for evolutionary models of two
and three strains of virus. We find that the time to emergence is increased when
the winning strain requires more than one mutation from the wildtype. Increasing
the fitness of intermediate mutants only had a small affect on the time to emergence.
These simple models of multiple strains cannot explain the relatively high prevalence
of minority mutants in patients samples. As both the jump and serial three strain
systems considered are not biologically realistic and a more sensible four strain model
is much more complicated, models with two strains are utilised in Chapters 4 and 5.

Chapter 4 extends the two target cell model and two compartment models from
Chapter 2 to include two competing strains of virus: wildtype and a drug resistant
mutant. For both models inclusion of a drug sanctuary allows coexistence of viral
strains in a competition model. Steady state analysis is possible for the two target cell
model. The usual threshold behaviour for the disease free steady state to be stable, that
is R0 < 1, is seen. The endemic steady states are seen when R0 > 1, however unlike the
competition models from Chapter 3, coexistence can be seen when either strain could
invade the other strain steady state. We find that this means that the mutant strain can
be seen when it would be considered less fit than the wildtype in the usual one target
cell model. When there is no drug sanctuary present threshold behaviours revert to the
fittest strain wins, with the fittest strain determined by the R0 values. The parameter
ranges which allow coexistence in the two target cell model are very small and it is
therefore not likely to be biologically significant. However the two compartment model
shows coexistence when a drug sanctuary is present for large ranges of parameter values.
In this case it is possible to obtain viral loads much higher than the order of mutation
for the minority strain suggesting that drug sanctuaries are a possible source of this
phenomenon. It is also possible to see differential strain dominance between the two
body compartments with one strain dominant in the blood and the other in the small
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compartment. This has consequences for clinicians and treatment options as only the
blood viral complement is tested in clinical practice. Genotyping viral strains in the
blood and male genital tract for different drug therapies, as well as determining the
nature of target cells in the male genital tract would help us to validate our results.

In Chapter 5 we consider another form of cell heterogeneity, the formation of latent
infected cells. We assess whether a replication mechanism for latently infected cells is
necessary for viral archiving in the latent cell reservoir to occur. We find that longer
term archiving is due to replication of latent cells rather than new rounds of infection.
Two methods of replication are studied: bystander proliferation and asymmetric cell
division, both causing a long term archive. The replicative capacity of the mutant
or dominant strain has a large role to play in the persistence of the archive, with
high R0 values resulting in shorter term archives due to higher levels of ongoing viral
replication. It is possible to show these results using two different underlying models:
the basic model and the two target cell model, providing the mutant virus is dominant
but has an R0 very close to 1. This ensures low level viral load on treatment.

Clinical investigation into the replication mechanism of latently infected cells could
help us to parameterise our models, enabling us to more accurately predict archiving
of viral strains, as would finding a sensible value for the activation rate.

There are many avenues for further work which are suggested by the results of
this thesis. It would be beneficial to develop more biologically realistic models which
incorporate the triple drug therapies currently prescribed to patients. One drawback of
ODE models is that if a mutant is the fittest strain on therapy it will become dominant,
regardless of the pre-treatment level. This suggests the need to use stochastic models.

The way in which we have modelled drug resistance is very simplistic. Most resistant
strains are in fact sensitive by some degree to drug treatment. All of the models
described in this work could be adapted to investigate the consequences of relaxing
the assumption of complete resistance. It would seem likely that this would decrease
the fitness of the mutant strains and allow the wildtype strains to persevere for wider
ranges of drug efficacy.

Not all drugs are less effective in the male genital tract and indeed there are some
that are more effective. This could be investigated by assuming that the drug sanc-
tuary is in the large compartment and the normal level of drug efficacy in the small
compartment. It would be interesting to see whether coexistence would be seen in this
scenario.

The effect of differential dominance in the two compartment model on HIV infection
at population level could be explored using a nested approach similar to that of Coombs
et al. [2007]. This would result in a PDE model of infection, with the strain transmitted
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between partners dependent on the age of infection and treatment regime.
We have shown that cell heterogeneity has a role to play in the persistence of HIV on

treatment, whether it be the presence of a drug sanctuary or through different target
cells. The presence of drug sanctuaries can explain the levels of minority mutants
in patients and also the differences in viral quasispecies seen in the blood and male
genital tract. We have also shown that the maintenance of the latent cell population,
when there is little ongoing viral replication, allows the persistence of a viral archive
in the latent cell reservoir for many years. When viral replication is increased, due to
a fitter mutant or non-suppressive therapy, our model predicts that the viral archive
will be short lived. All of our results suggest avenues for further clinical research:
namely genotyping of viral strains concurrently in the blood and genital tract, analysing
the proportion of different strains in the blood on treatment and investigating the
replication mechanism of latently infected cells. With this information we could validate
and better parameterise our models to the benefit of HIV clinical practice.
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Next Generation Method of Calculating R0

The next generation method is described in detail in a number of articles including
Heffernan et al. [2005] from which this summary is derived.

In the next generation method, R0 is defined as the largest eigenvalue of the next
generation operator. This operator can be obtained from a system of ordinary differ-
ential equations that describe a biological system. Two compartments, infected and
non-infected, need to be determined from the model. Here the method is illustrated
using the basic model of HIV (1.1).

Ṡ = λ− dS − βSv,

İ = βSv − aI,

v̇ = kI − cv.

In this model there are 3 compartments, 2 of which are considered to be infected, the
I and v compartments. We define a vector x̄ = xi for i = 1..3, where xi denotes the
concentration of cells or virions in that compartment. Then we define two matrices,
Fi(x̄) and Vi(x̄). Let Fi(x̄) be the rate of appearance of new infections in compartment i
and let Vi(x̄) = V i

i (x̄)−V +
i (x̄), wher V +

i is the rate of transfer of cells into compartment
i by all other means and V −i is the rate of transfer out of compartment i. The next
generation matrix operator FV −1 is formed from the matrices of partial derivatives of
Fi and Vi with respect to xi, evaluated at the disease free equilibrium.

For the basic model of HIV

Fi(x̄) =

(
βSv

0

)
,

Vi(x̄) =

(
aI

cV

)
−

(
0
kI

)
,

therefore

F =

(
0 βλ

d

0 0

)
,

V =

(
a 0
−k c

)
.

This gives the next generation matrix to be

FV −1 =

(
λβk
acd

λβk
acd

0 0

)
.
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The largest eigenvalue of this matrix is R0 = λβk
acd .

This is a useful method to use when the system under investigation is more compli-
cated and it gives a more general expression for R0 than the one given by finding the
threshold criteria for disease free steady state stability. The expression for R0 obtained
from the next generation matrix method will give the same threshold criteria but is
often in a more useable form for later analysis.
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