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Summary

This thesis focusses on the cumulative hazard function as a tool for modelling time-to-

event data, as opposed to the more common hazard or survival functions. By focussing

on and providing a detailed discussion of the properties of these functions a new frame-

work is explored for building complex models from, the relatively simple, cumulative

hazards.

Parametric families are thoroughly explored in this thesis by detailing types of pa-

rameters for time-to-event models. The discussion leads to the proposal of combination

parametric families, which aim to provide flexible behaviour of the cumulative hazard

function.

A common issue in the analysis of time-to-event data is the presence of informative

censoring. This thesis explores new models which are useful for dealing with this issue.
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Chapter 1

Introduction

Methods of survival analysis are used in the modelling of time-to-event data. This

thesis uses the cumulative hazard as a modelling tool for such data. The thesis gives

a thorough description of the properties of the set of cumulative hazards and thus

exploits some of these properties, such as the composition and the inverse, which have

not been used for statistical modelling. These properties are used to construct new

univariate and multivariate families of cumulative hazards as well as new interpretable

regression models. The thesis also uses these properties to unify known models and

families under a single framework.

The thesis describes a class of new frailty mixture models that does not require

explicit integration. This new class is based on the concept of Bernstein functions and

compositions of cumulative hazards. Another key construct in the thesis is the study

of time transformations. The study of these allows for simple methods for simulation

and interpretation of the known and proposed models.

This thesis provides a simple framework to construct multi-parametric families of

cumulative hazards which provide flexible behaviours. Details of the types of behaviours

that can be demonstrated by cumulative hazards are given, and a framework is pre-

sented for the combinations of desired behaviours. Illustrations of some of the method-

ologies are presented with a real data set on the time to death or transplant.

A feature of time-to-event data is the presence of censoring, i.e. missing data.

Although this is not one of the main concerns of this thesis, censoring will be explored in

the last chapter. The proposed new models are used to study the problem of informative

censoring.

1.1 Thesis outline

Chapter 2 introduces some basic properties of cumulative hazard functions. It pro-

vides the definition of a cumulative hazard and the set of those which are considered

in the thesis. This chapter explores functional transformations of cumulative hazards,

discussing whether these transformations remain in or leave our set of cumulative haz-

1



ards. The transformations discussed are the composition, inverse, product, addition,

maximum and integration of cumulative hazards. Throughout this chapter we relate

how or if these functional transformations correspond to a time transformation. The

properties explored in this chapter will form the basis of the framework for generating

parametric models which we will create in chapter 3.

Chapter 3 discusses the form of common parametric families in terms of cumulative

hazard functions. The parameters from the literature explored in this chapter are the

scale, frailty, power, hazard power, tilt and resilience parameters. From this exploration

we note common pairing amongst these parameters, and propose additional parameters

to complete the pairings and thus the set of parameters. Based on the properties and

transformations of chapter 2 we propose some new parametric families which we term

combination parametric families. We further generalise these families so that they can

be used in chapter 6. We then discuss ways in which to add multiple parameters to a

family, whether they be traditional or standard families, or whether they are those we

have proposed. The latter part of this chapter explores frailty mixtures. In particular,

what they are and how to construct them. The key to this section is relating frailty

mixtures to compositions of particular cumulative hazard functions.

Chapter 4 reviews well known regression models for modelling time-to-event data.

The beginning of this chapter follows the outline of the first section of chapter 3, by con-

sidering the regression model corresponding to the one-dimensional parametric families

outlined in the previous chapter. It is noted which are found within the literature and

which are candidates for new regression models. The latter part of this chapter then

demonstrates how to extend the already stated regression models and how to model

the baseline cumulative hazard for a fully parametric model.

Chapter 5 introduces the liver transplantation data set. There we explain the

covariates present in this data set, giving initial details such as range, mean or factor

levels given for each as applicable. Special attention is given to the United Kingdom

End-Stage Liver Disease (UKELD) score as this is a covariate based on another model.

The motivation and explanation of this model is given for completeness. An exploratory

data analysis is carried out in the latter part of this chapter. This analysis comes in four

parts. The first part explores the initial connections between the covariates and the

general form of the data set. The second part of this analysis fits traditional survival

models to this data set, including the Cox proportional hazards model [18] and the

Accelerated Failure Time (AFT) model of Kalbfleisch and Prentice [36]. The third

part of the analysis then fits the proposed models from chapter 4 and discusses the fit

of these models. The final part of the analysis then explores the presence of informative

censoring within the liver transplant data set. This then leads naturally to the next

chapter which further discusses informative censoring and the issues thereof.

Chapter 6 specifies what informative censoring is and the issues it raises. Part of

the chapter gives details on the type of non-informative censoring via the discussion by

Williams and Lagakos [74, 40, 39]. It then describes the ways in which these issues are
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dealt within the literature, linking these to the bivariate models proposed in previous

chapters. We discuss bounds on survival functions proposed by Peterson [51]. We

then go on to alternatives to this method and discuss sensitivity analyses of Siannis,

Copas and Lu [63] and then the bivariate survival models of Roy and Mukherjee [56].

It is these bivariate models that we relate to the models previously proposed. These

models are then used to deal with the informative censoring present within the liver

transplantation data set.

1.2 Notation

Here we present the key notations of the thesis. Each chapter relies more heavily on

certain notations, thus we have divided the notation for ease of referral.

Notation Explanation

Chapter 2

H A Cumulative Hazard (CH)

S A Survival function

f A density function

h A hazard function

T ∼ H Random variable T has distribution generated by the CH

function H

T
d
= Y The distributions of T and Y are identical

Hll(t) = log(1 + t), standard log-logistic

HG(t) = et − 1, standard Gompertz CH

Hθ
E(t) = θt, Exponential CH with scale θ

Hα
W (t) = tα, Weibull CH

Hκ
Γ(t) = log

(
1 + Γ(t,κ)

Γ(κ)−Γ(t,κ)

)
, Gamma CH, where

Γ(t, κ) =
∫ t

0 u
κ−1e−udu is the incomplete gamma function

HLN (t) = − log (1− Φ (log(t))), Log-Normal CH,

where Φ is the standard Normal CDF

Hθ
r (t) = tθ

(1+t)θ−tθ

H1 ◦H2(t) Composition of H1 and H2

#»τ A time transformation T1 = #»τ (T0)
#»

H A Cumulative Hazard functional transformation,

H1(t) =
#»

H(H0(t))

H−1 Inverse of the CH H

H(2)(t) = H(H(t)), iterated composition

H(−2)(t) = H−1 ◦H−1(t)

H(t)2 = H(t)H(t), product of H with itself

H [1](t) =
∫ t

0 H(s)ds an N-CH function

H [−1](t) =
∫ t

0 H
−1(s)ds, complementary N-CH function
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H−[1](t)
(
H [1]

)−1
(t), inverse of an N-CH function

Hψ(t) =
∫ t

0 ψ(s)ds

Chapter 3

Hθ,α
AB(t) = Hθ

A ◦Hα
B(t)

Hα
A+B(t) = αHA(t) + (1− α)HB(t), the linear combination, Cα+ (HA, HB)

Hα
A·B(t) = HA(t)αHB(t)1−α, the geometric combination, Cα· (HA, HB)

Hα
A−→◦ B(t) = 1

α(HA ◦H−1
B )(αHB(t)), the composition combination,

Cα−→◦ (HA, HB)

Hα
A←−◦ B(t) = HB

(
1
αH
−1
B ◦HA(αt)

)
, the reverse composition combination,

Cα←−◦ (HA, HB)

Cα(HA, HB) A combination model of HA and HB

U Unobserved frailty

LF (t) Laplace-Stieltjes transform of a distribution F

H(F )(t) = − logLF (t)

Chapter 4

xi Vector of explanatory variables for individual i

β Vector of regression coefficients

ηi = βTxi Linear predictor for individual i

Θ Parameter space

ψ : R→ Θ Linking function

H(t|ψ,H0) Regression model with linking function ψ and baseline H0

Chapter 6

T Event time

C Censoring time

Y Observed time, = min(T,C)

∆ Censoring indicator, ∆ = 1 if censored, 0 otherwise

fX,Y (x, y) Joint distribution of some random variables X and Y

SX,Y (x, y) Joint survival of some random variables X and Y

fX|Y (x|y) Conditional distribution of X given Y

QX(t) Crude survival function of some random variable X

Q∗X(x) Net survival function of some random variable X

4



Chapter 2

Mathematical Properties of the

Cumulative Hazard Function

2.1 Introduction to cumulative hazards

In the statistical analysis of time-to-event data, the usual approach to modelling is to

use the survival or hazard functions rather than the density or cumulative distribution

function. The most common hazard models are the Proportional hazards models [18],

other common alternatives are Accelerated Failure time models. While these models

are interpreted in terms of the hazard function, they can also be easily written down

in terms of the cumulative hazard function. In this chapter we focus on properties of

the cumulative hazard function which can potentially be used for modelling.

Let T be the continuous random variable representing the time-to-event of an indi-

vidual of interest and let P be the probability measure associated to the events of this

random variable.

Definition 2.1. The function

ST (t) ··= P (T > t) (2.1)

is the survival function corresponding to the random variable T .

We now introduce our main assumptions on the survival function.

Assumption 2.1. The survival function has value 1 at time 0, ST (0) = 1.

Assumption 2.2. The survival function tends to a value of 0 as time increases,

limt→∞ ST (t) = 0.

Assumption 2.3. The survival function ST (t) is continuously differentiable on (0,∞).

Assumption 2.4. The survival function ST (t) is strictly decreasing on (0,∞).
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There are a number of consequences of these assumptions that need to be discussed.

First, it is clear that assumption 2.1 implies that P (T ≤ 0) = 0. This is a reasonable

assumption which rules out negative times to an event. Assumption 2.1 also implies

that P (T = 0) = 0, which will rule out models that have a positive probability mass at

zero. An example of a model with mass at zero would be one that looks at the lifetimes

of babies. The mass at zero would be interpreted as a still birth.

Assumption 2.2 excludes cure models. This means that we do not include models

where it is possible for the event of interest to never occur. If we are interested in death

due to some disease, this may happen when a patient is actually cured of this disease

and thus does not die from it.

Assumptions 2.3 and 2.4 imply that

fT (t) ··= −
dST (t)

dt
,

is positive and continuous on (0,∞). The function fT (t) is called the probability density

function of T .

By the Fundamental Theorem of Calculus, for any b > t,∫ b

t
fT (s)ds = ST (t)− ST (b).

Letting b→∞ and using assumption 2.2, we obtain∫ ∞
t

fT (s)ds = ST (t) (2.2)

which gives an expression for the survival ST in terms of the density fT .

Assumption 2.4, in combination with a further assumption 2.5 to be discussed later,

will rule out models for which the density fT is zero at a point, or where the probability

of an event happening in a certain interval is zero.

Finally, assumption 2.3 will rule out models for which the density is discontinuous

at a point in time. To see this more clearly consider the following example.

Example 2.2. Let ST be defined by

ST (t) =


0 t ≤ 0

e−t 0 < t < 1

e−(2t−1) t ≥ 1,

which can be seen in figure 2.1.

ST (t) is a continuous function but is not differentiable a t = 1. It is easy to show

6



1

1

t

ST (t)

Figure 2.1: Survival function not satisfying assumption 2.3.

that ST can be expressed as ST (t) =
∫∞
t fT (s)ds where fT (t) is defined as

fT (t) =


0 t < 0

e−t 0 ≤ t < 1

2e−(2t−1) t ≥ 1,

as seen in figure 2.2.

1 2

1

t

fT (t)

Figure 2.2: Probability distribution function not satisfying assumption 2.3

We note that it is actually irrelevant how we define fT (t) at the two discontinuities,

t = 0 and t = 1 for the expression 2.2 to hold. The first discontinuity at t = 0 is

simply a consequence of our assumption 2.1 to have positive times-to-event, thus is

not a source of concern. The second discontinuity at t = 1 is more concerning and

we believe it is unrealistic in many situations. Hence our assumption of continuous

differentiability on the survival ST removes models such as this.
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We define S to be the set of all survival functions that satisfy assumptions 2.1, 2.2,

2.3 and 2.4. Unless otherwise stated we will assume all survival functions are elements

of S.

We now define the hazard function, which plays an important role in time-to-event

data analysis.

Definition 2.3. The hazard function hT (t) corresponding to P is defined as

hT (t) ··= lim
ε↘0

P (t < T ≤ t+ ε|T > t)

ε
, (2.3)

for all t ≥ 0.

The hazard function hT (t) can be written in terms of the survival function and the

probability density function. These expressions will now be derived.

hT (t) = lim
ε↘0

P (t < T ≤ t+ ε|T > t)

ε

= lim
ε↘0

P (t < T ≤ t+ ε)

εP (T > t)

= lim
ε↘0

ST (t)− ST (t+ ε)

εP (T > t)

=
−1

P (T > t)
lim
ε↘0

(
ST (t+ ε)− ST (t)

ε

)
which by assumption 2.3

= −
d
dtST (t)

ST (t)
=
fT (t)

ST (t)
(2.4)

= −d logST (t)

dt
, (2.5)

for t > 0.

We note that since both fT (t) and ST (t) are continuous on (0,∞), hT (t) is con-

tinuous on (0,∞). We have a further assumption that is given in terms of the hazard

function:

Assumption 2.5. The hazard function is strictly positive, hT (t) > 0, ∀t > 0.

The corresponding hazard function in example 2.2 will not be continuous. The

hazard function will be defined in pieces, or piecewise, and will be constant on each

piece. The corresponding hazard will be

hT (t) =


0 t < 0

1 0 ≤ t < 1

2 t ≥ 1.

In general, the probability models with hazard functions such as these are called piece-

wise constant hazard models [41]. As a consequence of assumption 2.3, we do not pursue
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these types of models. This assumption could be relaxed so that survival functions,

and thus other related functions, are piecewise differentiable. Relaxing this assumption

would then allow the inclusion of piecewise constant hazard models. These types of

models are not the main focus of this thesis and so this assumption will not be relaxed

in this thesis.

Integrating both sides of (2.5) and using the Fundamental Theorem of Calculus,

we obtain ∫ t

0
hT (s)ds = −

∫ t

0

d logST (s)

ds
ds

= − (logST (t)− logST (0))

= − logST (t) by assumption 2.1.

This implies we can write the survival function uniquely in terms of the hazard function

by

ST (t) = e−
∫ t
0 hT (s)ds, ∀ t > 0. (2.6)

Our focus will be on the cumulative hazard (CH) function which we define as follows:

Definition 2.4. Let T be a random variable with survival ST ∈ S and corresponding

hazard hT . The cumulative hazard function HT is defined as

HT (t) =

∫ t

0
hT (s)ds, ∀t > 0.

From equation (2.6) we can clearly write the survival function in terms of the

cumulative hazard function, namely

ST (t) = e−HT (t). (2.7)

Note that HT (t) = − logST (t).

We now notice below some properties of CH functions which are related to, or

consequences of, assumptions 2.1 to 2.5.

Property 2.1. The cumulative hazard function is zero at zero, HT (0) = 0 and is

otherwise strictly positive for positive t, HT (t) > 0, ∀t > 0.

Property 2.2. The cumulative hazard tends to infinity,

lim
t→∞

HT (t) =∞.

This property will be denoted by HT (∞) =∞.

Property 2.3. The cumulative hazard HT (t) is continuously differentiable on (0,∞).
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Property 2.4. The cumulative hazard function HT (t) is strictly increasing on (0,∞).

We define the set CH as the set of all cumulative hazard functions satisfying proper-

ties 2.1 to 2.4. We will assume that any CH function is within this set, unless otherwise

stated.

Proposition 2.5. The survival function ST ∈ S if, and only if, the corresponding

cumulative hazard function HT ∈ CH.

Proof. Suppose ST ∈ S, then ST satisfies assumptions 2.1 to 2.5. The combination of

all the assumptions imply that ST (t) > 0 for all t ∈ (0,∞). Thus as ST (0) = 1 this

implies HT (0) = 0, i.e. property 2.1.

Properties 2.2 and 2.3 are direct consequences of assumptions 2.2 and 2.3 respec-

tively.

Assume assumptions 2.4 and 2.5 hold, then

d

dt
Ht(t) = hT (t) = −

d
dtST (t)

ST (t)
> 0

since d
dtST (t) < 0 as ST is strictly decreasing. Since hT (t) > 0 then property 2.4 holds.

Now assume the properties 2.1 to 2.4 hold. Then ST (0) = e−HT (0) = 1. Thus

assumption 2.1 holds. Now for the second assumption,

lim
t→∞

ST (t) = e− limt→∞HT (t) = 0,

thus assumption 2.2 holds. Property 2.3 implies that assumption 2.3 holds. Property

2.4 also implies assumption 2.4.

Since a CH function uniquely defines a survival function and thus a probability

distribution, we can define some notation to denote this. We use

T ∼ H (2.8)

to denote that T follows the probability distribution uniquely defined by the CH func-

tion H.

In the next few sections we will see some specific examples of CH functions in CH,

have an interpretation of the CH functions and see some properties of the functions in

the set CH.

2.1.1 Key cumulative hazard functions

Within the set of CH functions, CH, there are number of important functions we will

need to refer back to throughout the course of this thesis. In table 2.1 we highlight

which functions we will need to refer back to and define some notation for them.

Note that we have defined a scale parameter via θt rather than the usual t/θ.
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Notation Formula Explanation

Hll(t) Hll(t) = log(1 + t) Standard log-logistic

HG(t) HG(t) = et − 1 Standard Gompertz

Hθ
E(t) Hθ

E(t) = θt Exponential with scale θ

Hα
W (t) Hα

W (t) = tα, α > 0 Weibull with power
parameter α

Hθ
r (t) Hθ

r (t) = tθ

(1 + t)θ − tθ
A rational CH with shape

parameter θ

Hκ
Γ(t) Hκ

Γ(t) = log

(
1 +

Γ(t, κ)

Γ(κ)− Γ(t, κ)

)
Gamma with shape parameter

κ, Γ(t, κ) is the incomplete
gamma function

HLN (t) HLN (t) = − log (1− Φ (log(t))) Standard Log-Normal

Table 2.1: Notation for important CH functions.

2.1.2 Baseline transformations

The motivation for the rest of this chapter is to formalise methods for creating new

time-to-event models via the transformation of cumulative hazard functions.

As a running example in this chapter, consider a study of individuals who each have

a set of recorded covariates. It is assumed that there are some underlying characteristics

that all individuals in the study share and that the covariates are believed to explain

the differences between the individuals.

The random variable for the time-to-event for a reference individual in the study

is denoted by T0, and we will call it a baseline time. A reference individual could

be an average or typical individual that the results of the study will make reference

or compare to. The cumulative hazard function that defines the distribution of the

baseline times is H0, thus T0 ∼ H0. It is assumed that a particular individual in the

study has survival time random variable T1 ∼ H1 and that this relates to the baseline

time, T0, in the sense that there exists some time transformation #»τ such that

T1
d
= #»τ (T0). (2.9)

We note that T0 is a conceptual time random variable which we use to define the actual

observable time-to-event T1 via the transformation #»τ . Also note that this transforma-

tion does not imply that T1 and T0 are necessarily dependent, only that they are related

in a distributional sense. Hence we have used the notation X
d
= Y which means that

the random variables X and Y have the same probability distribution.

One of the aims of this chapter is to clarify the forms which #»τ can take. Instead

11



T0 T1
#»τ

H0 H1

∼ ∼

#»

H

Figure 2.3: Diagram to represent the transformation from baseline time and the corre-
sponding cumulative hazards.

of interpreting the observable time T1 to be a transformation of the baseline time, we

can also think of the baseline cumulative hazard, H0(t) to be functionally transformed,

following the rules of probability, to obtain H1(t), the cumulative hazard of T1. The

functional transformation will be denoted by
#»

H. This is demonstrated in figure 2.3.

Theorem 2.27 will give the details of the transformations #»τ and
#»

H.

We now see an example of each of the two types of transformations mentioned

above. The Cox proportional hazards model [18] states that:

H1(t) = θH0(t),

meaning the CH functions are proportional. Thus the transformation
#»

H is simply

multiplying by some positive constant θ. Note that here the functional transformation

between CH functions,
#»

H is the one specified rather than the time transform #»τ .

In the accelerated failure time model [36]

T1
d
= T0/θ,

meaning the survival time of an individual is accelerated or decelerated by a factor of

θ of the survival time of a typical individual in the study. If θ < 1 then the effect will

be to accelerate the survival time, if θ > 1 then the effect will be to decelerate the

time. Note here that we specify the time transformation, #»τ , rather than the functional

transformation
#»

H of CH functions. Both transformations should be equivalent following

the rules of probability.

2.2 Interpretation of the cumulative hazard function

The hazard function is a vital tool in time-to-event data analysis. It has a useful and

probabilistic interpretation as a conditional probability. From equation (2.3) we can

see that the hazard function can be interpreted as an instantaneous time to event rate.

However, the cumulative hazard function does not have a probabilistic interpretation.
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It is the integral of the hazard function, but it is not an integral over the argument of

conditional probabilities where the conditioning event is fixed.

One interpretation of the cumulative hazard can be given in terms of the so called

non-informative censoring model. This will be described in detail in chapter 6, so here

we only use the necessary details. Let T be the time-to-event random variable and

assume that T ∼ HT . Let C be the censoring random variable which usually represents

the time at which the individual leaves the study, or more generally, the time at which

we are no longer able to observe the time-to-event T . We assume that C ∼ HC and

the non-informative censoring model assumes that T and C are independent random

variables. Let Y = min(T,C), the actual observed time in the study. The interpretation

of the cumulative hazard HT will be given in terms of the expectation of HT (Y ) where

Y ∼ HY . It is easy to show that HY (y) = HT (y) +HC(y), see proposition 2.52.

Proposition 2.6. When T ∼ HT , T and C are independent and Y = min(T,C),

EY
(
HT (Y )

)
= P (T < C).

Proof.

EY
(
HT (Y )

)
=

∫ ∞
0

HT (y)fY (y)dy = −
∫ ∞

0
HT (y)dSY (y)

= −
∫ ∞

0
HT (y)

[
d

dy
e−HY (y)

]
dy

which, by integration by parts,

= −
[
HT (y)e−HY (y)

]∞
0

+

∫ ∞
0

e−HY (y)dHT (y)

= 0 +

∫ ∞
0

e−HC(y)−HT (y)hT (y)dy =

∫ ∞
0

e−HC(y)fT (y)dy

=

∫ ∞
0

fT (y)SC(y)dy =

∫ ∞
0

fT (y)P (C > y)dy

=

∫ ∞
0

∫ ∞
y

fT (y)fC(u)dudy =

∫ ∞
0

∫ ∞
y

fT,C(y, u)dudy

by independence of T and C

= P (T < C).

So then according to proposition 2.6, we can interpret the expected value of the

cumulative hazard HT evaluated at the observed time Y , as the probability of the

time-to-event T being observed (rather than being censored) under a non-informative

censoring scheme. Note that

EY
(
HT (Y )

)
≤ ET

(
HT (T )

)
= 1
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since HT (T ) follows an exponential distribution with unit mean. We will use this fact

when describing an alternative interpretation of the cumulative hazard function which

does not assume any censoring scheme.

Proposition 2.7. Let T ∼ HT , then HT (T ) ∼ H1
E.

Proof.

P (HT (T ) > t) = P (T > H−1
T (t)) = exp(HT (H−1

T (t))) = exp(t) = H1
E(t).

Another interpretation of the cumulative hazard can be seen in the work of Singpur-

walla [64]. The idea of the interpretation is to acknowledge the presence of an under-

lying random variable X ≥ 0 which follows an exponential distribution with mean

1.

From equation (2.5) we have that

ST (t) = P (T > t) = e−HT (t).

This means we can write

ST (t) = e−HT (t) = P (X > HT (t)) = SX(HT (t)) (2.10)

so we can interpret the values of HT (t) for all t ≥ 0 as the realised values of the random

variable X. More specifically, since, from equation (2.10),

P (T ≤ t) = P (X ≤ HT (t))

we can interpret the time to failure T as the time at which the cumulative hazard HT (t)

crosses a random threshold X, that is,

T
d
= H−1

T (X). (2.11)

This in turn gives a way to simulate observations from T for any given choice of HT .

In this way, the hazard potential plays a similar role as the uniform distribution on

(0, 1) since U
d
= FX(X) ∼ Unif(0, 1), ∀FX and X ∼ FX where FX is continuous.

Definition 2.8. Let T ≥ 0 be a random variable and let HT (t) be its corresponding

cumulative hazard. Then X
d
= HT (T ) is defined to be the hazard potential.

Proposition 2.9. Let T ∼ HT and X
d
= HT (T ). Then X ∼ H1

E.

The main idea of this interpretation is that the standard exponential distribution

of X is completely independent of the context, or setting, of the event of interest. Thus

we can interpret X as some unknown resource that has been created at the start time.
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In this interpretation, HT (t) would be the amount of the resource used up by time t

and the hazard, hT (t) = d
dtHT (t) can be considered as the rate at which the resource

is consumed. See Singpurwalla [64] for more details on the hazard potential.

2.3 Analytical properties of the cumulative hazard

The main aim of this chapter is to detail properties of CH functions to find ways

of transforming given cumulative hazards, to new ones, and therefore transforming

probability distributions to new ones, which will be an essential tool in statistical

modelling of time-to-event data.

2.3.1 Composition of cumulative hazards

This section will explore the consequences of composing cumulative hazards, and what

properties these types of compositions have. When considering the cumulative hazard

H evaluated at time t, we note that t is dimensionless. Thus H is a function from [0,∞)

to [0,∞). Hence the composition of cumulative hazards is well defined mathematically.

The composition of cumulative hazards can be thought of as the operation that

transforms one cumulative hazard function to another. Note that this operation still

satisfies all the conditions needed for a function to be a cumulative hazard. We note

that all operations involving cumulative hazards can be thought of in the same manner

in this chapter.

Proposition 2.10. The composition of two cumulative hazards is itself a cumulative

hazard.

Proof. Let H1 and H2 be cumulative hazards. Since H1, H2 : (0,∞) → (0,∞) then

H1 ◦H2 : (0,∞)→ (0,∞). We also have,

(H1 ◦H2)(0) = H1(H2(0)) = H1(0) = 0,

lim
t→∞

H2(H1(t)) = H2( lim
t→∞

H1(t)) = H2(∞) =∞

as H1 and H2 are cumulative hazard functions. Since H1 and H2 are strictly increasing

then if

s < t ⇐⇒ H1(s) < H1(t)

u < v ⇐⇒ H2(u) < H2(v).

Let u = H1(s) and v = H1(t), then

s < t ⇐⇒ H2(H1(s)) < H2(H1(t)).
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Now for continuous differentiability, we show the derivative is continuous.

d

dt
H2(H1(t)) = h1(t)h2(H1(t))

which is the product of continuous functions and so is continuous, thus H2(H1(t)) is

continuously differentiable.

Example 2.11. Consider composing the log-logistic Hll(t) = log(1 + t) and the Gom-

pertz [44, 33] HG(t) = et − 1 in proposition 2.10, then we see that

(Hll ◦HG)(t) = log(1 + et − 1) = t = H1
E(t),

the CH function of the standard exponential distribution.

Example 2.12. Consider two distinct Weibull CHs Hα
W (t) and Hβ

W (t). The composi-

tion of these CH functions yields

(Hα
W ◦H

β
W )(t) = tαβ,

which is another Weibull. Hence, we see that the Weibull family is closed under com-

position.

Example 2.13. Consider H1(t) =
#»

H(H0(t)) = HG ◦H0(t). Then

H1(t) = HG(H0(t)) = eH0(t) − 1

=
1− e−H0(t)

e−H0(t)
=

F0(t)

1− F0(t)
,

which is the function describing the odds of experiencing the event of interest before

time t. This will be relevant later.

The next example refers to a well known survival regression model, the Accelerated

Failure Time model. This example details how this model can be constructed using

compositions of CH functions, but we don’t go into the details of the actual model

here. Instead, this model is discussed fully in section 4.1.

Example 2.14. (Accelerated Failure Time model) An important example of the

use of the composition transformation is the widely used survival model, the Accel-

erated Failure Time (AFT) model [36]. Consider a population with an underlying

baseline time, T0 ∼ H0, where a particular individual has T1 ∼ H1. In this model the

CH functions are related via

H1(t) = H0(θt), (2.12)

that is, a transformation of the time scale. As shown in Figure 2.3 we have that
#»

H(H0(t)) = H0 ◦Hθ
E , that is, composing with the exponential. Then it can be shown

that T1
d
= 1

θT0 so that #»τ (T0) = 1
θT0.
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In chapter 4 we view models such as the AFT as a linear model. If we take the logs

of T1
d
= 1

θT0 then we see that log T1
d
= − log θ + log T0.

Compositions of CH functions aren’t only used in building new CHs, they are also

used when generalising distributions and adding new parameters. This is demonstrated

in the following example.

Example 2.15. (Scale and Power parameters) The usual accommodation of scale

and power parameters over a baseline distribution, corresponds to composing with the

Weibull and Exponential CHs. Let T0 ∼ H0 and T1 ∼ H1. Then if

H1(t) =
#»

H(H0(t)) = (H0 ◦Hθ
E ◦Hα

W )(t)

= H0(θtα)

we have a scale of θ and a power of α.

The corresponding time transformation will be T1
d
=
(

1
θT0

)1/α
. Note here that a

scale of θ where α > 1 will result in a deceleration. There is also some trade off in

acceleration or deceleration when powering.

Note that in this example the associative property that

(H1 ◦H2) ◦H3(t) = H1 ◦ (H2 ◦H3(t)).

For this to hold we require that

domain of H2 = codomain of H3

domain of H1 = codomain of H2.

This is true since Hi : [0,∞]→ [0,∞] for i = 1, 2, 3.

Proposition 2.16. Let H0 ∈ CH and let g be a continuously differentiable function.

If H0 ◦ g is a cumulative hazard, then g is a CH function.

Proof. It is assumed that properties 2.1 to 2.4 hold for H0 ◦g. Thus H0(g(0)) = 0, thus

we must have that g(0) = 0. We also have that H0 is only defined, or at least positive,

on (0,∞), thus g(t) > 0 for all t ∈ (0,∞).

If H0 and g are continuously differentiable, then so must H0◦g be. If H0(g(∞)) =∞
and H0(∞) =∞, then g(∞) =∞. If H0 ◦ g is strictly increasing, then

d

dt
H0(g(t)) =

dg(t)

dt
h0(g(t)) > 0

which implies that d
dtg(t) > 0, thus g is strictly increasing. Hence g satisfies properties

2.1 to 2.4 and so is a CH function.
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This proposition will be used later in section 2.3.10 as a method to generalise the

Accelerated Failure Time model to include time varying covariates. We will then have

a way to impose conditions on our covariates so that this model is valid

Iterative compositions of cumulative hazards

We have seen that the composition of CH functions results in a CH function. We now

explore the effect of repeatedly composing the same CH function with itself.

We will define notation for the iterated composition. Let H be a CH function, then

H(2)(t) ··= H(H(t)). (2.13)

This can be easily generalised, composing H with itself n > 1 times is denoted H(n).

Proposition 2.17. Suppose HT (t) is a CH function. Iteratively composing with HT (t)

creates a function that gets progressively further from the identity t. I.e., if H
(n)
T (t)

is the composition of HT n times, then for all points that are not fixed, HT (t) 6= t,

H
(n+1)
T (t) > H

(n)
T (t) or H

(n)
T (t) < H

(n−1)
T (t).

Proof. Suppose t is not a fixed point of HT , i.e. HT (t) 6= t. Then we have two cases,

HT (t) > t and HT (t) < t.

Case 1: HT (t) > t Let s = HT (t). Since HT is increasing, we have that

HT (s) = H
(2)
T (t) > HT (t) > t.

HT (t) > t⇒ H
(2)
T (t) > HT (t)⇒ H

(2)
T (t) > HT (t) > t

⇒ H
(2)
T (t)− t > HT (t)− t > 0⇒ |H(2)

T (t)− t| > |HT (t)− t|,

Thus the result holds for n = 1. Suppose it holds for n, thus u = H
(n+1)
T (t) > H

(n)
T (t) =

v. Then HT (u) > HT (v) since HT is increasing and so the result holds for n + 1. So

the result holds by induction when HT (t) > t.

Case 2: HT (t) < t

s = HT (t) < t⇒ HT (s) = H
(2)
T (t) < HT (t)⇒ H

(2)
T (t) < HT (t) < t,

and so using the same approach as above the result holds for this case.

The best way to illustrate the effects described in proposition 2.17 would be graph-

ically. This can be seen in the next example.

Example 2.18. To illustrate the iterative compositions, see Figure 2.4 where the

function Hll(t) = log(1 + t) is composed with itself multiple times. We see that with

each composition, the function gets further from the identity and closer to the t-axis,

i.e., with more compositions the function grows more slowly.
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Figure 2.4: The cumulative hazard HT (t) = log(1 + t) composed iteratively with itself.
The more compositions, the function grows more slowly.

Example 2.19. To illustrate how a function that crosses the identity behaves under

iterative compositions, see Figure 2.5 where the function t3 is composed with itself

multiple times. We see that with each composition, the function gets further from the

identity apart from the point at which it crosses the line HT (t) = t, i.e., a fixed point

of HT (t). We see that before the fixed point, the function is decreased more with every

composition, then after the fixed point is increased more.

2.3.2 Inverse of cumulative hazards

The inverse of a CH has been used by Rinne [52], where it is called the hazard quantile.

Here we use such inverses in a much more general sense. We refer to H−1 as the usual

inverse function of H.

Proposition 2.20. If H(t) is a cumulative hazard function, then so is its inverse

H−1(t).

Proof. If H : [0,∞]→ [0,∞] then we must have H−1 : [0,∞]→ [0,∞].
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Figure 2.5: The cumulative hazard HT (t) = t3 composed iteratively with itself.

Since H(0) = 0 and H(∞) =∞, we have

H−1(0) = H−1(H(0)) = 0,

H−1(∞) = H−1(H(∞)) =∞.

Finally if H(t) is a cumulative hazard then it must be strictly increasing, thus

t < s ⇐⇒ H(t) < H(s).

This implies

H−1(t) < H−1(s) ⇐⇒ H−1(H(t)) < H−1(H(s))

⇐⇒ t < s.

So H−1 is increasing too.

By the Inverse function theorem,

d

dt
H−1(t) =

1

H ′(H−1(t))
.

Since H is continuous and bijective, then H−1 must be continuous. Hence, the deriva-
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tive of the inverse is the composition of continuous functions and so is continuously

differentiable. Thus H−1 satisfies all the conditions stated and hence is a cumulative

hazard.

The next few examples demonstrate that the inverse of a CH function is also a CH

function.

Example 2.21. Consider a standard Gompertz cumulative hazard HG(t) = et − 1,

then H−1
G (t) = log(1 + t) = Hll(t), the standard log-logistic cumulative hazard.

Example 2.22. Consider the inverse of a Weibull CH Hα
W (t) = tα. Then (Hα

W )−1 (t) =

t1/α = H
1/α
W , yet another Weibull.

Example 2.23. Consider the exponential CH Hθ
E(t) = θt. The inverse is H

1/θ
E (t) =

1
θ t. We thus see that the exponential family is also closed under inverses and that(
Hθ
E

)−1
= H

1/θ
E .

Example 2.24. The inverse of the rational CH function Hθ
r (t) = tθ

(1+t)θ−tθ is H
1/θ
r (t) =

t1/θ

(1+t)1/θ−t1/θ . Hence, this family is also closed under inverses and
(
Hθ
r

)−1
= H

1/θ
r .

It is useful to visually compare a CH function with its inverse. In figure 2.6, we see

the inverse is the reflection of H about the identity line. We see, for example, that if

H is convex, then H−1 is concave. This idea of convexity will be revisited later in this

chapter, in section 2.3.8. We see that if a CH function accelerates/decelerates in some

interval, then the inverse will decelerate/accelerate respectively.

t
H(t)

H−1(t)

Figure 2.6: Comparison of a CH function H with its inverse H−1 to see they are
reflections about the identity line (dashed).

We will now see a few more examples of inverses of the functions in our key set of

CH functions.

Example 2.25. Consider the Log-Normal CH function, the inverse of this function is

H−1
LN (t) = exp

[
Φ−1

(
1− e−t

)]
.
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Example 2.26. Recall that the CH function of the Gamma distribution is

Hκ
Γ(t) = log

(
1 +

Γ(t, κ)

Γ(κ)− Γ(t, κ)

)
.

After some rearranging to try to find the inverse, we find we need to solve

Γ(t, κ)

Γ(κ)
= 1− e−u

for t when u is fixed. Since the incomplete gamma function is defined as an integral, we

need to invert it numerically in order to find the inverse of Hκ
Γ . Since 1− e−u ∈ (0, 1),

finding the solution is equivalent to finding a quantile.

Note here that H−1 always exists, but an analytical expression may not be possible

to calculate. Thus we may have to calculate the inverse numerically. In general, the

computation of H−1 can be seen as a computation of a quantile. For details on how to

do this see appendix B.

The next section gives an important result which will link the time transformation

with both the composition and the inverse.

2.3.3 Linking compositions and inverses with time transformations

We have seen that the set of CH functions is closed under compositions and taking

inverses. Given two CH functions in the set, it would be useful to know if and how

to get from one to the other using other CH functions in the set. The next Theorem

details how to do this.

Theorem 2.27. (Closure under composition) Given cumulative hazards H0 and

H1 with T0 ∼ H0 and T1 ∼ H1. There exists

1. a unique cumulative hazard
#»

H such that H1(t) =
#»

H ◦H0(t) which is given by

#»

H = H1 ◦H−1
0 ,

2. a unique (in distribution) time transformation #»τ such that T1
d
= #»τ (T0) is given

by

#»τ = H−1
1 ◦H0.

Proof. First we will prove 1. Suppose
#»

H = H1 ◦H−1
0 , then

#»

H(H0(t)) = H1(H−1
0 (H0(t))) = H1(t).

Now to prove uniqueness. Suppose there exist some other functional transformation,
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#»

L, such that H1 =
#»

L(H0). Then,

#»

L ◦H0 =
#»

H ◦H0 ⇒
#»

L ◦H0 ◦H−1
0 =

#»

H ◦H0 ◦H−1
0 ⇒ #»

L ≡ #»

H.

Thus
#»

H is unique.

Now we aim to prove 2. Let Y = #»τ (T0) = H−1
1 (H0(T0))

e−HY (t) = P (Y ≥ y) = P (H−1
1 (H0(T0)) ≥ y) = P (T0 ≥ H−1

0 (H1(y)))

= e−H0(H−1
0 (H1(y))) = e−H1(y).

Thus HY (y) = H1(y) for all y > 0. Hence T1
d
= #»τ (T0) = H−1

1 (H0(T0)). Let
#»

D be

another time transformation such that T1
d
=

#»

D(T0). Then

e−H1(t) = P (T1 > t) = P (
#»

D(T0) > t)) = e−H0(
#»
D−1(t)).

Therefore H1 = H0 ◦
#»

D−1 and thus
#»

D = H−1
1 ◦H0 =

#»

H. So uniqueness follows.

T0 T1
#»τ = H−1

1 ◦H0

H0 H1

∼ ∼

#»

H = H1 ◦H−1
0

Figure 2.7: Diagram to represent the transformation from baseline time and the corre-
sponding transformation for cumulative hazards.

Theorem 2.27 allows us to complete the diagram in figure 2.3 as seen in figure

2.7. It is important to note that both transformation #»τ (time transformation) and
#»

H (CH functional transformation) are cumulative hazards themselves since they are

compositions of CH functions.

According to Theorem 2.27 we can interpret CH functions as functional transfor-

mations of other CHs and also as time transformations. In the latter case, the local

shape of the CH determines the acceleration or deceleration of the baseline time.

Theorem 2.27 shows that the set of CH functions is closed under composition. It

also shows how to find the unique transformation between any pair of CHs.

Example 2.28. Following Theorem 2.27, let T1 ∼ HG and T0 ∼ Hα
W then

#»τ (T0) = H−1
1 ◦H0(T0) = Hll ◦Hα

W (T0) = log(1 + Tα0 ).
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From this example we will see that if we time transform a Weibull with a log-logistic

CH, the resulting time follows a standard Gompertz.

The next result gives one interpretation of the composition of CHs.

Corollary 2.29. (Composition as a time transformation) Let H0 be a CH and

H1 = H0 ◦H for some CH function H. Then the corresponding time transformation

is given by T1
d
= H−1(T0).

Proof. From Theorem 2.27 we have

#»τ = H−1
1 ◦H0 = H−1 ◦H−1

0 ◦H0 = H−1.

Example 2.30. If we let H in corollary 2.29 be H−1
0 , then

H1 = H0 ◦H−1
0 = H1

E

and thus T1 ∼ H1
E , the same result as proposition 2.9.

We know that the set of CH functions is closed under composition, but is this action

commutative? We see that it is not, as demonstrated by the following argument.

Example 2.31. If we let T0 ∼ H0 and let T1
d
=
(
H−1

0 ◦H−1 ◦H0

)
(T0), for some CH

function H. Then using Theorem 2.27, we have that T1 ∼ H ◦H0. Thus if we recall

the transformation in corollary 2.29, for T1 ∼ H0 ◦ H we need T1
d
= H−1(T0). Note

that different transformations are needed for T1 ∼ H ◦ H0 and T1 ∼ H0 ◦ H, and so

they do not have the same distributions, i.e. H0 ◦H 6= H ◦H0. Thus we see that the

operation of composition is not commutative.

The next corollary details which time transformation gives T0 ∼ H and T1 ∼ H−1.

Corollary 2.32. (Inverse as a time transformation) Let H0 be a CH and let

H1 = H−1
0 . Then the corresponding time transformation is given by T1

d
= H

(2)
0 (T0).

Proof. From Theorem 2.27 we have #»τ = H−1
1 ◦H0 = H0 ◦H0 = H

(2)
0 .

This corollary says that if the cumulative hazard of T1 is the inverse of that of T0,

then T1 has the same distribution as H(2)(T0). According to the examples after propo-

sition 2.17, the CH of T1 will be a local, or perhaps global, deceleration or acceleration

of T0.

Example 2.33. Suppose that T0 ∼ Hll and T1
d
= H

(2)
ll (T0) = log(1 + log(1 + T0)).

Then by corollary 2.32, we have that T1 ∼ H−1
ll = HG.

The next example uses a time transformation to define a parametric family of

distributions known in the literature.
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Example 2.34. The Birnbaum-Saunders distribution is commonly used in reliabil-

ity theory to model failure times [7] and is usually defined as a time transformation.

Suppose T0 is a standard log-normal. Then if T1
d
= #»τ (T0), where

#»τ (T0) = β

(
log(T

α/2
0 ) +

√
1 + log(T

α/2
0 )2

)2

(2.14)

then T1 follows a Birnbaum-Saunders distribution with shape α and scale β

The corresponding CH of T1 is given by H1(t) = − log
(

1− Φ
(

1
α

[√
t
β −

β√
t

]))
.

According to Theorem 2.27, equation (2.14) defines a cumulative hazard given by #»τ (t).

The next example refers to the most popular model in survival analysis, the Propor-

tional Hazards model, and how it can be constructed using inverses and composition

of CH functions. The detail of the model is not needed for this example, but is given

in section 4.2. This example simply demonstrates the time transformation used in this

model.

Example 2.35. (Proportional Hazards model) Consider a population with base-

line time T0 ∼ H0 and a particular individual time T1 ∼ H1. The Proportional Hazards

model [18] is such that

H1(t) = θH0(t),

i.e. the CH function of the individual is proportional to the baseline CH. Hence we

have H1 = Hθ
E ◦H0. So by Theorem 2.27 we obtain

T1
d
= #»τ (T0) = H−1

0 ◦H1/θ
E ◦H0(T0).

We can view the proportional hazards model as a linear transformation model as

in chapter 4, then

logH0(T1)
d
= − log(θ) + logH0(T0)

= − log(θ) + logE

where E ∼ H1
E a standard exponential distribution.

Another important model is the Proportional Odds model [5]. The time transfor-

mation used for this model is explained in the next example.

Example 2.36. (Proportional Odds model) Another useful model in the literature

is the Proportional Odds model, which will be discussed in more detail in chapter 4.

This model is defined by the transformation

H1(t) = #»τ (H0(t)) = Hll

(
θ−1H−1

ll (H0(t))
)

= Hll ◦H
1/θ
E ◦HG ◦H0(t).

This model can be written as HG(H1(t)) = θHG(H0(t)) which, according to example

2.13 means that the odds of the event occurring before t are proportional with a factor
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of θ. If we have that T1
d
= #»τ (T0), then we find that

#»τ (T0)
d
= H−1

0

(
Hll

(
θH−1

ll (H0(T0))
))
.

The model can be written as a linear model as follows:

log (HG (H0(T1)))
d
= − log(θ) + log (HG (H0(T0)))

= − log(θ) + log (HG(E)) ,

where E ∼ H1
E the standard exponential.

Theorem 2.27 is related to the concept of the G-Hazard potential of Singpurwalla

[64]. From Theorem 2.27 we find that if Y ··= H−1
Y (HT (T )), then Y has CH function

HY irrespective of T . In the context of the G-Hazard potential, this means failure

occurs when H−1
Y (HT (t)) exceeds a random threshold Y , where Y has CH function

HY .

2.3.4 Product of cumulative hazards

Before the next few results we need some notation to distinguish between repeated

compositions and powers of CH functions. Let H be a CH function and define

H(t)2 ··= H(t)H(t), (2.15)

to be the product of H with itself. We would have that the product of H with itself

n− 1 times is denoted H(t)n.

Proposition 2.37. Given two cumulative hazard functions H1(t) and H2(t), their

product H1(t)H2(t) is also a cumulative hazard.

Proof. It is clear that ifH1 andH2 are CH functions, thenH1(0)H2(0) = 0, H1(∞)H2(∞) =

∞ and H1(t)H2(t) > 0 for t > 0.

Note that

d

dt

(
H1(t)H2(t)

)
= h1(t)H2(t) +H1(t)h2(t),

which is the sum of continuous functions and is therefore continuous itself. The product

of CH functions is thus continuously differentiable.

As H1 and H2 are strictly increasing, then for

s < t, H1(s) < H1(t) and H2(s) < H2(t).

Thus

H1(s)H2(s) < H1(t)H2(s) < H1(t)H2(t),
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so H1(t)H2(t) is also strictly increasing and thus a CH function.

This proposition might give a means to producing some new or interesting CH

functions. Some possible examples are now explored.

Example 2.38. Consider two Weibull CH functions, Hα
W (t) = tα and Hβ

W (t) = tβ.

Their product is Hα+β
W (t) = tα+β, another Weibull CH. Hence, this family is closed

under the product.

So far we have seen that the Weibull family is closed under composition, inverse

and product of CH functions.

The next example demonstrates how the product of CH functions can lead to the

generation of new distributions.

Example 2.39. Now consider H1
E(t) = t, a standard exponential, and Hll(t) = log(1+

t), a standard log-logistic, then their product t log(1 + t) is also a CH function. This

CH function is one that we have not seen before and generates a new distribution.

Time Transformation Suppose that T0 ∼ H0 and T1 ∼ HH0. Theorem 2.27 says

that there is some time transformation linking the product with the baseline CH func-

tion. If we have that T1
d
= #»τ (T0), by Theorem 2.27 #»τ (t)

d
= (HH0)−1 ◦H0(t). Hence we

see that finding the corresponding time transformation may not be analytically tractable.

Exploring the effect on the survival functions will give a different interpretation.

Proposition 2.40. Let S1(t) be the survival function corresponding to the CH func-

tion H1(t). The survival function corresponding to the product of two CH function,

H1(t)H2(t) is S(t) = S1(t)H2(t).

Proof.

S(t) = e−H1(t)H2(t) =
(
e−H1(t)

)H2(t)
= S1(t)H2(t)

Now we consider multiplying a CH function by some function other than another

CH function.

Corollary 2.41. Multiplying a CH function by a positive, continuously differentiable

and non-decreasing function, results in a CH function.

Proof. Let H be a CH function, and let g be a positive non-decreasing function. It is

clear that H(0)g(0) = 0 ·g(0) = 0 and H(∞)g(∞) =∞·g(∞) =∞. It is also clear that

the product of H and g will be positive. Since g is non-decreasing, we have that the

product H(t)g(t) will be increasing as H is. The product of continuously differentiable

functions is continuously differentiable. Thus the product satisfies all the conditions to

be a CH function.
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Example 2.42. For example, suppose H(t) is a CH function, then H(t)et will be a

new CH function.

We now relax the non-decreasing condition in g in the previous corollary.

Proposition 2.43. Let H be a CH function and let g : (0,∞)→ (0,∞) be a continu-

ously differentiable function such that

d

dt
log g(t) > − d

dt
logH(t),

g(0) <∞ and limt→∞ g(t) 6= 0, then H(t)g(t) is a CH function.

Proof. As g is well defined at 0 and ∞ then H(t)g(t) has the correct limits. The

product of continuously differentiable functions is continuously differentiable. Now to

prove that H(t)g(t) is increasing. If H(t)g(t) is increasing we require that

d

dt

(
H(t)g(t)

)
= h(t)g(t) +H(t)

d

dt
g(t) > 0.

This implies that

g′(t)

g(t)
> − h(t)

H(t)

which is equivalent to

d

dt
log g(t) > − d

dt
logH(t)

which is true by assumption. Thus we have H(t)g(t) is increasing.

Note that we can find similar constraints for the function H(t)
g(t) , obviously requiring

g is positive at zero and well defined at infinity.

Proposition 2.43 will be useful when trying to generalise the Proportional Hazards

model to include time varying covariates. This proposition gives some conditions on

the covariates so that this time varying model is valid. This idea will be explored later

in section 2.3.10.

Corollary 2.44. If H(t) is a cumulative hazard and α is a positive constant, then

H(t)α is a cumulative hazard.

Proof. This result follows directly from proposition 2.37 for integer valued α. For α > 0:

H(0)α = 0α = 0,

H(∞)α =∞α =∞.
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Now to show H(t)α is increasing,

d

dt
(H(t)α) = αh(t)H(t)α−1 > 0, ∀α > 0.

We have that H(t)α = Hα
W ◦H(t), and thus is the composition of continuously differ-

entiable functions. It is therefore continuously differentiable itself.

Example 2.45. The most notable example of corollary 2.44 is the CH of the Weibull

distribution. If we take H1
E(t) = t, the identity function and CH function of the

exponential with rate 1, then raising it to the power of α we get a Weibull CH, i.e.

Hα
W (t) = (H1

E(t))α.

Corollary 2.44 gives rise to some interesting examples of how to manipulate CH

functions. Raising a CH to some power will alter its properties as seen in the next

example.

Example 2.46. Suppose H(t) = (log(1 + t))α. To see the effect of powering H(t),

see Figure 2.8. In this plot we see that if α > 1 then as it increases, the function

becomes more convex. However, if α < 1 then as it decreases, the function becomes

more concave.

2.3.5 Addition of cumulative hazards

This section will discuss the addition of cumulative hazards and the properties of these

types of transformation.

Proposition 2.47. The set CH is a convex cone, i.e., for H1, H2 ∈ CH, a, b > 0,

aH1 + bH2 ∈ CH.

Proof. We see that for a, b > 0, aH1(0) + bH2(0) = 0 since Hi(0) = 0 for i = 1, 2.

As we also have that limt→∞Hi(t) = ∞, limt→∞ aH1(t) + bH2(t) = ∞. Multiplying

an increasing function by a positive constant, will result in an increasing function,

thus aH1(t) and bH2(t) are both increasing. Since the sum of increasing functions will

be increasing, we thus have aH1(t) + bH2(t) is increasing. The sum of continuously

differentiable functions is continuously differentiable.

Let’s see some examples of this proposition.

Example 2.48. Given CH functions H1(t) = Hα
W and H2(t) = Hβ

W , then by proposi-

tion 2.47 H(t) = atα + btβ is also a cumulative hazard. We see that the Weibull family

is not closed under addition. This family is called the Poly-Weibull distribution as seen

in the work of Berger and Sun [6].

Example 2.49. Let H1(t) = Hll(t) and H2(t) = HG(t). Then by proposition 2.47

H(t) = a log(1 + t) + b
(
et − 1

)
is a CH function. We note that in contrast to the
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Figure 2.8: The cumulative hazard H(t) = log(1+t) raised to the powers α = (0.5, 1, 2)
to demonstrate the effect of powering a CH function.

previous example, we have the addition of two drastically different, in fact inverse, CH

functions and we still preserve the CH function properties.

The following corollary follows directly from Proposition 2.47.

Corollary 2.50. The sum of two cumulative hazards is a cumulative hazard.

Proof. To prove this corollary, let a = b = 1 in proposition 2.47.

Example 2.51. (Additive hazards model) The additive hazards model as seen in

the work of Breslow and Day [8] is characterised by

H1(t) = H0(t) +Hθ
E(t)

so that the difference in hazards is constant or

H1(t)−H0(t)

t
= θ.

This model is sometimes called the proportional excess hazard model, as seen in the

work of Sasieni [59].
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The next example explores the form of the time transformation for the sum of CH

functions.

Time Transformation If T0 ∼ H0 and T1 ∼ H + H0, then if T1
d
= #»τ (T0), then by

Theorem 2.27, #»τ (T )
d
= (H +H0)−1◦H0(T ), which would have to computed numerically

in general.

The following proposition gives a much simpler probabilistic interpretation of the

sum of cumulative hazards.

Proposition 2.52. Given two independent positive random variables T0 and T1 with

corresponding CH functions H0 and H1, the survival function of their minimum Y =

min(T0, T1) is

SY (y) = e−(H0(y)+H1(y))

and we have that Y ∼ H0 +H1.

Proof.

SY (y) = P (Y ≥ y) = P (min(T0, T1) ≥ y)

= P (T0 ≥ y, T1 ≥ y) = P (T0 ≥ y)P (T1 ≥ y)

= e−H1(y)e−H2(y) = e−(H1(y)+H2(y)).

Since the CH function of Y is H1(y) +H2(y), then Y ∼ H0 +H1.

This proposition allows for simulating from the distribution whose CH is the sum

of two CHs.

As mentioned earlier, the standard model for right censoring is the so called non-

informative censoring where T is a potentially observable time to event, and C is an

independent unobservable censoring time, so that the actual observed time is Y =

min(T,C). We will see this model again in chapter 6 viewed from a competing risks

context.

Corollary 2.53. Let H be a CH function. Let g : (0,∞) → (0,∞) be a continuously

differentiable function such that g(0) = 0 and d
dtg(t) > − d

dtH(t). Then H(t) + g(t) is

also a CH function.

Proof. Since H(t), g(t) > 0 for t > 0 their sum will be too. And since g(0) = 0, H(0) +

g(0) = 0. Since g is a positive function, then limt→∞H(t) + g(t) =∞+ limt→∞ g(t) =

∞. For H(t) + g(t) to be strictly increasing, we require d
dt(H(t) + g(t)) > 0. Since

d
dtg(t) > − d

dtH(t), this condition is satisfied. Hence H + g satisfies all the condition to

be a CH function.

Corollary 2.53 gives us a way to expand the set of CH functions easily.
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Example 2.54. For example, consider H(t) = t and g(t) = 1− e−t. We can see that

1 + t − e−t is a CH function. Note in this example, g(t) is actually the CDF of the

exponential distribution with rate parameter 1.

Example 2.55. The Makeham [43] generalisation of the Gompertz distribution adds

a constant to the Gompertz hazard function. Thus the corresponding CH is

H(t) = θt+ et − 1 = Hθ
E(t) +HG(t).

Example 2.56. In Marshall and Olkin [44] a parallel system of exponentially dis-

tributed random variables have CH function

H(t) = − log
(
e−λ1t + e−λ2t + e−(λ1+λ2)t

)
= λ1t+ log

(
eλ2t

eλ2t + eλ1t + 1

)
,

which is of the form H(t) + g(t).

As well as expanding the set of CH functions, corollary 2.53 gives a method to

incorporate time varying covariates into a model through the function g(t). We will

explore this in section 2.3.10.

We will now conclude this section by discussing the differences of cumulative haz-

ards. It is clear that if one cumulative hazard is always strictly larger than another,

then if their difference is increasing, we have that their difference is a CH function.

Example 2.57. It is well known that Hll(t) = log(1+t) < H1
E(t) = t < HG(t) = et−1.

Thus, after investigation of the derivatives of the following, we see that

H1(t) = HG(t)−H1
E(t),

H2(t) = HG(t)−Hll(t),

H3(t) = H1
E(t)−Hll(t)

are all CH functions.

2.3.6 Other transformations

Proposition 2.58. If H1(t) is a CH function, then so is H(t) = 1
H1( 1

t
)
.

Proof. If t = 0 then H1(1
t ) = H1(∞) = ∞, so H(0) = 1

∞ = 0. If t = ∞, H1(1
t ) =

H1(0) = 0, so H(∞) = 1
0 = ∞. We will clearly have that H(t) is a positive function

since H1(t) is. All that remains is to show H(t) is strictly increasing. As H1(t) is

strictly increasing, then s < t ⇐⇒ H1(s) < H1(t). Thus

s < t ⇐⇒ 1

t
<

1

s
⇐⇒ H1

(
1

t

)
< H1

(
1

s

)
⇐⇒ 1

H1(1
s )
<

1

H1(1
t )
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So H(t) is strictly increasing and is therefore a CH function.

We will now see a couple of examples of CH functions generated using the trans-

formation seen in Proposition 2.58.

Example 2.59. For our first example, consider the Weibull CH H1(t) = Hα
W (t) = tα.

Then we see that H(t) = 1
(1/t)α = tα = Hα

W .

Example 2.60. For our second example, consider H1(t) = Hll(t) = log(1 + t). Then

H(t) = 1
log(1+ 1

t
)
. In order to see the effect of this transformation, see Figure 2.9.

Example 2.61. Now let H1(t) = HG(t), then H(t) = 1/(e1/t − 1). We can see the

effect of this transformation in figure 2.10.
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Figure 2.9: The cumulative hazard H1(t) = log(1 + t) and the cumulative hazard
H(t) = 1

log(1+ 1
t
)
.

Example 2.62. Consider H1(t) = H2
r (t) = t2

(1+t)2−t2 then H(t) = (1 + t)2 − 1.

2.3.7 Maximum of cumulative hazards

In this section we will see an example of some transformation of CH functions that

takes us out of our set CH.
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Figure 2.10: The cumulative hazard H1(t) = HG(t) and the cumulative hazard H(t) =
1

e1/t−1
.

Proposition 2.63. Given cumulative hazards H1(t) and H2(t), then

H(t) = max{H1(t), H2(t)}

is a function which satisfies properties 2.1, 2.2 and 2.4.

Proof. First of all

H(0) = max{H1(0), H2(0)}

= max{0, 0} = 0

and

lim
t→∞

H(t) = lim
t→∞

max{H1(t), H2(t)}

=∞

since limt→∞Hi(t) = ∞ for i = 1, 2. And finally, we are required to prove H(t) is
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increasing. Suppose t > s,

H(t) = max{H1(t), H2(t)}

> max{H1(s), H2(s)} = H(s)

since H1 and H2 are themselves increasing.

Note here that the cumulative hazard generated by the above proposition will not

necessarily be continuously differentiable, i.e. not in C∞. To demonstrate this, see

figure 2.11 where the cumulative hazard functions t2 and log(1 + t) are plotted in grey.

The maximum of these functions is plotted in black, we see that this curve has a non-

differentiable point. This CH function thus violates assumption 2.3 and would yield a

density function similar to that seen in figure 2.2. We will not consider these types of

CHs further in this thesis.

log(1 + t)

t2

t

H(t)

Figure 2.11: Plot of H(t) = t2 and H(t) = log(1 + t) with max{t2, log(1 + t)} shown in
black.

2.3.8 Integration of cumulative hazards

This section gives details on the properties of integrated CH functions. We will see that

CH is closed under integration. The concept of N-functions as seen in Krasnoselaskii

and Rutickii [58] will be relevant to this section. The conditions these N-functions must

satisfy, continuity, takes the value of zero at zero, is increasing and is even, include those

conditions for a function to be a CH function. Thus we define a slightly smaller class

of functions, which we call N-CH functions.

Definition 2.64. Suppose H(t) is a CH function, then an N-CH function is defined

as

H [1](t) ··=
∫ t

0
H(s)ds.

From definition 2.64 we will show that N-CH functions, H [1](t), are themselves

cumulative hazards.
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Corollary 2.65. An N-CH function is a CH function.

Proof. Let H be a CH function and let H [1] be its corresponding N-CH function. Since

H [1] is the integral of a positive increasing function, it is itself increasing and positive.

Now we see what H [1](0) is,

H [1](0) =

∫ 0

0
H(u)du = 0.

Since H is increasing and always positive, its integral over [0,∞] will be ∞. H [1](t) is

clearly differentiable and since H is a CH, the derivative is continuous. Thus an N-CH

function is continuously differentiable.

To the best of our knowledge, integrated cumulative hazards have not been used

in statistical modelling and so may be unfamiliar. We will first demonstrate what an

N-CH function is with a few examples and then follow with the properties of these

types of functions.

Example 2.66. Let H(t) = tα be a Weibull CH function, we will see what its corre-

sponding N-CH function is.

[
Hα
W

][1]
(t) =

∫ t

0
H(s)ds =

∫ t

0
sαds =

tα+1

α+ 1
=
Hα+1
W (t)

α+ 1
=
tHα

W (t)

α+ 1
.

This can be seen either as a scaled Weibull or as a product of a Weibull and an

exponential.

From this example we can see that the Weibull family with an added scale parameter

is closed under this operation.

Example 2.67. Let HG be a standard Gompertz CH function, then the corresponding

N-CH function is

H
[1]
G (t) =

∫ t

0

(
es − 1

)
ds = et − t− 1 = HG(t)− t.

Example 2.68. The corresponding N-CH function for the standard log-logistic is

H
[1]
ll (t) =

∫ t

0
log(1 + s)ds = (1 + t) log(1 + t)− t

Time Transformation Let T0 ∼ H0 and T1 ∼ H1 = H [1], for some H, then the time

transformation given by Theorem 2.27 is #»τ (T0)
d
=
(
H−[1] ◦H0

)
(T0), where H−[1](t) ··=(

H [1]
)−1

(t), the inverse of the N-CH function H [1]. This time transformation will need

to be computed numerically in general.

For the next example of an N-CH function, we need some notation for iteratively
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integrating a CH function. We can define, for n ≥ 1

H [n](t) ··=
∫ t

0
H [n−1](s) ds,

where H [0](t) = H(t).

Example 2.69. Now let’s consider what the iterated N-CH function would be for

n ≥ 2 for the N-CH function in example 2.67. We would see that

H
[n]
G = et − 1−

n∑
i=1

ti

i!
= HG(t)−

n∑
i=1

ti

i!
→ 0 as n→∞.

We can see the effect of iteratively integrating these functions in the plot in Figure

2.12. We see that with each iteration, the N-CH function grows more slowly. In this

plot we see that as n→∞, H
[n]
G (t)→ 0.
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Figure 2.12: The N-CH functions H [1](t) and H [2](t) where H(t) = et − 1 as seen in
example 2.67.

We now discuss some properties of N-CH functions.

Corollary 2.70. H(t) is an N-CH function if, and only if, d
dtH(t) is a CH function.
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We can use this corollary to verify if a given function is an N-CH function. All we

need to do is differentiate it.

Example 2.71. To verify that the function exp(t2)− 1 is an N-CH we differentiate it

and check the derivative is a CH function. Its derivative is 2t exp(t2), which we can see

is the product of a CH, 2t, with a positive non-decreasing function, exp(t2), and thus

by Corollary 2.41 is a CH function.

Now we note that N-CH functions are closed under sums, products and composi-

tions.

Proposition 2.72. Given two N-CH functions H [1] and H̃ [1] then

1. H [1](t) + H̃ [1](t), the sum of N-CH functions,

2. H [1](t)H̃ [1](t), the product of N-CH functions,

3. H [1](H̃ [1](t)), the composition of N-CH functions,

are N-CH functions.

Proof. For the first N-CH preserving operation, the sum, is immediate by linearity of

the integral.

Consider the derivative of the product of H [1](t) with H̃ [1](t)

d

dt

(
H [1](t)H̃ [1](t)

)
= H(t)H̃ [1](t) +H [1](t)H̃(t).

This is a CH function since the product and sum of CH functions are CH functions.

Hence the product is an N-CH.

Finally consider the derivative of the composition.

d

dt
H [1](H̃ [1](t)) = H̃(t)H(H̃ [1](t))

which is a CH function. Thus the composition is an N-CH function.

Now we observe some of the convexity properties of N-CH functions.

Definition 2.73. A twice differentiable CH function H is convex at a point t if and

only if d2H
dt2

(t) ≥ 0.

Since d2

dt2
H [1](t) = d

dtH(t) = h(t) > 0 then we have that N-CH functions are convex

everywhere. They have increasing hazards since H(t) is the hazard corresponding to

H [1](t).

Example 2.74. Let α ∈ [0, 1], then we have

H [1](αt) =

∫ αt

0
H(s)ds =

∫ t

0
H(αu)αdu ≤ α

∫ t

0
H(u)du = αH [1](t)
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since H is increasing. So we have that

H [1](αt) ≤ αH [1](t).

We can thus consider the difference of these functions, and we see that it is a CH

function, i.e.

H(t) = αH [1](t)−H [1](αt)

is a CH function for all α ∈ [0, 1].

We can now define the complement of an N-CH function. This is the N-CH function

generated by the inverse of a CH function. Since we know that the inverse is a CH, we

know that its integral will be an N-CH function. Thus the purpose of this definition is

to define the notation for the complement, and we will learn later why it is termed a

complement.

Definition 2.75. Let H [1](t) be an N-CH function. Its corresponding complementary

N-CH is

H [−1](t) ··=
∫ t

0
H−1(s)ds.

An equivalent definition is given in the context of convex conjugate functions as in

the work of Rockafellar [55]. Here we have that

H [−1](t) = sup
s≥0

{
ts−H [1](s)

}
.

Thus if the inverse is not analytically tractable, we have another way to compute the

complementary N-CH function.

To see this equivalence, first note that

H [−1](t) =

∫ t

0
H−1(s)ds =

∫ H−1(t)

0
vh(v)dv

= tH−1(t)−H [1](H−1(t))

using the change of variable s = H(v) followed by integration by parts. Then note that

the supremum in the alternative definition is attained when

0 =
d

ds

(
ts−H [1](s)

)
= t−H(s)

→ t = H(s) → s = H−1(t).

Therefore, the supremum is H [−1](t) = tH−1(t)−H [1](H−1(t)) which is equivalent to

the above.

We will demonstrate some basic properties of the complement. We will first consider

what the complement of the complement will be.
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Proposition 2.76. Let H [1] be an N-CH function with complement H [−1], then H [−−1] =

H [1], i.e. the complement of the complement of H [−1] is H [1].

Proof.

H [−−1](t) =

∫ t

0
(H−1)−1(s)ds =

∫ t

0
H(s)ds = H [1](t).

Corollary 2.77. If there exist two CH functions H [1](t) and H̃ [1](t) such that H [1](t) ≤
H̃ [1](t) for all t ≥ 0, then

H [−1](y) ≥ H̃ [−1](y)

for all y ≥ 0.

Proof. The proof is immediate from the definition of the complementary N-CH function

as a convex conjugate.

Example 2.78. Now let’s consider the complementary function to the N-CH function

generated by the Gompertz CH, seen in example 2.69. HereH−1
G (t) = Hll(t) = log(1+t)

and

H
[−1]
G (t) =

∫ t

0
log(1 + s)ds = (1 + t) log(1 + t)− t = (1 + t)H−1

G (t)− t.

In example 2.67, the CH function is integrated iteratively to find H [2](t) and H [3](t).

Thus we will iteratively integrate H−1
G (t) to compare.

H
[−2]
G (t) =

∫ t

0

(
(1 + s) log(1 + s)− s

)
ds =

1

2
(1 + t)2 log(1 + t)− 3

4
t2 − 1

2
t

H
[−3]
G (t) =

∫ t

0
H [−2](s)ds =

1

6
(1 + t)3 log(1 + t)− 11

36
t3 − 5

12
t2 − 1

6
t.

Here we find that H
[−n]
G (t) will have the term 1

n!(1 + t)n log(1 + t) in it, and the other

terms are actually the first n terms of the series expansion of 1
n!(1 + t)n log(1 + t).

Hence, as in the previous example, H
[−n]
G (t) → 0 as n → ∞. To see an illustration of

this, see Figure 2.13.

The next theorem will show that N-CH functions and their complements satisfy

Young’s inequality for real valued, continuous, strictly increasing functions [28]

ab ≤
∫ a

0
H(x)dx+

∫ b

0
H−1(x)dx

where H(0) = 0.
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Figure 2.13: The N-CH functions H [1](t) and H [2](t) where H(t) = log(1 + t) as seen
in example 2.78.

Theorem 2.79. Let H [1] be an N-CH function with complement H [−1], then for any

t, y ≥ 0

ty ≤ H [1](t) +H [−1](y). (2.16)

This reduces to equality when y = H(t), i.e.,

tH(t) = H [1](t) +H [−1](H(t)). (2.17)

Proof. The inequality (2.16) follows directly from the definition of a complementary

N-CH function as a convex conjugate.

H [−1](y) = sup
t≥0

{
ty −H [1](t)

}
≥ ty −H [1](t).

The supremum is attained when

d

dt

(
ty −H [1](t)

)
= 0,

i.e. when y = H(t). Thus the equation in (2.17) follows.
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Figure 2.14 is a graphical representation of this inequality. The grey region repre-

sents H [1](t) and the white region is H [−1](y), the complement of the grey region. We

see that the sum of these two regions is larger than the rectangle ty, thus demonstrating

the inequality in equation (2.16). We also see that if y = d
dtH

[1](t) = H(t), then the

sum of the two regions would be the rectangle ty. We note then in particular, Young’s

inequality implies that tH(t) ≥ H [1](t), ∀ t > 0. This however, is also straightforward

from first principles.

t

y

H [−1](y)

H(t)

H [1](t)

Figure 2.14: Graphical representation of Young’s inequality. H [1](t) is the grey region,
H [−1](y) is the white region in the box region and ty is the lined rectangle.

The next few results deal with integrating functions that are not CH functions. We

will see which functions will integrate to be CH functions and see some examples.

Proposition 2.80. Let g : (0,∞) → (0,∞) be a strictly increasing, continuous func-

tion. Then

H(t) =

∫ t

0
g(s)ds

is a CH function.

Proof. The proof is much the same as the proof for corollary 2.65. The difference

is g may be bounded above, by M > 0 say. Thus as t → ∞, g(t) → M . Hence
d
dtH(t) = g(t)→ M . Then there must exist some y > 0 such that g(t) > M

2 for t ≥ y.

Then by the Mean-Value Theorem, there must exist some c ∈ (y, t) such that

H(t)−H(y) = g(c)(t− y)

≥ M

2
(t− y).
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Then as t→∞, we have that H(t)→∞ since M and y are fixed. Note that d
dtH(t) =

g(t) is continuous, thus H is continuously differentiable.

Example 2.81. Let g(t) = θ for all t > 0, be a constant function. Then we have that

H(t) =

∫ t

0
g(s)ds = θt = Hθ

E(t)

the exponential with scale θ.

We will see examples of functions which are not constant.

Example 2.82. To see an application of the result in proposition 2.80, let g(t) = F̃ (t),

a CDF of a continuous positive random variable. Then

H(t) =

∫ t

0
F̃ (s)ds

is a strictly convex CH function. Bassan et al. [4] investigate integrating CDF functions.

Suppose F̃ is the CDF of a simple exponential distribution, i.e. F̃ (t) = 1− e−t, then

H(t) = t+ e−t − 1 = t− (1− e−t),

which is the difference between a CH function and an increasing function. This remains

a CH function as the increasing function 1− e−t grows slower than the CH function t.

Now suppose F̃ is the CDF of a simple log-logistic function, i.e. F̃ (t) = t
1+t , then

H(t) = t− log(1 + t),

which is the difference of two CH functions.

We have seen that integrating an increasing function yields a CH function. The

next corollary will clarify the properties needed for the integral of a decreasing function

to be a CH function.

Corollary 2.83. Let g : (0,∞)→ (0,∞) be a strictly decreasing, continuous function.

Suppose also that g is bounded below by M > 0. Then H(t) =
∫ t

0 g(s)ds is a CH

function.

Proof. The proof is much the same as the proof for corollary 2.65 and proposition 2.80.

The difference is g is bounded below by M ∈ (0,∞). Thus as t → ∞, g(t) → M . We

then have that

0 < M ≤ g(t)

for all t. Thus, since
∫∞

0 Mds = ∞, we must have that
∫∞

0 g(s)ds = ∞ by the

comparison test.
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Example 2.84. Consider the function g(t) = 1+S̃(t), where S̃(t) is a survival function.

This function is bounded below by 1 > 0. Thus, for S̃(t) = e−t,∫ t

0
1 + e−sds = 1− e−t + t

which is the CH function found in example 2.54.

The next proposition gives details on the types of functions that can be integrated

to yield a CH function.

Proposition 2.85. Let g : (0,∞)→ (0,∞) be a continuous function that satisfies

1. g(0) <∞,

2. g(t) = Ω
(

1
t

)
, i.e. ∃ k > 0, ∃ t0 sufficiently large so that ∀ t > t0 g(t) ≥ k

t .

Then H(t) =
∫ t

0 g(s)ds is a CH function.

Proof. Since H is the integral of a positive function, it is itself positive. Since g(t) >

0 for all t > 0 we must also have that H is strictly increasing. It is continuously

differentiable since g is continuous. It just remains to show that H(∞) =∞.

Since g(t) = Ω
(

1
t

)
then there exists k > 0 and t0 such that g(t) > k/t for all t > t0.

Thus

H(t) ≥
∫ ∞
t0

g(t)dt ≥
∫ ∞
t0

k

t
dt =∞.

Thus H is a CH.

Note that this proposition does not require that g is monotone. This proposition

thus includes function g that are increasing and decreasing.

Note here that H is defined as the integral of some function, then that function, by

the Fundamental Theorem of Calculus, must necessarily be the corresponding hazard

function. Thus proposition 2.85 gives necessary conditions for a function to be a hazard

function.

Example 2.86. Consider g(t) = 1
1+t . Here we have g(0) = 1 < ∞ and for t > 1

4 ,

g(t) > 1
5t . We have that

H(t) =

∫ t

0
g(s)ds = log(1 + t) = Hll(t).

Example 2.87. Let h0(t) be a hazard function and let g(t) = h0(t)+θ for some θ > 0.

Then ∫ t

0
g(s)ds = H0(t) + θt

which is the additive hazards model of example 2.51
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In general, let ψ be a positive function such that
∫ t

0 ψ(s)ds is a CH function. We

will use the following notation

Hψ(t) ··=
∫ t

0
ψ(s)ds.

We note the notation Hψ(t) is motivated by the fact that we will use ψ not as a hazard

function, but it will turn out that we need ψ to behave like one. More specifically,

we will use ψ as a linking function to introduce time varying covariates in chapter 4.

We also note that we can write HH(t) = H [1](t) and that if ψ(t) = θ ∀ t > 0 then

Hψ(t) = Hθ
E(t).

Example 2.88. Let ψ be a hazard function and let T0 ∼ H0. Consider the following

“inverse” transformation of time T1 ∼ Hψ(T0), then

ST1(t) = P (T1 > t) = P
(
T0 > Hψ(t)

)
= S0

(
Hψ(t)

)
.

This implies that H1(t) =
(
H0 ◦Hψ

)
(t). In the particular case where ψ is constant

and equal to θ, we obtain that T1 = 1
θT0 and H1(t) = H0(θt), the accelerated failure

time model of example 2.14. In this sense, the above model generalises the AFT model,

the details are deferred until section 2.3.10.

Example 2.89. Let ψ be a hazard function and let H0 be the baseline CH. We define

H1(t) =
(
Hψ ◦ H0

)
(t) and the corresponding time transformation is given by T1

d
=

H−1
0 ◦ (Hψ)−1 ◦H0(T0). If ψ(t) = θ for all t > 0 then H1(t) = θH0(t), the proportional

hazards model. In this sense, the above model generalises the proportional hazards

model, details of which will be given in section 2.3.10.

2.3.9 Relationship with the Increasing Hazard Rate Average

In reliability, the concept of the Increasing, or Decreasing, Hazard Rate Average has

been used [44]. In this section we will explore how this concept relates to our N-CH

functions.

Definition 2.90. A continuous distribution of T with CH function HT (t), is Increasing

Hazard Rate Average (IHRA) if
HT (t)

t

is increasing.

Note that

HT (t)

t
=

1

t

∫ t

0
hT (u)du

and thus 1
tHT (t) is the average of hT over (0, t), i.e. the hazard rate average. A
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result from Marshall and Olkin (2007) is that hT (t) ≥ 1
tHT (t). This relates to Young’s

inequality in Theorem 2.79.

We will now see the relationships between N-CH functions and distributions which

are IHRA.

Proposition 2.91. Let H [1](t) be an N-CH function. The distribution with CH func-

tion H [1](t) is IHRA.

Proof. The derivative

d

dt

H [1](t)

t
=
tH(t)−H [1](t)

t2

=
H [−1](H(t))

t2
,

by Young’s inequality equation (2.16), using H(t) ≥ 1
tH

[1](t). Alternatively, this can

be seen directly from the fact that
(

1
tH(t)

)′ ≥ 0. This is clearly positive since H [−1] is

a CH function. Therefore H[1](t)
t is increasing.

Proposition 2.92. The distribution with CH function H [−1](t) is IHRA.

Proof. Similar to the above proposition.

Proposition 2.93. Let H [1] be an N-CH function, then the following two properties

hold:

1. lim
t→0

H [1](t)

t
= 0 , so that H [1](t) goes to zero at a faster rate than t

2. lim
t→∞

H [1](t)

t
=∞ , so that H [1](t) goes to infinity at a faster rate than t

Proof. Use of L’Hospital’s rule shows that

lim
t→0

H [1](t)

t
=

limt→0
d
dtH

[1](t)

limt→0
d
dt t

=
limt→0H(t)

1
= 0 ,

so that the first property is true and a similar argument shows the second one.

Corollary 2.94.
H [1](t)

t

is a CH function.

Proof. By Proposition 2.93 we see that limt→0
H[1](t)

t = 0 and limt→∞
H[1](t)

t = ∞.

From Proposition 2.91 we have that H[1](t)
t is increasing. Thus it is a CH function.

The above corollary essentially says that H [1](t) tends to 0 faster than t does. To

see that H [1](t) goes to 0 faster than t, recall H [1](t) in Example 2.67 and refer to the

plot of this function in Figure 2.12. Note that around 0, H [1](t) is much closer to the

x-axis than t.
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Example 2.95. Consider the N-CH function generated by the Weibull CH, i.e.

H [1](t|α) =
1

α+ 1
tα+1

for α > 0. We see that the CH function H[1](t|α)
t = 1

α+1 t
α. Thus we see that the Weibull

family is closed under this type of operation.

Similar properties hold for iterated N-CH functions (n ≥ 2).

Proposition 2.96. H [n](t) has the following properties:

1. lim
t→0

H [n](t)

tn
= 0 ,

2. lim
t→∞

H [n](t)

tn
=∞ .

Proof. Consider the first property,

lim
t→0

H [n](t)

tn
= lim

t→0

H [n−1](t)

ntn−1
by L’Hospital’s rule,

= ...

= lim
t→0

H(t)

n!
, again by L’Hospital’s rule,

= 0.

The second property is similar.

We can generalise this proposition to include general CH functions instead of just
H[n](t)
tn .

Corollary 2.97. Let H
[1]
0 (t) be an N-CH and H1(t) and H2(t) be CH functions. Fur-

thermore if h2(t) ∈ (0,∞)∀t and if h1(t) <∞ then

1. lim
t→0

H
[1]
0 (H1(t))

H2(t)
= 0

2. lim
t→∞

H
[1]
0 (H1(t))

H2(t)
=∞

Proof. 1.

lim
t→0

H
[1]
0 (H1(t))

H2(t)
= lim

t→0

h1(t)H0(H1(t))

h2(t)
by L’Hospital’s rule

= 0 if h2(t) ∈ (0,∞) and h1(t) <∞∀t.

2. Similar to 1

47



Corollary 2.98. The function

H(t) =
H

[1]
0 (H1(t))

H2(t)
, (2.18)

where H
[1]
0 , H1, and H2 have the same properties as in corollary 2.97, is a CH function

if d
dt logH1(t) > d

dt logH2(t).

Proof. We have seen that equation (2.18) satisfiesH(0) = 0 andH(∞) =∞ in corollary

2.97. We just need to show that H(t) is increasing, we will show that the derivative is

positive. We want

d

dt

(
H

[1]
0 (H1(t))

H2(t)

)
=
H2(t)h1(t)H0(H1(t))− h2(t)H

[1]
0 (H1(t))

H2(t)2
> 0.

So we would require that

h1(t)H0(H1(t))

H2(t)
>
h2(t)H

[1]
0 (H1(t))

H2(t)2
. (2.19)

It can be shown that

H
[−1]
0 (H0(H1(t))) = H1(t)H0(H1(t))−H [1]

0 (H1(t))

which is positive since it is a CH function. Thus after some rearranging we find that

h1(t)H0(H1(t))

H2(t)
>
H

[1]
0 (H1(t))

H2(t)

h1(t)

H1(t)
.

Since d
dt logH1(t) > d

dt logH2(t), we have that

H
[1]
0 (H1(t))

H2(t)

h1(t)

H1(t)
>
H

[1]
0 (H1(t))

H2(t)

h2(t)

H2(t)
,

and thus equation (2.19) holds. Thus H(t) is increasing and is thus a CH function.

This corollary could be used to create rational models with time varying covariates.

2.3.10 Using cumulative hazard transformations to generalise models

In the final section of this chapter we discuss how to use the properties discussed in

earlier sections to extend models to include time varying covariates.

This section will build on the properties we have explored throughout this chapter

in order to generalise popular models in time-to-event analysis to incorporate time

varying covariates. These time varying covariates will be denoted by x(t).

In this section we focus on the so called external time varying covariate defined as

follows.
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Definition 2.99. Let x(t) be a time varying covariate and let X(t) = {x(s), 0 ≤ s < t}
denote the covariate history up to time t. Then x(s) is external if

P
(
s < T ≤ s+ ε|T > s, X(s)

)
= P

(
s < T ≤ s+ ε|T > s, X(t)

)
for all 0 < s ≤ t and ε→ 0.

The idea is that x(s) is associated with the rate of the occurrence of the event of

interest over time, but its future up to time t > s is not affected by the occurrence

of the event at time s. We note that a time varying covariate can be deterministic

in the sense that its path is determined at the beginning of the study. Examples of

such a covariate would be the time of day, or the predetermined stress level programme

in a reliability study, or the predetermined dosage level programme in a drug study.

Another type of external time varying covariate could be a stochastic process that is

external to the individuals of the time-to-event study, whose event times are affected by

x(t) but the occurrence of an event does not alter the future of x(t). A simple example

of this kind of covariate would be the pollution level in a study about asthma.

Given our smoothness restriction we will only consider here the case where the

realisations of x(t) are smooth functions of time. In the cases where X(t) is a stochastic

process, even assuming that the corresponding realisations are smooth, in practice we

only observe the covariate at certain times. To account for this, it has been suggested

in the literature, for example in Tseng et al. [69], that x(t), the time varying covariate,

is modelled as follows:

xi(t) =

q∑
j=1

bjiρj(t),

where (ρ1(t), ..., ρq(t)) is vector of known basis functions and (b1i, ..., bqi) is a vector of

(usually multivariate normal distributed) random effects.

The idea is that we will assume the function ψ used in section 2.3.8 is a function of

x(t), for example, ψ(t) = eβx(t), in a simple model with only one time varying covariate

and n fixed time covariates. In this case we have that

ψ(t) = exp{
q∑
j=1

βbjρj(t)}.

Our results will require that ψ(t) is a hazard function.

Time varying Accelerated Failure Time model

First, recall proposition 2.16 where we explored the composition of the CH function

H and the function g. It was found that g must also be a CH function. We use this

proposition to generalise the AFT model in the next example.
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Example 2.100. (Time varying AFT model 1) Consider the setting of example

2.88 where H1(t) = H0(Hψ(t)) for some function ψ(t), where ψ(t) is of the form

ψ(t) = eβx(t). The corresponding time transformation is given by T0 = Hψ(T1). This

proposal is given by Cox and Oakes [21]. Lawless [41] proposes the function Hψ as a

generalised time scale.

By proposition 2.16 a necessary and sufficient condition for H1(t) to be a CH is for

Hψ to also be a CH function, or equivalently, for ψ to be a hazard function. Proposition

2.85 gives sufficient conditions for ψ to be a hazard function.

In this example, we can let xi(t) = bTi ρ(t), as in Tseng, Hsieh and Wang (2005).

This formulation would then require that the model for the time varying covariates

is linear in the log scale. In their paper, Tseng et al. propose the basis functions are

ρ(t) = (log(t), t− 1))T .

A second proposal for generalising the AFT model to contain time varying covariates

in discussed in the next example.

Example 2.101. (Time varying AFT model 2) Consider the baseline T0 ∼ H0

and the time varying AFT model

H1(t) = H0(g(t)t)

where g(t) is a function of x(t).

From proposition 2.16 we see that g(t)tmust be a CH function, and from proposition

2.43 we see that g(t) must satisfy g(0) < ∞, g(∞) > 0 and d
dt log g(t) > −1

t . Thus if

g(t) = eβx(t), then we would require βx′(t) > −1
t .

As in the previous example, we can let x(t) = bTi ρ(t). We would propose that

ρ(t) = (log(t), t)T , so that g(t) is generated by the Gompertz and the Weibull depending

on which basis function is used.

Time varying Proportional Hazards model

Now recall proposition 2.43 where we explored the product of the CH function H and

the function g : (0,∞) → (0,∞). It was found that we must have that g(0) < ∞,

g(∞) 6= 0 and d
dt log g(t) > − d

dt logH(t). We use this proposition to generalise the

proportional hazards model in the next example.

Example 2.102. (Time varying Proportional Hazards model 1) Suppose that

we have time varying covariates, x(t) such that g(t) = eβx(t) satisfies the properties of

g in proposition 2.43. Then

H1(t) = eβx(t)H0(t)

is a cumulative hazard function which describes the time varying proportional hazards

model.
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Now we consider the restrictions on x(t) so that this model is valid. In order for

this model to be valid we need that g(t) = eβx(t) satisfies the properties of proposition

2.43. We need that g(0) < ∞, thus we need x(0) < ∞. This is reasonable and if we

do have a covariate that does not conform to this, some transformation of it will. In

order to have that limt→∞ g(t) > 0 we need that limt→∞ x(t) 6= −∞. This again is

reasonable, and a transformation could be made to make this true. We also require

that the CH is strictly increasing, we will therefore need that βx′(t) + 1
H0(t)H0(t)′ > 0.

In this example we can let x(t) = bTi ρ(t). This was seen in the work of Ri-

zopoulos, Verbeke and Lesaffre [54]. Here the basis functions are proposed to be

ρ(t) = (log(t), t)T . This formulation requires that the log cumulative hazard is lin-

ear.

In the next example, we will use integration to propose a generalisation of the

proportional hazards model.

Example 2.103. (Time varying Proportional Hazard model 2) Let us suppose

H1(t) =

∫ t

0
eβx(s)h0(s)ds.

Note that if x(t) is constant then this reduces to the proportional hazards model.

For this model to be valid, we require that eβx(0)h0(0) <∞ and for eβx(s)h0(s) not

to tend to 0 too quickly as in the second condition of proposition 2.85.

There are a few interesting choices for x(t) in this example. If x(t) = logH0(t), then

H1(t) = 1
β+1H0(t)β+1. If x(t) = 1

β t, then H1(t) = H
[−1]
0 (H0(t)), using Young’s equality.

Also trivially, if x(t) = 1
βh0(t)H0(t) we will have H1(t) = H

[1]
0 (t). These functions would

form our basis ρ(t).

Example 2.104. (Time varying Proportional Hazards model 3) Suppose that

H1(t) = Hψ(H0(t)) =

∫ H0(t)

0
ψ(s)ds.

If ψ(t) = eβx(t) as before, we find different conditions on x(t) than in models 1 and

2. We require that Hψ is a CH function, thus that ψ is a hazard function. Thus the

conditions on x(t) can be derived from proposition 2.85.

Time varying Additive Hazards model

The additive hazards model can be generalised to include time varying covariates using

corollary 2.53. In this corollary the positive function g is added to the CH function H.

It is found that the function g must have the property that g(0) = 0.

Example 2.105. (Time varying Additive Hazards model) Let H0 be the baseline
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cumulative hazard function and let g(t) = eβx(t) − eβx(0), then

H1(t) = H0(t) + eβx(t) − eβx(0)

is a time varying version of the additive hazards model.

Note that g(0) = 0, so we only require that d
dtg(t) > −h0(t). Thus we must have

x′(t)eβx(t) > −h0(t).

Time varying Accelerated Hazards model

Now recall corollary 2.98 where we explored the form of a rational CH function. The

accelerated hazards model is of the form H1(t) = 1
αH0(αt). We may need a time-

varying version of this model, corollary 2.98 could be used to create this model.

Example 2.106. (Time varying Accelerated Hazards model) Suppose that our

model is given by

H1(t) =
H

[1]
0 (g(t)t)

r(t)
,

where g(t) and r(t) are functions of the covariates. We require that g(t)t is a CH

function and hence must satisfy d
dt log g(t) > −1

t as in the time varying AFT example.

We also require that r(t) is a CH function. We will also require g being finite for all t.

A more complicated requirement on these functions is that we need

d

dt
log (g(t)t) >

d

dt
log r(t).

If g(t) = r(t) then this condition would be satisfied.

For this example we could allow g(t) = eβx(t) and r(t) = eαz(t). Here, x(t) would

contain covariates that might accelerate or decelerate time and z(t) would contain

covariates that might act proportionally. We would then require these covariates satisfy

the condition that βx′(t) + 1
t > αz′(t). In this formulation, we could let x(t) = bTi ρ(t)

and z(t) = b̃
T
i ρ(t). Good choices of basis functions might be ρ(t) = (log(t), t)T .

2.4 Summary and future work

This chapter has described the properties of cumulative hazard functions. We have

seen that compositions, inverses, products, sums and integrals of cumulative hazards

are themselves cumulative hazards. We have also explored how to expand the set of

cumulative hazards. The final section of this chapter has given some detail on how the

properties previously discussed can be implemented in the construction of time varying

regression models.
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Cumulative hazard functions are fairly restricted functions. They must be increas-

ing, be zero at zero and infinity at infinity. An advantage of this restriction is that these

functions can essentially be classified by their local or global convexity or concavity. A

possible goal of future research would be to explore how to characterise, in a simple

way, the local convexity or concavity of a cumulative hazard. In terms of convexity,

we would pursue the concept of the convex conjugate further, and explore its uses in

modelling, possibly in dispersion models.

The next chapter will explore how to use the properties discussed in this chapter

to build new models.
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Chapter 3

Parametric Families of

Cumulative Hazard Functions

3.1 One-dimensional parametric families

In this section we construct one-dimensional parametric families of cumulative hazards

using the basic operations (compositions, inverse, etc.) introduced in Chapter 2. In

particular, we would like to compose multiple cumulative hazard functions. We will

introduce some notation here to simplify the expressions. If we wish to compose Hθ
A

followed by Hα
B, then this will be denoted by

Hθ,α
AB(t) ··= Hθ

A ◦Hα
B(t).

Note that the parameters are separated by a comma. An example where one of the

CH functions is not parametrised is Hθ
EG(t) = Hθ

E ◦HG(t).

We note here that a cumulative hazard function maps a time t to H(t), which

although it is in (0,∞), is not time, it is a transformation of the original time scale.

Thus to avoid confusion, we would like to view the cumulative hazard functions as

functional operators. We will also non-dimensionalise our time variable so that we can

focus on the impact of the transformations we discuss in this chapter, i.e. the shapes

and distortions of the transformations. In order to non-dimensionalise a variable, one

might divide by the mean of that variable, as seen in the work of Shaddick and Zidek

[61]. We will divide by one unit of time, i.e. if time is measured in seconds, we divide

by one second. This will mean that the range of the variable will be unchanged and

when plotting, will appear the same. Hence, when we see H(t) we implicitly mean

H ◦ (H1
E)−1(t). Note that H could be any CH function. We will not include this

composition in any equation henceforward, as this will result in complicated looking

functions.

The underlying baseline will have cumulative hazard H0(t) and the cumulative

hazard of the parametric family, with parameter θ, is denoted H(t|θ). The random
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variable associated with the CH H(t|θ) will be Tθ
d
= −→τ (T0) as described in Chapter 2

in Figure 2.7. Most of the terminology for the families in the upcoming sections will

follow that used by Marshall and Olkin [44].

We will also be interested in the asymptotic behaviour of a cumulative hazard H

when either t→ 0 or when t→∞. The former we will call short term behaviour, and

the latter, long term behaviour. This will be denoted by H(t) ∼ g(t) when t→ a, where

a = 0 or a =∞, for some function g(t). This notation is shorthand for limt→a
H(t)
g(t) = 1.

In either case, we will say that H(t) behaves like g(t) when t→ a.

3.1.1 Families with a scale parameter

The first parametric family we will describe is the addition of a scale parameter to the

underlying baseline distribution.

Definition 3.1. Suppose that the cumulative hazard of a parametric family is

H(t|θ) = H0(θt), θ > 0.

Then the parameter θ is called a scale parameter.

This can be written in terms of a composition. The family generated by a scale

parameter is equivalent to

H(t|θ) = H0 ◦Hθ
E(t), (3.1)

where Hθ
E is the cumulative hazard of an exponential distribution with rate θ.

Example 3.2. Letting H0(t) = HG, the standard Gompertz CH, in equation (3.1), it

is easy to see that H(t|θ) = HG ◦Hθ
E(t) = Hθ

GE(t) = eθt − 1.

Example 3.3. Suppose H0(t) = Hll(t) = log(1+t) is the CH function of the underlying

baseline distribution, the standard log-logistic. Then, if we add a scale parameter, we

have that

H(t|θ) = Hll ◦Hθ
E(t) = Hθ

llE(t) = log(1 + θt).

The next paragraph will detail what time transformation is generated by the scale

parameter.

Time Transformation (for scale parameter families) If T0 is the random variable

corresponding to the distribution generated with H0, then Tθ
d
= T0/θ is the random

variable corresponding to the distribution generated by H(t|θ).

The incorporation of a scale parameter into a distribution is the basis of the Acceler-

ated Failure Time model, as discussed in section 4.1. In this model the scale parameter

θ accelerates or decelerates the progression of time to event, as shown above, depending

on whether θ is less than or greater than 1.
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Change of Baseline Consider a reparametrisation of the family defined by α = θ
θ1

for some θ1 > 0. Let H1(t) = H0(θ1t). Then we have that

H(t|α) = H0(θαt) = H1(αt)

so that H1 now plays the role of the baseline in the new parametrisation. Therefore,

any member of the scale parameter family can be made to be the baseline.

3.1.2 Families with a frailty parameter

Another important parametric family is that of including a frailty parameter.

Definition 3.4. Suppose that the cumulative hazard of a parametric family is

H(t|θ) = θH0(t), θ > 0.

Then the parameter θ is called a frailty parameter.

This family is very important as it describes the family of Proportional Hazards

models, which are the most well known models within survival analysis. When θ is

considered to be a random variable such models are often called frailty models [29] and

so θ is termed a frailty parameter [44]. This type of parameter is sometimes called a

proportional hazards parameter, but we will continue with the frailty terminology here.

The addition of a frailty parameter results in the survival function of the underlying

baseline distribution being raised by the power θ, i.e.

S(t|θ) = S0(t)θ.

The addition of a frailty parameter can be written in terms of a composition of

cumulative hazards. The family generated by a frailty parameter is equivalent to

H(t|θ) = Hθ
E ◦H0(t).

Note that this is the reverse composition to equation (3.1), thus there is a direct

connection between scale and frailty parameters. There will be connections of the

same type for other parameters we will discuss in this chapter.

Example 3.5. Let H0(t) = HG(t) be the baseline CH, the family generated by the

frailty parameter is given by

H(t|θ) = Hθ
E ◦HG(t) = Hθ

EG(t) = θ
(
et − 1

)
.

Example 3.6. Let H0(t) = Hll(t) be the baseline CH, the family generated by the
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frailty parameter is given by

H(t|θ) = Hθ
E ◦Hll(t) = Hθ

Ell(t) = θ log(1 + t).

We can find the corresponding time transform for the frailty parameter using the-

orem 2.27.

Time Transformation (for frailty parameter families) Suppose T0 ∼ H0 and

Tθ ∼ θH0. Using theorem 2.27 we have that Tθ
d
= −→τ (T0) where −→τ (T0) = H−1

0 (1
θH0(T0)).

This implies that the transformed time H0(Tθ) is an accelerated, or decelerated, version

of the baseline transformed time H0(T0), which always follows a standard exponential

distribution by Proposition 2.9 in Chapter 2.

Change of Baseline Consider a reparameterisation of the family defined by α = θ
θ1

for some θ1 > 0 and let H1(t) = θ1(t). Then we have that

H(t|θ) = αθ1H0(t) = αH1(t)

so that H1 now plays the role of the baseline in the new parametrisation. Thus any

member of the frailty parameter family can be made to be the baseline.

3.1.3 Families with a power parameter

Definition 3.7. Suppose that the cumulative hazard of a parametric family is

H(t|θ) = H0(tθ), θ > 0.

Then the parameter θ is called a power parameter.

In terms of a composition, the power parameter is

H(t|θ) = H0 ◦Hθ
W (t), (3.2)

that is, composing with the Weibull. Note that the power parameter is equivalent to a

scale parameter on the log scale

Example 3.8. Consider H0(t) = Hll(t) = log(1 + t). We find the addition of a power

parameter yields the CH function H(t|θ) = Hll ◦Hθ
W (t) = Hθ

llW = log(1 + tθ).

Example 3.9. Suppose T0 ∼ HG. Adding a power parameter yields the cumulative

hazard H(t|θ) = Hθ
GW (t) = exp(tθ)− 1.

The time transformation that generates the addition of a power parameter is given

next.

Time Transformation (for power parameter families) If T0 ∼ H0, then if Tθ
d
=

T
1/θ
0 , then H(t|θ) = H0(tθ). Thus the baseline time is accelerated when raising to a
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power larger that one (θ < 1), or decelerated when raising to a power less than one

(θ > 1).

Change of Baseline Consider the reparametrisation α = θ
θ1

for some θ1 > 0 and let

H1(t) = H0(tθ1). Then we have that

H(t|θ) = H0(tαθ1) = H1(tα)

so that H1 now plays the role of the baseline in the new parametrisation. Therefore

any member of the power parameter family can be made to be the baseline.

3.1.4 Families with a hazard power parameter

The hazard power parameter, as it is termed in Marshal and Olkin [44], is given by

powering the cumulative hazard, not the hazard function.

Definition 3.10. Suppose the cumulative hazard function of a parametric family is

H(t|θ) = H0(t)θ, θ > 0.

Then the parameter θ is called a hazard power parameter

Note that H(t|θ) = H0(t)θ can be seen as

logH(t|θ) = θ logH0(t).

Thus the hazard power parameter can be interpreted as the proportionality parameter

for the proportional log cumulative hazard model.

The hazard power parameter can be written as a composition of cumulative hazards,

H(t|θ) = Hθ
W ◦H0(t).

We again note that the hazard power parameter is the opposite composition to the

power parameter in equation (3.2). We have that there is a pairing between the power

and hazard power parameters.

The next example will demonstrate that the Weibull family is closed under the

addition of a hazard power parameter.

Example 3.11. Consider the addition of a power parameter, θ to the Weibull CH with

parameter β, i.e.

H(t|θ, β) =
(
Hβ
W (t)

)θ
= tθβ.

We see that this is another Weibull with parameter θβ, i.e. H(t|θ, β) = Hθβ
W (t).

We note that the addition of a hazard power parameter to the Exponential distri-

bution will result in a Weibull distribution.
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Example 3.12. We can introduce a hazard power parameter into the log-logistic dis-

tribution that has CH function

H(t|θ) = [log(1 + t)]θ = Hθ
W ◦Hll(t) = Hθ

Wll(t).

Note that this transformation was seen in chapter 2 when we showed that powering

a CH function is itself a CH function.

Time Transformation (for hazard power parameter families) The correspond-

ing time transformation for the hazard power parameter is given by Tθ
d
= H−1

0 ◦H1/θ
W ◦

H0(T0). This relationship can be simplified to H0(Tθ)
d
= H0(T0)1/θ. Here we see again

the acceleration (deceleration) of the transformed baseline time H0(T0).

Change of Baseline Consider a reparametrisation of the family defined by α = θ
θ1

for some θ1 > 0 and let H1(t) = H0(t)θ1. Then

H(t|θ) = (H0(t))θ1α = H1(t)α

so that H1 now plays the role of the baseline in the new parametrisation. Thus any

member of the hazard power family can be made to be the baseline.

3.1.5 Families related to a tilt parameter

A tilt parameter is best described in terms of the survival function, S(t), see Marshall

and Olkin section 7.F [44], but since our focus is on the cumulative hazard, we will

define a tilt parameter in terms of the cumulative hazard first.

Definition 3.13. Suppose that the cumulative hazard function of a parametric family

is

H(t|θ) = log
(

1 + θ(eH0(t) − 1)
)
, θ > 0. (3.3)

Then the parameter θ is called a tilt parameter.

This is a sequential composition that involves the log-logistic, exponential, Gom-

pertz and baseline CH, i.e.

H(t|θ) = Hll ◦ (θHG(H0(t))) = Hll ◦Hθ
E ◦HG ◦H0(t)

= Hθ
llEG ◦H0(t), (3.4)

where, notationally, Hll ◦Hθ
E ◦HG(t) = Hθ

llEG(t).

Example 3.14. Suppose H0(t) = Hll(t), the standard log-logistic. The addition of a

tilt parameter simply gives H(t|θ) = Hθ
llE(t) = log(1 + θt), using the fact that HG and

Hll are inverses of each other. We saw previously this is the same as adding a scale

parameter, hence for the log-logistic distribution, tilt and scale parameters have the

same interpretation.
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In the literature, the addition of the tilt parameter is generally viewed in terms of

the survival function, S, specifically

S(t|θ) =
θS0(t)

1− (1− θ)S0(t)
.

Time Transformation (for tilt parameter families) The time transformation

generated by the addition of a tilt parameter is given by

Tθ
d
= H−1

0 ◦Hll

(
1

θ
HG ◦H0(T0)

)
= H−1

0 ◦H1/θ
llEG ◦H0(T0)

where T0 ∼ H0 and Tθ ∼ Hθ
llEG ◦H0.

It is interesting to note that
(
Hθ
llEG

)−1
(t) = H

1/θ
llEG(t), hence the simplified formula

above. We also note that H1
llEG(t) = H1

E(t), the standard exponential.

The addition of a tilt parameter to a distribution is the basis for the proportional

odds model. The odds of the event are (1 − S(t))/S(t). The model is proportional

because
1− S(t|θ)
S(t|θ)

= θ
1− S0(t)

S0(t)
.

It is interesting to note the long term and short term effects of the tilt parameter

family of CHs. To see this we look at the asymptotic behaviours of the CH function as

t→ 0 and t→∞. The asymptotic expansion of Hθ
llEG when t→ 0 has leading term θt.

In this case we write Hθ
llEG(t) ∼ θt when t → 0. Thus we see that the tilt parameter

acts similarly to a frailty parameter when t → 0. Similarly, for large t, Hθ
llEG ∼ t for

all θ > 0, i.e. so that the CH (3.3) behaves like H0(t) in the long term.

Each of the parameters we have mentioned so far can be written in terms of com-

positions. In doing this we have noticed there are pairings amongst the parameters,

scale/frailty and power/hazard power, where the order of compositions has been re-

versed. We can perform this operation with the composition for the tilt parameter

(3.4) to define a different family, namely

H(t|θ) = H0 ◦Hθ
llEG(t) = H0

(
log
(
1 + θ(et − 1)

))
. (3.5)

The parameter θ will now be the natural pairing to the tilt parameter and we will call

it a reverse-tilt parameter.

Example 3.15. Let H0(t) = Hθ0
llEG(t) for some θ0. Then we have

H(t|θ, θ0) = Hθ
llEG ◦H

θ0
llEG = log

(
1 + θθ0

(
et − 1

))
= Hθθ0

llEG(t),

so that the family of CHs
{
Hθ
llEG : θ > 0

}
is closed under composition.

Time Transformation (for reverse tilt parameter families) The time transfor-
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mation for the reverse-tilt parameter is

Tθ = H
1/θ
llEG(T0).

Change of Baseline Consider the reparamatrisation α = θ
θ1

for some θ1 > 0 and let

H1(t) = H0 ◦Hθ1
llEG(t). Then we have that

H(t|θ) = H0 ◦Hθ1α
llEG(t) = H0 ◦Hθ1

llEG ◦H
α
llEG(t)

= H1 ◦Hα
llEG(t),

using the closure property shown in example 3.15. Then H1 now plays the role of the

baseline in the new parametrisation and any member of the reverse tilt parameter family

can be made to be the baseline. Clearly this is also true for the tilt parameter family.

In figure 3.1, we plot the function Hθ
llEG(t) for various values of θ. We see that

for values of θ > 1 the function H
1/θ
llEG(t) is below the identity line, thus we have

deceleration of the baseline time. For values of θ < 1 we have the function H
1/θ
llEG is

above the identity line and thus have acceleration of the baseline time T0. We can

clearly see the long term behaviour from the plot as all the CH curves become parallel

as t increases. The short term behaviour is less obvious from the plot alone, but from

the discussion earlier we see it acts like θt close to t = 0.

θ =
0.2

5
θ
=

0.
5

θ
=

4
θ

=
2

θ
=

1

t

Hθ
llEG(t)

Figure 3.1: The CH function Hθ
llEG for θ = 0.25, 0.5, 1, 2, 4.

Example 3.16. If we let H0(t) = HG(t) in the reverse-tilt family, then H(t|θ) =

Hθ
EG(t) = θHG(t). Thus, for the Gompertz distribution, frailty and reverse-tilt param-

eters have the same interpretation.

3.1.6 Families related to a resilience parameter

There are some parametric families that are slightly more difficult to express in terms

of the cumulative hazard function. Letting F0(t) denote the cumulative distribution
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function for the underlying baseline time, then we can define a resilience parameter.

Families with a resilience parameter are often called exponential distributions.

Definition 3.17. Suppose that the cumulative distribution function of a parametric

family is

F (t|θ) = F0(t)θ, θ > 0.

Then the parameter θ is called a resilience parameter.

In terms of the cumulative hazard, the addition of a resilience parameter is given

by

H(t|θ) = log

(
1

1− F0(t)θ

)
= log

(
1

1−
(
1− e−H0(t)

)θ
)
.

It can be shown that

H(t|θ) = Hll ◦Hθ
r ◦HG ◦H0(t) = Hθ

llrG(t) ◦H0(t) (3.6)

where

Hθ
r (t) =

tθ

(1 + t)θ − tθ

is a cumulative hazard function which is a rational function, hence the r subscript.

Example 3.18. In this example we will add a resilience parameter to the exponential

distribution. The CDF of the exponential distribution with CH function H1
E is F 1

E(t) =

1− exp(−t). Thus the exponential distribution with a resilience parameter has cdf

F (t|θ) = [1− exp(−t)]θ .

This distribution is called the Verhulst distribution in Marshall and Olkin [44] and has

CH function

H(t|θ) = log

(
1

1− [1− exp(−t)]θ

)
.

This distribution is also called the exponentiated exponential distribution within the

literature [26].

Recalling that adding a frailty parameter is equivalent to powering a survival func-

tion, i.e. S(t|β) = S0(t)β, and that F (t) = 1− S(t), we see that there is some duality

between resilience and frailty parameters. This is further explored in the following

proposition.

Proposition 3.19. If T0 ∼ θH0 and Tθ
d
= 1/T0, then θ is a resilience parameter for

Tθ.
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This proposition says that if θ is a frailty parameter for T0, then if Tθ
d
= 1/T0, θ

is a resilience parameter for Tθ. We do not expect this type of relationship between

parameters to be unique to the frailty and resilience parameters, but do not explore

this further.

Time Transformation (for resilience parameter families) The time transfor-

mation for the resilience parameter is given by Tθ = H−1
0 ◦H1/θ

llrG ◦H0(T0).

It is interesting to note that
(
Hθ
llrG

)−1
(t) = H

1/θ
llrG(t). This CH function can be seen

in figure 3.2 for different values of θ where we can see that it looks similar to Hθ
llEG in

figure 3.1. Here however, values of θ < 1 now mean H
1/θ
llrG is decelerating and values of

θ > 1 correspond to accelerating H0(T0).

θ
=

4

θ
=

2

θ
=

0.
5

θ
=

0.
25

θ
=

1

t

Hθ
llrG(t)

Figure 3.2: The function Hθ
llrG for θ = 0.25, 0.5, 1, 2, 4.

Recalling the definition of the resilience parameter in terms of the CDF, we note

that the family can be written as

logF (t|θ) = θ logF0(t).

Thus the family with a resilience parameter can be viewed as a proportional log CDF

model.

We investigate the behaviour of the resilience parameter family around t = 0 and

infinity. We find that around t = 0 the cumulative hazard acts like tθ, i.e. the resilience

parameter acts like a hazard power parameter. Exploring the behaviour at infinity, we

find Hθ
llrG acts like t, so that the CH of the family behaves like H0(t).

If we reverse the composition in equation (3.6), then we define a different family,

H(t|θ) = H0 ◦Hθ
llrG(t). (3.7)

The parameter θ is the pairing to the resilience parameter and will be called the reverse-

resilience parameter.
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Example 3.20. Let H0(t) = Hθ0
llrG for some θ0 > 0. Then we have

H(t|θ0, θ) = Hθ0
llrG ◦H

θ
llrG(t) = Hll ◦Hθ0

r ◦Hθ
r ◦HG(t).

It is easy to show that Hθ0
r ◦Hθ

r = Hθ0θ
r . Thus H(t|θ0, θ) = Hθ0θ

llrG(t), so the family of

CHs
{
Hθ
llrG : θ > 0

}
is closed under composition.

Time Transformation (for reverse resilience parameter families) The time

transformation for the reverse-resilience parameter is Tθ = H
1/θ
llrG(T0). As seen in figure

3.2, we will have acceleration of the baseline time for values of θ < 1 and deceleration

for θ > 1.

Change of Baseline Consider the reparametrisation α = θ
θ1

for some θ1 > 0 and let

H1(t) = H0 ◦Hθ1
llrG(t). Then we have that

H(t|θ) = H0 ◦Hθ1α
llrG(t) = H0 ◦Hθ1

llrG ◦H
α
llrG(t)

= H1 ◦Hα
llrG(t),

using the closure property shown in example 3.20. Then H1 now plays the role of

the baseline in the new parametrisation. Thus any member of the reverse resilience

parameter family can be made to be the baseline. It is easy to show that this is also

true for the resilience parameter family.

3.1.7 Families of alternative parameter pairings

In previous sections we have emphasised the existence of parameter pairings. We have

also proposed pairings for other parameters in the literature. Now we propose a new

type of parameter and its corresponding pairing.

Consider the family

H(t|θ) = Hθ
GEll ◦H0(t). (3.8)

In this family there is proportionality between what we call the logistic cumulative

hazard functions, i.e.

log(1 +H(t|θ)) = Hll ◦H(t|θ) = Hθ
E ◦Hll ◦H0(t) = θ log(1 +H0(t)).

We will call this parameter the proportional logistic hazards parameter.

Time Transformation (for proportional logistic hazard parameter families)

The time transformation for the logistic hazards parameter is given by Tθ = H−1
0 ◦

H
1/θ
GEll◦H0(T0). This is equivalent to H0(Tθ) = H

1/θ
GEll◦H0(T0). Figure 3.3 demonstrates

the form Hθ
GEll(t) takes for various values of θ. We see H

1/θ
llEG is below the identity for

θ > 1 and thus would result in deceleration and acceleration of H0(T0) for θ < 1.
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Figure 3.3: The function Hθ
GEll for θ = 0.25, 0.5, 1, 2, 4.

Note that, we have again,
(
Hθ
GEll

)−1
(t) = H

1/θ
GEll(t).

We can investigate the asymptotic behaviour when t → 0 and t → ∞. It is easy

to show that, and is confirmed in figure 3.3, that when t → 0, Hθ
GEll(t) ∼ θt so the

reverse tilt parameter is similar to a frailty parameter in the short term. It can be

shown that HGEll ∼ tθ when t→∞, thus the reverse-tilt parameter acts like a power

hazard parameter in the long term.

The reason for the introduction of this family is due to the fact that a distribution

exists in the literature that can be written as a specific example of this family. This

distribution and its relation to the proposed family is discussed in the next example.

Example 3.21. The Generalised Power Weibull family is proposed by Nikulin and

Haghighi [27]. The CH function of this distribution is given by

H(t|α, θ) = (1 + tα)θ − 1 = Hθ
GEll ◦Hα

W .

We see that this is the family with a proportional logistic parameter θ where H0 = Hα
W ,

the Weibull with a power parameter α. This family has also been studied by Jones and

Noufaily [34].

The corresponding pairing of the parameter of the family in (3.8) is generated by

the reverse composition,

H(t|θ) = H0 ◦Hθ
GEll(t),

which we will term the reverse logistic hazards family.

Example 3.22. Let H0(t) = Hθ0
GEll(t) for some θ0 > 0. Then we have

H(t|θ0, θ) = Hθ0
GEll ◦H

θ
GEll(t) = (1 + t)θθ0 − 1 = Hθθ0

GEll(t)

so that the family of CHs
{
Hθ
GEll : θ > 0

}
is closed under compositions

65



Time Transformation (for the reverse logistic hazard parameter families)

The time transformation for the reverse logistic hazards family is given by Tθ = H
1/θ
GEll(T0).

Change of Baseline Consider the reparametrisation α = θ
θ1

for some θ1 > 0 and let

H1(t) = H0 ◦Hθ1
GEll(t). Then

H(t|θ) = H0 ◦Hθ1α
GEll(t) = H0 ◦Hθ1

GEll ◦H
α
GEll(t)

= H1 ◦Hα
GEll(t),

using the closure property shown in example 3.22. Then H1 now plays the role of the

baseline in the new parametrisation. Thus any member of the reverse logistic hazard

parameter family can be made to be the baseline. It is clear that this is also true for

the logistic parameter family.

Table 3.1 summarises all the information from section 3.1. We see that there are

many parameters that can be interpreted as a proportionality parameter for some

functions. Taking the logarithm of these models allows us to linearise them. This will

be seen again in chapter 4.

The last three pairs of families described in table 3.1 involve a composition of cumu-

lative hazards of the form H−1
1 ◦Hθ ◦H1, where H1 is some standard distribution and

Hθ defines a family such that
(
Hθ
)−1

= H1/θ. So far, for H1 we have considered either

the standard log-logistic or the standard Gompertz, and for Hθ we have considered

the exponential, Weibull and rational families. In principle, we can consider different

choices to the ones we have considered so far. For example, one could consider the

pair of families defined by Hθ
llWG = Hll ◦Hθ

W ◦HG = log
(
1 + (et − 1)θ

)
. Inspection of

the plots of the CH for different values of θ reveal that the corresponding cumulative

hazards cross at a fixed point. This makes subsequent analysis and interpretation more

difficult, thus we do not consider any other possible families further.

3.1.8 Combination parametric families

In this section we introduce parametric families that not only include a given baseline

CH HA, but also another given CH HB.

Recalling that the sum of cumulative hazard functions is itself a cumulative hazard

from proposition 2.47, we can define a new model.

Definition 3.23. (Linear Combination Family) Given two CH functions HA and

HB,

Hα
A+B(t) = αHA(t) + (1− α)HB(t), α ∈ [0, 1] (3.9)

is a candidate for generating a parametric family. We call this the linear combination

family with combination parameter α. We see that α = 0 recovers HB(t) and α = 1

recovers HA(t).
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Example 3.24. If we let HB(t) = Hll(t) and let HA(t) = HG(t), its inverse, then the

linear combination family is given by

Hα
ll+G(t) = (1− α) log(1 + t) + α

(
et − 1

)
.

We can see that this family will be fairly flexible in the sense that it contains a range

of CH behaviours from concavity (α = 0) to convexity (α = 1).

In proposition 2.37 and corollary 2.44 we saw that products of CH functions are

CH functions themselves, and that raising a CH function to a power resulted in a CH

function also. With this is mind, the following parametric family is proposed.

Definition 3.25. (Geometric Combination Family) Given two CH functions HB

and HB

Hα
A·B(t) = HA(t)αHB(t)1−α, α ∈ [0, 1], (3.10)

is a candidate for generating a parametric model. We will call this the geometric

combination family with combination parameter α. As with the linear combination we

see that letting α = 0 recovers HB and letting α = 1 recovers HA.

Example 3.26. We can again let HB(t) = Hll(t) and HA(t) = HG(t), the geometric

combination will be

Hα
ll·G(t) = log(1 + t)1−α (et − 1

)α
.

Now, we recall from proposition 2.10 that composing CH functions results in a CH

function, and from proposition 2.20 that the inverse of a CH function is a CH function.

Then the following is a candidate for generating a new 1-dimensional family.

Definition 3.27. (Composition Combination Family) Given two CH functions

HB and HA,

Hα
A−→◦ B(t) =

(HA ◦H−1
B )(αHB(t))

α
, α > 0. (3.11)

We will call this the composition combination family with combination parameter α.

We also note that the parameter α can be larger than 1. We observed above that

letting α = 0 in (3.9), (3.10) recovers HB, and letting α = 1 recovers HA. This result

is not immediate in the case of (3.11) and further conditions need to be met. If α = 1

we recover HA, and if hB(0) = hA(0) ∈ (0,∞) then HB is recovered when α→ 0. We

will only assume hB(0), hA(0) ∈ (0,∞), then w.l.o.g. hB(0) = hA(0) as the cumulative

hazards can be rescaled.

Example 3.28. An important example of a composition combination is when we take

HB(t) = H1
E(t) = t. The cumulative hazard of this family can then be seen to be

Hα
A−→◦ E(t) = H

1/α
E ◦HA ◦Hα

E(t) =
1

α
HA(αt). (3.12)
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This family is the basis for the Accelerated Hazards regression model [14] that will be

discussed again in chapter 4.

Example 3.29. The Burr Type XII distribution [41] is defined by choosing HA = Hll

in 3.12. Then the family has CH of the form

Hα
ll−→◦ E(t) =

1

α
Hll(αt) =

1

α
log (1 + αt) , α > 0.

Example 3.30. If we let HB(t) = Hll(t) = log(1+ t) and let HA(t) = H−1
ll (t) = HG(t)

in the composition combination (3.11), i.e.

Hα
G−→◦ ll(t) =

(HG ◦HG)(αHll(t))

α
=
e(1+t)α−1 − 1

α
.

This could be written as H(t|α) = 1
αH

α
GGEll(t). If now we let HA(t) = Hll(t) and

HB(t) = HG(t), then

Hα
ll−→◦ G(t) =

log(1 + log(1 + α(et − 1)))

α
.

This can be written as H(t|α) = 1
αH

α
llllEG(t).

Next we will show there exists a common structure in the three combination families

described above.

It is easy to see that our set CH of cumulative hazards endowed with the composition

operation forms a group. In this group, the identity element is H1
E(t) = t ∈ CH and

the inverse element of H ∈ CH is the functional inverse H−1 ∈ CH. Note that the

identity element has mean 1 in the units specified for t.

We could extend the set CH to a larger set of continuously differentiable functions,

the details of which we do not give here, and we endow this set with the product

operation. Then the group identity element is the function identical to one, and the

reciprocal 1
H is the inverse element of H.

If we rather endow the set with the addition operation, then we obtain a group

with identity element the function identical to zero, and the inverse of H is −H.

Then the elements of the linear, geometric and combination families, respectively,

can be written as follows

Hα
A+B(t) = [αHA(t)] + [(−αHB(t)) +HB(t)] (3.13)

Hα
A·B(t) = [HA(t)α] ·

[(
1

HB(t)α

)
·HB(t)

]
(3.14)

Hα
A−→◦ B(t) =

[
1

α
HA(t)

]
◦

[(
1

α
HB

)−1

◦HB(t)

]
(3.15)

which reveals a common algebraic structure.
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Reparametrisation of combination families

Consider the reparametrisation θ = α
α0

for some α0 ∈ (0, 1) and let

H0(t) = α0HA(t) + (1− α0)HB(t)

for the linear combination family,

H0(t) = HA(t)α0HB(t)1−α0

for the geometric combination family and

H0(t) =
1

α0
HA ◦H−1

B (α0HB(t))

for the composition combination family. Then for the linear combination family we

have that

Hα
A+B(t) = θα0HA(t) + (1− θα0)HB(t)

= θα0HA(t) + θ(1− α0)HB(t) + (1− θ)HB(t)

= θH0(t) + (1− θ)HB(t)

where θ ∈ (0, 1
α0

).

For the geometric combination we have that

Hα
A·B(t) = HA(t)θα0HB(t)1−θα0 = HA(t)θα0HB(t)θ(1−α0)HB(t)1−θ

= H0(t)θHB(t)1−θ

where θ ∈ (0, 1
α0

).

For the composition combination family we have

Hα
A−→◦ B(t) = H

1
θα0
E ◦HA ◦H−1

B ◦
(
Hθα0
E

)
◦HB(t)

= H
1
θα0
E ◦HA ◦H−1

B ◦
(
Hθ
E [◦]Hα0

E

)
◦HB(t)

= H
1
θα0
E ◦HA ◦H−1

B ◦
(
Hθ
E ◦

[
HB ◦H−1

A ◦H
α0
E ◦H

1
α0
E ◦HA ◦H−1

B

]
◦Hα0

E

)
◦HB(t)

=

(
H

1
θα0
E

)
◦HA ◦H−1

B ◦H
θ
E ◦HB ◦H−1

A ◦H
α0
E ◦H0(t)

=

(
H

1
θ
E ◦H0 ◦H−1

0 ◦H
1
α0
E

)
◦HA ◦H−1

B ◦H
θ
E ◦HB ◦H−1

A ◦H
α0
E ◦H0(t)

= H
1
θ
E ◦H0 ◦ H̄−1 ◦Hθ

E ◦ H̄(t),

another composition combination. Here H̄ = HB ◦H−1
A ◦H

α0
E ◦H0 is also a CH.
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Thus, by the reparametrisation θ = α/α0 we can express any of the combination

families above in terms of any one of HA or HB and an arbitrary member of the family

H0.

Time Transformation (for Combination Families) This transformation involves

the inverse of H(t|α) according to the formula given in Figure 2.7. Clearly, for both the

linear and geometric combination families there is no general analytic inverse. For the

composition combination, the inverse is explicit and the time transformation is given

by

Tα = H−1
B

(
1

α
HB ◦H−1

A (αHA(TA))

)
where TA ∼ HA and Tα follows the composition combination family distribution. We

note that, because α appears twice in the above formula, there will not be any propor-

tionality interpretation as in the previous parametric families in this chapter. This will

lead to a non-linear model in the next chapter.

Example 3.31. If we let HA = H0 with h0(0) = 1 and HB = HG in the composition

combination family, then the corresponding CH is of the form

Hα
0−→◦ G(t) = H

1/α
E ◦H0 ◦Hα

llEG(t), α > 0.

We note that this is almost identical to the cumulative hazard of the reverse tilt pa-

rameter family given in (3.5), only with an exponential H
1/α
E at the very left. This

extra composition does not change the qualitative behaviour but it changes the family

members near the limit α → 0. In the reverse tilt families, the limit as α → 0 is

degenerate, but the composition combination has a proper CH function in the limit

α→ 0, the Gompertz CH.

One price to pay for this attribute is that the parameter α loses its proportionality

interpretation in table 3.1.

In the same way as before, we propose pairs of parametric families by reversing the

order of compositions. We reverse the order of the composition combination to obtain

the following family.

Definition 3.32. (Reverse Composition Combination Family) Given two cu-

mulative hazards HA and HB where hA(0) = hB(0) ∈ (0,∞), the parametric family

with members

Hα
A←−◦ B(t) = HB

(
1

α
H−1
B ◦HA(αt)

)
, α > 0 (3.16)

is called the reverse composition combination family. We note that the usual limits

hold since when α = 1 we recover HA and when α = 0 we recover HB.
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We also note that there is no need to define the reversed family for the linear and

geometric combination families since the sum and product are symmetric, unlike the

composition.

Example 3.33. If we let HA = H0 with h0(0) = 1 and HB = Hll in the reverse

composition combination family, then the corresponding CHs are of the form

Hα
0←−◦ ll(t)) = H

1/α
llEG ◦H0 ◦Hα

E(t), α > 0,

which is similar to the CHs of the tilt parameter family, except for the innermost com-

position with an exponential. This extra composition modifies the tilt family members

near the limit α → 0, where in this case, the standard log-logistic is included in the

limit.

Time Transformation (for reverse composition combination) This is given by

Tα = H
1/α
E ◦H−1

A ◦HB ◦Hα
E ◦H−1

B ◦HA(TA)

for TA ∼ HA and Tα from the reverse composition combination.

In appendix A the behaviours of the likelihoods of the combination families are

explored.

3.1.9 Linear-Composition combination families

The following proposed families will be of particular interest in section 6.4.3 where their

properties will be further discussed. The following families will combine the techniques

discussed earlier in building families.

First of all we propose a general model which combines summing, composing and

inverting CHs to create new ones. The CH function of this model follows.

Definition 3.34. (Linear-Composition Combination) Given two CH functions

HA and HB and a parametrised CH function Hα,

H(t|α) = H−1
α (Hα (HA(t)) +Hα (HB(t))) , (3.17)

is called the linear-composition combination with parameter α. We would like that some

particular value of α = α̃ recovers the case H(t|α̃) = HA(t) +HB(t). Later in chapter

6, this combination will be used to model multiple times-to-event. In this context, it

will be useful to recover the sum of HA(t) and HB(t) since this will correspond to the

case of independent random variables.

Example 3.35. Consider the linear-composition combination (3.17) where Hα(t) = tα.

This incorporates summing and powering CH functions. The corresponding CH is given

by

H(t|α) = ((HA(t))α + (HB(t))α)1/α , (3.18)
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where we can see that H(t|1) = HA(t) +HB(t), so that α̃ = 1.

Example 3.36. Let Hα(t) = Hα
llEG(t), then the corresponding linear-composition

combination has CH

H(t|α) = H
1/α
llEG (Hα

llEG(HA(t)) +Hα
llEG(HB(t))) .

Since H1
llEG(t) = H1

E it is clear that

H(t|1) = HA(t) +HB(t).

Similar families can be constructed in the same way using Hα
llrG or Hα

GEll since H1
llrG =

H1
GEll = H1

E .

Example 3.37. Consider the CH family (3.12) Hα(t) = 1
αH̃(αt), where h̃(0) ∈ (0,∞).

Then the corresponding linear-composition combination has CH of the form

H(t|α) =
1

α
H̃−1

(
H̃(αHA(t)) + H̃(αHB(t))

)
.

It is easy to show that H(t|0) = HA(t) +HB(t) using L’Hospital’s rule, so that α̃ = 0.

All the previous combination families can be seen as flexible, since HA and HB can

be very different types of cumulative hazards. For example, HA could be concave, e.g.

log-logistic, and HB could be convex, e.g. Weibull with power parameter θ > 1, or

the Gompertz. Then, the parameter α would determine how convex or how concave

the actual family, or perhaps baseline family, should be. This means that although our

approach would be fully parametric, it would not be too restrictive and the parameter

α would determine how flexible this family would actually be.

3.1.10 Equivariance of combination families

In this subsection we explore the equivariance properties of combination families to

the addition of different types of parameters such as scale, frailty, etc. We will let

Cα (HA, HB) denote a general combination model. We will also let

Cα+ (HA, HB) = Hα
A+B(t) = αHA(t) + (1− α)HB(t)

Cα· (HA, HB) = Hα
A·B(t) = HA(t)αHB(t)1−α

Cα−→◦ (HA, HB) = Hα
A−→◦ B(t) =

(HA ◦H−1
B )(αHB(t))

α

Cα←−◦ (HA, HB) = Hα
A←−◦ B(t) = HB

(
1

α
H−1
B ◦HA(αt)

)
.

Proposition 3.38. (Equivariance to scale and frailty parameters) All four com-

bination models are equivariant to the addition of a scale or a frailty parameter. That
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is

Cα
(
HA ◦Hθ

E(t), HB ◦Hθ
E(t)

)
= Cα (HA, HB) ◦Hθ

E(t), θ > 0,

Cα
(
Hθ
E ◦HA(t), Hθ

E ◦HB(t)
)

= Hθ
E ◦ Cα (HA(t), HB(t)) , θ > 0,

where Cα is the function that takes two CHs and returns the combined CH.

Proof. The proof for the composition and reverse composition combination are the

least intuitive so will be given here. The proofs for the other combinations are much

more straightforward so won’t be included.

First, let Cα−→◦ denote the composition combination. Suppose HA and HB both

have the same scale parameter θ, then HA(t|θ) = HA(θt) and HB(t|θ) = HB(θt) and

H−1
A (t|θ) = 1

θH
−1
A (t). Hence

Cα−→◦

(
HA ◦Hθ

E(t), HB ◦Hθ
E(t)

)
=

1

α
HA(θ

1

θ
H−1
B (αHB(θt)))

=
1

α
HA(H−1

B (αHB(θt))) = Cα−→◦ (HA, HB) ◦Hθ
E(t).

Now suppose HA and HB both have the same frailty parameter θ, then HA(t|θ) =

θHA(t) and HB(t|θ) = θHB(t) and H−1
A (t|θ) = H−1

A (1
θ t). Hence

Cα−→◦

(
Hθ
E ◦HA(t), Hθ

E ◦HB(t)
)

=
θ

α
HA(H−1

B (
α

θ
θHB(t)))

=
θ

α
HA(H−1

B (αHB(t))) = Hθ
E ◦ Cα−→◦ (HA(t), HB(t)) .

Now let Cα←−◦ denote the reverse combination. Suppose HA and HB both have the

same scale parameter. Then

Cα←−◦

(
HA ◦Hθ

E(t), HB ◦Hθ
E(t)

)
= HB

(
θ

α

1

θ
H−1
B ◦HA(θαt)

)
= HB

(
1

α
H−1
B ◦HA(θαt)

)
= Cα←−◦ (HA, HB) ◦Hθ

E(t).

Now suppose HA and HB both have a frailty parameter. Then

Cα←−◦

(
Hθ
E ◦HA(t), Hθ

E ◦HB(t)
)

= θHB

(
1

α
H−1
B

(
1

θ
θHA(αt)

))
= θHB

(
1

α
H−1
B (HA(αt))

)
= Hθ

E ◦ Cα←−◦ (HA(t), HB(t)) .
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Proposition 3.39. (Equivariance to tilt, resilience or proportional logistic

hazard parameters) The reversed composition combination families are equivariant

to the addition of a tilt, resilience or proportional logistic hazards parameter. That is

Cα
(
Hθ
llEG ◦HA(t), Hθ

llEG ◦HB(t)
)

= Hθ
llEG ◦ Cα (HA(t), HB(t)) , θ > 0,

Cα
(
Hθ
llrG ◦HA(t), Hθ

llrG ◦HB(t)
)

= Hθ
llrG ◦ Cα (HA(t), HB(t)) , θ > 0,

Cα
(
Hθ
GEll ◦HA(t), Hθ

GEll ◦HB(t)
)

= Hθ
GEll ◦ Cα (HA(t), HB(t)) , θ > 0.

Proof. This proposition will be proved for the tilt parameter as the others are similar.

Recall the reverse composition can be expressed as

Cα←−◦ (HA(t), HB(t)) = HB ◦H1/α
E ◦H−1

B ◦HA ◦Hα
E(t).

Also recall that
(
Hθ
llEG

)−1
= H

1/θ
llEG. Then,

Cα←−◦
(
Hθ
llEG ◦HA(t), Hθ

llEG ◦HB(t)
)

= Hθ
llEG ◦HB ◦H1/α

E ◦H−1
B ◦H

1/θ
llEG ◦H

θ
llEG ◦HA ◦Hα

E(t)

= Hθ
llEG ◦ Cα←−◦ (HA(t), HB(t)) .

The other proofs are similar since
(
Hθ
llrG

)−1
= H

1/θ
llrG and

(
Hθ
GEll

)−1
= H

1/θ
GEll.

Proposition 3.40. (Equivariance to reversed tilt, reversed resilience and re-

versed proportional logistic hazards parameters) The linear, geometric and com-

position families are equivariant to the addition of a power, reversed tilt, reversed re-

silience or a reversed proportional logistic hazard parameter. That is

Cα
(
HA ◦Hθ

W (t), HB ◦Hθ
W (t)

)
= Cα (HA, HB) ◦Hθ

W (t), θ > 0,

Cα
(
HA ◦Hθ

llEG(t), HB ◦Hθ
llEG(t)

)
= Cα (HA, HB) ◦Hθ

llEG(t), θ > 0,

Cα
(
HA ◦Hθ

llrG(t), HB ◦Hθ
llrG(t)

)
= Cα (HA, HB) ◦Hθ

llrG(t), θ > 0,

Cα
(
HA ◦Hθ

GEll(t), HB ◦Hθ
GEll(t)

)
= Cα (HA, HB) ◦Hθ

GEll(t), θ > 0.

Proof. Again, the proof will only be given for the composition combination and for the

reversed tilt parameter. Recall the composition combination is Cα−→◦ (HA(t), HB(t)) =

H
1/α
E ◦HA ◦H−1

B ◦Hα
E ◦HB(t). Then

Cα−→◦
(
HA ◦Hθ

llEG(t),HB ◦Hθ
llEG(t)

)
= H

1/α
E ◦HA ◦Hθ

llEG ◦H
1/θ
llEG ◦H

−1
B ◦H

α
E ◦HB ◦Hθ

llEG(t)

= H
1/α
E ◦HA ◦H−1

B ◦H
α
E ◦HB ◦Hθ

llEG(t)

= Cα−→◦ (HA, HB) ◦Hθ
llEG(t).
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The other proofs are similar since
(
Hθ
W

)−1
= H

1/θ
W ,

(
Hθ
llrG

)−1
= H

1/θ
llrG and

(
Hθ
GEll

)−1
=

H
1/θ
GEll.

Proposition 3.41. (Equivariance to hazard power parameters) The geometric

and reversed composition families are equivariant to the addition of a hazard power

parameter. That is

Cα
(
Hθ
W ◦HA(t), Hθ

W ◦HB(t)
)

= Hθ
W ◦ Cα (HA(t), HB(t)) , θ > 0.

Proof. The proof for the geometric is simple, thus only the proof for the reversed

composition, Cα←−◦ (HA(t), HB(t)) = HB ◦H1/α
E ◦H−1

B ◦HA ◦Hα
E(t), will be given.

Cα←−◦
(
Hθ
W ◦HA(t), Hθ

W ◦HB(t)
)

= Hθ
W ◦HB ◦H1/α

E ◦H−1
B ◦H

1/θ
W ◦Hθ

W ◦HA ◦Hα
E(t)

= Hθ
W ◦ Cα←−◦ (HA(t), HA(t)) .

Proposition 3.42. Recall the Accelerated Hazards model parameter as in (3.12),

Hθ
A−→◦ E(t) =

1

θ
HA(θt).

The four combination families are equivariant to the accelerated hazards parameter,

that is

Cα
(
H

1/θ
E ◦HA ◦Hθ

E(t), H
1/θ
E ◦HB ◦Hθ

E(t)
)

= H
1/θ
E ◦ Cα (HA, HB) ◦Hθ

E(t).

Proof. This will only be shown for the reversed composition.

Cα
(
H

1/θ
E ◦HA ◦Hθ

E(t), H
1/θ
E ◦HB ◦Hθ

E(t)
)

= H
1/θ
E ◦HB ◦Hθ

E ◦H
1/α
E ◦H1/θ

E ◦H−1
B ◦H

θ
E ◦H

1/θ
E ◦HA ◦Hθ

E ◦Hα
E(t)

= H
1/θ
E ◦HB ◦Hθ

E ◦H
1/α
E ◦H1/θ

E ◦H−1
B ◦HA ◦Hθ

E ◦Hα
E(t).

Then using Hα
E ◦Hθ

E(t) = Hθ
E ◦Hα

E(t), we have the above is equal to

= H
1/θ
E ◦HB ◦Hθ

E ◦H
1/α
E ◦H1/θ

E ◦H−1
B ◦HA ◦Hθ

E ◦Hα
E(t)

= H
1/θ
E ◦HB ◦H1/α

E ◦H−1
B ◦HA ◦Hα

E ◦Hθ
E(t)

= H
1/θ
E ◦ Cα (HA, HB) ◦Hθ

E(t).
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3.2 Multi-parameter families

There are many considerations we can take into account when combining two or more

parameters in a family of cumulative hazards. A sensible and ideal consideration is

that each parameter plays a separate and different role. This is a modelling approach

to avoid any possible confounding between parameters. At the same time, flexibility of

the possible behaviours of the family of cumulative hazards is important.

There are two key criteria for cumulative hazards that we consider,

1. behaviours such as convexity, concavity, linearity or some combinations of those,

2. short term, t→ 0, and long term, t→∞, behaviours.

We will combine these two criteria in order to achieve flexibility.

When considering the first criterion we will explore combining archetypal families

whose CH functions are convex, concave or linear. The typical convex families include

the Gompertz and the Weibull, where the power parameter is greater than one. Concave

families include the log-logistic and the Weibull for power parameters less than one.

The only example of a linear family is the Exponential. This is related to combining

behaviours such as Increasing hazard rate (IFR), decreasing hazard rate (DFR) and

the exponential hazard.

In the previous section we have explored the long and short term behaviours of

families. We have seen that short term behaviours include linear, θt, and Weibull, tθ

for any θ > 0, and long term behaviours include Weibull, tθ for θ > 0 as well as et and

log(t). We expect that the combinations of these types of behaviours could be quite

fruitful and would provide a flexible family.

3.2.1 Combining one-dimensional families

We can start by combining scale and power parameters to create a distribution with

two parameters. The order in which we include the parameters now plays a minor role.

For example, for some baseline distribution with CH H0 we could have

H(t|θ, α) = H0 ◦Hθ
E ◦Hα

W (t) = H0 ◦Hθ,α
EW (t) = H0(θtα)

or

H(t|θ, α) = H0 ◦Hα
w ◦Hθ

E(t) = H0 ◦Hα,θ
WE(t) = H0 ((θt)α) .

From this it is easy to see these correspond to different parametrisations of the same

two-dimensional family of distributions.

We will see an example of a distribution with scale and power parameters, there

are of course many other examples.
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Example 3.43. Let H0(t) = H1
E(t). We have that in the first parametrisation,

H(t|θ, α) = θtα and θ acts as a frailty parameter. In the second parametrisation,

H(t|θ, α) = (θt)α and θ does act as a scale parameter.

Example 3.44. Let H0(t) = Hll(t). The first parametrisation gives that H(t|θ, α) =

log (1 + θtα) and the second yieldsH(t|θ, α) = log (1 + θαtα). Using the first parametri-

sation, in the short term H(t|θ, α) ∼ θtα, ∀α > 0 so that it behaves like a Weibull with

frailty parameter θ.

It is well known that scale and power parameters are a simple reparametrisation of

location and scale parameters in the log time scale. This clearly shows scale and power

are, in principle, well identified and play two different roles.

We can now look at the reverse compositions of the above to see how this effects

the baseline distribution. The reverse compositions of the above results in the addition

of frailty and hazard power parameters. We can consider the parametrisations

H(t|θ, α) = Hθ
E ◦Hα

W ◦H0(t) = Hθ,α
EW ◦H0(t) = θH0(t)α (3.19)

or

H(t|θ, α) = Hα
W ◦Hθ

E ◦H0(t) = Hα,θ
WE ◦H0(t) = θαH0(t)α.

An example of this combination of parameters can be seen next.

Example 3.45. Let H0(t) = HG(t), a Gompertz CH, then the first parametrisation

3.19 for frailty and hazard power combination is

H(t|θ, α) = Hθ,α
EW ◦HG(t) = θ

(
et − 1

)α
.

We can understand the role of the parameters by looking at the asymptotic behaviour

of this CH as t→ 0 and t→∞. In the short term we find that H(t|θ, α) behaves like

θtα, like a Weibull with frailty θ and power parameter α. In the long term we find

that H(t|θ, α) behaves like θeαt, so that it behaves like the Gompertz with frailty θ

and scale α.

We see that in the long term, this family will be convex, regardless of the values

of the parameters. However, in the short term, the shape of this family is determined

by the value of α. If α > 1 it will be convex, if α < 1 it will be concave and it will

be linear for α = 1. Thus we see that the flexibility of this family is achieved by the

parameter α which controls the type of short term behaviour combined with long term

convexity.

Example 3.46. In example 3.21 we saw the combination of the proportional logistic

parameter with a Weibull baseline with a power parameter, i.e. H(t|θ, α) = Hθ
GEll◦Hα

W

the Generalised Power Weibull. We can understand the role of each parameter again
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by looking at the short and long term behaviour. In the short term H(t|θ, α) behaves

like a Weibull θtα with frailty θ and power α. In the long term H(t|θ, α) acts like a

different Weibull, namely tθα, with power parameter θα. A simple reparametrisation,

where we introduce a new parameter λ = θα, simplifies the interpretation, specifically,

as seen in teh work of Jones and Noufaily [34]

H(t|λ, α) = H
λ/α
GEll ◦H

α
W (t).

Now the family behaves like a Weibull with power α and frailty λ
α in the short term

and like a Weibull with power λ in the long term.

This family is very flexible as both the short and long term behaviours can include

concavity, convexity and linearity depending on the values of the parameters α and λ.

Example 3.47. A similar family to the previous example arises as the Exponentiated

Weibull, for example Jones and Noufaily [34]. This family combines the resilience with

Weibull baseline, namely, Hθ
llrG ◦ Hλ

W . If θ = α/λ then in the short term the family

behaves like tα, so that α is a power parameter. In the long term this family behaves

like tλ so that λ is now the power parameter. Similar to the previous example, this

family is very flexible as it can combine concavity, convexity or linearity in both the

short term and the long term.

Example 3.48. Yang and Prentice [76] propose a model where

H(t|λ, θ) = Hλ
E ◦H

θ/λ
llEG ◦H0(t).

We first note that if λ = 1 then θ is a tilt parameter and if θ = λ then λ is a frailty

parameter. In the short term the CH function acts like θH0(t), so that θ is a frailty

parameter. In the long term it behaves like λH0(t), so that the frailty parameter is

now λ. Thus it can be viewed as one Exponential distribution in the short term and

another in the long term. The parameter θ is thus called the short term hazard ratio

and the λ is the long term hazard ratio. In the particular case of H0(t) = t, a standard

exponential, we can see that this family smoothly combines two potentially different

linear behaviours in the short term compared to the long term. Note that Yang and

Prentice propose a proportional odds model with a frailty parameter.

Now we look at an equivariance property of the Yang and Prentice family.

Corollary 3.49. The reverse composition is equivariant to the combination of param-

eters described by the Yang and Prentice model in example 3.48. That is,

Cα←−◦

(
Hλ
E ◦H

θ/λ
llEG ◦HA(t), Hλ

E ◦H
θ/λ
llEG ◦HB(t)

)
= Hλ

E ◦H
θ/λ
llEG ◦ C

α←−◦ (HA(t), HB(t)) .

Proof. The Yang and Prentice model incorporates a scale and a tilt parameter. We see

that the only combination that is equivariant to both parameters, as seen in proposi-

tions 3.38 and 3.39, is the reverse composition.
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Example 3.50. Chen and Jewell [13] propose a model where

H(t|λ, θ) = H
λ/θ
E ◦H0 ◦Hθ

E(t).

This model combines frailty and scale parameters. Note that, for equivariance, we could

have that H0 is any of our four combination families since these are all equivariant to

both scale and frailty, as discussed in Proposition 3.38.

There are of course many ways in which parameters can be combined in order to

create new flexible models. Our framework provides a principled way for how we might

actually do this and allows us to provide some interpretation of the parameters. In the

next section we discuss how to create other flexible parametric models.

3.2.2 Multi dimensional combination families

Another way of combining one-dimensional families is to turn the double appearance

of the combination parameters into two different parameters.

First we aim to generalise the linear combination in equation (3.9) to include an

extra parameter. This results in the family given by

H(t|α, β) = αHA(t) + βHB(t), (3.20)

for α, β > 0.

A further generalisation of the model in (3.20), would be to add some other function

of the CH functions HA and HB. This type of generalisation can be seen in the

literature. Consider the following multi-dimensional family inspired by the bivariate

models proposed by Murthy, Xie and Jiang [49],

H(t|α, β, ν) = αHA(t) + βHB(t) + νφ(HA(t), HB(t)) (3.21)

where φ(HA(t), HB(t)) is a CH function and α, β, ν > 0. An example of φ(·, ·) is

φ(HA(t), HB(t)) = HA(t)HB(t). Note that the 2-dimensional parametric family in

(3.20) can be recovered from (3.21) where we let ν = 0.

Another way to generalise the families we proposed in the earlier section is to have

HA and HB be parametrised, i.e. we have HA(t|θ) and HB(t|γ). Then our model, the

linear-composition combination (3.17), can be extended to

H(t|α, θ, γ) = H−1
α (Hα(HA(t|θ)) +Hα(HB(t|γ))) . (3.22)

This model will be used later in chapter 6 where we model the failure and censoring

times in a joint model.

Consider the following equation which aims to generalise the composition combina-
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tion family in equation (3.11) and the reverse composition in (3.16),

H(t|α, β) =
1

α
HA ◦H−1

B (βHB(t)) (3.23)

H(t|α, β) = HB

(
1

α
H−1
B (HA(βt))

)
(3.24)

where α > 0, β > 0.

The following examples show the flexibility of this family.

Example 3.51. If we let HA = H0 and HB = HG in (3.23), then we obtain

H(t|α, β) = H
1/α
E ◦H0 ◦Hβ

llEG(t),

a family that when α = 1 we recover the reverse tilt family, and when β = 1 we recover

the frailty parameter family. With respect to equivariance, this family could have the

linear, geometric or composition combinations as H0 since these are all equivariant to

the addition of both the reverse tilt and the frailty parameters. Conversely if we let

HB = Hll, then

H(t|α, β) = H
1/α
E ◦H0 ◦Hβ

GEll(t),

then when α = 1 the reverse logistic hazard parameter family is recovered and when β =

1 the frailty parameter family is recovered. Again, we could use the linear, geometric

and composition combinations as H0.

If we let HA = H0 and HB = Hll in (3.24), then,

H(t|α, β) = H
1/α
llEG ◦H0 ◦Hβ

E(t)

then when β = 1 we recover the tilt parameter family, and when α = 1 we recover

a scale parameter family. A reverse composition combination would be useful as a

choice of H0 since this family is equivariant to the addition of both the tilt and scale

parameters. Conversely, if we let HB = HG then,

H(t|α, β) = H
1/α
GEll ◦H0 ◦Hβ

E(t)

and when α = 1 we again recover a scale parameter family and when β = 1 we recover

a logistic hazard parameter family. Again, a good choice of H0 would be the reverse

composition combination.

Example 3.52. If we let HB(t) = H1
E(t) and HA(t) = H0(t), then the two families in

(3.23) and (3.24) are identical, with CH of the form

H(t|α, β) =
1

α
H0(βt).
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This is the Chen and Jewell [13] family in example 3.52 which we will revisit in the

next chapter. Thus, when α = 1 we recover the scale parameter family. When β = 1

we recover the frailty parameter family. Finally, if α = β, we recover the composition

combination family with HB(t) = t, which is the Accelerated hazards CH of example

3.28

An alternative way of constructing a two dimensional family is as follows

H(t|α, β) = βHB

(
1

α
H−1
B (HA(t))

)
. (3.25)

Example 3.53. If we let HB = Hll and HA = H0 in (3.25) then when α = 1 we

recover a frailty parameter family with baseline HA, and when β = 1 we recover a tilt

parameter family with the same baseline HA.

Furthermore, if α = β, we recover a composition combination with the property

that when α = 1 we obtain HA and when α = 0 we obtain H−1
B (HA(t)). This requires

the condition that hB(∞) ∈ (0,∞) so that we can take hB(∞) = 1. Examples of

distributions that satisfy this condition are the Exponential, the Hθ
llEG family, and any

other such that H(t) that acts like t as t→∞.

The previous two-dimensional combination families have the characteristic that

each parameter played a different role, i.e. frailty, scale, tilt, etc., when the other one

was fixed. A different situation arises when a combination parameter controls the role

of the other parameter, i.e. if it is a scale, frailty or another parameter.

Example 3.54. Consider the two-dimensional parameter family of CHs defined by

H(t|α, β) =
1

α
Hβ
llEG(αH0(t)) = βCα−→◦

(
1

β
Hβ
llEG, H

1
E

)
◦H0(t), (3.26)

where we note the inclusion of the denominator β inside the combination. This is needed

since hβllEG(0) = β, so 1
βh

β
llEG(0) = 1 as required by the definition of the composition

combination. Then we clearly have that when α = 0 we recover H(t|α, β) = βH0(t)

meaning β is a frailty parameter, and when α = 1, H(t|α, β) = Hβ
llEG ◦H0(t) meaning

β is a tilt parameter. Thus, β has a different role depending on the value of α. We

contrast the above family with that of example 3.53 where the same parameter has a

distinct role and cannot be both a frailty or tilt. Nevertheless, both families might be

useful to discriminate between a frailty and a tilt parameter family.

The family (3.26) was introduced by Royston and Parmar [57], although they only

consider two cases when α = 0 or α = 1 and did not let α be a free parameter.

This family will only be equivariant for the reversed composition families for H0.

The idea in the previous example can be used to define many other two-dimensional
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families. For example

H(t|α, β) =
1

α
Hβ
GEll(αH0(t)) = βCα−→◦

(
1

β
Hβ
GEll, H

1
E

)
◦H0(t),

so that when α = 0 we get a frailty family with parameter β and when α = 1 we get a

proportional logistic hazard family with parameter β. This family will be equivariant

only to reversed composition combination for H0.

Analogously, we can define

H(t|α, β) = H0

(
βCα−→◦

(
1

β
Hβ
llEG(t), H1

E(t)

))
so that when α = 0 we get a scale family with parameter β and when α = 1 we

get a reverse tilt family with parameter β. This family will be equivariant to linear,

geometric and composition combinations for H0.

3.3 Frailty mixtures

We will consider survival models which are mixtures, more specifically where we can

include heterogeneity by mixing over an unobserved random variable, usually called

frailty. In order to detail the form of these distributions, we will need some preliminary

mathematical results. These results can be seen in Schilling, Song and Vondracek [60]

in more detail.

3.3.1 Preliminary Results

Throughout this section, the positive random variable U , which might be discrete or

continuous, will denote the unobserved frailty which represents unobserved heterogene-

ity in a population. For simplicity in the expressions, we will use cumulative distribution

functions and Stieltjes integrals. We first define the Laplace-Stieltjes transform of the

distribution of the frailty.

Definition 3.55. (Laplace-Stieltjes transform) The Laplace-Stieltjes transform of

a cumulative distribution function F on [0,∞) is defined by

LF (t) =

∫ ∞
0

e−tu dF (u) (3.27)

for t > 0.

Example 3.56. Let U be a frailty random variable following standard exponential,
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i.e. FE(t) = 1− e−t. The Laplace-Stieltjes transform of FE(t) is

LE(t) =

∫ ∞
0

e−tu dFE(u) =

∫ ∞
0

e−tue−udu

=
1

1 + t
, t > 0.

Example 3.57. Let U be a positive frailty random variable following a Gamma dis-

tribution with shape parameter 1/α and scale parameter α. This ensures the mean is

equal to one, as is usual for frailty distributions. The frailty variance is equal to α.

The corresponding Laplace-Stieltjes transform is given by

LαΓ(t) =
1

α1/αΓ( 1
α)

∫ ∞
0

u
1
α
−1e−u( 1

α
+t)du

=

(
1

1 + αt

)1/α

, t > 0.

Example 3.58. Let U be a discrete frailty random variable taking values {1, 2, 3, ...},
following a zero truncated Geometric distribution with probability mass function

dF (u) =
αu−1

(1 + α)u
, α > 0.

The untruncated distribution counts the numbers of successes until one failure occurs.

The probability of success is α
1+α . The Laplace-Stieltjes transform is given by

LαZTG(t) =

∫ ∞
1

e−tudF (u) =

∞∑
u=1

e−tu
αu−1

(1 + α)u

= α−1
∞∑
u=1

(
e−tα

1 + α

)u
= α−1

(
1

1− e−tα
1+α

− 1

)
=
[
1 + (1 + α)(et − 1)

]−1
, ∀t > 0.

Example 3.59. Let V be a discrete frailty random variable taking values {1, 2, 3, ...}
following a zero truncated Geometric distribution with probability mass function

dFV (v) = pv−1(1− p), p ∈ (0, 1).

The untruncated distribution counts the numbers of successes until one failure occurs.

The probability of success is p. It is easy to show that E(V ) = 1
1−p and that V ar(V ) =

p
(1−p)2 . Then the modified random variable U = (1 − p)V has mean 1 and variance

p. The probability mass function of U is given by dFV

(
u

1−p

)
. The corresponding
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Laplace-Stieltjes transform is given by

LpZTG(t) =

∫ ∞
0

e−tudFV

(
u

1− p

)
=

∫ ∞
0

e−t(1−p)vdFV (v)

=
∞∑
u=1

e−t(1−p)vpv−1(1− p) =
1− p
p

(
1

1− e−t(1−p)p
− 1

)

=

(
1 +

1

1− p

(
et(1−p) − 1

))−1

, ∀t > 0.

We now define what it means for a function to be completely monotone, followed

by the definition of a Bernstein function.

Definition 3.60. (Completely monotone) A function S : (0,∞)→ R is completely

monotone if it is of the class C∞and

(−1)n
dnS(t)

dtn
≥ 0 ∀n ∈ N ∪ {0} and t > 0.

It is easy to verify that the sum and product of completely monotone functions,

are themselves completely monotone as seen in corollary 1.6 in Schilling, Song and

Vondračeks book [60].

Definition 3.61. (Bernstein functions) A function H : (0,∞)→ R is Bernstein if,

and only if, dH
dt is completely monotone.

The following proposition relates completely monotone functions with the Laplace-

Stieltjes transform.

Proposition 3.62. The function S : (0,∞)→ R is completely monotone if, and only

if, we can write

S(t) = LF (t) =

∫ ∞
0

e−tu dF (u) (3.28)

where F is unique, positive, bounded and non-decreasing.

The above result says that a function S is completely monotone if it can be writ-

ten as the Laplace transform of some other function. Note that the function S(t) in

proposition 3.62 can be interpreted as the survival function of an exponential mixture

distribution [31].

The following proposition relates Bernstein functions with completely monotone

functions.

Proposition 3.63. A function H : (0,∞)→ R is Bernstein if, and only if, exp(−uH)

is completely monotone for every u > 0.

Complete monotonicity is a property of survival functions, hence the use of “S”

above, while being a Bernstein function is a property of cumulative hazards.
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3.3.2 Univariate mixtures

After the section of preliminary results, we are now able to give details on how to

construct univariate frailty mixtures. We first see how cumulative hazards and Laplace

transforms are related.

Proposition 3.64. Let LF (t) be a Laplace transform of some probability distribution

of a positive random, discrete or continuous, variable, such that LF (t) is defined for

all t > 0. Then

H(F )(t) = − logLF (t)

is a cumulative hazard function.

Proof. From proposition 3.62 and from Jewell (1982) we recognise S(t) = LF (t) as a

survival function of an exponential mixture. Thus H(F )(t) = − logS(t) is a cumulative

hazard.

Note that the cumulative hazard H(F ) is not the cumulative hazard corresponding

to the CDF F , that is e−H(F )(t) 6= 1 − F (t). Hence the bracket notation is used to

indicate the CH generated by the Laplace transform of F .

Example 3.65. As seen in example 3.56 the Laplace-Stieltjes transform of the standard

exponential distribution function is given by LE(t) = 1
1+t . Thus

H(E)(t) = − logLFE (t) = log(1 + t),

the CH of the standard log-logistic. So in this example we have that H(E) = Hll.

Example 3.66. As seen in example 3.57, the Laplace-Stieltjes transform of the Gamma

distribution with mean 1 and variance α is given by LαΓ(t) =
(

1
1+αt

)1/α
. Thus

Hα
(Γ)(t) =

1

α
log (1 + αt) .

In this example we have that Hα
(Γ)(t) = H

1/α
E ◦Hll ◦Hα

E(t) = H
1/α,α
EllE (t), which is the

Burr Type XII family from example 3.29.

Example 3.67. According to example 3.59 the Laplace-Stieljes transform of the zero

truncated Geometric distribution is given by

LpZTG(t) =

[
1 +

1

1− p

(
et(1−p) − 1

)]−1

.

Then we have that

Hp
(ZTG)(t) = − logLpZTG(t) = log

[
1 +

1

1− p

(
et(1−p) − 1

)]
= H

1/(1−p)
llEG ((1− p)t) , p ∈ (0, 1).
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Corollary 3.68. A cumulative hazard of the form H(F )(t) = − logLF (t), where LF is

the Laplace-Stieltjes transform of a distribution F , is Bernstein.

Proof. Let H(F )(t) = − logLF (t). Then exp(−uH(F )(t)) = LF (t)u. Since prod-

ucts of completely monotone functions are completely monotone, then for all u > 0,

exp(−uH(F )(t)) is completely monotone. For the proofs of these statement see Schilling,

Song and Vondraček [60]. Thus by proposition 3.63 H(F ) is a Bernstein function.

Example 3.69. From example 3.66, we have that Hα
(Γ)(t) = 1

α log(1 +αt) is Bernstein

for all α > 0.

Example 3.70. The degenerate distribution Dµ at a constant µ is of interest. The

corresponding Laplace transform is given by LDµ(t) = e−µt and the associated CH is

given by

H(Dµ)(t) = − logLDµ(t) = µt.

In this case we have H(Dµ) = Hµ
E .

The following result gives a simple way to construct mixtures using only composi-

tions of CHs and without integrating.

Proposition 3.71. (Frailty mixtures) Let H0 be a baseline CH function and U be

a continuous, positive random variable with cumulative distribution function F . Then

T |U = u ∼ uH0 where T ∼ H(F ) ◦H0 if, and only if, H(F ) is a Bernstein CH function.

Proof. We have that T |U = u ∼ uH0. The marginal survival function of T is given by

ST (t) = P (T > t) =

∫ ∞
0

P (T > t|U = u) dF (u) =

∫ ∞
0

exp(−uH0(t)) dF (u)

Then we can write ST (t) = LF (H0(t)), where LF (s) is the Laplace-Stieltjes transform

of F . Therefore HT (t) = − logLF (H0(t)) = H(F )(H0(t)). By Proposition 3.62, we

know the function LF is completely monotone.

Since LF (t) is completely monotone, then by corollary 3.68 and proposition 3.64

H(F )(t) = − logLF (t) is a Bernstein CH function.

Conversely, suppose the CH function H(F ) is a Bernstein function. Proposition 3.63

gives that the function exp(−H(F )(t)) is completely monotone. Thus by proposition

3.62 exp(−H(F )(t)) can be represented by

exp(−H(F )(t)) = LF (t) =

∫ ∞
0

exp(−tu) dF (u)

for some non-decreasing function F defined on [0,∞). Since H(F )(0) = 0, we have

LF (0) =

∫ ∞
0

dF (u) = 1,
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so that F (u) is bounded by one and is therefore a cumulative distribution function of

some U .

Then we can write

e−H(F )(H0(t)) =

∫ ∞
0

e−H0(t)udF (u) = ST (t)

which implies T ∼ H(F ) ◦H0 for some variable T such that T |U = u ∼ uH0.

The usefulness of the above result is in the necessary condition, where the choice

of a Bernstein cumulative hazard corresponds to the choice of the distribution of the

frailty. Thus mixtures can be constructed by a simple composition. Note that we use

the notation H(F ) ◦H0 to emphasise the mixing distribution is F .

Example 3.72. Let Hα
(Γ)(t) = 1

α log(1 + αt), the Burr Type XII family, which is a

Bernstein function. By proposition 3.71, the composition

Hα
(F ) ◦H0(t) =

1

α
log (1 + αH0(t))

is the marginal CH function of T in the mixture defined by T |U = u ∼ uH0. Here

U follows a Gamma distribution with mean 1 and variance α. This can be seen in

Hougaard (1984) in example 1 where δ = 1/θ = α.

Example 3.73. It is easy to verify that Hν
GEll(t) = (1 + t)ν − 1 is Bernstein for

ν ∈ (0, 1), see section 16.2 of Schilling, Song and Vondraček [60]. Then clearly, the CH

function

Hν,α(t) = H
1−ν
να
E ◦Hν

GEll ◦H
α

1−ν
E (t) = H

1−ν
να

,ν, α
1−ν

EGEllE

=
1− ν
να

[(
1 +

αt

1− ν

)ν
− 1

]
is also Bernstein. This modification is necessary to have a frailty distribution with

mean 1 and variance α. This can be verified using the fact that d
dtH(F )(t)|t=0 = E(U)

and − d2

dt2
H(F )(t)|t=0 =Var(U). Then by proposition 3.71, the composition Hν,α ◦H0 is

the marginal CH of T in the mixture defined by T |U = u ∼ uH0. Here U follows the

Power Variance Frailty (PVF) distribution with mean 1 and variance α, see Hougaard

[30]. Note we must restrict to the case where all moments exist.

We note two special cases. First, when α = 0, using L’Hospital’s rule, it is easy to

show that limα→0H
ν,α(t) = t = H1

E(t). By example 3.70, we have that it corresponds

to a degenerate distribution at the value of 1. Secondly, the case ν = 0 is addressed.

Again, using L’Hospital’s rule, it can be shown that

lim
ν→0

Hν,α(t) =
1

α
log(1 + αt) = Hα

(Γ)(t),

the Bernstein CH corresponding to a Gamma frailty with mean 1 and variance α.
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Finally, one particular example is given when H0 = H
1−ν
α

E ◦HG, a Gompertz with

a frailty parameter. Then

Hν,α ◦H0 = H
1−ν
να
E ◦HG ◦Hν

E = H
1−ν
να

,ν

EGE

another Gompertz with extra scale and frailty parameters.

Example 3.74. From example 3.67 we have that

Hp
(ZTG)(t) = H

1/(1−p)
llEG ((1− p)t) = log

[
1 +

1

1− p

(
et(1−p) − 1

)]
is a Bernstein CH function. By proposition 3.71 the composition Hp

llEG(H0(t)) is the

marginal CH of T in the mixture defined by T |U = u ∼ uH0(t) where U follows

the zero truncated Geometric distribution with mean 1 and variance p. Clearly, if

V ar(U) = p = 0, then

Hp
(ZTG)(H0(t)) = H1

llEG(H0(t)) = H0(t).

It is interesting to note that there is a different way to obtain a convenient Bernstein

CH when the mixing distribution is zero truncated Geometric. If we do not modify the

original frailty random variable V in example 3.59, it is easy to show that the generated

Bernstein CH is given by

H̃p
(ZTG)(t) = H

1/(1−p)
llEG (t).

We can then use the formulae

E(U) =
d

dt
H̃p

(ZTG)(t)|t=0

V ar(U) = − d2

dt2
H̃p

(ZTG)|t=0

to modify the Bernstein CH to have mean one. We have that E(U) = ... = 1
1−p . It

is clear that if we define ˜̃Hp
(ZTG)(t) = (1 − p)H

1/(1−p)
llEG (t) then d

dt
˜̃Hp

(ZTG)(t)|t=0 = 1.

Finally, we have that − d2

dt2
˜̃Hp

(ZTG)(t) = ... = p
1−p . Then the corresponding new mixture

is given by

˜̃Hp
(ZTG)(t) (H0(t)) = (1− p)H1/(1−p)

llEG (H0(t)) = (1− p) log

(
1 +

1

1− p

(
eH0(t) − 1

))

which is different fromHp
(ZTG) (H0(t)) = H

1/(1−p)
llEG ((1− p)H0(t)) obtained above. Specif-

ically, Hp
(ZTG)(t) is a composition combination family with HB = HG and HA = H1

E .

We have that ˜̃Hp
(ZTG)(t) is a reversed composition combination family with HA = H1

E

and HB = Hll. When V ar(V ) = 0 then p = 0, thus we clearly have that ˜̃Hp
(ZTG)(t) =
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H0(t).

Example 3.75. (Proportional Frailty model) An important special case is when

there is no heterogeneity. This means the distribution of U is degenerate and is con-

centrated at a value, say µ > 0 as in example 3.70. In this case we have H(Dµ)(t) =

Hµ
U (t) = µt which corresponds to an exponential distribution with rate µ. Then the

frailty mixture H(Dµ) ◦H0(t) = µH0(t) is a simple frailty parameter family.

Example 3.76. Let Hα
(F )(t) = tα, which is Bernstein for α ∈ (0, 1). Then by propo-

sition 3.71, the composition Hα
(F ) ◦ H0(t) is the marginal CH of T in the mixture

T |U = u ∼ uH0 where U follows a distribution in the family of positive stable distri-

butions with parameter α. The members of this family do not have finite mean and

variance. For more details see Hougaard [30] or Aalen [1].

Example 3.77. Section 16.2 of the book by Schilling et al [60] provides a list of Bern-

stein functions, some of which are also cumulative hazard functions. One particularly

simple one is

H(F )(t|α) =
t√

1 + αt
, α > 0.

It is easy to show that E(U) = 1 and V ar(U) = α so that the composition in proposition

3.71, given by

H(F ) ◦H0(t) =
H0(t)√

1 + αH0(t)
,

defines a simple new frailty mixture.

Example 3.78. The family with a resilience parameter can be written as

H(t|θ) = Hθ
llrG ◦H0(t) = Hll

(
Hθ
rG(H0(t))

)
.

Thus, since Hll is Bernstein then by proposition 3.71, the family with a resilience

parameter is a frailty mixture where T |U = u ∼ Hθ
rG and U ∼ H1

E .

We will now see an example that relates tilt and frailty parameter families in a

mixture setting.

Example 3.79. Consider the tilt parameter family, i.e. the proportional odds, with

CHs of the form

Hθ
llEG(t) = Hll (θHG(t)) .

Then since Hll corresponds to a standard exponential frailty mixing distribution, then

we interpret the tilt parameter family as a frailty mixture where T |U = u ∼ u(θHG) and

U ∼ H1
E . That is, a mixture of a frailty parameter family with a standard Gompertz

baseline and a standard exponential mixing distribution.
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This relationship was discussed in the work of Clayton and Cuzick and Murphy et

al. [15, 48].

3.3.3 Bivariate mixtures

By extending proposition 3.71 we can propose a method for modelling the joint dis-

tribution of two failure times T1 and T2. Here, these models are termed shared frailty

models.

If we let the joint survival time be

ST1,T2|U (t1, t2|u) = exp {− (HT1(t1) +HT2(t2))u}

then the joint marginal is given by

ST1,T2(t1, t2) =

∫ ∞
0

exp {− (HT1(t1) +HT2(t2))u} fU (u)du

= LF (HT1(t1) +HT2(t2)) .

Then by proposition 3.71, there must be some Bernstein CH function, H(F )(u) =

− log(LF (u)) such that

ST1,T2(t1, t2) = exp
{
−H(F ) (HT1(t1) +HT2(t2))

}
. (3.29)

In chapter 6 we will propose new bivariate survival models. These models can often

be viewed as frailty models. The next example will show how a commonly referenced

model in the literature can be seen as a frailty model. In later chapters we will view it

as a model for informative censoring.

Example 3.80. An important example of a bivariate survival model is that proposed

by Clayton [16] where the joint survival function is given by

ST1,T2(t1, t2|θ) = (1 + α(HA(t1) +HB(t2)))−1/α

where HA(·) and HB(·) are non-decreasing functions with HA(0) = HB(0) = 0. Note

that it is not required here that HA(∞) and HB(∞) =∞. From this survival function,

we find the corresponding CH function is

HT1,T2(t1, t2) =
1

α
log(1 + α(HA(t1) +HB(t2))

= Hα
(Γ)(HA(t1) +HB(t2))

Thus the joint model proposed by Clayton (1978) is a gamma frailty mixture. In this

model, HA and HB are only the marginals in the independent case, α = 0.
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Example 3.81. Suppose that the random variable U follows a positive stable distri-

bution with parameter α < 1 as in the work of Hougaard [30]. Then the joint survival

function will be

ST1,T2(t1, t2) = exp {− (HT1(t1) +HT2(t2))α} .

If we let HTi(ti) = Hβi
W (ti) for i = 1, 2, then we can derive a version of the multivariate

Weibull distribution [22].

3.4 Summary and future work

This chapter has defined ways to introduce parameters into a single distribution to

create a family. We have seen the scale, frailty, power, hazard power and resilience

parameters which are common to the literature. We have also proposed reverse-tilt

and reverse-resilience parameters along with the proportional logistic hazard and re-

verse proportional logistic hazards parameters. These proposed parameters have come

about due to our unique framework and the way in which we view our models via the

cumulative hazard.

We have also looked at the asymptotic behaviour of the families generated by these

parameters, specifically around zero and infinity. We mentioned that these parameters

could have different interpretations in the limits, thus we could view these families as

ways to join different families between zero and infinity. We may assume a certain type

of behaviour at zero and something else around infinity, and may want to find a way

to join these behaviours smoothly. This is a concept we would like to explore further.

As an example, consider the proportional logistic hazard parameter given by

H(t|θ) = Hθ
GEll ◦H0(t).

Around zero this family acts like θH0(t), thus θ behaves like a frailty parameter. As

t → ∞, this family acts like H0(t)θ, thus θ behaves like a hazard power parameter.

Another way to join these behaviours smoothly would be with a very simple spline-like

model given by

Hθ
s (H0(t)) =

θH0(t) t ∈ [0, 1)

θH0(t) + (H0(t)−H0(1))θ t ≥ 1

for θ > 0. This would ensure that the cumulative hazard and the hazard functions are

continuous and ensure the chosen behaviours in the limits. In the future, we would

hope to develop this spline theory and provide a framework for the joining of whichever

behaviours are necessary.
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Chapter 4

Survival Regression Models

In this chapter we will review different approaches to survival regression modelling.

Many models in the literature focus on the hazard function, as defined in equation

(2.3). Hence we will describe the models, first in terms of the hazard function, then

put them in terms of the cumulative hazard, to align them with our framework. We

will follow the order of section 3.1 when presenting models within the literature and

also to propose some new models.

We assume to have structured data of the form of n individuals and that the time

to the event of interest, T , is continuous and depends upon p explanatory variables

X1, X2, ..., Xp. Let xi = (x1i, ..., xpi)
T denote a vector of the values of the explanatory

variable for individual i. We will let η(x) = βTx denote the linear predictor where β

is a vector of regression parameters, and for individual i it will be denoted η(xi) or

simply ηi. We will consider both covariates that do not change over time as well as

time varying covariates.

Throughout this chapter ψ : R → Θ is a function linking the linear predictor

η with a parameter θ which determines the dependence of the distribution of T on

the covariates. ψ is of course a function of the covariates, thus should be denoted

by ψ(η(x)), but will be denoted more succinctly by ψ(η). Note that ψ is not a link

function in the GLM sense but can be thought of as a time-to-event equivalent.

The specification of ψ is an important part of the modelling process, since the

interpretation of the regression parameters depends on ψ. The most common choice of

ψ is ψ(η) = eη but other choices can be made. For example, Taulbee [67] suggest the

use of alternative linking functions such as ψ(η) = 1 + η and ψ(η) = (1 + η)−1.

For practical purposes, we impose the restriction ψ(0) = 1, which is equivalent to

not allowing the linear predictor η to have an intercept term. An intercept term can

be included by adding an extra parameter into the baseline cumulative hazard. This

will be discussed in the last section of this chapter.

We will describe regression models by the cumulative hazard function of the time to

event T and it will depend on the covariates x, and the regression parameter β via the

linear predictor η = βTx; the linking function, ψ, and the baseline cumulative hazard
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function, H0. In cases where the covariates can affect the distribution of T in more

than one way, we will use more than one linking function, ψ1, ψ2, ..., on the same or

different linear predictors. This will be clarified through specific examples. As opposed

to previous chapters, where H0 was considered to be a fixed CH, in this chapter we

will consider H0 as a parameter of the CH of T .

We will use the following notation for the cumulative hazard of T

H(t|ψ(η), H0). (4.1)

Here H(t|ψ,H0) is a cumulative hazard for all ψ > 0 and H0 such that H(t|1, H0) = H0.

This last restriction is common and defines an interpretation of the baseline CH H0 as

the cumulative hazard of T in the case where the covariates are equal to zero. Hence

we require ψ(0) = 1. As usual, the baseline H0 can be interpreted as the CH for a

typical individual. For example, consider age as a covariate. We may not think that

age zero is a “typical” age, we may think that fifty should be our baseline, or typical

age. Thus we would define this covariate as x = age− 50. We discuss the specification

of H0 briefly at the end of this chapter.

4.1 Accelerated Failure Time models

The accelerated failure time (AFT) model assumes that the covariates affect the rate

at which an individual progresses to the event of interest multiplicatively, i.e. it is

accelerated or decelerated [36]. So the covariate effect is multiplicative with respect to

the survival time and is a scale parameter. This model can be specified via the hazard

function. Let hi(t) be the hazard function for the ith individual, then the AFT model

is such that

hi(t|ψ(ηi), h0) = ψ(ηi)h0(ψ(ηi)t)

where h0(t) is the baseline hazard as before and η is the linear predictor of the model.

Details of this model can be found in Lawless, Meeker and Escobar, and Wei [41, 46, 72].

In terms of the cumulative hazard function, this model can be written as

Hi(t|ψ(ηi), H0) = H0(ψ(ηi)t). (4.2)

The survival function for the ith individual is Si(t|ψ(ηi), S0) = S0(ψ(ηi)t), where

S0(t) is the baseline survivor function.

We now view the AFT model in terms of the random variables as a time transfor-

mation. This model is equivalent to

Ti =
1

ψ(ηi)
T0. (4.3)

This is the same as the time transformation 3.1.1 for the scale parameter. Here we see
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that the times are proportional, and thus 1/ψ(ηi) is the proportionality constant. In

the literature, the linking function is usually ψ(η) = eβ
Tx. This allows the regression

model in (4.3) to be written as a linear model.

The log-linear form of the AFT model shows that this class of models is related to

the general linear model. Suppose that the random variable Ti represents the lifetime

of the ith individual, then the log-linear model says that

log(Ti) = −βTxi + log(T0)

= −βTxi + log(H−1
0 (E)),

where E ∼ H1
E . Changing the distribution of T0 gives a different distribution on Ti.

Or, given E, the distribution of the error term is specified through H−1
0 .

The AFT model is usually fully parametric since a distribution is generally specified

for T0. There are alternative methods including that of Buckley and James [9] that are

semiparametric, where the baseline survivor function is estimated nonparametrically.

Jin et al. [32] estimate the parameters of a semi-parametric AFT model using rank

based estimation, as do Martinussen and Scheike [45].

We now suppose that the explanatory variables, x(t), are time dependent. Cox

and Oakes [21] suggest a time varying extension of the AFT model. An individual

with covariates xi(t) at time t(xi) evolves relative to the time t(0), the time at which

xi(t) = 0, via

t(0) =

∫ t(xi)

0
ψ
(
βTxi(s)

)
ds = Ψ(t(xi)s),

where ψ is the linking function. Note that here t(xi) refers to the time at which the ith

individuals covariates are xi(t). This implies that the time transformation is

Ti = Ψ−1(T0).

We see from this formulation, the lifetime of an individual at time t depends on the

history of the covariates up to time t. Further, if x(t) = x for all t, that is the covariates

do not change over time, then we recover the AFT model. Recall that this was seen in

section 2.3.10 in example 2.100

In some situations the proportional time assumption (4.3) may be violated, but may

hold when the overall population is divided into subgroups, or factors. If this is the

case, a stratified AFT model can be fitted. This model allows for the baseline hazard

to vary across the levels of the factor variable. Therefore the factor can be adjusted

for, without having to estimate its effect in the model. Suppose there are g subgroups.
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The cumulative hazard for the ith individual in strata j = 1, ..., g is

Hij(t|β, H0) =

g∏
k=1

H0k(exp(βTxij)t)
I(k=j).

Here I is the indicator function. We can stratify any model as it only affects the

specification of the baseline. The stratification procedure will be discussed in the

baseline modelling section.

4.2 Cox Proportional Hazards models

In very simplistic terms, the proportional hazards model says that the covariates are

related multiplicatively to the hazard function. This model was proposed by David Cox

in 1972 [18] where he wished to extend the work of Kaplan and Meier [37] to include

regression arguments into life table analysis. We will now discuss the form that this

hazards model takes.

For individual i, the hazard function at time t can be written as

hi(t|ψ(ηi), h0) = ψ(ηi)h0(t).

Here, h0(t) is the baseline hazard function, as it is common to all individuals in the

study. ψ(·) must be a positive function in order for hi to be well defined, and so it is

often written as ψ(ηi) = exp(βTxi).

The Proportional hazards model can be written in terms of the cumulative hazard

function,

Hi(t|β, H0) = exp(βTxi)H0(t). (4.4)

Let us investigate the interpretation of the β parameters. Consider the log hazard

ratio between individuals i and j:

log

{
hi(t|β, h0)

hj(t|β, h0)

}
= β1(x1i − x1j) + ...+ βp(xpi − xpj).

Thus, for l = 1, ..., p, βl is the log hazard ratio of two individuals whose lth covariates

xli and xlj differ by 1, with all other covariates equal. Note that the same interpretation

is valid for the ratio of cumulative hazards rather than ratios of hazards.

The proportional hazards model assumes that the hazards h0(t) and hi(t|β, h0) are

proportional, which implies that the hazard ratio between any pair of individuals is

constant. This means that if these hazards cross, or intersect, at any time, then this

assumption is violated.

As discussed by Cox [19], in the semi-parametric version of the model, and using

a partial likelihood, we can estimate the parametric part of the model, β, without

knowledge of h0(t). Then once we have estimates of the regression coefficients, we can
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estimate the non-parametric part of the model, h0(t).

Time dependent Cox model

There are many cases when the model that must be fitted is not a proportional hazards

model, one case is when the covariates are time dependent. A Cox model with time de-

pendent variables or coefficients is not proportional as the hazard ratio is not constant.

This model is discussed at length by Therneau and Grambsch [68]. The exponential

form of the linking function is used. The hazard for the ith individual is

hi(t|β, h0) = exp


p∑
j=1

βjxji(t)

h0(t)

where h0(t) is the hazard for the individual whose values of the covariates are 0 for all

t [17]. The hazard ratio for the rth and sth individual is

hr(t|β, h0)

hs(t|β, h0)
= exp{β1(xr1(t)− xs1(t)) + ...+ βp(xrp(t)− xsp(t))}.

So βj is the log hazard ratio for two individuals whose values of the jth variable differ

by 1 but the other p − 1 variables are equal. We see that the baseline hazard and

the coefficients of the covariates may be harder to interpret. Here the time varying

covariates must satisfy the same conditions as in example 2.102.

Stratified Cox model

Occasionally the proportional hazards assumption is violated, but holds within sub-

groups or factors of the population. If this is the case, a stratified Cox model can be

fitted. This model allows for the baseline hazard to vary across the levels of the factor

variable.

Suppose there are g subgroups. As seen by Collett [17], the hazard for the ith

individual in strata j = 1, ..., g is

hij(t|β, h0) = h0j(t) exp(βTxij).

In terms of the cumulative hazard, this can be written more succinctly as

Hij(t|β, H0) = exp(βTxij)

g∏
k=1

H0k(t)
I(k=j). (4.5)

Note that the coefficients β are the same in each stratum but the baseline hazards are

different.

It is not only the AFT or the proportional hazards model that can be stratified.

The stratified model in (4.5) can be modified for each model for stratification.
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4.3 Power Accelerated Failure Time models

The Power Accelerated Failure Time (PAFT) model is motivated by the power param-

eter as seen in section 3.1. This model is proposed by Burke and MacKenzie [10]. This

model is given by

Hi(t|ψ(ηi), H0) = H0

(
tψ(ηi)

)
.

The time transformation for this model is given by

Ti = T
1/ψ(ηi)
0 .

We see this is similar to the AFT model, in that the baseline time is accelerated in

some way. However, this model accelerates time via powering the baseline time, rather

than multiplying by a constant. This type of acceleration thus justifies the name of

this model.

Taking logs of the time transformation, we have

log Ti =
1

ψ(ηi)
log T0.

Choosing ψ(η) = (1 + η)−1 is convenient as this generates a model that is linear in the

linear predictor η .

4.4 Proportional Log Hazards models

The Proportional Log Hazards model is motivated by the hazard power parameter, as

described in section 3.1. It has CH given by

Hi(t|ψ(ηi), H0) = H0(t)ψ(ηi).

Taking logs of this model gives

logHi(t|ψ(ηi), H0) =
1

ψ(ηi)
logH0(t).

A convenient choice of ψ would be ψ(η) = (1+η)−1, as this gives linearity with respect

to η. In this case we can write

log [Hi(t|β, H0)/Hj(t|β, H0)]

log(H0(t))
= β1(x1i − x1j) + ...+ βp(xpi − xpj),

giving an interpretation of the regression parameters.
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4.5 Proportional Odds models

The main assumption of the Proportional Hazards model is that the covariates are

related multiplicatively to the hazard function. The Proportional Odds model proposed

by Bennett is similar, in that it assumes covariates are related multiplicatively to the

odds of the event happening before time t [5]. Thus the model is specified as follows,(
e−Hi(t|ψ(ηi),H0)

1− e−Hi(t|ψ(ηi),H0)

)−1

= ψ(ηi)

(
e−H0(t)

1− e−H0(t)

)−1

,

where H0(t) is the baseline cumulative hazard function. Often ψ(ηi) = eβ
Txi is used.

For this linking function, the parameter β is interpreted in terms of the log-odds ratios.

If we take the log of the odds for ψ(η) = eη, we find

log

[
1− e−Hi(t|β,h0)

e−Hi(t|β,h0)
/

1− e−Hj(t|β,h0)

e−Hj(t|β,h0)

]
= β1(x1i − x1j) + ...+ βp(xpi − xpj).

Thus for k = 1, ..., p, βk is the log odds ratio of two individuals whose kth covariates

xki and xkj differ by 1, with all other covariates equal.

In terms of a CH functional transformation, we find the proportional odds model

can be written as

Hi(t|ψ(ηi), H0) = Hll (ψ(ηi)HG(H0(t))) = H
ψ(ηi)
llEG ◦H0(t). (4.6)

For the proportional hazards model the hazard ratio of individuals with different

covariates is constant over time, but in the proportional odds model the same hazard

ratio will converge over time. In some cases, except when H0 = Hll, Hi = Hll(ψ(ηi)t),

so the model becomes an AFT. Recall that at zero, Hθ
llEG(t) acts like θt and around

infinity acts like t. Thus the CH H
ψ(ηi)
llEG ◦ H0(t) will act like ψ(ηi)H0(t) around zero

and H0 at infinity. The corresponding hazard function will behave like ψ(ηi)h0(t) at

zero and h0(t) at infinity. Thus the hazard ratio converges to 1 as t→∞.

In Bennett (1983) the proportional odds model is considered semi-parametric and

the baseline distribution is estimated. This is achieved by transforming the failure

times be log-logistic. The parameters βT are then estimated via maximum likelihood

estimation.

4.5.1 Short term Accelerated Failure Time models

The Short term Accelerated Failure Time (StAFT) is motivated by the reverse-tilt

parameter. This model is given by

Hi(t|ψ(ηi), H0) = H0 ◦Hψ(ηi)
llEG (t).
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The time transformation for this model can be written as

Ti = H
1/ψ(ηi)
llEG (T0).

To justify the name of this model we look at the asymptotic behaviour of H
1/ψ(ηi)
llEG (T0).

Around zero H
1/ψ(ηi)
llEG (T0) acts like 1

ψ(ηi)
T0. Thus in the short term this model can be

interpreted as an AFT model. Around infinity H
1/ψ(ηi)
llEG (T0) acts like T0.

Rearranging the time transformation and taking logs we find

log
(
eTi − 1

)
= log

(
1

ψ(ηi)

)
+ log

(
eT0 − 1

)
.

A convenient choice of ψ(ηi) is ψ(ηi) = eηi , as then we see that this model is linearisable

in ηi. This model does not appear to be proposed in the literature.

4.6 Proportional Log CDF models

The Proportional Log CDF model is motivated by the resilience parameter and is given

by

Hi(t|ψ(ηi), H0) = H
ψ(ηi)
llrG ◦H0(t).

We find that log
(
1− e−H(t|ψ(ηi),H0)

)
= ψ(ηi) log

(
1− e−H0(t)

)
which implies

log (Fi(t|ψ(ηi), H0)) = ψ(ηi) log (F0(t)) ,

where F0 and Fi are CDFs. This equation justifies the name of Proportional log CDF

model since ψ(ηi) is the proportionality constant for the log CDFs.

In the particular case when ψ(η) = eη we see

log

[
log(Fi(t|β, H0))

log(Fj(t|β, H0))

]
= β1(x1i − x1j) + ...+ βp(xpi − xpj).

Thus for k = 1, ..., p, βp is the log-log probability ratio of two individuals whose kth

covariates xki and xkj differ by 1 where all other covariates are equal.

Investigating the behaviours of this family at zero and infinity, we find that it acts

like H0(t)ψ(ηi) at zero and H0 at infinity. Thus both the cumulative hazard ratio and

the hazard ratio for individuals with different covariates tend to one as t → ∞. The

ratio of cumulative hazards tends to ψ(ηi)
ψ(ηj)

H0(t)ψ(ηi)−ψ(ηj) as t→ 0.

4.6.1 Short term power AFT models

When considering tilt parameter, we proposed a model based on the reverse-tilt pa-

rameter. We will do the same now for the reverse-resilience parameter. This model is
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given by

Hi(t|ψ(ηi), H0) = H0 ◦Hψ(ηi)
llrG (t).

The time transformation is given by

Ti = H
1/ψ(ηi)
llrG (T0).

Around zero H
1/ψ(ηi)
llrG (T0) acts like T

1/ψ(ηi)
0 and around infinity acts like T0. Thus in

the short term this model acts like a power AFT model, thus justifying the name. This

model does not appear to be proposed in the literature.

4.7 Proportional logistic hazards models

In section 3.1 we introduced the proportional logistic parameter. Here, we propose a

regression model motivated by this parameter given by,

Hi(t|ψ(ηi), H0) = H
ψ(ηi)
GEll ◦H0(t).

This model is called the proportional logistic hazards model since

Hll (H(t|ψ(ηi), H0)) = ψ(ηi)Hll (H0(t)) .

Thus ψ(ηi) is the proportionality constant for the CHs transformed with the log-logistic

CH.

For the particular case when ψ(η) = eη, we can see the interpretation of the pa-

rameters. We have that

log

[
log(1 +Hi(t|β, H0))

log(1 +Hj(t|β, H0))

]
= β1(x1i − x1j) + ...+ βp(xpi − xpj).

Thus we have that for k = 1, ..., p, βk is the log of the log logistic hazard ratio for two

individuals whose kth covariates xki and xkj differ by 1 with all other covariates equal.

Investigating the behaviours of this family at zero and infinity, we find that it acts

like ψ(ηi)H0(t) at zero and H
ψ(ηi)
0 at infinity. Thus the ratio of hazards tends to

ψ(ηi)/ψ(ηj) as t → 0 and to ψ(ηi)
ψ(ηj)

H0(t)ψ(ηi)−ψ(ηj) as t → ∞. This model does not

appear to be proposed in the literature.

4.8 Accelerated Hazards models

Chen and Wang [14] proposed a new model called the Accelerated Hazards (AH) model,

that is not restricted by the condition that either the hazards or survival functions cross
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over at some time point. It is as follows,

hi(t|ψ(ηi), h0) = h0 (ψ(ηi)t) . (4.7)

Here ψ(η) alters the time scale of h0(t), if ψ(η) > 1 the effect is to accelerate and is

ψ(η) < 1 it is to decelerate. Note that this acceleration/deceleration is on the hazard

scale, not the time or CH scale.

In terms of the cumulative hazard function this model is

Hi(t|ψ(ηi), H0) =
1

ψ(ηi)
H0 (ψ(ηi)t) .

Again, a common form for ψ(η) is eη.

Chen and Wang discuss that the proportional hazards model and the AFT model

both require that hi(t|ψ, h0) and h0(t) are different at time t = 0. Under these models,

if hi(0|ψ, h0) = h0(0), then it must be true that hi(t|ψ, h0) = h0(t) for all t ≥ 0. This is

unlikely to be true in settings such as a clinical trial. In a trial investigating the effect

of some treatment over a placebo, one would not expect an immediate effect, unless

the treatment is highly effective, but the effect will develop over time.

The AH model does not require that the hazards be different at time t = 0, instead

it is necessary that they are equal. This model therefore should be used when the basic

form of the hazards is the same, only the time scale is different

It can be seen that this model is inappropriate when the baseline hazard is exponen-

tial as this is constant over time. Thus in this case one wouldn’t be able to estimate the

regression coefficients. It can also be shown that when the underlying distribution is

Weibull, the AH, AFT and proportional hazards models coincide as discussed by Chen

and Wang [14]. The AH model also allows the inclusion of time-dependent covariates,

via the extension

hi(t|ψ(ηi), h0) = h0(ψ(ηi(t))t).

The time transformation corresponding to the Accelerated Hazards model is

Ti = H0

(
1

ψ(ηi)
H−1

0 (ψ(ηi)T0)

)
.

4.9 Excess Risk models

An excess risk model is used to compare the mortalities between two populations.

Sasieni [59] and Crowther [24] show that this model is given by

hi(t|β, h∗i , λ0) = h∗i (t) + λ0 exp(βTxi),
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where h∗i (t) is the expected mortality rate at time t and λ0 is the baseline excess

hazard function. Here hi is termed the total mortality hazard rate. The parameters β

are interpreted as the log excess hazard ratios.

A similar model is the Additive Hazards model mentioned by Lin and Ying [42]. In

this semi-parametric model the hazard function has the form

hi(t|β, h0) = h0(t) + βTxi(t) (4.8)

where h0(t) is the baseline hazard as before, xi(t) is a vector of (possibly) time-varying

covariates and β is a vector of regression coefficients. Note that h0(t) is the hazard

corresponding to when xi(t) = 0. This model is similar to that of Aalen et al. [2].

The proportional hazards model estimates hazard ratios, whereas the additive

model estimates the difference in the hazards for certain value of βTxi(t). If this

difference is of interest, the additive hazard is of more use than the proportional haz-

ards model. We may also prefer the additive model when the proportional hazards

assumption is violated, that is when the hazard of each individual hi(t|β, h0) is not

proportional to some baseline hazard h0(t).

Due to the fact that hazard functions must be non-negative, we can immediately

see that in order for hi(t|β, h0) in (4.8) to be a hazard function, we would require

h0(t) + βTxi(t) ≥ 0. This would mean we would need to place specific constraints

on βTxi(t), which may not always be realistic given certain sets of data. One way to

ensure that the right hand side of (4.8) is always positive is to replace βTxi(t) with

eβ
Txi(t). Note that this would change the interpretation of h0(t), it would then be the

hazard corresponding to when βTxi(t) = −∞. These concerns were raised by Lin and

Ying [42] along with a detailed description of how to carry out the inferences in both

cases.

4.10 Extended regression models

The survival regression models in the previous sections have one linear predictor. In

the proportional hazards model, this parameter is interpreted as the hazard ratio and

as the odds ratio in the proportional odds model. This section explores models with

more parameters which extend the models in the previous section. These extend the

previous models by having them as submodels. This section will include extended

regression models within the literature by authors such as Yang and Prentice [75] and

Chen and Jewell [13], but will also include some new models we propose. Related ideas

also appear in the work of Burke and MacKenzie [11].

4.10.1 Proportional hazard-Proportional odds (PH-PO) models

Yang and Prentice (2005) develop a model that generalises the Proportional hazards

and Proportional Odds models [75] so that their model can accommodate crossing
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survival curves and include meaningful parameters. Their model focuses on the two-

sample case. They suppose they have two groups, a control and a treatment group,

with corresponding hazards hC(t) and hT (t). Their model is then of the form

hT (t|θ1, θ2, hC) =
θ1θ2hC(t)

θ1 + (θ2 − θ1)e−HC(t)
,

where θ1 and θ2 are positive. Yang and Prentice claim that θ1 and θ2 can be interpreted

as the short-term and long-term hazard ratios respectively. Observe that if we let

θ1 = θ2 in equation (4.9), we recover the proportional hazards model. Note also that

letting θ2 = 1 gives us the proportional odds model.

After a reparametrisation, ψ(η1) = θ2 and ψ(η2) = θ1/θ2, we can write this model

in terms of the CH functions in our framework

Hi(t|ψ(η1i), ψ(η2i), HC) = H
ψ(η1i)
E ◦Hψ(η2i)

llEG ◦HC(t). (4.9)

Here we have η1 = βTx and η2 = γTx and ψ is the same function. We note that

if β = 0 then we recover the proportional odds model, and the proportional hazards

model is recovered if γ = 0. We also note that x is the collection of all covariates,

thus the η1 and η2 could included some of the same covariates, but could also have no

covariates in common. This form of the model is a regression extension of the original

two-sample model, as discussed at the end of the Yang and Prentice (2005) paper.

4.10.2 Proportional hazards-AFT-Accelerated Hazards (PH-AFT-AH)

models

Chen and Jewell present a general family of semiparametric hazards models in their

paper [13]. This model generalises the Proportional Hazards, Accelerated Failure Time

and Accelerated Hazards models. It achieves this by combining these models so that

given certain values of the parameters, their model reduces to one of the three main

models.

Their generalised model is given by the hazard function

h(t|λ,θ, h0) = eλ
Txh0(eθ

Txt).

The cumulative hazard of Chen and Jewell’s model is

Hi(t|η1i, η2i, H0) = eη1i−η2iH0(eη2it). (4.10)

Here H0 is the baseline CH. We can see that if η2 = 0, their model reduces to the

proportional hazards model. If η1 = η2 then they recover the accelerated failure time

model, and the accelerated hazards model if η1 = 0. Note that if η1 = λTx and

η2 = θTx then, the covariates in the linear predictors can be disjoint or there can be
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some covariates, depending on the zero values of λ and θ.

This model was proposed as semi-parametric since the baseline hazard is not spec-

ified and the parameters λ and η are estimated. For the two-sample case, where there

is a treatment and a control group, H0 would be the CH function for the control group

and Hi the CH for the treatment group. It is noted in Chen and Jewell (2001) that

this model is not identifiable if the baseline hazard is from a Weibull distribution.

4.10.3 Proportional hazards-Proportional odds (PH-PO) spline mod-

els

Royston and Parmar [57] proposed a flexible parametric model based on the propor-

tional hazards and the proportional odds models. Their model is presented in terms of

the survival function and is given by

g [S(t|β, S0)] = g [S0(t)] + βx, (4.11)

where g is a link function. They choose a parametrised link g(x|α) = log
(
x−α−1
α

)
. In

our framework, this model is

H(t|α,ψ(η), H0) =
1

α
H
ψ(η)
llEG(αH0(t))

= ψ(η)Cα−→◦

(
1

ψ(η)
H
ψ(η)
llEG, H

1
E

)
◦H0(t), (4.12)

as seen in equation (3.26). We see here that the baseline cumulative hazard is given by

H(t|0, ψ(0), H0) = H0(t). They choose to only model the cases α = 0, the proportional

hazards model, and α = 1, the proportional odds model. This is due to the interpreta-

tion of η, or lack thereof, if α was not either of these values. For each model they then

model the log baseline CH, or the baseline log odds, respectively, with a cubic spline,

thus resulting in a PH spline or PO spline model.

Other models can be generated by using Hθ
GEll, for example, instead of Hθ

llEG in

equation (4.12).

4.10.4 Proportional odds-AFT (PO-AFT) models

We will now extend the models in the first few sections to two dimensional families,

using similar techniques to Yang and Prentice [75] and Chen and Jewell [13]. We will

also aim to generalise the one dimensional models we propose in section 3.2.2.

The first proposed model is inspired by the model formulation proposed by Yang

and Prentice. Their model contains the proportional hazards and the proportional odds

models as submodels. Our model differs from theirs as we propose a model with the

proportional odds and the accelerated failure time models as submodels. This model
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is based on that proposed in equation (3.24), given by

H(t|α, β) = HB

(
1

α
H−1
B (HA(βt))

)
Thus we consider the following equation,

H(t|η1, η2, H0) = H
ψ(η1)
llEG ◦H0 ◦Hψ(η2)

E (t), (4.13)

obtained by letting HB = Hll and HA = H0. If η1 = 0 we recover the accelerated failure

time model. Letting η2 = 0 we recover the proportional odds model. We could see this

model as an accelerated proportional odds model. Other models can be generated by

using Hθ
GEll instead of Hθ

llEG.

4.10.5 Proportional hazards-Short term Accelerated Failure Time (PH-

StAFT) models

The following regression model is based on the family given in (3.23)

H(t|α, β) =
1

α
HA ◦H−1

B (βHB(t)).

We propose

H(t|η1, η2, H0) = H
ψ(η1)
E ◦H0 ◦Hψ(η2)

llEG (t),

which is obtained by letting HA = H0 and HB = Hll. Then if η2 = 0, we recover the

proportional hazards model, and if η1 = 0 we recover the short term accelerated failure

time model. Other models can be generated by using Hθ
GEll instead of Hθ

llEG.

4.10.6 Accelerated Failure Time-Short term Accelerated Failure Time

(AFT-StAFT) models

The concept of the PH-PO spline model proposed by Royston and Parmar can be

extended to other models. We may wish to combine the AFT and StAFT models in a

way such that varying one parameter implies the other parameters come from one of

these models. This would be achieved by the model,

H(t|α, η) = H0

(
ψ(η)Cα−→◦

(
1

ψ(η)
H
ψ(η)
llEG(t), H1

E(t)

))
, (4.14)

which is the reverse composition of (4.12). Here α = 0 yields an AFT model with

parameter ψ(η) and α = 1 recovers an StAFT model with parameter ψ(η). This family

will be equivariant to linear, geometric and composition combinations for H0.

Other models can be obtained by using Hθ
GEll instead of Hθ

llEG in equation (4.14).
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4.11 Modelling of the baseline hazard

The specification of the baseline cumulative hazard H0 in the model (4.1), H(t|η,H0),

can be done in three different ways.

1. The baseline can be completely specified. For example, we can specify a standard

CH, such as the standard Gompertz or the standard log-logistic.

2. The baseline can be specified up to some unknown parameters. More specifically,

we specify H0 to be a member of a parametric family of cumulative hazards

Hα
0 = {H(t|α);α ∈ A}, where α might be a vector.

3. The baseline can be completely unspecified. We do not restrict H0 to be of any

specific parametric form. The model is then called semi-parametric.

In the second case, the full set of unknown parameters is given by (β,α), where

β is the vector of regression parameters and α relate to the baseline. Specification of

these parameters thus completely specifies the model (4.1). This modelling technique

is usually called fully parametric regression as seen in Crowther (2014) and references

therein [24].

In order to capture different behaviours of the baseline hazard, ie. concavity, con-

vexity, linearity or combination thereof, it is usual to use a flexible parametric family

which can capture different behaviours for different values of the parameter α. The

earliest approach is to use piecewise exponential models [25], so that the baseline CH

is a piecewise linear increasing function. This requires the specification of the joining

time points, or knots, and the scale parameter for each exponential piece. This falls

outside our set CH of CHs, which requires smoothness, since the piecewise linear CHs

are not differentiable at the knots.

A different approach was used by Royston and Parmar [57] where they use smooth

cubic splines, in the log time scale, to model the logarithm of either the cumulative

hazard or the odds of survival. The splines require the specification of a number of

knots and parameters, giving the flexibility to this approach.

The parametric model we use for H0 starts with a combination family Cα(HA, HB),

for a given choice of standard CHs HA and HB. Clearly we may want to add some extra

parameters. For example, scale and power parameters, as well as a tilt parameter, can

be added so that the resulting parametric family for the baseline is of the form

Hα
0 =

{
Hα1
llEG ◦ C

α0(HA, HB) ◦Hα2,α3

WE (t);α1 > 0, i = 0, ..., 3
}
.

Our model will thus be of the form

H(t|ψ(η),Hα
0 ). (4.15)
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We note that in the special case where one of the added baseline parameters, say

αj , is of the same type as the parameter that includes the covariates, that is ψ(η), then

we have that H in (4.15) depends on ψ(η) and αj only through αjψ(η). To see this,

consider the example of a proportional odds model, so that ψ(η) is a tilt parameter,

where we want to add a tilt parameter to the baseline. We then have that (4.15) can

be written as

H
ψ(η)
llEG ◦

[
H
αj
llEG ◦H0(t)

]
= H

ψ(η)αj
llEG ◦H0(t).

Other parameters, scale, frailty, etc., have the same property.

In the case where ψ(η) = eη we can readily see that logαj plays the role of the

intercept in the linear predictor, i.e. ψ(η)αj = elogαj+η, and is not redundant since

we imposed ψ(0) = 1 earlier. In the case where ψ(η) = 1 + η we have that ψ(η)αj =

αj + αjη and the effect of introducing αj to the baseline is that of adding an intercept

and rescaling all the regression parameters by the same factor αj . For the choice

ψ(η) = (1 + η)−1, the effect is the same but with 1/αj instead of αj .

Now we illustrate why the equivariance properties of section 3.1.8 are useful in a

regression context. Consider the following example of a proportional odds regression

model. We can write this model as

H(t|ψ(η),Hα
0 ) = H

ψ(η)
llEG ◦ C

α(HA(t), HB(t))

and assume the combination Cα is equivariant to the addition of a tilt parameter.

Then, we have

H(t|ψ(η, )Hα
0 ) = Cα

(
H
ψ(η)
llEG ◦HA(t), H

ψ(η)
llEG ◦HB(t)

)
meaning this regression model can be interpreted as the combination of two simpler

PO models, H
ψ(η)
llEG ◦ HA(t) and H

ψ(η)
llEG ◦ HB(t) where the baseline is fully specified.

Clearly the same equivariance property holds if we add parameters of which their effect

is equivariant under Cα.

4.12 Summary and future work

This chapter reviewed different regression models for time-to-event data including the

Accelerated Failure Time, Proportional hazards and Proportional Odds models and

some extended regression models. This uses the parametric families discussed in chapter

3 to construct new models including those based on the combination families. The

combination families are found to be useful in the very last section in this chapter

which discussed the flexible modelling of the baseline cumulative hazard function. This

way of modelling the baseline will be illustrated in the following chapter when fitting

models to the liver transplantation data.
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An area of future work is to explore how to perform automatic flexible estimation of

the baseline. This estimation would let the data decide which and how many parameters

need to be added to the baseline to have a flexible estimate.
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Chapter 5

Liver Transplantation Data

In this chapter we will give details of the data set we use to illustrate our methodologies

throughout this thesis. The data are on the use of liver transplantation to treat end

stage liver disease. The data consists of measurements on patients from the liver trans-

plant registry. These patients are suffering from some liver disease, where transplant is

the preferred treatment. For each patient in the data set, some patient characteristics

are recorded at entry to the registry. Also recorded are their survival times. Here

this indicates the number of days on the registry until either death, transplant, or in

a few cases, the time from registration until the date of data extraction. The data

was provided by NHS Blood and Transplant to investigate the presence of informative

censoring and possible methods to overcome these issues.

The first section of this chapter will give further details of the data set. In the

following section we will perform an initial analysis, in order to give us a better under-

standing of the data set. This will help us to uncover what issues are inherent with

this data set which we will need to attempt to solve in later chapters.

The main issue this data set provides is that the censoring is informative to the

event process. If a patient is very ill they are likely to die, but they are also more

likely to receive a transplant. Therefore, we see that there is dependence between

death, the event of interest, and transplant, the censoring. This is termed informative

censoring. The final section of this chapter will demonstrate that the censoring is

indeed informative.

5.1 Liver transplantation data set

This section will provide the details of the liver transplantation data set. We will

explain what covariates are present and give any necessary description of what these

covariates are.

Table 5.1 gives the details of the variables in the data set, stating their names and

giving a description of what the variable is. If a variable is categorical then the number

of patients in each category is given. If a variable is continuous, then its range and
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mean are given. There are 4449 patients in this data set, but not all of them have

observations for each of the covariates. Details of the number of missing observations

for each covariate are also given in table 5.1. Table 5.2 gives the details of each disease

category.

In the data set there are some patients with status and txcens both equal to 0.

This means that they have neither died nor received a transplant at the date of data

extraction, July 2009, carried out by NHS Blood and Transplant. These individuals are

removed from the analysis. There are no details of any possible death after transplant,

i.e. there are no patients where status and txcens both equal 1. We thus have that

time until death is censored by transplant, or time until transplant is censored by death.

There are 122 patients who have a survival time of 0. This would imply they spent

no time on the transplant registry, and on the day they received a transplant or died,

their information was added to the data set. It is standard practice to remove such

patients from the analysis. This is consistent with our assumption that H(0) = 0, see

property 2.1 in chapter 2.

Variable Name Description

patient Patient number (n = 4449)
survtime Survival time from listing to either death or transplant
status Indicator of whether the patient is alive or dead at the

survival time: 0 = alive (n = 3590), 1 = dead (n = 859)
txcens Indicator of whether the patient has had a transplant at

the survival time: 0 = no transplant (n = 1016),
1 = transplant (n = 3433)

disease Primary liver disease at time of registration
recip age Age of patient at registration (Range: 17-78, Mean: 52)
UKELD UK End stage Liver Disease score (1930 missing)

(Range: 38-83.2, Mean: 55.4)

Table 5.1: The variable names and descriptions in the Liver Transplantation data
set. The range and mean are given for the continuous variables, along with details of
how many missing observations there are. For categorical variables, the numbers of
observations in each category are given.

5.1.1 United Kingdom End-Stage Liver Disease Score

Transplants are often assigned to the sickest patients, meaning those with the greatest

need get priority. In order to assign transplants fairly, a model or score is required to

identify who needs the transplant most and who might benefit the most. In the United

States, the Mayo End-Stage Liver Disease (MELD) score has been used since February

2002 [73].

The MELD score is based on three common measurements, serum bilirubin, crea-

tinine and international normalized ratio (INR) for prothrombin time. It is calculated
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Disease Group Primary liver disease

1 Primary biliary cirrhosis (PBC) (n = 581)
2 Primary sclerosing cholangitis (PSC) (n = 420)
3 Alcoholic liver disease (ALD) (n = 1161)
4 Auto-immune and cryptogenic disease (AID) (n = 526)
5 Hepatitis C cirrhosis (HCV) (n = 701)
6 Hepatitis B cirrhosis (HBV) (n = 163)
7 Cancer (n = 215)
8 Metabolic liver disease (n = 199)
9 Other liver diseases (n = 453)
10 Acute hepatic failure (n = 30)

Table 5.2: Primary liver disease groups with details of how many patients with each
disease given.

using the formula

MELD =9.57 ln(creatinine mg/dl) + 3.78 ln(bilirubin mg/dl)

+ 11.2 ln(INR) + 6.43. (5.1)

The MELD score has proved useful but was not specifically developed to select which

patients need liver transplants. Thus the UK End-Stage Liver Disease (UKELD) score

was developed to predict transplant list mortality on a cohort of patients on the UK

liver transplant waiting list [3]. The UKELD score is given by the formula

UKELD =[5.395 ln(INR) + 1.485 ln(creatinine) + 3.130 ln(bilirubin)

− 81.565 ln(sodium)] + 435. (5.2)

We see that the UKELD score in (5.2) uses all the same measurements as the MELD

score in (5.1) with the addition of serum sodium. In a general sense, UKELD score

is a measure of how ill a patient is and is thus expected to be key to modelling death

due to liver disease censored by transplantation. We also note that this covariate is the

output of a model itself and is subject to measurement error.
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5.2 Exploratory data analysis

In this section we carry out an exploratory data analysis. Firstly we present some plots

and statistics to demonstrate the characteristics of the data set. We will then fit some

proportional hazards models to the data assuming non-informative censoring. We will

then see how there is a need to incorporate informative censoring into the model.

First, we investigate the dependence between the covariates and transplantation. In

figures 5.1, 5.2, 5.3 and 5.4 we see graphs comparing the proportions or distributions of

patients who did or did not have a transplant for the variables disease, UKELD score,

age at registration and for patient survival times.

In figure 5.1 we compare the proportion of transplants received for each disease

category. We see that on average the proportion of transplants over each disease cat-

egory is around 0.8, and although there is slight variation between the diseases, there

does not appear to be a very strong relationship between transplantation and disease

category.
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Figure 5.1: Proportion of transplants per disease
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In figure 5.2 we compare the kernel density estimates of UKELD score at registration

for the patients who have, or have not, had a transplant. We see that the corresponding

kernel density estimates differ, so there may be some relationship between transplant

and UKELD score. This does not seem surprising, since UKELD score is a measure

of patient health. If this measure indicates that the patient is very unwell, we would

expect them to be more likely to receive a liver transplant.
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Figure 5.2: Density estimate of UKELD score at registration
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In figure 5.3 we investigate whether there is some dependence between recipient age

and transplant indicator. We see that the kernel density estimates of both groups are

similarly shaped. We might infer that there is likely no relationship between patient

age and whether they might receive a transplant.
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Figure 5.3: Density estimate of recipient ages at registration
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The final plot figure 5.4 shows the kernel density estimates of the survival times for

each group. We see that these may be differently distributed. We see that transplants

are more likely to occur at shorter survival times, just like the death times. However, we

might suppose that more transplants occur closer to time of registration than deaths.

We may use this plot to justify that there is little dependence between the survival

time, and whether a transplant was received or not. We aim to show that this is not

true, and further investigation is needed.
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Figure 5.4: Density estimate of patient survival times
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Figure 5.5 shows the Kaplan-Meier estimates of the cumulative hazard function for

the time to death and time to transplant, i.e. censoring. In the next chapter these

will be referred to as the crude survival functions. The cumulative hazards are clearly

separated, where the median survival time for time to death is 446 days, whereas for

time to transplant is 97 days. This indicates that patients who are transplanted tend

to spend less time on the transplant list than those who die.
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Figure 5.5: Kaplan-Meier estimates of the cumulative hazard functions for time to
death censored by transplant and for time to transplant censored by death.

5.2.1 Fitting known regression models

Semi-parametric model

As part of an initial analysis a semi-parametric Cox proportional hazards model was

fitted to the data for time to death and for time to transplant. The Cox proportional

hazards model is given by

Hi(t) = exp(βTxi)H0(t),

where β is the vector of parameters, xi is the vector of covariates for individual i and

H0(t) is the baseline cumulative hazard function.
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Parameter Hazard Ratio exp(βi) Standard Error p-value

Disease (PBC)
Disease (PSC) 0.73 0.23 0.18
Disease (ALD) 1.17 0.15 0.32
Disease (AID) 1.30 0.18 0.15
Disease (HCV) 1.34 0.18 0.11
Disease (HBV) 1.16 0.31 0.62

Disease (Cancer) 1.66 0.29 0.08
Disease (Metabolic) 2.10 0.22 < 0.001

Disease (Other) 2.01 0.18 < 0.001
Disease (Acute) 0.84 0.73 0.81

Age 1.02 0.004 < 0.001
UKELD score 1.15 0.01 < 0.001

Table 5.3: Results from the Cox model for time to death, assuming non-informative
censoring due to transplant. PBC disease is the reference factor.

Parameter Hazard Ratio Standard Error p-value

Disease (PBC)
Disease (PSC) 1.19 0.10 0.09
Disease (ALD) 0.99 0.08 0.95
Disease (AID) 1.02 0.10 0.87
Disease (HCV) 1.24 0.09 0.02
Disease (HBV) 1.50 0.15 0.01

Disease (Cancer) 2.33 0.12 < 0.001
Disease (Metabolic) 1.27 0.13 0.07

Disease (Other) 0.80 0.11 0.04
Disease (Acute) 1.75 0.28 0.05

Age 1.00 0.002 0.82
UKELD score 1.03 0.005 < 0.001

Table 5.4: Results from the Cox model for time to transplant, assuming non-informative
censoring due to death. PBC disease is the reference factor.
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Tables 5.3 and 5.4 contain the results of fitting a Cox proportional hazards model

to the liver transplantation data for time to death and time to transplant, respectively.

The baseline hazard gives the hazard of death, or transplant, for a patient with Primary

biliary cirrhosis, with age 0 and a UKELD score of 0. Here the hazard ratio is reported

instead of the parameter estimates. For example, in table 5.3 the ratio of hazards where

the UKELD score differs by one, with all other covariates equal, is 1.15. The p-values

relate to the null hypothesis that the coefficients are equal to zero.

We see that for the model for time to death, age and UKELD score are both

significant, as is disease category. However, for the model for time to transplant, we

do not have that age is significant. Removal of age from the model ensured all other

covariates were significant.
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Figure 5.6: Cumulative hazard function for a patient aged 46 with disease HCV and a
UKELD score of 49.2 in a Cox model fitted with and without UKELD score.

An important issue to note is that there are a lot of missing values for UKELD score,

as highlighted in table 5.1. Our analysis only deals with complete cases, thus a model

with UKELD score included has fewer observations than a model without UKELD

score. Figure 5.6 shows two cumulative hazard curves, one from a model with UKELD

included and all other covariates, and the other with it excluded. Here we see that

the inclusion of UKELD score in the model drastically changes the cumulative hazard

function, leading to a more conservative estimate of survival. We cannot rule out that
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the UKELD score could be missing-not-at-random (MNAR), meaning there is some

reason why particular patients have missing UKELD score. It may be that patients

who are healthier have their score missing, which would mean the survival estimate

would be more conservative than necessary as suggested by figure 5.6. It could also

be that patients who are sicker have missing UKELD and the survival curves should

in fact be even more conservative than they are now. The issue of MNAR covariates

however, is not the focus of this thesis, instead we investigate informative censoring.

Fully parametric model

As the models we propose are fully parametric, part of our initial analysis will include

the use of such models in the literature. We have chosen to focus on the accelerated

failure time model. The AFT model is given by

Hi(t) = H0(exp(βTxi)t),

where β is the vector of parameters, xi is the vector of covariates for individual i and

H0(t) is the baseline cumulative hazard function.
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Figure 5.7: Non-parametric estimate of the cumulative hazard function (solid line)
compared to the Weibull AFT (dashed line), Log-logistic AFT (dotted line) and the
Gompertz AFT (dot-dashed line) estimated cumulative hazards for a patient with mean
age (52), mean UKELD score (55) with ALD.
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Fitting an AFT model with a Weibull baseline hazard is equivalent to fitting a

proportional hazards model. The results of this model are given in table 5.5, where

we see all covariates are significant except recipient age. We see the cumulative hazard

of the Weibull AFT in figure 5.7 for an average individual, i.e. a patient with mean

age and UKELD score and ALD, the most common disease in this data set. In this

figure the Weibull AFT CH is compared with the estimated cumulative hazard for the

log-logistic AFT model and the Gompertz AFT model for the same individual and

the non-parametric estimate of the cumulative hazard. Note that comparing the CH

functions of the average individual is comparing the baseline CH in our context, after

re-centring the covariates appropriately. The log-logistic AFT model appears to reflect

the shape of the non-parametric estimate, whereas the Weibull AFT model seems to

capture the early characteristics of the non-parametric model. We see that the CH

for the average individual from the Gompertz AFT model more accurately reflects the

shape and characteristics of the non-parametric estimate.

Parameter Estimate Standard Error p-value

Intercept 7.27 0.36 < 0.001
Disease (PSC) -0.21 0.12 0.08
Disease (ALD) 0.01 0.10 0.96
Disease (AID) -0.02 0.11 0.84
Disease (HCV) -0.26 0.11 0.01
Disease (HBV) -0.46 0.17 0.01

Disease (Cancer) -1.00 0.13 < 0.001
Disease (Metabolic) -0.26 0.15 0.09

Disease (Other) 0.28 0.13 0.03
Disease (Acute) -0.52 0.32 0.10

Age -0.001 0.003 0.70
UKELD score -0.03 0.01 < 0.001

Log(scale) 0.13 0.02 < 0.001

Table 5.5: Results from the AFT model with Weibull baseline, for time to death with
censoring due to transplant. PBC disease is the reference factor.

5.2.2 Fitting combination models

In chapter 4 we discussed how to use the combination models in chapter 3 as regression

models. Recall the models we propose are termed the linear, geometric and composi-

tion combinations. In this section we use these models as the baseline hazard in the

parametric proportional hazards, or the accelerated failure time models. We expect

this will provide some flexibility for the baseline, if we use H1(t) is convex and H2(t)

is concave.

As an example, we consider the linear combination.

H(t|α, β, ν) = (1− α)H1(tβ) + αH2(tν).
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We tried various combinations of H1 and H2, but restricted ourselves to consider the

cases where one was convex and one was concave. The parameters of the model were

estimated in R by maximum likelihood estimation. We have that the parameter θ is

the exponential of the linear predictor, so

log(θ) = β0 + β1disease + β2recip age + β3UKELD.

For the AFT model with linear combination baseline, we found the combination of

the Gompertz and the log-logistic worked best. This model was easily fitted using the

flexsurv package. This package requires the cumulative hazard and the hazard of the

model to be defined and outputs non-parametric estimates of the cumulative hazard

and the model parameters. This package thus provides a method for model checking

and allows for the easy fitting of our more complex models. The combination models

could be fitted using other packages such as timereg, we however, find the flexsurv

package to be the most convenient.

The estimates of the cumulative hazard are compared to the non-parametric esti-

mate in figure 5.8. The confidence interval for the coefficient of recip age contained

one and thus was removed for the model. We see that this model stays within the

confidence limits of the non-parametric estimate of the CH function in figure 5.8.
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Figure 5.8: The non-parametric estimate of the CH function compared with the CH
for the parametric AFT model with a linear combination baseline.
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5.2.3 Issues with informative censoring

In this data set, informative censoring would occur when the unknown mechanisms

causing death or transplant are dependent in some way. As detailed in chapter 6, it is

impossible to determine whether the censoring is informative or not from the data.

If we perform a simple logistic regression on the censoring indicator using the

UKELD score, recipient age and disease category as covariates, we see that they are

all significant in table 5.6. This implies that censoring, or transplantation, depends on

each of these covariates, and thus we could suspect that the censoring is informative

since we have seen from the Cox regressions that the survival time also depends on

all of these covariates too. This method for investigating the independent censoring

assumption was discussed by Collett [17].

Parameter Estimate Standard Error p-value

Disease (PBC) 0
Disease (PSC) 0.39 0.22 0.07
Disease (ALD) -0.18 0.16 0.26
Disease (AID) -0.19 0.19 0.32
Disease (HCV) -0.06 0.18 0.76
Disease (HBV) 0.36 0.32 0.26

Disease (Cancer) 0.82 0.30 0.01
Disease (Metabolic) -0.19 0.24 0.43

Disease (Other) -0.74 0.20 < 0.001
Disease (Acute) 1.14 0.78 0.15

Age -0.01 0.004 0.001
UKELD score -0.06 0.01 < 0.001

Table 5.6: Results from the logistic regression on the censoring indicator.
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Chapter 6

Cumulative Hazards Models for

Informative Censoring

6.1 Introduction

A key element of survival data is the presence of censoring, which occurs when the

event of interest is not fully observed. There are many types of censoring and it can

occur in many ways. For example, if a trial has a fixed end point, the event of interest

may not have occurred for all trial participants by the end of the study, and so those

participants who have not experienced the event would be censored. If the event is

death by some disease, a patient may die from some other competing disease, and

thus they would be censored. Another common cause for censoring is loss-to-follow-up,

where the patient can no longer be contacted and so there is no way of knowing if they

have experienced the event or not.

The problem in practice is that the only available information is if the individual

is censored or not and not the reasons for why it was censored. For this reason, most

methods for analysing time-to-event data conveniently assume that the censoring mech-

anism is in no way related to the event time mechanism. This is called non-informative

censoring. This assumes that the censoring and event times are independent and that

the corresponding distributions are functionally independent. This assumption is not

always appropriate and can sometimes have serious effects on the inference.

In this chapter we focus on right censoring where it is known that the lifetime is

longer than reported, but it isn’t known how much longer. The most common approach

to dealing with this type of censoring is to model the observed time as the minimum

of the event time and the censoring time, i.e. whichever occurs first. If our potential

event time is T and the censoring time is C, then we observe

Y = min (T,C) ,
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and the censoring indicator

∆ =

0 T ≤ C, event time observed

1 T > C, event time censored.

In a non-informative context, we assume both that the random variables T and C are

independent and the parameters θ and γ of the distributions for T and C, fT (t|θ)
and fC(c|γ) respectively, are functionally independent. I.e., there does not exist some

function q(·) such that γ = q(θ). In this chapter we review what is meant by informative

censoring via non-informative censoring.

The goal of analysing the survival data of the form (Y,∆) is to make inference about

the joint distribution of (T,C), and in most problems, only the marginal distribution

of T . However, given (Y,∆), there are an infinite number of joint distributions (T,C)

that could correspond to the distribution of (Y,∆) [74]. For the same joint distribution

of (Y,∆), there will be some compatible joint distributions where T and C are inde-

pendent, and others where they will be dependent. Thus given only data (Y,∆) for

different individuals, it is impossible to learn whether the event and censoring times

are independent or not.

The latter part of this chapter aims to propose a sensitivity analysis to learn about

the marginal distributions of T and C and overcome the above non-identifiability issue.

6.2 Specification of informative censoring

In this section we discuss different types of right censoring, the assumptions required

for such models and the impact on the analyses. We aim to specify what is meant by in-

formative censoring. This is achieved by discussing what is meant by non-informative

censoring, which is the complement of informative censoring. Non-informative cen-

soring is a common, and often unjustified, assumption in time-to-event data analysis.

Thus determining the class of non-informative censoring models gives insight into when

these models are actually justified. When they are not, we look to informative censoring

models.

The following defines what is meant by non-informative censoring, which Crowder

refers to as the Makeham assumption [23, 35]. We follow a direct distributional ap-

proach, but there are other approaches, such as that based on counting processes as in

Kalbfleisch and Prentice [36].

Definition 6.1. Given a survival time random variable T and a censoring random

variable C, the joint survival model characterised by the joint survival ST,C is a non-
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informative censoring model if

lim
ε→0

1

ε
P (t < T ≤ t+ ε, T ≤ C|T > t) = hT (t)

lim
ε→0

1

ε
P (c < C ≤ c+ ε, C < T |C > c) = hC(c).

This definition states the hazard functions for the event and censoring mechanisms

in a system where both events and censoring can occur.

In a general model for right censoring, the random variable Y is defined such that

Y ≤ T,

where ∆ is defined as

∆ =

0 Y = T, event time observed

1 Y < T, event time censored.

This general model does not require any latent censoring variable, and in some circum-

stances, is a more intuitive representation of the system under study.

Under the constraint that an individual must either be censored or experience the

event, we have that

1 = P (Y = T ) + P (Y < T ) =

∫ ∞
0

(
P (Y = y, Y = T ) + P (Y = y, Y < T )

)
dy

=

∫ ∞
0

P (Y = T |T = y)P (T = y) dy +

∫ ∞
0

P (Y < T, Y = y|T > y)P (T > y) dy.

Here we have informally used probabilities with the event {Y = y} instead of a more

formal measure theoretic quantity. Within this chapter we will write fT (t)dt = P (T =

t), meaning that in a neighbourhood around t of length dt the probability that {T = t}
is the density evaluated at that value multiplied by the length. A more formal way to

write the above equation is∫ ∞
0

P (Y = T |T = y)fT (y)dy +

∫ ∞
0

fY (y|T > Y )P (T > Y )dy = 1

where fT (y) is the marginal density of T evaluated at y and fY (y|T > Y ) is the

conditional density of the observed time, Y , when censoring occurs. The same equation

can be written as

1 =

∫ ∞
0

a(y)fT (y)dy +

∫ ∞
0

ST (y)dB(y)

=

∫ ∞
0

[a(y) +B(y)] fT (y)dy
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where

a(y) = P (Y = T |T = y) = P (T = Y )
fT (y|T = Y )

fT (y)
, and (6.1)

dB(y) = P (Y < T, Y = y|T > y)dy =
fY (y|T > Y )

ST (y)
P (T > Y )dy (6.2)

as in the works of Williams and Lagakos [74, 40, 39]. In the above, a(y) is the probability

that the potentially observable time {T = y} is actually uncensored, and dB(y) is the

conditional probability that the event time is censored at a time y given that the

individual has survived up to time y.

To see the last equivalence in the above,
∫∞

0 ST (y)dB(y) =
∫∞

0 B(y)fT (y)dy, we

use integration by parts, i.e.∫ ∞
0

ST (y)dB(y) = [ST (y)B(y)]y=∞
y=0 +

∫ ∞
0

fT (y)B(y)dy

=

∫ ∞
0

B(y)fT (y)dy

since here B(y) =
∫ y

0 dB(s) and so B(0) = 0 and also B(∞) <∞.

Since any observed time is either censored or not, then the contribution to the

likelihood for an uncensored observation is P (Y = y, Y = T ) = a(y)fT (y) and is P (Y =

y, Y < T ) = dB(y)ST (y) for a censored observation. The likelihood for independent

and identically distributed data (yi, δi), then becomes∏
i

(a(yi)fT (yi)
1−δi (ST (yi)dB(yi))

δi . (6.3)

As discussed by Williams and Lagakos [74], the condition

a(y) +B(y) = 1, for all y such that fT (y) > 0 (6.4)

characterises all models for which the likelihood is of the form∏
i

fT (yi)
1−δiST (yi)

δi . (6.5)

This can be seen from the following arguments. Clearly from (6.1), a(y) = P (Y =

T |T = y) tends to zero as y → ∞. We have that B(y) =
∫ y

0 dB(s) is an increasing

function with B(0) = 0. Then the equation (6.4), a(y) + B(y) = 1 implies that B(y)

tends to one when y → 0, so that B(y) is a CDF given by B(y) = 1 − a(y) = P (Y <

T |T = y). This can be re-written as follows

B(y) = P (Y < T |T = y) = P (Y < T, Y < y|T = y)

since {Y < T, T = y} ⊂ {Y < y}. Then we have dB(y) = P (Y < T, Y = y|T = y)dy
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which is almost the same as (6.2) except that here the condition event is {T = y} instead

of {T > y}. Then dB(y) and a(y) are, respectively, the conditional probabilities of the

event time being censored at y and not censored given the event time T is y.

The likelihood (6.3) can be re-written as∏
i

fT (yi)
1−δiST (yi)

δi ×
∏
i

a(yi)
1−δidB(yi)

δi . (6.6)

The first factor of the likelihood involves only the marginal distribution of the event

time T and the second factor only involves the conditional distribution of the censoring

process, conditioned on realisations of the event times. Therefore, using the likelihood

principle in Cox and Hinkley [20], only the first factor in the likelihood (6.6) can be

used for inferences about the distribution of interest FT and the second factor can be

safely ignored.

Condition (6.4) is called the constant-sum property and is equivalent to non-informative

censoring as described in definition 6.1 and by Kalbfleisch and MacKay [35].

Now consider the following different assumption

P (T = t|Y < T, Y = y) =
fT (t)

ST (y)
, ∀ 0 < y < t. (6.7)

Lagakos [39] states that the likelihood for this model can be written also as in (6.5).

To see this, note first that

{T = t} = (∪y≤t{T = t, Y = y, Y < T}) ∪ {T = t, Y = T},

then

fT (t)dt = P (T = t) =

∫ t

0

(
P (T = t|Y = y, Y < T )

)
P (Y = y, Y < T )dy

+ P (Y = T |T = t)P (T = t)

=

∫ t

0

(
P (T = t|Y = y, Y < T )

)
ST (y)dB(y) + a(t)fT (t)dt

=

∫ t

0

(fT (t)dt

ST (y)

)
ST (y)dB(y) + a(t)fT (t)dt by (6.7)

=

(∫ t

0
dB(y) + a(t)

)
fT (t)dt

= [a(t) +B(t)] fT (t)dt.

Thus for these to be equivalent, we require a(t)+B(t) = 1 for all t > 0, i.e. a constant-

sum model. Thus models satisfying (6.7) are non-informative censoring models.

Models satisfying (6.7) are referred to as non-prognostic censoring models. This

property states that the information provided by the censoring at time y is only that

the true survival time is larger than y. Williams and Lagakos [74] give an example
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of a model that is constant-sum but does not satisfy the non-prognostic censoring

condition. This implies that the set of non-prognostic censoring models is a proper

subset of non-informative censoring models.

The usual model for right censoring includes an interpretation of the censoring

random variable, with the observed survival time being

Y = min (T,C) ,

and the censoring indicator

∆ =

0 T ≤ C, event time observed

1 T > C, event time censored.

If we assume that T and C are independent, then using (6.2) we have

dB(y) = P (Y < T, Y = y|T > y) = P (C < T,C = y|T > y)

=
P (C < T,C = y, T > y)

ST (y)
=
P (C < T,C = y)

ST (y)

=
P (C = y, T > y)

ST (y)
=
P (C = y)P (T > y)

ST (y)

= P (C = y) = fC(y)dy.

Also by (6.1) we have that

a(y) = P (Y = T |T = y) = P (T ≤ C|T = y)

=
P (T ≤ C, T = y)

P (T = y)
=
P (C ≥ y, T = y)

P (T = y)

=
P (T = y)P (C ≥ y)

P (T = y)
= P (C ≥ y) = SC(y).

This implies a(y) + B(y) = 1 and thus an independent censoring model is a constant-

sum model.

Under the assumption that T and C are independent, we then find that the likeli-

hood function is given by∏
i

(fT (yi)SC(yi))
1−δi (fC(yi)ST (yi))

δi .

If we further have that the distributions fT and fC are functionally independent, i.e.

they have no common parameters, then inferences about the distribution of T can be

based only on the likelihood (6.5). This setting is called independent censoring. As

non-prognostic censoring and independent censoring models have the same form of like-

lihood, one might expect these models to be equivalent. In fact, independent censoring

models are non-prognostic censoring models, but not vice versa, i.e. independent cen-
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soring models form a proper subset of non-prognostic censoring models [39]. In figure

6.1 we can see a visual representation of the types of censoring and which ones are

subsets of each other. We see that independent censoring is a subset of non-prognostic

censoring, which is a subset of constant-sum models which is complement to informative

censoring.

Independent

Non-prognostic

Constant-sum

Informative Censoring

Figure 6.1: Diagram to represent the types of non-informative censoring, constant-sum,
non-prognostic and independent, and their compliment informative censoring.

Each type of censoring model discussed in this section has their own unique worth

in the analysis of survival data. Independent censoring models are commonly used in

clinical trials and other settings where the failure and censoring times can be assumed

independent. Non-prognostic censoring models are useful when the consideration of

potential censoring times is not feasible. Non-informative censoring models charac-

terised by the constant sum property are the most general of all these models and are

equivalent to the Makeham assumption stated in definition 6.1. This type of model

would be used when there is not enough evidence to suggest either independent or

non-prognostic censoring. When the non-informative censoring assumption cannot be

considered valid, an informative censoring model is required. It is difficult to determine

from the data alone whether informative or non-informative censoring is appropriate.

This identifiability issue is discussed in the next section.

6.2.1 Censoring as a missing data problem

Survival data is a particular type of missing data, in that the censoring mechanism is

a type of missingness mechanism [12]. In the context of right censoring we know the

range of the censored, or missing, value. In terms of missingness, the censoring can

take one of these forms:

1. Censored completely at random (CCAR) which mimics missing completely at

random (MCAR). This is where the censoring and event processes are completely

independent. This is equivalent to independent censoring.
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2. Censored at random (CAR) which mimics missing at random (MAR). In this

mechanism, the censoring is independent of the failure conditional on some co-

variates. This is equivalent to non-informative censoring.

3. Censored not at random (CNAR) which mimics missing not at random (MNAR).

Here the censoring and failure times are dependent. This is informative censoring.

6.3 Identifiability problem of informative censoring

There have been two main approaches to dealing with informative censoring. The first

approach is to characterise the joint distribution of the event times and the censoring

times. The second approach is to propose a model for the functions a and B, as in

Lagakos and Williams [40]. It is the problems faced with the former approach that this

chapter focuses on, and ways in which to overcome those said problems.

We have introduced the idea that given the data (Y,∆), it is impossible to learn

whether the T and C are independent or not, thus there is an identifiability issue. In

this section this issue will be explained mathematically. However, first we will discuss

the form of the joint distribution of (Y,∆), fY,∆(y, δ).

6.3.1 The joint distribution of Y and ∆

In order to model the joint distribution of T and C we need to understand the forms

the distribution can take and see how functions like the survival and cumulative hazard

generalise to two variables.

We define the CDF of the joint distribution of T and C as

FT,C(t, c) = P (T ≤ t, C ≤ c) =

∫ t

0

∫ c

0
fT,C(s, b)dbds.

We define the joint survival function as

ST,C(t, c) = P (T > t, C > c) =

∫ ∞
t

∫ ∞
c

fT,C(s, b)dbds.

Note that the sum of the joint survival and CDF does not equal 1, i.e. ST,C(t, c) +

FT,C(t, c) 6= 1 as seen in [77]. Thus ST,C and FT,C are not the only probabilities needed

when discussing a bivariate distribution. This point is illustrated graphically in Figure

6.2 as seen by Yang and Nachlas [77]. We see that the probabilities P (T ≤ t, C > c)

and P (T > t, C ≤ c) are required for the full characterisation of this distribution.

A key equation to note is the probability of being in the rectangle [t1 ≤ T ≤ t2, c1 ≤
C ≤ c2]. This equation is

P (t1 ≤ T ≤ t2, c1 ≤ C ≤ c2) = FT,C(t2, c2)+FT,C(t1, c1)

− FT,C(t1, c2)− FT,C(t2, c1). (6.8)

131



t

c

ST,C(t, c)

P (T > t,C > c)
P (T ≤ t, C > c)

P (T > t,C ≤ c)
P (T ≤ t, C ≤ c)

FT,C(t, c)

T

C

Figure 6.2: Graphical representation of bivariate probabilities.

A particularly useful case of equation (6.8) enables us to relate the joint survival func-

tion to the joint CDF and the marginal CDFs,

ST,C(t, c) = P (t ≤ T <∞, c ≤ C <∞)

= 1− FC(c)− FT (t) + FT,C(t, c). (6.9)

From equation (6.9) we can deduce that

∂2

∂t∂c
ST,C(t, c) = fT,C(t, c),

and thus a joint survival function will characterise a joint distribution.

Using the joint distribution induced by the joint survival, we are able to define the

joint distribution of the observed time Y and the censoring indicator ∆. To calculate

this distribution we use the fact that

fY,∆(y, δ) = − ∂

∂y
P (Y > y,∆ = δ). (6.10)

Since ∆ can only take the values of 0 and 1, then the joint survival SY,∆ will be

P (Y > y,∆ = δ) =

P (Y > y,∆ = δ), δ = 0

P (Y > y,∆ = δ), δ = 1

=

P (T > y, T ≤ C), δ = 0

P (C > y, T > C), δ = 1.
(6.11)

Thus we need to calculate the following probabilities

QT (y) = P (T > y, T ≤ C) and QC(y) = P (C > y, T > C). (6.12)
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These probabilities are called the crude survival functions of T and C evaluated at y.

In the same vein, the quantities in the left hand side of definition 6.1 are called the

crude hazard functions. A crude survival function is the probability of the event given

that the event could be caused by some other mechanism, it is sometimes called the

cause-specific survival function or the sub-survival function [23].

These probabilities can be calculated using

QT (y) = P (T > y, T ≤ C) =

∫ ∞
y

∫ c

y
fT,C(t, c)dtdc

=

∫ ∞
y

∫ c

y

∂2

∂t∂c
ST,C(t, c)dtdc

=

∫ ∞
y

[
∂

∂c
ST,C(c, c)− ∂

∂c
ST,C(y, c)

]
dc

=

∫ ∞
y

∂

∂c
ST,C(c, c)dc− [ST,C(y, c)]c=∞c=y

= ST,C(y, y) +

∫ ∞
y

∂

∂c
ST,C(c, c)dc

and using a similar calculation we find

QC(y) = P (C > y, T > C) = ST,C(y, y) +

∫ ∞
y

∂

∂t
ST,C(t, t)dt.

Thus using equation (6.10), we have that the joint distribution of Y and ∆ is found by

calculating

fY,∆(y, δ) =

 ∂
∂cST,C(t, c)|t=y,c=y − d

dyST,C(y, y), δ = 0

∂
∂tST,C(t, c)|t=y,c=y − d

dyST,C(y, y), δ = 1.
(6.13)

Now that we have outlines how the joint distribution of (Y,∆) can be found, we

will continue by explaining how either independent or dependent (T,C) can give the

same joint distribution of (Y,∆).

6.3.2 Identifiability issue

Tsiatis [70] proved that there is an identifiability issue when it comes to determining the

dependence structure. This lack of identifiability is explained in terms of the crude and

net survival functions. Crude and net survivals arise in the context of competing risks.

In the setting of informative censoring, the censoring and event times are competing.

As previously discussed crude survival of some event is the probability of this event

occurring where other events could also occur, i.e. censoring. The net survival is the

probability of the event in a hypothetical world where only this type of event can occur,

i.e. there is no censoring.

The joint distribution of the event time T and the censoring time C uniquely defines
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the crude survival functions, QT (t) and QC(c), for T and C, see Tsiatis [70]. In our

context, the crude survival functions are found by

QT (t) = −
∫ ∞
t

∂

∂s
ST,C(s, b)|s=s,b=sds (6.14)

QC(c) = −
∫ ∞
c

∂

∂b
ST,C(s, b)|s=b,b=bdb, (6.15)

and we note that these expression are equal to those as in (6.12). Similarly, the net

survival functions are found by

Q∗T (t) = ST,C(t, 0) = ST (t)

Q∗C(c) = ST,C(0, c) = SC(c).

Thus the net survival functions correspond to the marginal survival functions.

The following theorem demonstrates the identifiability issue in terms of the crude

and net survivals.

Theorem 6.2. Given any set of crude survival functions QT (t) and QC(c), there exist

some net survival functions Q̃∗T (t) and Q̃∗C(c) corresponding to the case where T and C

are assumed independent, and the corresponding crude survivals Q̃T (t) and Q̃C(c)are

such that Q̃T (t) = QT (t) and Q̃C(c) = QC(c).

The proof of this theorem is given by Tsiatis [70]. Theorem 6.2 thus says that given

some crude survivals, we cannot determine whether T and C were independent or not.

Theorem 6.2 thus states that the identifiability issue of making inferences about the

dependence parameter arises from the fact that the likelihood obtained from a joint

survival with dependence can be equivalent to a likelihood obtained from the joint

survival with independence. This is demonstrated by the fact that the likelihood is

written in terms of the crude survivals, as seen from (6.12) and (6.13). An example of

this issue can be seen in the work of Tsiatis [70].

To combat this problem, we attempt to follow the procedure outlined by Siannis,

Copas and Lu [63] and perform a sensitivity analysis on the dependence parameter.

In these analyses we set the dependence parameter to be some value, or within some

interval, and then perform likelihood inferences on the parameters of the event time T

and the censoring time C. This will be discussed in detail later in section 6.4.2.

6.4 Approaches to informative censoring

In the literature there exist many approaches to how one should deal with the issue of

informative censoring. A few of these approaches will be discussed in this section.

A natural response to the lack of identifiability is to attempt to place bounds on the

joint and marginal survival functions. The more assumptions that are made, and the
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more information that becomes available allows the bounds to become tighter. These

bounds allow one to learn about the joint behaviour of T and C without having to

attempt to model it. Other approaches discussed in this section actually attempt to

model said behaviour.

A popular approach is one that aims to model the conditional distribution of the

censoring given the event time. Knowing this distribution would then enable us to

ascertain the dependence structure and thus the joint distribution of T and C. This

approach is discussed in section 6.4.2.

If we know the joint survival, we can define the joint distribution of T and C. Then

we are able to define the joint distribution of Y = min(T,C) and ∆ = I(T > C). Thus

we would like to propose the form of the joint survival function. Suppose that the joint

survival takes the form

ST,C(t, c|α) = exp {ϕα(HT (t), HC(c))} , (6.16)

for some function ϕα(·, ·). We would like that a certain value of α will give the inde-

pendent case, i.e. if α = 1, say, then

ST,C(t, c|α = 1) = exp {ϕ1(HT (t), HC(c))}

= exp {−(HT (t) +HC(c))} . (6.17)

In section 6.4.3 we will detail the possible functions ϕα, either from the literature

or propose new functions. We will provide three new different ways in which to specify

the functions ϕα.

6.4.1 Bounds on the marginal survival function

We have previously discussed the identifiability issues and the fact that we are unable

to determine whether there is some dependence between T and C. In this context, it

may be of use to place bounds on the marginal survival function of the event time, and

the censoring time.

Peterson [51] obtains sharp bounds on the marginal survival functions based on the

crude survival functions. He finds that

QT (y) +QC(y) ≤ ST (y) ≤ QT (y) +QC(0), (6.18)

QT (y) +QC(y) ≤ SC(y) ≤ QC(y) +QT (0). (6.19)

He also shows that one can bound the joint survival function as follows

(QT +QC) (max(t, c)) ≤ ST,C(t, c) ≤ QT (t) +QC(c).

These bounds however, can be very wide.
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Tighter bounds do exist in the literature, but they require additional information.

For example, Slud and Rubinstein [65] develop bounds based on the function

ρ(t) = lim
ε→0

P (t < T < t+ ε|T > t,C ≤ t)
P (t < T < t+ ε|T > t,C > t)

.

The bounds on the survival function require the investigator to bound the function

ρ(t), which may be possible with large enough samples.

Klein and Moeschberger [38] propose that the marginal survival function of Y =

min(T,C) is given by

SY (y) =

{[
1

ST (y)

]θ−1

+

[
1

SC(y)

]θ−1
}−1/(θ−1)

.

The parameter θ is related to the concordance, which is a measure of how agreeable T

and C are. The bounds on the marginal survival depend on the investigator being able

to provide some bounds on the parameter θ. This would be possible given a sufficiently

large sample. These bounds would be plugged into the survival function for Y and thus

would provide the bounds on the survival function.

6.4.2 Approach based on the conditional distribution

In order to model T and C jointly, one could focus their attention on the form of the

conditional distributions fC|T and fT |C . If we could ascertain these distributions, we

would know the dependence structure of the random variables T and C. The problem

with this method is that, given the data, it will be impossible to determine whether

there really should be any dependence between the two variables, as described in the

identifiability issue shown before.

Siannis, Copas and Lu [63] propose a sensitivity analysis on a parameter that de-

scribes the level of dependence between T and C. The authors don’t estimate this

parameter, but set it to be a certain value, or within a certain range and learn about

the sensitivity of the inferences on the joint distribution [62, 66].

They propose that the conditional distribution of C given T take the same form as

the marginal distribution of C, but the parameter of this conditional distribution may

depend on T . They assume the marginals of C and T depend on some parameter γ

and θ respectively, i.e. fC(c|γ) and fT (t|θ). They propose

fC|T (c|t) = fC

(
c|γ + νi

− 1
2

γ B(t, θ)

)
,

where B(t, θ) is a bias function measuring the pattern of the dependence and iγ =

Var
(
∂
∂γ log fC(c|γ)

)
. Here if ν = 0 then T and C are independent. This parameter, ν,

is meant to measure the size of the dependence between T and C. The choice of the

bias function B(t, θ) reflects the beliefs held about the dependence structure between
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T and C. For example, if it is believed that censoring is more likely to occur for larger

values of t, then an increasing bias function would be used. Thus choosing this function

is key to constructing this model so that it accurately reflects the beliefs about the true

model.

Using this conditional distribution and the distribution of T the joint distribution

of T and C can then be found. Siannis et al. approximate the joint distribution as

follows

fT,C(t, c) = fT (t|θ)fC(c|γ + νi
− 1

2
γ B(t, θ))

≈ fT (t|θ)fC(c|γ)

[
1 + νi

− 1
2

γ sC(c, γ)B(t, θ)

]
,

where sC(c, γ) is the score function for the distribution of C. This then allows the

formulation of the likelihood in which the independent case appears as a factor in the

likelihood. They then propose a local sensitivity analysis on ν instead of conducting a

full analysis with an aim to estimate ν. They fix ν to be within a range of values and

use maximum likelihood to estimate θ and γ. It is then investigated whether the value

of ν chosen had much impact on the estimates of the other parameters.

In section 6.5 we will perform a sensitivity analysis on the dependence parameter

of models we fit to the liver transplant data set which aim to deal with informative

censoring.

6.4.3 Approaches based on the cumulative hazard

Roy and Mukherjee [56] extend univariate survival distributions to a multivariate

model. They propose a method for the joint modelling of k survival times. Here,

we propose to adapt their methodology to jointly model the event and censoring times,

hence k = 2. Their model proposes that the joint survival function of T and C is

ST,C(t, c) = exp
(
− [HT (t)α +HC(c)α]1/α

)
, (6.20)

where α ≥ 1. Notice here, that if α = 1 then we recover the independent case (6.17).

Recall that this model was first introduced in section 3.1.8 as a univariate model that

depended on two CH functions HA and HB that were both functions of t, in equation

(3.18). Here we have extended this to a bivariate model, by replacing one of the CHs

with a CH for another variable, c.

In their paper, Roy and Mukherjee show that if the variables all have increasing

hazard functions then so does the joint distribution. The same is true if each variable

is of Increasing Hazard Rate Average (IHRA) class as seen in section 2.3.9. We note

that these properties do rely on the condition that α ≥ 1.

Thanks to our investigation of the analytical properties of cumulative hazard func-

tions in Chapter 2, we know that powering and summing CH functions preserves the
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CH function properties. Thus it is easy to identify that the equation (6.20) will in fact

define a joint survival function.

Noting the form of the joint survival function (6.20), we see that the cumulative

hazard is a function of other, known cumulative hazards, namely the Weibull CH, HT

and HC . Thus, we aim to generalise this model to give us the flexibility we desire. We

propose that the joint survival function of T and C be of the form

ST,C(t, c) = exp
{
−H−1

α [Hα(HT (t)) +Hα(HC(c))]
}
, (6.21)

where Hα is a cumulative hazard function with parameter α.

The survival function in (6.21) is a generalisation of (6.20) since the Weibull CH

has been replaced with some more general CH Hα. Thus letting Hα(x) = xα we recover

(6.20). Note that this was similar to the model proposed in section 3.1.8 in equation

(3.17), the linear-composition combination. It is a bivariate extension of the model in

(3.17), just as (6.20) was a bivariate extension of (3.17). In this model the choice of

Hα will reflect the beliefs of the dependence structure of T and C. This function is

thus key to the use of this model. In order to recover the independent case, for some

α = α̃, we require that Hα̃ = H1
E , i.e.

H−1
α̃ [Hα̃(HT (t)) +Hα̃(HC(c))] = HT (t) +HC(c).

Here Hα plays a similar role to that of νi
− 1

2
γ B(t, θ) in the Siannis et al. approach.

Our approach is similar to the dependence modelling via Archimedean copula [71].

In these models the joint survival of T and C is given by

ST,C(t, c) = φ−1 (φ(ST (t)) + φ(SC(c))) ,

where φ : [0, 1]→ [0,∞) is a convex, decreasing function with φ(1) = 0 and limx→0 φ(x) =

∞.

Proposition 6.3. Our model proposed in (6.21) is equivalent to the Archimedean cop-

ula model where φ(x) = Hα(− log(x)), when Hα is convex.

Proof. If φ(x) = Hα(− log(x)) and Hα is convex, then

ST,C(t, c) = φ−1 (φ(ST (t)) + φ(SC(c)))

= exp
{
−H−1

α [Hα(− log(ST (t))) +Hα(− log(SC(c)))]
}

= exp
{
−H−1

α [Hα(HT (t)) +Hα(HC(c))]
}
,

which is the model given in (6.21).

The Archimedean copula model requires that φ must be convex. This does not

imply Hα is convex. Our model is equivalent to the Archimedean copula model.
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Letting Hα(x) = eαx − 1 in equation (6.21), we recover the joint distribution in

Klein and Moeschberger [38] which was an adaptation of a model proposed by Clayton

[16]. This model is of the form

ST,C(t, c) = exp

{
− 1

α
log
(
eαHT (t) + eαHC(c) − 1

)}
. (6.22)

Note that as α → 0 we recover the independent case. Notice that this CH was

seen in example 3.37, there H̃ = HG. Note that since log
(
eαHT (t) + eαHC(c) − 1

)
=

log
(
1 + [eαHT (t) − 1] + [eαHC(c) − 1]

)
then the argument inside the logarithm will al-

ways be greater than one, and thus the whole expression will always be positive.

We see that particular choices of Hα, thus far the Weibull and the Gompertz, allow

us to reproduce bivariate survival models from within the literature. Further to these

examples, the archimedean model generated by Hα(x) = log(1 + αx) can be seen in

Nelsen’s book in copulas [50]. Another example from this book is the Ali-Mikhail-Haq

family, which is generated by Hα(t) = Hα
llEG(t). The choice of Hα can introduce specific

short and long term behaviours that we require. For example, choosingHα(x) = eαx−1,

we have that in the short term this family acts like the independent case. We also

have that choosing Hα = Hα
llEG, then in the long term this family would act like the

independent case. Using the Weibull Hα, we ensure Weibull type long and short term

behaviours.

The event time and the censoring time can be viewed as competing risks. If we were

to have further risks, we may need a multivariate survival model, i.e. we may need

a model for more than two competing risks. This extension would be quite simple to

construct thanks to the simple construction of our model (6.21). If we have p competing

risks, T1, ... Tp, our multivariate model may be given by the joint survival

ST1,...,Tp(t1, ..., tp) = exp
{
−H−1

α

[
Hα(HT1(t1)) + ...+Hα(HTp(tp))

]}
.

Here there are further restrictions required on Hα, but these will not be explored as

this is not the focus of this thesis and we will continue with only two competing risks,

the event time and the censoring time.

Another way to create a bivariate survival model is to introduce a common frailty

as seen in section 3.3.3. Then

HT,C(t, c) = Hα
(F )(HT (t) +HC(c))

for some mixing CDF F . For this model we require that Hα
(F ) must be a Bernstein

function. In this model we would want that for some α = α̃, H(F ) = H(Dµ) = H1
E so

that we can recover the independent case. For example, we could letH(F )(t|α) = t√
1+αt

,

as in example 3.77. The parameter α is usually, but not always, the variance of the

mixing distribution.

139



More generally we could generate a bivariate survival model such as

HT,C(t, c) = Hα(HT (t) +HC(c)),

for someHα such that, for some α = α̃, Hα = H1
E . Thus we can recover the independent

case. We see that this would be a generalisation of the bivariate frailty mixture, as Hα

would not need to be Bernstein. An example of this would be Hα = Hα
GEll for α ≥ 1.

With our new bivariate survival models, we can calculate the joint distribution of

the observed time and the censoring indicator, i.e. we can calculate fY,∆(y, δ). Then

we can fit this model to data and analyse the fit and perform a sensitivity analysis on

the parameter that controls the dependence, α. The next section aims to do this with

the liver transplant data set described in chapter 5.

6.5 Informative censoring in the liver transplant data set

In chapter 5 the presence of informative censoring in the liver transplant data set was

discussed. Patients who are more ill, are in more need of a transplant, and thus more

likely to receive one. However, patients who are more ill are also more likely to die.

Thus we see that death and censoring due to transplant are dependent.

We aim to fit the models discussed in the previous section, described in equation

(6.21), with Hα(x) = eαx−1, followed by Hα(x) = xα, to the liver transplant data and

perform a sensitivity analysis on α. Note that when Hα(x) = eαx− 1, the independent

case occurs when α → 0 and thus is on the edge of the parameter space, whereas for

Hα(x) = xα the independent case corresponds to α = 1 which is not on the edge of

the parameter space. These choices of Hα provide a range of short and long term

behaviours. The choice of the Gompertz Hα ensures an independent type short term

behaviour, and the Weibull ensures a Weibull type short term behaviour.

For simplicity, we assume that the cumulative hazard functions for death and for

transplant are

HT (t|θ) = θt,

HC(c|γ) = γc.

Simple forms forHT andHC are desirable since anything flexible with lots of parameters

will exacerbate the identifiability issues we are already dealing with. However, give the

form of the cumulative hazards of HT and HC in figure 5.5, we see that perhaps a

better choice would be perhaps Weibull or log-logistic.

First we will perform a sensitivity analysis without covariates, and then will repeat

the analysis with the covariates in the proportional hazards models discussed in section

5.2.

In a sensitivity analysis, we fix a value of α and then find the maximum likelihood
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Figure 6.3: Estimates of θ and γ, the parameters of the CH functions for T and C,
plotted against the value of α used in the analysis. Here Hα(x) = eαx − 1. The dotted
line corresponds to the independence case.

estimates of θ and γ. We then repeat this process for a different value of α. In figure

6.3 we see the estimates of θ and γ from HT and HC plotted against α. It appears

that the estimates are fairly dependent on the value of α, but if we look closely at the

scale of the range, we see the range is very small being less than 0.005. We thus might

conclude that the estimates of both parameters are not overly dependent on the value

of α. The dotted line refers to the independent case, thus a local sensitivity analysis

would focus around this line.

We can make similar conclusions about the sensitivity analysis performed with

Hα(x) = xα. The estimates of θ and γ are plotted against α in figure 6.4. We again

see that the estimates do not vary too much with α, the ranges being less than 0.01.

We see around the dotted line, which refers to the independent case, there is little

variability in α.

Although we have seen the parameters themselves do not vary much given the value

of α, it would be interesting to see what effect this has on the net survival functions of

T and C, seen in figures 6.5 and 6.6. Here the net survivals are plotted for two values

of θ̂α and γ̂α, the estimates of θ and γ corresponding to particular α values. This is to

investigate whether the choice of α effects the estimate of the survival. In figure 6.5
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Figure 6.4: Estimates of θ and γ, the parameters of the CH functions for T and C,
plotted against the value of α used in the analysis. Here Hα(x) = xα. The dotted line
corresponds to the independent case.

we see that the net survival of T does not change very much given the value of α, it is

thus not sensitive to this choice. However, in figure 6.6 we see the opposite. The net

survival of C is very dependent on the choice of α. In these figures we have chosen α

to be 0 and 4.9. α = 0 was chosen because this corresponds to the independent case.

α = 4.9 was chosen because this corresponds to a dependent case. Note that these

values were chosen and not estimated from the data
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Figure 6.5: The estimated net survival function ST (t) = e−θ̂αt, where θ is estimated
from the joint model described in equation (6.22) for fixed α. Here α = 0 is the black
line (and independent case) and α = 4.9 is the grey line (an example of a dependent
case). There were no covariates in this model.
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Figure 6.6: The estimated net survival function SC(c) = e−γ̂αc, where γ is estimated
from the joint model described in equation (6.22) for fixed α. Here α = 0 is the black
line (and independent case) and α = 4.9 is the grey line (an example of a dependent
case). There were no covariates in this model.
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To investigate further, and to allow a better comparison, we include covariates into

the model. We include the covariates that were deemed significant in the Cox models

in section 5.2, i.e. UKELD score, patient age and disease category for the event T and

only UKELD score and disease category for the censoring C. These were included in

the model by allowing

log(θ) = θ0 + θ1UKELD + θ2recip age + θ3disease,

log(γ) = γ0 + γ1UKELD + γ2disease.

The analysis was then performed using the model in (6.22) with Hα(x) = eαx − 1

again, for α ∈ [0, 5]. Then the net survivals are plotted in figures 6.7 and 6.8. These

appear to be very similar to those in figures 6.5 and 6.6 where no covariates were

included in the model. We do however see that the differences between the the two

curves in each plot has become larger. Thus now, there is a greater dependence on α,

however slight. Again, we see that the dependence is more pronounced for the censoring

than for the event times.
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Figure 6.7: The estimated net survival function ST (t) = e−θ̂αt, where θ̂α is an estimate
from the joint model described in equation (6.22) for fixed α. In this plot, α = 0 is
the black line (and independent case) and α = 4.9 is the grey line (an example of
a dependent case). The covariates included in this model were UKELD score (49.2),
patient age (46) and disease category (5 =HCV).
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Figure 6.8: The estimated net survival function SC(c) = e−γ̂αc, where γ̂α is an estimate
from the joint model described in equation (6.22) for fixed α. In this plot, α = 0 is
the black line (and independent case) and α = 4.9 is the grey line (an example of a
dependent case). The covariates included in this model were UKELD score (49.2) and
disease category (5 =HCV).
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We then repeat the above analysis with Hα(x) = xα with and without covariates.

Figures 6.9 and 6.10 show the net survivals for this model without covariates. We

include three values of α. We chose α = 1 as this is the independent case for this

model. We then chose two other values of α, one smaller than 1 and another larger

than 1. We see that the survival for T is less sensitive to α than the survival for C.
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Figure 6.9: The estimated net survival function ST (t) = e−θ̂αt, where θ̂α is an estimate
from the joint model described in equation (6.22) for fixed α. In this plot, α = 1 is the
dotted line (and independent case), α = 0.6 is the solid line (an example of a dependent
case) and α = 4.9 is the dashed line (another example of a dependent case). There
were no covariates in this model.
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Figure 6.10: The estimated net survival function SC(c) = e−γ̂αc, where γ̂α is an estimate
from the joint model described in equation (6.22) for fixed α. In this plot, α = 1 is the
dotted line (and independent case), α = 0.6 is the solid line (an example of a dependent
case) and α = 4.9 is the dashed line (another example of a dependent case). There
were no covariates in this model.
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In figures 6.11 and 6.12 we see the net survivals of the model with covariates. We

see that the net survival of T in figure 6.11 is not very sensitive to values of α ≥ 1, but

is for values close to 0. Here, values of α close to 0 imply the survival function is given

by a constant, thus the analysis is unstable for small values of α. In figure 6.12 there

is a very great dependence on the value of α. We see that very small values of α yield

a survival function close to being constant, which makes very little sense. Other values

of α give very similar results to the analysis performed with Hα(x) = eαx − 1.

0.00

0.25

0.50

0.75

1.00

0 300 600 900
Time (days)

S
(t

),
 w

ith
 c

ov
ar

ia
te

s

alpha=0.6
alpha=1
alpha=4.9

Hα(x)=xα

Figure 6.11: The estimated net survival function ST (t) = e−θ̂αt, where θ̂α is estimated
from the joint model described in equation (6.20) for fixed α. In this plot α = 1 is
the dotted line (and independent case), α = 0.6 is the solid line (an example of a
dependent case) and α = 4.9 is the dashed line (another example of a dependent case).
The covariates included in this model were UKELD score, patient age and disease
category.
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Figure 6.12: The estimated net survival function SC(c) = e−γ̂αc, where γ̂α is an estimate
from the joint model described in equation (6.20) for fixed α. In this plot, α = 1 is
the dotted line (and independent case), α = 0.6 is the solid line (an example of a
dependent case) and α = 4.9 is the dashed line (another example of a dependent case).
The covariates included in this model were UKELD score and disease category.
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From these analyses we can conclude that in this form of model the censoring

mechanism depends to some degree on the dependence between T and C, but the event

time mechanism is influenced less by this dependence. Since we are usually interested

in the event time mechanism more, time to death usually being of more interest, we

may decide that the sensitivity of C is not too important. This conclusion is supported

by the conclusions found in the sensitivity analysis from Staplin [66].

As well as determining if the estimates of the model parameters are sensitive to the

choice of dependence parameter, it is also useful to know if the model actually fits the

data. To investigate this we first separate the data into the deaths and the transplants,

i.e. into events and censored observations. We then plot a Kaplan-Meier estimate of the

survival for each group and compare to the net survival estimated by the model. Here,

the Kaplan-Meier estimate would estimate the net survivals. We see this for the model

with Hα(x) = eαx − 1, with and without covariates in figures 6.14 and 6.13. We see

that the net survival estimated from the models are very similar to the Kaplan-Meier

estimates. Similar results can be seen for the model with Hα(x) = xα.
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Figure 6.13: The estimated net survival functions for the model without covariates
with Hα(x) = eαx − 1. Here α = 9.9.

We will also compare the marginal survival of Y = min(T,C) from both models

with the usual Kaplan-Meier estimate, as seen in figures 6.15 and 6.16. We compare

the Kaplan-Meier estimate with the model fitted using covariates and the one without,
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Figure 6.14: The estimated net survival functions for the model with covariates with
Hα(x) = eαx − 1. Here α = 4.9.

for each model with Hα(x) = eαx − 1 in 6.15 and Hα(x) = xα in 6.16. We see that for

smaller survival times, less than 200 days, there exists some value of α for each model

that predicts survival well. For larger survival times our models give more conservative

estimates of survival. In terms of prediction, a conservative estimate is preferred.

6.6 Summary and future work

At the end of section 6.4.3 we suggested how our models might be extended to the case

where we have more than two competing risks. We would like to explore the fitting

of these models and compare them to those that already exist in the literature, for

example compare to those of Roy and Mukherjee [56]. We would also like to study

more closely the type of copulas generated by our multivariate models.
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Figure 6.15: Estimated survival functions for the model with Hα(x) = eαx − 1. Model
with no covariates has α = 0.1 (dotted line), model with covariates α = 4.9 (dashed
line).
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Figure 6.16: Estimated survival functions for the model with Hα(x) = xα. Model with
no covariates has α = 0.1 (dotted line), model with covariates α = 10 (dashed line).

154



Chapter 7

Discussion and Future Work

The aim of this thesis was to provide a framework for using the cumulative hazard

function as a modelling tool for time-to-event data. This thesis has demonstrated how

the study of this function can simplify the form of a parametric model, thus making the

construction of new models very straightforward. This thesis has also demonstrated the

use of cumulative hazard functions as a tool for modelling multivariate time-to-event

models.

7.1 Discussion

Chapter 2 discussed a collection of properties of cumulative hazard functions. More

specifically, this chapter gave details on the types of operations that could be performed

on a cumulative hazard, so that one would stay within the set of smooth cumulative

hazards. It was found that the set of cumulative hazards was closed under composing,

inverting, taking the product, summing and integrating. Of particular interest were

compositions and inverses of cumulative hazards, which allow one to get from one

cumulative hazard in the set to another, but also to describe time transformations.

Chapter 3 first explores the construction of one-dimensional parametric families.

In this exploration a common structure was found between the types of parameter. It

was found that pairings arise between parameters in the literature, such as frailty and

scale, power and hazard power. This then lead to the construction of new types of pa-

rameters, generated as a pair to already known parameters, such as the tilt or resilience

which we have termed the reverse-tilt and reverse-resilience. Further to this, the prop-

erties discussed in chapter 2, addition, taking the product and composition, allowed for

the construction of so called combination families. These were found to be very flexible

families and were later used for modelling purposes. The one-dimensional parametric

families were then extended to multi-dimensional parametric families. Methods to com-

bine one-dimensional families were explored and various families, some of which were

new, were described. The latter part of this chapter discusses the use of composition

of cumulative hazard functions in the construction of frailty mixture models.
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Chapter 4 reviewed different regression models for modelling time-to-event data.

The chapter gives details on many of the well known models in the literature, including

the Accelerated Failure Time, Proportional hazards and Proportional Odds models.

This chapter also proposes regression models generated by the parametric families

discussed in chapter 3. The latter part of the chapter then discussed the extended

regression models in the literature and used the methods of combination of models in

order to propose new extended regression models. The very last section in this chapter

then discussed the baseline cumulative hazard function. The key of this section was to

introduce the idea that the combination families of the previous chapter can be used to

model a flexible baseline cumulative hazard. This way of modelling the baseline is then

used in the following chapter when fitting models to the liver transplantation data.

Chapter 5 introduced and gave an exploratory analysis of the liver transplantation

data set. A collection of models discussed and proposed in the previous chapters are

fitted to the data and compared. It was found that using the linear combination of

the Gompertz and the log-logistic to flexibly model the baseline cumulative hazard

provided some promising results. The latter part of the analysis explored the presence

of informative censoring in this data set, where it was found that there was significant

evidence that this was present.

Chapter 6 aimed to clarify what is meant by informative and non-informative cen-

soring. It explained the different sub-classes of non-informative censoring. This chap-

ter also explained the identifiability issues when determining the dependence structure

between events and censoring and approaches to dealing with these issues and to mod-

elling. These approaches included bounding the joint and marginal survival functions,

specifying the conditional distribution and performing a sensitivity analysis and finally

specifying the form of the joint distribution of the event and censoring times. The

approach that this chapter expands on is that of specifying the joint distribution and

this method is applied to the liver transplantation data. It was found that using this

joint model method for this data set results in a a good fit for the marginal distribution

of the event times, and a less good fit for the marginal distribution of the censoring

times. It was concluded that a good fit for the marginal of the event times is of more

interest than that of the censoring times, thus this joint model is useful for dealing with

informative censoring present in this data set.

7.2 Future work

In chapter 2 convexity of cumulative hazards was briefly explored. Further investiga-

tion is suspected to provide even greater insight into the form of the set of cumulative

hazards and give another way to classify cumulative hazards. Another possible area of

future work based on chapter 2 is that of the generalised models suggested in section

2.3.10. These models were simple extensions of already well known models, using prop-

erties such as composition and integration of cumulative hazards. Further exploration
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of these models is needed in order to clarify how to fit such models and how they

compare to the generalised models proposed in the literature.

In chapter 3 there was a key focus on the long and short term behaviours of certain

parametric families. As previously discussed, a possible avenue for further work would

be to explore spline models in order to smoothly combine the types of behaviours

which are deemed useful or necessary to explore. Another possible area of future work

motivated by this chapter would be to experiment with the fitting of frailty models to

the liver transplantation data set.

In chapter 4 many new regression models are proposed, and methods for construct-

ing others are put forward. This methodology could be used further in order to explore

these possible models, and then these could be used in fitting.

Chapter 6 proposed models for dealing with informative censoring. In this chapter

only a selection of these models were used to explore the informative censoring in the

liver transplantation data set. Thus an area of further work would be to explore the

rest of the models in this chapter. It would be interesting to also extend these models

to the case of multiple competing risks.
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Appendix A

Concavity of the likelihoods

In this appendix we will explore the behaviours of the likelihoods of the one-dimensional

combination parametric families in equations (3.9), the linear combination, and (3.10),

the geometric combination in chapter 3.

It is useful to know whether the log-likelihoods corresponding to the cumulative

hazard functions (3.9) and (3.10) are concave in the parameter α. If the log-likelihood

is concave, then the search for the maximum likelihood estimate of α will be made

easier, and many other results of maximum likelihood estimation follow. To see if the

log-likelihood is concave, we find its second derivative and see if it is negative.

We will look at the concavity for one sample. If we have an independent sample of

size n, i.e. t1, ..., tn, and the log-likelihood is concave for just one sample, it will be for

the sample of size n. This is due to the independence of the sample which will mean

the log-likelihood will be the sum of n identical terms. The concavity is ensured as the

sum of concave functions is a concave function.

We will also look at the concavity of a censored sample as a simple extension of the

families we have proposed. Here we use the density for independent censoring, given

by

f(t) = h(t)1−δe−H(t).

Here δ is the indicator of censoring, i.e. when δ = 0 this indicates that sample was not

censored, and when δ = 1 this indicates the sample was censored.

Proposition A.1. The censored log-likelihood corresponding to the CH function of the

linear combination in equation (3.9) is concave.

Proof. The censored log-likelihood for the linear combination is

L(α) = log f(t;α) = (1− δ) log (αhA(t) + (1− α)hB(t))

− (αHA(t) + (1− α)HB(t)) .
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The second derivative is

d2L

dα2
= −(1− δ)

(
hA(t)− hB(t)

αhA(t) + (1− α)hB(t)

)2

≤ 0,

thus the censored log-likelihood corresponding to the linear combination in (3.9) is

concave.

Corollary A.2. The log-likelihood corresponding to the CH function in the linear com-

bination where δ = 0 in proposition A.1,

H(t|α) = αHA(t) + (1− α)HB(t), α ∈ [0, 1],

is (strictly) concave.

Proof. The log-likelihood for the linear combination is given by

L(α) = log f(t;α) = log (αhA(t) + (1− α)hB(t))− (αHA(t) + (1− α)HB(t)) .

The second derivative is

d2L

dα2
= −

(
hA(t)− hB(t)

αhA(t) + (1− α)hB(t)

)2

< 0,

thus the log-likelihood corresponding to the linear combination (3.9) is (strictly) con-

cave.

Proposition A.3. The censored log-likelihood corresponding to the CH function of the

geometric combination (3.10) is concave.

Proof. To prove this it is again better to view the CH function as

H(t|α) = eαrA(t)+(1−α)rB(t),

where rA(t) = logHA(t) and rB(t) = logHB(t). Then the log-likelihood will be

L(α) = (1− δ) log(αr′A(t) + (1− α)r′B(t))

+ (1− δ)(αrA(t) + (1− α)rB(t))− eαrA(t)+(1−α)rB(t).

Thus the second derivative is

d2L

dα2
= −(1− δ)

(
r′A(t)− r′B(t)

αr′A(t) + (1− α)r′B(t)

)2

− (rA(t)− rB(t))2 eαrA(t)+(1−α)rB(t) < 0,

and hence the censored log-likelihood is concave.
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Corollary A.4. The log-likelihood corresponding to the CH function of the geometric

combination where δ = 0 in proposition A.3,

H(t|α) = HA(t)αHB(t)1−α, α ∈ [0, 1],

is concave.

Proof. To prove this it is better to view the CH function as

H(t|α) = eαrA(t)+(1−α)rB(t),

where rA(t) = logHA(t) and rB(t) = logHB(t). Then the log-likelihood will be

L(α) = log(αr′A(t) + (1− α)r′B(t)) + αrA(t) + (1− α)rB(t)− eαrA(t)+(1−α)rB(t).

Thus the second derivative is

d2L

dα2
= −

(
r′A(t)− r′B(t)

αr′A(t) + (1− α)r′B(t)

)2

− (rA(t)− rB(t))2 eαrA(t)+(1−α)rB(t) < 0,

and hence the log-likelihood is concave.

The concavity of the log-likelihoods for the distributions of families generated by the

linear and geometric combinations have both been confirmed, the same cannot be said of

the family generated by the composition and reverse composition combinations and the

linear-composition combination. Since these families are generated using compositions,

the concavity of the log-likelihood would entirely depend on the cumulative hazard

functions used in the composition.

For the log-likelihood to be concave in two variables α and β, we need

d2L(α, β)

dα2
≤ 0,

d2L(α, β)

dβ2
≤ 0 and

d2L(α, β)

dα2

d2L(α, β)

dβ2
−
(
d2L(α, β)

dαdβ

)2

≥ 0.

For the two-dimensional linear combination, we have that the log-likelihood and

the censored log-likelihood are concave.
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Appendix B

Simulation for Survival Models

There are many ways to simulate from a distribution. This appendix will explore how

to simulate from distributions with different forms of cumulative hazard functions,

detailed in previous chapters.

A well known method that will be frequently used in this appendix is called Inversion

sampling [47]. Inversion sampling is a simple algorithm which only requires that we

know the inverse of the CDF of the density we wish to sample from. Suppose we wish

to simulate a random variable X with CDF F (t). Then the random variable F (T ) is

uniformly distributed on [0, 1], as seen in proposition 2.9. If we can find the inverse

of the CDF F−1, then given U ∼ Unif(0, 1), T = F−1(U) is the required random

variable. So if we know the inverse of the CDF, then, since we can easily simulate from

a Unif(0, 1), we can simulate T without rejecting samples or loss of information [53].

For survival analysis, we are more likely to know the survival function rather than

the CDF. Thus we can invert the survival function instead of the CDF, if this is more

attainable. This is because F (T ) = 1 − S(T ) and thus S(T ) will also be uniformly

distributed on [0, 1]. Suppose that T ∼ H for some CH function H. Then we have that

P (T > t) = e−H(t), which is a number between 0 and 1. Thus for some U ∼ Unif(0, 1),

T = H−1(− log(U)) is a random variable with CH function H. Hence the problem of

simulating from such a distribution, is reduced to knowledge of H−1, together with the

fact that − log(U) is Exponentially distributed with mean 1.

There are a number of numerical operations needed throughout this appendix.

Firstly, in order to perform inversion sampling, we obviously need to be able to invert

a CH function. As well as being able to compose CH functions, we will need to be able

to integrate CH functions. This integration may need to be performed numerically,

and thus may not be exact. Finally, we will also need to be able to simulate from

a Uniform distribution on the interval from 0 to 1. This will be an essential part of

inversion sampling.
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B.1 Addition of cumulative hazard functions

Consider a random variable T ∼ H1 +H2, for some CH functions H1 and H2. We can

immediately see that inverting H1(T ) + H2(T ) could be difficult, and would depend

entirely on the forms of both CH functions. Hence, inversion sampling may not seem

like an appropriate method of sampling for such a distribution. A useful property that

can be taken advantage of for sampling is outlined in the following proposition, which

is a restatement of proposition 2.52.

Proposition B.1. Given two independent positive random variables T1 ∼ H1 and

T2 ∼ H2, the survival function of their minimum M = min(T1, T2) is

S(m) = e−(H1(m)+H2(m)).

Proof. See proposition 2.52.

Hence, the problem of inverting H1 +H2 has been reduced to inverting H1 and H2

separately. Hence, the procedure for sampling from T ∼ H1 +H2 is as follows:

1. Sample U1 and U2 from Unif(0, 1)

2. Calculate T1 = H−1
1 (− log(U1)) and T2 = H−1

2 (− log(U2))

3. T = min(T1, T2).

Example B.2. Let H1(t) = HG(t) and H2(t) = H2
W (t). We simulated 10000 samples

from T ∼ H1 + H2 and compared the results with the exact distribution. A plot can

be seen in figure B.1 of this comparison. We see that even at a sample of 10000, we

are already approaching the exact distribution. This method was quick and with large

samples would be very accurate.

B.2 Composition of cumulative hazard functions

Suppose that T ∼ H1 ◦H2, then the survival function of T is

S(t) = e−H1(H2(t)).

If we know how to invert both H1 and H2 then we can use inversion sampling to

generate T . Suppose we only know how to invert H2, but we know that sampling from

T̃ ∼ H1 is simple, then we should

1. generate T̃ from H1

2. calculate T = H−1
2 (T̃ ).

The proof of the procedure for sampling from the composition when we know how

to sample from T̃ ∼ H2 is demonstrated in the following proposition.
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Figure B.1: Simulating from T ∼ H1 + H2 where H1(t) = HG(t) and H2(t) = H2
W (t)

using the minimum method, and comparing with the exact distribution.
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Figure B.2: Simulating from T ∼ H1 ◦H2 where H1(t) = HG(t) and H2(t) = H2
W (t),

and comparing with the exact distribution.

Proposition B.3. Given two independent positive random variables T1 ∼ H1 and

T2 ∼ H2, the survival function of Y = H−1
2 (T1) is

S(y) = e−H1(H2(y)).

Proof.

S(y) = P (Y ≥ y) = P (H−1
2 (T1) ≥ y)

= P (T1 ≥ H2(y)) = S1(H2(y))

= e−H1(H2(y))

Example B.4. Let H1(t) = HG(t) and H2(t) = H2
W (t) We simulated 100000 samples

from the distribution T ∼ H1 ◦H2 using the above method. In figure B.2 we see the

comparison of the simulation with the exact distribution. We see that even with this

small sample, we are getting close to the exact distribution. As T̃ ∼ H1 we expect this

to be accurate for small samples.
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B.3 Integral of cumulative hazard functions

This section explores methods to simulate from a distribution whose CH function is an

N-CH function, as seen in section 2.3.8. Hence T ∼ H [1], then the survival function for

this distribution will be

S(t) = e−H
[1](t).

We see that in order to use inversion sampling we will need to solve

− log(U) =

∫ T

0
H(s)ds = e−

∫ t
0 H(s)ds.

Newton’s method

If H is sufficiently nice, i.e. convex or concave, we can use Newton’s method to find T .

Thus

1. Generate U from Unif(0, 1).

2. Choose t0

3. Iterate tn+1 = tn − H[1](tn)+log(U)
H(tn) , for n ∈ N, until convergence is reached.

Since H [1] is increasing and convex, Newton’s method should converge fairly quickly.

This method requires knowledge of the functional form of at least one of H or H [1]. If

we know H, we must be able to integrate it, at least numerically, for Newton’s method.

If we know H [1] we must be able to differentiate in order to calculate H(tn).

Example B.5. Let H(t) = log(1 + t) = Hll(t), we simulated 1000 samples for this

distribution and compared the results with the exact distribution. A plot can be seen

in figure B.3 of this comparison. We see that even at a small sample of 1000, we are

already approaching the exact distribution. This method was very quick, and increasing

the tolerance of the convergence would give even better, if slower, results.

Initial Value Problem method

If the previous method is too computationally demanding, we can re-pose the problem

as an Initial Value Problem (IVP). Note that solving − log(U) =
∫ T

0 H(s)ds, is the

same as solving
dT

dx
=

1

H(T )

where T (x) is defined by x =
∫ T (x)

0 H(s)ds. We note that T (1) = 0, the initial condi-

tion, means that we may not have a unique solution for T since 1
H(T ) is not continuous at

T = 0. We thus must know some other initial condition, t0 say, so that
∫ t0

0 H(s)ds = x0,

i.e. T (x0) = t0.

Thus the method for simulating is
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Figure B.3: Simulating from T ∼ H [1] where H(t) = Hll(t) using Newton’s method,
and comparing with the exact distribution.
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Figure B.4: Simulating from T ∼ H [1] where H(t) = Hll(t) using the IVP method, and
comparing with the exact distribution. Here the initial condition is H [1](t0) = 0.0001.

1. Choose initial condition (x0, t0)

2. Generate U from Unif(0, 1)

3. Solve the ODE

dT (x)

dx
=

1

H(T (x))

where − log(U) = x for T (x).

Example B.6. We simulated 1000 samples from T ∼ H [1] for H(t) = Hll(t) using the

IVP method, and compared the results with the exact distribution. In this case we knew

H [1] and had to invert to find t0. A plot can be seen in figure B.4 of this comparison.

We see that even at a small sample of 1000, we are already approaching the exact

distribution. This method was quite fast, knowing the initial condition completely

would speed up the computation even more, but more accurate simulations will slow

down the computation.
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Sum method

When approximating an integral, it is common to use a summation based method. We

therefore, may have that H [1](t) =
∑n

i=1Hi(t). Thus the problem of simulating from a

distribution whose CH function is an integral is reduced to the problem of simulating

from a distribution whose CH function is a sum. Note that this problem is different

to that as discussed in section B.1 since the sum in this setting is not the sum of

independent terms.

Our procedure will be to approximate the integral with a sum and then find the

value of t such that − log(u) = H [1](t) using a grid search algorithm. Hence we will

1. Simulate U ∼ Unif(0, 1)

2. Solve

− log(U) =

∫ t

0
H(s)ds ≈ t

3n

[
4H

(
t

n

)
+ 2H

(
2t

n

)
+ ... + 2H

(
(n− 1)t

n

)
+ 4H

(
(n− 1)t

n

)
+H(t)

]
.

for t using a grid search.

Example B.7. Let T ∼ H [1] where H(t) = Hll(t). Then we approximated the integral

H [1] by a sum using Simpson’s rule. We simulated 10000 samples from this distribution

where T ∼ H [1] and compared the results with the exact distribution. A plot can be

seen in figure B.5 of this comparison. We see that with a sample of 10000, we are very

close to the exact distribution.
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Figure B.5: Simulating from T ∼ H [1] where H(t) = Hll(t) using the sum method for
approximating the integral, and comparing with the exact distribution.
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