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Abstract 

Significant computational efforts have been focused towards exposing the molecular mechanisms 

of anesthesia in recent years. In the last decade, this has been aided considerably by a momentous 

increase in the number of high-resolution structures of ion channels, which are putative targets 

for the anesthetic agents, as well as advancements in high-performance computing technologies. 

In this review, typical simulation methods to investigate the behaviour of model membranes and 

membrane-protein systems are briefly reviewed, and related computational studies are surveyed. 

Both lipid and protein-mediated mechanisms of anesthetic action are scrutinized, focusing on the 

behaviour of ion channels in the latter case.  
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1. Introduction 

Anesthesia refers to a medically induced lack of sensation, enabling surgical procedures to take 

place in the absence of pain. During general anesthesia, the patient encounters a state of paralysis 

in the whole body, accompanied by unconsciousness. During local anesthesia, specific parts of the 

body are insensitive to pain, whilst patients are responsive. The identification of anesthetic 

molecules has revolutionized the medical industry, yet an in-depth understanding of the molecular 

mechanism of anesthetic action has not yet been achieved. Initial examinations by Meyer and 

Overton led to the proposal of a lipid-mediated mechanism for anesthesia. 1,2 The early 

experimentalists revealed a notable correlation between the anesthetic potency and the solubility 

of molecules in oil, a lipid-like phase which is assumed to act as a simplified model of the 

membrane interior, advocating that anesthetics likely act via the plasma membrane. Studies of a 

variety of anesthetic compounds in an assortment of solvents have since been performed,3,4 and 

the Meyer-Overton hypothesis was upheld for nearly a century, until a number of notable 

exceptions were revealed. For example, Koblin and colleagues identified a series of 

polyhalogenated and perfluorinated compounds which displayed no anesthetic effect despite 

fulfilling the Meyer-Overton rule.5,6 On the other hand, the potency of short chains 1-alkanols was 

markedly underestimated by the rule.7  

Several alternatives have now been proposed to account for such exceptions. Pohorille et al. 

identified an improved correlation when interfacial solubilities were used instead of bulk lipid 

solubilities, suggesting anesthetic compounds act at the lipid-water interface.8 Furthermore, 

Cantor discussed various membrane properties that could potentially modify the activity of 

intrinsic membrane proteins, recognizing that the specific composition can influence the lateral 

pressure profile of the membrane.9,10 As the conformational equilibria of membrane proteins is 

mechanically coupled to the lateral pressure profile, incorporation of compounds into the bilayer 

may therefore shift the activation state of membrane proteins such as ligand gated-ion 

channels.9,11  The effect of stiffness and interfacial activity of anesthetic molecules on the pressure 

distributions was used in this context to predict the potency of alkanols previously classified as 

anomalous by the Meyer-Overton rule.12 

Alternative to the lipid-mediated theory, it has been postulated that anesthetics can act by directly 

binding to protein targets. Among early work, it was demonstrated that inhalational anesthetics 

directly inhibited the function of enzyme firefly luciferase by competitive binding of the 

substrate.13-15 Furthermore, anesthetics exerted an effect on soluble cytoplasmic proteins, such as 
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protein kinase C.16,17 Considerable efforts were then focused towards identifying specific protein 

targets. Nowadays, specific classes of membrane receptors and membrane channels are 

considered to be dominant targets for anesthetics. Targets include GABAA, glycine, nicotinic 

acetylcholine, glutamate, adenosine and serotonin receptors, as well as voltage-gated, ATP-

sensitive and background potassium channels.18 These proteins are generally considered to 

accommodate anesthetic molecules in pockets/cavities, which consequently modulate their 

structure and dynamics in a specific manner.19 Thereupon, a legion of works has been published 

with the aim of classifying interaction sites and determining the repercussions of binding on the 

structure and dynamics of the protein. 

Detailed understanding of membrane-ligand and membrane-protein interactions at an atomic 

level, and comprehension of the structural consequences of such binding, will greatly benefit 

future anesthetic drug design. In this review, we provide an overview of the achievements of 

computational tools for chemical biology in deciphering the molecular mechanism of anesthetic 

action. Firstly, a brief overview of common simulation methods used for the study of biological 

systems is given, and then we explore how such methodologies have been used to investigate 

both lipid and protein mediated theories. In the latter case, we focus on types of membrane-

channel systems, namely pentameric ligand gated ion channels and voltage-gated ion channels, 

which are both putative targets for anesthetics and have been studied extensively by 

computational means. We primarily focus on simulations based on high-resolution structural 

information, although homology models are mentioned where appropriate.  Finally, a critical 

outlook on the state of the field will be surmised.  

2. Common simulation methods 

The broad range of tools for computational chemistry that are currently available enable 

researchers to study a considerable variety of properties. On the molecular level, molecular 

dynamics (MD) simulations are a popular method to analyze the dynamic behaviour of chemical 

entities in atomic detail. A brief overview of MD simulations and related methods are provided in 

this section. Further information concerning the mathematical background can be found in various 

textbooks on the topic.20-22 To perform MD simulations, the underlying potential energy of the 

system must be calculated in the first instance, via quantum or molecular mechanical methods. In 

the latter case, atoms and bonds are considered as balls and springs, respectively, thus nuclear 

motion is evaluated using classical physics, and an analytical expression for the energy of a system, 

known as a forcefield, can be utilized. Inter- and intramolecular energetic terms, including bond 
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stretching, angle bending, bond rotations and non-bonded terms, contribute to the forcefield. This 

method in its simple version neglects electronic properties such as polarizabilities but permits the 

evaluation of a significant number of properties. Classical MD simulations are particularly suited to 

the study of biological systems, such as membrane proteins, due to the large number of atoms 

that are involved and the resolution of the events under investigation.  

In order to obtain information about the time-dependent behaviour, the motion of interacting 

particles is calculated by the integrating Newton’s equations of motion. The potential energy of 

the system, evaluated using the chosen forcefield, and the forces, evaluated using the negative 

gradient of the potential with respect to displacement in a specified direction, can be used to 

calculate the acceleration, and hence forecast the time evolution of the system, in the form of a 

trajectory. When few atoms are involved, analytical solutions of the equations of motion can be 

accessed, generating a continuous trajectory over time. In larger systems, this is unworkable due 

to a many body problem in force evaluations, from the existence of a continuous potential. 

Instead, finite difference methods can be used where forces are evaluated at discrete intervals 

(timesteps) assumed constant in the hiatus. Using the positions, velocities and forces of individual 

atoms at the current timestep, the position and velocities at the following timestep can be 

calculated. Forces are then recalculated, and the procedure is repeated until the desired timescale 

is reached.  

Algorithms for classical MD simulations are implemented in a wide variety of software (NAMD,23 

AMBER,24 and GROMACS,25 for example), which are compatible with a broad range of 

biomolecular forcefields (CHARMM,26 AMBER,27  OPLS28 etc.) Forcefields generally differ in their 

functional form, parameterization protocol and parameters therein, and are generally obtained to 

accurately reproduce of experimental and/or quantum mechanical data. Generally, individual 

terms for bond lengths and angles utilize simple harmonic potentials on the basis of an energetic 

penalty associated with a deviation from the equilibrium value.26 To model the rotation of atoms,  

a torsional angle potential function is also typical to associated steric barriers. To obtain the 

energy of non-bonded interactions in additive forcefields, fixed-point charges are assigned at the 

nuclei and Coulomb and Lennard-Jones potentials are used to express electrostatic and van der 

Waals forces respectively. In recent years, polarizable forcefields have become available, which 

take into account charge polarization effects. Multiple schemes have been proposed to take into 

account charge fluctuations, induced by the presence of additional molecules.29 The fluctuating 

charge model, the induced dipole model and the Drude oscillator approach, are available via the 
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CHeq forcefield,30,31 AMOEBA32  and the CHARMM Drude polarizable forcefield,33,34  respectively. 

Reference [32] is recommended as an encyclopedic update of the field.35 

The timescales that can be achieved by classical MD simulations are limited by the system size and 

availability of computing resources and efficient simulation algorithms. Simulations from 100 

nanoseconds to one microsecond are generally now routine for membrane proteins systems with 

between 100,000 and 500,000 atoms. Simulations of this time and length scale are therefore, 

suitable to study a broad-spectrum of biological processes. The supercomputer Anton and 

optimized MD software developed by D. E. Shaw Research, has enabled production of millisecond 

long unbiased simulations, further extending the phenomenon that can be considered.36  

In parallel, various methods have been developed to enhance sampling using typical high-

performance computing facilities.  In coarse-grained (CG) molecular dynamics, a reduced 

representation is used; by treating a group of atoms as a single interaction site, the number of 

degrees of freedom in a simulation system is reduced, alongside the calculation expense of each 

timestep. Furthermore, the timestep of each iteration is increased, facilitating the simulation of 

larger systems with increased complexity. Several CG forcefields have emerged in recent years, 

suitable for the study of biological systems.37-41 

Various methodologies also exist to calculate the free-energy of relevant biological processes.  

Free energy perturbation (FEP) is one such method, whereby unphysical alchemical 

transformations are performed to convert the system between thermodynamic states; free energy 

differences can then be calculated using a thermodynamic cycle.42,43 FEP is predominantly used to 

calculate to relative binding affinities between related compounds, which is computationally 

inexpensive compared to calculating absolute binding affinities.44 In this context, the free energy 

of difference of bound and unbound states is calculated e.g. ΔG1: M + L1  ML1 and ΔG2: M + L2 

 ML2. The relative free energy of binding can be obtained using the relation Δ(ΔG) = ΔG2 – ΔG1. 

Several other algorithms exist which accelerate sampling along a pre-defined set of reaction 

coordinates, known as collective variables (CV), to overcome energetic barriers and evaluate the 

free-energy of the chosen conformational transition, known as the potential of mean force (PMF).  

Umbrella sampling (US)45 is a common enhanced sampling method in this field. To sample a 

specific transition, independent MD simulations are performed at energetically distinct regions of 

the potential energy surface, maintained by a biasing potential.  These simulations, known as 

windows, are chosen to so that they overlap to some extent, and can then be combined and 
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unbiased using the weighted histogram analysis method (WHAM)46,47 or umbrella integration to 

obtain the underlying potential energy surface.48  

In steered molecular dynamics (SMD) simulations, an external force is applied to an atom or group 

of atoms, to overcome barriers and sample a specific process.49 Relative free energies can then be 

obtained by the Jarzynski’s equality, which relates the free energy difference between two 

thermodynamic states and work done for the interconversion between states.50 In 

metadynamics,51 a bias potential is also used to accelerate sampling along chosen CVs. Gaussian 

functions are added to CVs, which redirects the simulation away from low-energy configurational 

space that has been previously inhabited. In this manner, the system departs from local free-

energy minima, exploring barrier regions and locating alternative thermodynamic states. Once the 

free energy profile has been flattened, convergence can be achieved, and the free energy profile 

can be reconstructed to provide an unbiased estimate of the landscape as a function of the CVs. 

The adaptive biasing force method (ABF)52 is largely based on thermodynamic integration, 

whereby the instantaneous force along the reaction coordinate is evaluated directly and 

counteracted by an external biasing force of equal and opposite magnitude. This effectively 

provides a smooth energy landscape, and uniform sampling irrespective of energetic barriers 

allowing accelerated dynamics.  

Finally, we remark upon related methods which are applicable to the identification of binding sites 

in macromolecules. Molecular docking is an inexpensive tool to establish potential binding sites 

and predict the position, orientation and binding affinities of bound molecules. This is achieved by 

use of sampling algorithms to catalog possible ligand-receptor conformations, which are then 

ranked by scoring functions. Commonplace sampling and scoring algorithms and tools to perform 

molecular docking are reviewed elsewhere in the literature.53,54  It should be highlighted that 

molecular docking is not a simulation method and can be performed on a single core-processor, or 

via online servers. However, molecular docking is typically performed using a rigid receptor and 

flexible ligand, neglecting changes in protein structure which may influence the conformation of 

the ligand. Therefore, the accuracy of this method is inherently limited in comparison to 

simulation methodologies.  

“Flooding” is an alternative option, with greater computational expense and accuracy. In this case, 

an excessive concentration of ligand is inserted in the solution surrounding the protein target and 

allowed to enter favorable positions over the course of an unbiased MD simulation trajectory.55 

This approach implicitly takes into account fluctuations in receptor and ligand dynamics.     
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3. Anesthetic interactions with membranes. 

Investigations into the molecular mechanisms of anesthesia have historically been fixated on the 

interaction of anesthetic compounds and membranes, a legacy of the Meyer-Overton correlation. 

In the field of computation, initial studies followed this trend, with MD simulations becoming an 

established tool to investigate the atomic interaction between anesthetic agents and lipid bilayers, 

which act as a simplified model of the plasma membrane. Unbiased all-atom MD simulations have 

proven successful in characterizing the effect of anesthetics on the structural properties of lipid 

bilayers, with coarse-grained MD simulations used in a handful of cases.56,57 The first simulation 

study to compare bilayer properties in the presence and absence of an anesthetic, by Huang and 

coworkers in 1995, inserted a single trichloroethylene molecule into a bilayer constituted of 24 

DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) molecules and an 8 Å layer of explicit water 

molecules to solvate the system.58  Moreover, enhanced-sampling methods are commonly used to 

calculate the free-energy profile of anesthetics crossing model membranes. In 1996, Pohorille et 

al. calculated the first free-energy profiles of membrane crossing for anesthetics, using one 

molecule of the closely related triflouroethane across a bilayer of 72 glycerol 1-monooleate 

molecules solvated by ~1000 water molecules.59 In the two decades since the initial publication of 

these studies, the significant advancements in computer software and hardware have enabled 

similar simulation protocols to be performed on larger systems with increased complexity on 

extended timescales. In several cases, such simulations have been used in conjunction with 

NMR,60,61 small-angle neutron scattering62 and X-ray scattering63 to determine the structural 

attributes of model membranes. An exhaustive list of publications of membrane-anesthetic 

simulations, categorized by compound and bilayer composition, can be found in Table 1. As is 

demonstrated, neutral one-component bilayers have primarily been used, although binary 

mixtures including charged species in symmetric or asymmetric distributions have now been 

reported.62,64-68 The double bilayer system was also employed in a recent publication to impose a 

concentration gradient and promote permeation within unbiased MD simulations.69 In this 

method, two bilayers are included in different planes of the z axis, to circumvent the effects of 

periodic boundary conditions, allowing different solute concentrations on alternate sides.  

Furthermore, analysis tools are now widely available, either within the simulation software itself 

as implemented in GROMACS, for example,25 or via additional plug-ins such as MEMBPLUGIN for 

VMD.70 Structural characteristics that can easily be monitored include, but are not limited to 

bilayer thickness, area per lipid, acyl chain segment order parameters, charge and mass density 
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distribution, electrostatic potential, interdigitation fraction, water dipole orientation, hydrogen 

bonding and lateral pressure profiles. Here, we review a number of common themes in the 

literature regarding anesthetic-membrane properties. 

Table 1. Survey of MD simulations studies performed of anesthetic agents and related compounds. Lipid 
types are abbreviated as follows:  DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), DMPC (1,2-
dimyristoyl-sn-glycero-3-phosphocholine), DPPC: 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and POPC 
(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine).  

 

 
Type 

 
Name 

One-component Binary Mixtures 

DOPC DMPC DPPC POPC Other 
Local 
Anesthetics 

Articaine  71-73  74   

Benzocaine   75 76  64-66 

Benzyl Alcohol  77   60   

Bupivacaine    78   

Etidocaine    79   

KP-23    80   

Lidocaine  61,73,81,82 83    

Prilocaine    79,84   

Procaine  85 83    

Tetracaine  85 83    

General 
Anesthetics 

Alcohols 86 61,87,88 89  89  62,67 

Chloroform 68,90  91-94  90 68 

Diethyl Ether   91,93,94    

Enflurane   91,93,94    

Halothane 95 63,96-98 91,93,94,9
9,100 

101 102  

Desflurane    103   

Isoflurane     103,104   

Ketamine     105  

Propofol  106  103   

Sevoflurane    103   

Trichloroethylene
  

58      

Xenon 69  57,107  108,109  

Non-
Immobilizers 

Hexafluroethane  110,111   102  

A number of molecules have been identified which are structurally related to anesthetic 

compounds but exhibit negligible anesthetic properties despite displaying similar solubilities and 

fulfilling the Meyer-Overton rule.5,7,112 This has provoked considerable interest in differential 

responses of anesthetic and such ‘non-immobilizer’ molecules. Experimentally, it has been 

disclosed that anesthetic molecules modulate the orientational order of the hydrocarbon chains, 

whereas related non-immobilizer molecules produce little or no response.113,114 Observations from 

computation strongly agree with this postulate. Early calculations from Pohorille and colleagues of 

both classes of molecule in a simple lipid bilayer revealed anesthetic molecules preferentially 

reside near the headgroup-water interface, and non-immobilizer analogues can penetrate into the 
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hydrophobic membrane interior, in non-specific locations.59,115,116 MD simulations of halothane, in 

a saturated bilayer, confirmed this to be the case,99,100 identifying a number of perturbations in 

the structure of the lipid bilayer, such as an increase in area per lipid, a change in the orientation 

of the headgroup dipole and a decrease in the orientational order of the hydrocarbon chains, as 

predicted experimentally.113,114 Such changes were then absent in the presence of the halothane 

analogue, hexafluoroethane.110,111 These experiments were then repeated with highly unsaturated 

lipid bilayers, which are often present in biological membranes.102 The unsaturated systems 

displayed analogous distributions of compounds across the bilayer, with the exception of an 

additional minimum for halothane at the bilayer center and exhibited similar effects on the 

electrostatic profiles. Overall, the associated studies advocate that anesthetic and non-

immobilizer molecules occupy distinct locales in lipid bilayers, irrespective of the degree of chain 

saturation, a phenomenon which may underlie the discrepant responses to chemically similar 

molecules biologically. 

The protonation state of individual anesthetic molecules, which affect its biological activity, must 

be also considered, particularly for local anesthetics.117 Comparative simulations between charged 

and uncharged forms of local anesthetic molecules have been reported in a number of cases, with 

observable differences shown. Firstly, simulations of various neutral and charged KP-23 LA 

molecules in neutral and charged forms were performed.118 Neutral molecules partitioned into the 

bilayer core whereas charged molecules self-condensed on the bilayer surface, consistent with 

experimental studies demonstrating differential intercalation.119 In agreement with this, charged 

lidocaine molecules stably occupied the lipid headgroup region in a DMPC (1,2-dimyristoyl-sn-

glycero-3-phosphocholine) bilayer primarily oriented parallel to the bilayer normal, whereas 

neutral molecules can penetrate further and move more freely in a perpendicular orientation.81 In 

a subsequent study, the neutral and charged lidocaine molecules were found to modify the 

electrostatic potential profiles to a similar extent, despite alternate positions and the associated 

effects. It was then suggested changes of this magnitude (90 mV for 9 mol % of lidocaine and 220 

mV for 28 mol % of lidocaine) could potentially alter the function of voltage-gated ion channels.82 

Using the same simulation protocol, articaine charged and uncharged molecules were observed to 

accumulate in analogous positions and crossing to a similar extent as those observed in 

lidocaine.71 However, critical differences are observed in the orientation of the charged form, now 

parallel to the membrane surface, and the hydrogen bonding and diffusion attributes, resulting 

from an additional carbonyl group at the opposite end of the molecule, and causing differential 
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effects in the membrane physical properties. The effect on the electrostatic potential profile was 

also similar for both forms, again of the order of the transmembrane potential. What emerges 

from such studies is clear evidence that charged molecules preferentially bind to the headgroup 

regions whereas neutral molecules penetrate the hydrophobic region of the bilayers more readily. 

Consequentially, the impact of anesthetic intercalation on the structural properties can differ. 

Efforts have also been focused towards understanding the effects of pressure on general 

anesthesia, in order to rationalize the known pressure reversal, i.e. the inverse correlation 

between pressure and anesthesic potency.120,121 Computational simulations have been used to 

evaluate the effect of pressure on the behaviour of anesthetic molecules, although other 

mechanisms of pressure modulation may exist in this context. Using halothane in artificially high 

concentrations, six times the clinical concentration, MD simulations by Chau et al. revealed 

elevated aggregation of halothane at high pressures in DMPC (1,2-dimyristoyl-sn-glycero-3-

phosphocholine)  bilayers.96,98 The authors suggest preferred accumulation disfavors binding of 

individual halothane to putative binding sites on intrinsic membrane proteins. At a lesser 

concentration, twice the clinical concentration, and using an alternative membrane (POPC: 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), Tu and coworkers disclosed halothane 

aggregation at  2 x107 Pa, but not at 4x107 Pa, consistent with conditions where pressure reversal 

is observed and inhibited.101 In contrast, such clustering of isoflurane molecules in lipid bilayers is 

not observed at elevated pressures, suggesting previous results may be isolated examples, and 

therefore an alternative mechanism may be in action.104 The question of pressure reversal will 

likely spawn numerous studies in the near future.  

The noble gas xenon has been of considerable interest as a general anesthetic in recent years.122-

124 Although the clinical benefits of xenon have been known for decades,125 the feasibility of the 

gas has been newly realized with lowered costs.122 However, the mechanism of xenon remains 

elusive. Xenon is known to elicit a response in certain glutamatergic receptors,126,127 nicotinic 

receptors128 and potassium channels,129 yet is ineffective on GABAA receptors,126 a significant 

anesthetic target. Thus, computational efforts have been focused towards assessing the viability of 

the membrane-mediated mechanism of anesthetic action for xenon. The ramifications of xenon 

penetration on bilayer properties, pressure coupling and comparative studies of similar chemical 

species lacking anesthetic activities have been extensively assessed in this case. 

Initial simulations of xenon in POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), bilayer 

identified slight increases in both area per lipid, membrane thickness and orientational order of 
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the lipid tails, as a result of xenon occupation of the interfacial region and in the center of the 

bilayer.107 In a POPE bilayer, increases in area and volume per lipid and decreases in the 

orientational order of acyl chains were observed in the presence of xenon alongside increased 

diffusivity of the lipid molecules.109 The simulations conducted at a number of pressures (0.1, 10, 

20, 35, and 50 MPa) reveal xenon molecules are pushed into the interface between the two 

bilayer leaflets at high pressures which limits their diffusion. Comparable properties are observed 

in these bilayers and xenon-free bilayers at low pressure, advising that pressure reversal emanates 

from the elimination of diffusive xenon molecules in the membrane. Differential scanning 

calorimetry measurements combined with MD simulations confirmed favorable binding in the 

bilayer core, promoting straightening of the lipid tails concomitantly with increased head-group 

spacing.69 Biophysical properties were also perturbed, such as the decrease in phase transition 

temperature and the lateral pressure profile in the head group region, adhering to the lipid-bilayer 

mediated mechanism of general anesthesia proposed by Cantor.130 This proposal was supported 

further by a comparative study of four noble gases (Ne, Ar, Kr and Xe), which found that the 

degree of disruption of the membrane was dependent on the site of localization, and correlated 

well with their relative narcotic potencies.108 Booker and Sum hypothesize that the modified phase 

transition temperature, lateral forces and hydrophobic mismatch caused by accretion of xenon in 

the membrane can contribute to the conformational cycle of ion channels embedded in the 

membrane, providing multiple indirect mechanisms of action.69 The authors note that the 

suggested membrane-mediated mechanism for xenon likely contributes to an additional protein-

mediated mechanism.  

4. Anesthetic interactions with ion channels. 

4.1 Pentameric ligand-gated ion channels or “Cys-loop” receptors. 

Ion channels facilitate the passive diffusion of ionic species down their electrochemical gradient 

from the extracellular medium into the cell cytoplasm. Permeation is controlled by the onset of 

various external stimuli, such as transmembrane voltage, heat, ligand binding, and mechanical 

stretch, and is responsible for regulating electrical signals across the cellular membrane. 

Pentameric ligand-gated ion channels (pLGICs) are responsible for the swift conversion of chemical 

signals to electrical impulses throughout the nervous system.131 pLGICs from the Cys-loop receptor 

family have been identified as a putative target for general anesthetics at clinical concentrations, 

with the exact response, inhibition or potentiation), dependent on the channel type.132,133  
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Extensive work on nicotinic acetylcholine receptors revealed the overall structural assembly of 

pLGICs, contain five homologous or closely related heterologous subunits which assemble in a 

pentameric arrangement.134 Each subunit contain N- and C-terminal extracellular domains, and 

cytoplasmic and transmembrane domains.134 Orthosteric and allosteric binding sites are located in 

the extracellular domain, alongside the characteristic “Cys-loop”, a thirteen-residue loop flanked 

by cysteine residues engaged in a disulfide bond.135 The symmetry axis of the transmembrane 

domain constitutes the ion permeation pathway, formed from four transmembrane segments 

(M1-M4); M2 lines the central pore and a cytoplasmic domain of variable length intersects 

segments M3 and M4.  

The discovery of prokaryotic homologues of pLGICs hastened the publication of high-resolution 

crystal structures pLGICs, with pLGICs from Erwinia chrysanthemi (ELIC)136,137 and Gloebacter 

violaceus (GLIC),138,139 the first to become available and representing closed and open states, 

respectively. The structures consist of a homologous transmembrane domain (M1-M4) and an 

expansive extracellular domain composed of five inner and three outer strands connected by 

loops forming a ß-sandwich. The susceptibility of the prokaryotic homologue from Gloeobacter 

violaceus (GLIC) to clinically relevant concentrations of GAs has also been established.140 

Therefore, such structures provide a rational study point to study the molecular mechanism of 

anesthetic action by computational means. Due to the number of simulation studies on the GLIC 

channel, and the availability of high-resolution crystal structures of the GLIC, we will focus on this 

channel although it should be noted that other Cys-loop receptors, such as the glycine 

receptor,141-143 the nicotinic acetylcholine receptor (nAChR)144-146, the GluCl channel147 and the 

GABAA
148-151 receptor, have been the subject of computational works, primarily using homology 

models. 

Initial computational works utilizing the apo structures of GLIC aimed to identify anesthetic 

binding sites.55 Brannigan et al. performed a comparative study of isoflurane binding to nAChR and 

GLIC, implicating eight distinct sites, throughout the transmembrane and extracellular domains, 

and within the interfacial region between the two.55 Of potential functional relevance, the pore of 

both LGICs accommodates isoflurane dimers which would impose a physical block to ion 

permeation, thus acting as an inhibitory site. Isoflurane also binds to the TM domain of nAChR in 

intersubunit sites underneath the M2-M3 loop in nAChR, in agreement with earlier speculation 

from photoaffinity labelling.152 The absence of such a site in GLIC leads the authors to postulate 

this acts as a positively modulating site, rationalizing the increased sensitivity of GLIC to inhibition 
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by anesthetics, relative to nAChR.140 Finally, novel intrasubunit sites in both α nAChR subunits, and 

one α GLIC subunit, were observed. It is speculated that residence of the α subunits, which 

determine agonist susceptibility, in a position behind the M2 helices, which are involved in 

channel opening, and parallel to the hydrophobic constriction, could influence the active state of 

the receptor. 

Various crystal structures have since been resolved of GLIC in complex with anesthetic molecules, 

including propofol,153,154 desflurane,153 bromoform,154-156 ethanol155 and ketamine,137 providing 

additional insights into sites in the transmembrane and extracellular domains, and in the pore 

(Figure 1). A transmembrane anesthetic binding site was characterized in the 2011 structure of 

GLIC in complex with GAs propofol and desflurane.153 Here, the compounds occupy an 

intrasubunit crevice in the extracellular leaflet of the transmembrane domain, with residues from 

M1-M4 and β6–β7 loop of the extracellular domain. Mutants T255A (M3) and V242M (M2) 

displayed a marked, albeit distinct, response to propofol and desflurane, confirming the 

physiological importance of such a site. Increased propofol sensitivity was interpreted by MD 

simulations within the same study, as propofol percolated further into the cavity, becoming less 

mobile and intensifying interactions with residue 242 in mutant channels relative to the wild type. 

 

Figure 1. Position of propofol (blue), isoflurane (purple) and ketamine (green) binding sites in 
GLIC/ELIC obtained from PDB files 3P50,153 4Z90157 and 4F8H,158 respectively. Transmembrane 
helices of a single subunit are colored yellow to orange, with the extra cellular domain shown in 
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red. 

Using the crystallographic positions of desflurane, as a reference, and additional molecular 

docking calculations, Willenbring and coworkers simulated isoflurane binding to GLIC to delineate 

the structural consequences of prolonged binding.159 Movement of isoflurane between sites 

promoted the breakage of intersubunit salt bridges in the extracellular domain, perturbing the 

quaternary structure and inward movement of the M2 helices, providing a mechanism by which 

isoflurane contributes to channel closure.  

Subsequent MD simulations revealed loose binding of the resolved desflurane to the crystal 

structure site, which could dissociate in under 100 ns.160 However, occupation of an adjacent site 

enhanced binding suggesting double occupation is required for desflurane to inhibit GLIC. 

Mutation in this site experimentally correlated with diminished binding in the crystal structure 

site, in agreement with this. The route of access of such sites is also exposed, with desflurane 

diffusing into and out of the site through the membrane, via the protein-membrane interfacial 

region. 

Further to this, fluorescence quenching disclosed the presence of multiple binding sites for inhaled 

anesthetic halothane and the intravenous anesthetic thiopental in the transmembrane domain.161 

Simulations revealed a site in close proximity to N200, near M1 and the M2-3 loop, which was 

confirmed by mutagenesis of this residue, and multiple additional sites. Some sites overlapped to 

some extent for the chemically distinct compounds and could therefore quench the same 

tryptophan residues. Halothane bound in the M1-M23 site stabilized the M23 loop whilst 

mobilizing the Cys-loop in the EC domain, two regions implicated in channel gating in pLGICs.162-164 

Binding of halothane near W160 at the EC-TM disrupted critical salt bridges, such as D32-

R192.161,165 Removal of the analogous salt bridges in other ligand-gated ion channels notably 

diminished the stability of the open state,164,166,167 suggesting occupation of this site may exert a 

similar effect in GLIC. 

Transmembrane binding was also observed for propofol via flooding simulations using coarse-

grained methods which accessed a multi-microsecond timescale.168 GLIC channel dynamics with 

partial occupancy of propofol binding site was investigated by Mowrey et al.169 Asymmetric states 

with one to three sites inhabited exhibited elevated channel dehydration relative to symmetric 

states with zero or five molecules bound. Conformational changes were observed in the 
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asymmetric states, consistent with the known effects of asymmetric agonist binding in homo-

pLGICs.170-172 

With regards to a potential pore-binding site, crystal structures of GLIC bound to bromo-lidocaine, 

a lidocaine analogue provided the first structural insights into a pore-binding site in pLGICs.173 

Computationally, isoflurane was also documented to pass through the closed hydrophobic gate,159 

in spite of dehydration of the central cavity, occupying a position between residues I233 and I240, 

supporting earlier theoretical and experimental evidence of pore-binding in GLIC.55,173 LeBard et 

el. performed a systematic study of binding to the GLIC pore,174 using monomers and dimers of 

both isoflurane and propofol, in addition to ethanol as a negative control. Isoflurane binding 

affinities, calculated using FEP, were contingent on the functional state of the pore, with a 

situation involving binding of two isoflurane molecules to the closed pore resembling the 

micromolar affinity determined experimentally, and consistent with a pore-block mechanism. The 

determined affinities illustrated that the effect of propofol is overestimated when considering a 

pore-block mechanism in isolation and support a mechanism where pore and allosteric sites exert 

competitive effects on the functional state of the channel.175 

These conclusions were further supported by the high-resolution structure of ELIC co-crystallised 

with isoflurane, in both apo and agonist bound forms, presumed to be in resting and desensitized 

activation states, respectively.157 These structures show inhabitancy of two isoflurane molecules 

within the pore, with MD simulations in the same study revealing paramount stability in the ELIC 

resting state, as a result of observable changes in the pore radii along the channel. Nevertheless, 

the affinity for both states suggests isoflurane can act by stabilizing the closed channel and also 

obstructing the open channel. The structural and dynamical information presented throughout 

these works strongly supports a pore-binding mechanism of inhibition. Bromoform binding has 

also been observed in the pore of GLIC, experimentally and computationally.155,156 

Finally, structural information has also revealed a binding site in the extracellular domain. The 

crystal structure of R-ketamine in complex with GLIC exhibits symmetric binding in extracellular 

intersubunit cavities.137 MD simulations confirmed the observed stereospecifity of this site, with S-

ketamine unable to interact with residue D154, which stably interacts with R-ketamine.176 Notably, 

R-ketamine evolved into asymmetric binding poses over the course of the trajectories, in contrast 

to the known symmetric structures of pLGICs in complex with anesthetics.137,153,155 Structural 

differences resulting from R-ketamine binding was propagated to the ECD-TMD interface and to 
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pore-lining helix M2, via either the pre-M1 region or the EC β1–β2 loop.176,177 In coarse-grained 

simulations by Joseph and Mincer, mentioned previously, propofol spontaneously occupied the 

crystallographic extracellular binding site, prompting asymmetric conformational changes in GLIC, 

transmitted through a similar allosteric network in the ECD-TMD interface.168 The molecular 

mechanism of long-range allosteric coupling was further probed by coarse-grained MD 

simulations, using a novel elastic network model proposed by Li and colleagues.178 

Overall, a myriad of anesthetic binding sites have been proposed by both experimental and 

simulation methods for the GLIC channel. Consequently, uncovering the molecular mechanism of 

anesthetic action has proven difficult. Several studies of GLIC with a number of different 

anesthetics reported a degree of structural asymmetry during the inhibition of GLIC by 

anesthetics. 

4.2 Voltage-gated ion channels 

The voltage-gated ion channel (VGIC) family that specifically conduct Na+ (NaV) and K+ ions (KV) 

implements critical actions in the generation and propagation of action potentials, and thus, plays 

a crucial physiological role. VGIC’s are a common target for antiarrhythmic agents, local 

anesthetics, anticonvulsants and pain therapeutics.179,180 Anesthetics are known to block both NaV 

and KV currents at clinically relevant concentrations.181,182 Various computational studies have 

been performed to investigate this phenomenon on a molecular level. 

The first high-resolution structure of the pore domain of an ion channel, the KcsA channel from 

Streptomyces lividans, was revealed in 1998.183 The protein is characterized by a symmetric 

tetrameric arrangement with each monomer containing two transmembrane α-helices and an 

intermittent pore loop. The pore loop contains the signature selectivity sequence, which 

determines the ionic permeability of the channel, and thus has become known as the selectivity 

filter.184,185 Between the selectivity filter and the cytoplasm, a water-filled cavity is present to 

provide an ideal environment for ion transfer.186 In K+ channels, the selectivity filter is constituted 

of a conserved amino acid sequence arranged to form rings of oxygen atoms, which are able to 

bind dehydrated ions in a cage-like structure, in adjoining sites. In Na+ channels, a ring of residues 

at the extracellular site forms the selectivity filter, although the identity of residues is more 

dependent on the specific channel. Atomistic structures of bacterial (KvAP from Aeropyrum 

pernix)187,188 and mammalian (Kv1.2) 189-192 KV channels have since been obtained, illuminating the 

structure of voltage-sensor domains (VSD) and their interaction with the pore domain. In contrast, 

high-resolution crystallographic data of NaV channels has been only available since 2011 from a 
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number of bacterial sources: NaVAb (Arcobacter butzleri),193-196 NaVRh (Rickettsiales sp. 

HIMB114),197,198 NaVMs (Magnetococcus sp.)199-201 and NaVAe1p (Alkalilimnicola ehrlichii sp. 

nov.)202. These channels exhibit four identical subunits arranged symmetrically, each containing six 

transmembrane segments (S1-S6). S1-S4 constitute the voltage-sensing domain, whilst S5-S6 

segments represent the pore domain, described previously. The behaviour of the voltage sensor 

and pore domains are closely coupled, whereby movement of S4 (following a change in the 

transmembrane voltage) prompts rearrangement of the pore helices, via the S4-S5 linker, 

subsequently opening the cytoplasmic gate. Recently, a cryo-EM structure of a eukaryotic NaV 

channel, NaVPs, at near-atomic resolution (3.8 Å), isolated from the American cockroach 

Periplaneta Americana has been published.203 This channel is comprised of a single polypeptide 

chain which is arranged into equivalent homologous transmembrane domains, as is the case for 

eukaryotic NaV channels. The overall homology observed between known eukaryotic and 

prokaryotic structures advocates bacterial analogs are suitable templates to study small-molecule 

inhibition of KV and NaV channels.  

4.2.1 Sodium Channels 

The therapeutic value of NaV channel inhibitors is well-established, with antiarrhythmics, 

anticonvulsants, antidepressants and antiepileptics known to block the NaV channel pore. Various 

anesthetic agents, including but not limited to isoflurane,204,205 lidocaine206 and bupivacaine206 are 

also known to modulate the entire mammalian NaV channel family. The effect of local anesthetics 

on sodium currents was first acknowledged by Weidman in 1955.207 This idea was matured by 

various researchers into the 1970’s, leading to the proposal of several mechanisms of anesthetic 

action on NaV channels.208 Making use of data on NaV channel blockage by quarternary derivatives 

of lidocaine in myelinated nerves, Strichartz established the concepts of “tonic” and “use-

dependent” block, whereby drug molecules specifically bind to the closed and open state of the 

channel, respectively.209 At this time, factors including the structure/protonation state of the 

molecule, the mode of application and the membrane potential were found to alter the exact 

contribution of each mechanism to the observable response of individual anesthetics.210 

Nowadays, it is widely accepted that highly polar or charged compounds are effective during use-

dependent block traversing through a hydrophilic pathway, whereas neutral compounds are 

effective during tonic block, passing through a hydrophobic pathway when applied from either 

side of the membrane.208,211  
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The question of an alternative hydrophobic pathway was answered to some extent by the 

available structural information, which revealed lateral lipid-filled openings, termed fenestrations, 

directly connecting the central pore to the surrounding membrane, illustrated in Figure 2. 

Considering this, computational methods have been used to investigate small-molecule binding 

sites in NaV channels and potential access pathways for those within the pore.  

 

Figure 2. Pore structure of the NaVMs channel, with the individual fenestrations colored in blue, 
red, yellow and green. Each of the four monomers is represented in grey. The view of the channel 
is perpendicular to the membrane plane. 

The first prokaryotic NaV channel to exhibit a response to anesthetics,212 NaChBac, has been the 

subject of several computational works.213,214 Homology models of NaChBac, based on a NavAb 

structure (PDB ID: 3RVY), in combination with flooding simulations, were used to identify multiple 

binding sites for the general anaesthetics isoflurane and sevoflurane.213,214 Sites were located near 

the selectivity filter accessible from the extracellular solution, at the S4-S5 linker, in the central 

cavity and at the entrance to the fenestration regions. The isoflurane sites with estimated binding 

affinities of the isoflurane interaction sites were calculated to be in the physiologically relevant 

range using FEP,213 with those beneath the selectivity filter and near the S4-S5 linker were later 

confirmed by NMR data.215 Evidence for state-dependent binding of sevoflurane to the S4-S5 

linker and selectivity filter site was also presented in the study by Barber and coworkers, alongside 

a unique site in the deactivated state where the S6 helices coalesce.214 The specific locale of the 

observed isoflurane and sevoflurane binding sites suggests that GAs may act by interfering with 

the selectivity filter, activation at the cytoplasmic S6 gate or by obstructing ion permeation within 

the pore, in a similar manner to local anesthetics in the latter case.213 Isoflurane and sevoflurane 

molecules were able to enter the central cavity via fenestrations, bypassing the closed cytoplasmic 
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gate. Entrance of such molecules was accompanied by displacement of fenestration-bound lipid 

molecules, the expulsion of water molecules through the selectivity filter, with approximately six 

water molecules displaced by a single isoflurane in the pore. These observations demonstrated 

the capability of fenestrations to act as a hydrophobic pathway for small drugs such as 

isoflurane.213  

Lending further support to this postulate, Kaczmarski and Corry used unbiased MD simulations to 

analyze the behaviour of fenestrations on the subunit-interface between S5 and S6 helices in six 

bacterial NaV channels and a homology model of NaV1.4, observed.216 The bottleneck radii of the 

fenestrations range in size from 1.6 to 2.2 Å, with a maximum radii between 2.6 to 2.8 Å, 

potentially tolerable for the passage of aromatic rings, a typical component of NaV channel 

inhibitors. Fenestration size was determined by the identity (F203 in NaVAb, whereas the 

equivalent positions in NaVRh and NaVMs is occupied by Ile and Met) and rotameric state of 

bottleneck residues and the extent of lipid occupation, with local fluctuations typically observed 

on a nanosecond timescale. Following this, fenestration characteristics in the NaV1.4 channel 

model varied as a result of the sequential differences of the repeat sequences. 

The location of small molecule binding has also been of interest, utilizing the high-resolution 

structure of bacterial channels. Studies from independent research groups have identified two 

high-affinity binding sites for small neutral drugs, the local anesthetic benzocaine and the anti-

epileptic phenytoin, in the central cavity of NaVAb, using unbiased and metadynamics 

simulations.217 The observed binding occurs in two hydrophobic sites in the pore, in close 

proximity to the S6 gate and in a fenestration site, consistent with residues recognized in blocking 

of eukaryotic channels.218 Using extensive equilibrium simulations, Boiteux and coworkers cite 

enhanced stability of the fenestration site as a result of π-stacking with F203; on the other hand, 

Martin and Corry advocate non-specific hydrophobic interactions dominate binding in such sites, 

with the S6 site deemed more energetically favorable (by 3 kcal/mol)  using metadynamics 

simulations. These results are in agreement with prior studies implicating multiple residues which 

are hydrophobic in nature in tonic block,219 which is in stark contrast to use-dependent blockers 

which rely on cationic interactions with aromatic residues.219 Spontaneous translocation of 

benzocaine through the fenestrations is observed in the unbiased simulations, with low energy 

barriers of this route calculated by enhanced-sampling methods, confirming the fenestrations as a 

viable access route for the local anesthetic benzocaine. Unexpectedly, transfer of compounds 

through the closed cytoplasmic gate was noted to be viable in both studies. To imitate the 
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eukaryotic NaV channel pore, aromatic residues were introduced into the NaVAb pore near the 

activation gate, pushing benzocaine and phenytoin towards the fenestration site whereas 

aromatic residues near the fenestrations imposed the opposite effect. Interestingly, the binding 

affinity increased in such channels.220  

In the NAVMs channel, Buyan et al. characterized the transport and binding properties of a 

selection of physiologically active compounds, permanently neutral (benzocaine, lamotrigine, and 

carbamazepine) and protonatable (PF-5215786, PF-6305591, and lidocaine) in both neutral and 

charged states at pH 7, using unbiased MD simulations and the replica exchange with solute 

scaling/tempering method.221 Protonatable compounds penetrated the bilayer with ease in the 

neutral form, relative to their charged protonated form, advocating such molecules relinquish 

their charge before entering the plasma membrane. Once within the lumen of NaVMs, binding of 

neutral and charged molecules manifests at separate sites: neutral compounds primarily occupied 

the lower region of the pore proximal to S6 residues, whilst charged compounds displayed 

prominent interactions with the selectivity filter. In the latter case, sodium currents were 

hampered by steric block and electrostatic repulsion with the bound molecule. This novel, pore-

blocking site correctly reproduces the position of the resolved bromines in the crystallographic 

structure of NaVMs with antagonist PF-5215786,200 and suggests compounds reclaim their charge 

to exert an effect in the pore.  

4.2.2 Potassium Channels 

Both voltage-dependent and voltage-independent K+-channels can be blocked by local anesthetics. 

Responses have been recorded for members of the two-pore domain222 and inward rectifying 

channels.223 An initial MD study of open and closed conformations of KirBac1.1 in the presence of 

halothane molecules demonstrated accumulation of halothane molecules at the cytoplasmic gate, 

in the open state only.224 Occupation of this region dampened movements of phenylalanine 

residues, which have previously been implicated in channel gating.225 A similar mechanism 

whereby halothane moderates tryptophan fluctuations has been proposed by fluorescence 

experiments226 and MD simulations alike.227,228 

The potential role of Kv channels in the action of inhalational general anesthetics has been 

realized most recently,229 with evidence accumulating from the 1990’s.230-234 A direct link between 

the application of isoflurane and the single-channel properties of Drosophila Shaker B KV channel 

was first established by Li and Correa.231 Inhibitory responses to general anesthetics (chloroform, 

halothane, isoflurane, and propofol) and short-chain alcohols have also been recorded for K-
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Shaw2, a distinct member of the Drosophila Shaker KV channel family.235-237 Distinctively, 

sevoflurane triggered activation of K-Shaw2.238 Contrary to typical K+ channels, K-Shaw2 is thought 

to undergo a simple activation cycle, involving only two239,240 or three states.238 Consolidation of 

the accrued data advocate inhibitory compounds sustain closed states of the K+ channel, whereas 

sevoflurane is proposed to eradicate unstable inactivated states which diverge from the activation 

pathway.238 

In order to examine pore-binding sites in voltage-dependent channels, MD simulations of the open 

state Kv1.2190,191 and KCa3.1 (a homology model using the Kv1.2 structure) were performed with 

local anesthetic lidocaine and TRAM-34 initially inserted in the pore.241 Both compounds occupy a 

conserved valine-alanine-valine motif in the pore in both channels, in close proximity to the 

selectivity filter, in agreement with interaction sites predicted for small molecule binding in other 

K+ channels.242,243 Kd values were estimated as 20 μM (lidocaine-Kv1.2), 540 nM (TRAM-34–Kv1.2), 

and 10 nM (TRAM-34–KCa3.1), in broad agreement with experimentally determined values, and 

the recorded ∼200-fold selectivity of TRAM-34 for KCa3.1 over Kv1.2.244 The PMF profiles of ion 

permeation through Kv1.2 were then calculated, in order to delineate the functional consequence 

of pore binding to this site. The neutral form of lidocaine had negligible effect on the calculated 

energetics, whilst the charged form imposed an energy barrier of the order of 6kT, consistent with 

previous reports.245 On the other hand, TRAM-34 prompted ion dehydration, inducing an energy 

barrier of ~10 kT. As a consequence, lidocaine must be neutral to cross the membrane and enter 

the pore yet be charged to exert an effect. In contrast, the neutral form of TRAM-34 is sufficient 

for both purposes, providing a potential scaffold for drugs which would remain active in acidic 

conditions typical of inflammation. 

Various experimental results have also cited the involvement of the S4-S5 linker and the distal part 

of the S6 segment, and adjacent helices in the inhibition of K-Shaw2 by general 

anesthetics.236,237,246,247 The region is critical for coupling between the voltage-sensor and pore 

domains in the event of voltage activation, and it is therefore possible that anesthetic binding 

interferes with this phenomenon.191,248 In order to provide a molecular description of this 

phenomenon, Barber and colleagues performed a systematic alanine/valine mutagenesis scan to 

the S4-S5 linker and a segment of S6 on K shaw2, with associated electrophysiological experiments 

to delineate the consequences of such mutations on K-Shaw2 inhibition by 1-butanol and 

halothane.249 In conjunction with docking calculations and MD simulations, a putative anesthetic 

binding site in this region was identified in the S4-S5 linker region, with residues critical for either 
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anesthetic binding, allosteric coupling to the binding site and propagating structural changes to 

the cytoplasmic gate determined. A molecular picture of closely associated, yet distinct binding 

and effector sites emerged, beginning to unravel the determinants of anesthetic action to K-

Shaw2. 

Following this, the differential effects of the several general anesthetics and the novel potentiator 

sevoflurane on Kv1.2 and Kv1.2-FRAKT chimera (where the S4-S5 linker was replaced with that 

from K-Shaw2) were characterized.250 The output of such experiments demonstrated that discrete 

substitutions in the S4-S5 can induce startling differences in the response of KV channels to general 

anesthetics. More specifically, positive modulation of the Kv1.2 channel was predominantly 

dependent on a single mutation, G329T, with the mutant response closely resembling that 

displayed by K-Shaw2. Docking and free-energy methods utilizing closed/resting and 

open/activated states,251,252 identified four sites in the wild-type and G329T mutant, two involving 

the S4-S5 linker, one at the S5-S6 helical interface and one in close proximity to selectivity filter.250 

The selectivity filter sites displayed the highest affinity binding, and a single site at the S4-S5 linker 

displays noticeable dependence on the active state. Identification of several sites in the linker 

region with low binding affinities is consistent with a multi-site model for positive allosteric 

modulation of KV channels by sevoflurane. Further evidence was provided on this subject by Stock 

et al., who proposed a novel theoretical framework to study concentration-dependent 

interactions of ligands to multiple saturable sites in membrane receptors, based on docking and 

FEP calculations.253 

5. Outlook 

The molecular mechanisms of anesthesia have been the source of significant debate since the turn 

of the twentieth century. The Meyer-Overton hypothesis suggested anesthetic agents primarily 

act via the lipid membrane. However, various datum have been interpreted to disprove it, 

motivating alternative postulates. The evolution of computational protocols over the last two 

decades has permitted the study of both membrane and protein-mediated theories via molecular 

dynamics simulations, revealing dynamic characteristics of relevant biological processes at atomic 

resolution and applicable timescales. 

Several lines of inquiry have provided notable success, such as the assessment of the modification 

of structural properties of lipid bilayers following anesthetic exposure, and the identification of 

anesthetic binding sites on intrinsic membrane proteins, most notably pentameric ligand-gated ion 
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channels and voltage-gated cation channels. High-resolution structural information of bacterial 

analogs has proven indispensable in this case, providing a practical starting point for 

computational works. Concurrently, the publication of structures of pharmacologically relevant 

membrane proteins in the future will provide additional opportunities for researchers to perform 

simulation studies of this nature, for instance, in transient receptor potential channels.254 

Substantial advancements in high-performance computing facilities, simulation algorithms and 

forcefields required for the study of model membrane systems have also significantly contributed 

to the success of this field. Further improvements in computer hardware will likely be achieved at 

an unprecedented rate, continuously improving the timescales that can be reached by simulation 

methods.  

Several pertinent questions remain to be addressed. Exactly how direct and indirect effects 

influence the activation state of known targets, and hence evoke a physiological response has 

proven difficult to discern. Furthermore, detailed information regarding the subtype selectivity of 

known anesthetic compounds could be exploited to optimize compounds in the design of novel 

anesthetic compounds. It is likely that models accounting for the combined effect of small-

molecule binding and membrane perturbations will emerge in the near future. 
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