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Abstract 

The direct synthesis of hydrogen peroxide (H2O2) from H2 and O2 represents a potentially atom efficient 

alternative to the current industrial indirect process. We show that the addition of tin to palladium catalysts 

coupled with an appropriate heat treatment cycle switches-off the sequential hydrogenation and 

decomposition reactions, enabling selectivities of >95% towards H2O2. This effect arises from a tin oxide 

surface layer that encapsulates small Pd-rich particles while leaving larger Pd-Sn alloy particles exposed. 

We show this effect is a general feature for oxide supported Pd catalysts containing an appropriate second 

metal oxide component and we set out the design principles for producing high selectivity Pd-based 

catalysts for direct H2O2 production that do not contain Au.  

  



Currently, the demand for H2O2 is met by an indirect process, which produces H2O2 through the sequential 

hydrogenation and oxidation of a substituted anthraquinone (1). For economic reasons, the process is 

operated at large scale and produces concentrated H2O2. In reality, many applications, such as disinfection 

and water purification, require only dilute H2O2 which means that concentrated H2O2 has to be diluted at 

the point of use. Research into the direct synthesis of H2O2 from H2 and O2 as a more suitable solution to 

small-scale, on-site H2O2 production has focused on palladium (Pd)-based catalysts (2-4).  However, 

H2O2 is itself highly reactive and the presence of H2 favors hydrogenation and decomposition reactions 

that form water. The addition of strong acids and halides into the reaction medium can suppress the 

sequential hydrogenation and degradation in supported Pd catalysts (5); but can also promote metal 

leaching and requires further purification of the H2O2 before use.  

Bimetallic Au-Pd alloy catalysts have been extensively studied as catalysts for the direct H2O2 synthesis 

reaction on a number of support materials including TiO2, SiO2 and activated carbon (6-9). Comparable 

yields to monometallic Pd catalysts can be achieved without the need for acid and halide additives in the 

reaction mixture, and 95% selectivity to H2O2 could be achieved with Au-Pd alloy nanoparticles (NPs) 

dispersed on an acid pre-treated activated carbon support material (10). Hydrogen peroxide hydrogenation 

could be decoupled from H2O2 synthesis with an acid pre-treatment that blocked sites on the carbon 

support material responsible for H2O2 degradation. Although this approach was very successful on an 

activated carbon support material, the same blocking effect could not be fully achieved on other 

commercial support materials such as SiO2 and TiO2. 

As O2 dissociation is undesirable in the direct synthesis of H2O2, the reaction can be treated as a selective 

hydrogenation of O2. We explored other Pd-metal combinations that are used for selective hydrogenation 

reactions as potential catalysts for H2O2 synthesis, focusing on non-precious metal to lower costs. Tin has 

been used to modify hydrogenation catalysts in reactions such as the selective hydrogenation of 1-3 

butadiene (11). Further examples have been reported for the liquid phase hydrogenation of hexa-1-3-

diene and hexa-1-5-diene (12), as well as the hydrogenation of unsaturated alcohols (13).  The addition 

of Sn to Pd or Pt can alter the behavior of the catalyst during hydrogenation reactions and, in particular, 

may have an effect on subsequent reactions of the products with the catalyst.  



We report the development of tin-containing palladium catalysts on commercially available TiO2 and 

SiO2 supports that can achieve > 95% selectivity toward direct H2O2 synthesis. These catalysts, after 

being subjected to an appropriate heat treatment regimen, obviate the need for pre-treating the support 

with acids, and contain far less precious metal than Au-Pd catalysts. Furthermore, we present the general 

principles whereby high selectivity catalysts can be obtained with other Pd-metal combinations. 

Simple impregnation of gold and palladium metal salts onto many catalyst supports has been shown to 

generate highly active catalysts for direct H2O2 synthesis.  In addition, high-temperature calcination or 

reduction treatments are known to be crucial to improve the stability of the catalyst. As a starting point, 

we used this simple catalyst preparation methodology to prepare a 2.5wt% Pd- 2.5wt% Sn / TiO2 catalyst 

as well as its monometallic analogs (8, 10). A synergistic effect toward the direct synthesis of H2O2 was 

observed when both metals were present compared to the analogous monometallic catalysts after 

calcination in static air at 500 °C for 3 h (Table S1) (14). The activity of this 2.5wt% Pd - 2.5wt% Sn / 

TiO2 catalyst (62 mol kg-1 h-1) is similar to that of a 2.5wt% Pd - 2.5wt% Au / TiO2 catalyst (8)  (i.e. 64 

mol kg-1 h-1) . We then optimized the ratio of Sn-to-Pd while maintaining a total metal content of 5wt% 

(Table S2) (14), and found an optimum nominal composition, 3wt% Pd - 2 wt% Sn / TiO2, that exhibited 

an H2O2 productivity of 68 mol kg-1 h-1 (Table 1, entry 1). By comparison, the H2O2 degradation activity 

of the optimized Sn-Pd catalyst was very low compared to that reported for Au-Pd systems (65 mol kg-1 

h-1 for 3wt% Pd - 2 wt% Sn / TiO2 versus 235 mol kg-1 h-1 for 2.5wt% Pd - 2.5wt% Au / TiO2) which 

indicated that Sn is also playing a beneficial role in preventing the over hydrogenation/decomposition of 

H2O2. However, the Sn-Pd catalysts calcined at 500 °C for 3 h under static air were unstable to multiple 

reaction cycles (Table 1, entry 1). 

The nature of the catalyst surface and in particular the oxidation states of the active metal are crucial to 

obtaining high selectivity. Therefore characterization of this 3wt% Pd - 2 wt% Sn / TiO2 catalyst after 

calcination by X-ray photoelectron spectroscopy (XPS) was carried out and showed the majority of the 

surface Pd was present as Pd2+ while the Sn Auger parameter showed that SnO2 was present in the calcined 

catalyst (Figure S1, Table S3) (14). Analysis of the nanostructure of this catalyst using scanning 

transmission electron microscopy – high angle annular dark filed imaging (STEM-HAADF) and electron 



energy loss spectroscopy (EELS) revealed that the SnOx was present as a thin (< 2 nm thick) amorphous 

film coating the TiO2 support particles (Fig. 1, A to D, and Fig. S2 (14)). A population of 5 - 10 nm NPs 

were also present in the sample that contained a homogeneous mixture of both Pd and Sn (Figures 1(a)-

(d) and S3 (14)). Lattice fringe fitting of these particles strongly suggests a metallic Pd-Sn alloy structure 

rather than segregated or mixed oxides meaning that only the surface of the particles is oxidised.  Many 

sub-2 nm Pd-rich NPs were also observed and were often associated with the SnOx thin films, and because 

these species were much less numerous in a 5wt% Sn-only / TiO2 sample (Figure S4) (14), they were 

primarily associated with the PdOx component in the bimetallic catalyst.  

A limiting factor in achieving high selectivity towards H2O2 with Au-Pd / TiO2 catalysts prepared by the  

wet impregnation method is that the catalysts exhibit a variation in composition with particle size, with 

the smallest particles being Pd-rich (9). These small Pd-rich NPs are likely to be highly active for H2O2 

synthesis and also for its subsequent hydrogenation/decomposition, as has been shown when Au-Pd 

catalysts are prepared by colloidal techniques with particle sizes typically 2 to 4 nm(15). In the case of 

the Sn-Pd system, the small Pd-rich NPs are often associated with the amorphous SnOx films.  We 

postulated that it might be possible to further decrease the H2O2 degradation activity of the catalyst by 

inducing encapsulation of the ultra-small Pd-rich NPs by this SnOx film. We therefore used subsequent 

thermal treatments in an attempt to induce a strong-metal-support-interaction (SMSI) between the Pd and 

SnOx layer (16-21). We first added a low-temperature reduction step (200 °C, 2 h, 5% H2 in Ar), which 

made the catalysts stable to multiple reaction cycles (Table 1, entry 2). However, the H2O2 degradation 

activity increased markedly from 65 to 300 mol kg-1 h-1, which was associated with the reduction of Pd2+ 

to metallic Pd, as shown by XPS, (Table S3, Figure S1) (14). Metallic Pd is known to be a more effective 

H2O2 hydrogenation catalyst (7).   

Detailed STEM analysis of this reduced sample was carried out to investigate any structural changes in 

the sample on reduction (Figures S5 and S6) (14). Analysis identified the presence of thin SnOx films, 

sub-2 nm Pd NPs, and 5 to 10 nm NPs whose lattice fringe spacings and angles were consistent with Pd-

Sn metallic alloy phases. We then re-oxidized, this reduced catalyst to restore Pd2+ as the predominant 

surface species (as confirmed by XPS (Figure S1, Table S3)) (14) and complete an oxidation-reduction-



oxidation (O-R-O) cycle with the aim of encapsulating the small Pd species and re-generating the oxidised 

Pd-Sn surface on the larger NPs. Re-oxidizing the reduced catalyst for various time periods at 400 °C 

under static air had little effect on the H2O2 synthesis productivity, but markedly decreased the H2O2 

degradation activity (Fig. 2A). After a 4 h re-oxidation treatment, the catalyst showed no activity toward 

H2O2 degradation and could produce H2O2 with an H2 selectivity of > 95% (Table 1, entry 3). This catalyst 

was stable to multiple reaction cycles and showed negligible leaching of Sn (0 ppb) or Pd (2 ppb) during 

a 30 min reaction as measured by ICP-MS. This re-oxidized 3wt% Pd - 2wt% Sn / TiO2 catalyst was 

subjected to further H2O2 testing including multiple sequential H2O2 synthesis tests (Fig. 2B). After 

running the reaction consecutively 5 times, the H2O2 concentration increased linearly to 0.53wt%, 

retaining both the high H2O2 synthesis and zero H2O2 degradation rates. This result implies that no 

subsequent decomposition or hydrogenation reactions of H2O2 took place with this catalyst. The re-

oxidized 3wt% Pd - 2wt% Sn / TiO2 catalyst was also tested for H2O2 degradation with varying 

concentrations of H2O2 under a pressure of 5% H2 / CO2 (Fig. 2C) and showed no degradation of H2O2 in 

solutions of up to 8 wt%, whereas the corresponding Au-Pd / TiO2 catalyst showed substantially higher 

H2O2 degradation activity at all of the concentrations studied.  

The nanostructure of the catalyst after the oxidation-reduction-oxidation treatment was characterized to 

identify any structural changes that could be responsible for the observed high selectivity. Three structures 

were again revealed to be present in the catalyst–amorphous SnOx films on the TiO2 particles, small Pd 

species associated with these films, and larger Pd-Sn NPs (Fig. 1, E to H,  and Figures S7 and S8 (14)).  

Detailed EELS analysis of the thin film regions (Figure S9 (14)) after various heat treatments indicates 

the presence of SnOx films which can be either reduced or oxidised depending on the final heat treatment 

stage as indicated by the absence/presence of the O K edge in the EELS spectrum. In contrast to the thin 

films, EELS analysis of Sn-Pd nanoparticles (Figure S10 (14)) at different stages of the heat treatment 

cycle show no clear O K edge. This confirms these nanoparticles to be metallic Pd-Sn alloys, at least in 

the bulk, which is also consistent with the lattice fringe fitting. Some slight oxidation of the surface of 

these particles is possible as detected by our XPS measurements, but at such a level that is below the 

detectability limit of the EELS measurements. The 3wt% Pd – 2wt% Sn / TiO2 catalyst after the oxidation-



reduction-oxidation cycle shows evidence that the small Pd-rich particles NPs responsible for high 

hydrogenation activity often appear to be encapsulated in the amorphous SnOx layer (Figure S11 (14)).  

We suggest that by generating strong metal-support interactions (SMSI) that can effectively ‘bury’ the 

population of smaller Pd-rich NPs,  the H2O2 degradation activity of the catalyst is limited (Fig. 3A). The 

larger uncovered Pd-Sn alloy NPs are then mainly responsible for the H2O2 production and are inherently 

less prone to cause subsequent H2O2 degradation than Pd-Au NPs. The monometallic Pd / TiO2 catalyst 

that was subjected to the optimized oxidation-reduction-oxidation cycle (Table S4, entries (1-2) (14)) did 

not induce this effect, confirming that the amorphous layer responsible for SMSI is not TiO2 based.  

To investigate if this effect was unique to the 2wt% Sn - 3wt%Pd / TiO2 catalyst, similar heat treatment 

protocols were applied to the analogous 2.5wt% Au -2.5wt% Pd / TiO2 system. The catalytic results 

(Table 1, entries 4-6) show that the same suppression of H2O2 degradation was also not observed for a 

corresponding oxidized-reduced-oxidized Au-Pd / TiO2 catalyst. Results obtained for monometallic Pd 

and bimetallic Sn-Pd catalysts (Table S4, entries 3-5) (14) also indicate that the reduction step is crucial, 

as three oxidative treatments fail to induce the effect.  It should also be noted that the 200oC reduction 

temperature used in this study is much lower than that typically reported to induce SMSI effects in TiO2-

only supported catalyst systems (22). To demonstrate the proposed SMSI effect with SnO2, a ‘model’ 

5wt% Pd / SnO2 catalyst was also prepared and studied by electron microscopy. In the oxidized state, 

EELS mapping showed the PdOx particles appear to be clean (Fig. 3B, Figs. S12, S13 (14)), whereas after 

the oxidation-reduction-oxidation treatment the Pd particles show clear evidence of an SnOx overlayer 

(Fig. 3C, and Figs. S14, S15 (14)). 

Further evidence that the suppression of the H2O2 degradation does not originate from encapsulation of 

small Pd particles by TiO2 but is an SMSI effect arising from the secondary SnOx component was obtained 

by using a non-reducible SiO2 support in place of the TiO2. When the ratio of Sn : Pd on SiO2 was 

optimized (Table S5) (14) and the same oxidation-reduction-oxidation heat treatment regimen was 

applied (Table 1, entries 7-9),  the resulting 1wt% Pd – 4wt% Sn / SiO2  catalyst produced H2O2 at a rate 

of 50 mol kg-1 h-1 (Table 1, entry 9) and showed no activity toward subsequent H2O2 degradation. This 

1wt% Pd – 4wt% Sn / SiO2 catalyst showed no propensity to decompose or hydrogenate H2O2 even in 



solutions containing up to 12wt% H2O2 (Figure S16) (14). Furthermore, the catalytic performance of the 

1wt% Pd – 4wt% Sn / SiO2 material was stable through multiple uses (Table S5) (14).  XPS analysis  

(Figure S1, Table S4) (14) and electron microscopy characterization (Figures S17 and  S18) (14) of the 

1wt% Pd – 4wt% Sn / SiO2 catalyst showed analogous compositional and structural features (i.e. (i) 

amorphous SnOx films and associated ultra-small Pd-rich NPs and (ii) larger Pd-Sn alloy particles) as its  

3wt% Pd - 2wt% Sn / TiO2 counterpart.  

Our approach of encapsulating small Pd-rich species generated by wet impregnation preparations with 

secondary oxides canbe generalized if the second metal oxide added to the Pd/primary oxide (e.g. 

TiO2/SiO2) support system (i) shows no decomposition activity towards H2O2 when in oxide form, (ii) 

forms an alloy or mixed oxide phase with Pd, and (iii) can encapsulate small Pd-rich particles by SMSI. 

Based on these design rules and a using a nominal composition of 0.5wt% Pd - 4.5wt% M / TiO2 that had 

been subjected to the optimised oxidation-reduction-oxidation treatment, we synthesized a series of 

bimetallic catalysts where M = Ni, Zn, Ga, In and Co. All of these catalysts showed activity for H2O2 

synthesis (between 30-64%  of that displayed by the Sn-Pd catalyst) and no activity for H2O2 degradation 

(Table S6) (14).  Thus, our approach opens up the possibility of designing reusable catalysts with greatly 

reduced precious metal content while still retaining high selectivity to H2O2.  
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Table 1. Direct H2O2 synthesis kinetics. Catalytic testing results of the optimized 3wt% Pd – 2wt% Sn 

/ TiO2 and 2.5wt% Pd - 2.5wt% Au / TiO2 catalysts after being subjected to various heat treatment 

regimens. 

 

a) Rate of H2O2 production determined after reaction using reaction conditions: 5% H2/CO2 (2.9 MPa) 

and 25% O2/CO2 (1.1 MPa), 8.5 g solvent (2.9 g HPLC water, 5.6 g MeOH) 0.01g catalyst, 2 oC , 1200 

rpm, 30 mins. 

b) Rate of H2O2 degradation calculated from the loss of H2O2 using standard reaction conditions: 

5%H2/CO2 (2.9 MPa), 8.5 g solvent (5.6 g MeOH, 2.22 g H2O and 0.68 g 50% H2O2), 0.01 g catalyst, 2 

oC, 1200 rpm, 30 mins. 

n.d. = not determined

 

 

Entry 

 

 

Catalyst 

H2O2 

Productivitya (+ 2nd 

use value in 

brackets) 

mol kg cat
 −1 h-1 

H2O2 

Degradationb 

mol kg cat
 −1 h-1 

H2 

Conversion 

% 

H2O2 

Selectivity 

% 

 3% Pd - 2% Sn / TiO2     

1 500 °C / 3 h / air 68 (14) 65 n.d. n.d. 

2 + Reduced 200 °C / 2 h 60 (60) 300 20 46 

3 + 400 °C / 4 h / air 61 (60) 0 9 96 

 2.5% Pd - 2.5% Au / TiO2     

4 400 °C / 3 h / air 64 (64) 235 22 66 

5 + Reduced 200 °C / 2 h 135 396 n.d. n.d. 

6 + 400 °C / 4 h / air 82 277 n.d. n.d. 

 1% Pd - 4% Sn / SiO2     

7 400 °C / 3 h / air 66 (22) 62 n.d. n.d. 

8 + Reduced 200 °C / 2 h 76 (76) 340 13 70 

9 + 400 °C / 3 h / air 50 (50) 0 8 95 



 

 

Figure 1. Microstructural analysis of 3wt% Pd – 2wt% Sn / TiO2 - Representative STEM-HAADF 

grayscale images and STEM-EELS (RGB) maps of 3wt% Pd – 2wt% Sn / TiO2 catalysts at (a-d) the 

oxidized and (e-h) the oxidized-reduced-oxidized stages. From the STEM-HAADF images, three distinct 

supported species are found in both these catalysts: namely (i) relatively large (i.e. 3-10 nm) nanoparticles 

(white arrows), (ii) smaller clusters on the nm or sub-nm scale (white circles), and (iii) continuous film 

covering the TiO2 support surface. The qualitative elemental distribution of Pd, Sn and Ti are represented 

by red, green and blue respectively in the STEM-EELS maps. (d) and (h) show that the continuous film 

mainly contains Sn, which either supports or embeds the smaller Pd-rich species. (c) and (g) demonstrate 

that the larger particles are Pd-Sn alloys. Scale bars in the images and maps represent 1 nm unless noted 

otherwise.  
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Figure 2. –H2O2 direct synthesis and degradation testing of 3wt% Pd - 2wt% Sn / TiO2 

Experimental conditions reported in Table 1 for figure 2 (a-c)                        
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c) (a) Effect of re-oxidation time under static air at 

400 °C on H2O2 synthesis and H2O2 degradation 

activity for oxidised-reduced 3wt% Pd - 2wt% Sn / 

TiO2 catalyst.  

(b) Sequential H2O2 synthesis reactions over the 

3wt% Pd - 2wt% Sn / TiO2 material after oxidation-

reduction-oxidation treatment.  

(c) Degradation activity of optimized oxidised-reduced-

oxidised 3wt% Pd - 2 wt% Sn / TiO2 catalyst compared to 

2.5wt% Au-2.5wt% Pd / TiO2 (8) 

 



 

 

Figure 3. Evolution of catalyst through oxidation-reduction-oxidation cycle (a) Proposed mechanism 

for switching-off H2O2 hydrogenation by small Pd-rich NPs through a strong metal support interaction 

(SMSI). The secondary metal must form both an alloy with Pd and oxidize to form a secondary support 

(i.e. SnOx) that can encapsulate the relatively small, poorly alloyed, Pd-rich NPs after an oxidation-

reduction-oxidation cycle. This step prevents these NPs from decomposing/hydrogenating the H2O2 

product. STEM-EELS mapping of a 5wt% Pd / SnO2 model catalyst at the (b) oxidized and (c) oxidized-

reduced-oxidized stages, showing partial encapsulation of the Pd NP (red) by SnOx (green) after the 

oxidation-reduction-oxidation heat treatment cycle. The Sn intensities in the SnO2 support area were 

deliberately saturated to show up any relatively weak signals in the particle region. The scale bars 

represent 1 nm.     
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