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Abstract.  

The effectiveness of Cs-exchanged phosphotungstic acid as a recoverable solid acid additive for the 

direct synthesis of hydrogen peroxide (H2O2) using an Au-Pd / TiO2 catalyst is investigated and 

compared to the promotion effect of common oxides and non-halo acids. A clear improvement in 

catalytic activity towards H2O2 synthesis is reported when utilising Cs-containing heteropolyacids in 

addition to a standard H2O2 synthesising catalyst. The effect of Cs content on the promotion of H2O2 

formation is investigated and the feasibility of a reusable heterogeneous additive has been explored 

revealing that the presence of the acid additive not only stabilises the H2O2 that is produced but also 

increases the H2O2 synthesis rate.   
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Introduction  

The catalytic direct synthesis of hydrogen peroxide (H2O2) from molecular hydrogen and oxygen would 

represent an atom efficient process and would allow production to be decentralised1, 2. For over 100 

years the reaction has been studied using catalysts based on Pd and more recently bimetallic and 

trimetallic nanoparticles containing Pd3, 4. A major limitation of the direct synthesis process is being 

able to control the subsequent unselective hydrogenation and decomposition reactions of H2O2, which 

limit reaction selectivity. Advances have been made in catalyst design demonstrating that it is possible 

switch off these subsequent reactions using both AuPd5 and SnPd6 bimetallic catalysts however many 

studies still use the addition of promoters such as acids and halides to suppress these reactions7-9.  

The addition of acids to the reaction medium has been extensively studied as a means of suppressing 

the base catalysed decomposition of hydrogen peroxide using Pd and AuPd catalysts and stabilising the 

synthesised H2O2. Decreasing the pH of the reaction by addition of nitric, sulphuric, phosphoric and 

hydrochloric acids10 has shown to be essential in achieving high yields of H2O2 when using 

monometallic Pd catalysts and the presence of coordinating counter ions such as chloride and bromide 

can act as further promoters, suppressing the sequential over hydrogenation of hydrogen peroxide11, 12. 

This has been suggested to occur through poisoning of reactive Pd sites by the halide anions preventing 

O-O bond cleavage, which leads to water formation13. Despite these enhancements in hydrogen 

peroxide yield the removal of acid and halide ions from solutions of hydrogen peroxide increases the 

costs associated with the direct synthesis process. Recently it has been reported that the addition of 

organobromides such as bromobenzene to a reaction using a Pd catalyst supported on acidic resin 

showed similar performance to the addition of HBr as an ionic source of bromine14. This study reported 

that no free bromide was present in the reaction solution when using bromobenzene as promoter 

suggesting that organic additives could be attractive alternatives to halides in reaction solutions.  

A recoverable acid promoter would be beneficial to the direct synthesis process, as it would remove the 

need to neutralise strong acidic solutions of H2O2 before application, shipping or storage. We have 

recently reported catalysts for the direct synthesis of hydrogen peroxide based on solid acids such as 

caesium substituted phosphotungstic acid (HPA) supported Pd and AuPd nanoparticles15, 16 These 

catalysts show very high hydrogen peroxide productivity, especially under challenging aqueous reaction 

conditions. Despite the high productivities these materials also showed high H2O2 degradation when 

metals are supported on them. In these cases it is not possible to carry out heat treatments that are usually 

used in catalyst preparation, as they will result in the decomposition of the parent support material17. In 

this study we investigate the addition of solid acid materials to the direct synthesis reaction using a well-

studied 2.5 wt. % Au - 2.5 wt. % Pd / TiO2 catalyst as this allows the catalyst material to be prepared 

independently of the solid acid materials.  
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Experimental  
 
Catalyst Preparation.  
 
Bi-metallic gold-palladium catalysts were prepared by wet co-impregnation of TiO2 with solutions of 

HAuCl4 and PdCl2, using an excess of solvent (in this case water). The catalysts were prepared to have 

a nominal metal content of 5 wt. %. A typical catalyst preparation procedure (1.0 g 2.5 wt. % Au- 2.5 

wt. % Pd / TiO2) was carried out according to the following procedure which has been previously 

reported in the literature(18). PdCl2 (0.042 g) was added to HAuCl4 (2.04 ml,12.25 g Au / 1000 ml) and 

heated to 80 °C with stirring and left until the PdCl2 had completely dissolved. TiO2 (0.095 g, Degussa, 

P25) support was then added to the solution and the water allowed to evaporate until the mixture formed 

a paste like consistency. The samples were dried (110 OC, 16 h) and then calcined in static air (400 OC, 

3 h with a ramp rate of 20 OC min-1). 

The degree of Cs-incorporation into the structure of H3PW12O40 was varied by varying the mass of 

CsNO3 added to an aqueous solution of H3PW12O40. A typical preparation procedure of 

Cs2.5H0.5PW12O40 (1.0 g) was carried out according to the following procedure, which has been 

previously reported in the literature(15, 16). CsNO3 (0.151 g) dissolved in deionised water (5.0 ml) was 

added drop-wise to an aqueous solution of H3PW12O40 (0.892 g) while stirring. The resulting solution 

was continuously stirred while heating (80 OC).  The water was allowed to evaporate until the mixture 

formed a paste like consistency. The samples were dried (110 OC, 16 h) and then calcined in static air 

(300 OC, 2 h with a ramp rate of 20 OC min-1). 

Catalyst Characterisation and Testing. 

Catalytic activity towards the direct synthesis of H2O2 from H2 and O2 was determined using a Parr 

Instruments stainless-steel autoclave (equipped with overhead stirrer and temperature/pressure sensors) 

with a nominal volume of 100 ml and maximum working pressure of 14 MPa. During a standard 

synthesis reaction the autoclave was charged with MeOH (5.6 g), HPLC standard H2O (2.9 g) and 

catalyst (0.01 g). The autoclave was pressurised with 2.9 MPa 5 % H2 / CO2 and 1.1 MPa 25 % O2 / CO2 

to give a total reaction pressure of 4 MPa. After cooling the autoclave to 2 OC the reaction mixture is 

stirred at 1200 rpm for 0.5 h. After the reaction was completed a gaseous sample was collected and 

analysed by gas chromatography when necessary. Aliquots of the solvent were titrated against a 

Ce(SO4)2 solution acidified with 2% H2SO4 using ferroin as an indicator. The concentration of the 

Cs(SO4)2 solution was standardised by titration of a known amount of (NH4)2Fe(SO4)2.6H2O, using 

ferroin as an indicator. 

The degradation activity of a catalyst towards H2O2 was determined in a manner similar to the direct 

synthesis activity of a catalyst.  The autoclave was charged with MeOH (5.6 g), H2O2 (50 wt. % 0.69 

g) HPLC standard H2O (2.21 g) and catalyst (0.01 g), with the solvent composition equivalent to a 4 
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wt. % H2O2 solution.  From the solution 2 aliquots of 0.05g were removed and titrated with acidified 

Ce(SO4)2 solution using ferroin as an indicator to determine an accurate concentration of H2O2 at the 

start of the reaction. The autoclave was pressurised with 2.9 MPa 5 % H2 / CO2 and cooled to 2 OC and 

the reaction mixture was stirred at 1200 rpm for 0.5 h. After the reaction was complete (0.5 h) the 

catalyst was immediately removed from the reaction solvents and as previously two aliquots of 0.05 g 

were titrated against the acidified Ce(SO4)2 solution using ferroin as an indicator.  

Investigation of the bulk structure of the materials was carried out using powder X-ray diffraction 

(XRD) on a (θ– θ) PANalytical X’pert Pro powder diffractometer using a Cu Kα radiation source 

operating at 40 keV and 40 mA. Standard analysis was performed using a 40 min scan between 2θ 

values of 10–80O with the samples supported on an amorphous silicon wafer. Diffraction patterns of 

phases were identified using the ICDD data base. 

Surface area analysis was determined using a Micromeritics Gemini 2360 analyser. A known amount 

of sample, 100–200 mg was placed in a straight walled tube and degassed for 1 h at 120 OC under a 

flow of N2. The surface area was analysed using a single point analysis typically taking 5 points between 

P/P0= 0.05–0.1. 

Metal leaching was quantified using microwave plasma - atomic emission spectroscopy (MP-AES). 

Post reaction solutions were filtered to remove the solid catalyst, after which the liquid phase was 

analysed using an Agilent 4100 MP-AES. 

 

Results and Discussion 

In this study the previously reported 2.5 wt. % Au - 2.5 wt.% Pd / TiO2 catalyst was used for all direct 

synthesis reactions18. This catalyst has been shown to be stable to multiple reaction cycles after 

calcination in static air at 400 °C, it consists of Au-Pd core shell nanoparticles with sizes ranging from 

3- 30 nm and under our standard reaction conditions outlined in the experimental procedures this 

catalyst has a productivity of 64 molH2O2kgcat
-1h-1 18. Firstly, the pH of the reaction solution prior to 

reaction was altered using HNO3 to confirm that an enhancement could be achieved on decreasing the 

pH of the reaction solution (excluding the effect of dissolved CO2 forming carbonic acid as an in-situ 

acid promoter). Figure 1 shows that the measured productivity of the catalyst after 30 min reaction 

increased from 64 to 110 molH2O2kgcat
-1h-1 when the pH of the solution was decreased from 6 to 1.5 in 

line with previous studies19 on the effect of acid addition to the direct synthesis reaction.  

Following this an investigation was carried out to evaluate if heterogeneous additives could also affect 

the productivity of the direct synthesis reaction in a positive way. We added 10 mg of common oxides 

and catalyst supports to the reaction mixture containing 10 mg of AuPd / TiO2 catalyst. All the additives 

were screened for activity towards the direct synthesis of H2O2 (Table S1) and all showed no activity 
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towards the synthesis of H2O2. However additives showed varying levels of H2O2 degradation as has 

been previously reported20. Basic support materials such as MgO showed high levels (206 molH2O2kgcat
-

1h-1) of H2O2 degradation (Table S1) where as more acidic support materials such as Nb2O5 showed 

lower levels of H2O2 degradation (83 molH2O2kgcat
-1h-1). Figure 2 shows that on addition of bare additives 

to the direct synthesis reactions containing the AuPd catalyst a small enhancement in productivity was 

observed for acidic materials such as ZrO2 and Nb2O5 while basic materials such as MgO showed a 

negative impact through enhanced degradation of H2O2.  

Phosphotungstic acid (H3PW12O40) is a soluble heteropolyacid in proton form with the Keggin 

structure21.  The almost super-acidic nature of heteropolyacids (HPAs) such as phosphotungstic acid 

(H3PW12O40) has been well studied and the ability to produce insoluble salts of these solid acids through 

the incorporation of cations such as Cs+, Rb+ and K+ has led to their investigation as acidic supports in 

the direct synthesis of H2O2
22

. The acidity, surface area and solubility of these structures can be tuned 

by proton exchange with alkali metal. Park et.al.23 have studied Pd-exchanged heteropolyacids with 

varying Cs-content and shown that the catalyst (Pd0.15Cs2.5H0.5PW12O40) was active towards the 

synthesis of H2O2. Sun et.al.24 have reported that Pd based catalysts utilising a heteropolyacid support 

shows greater productivity and selectivity towards H2O2 when compared to more conventional supports. 

We investigated the use of Cs2.5H0.5PW12O40 as a solid acid additive to the direct synthesis reaction, the 

productivity of the reaction using this additive increased from 64 to 99 molH2O2kgcat
-1h-1, a promotion of 

55% in activity using the same catalyst material.  

The ability to tune the acidic properties of this additive by alkali metal doping led us to investigate a 

range of materials (CsxH3-xPW12O40) with differing Cs contents (x = 0-3). The additives were 

synthesized and were shown by XRD to have the characteristic diffraction patterns associated with the 

cubic structure of H3PW12O40 (ICDD number 00-050-0657) (Figure S1). Upon incorporation of Cs+ the 

reflections broaden and decrease in intensity indicating a loss in crystallinity. BET surface area analysis 

(Table 1) from N2 physisorption shows that increasing the amount of Cs in the structure results in a 

higher surface area materials consistent with the loss in crystallinity observed by XRD. Table 1 shows 

the results of the material screening for H2O2 synthesis, no heteropolyacid materials showed activity 

towards H2O2 synthesis. Degradation activity was observed which increased linearly with the surface 

area of the material and decreasing acidity as more Cs was substituted in the HPA structure. This 

suggests that the degradation activity is affected by the acidic nature of the material and coupled with 

the fact that no H2O2 was synthesised means that the degradation reaction is likely to be decomposition 

and the heteropolyacids are not able to activate H2 leading to over hydrogenation. On addition of catalyst 

to the various Cs containing heteropolyacid additives a significant improvement in H2O2 productivity 

was observed compared to the catalyst alone. When 10 mg of the soluble H3PW12O40 was added the 

observed productivity increased by approximately 2.5 times from 64 to 157 molH2O2kgcat
-1h-1. As the 

amount of Cs substitution increased generating materials with larger surface areas and lower degrees of 
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acidity the extent of the promotional effect decreases until at full substitution (Cs3PW12O40) a negative 

effect was observed on addition of an additive. The degradation activity of the catalyst and additive 

reactions systems remains generally in line with the sum of the degradation of the catalyst and 

heteropolyacid suggesting that the addition of heteropolyacid does not results in a synergistic effect 

towards the over hydrogenation or decomposition of H2O2 but could enhance the rate of H2O2 synthesis.  

The effect of adding increasing amounts of heteropolyacid was studied for all additives with varying 

Cs contents and the results are shown in Figure 3. The most acidic materials (CsXH3-XPW12O40 x = 0 – 

1) showed increasing observed H2O2 productivity with increasing additive amounts at all masses from 

10 – 50 mg. At 50 mg addition of H3PW12O40 the productivity of the reaction increased from 64 to 301 

molH2O2kgcat
-1h-1 representing a near 5 fold increase. Apart from the fully exchanged Cs additive, which 

showed decreased activity over all mass loadings, all other materials showed a plateau of activity after 

an initial increase in activity with when increasing the amount of additive in the reaction. The exchange 

of Cs into the heteroplyacid materials also determines the solubility of the materials as previously 

reported by Misono et. al.24 To investigate if leached materials could be responsible for the promotional 

effect MP-AES was carried out on the reaction solutions post reaction and the results are shown in 

Table 2. When using the more acidic and soluble heteropolyacid additives up to 9 ppm of Pd was 

detected in the reaction solution (corresponding to 10% of the total Pd in the reaction) this value 

decreased to 1 ppm (3% of the total Pd in the reaction) as the Cs exchange of the material was increased, 

reducing the acidity of the reaction solution. In all cases no Au leaching was observed but even in the 

case of the full exchanged material, Cs and W leaching was observed in the reaction media suggesting 

a low level of solubility or incomplete exchange. Tungsten leaching decreased with increasing exchange 

of Cs into the material over the range of materials studied whereas Cs leaching exhibited a maximum 

at x = 2 and then decreased as more complete exchange was achieved. To investigate if the Pd present 

in the solutions was responsible for the activity, possibly in the form of colloidal or homogeneous Pd, 

which has been extensively reported by Lunsford and co-workers26, 27. Reactions were carried out using 

the solutions after the catalyst had been removed by filtration. Table 2 demonstrates that minimal H2O2 

synthesis activity was observed in these reactions suggesting that the leaching of metal from the catalyst 

or the presence of Cs or W in the solutions was not responsible for the enhanced activity. In addition a 

sample of the catalyst was washed with a H3PW12O40 solution at concentrations and times to simulate a 

reaction. After washing and drying. the catalyst showed no enhancement towards the synthesis of H2O2 

compared to the fresh catalyst material suggesting that low amounts of physisorbed species were not 

responsible for the promotion.  

To further investigate the origin of the promotional effect and determine if it is purely an effect of acid 

stabilisation of the synthesised hydrogen peroxide, reactions were carried out with addition of the 

constituents of the heteropolyacid (Cs(NO3), H2WO4) and also the effect of changing the pH with 

various additives was investigated. Firstly the addition of Cs(NO3) in amounts that correspond do the 
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Cs content in the HPA additives did not result in a promotion in H2O2 productivity (Table S2). This 

confirmed that in the case of HPA additives the Cs solubilised from the additives was not responsible 

for the promotion in activity and also in the case of nitric acid addition the nitrate anion played no part 

in the promotion of H2O2 activity. As reported in Figure 1 the addition of HNO3 in order to lower the 

reaction pH and stabilise the H2O2 resulted in an improvement in the observed H2O2 productivity during 

the reaction. When the pH of the solution was decreased using H2WO4, which contains the tungstate 

ions present in the HPA additives, a similar profile to the addition of HNO3 was observed suggesting 

that this promotion was similar in nature to HNO3 addition and the tungstate ions alone were not 

responsible for the improvement. When plotted together (Figure 4) the data from HNO3, H2WO4 and 

oxide support addition show a similar trend in terms of observed H2O2 activity with pH of the solution. 

In the case of addition of the full heteropolyacids, soluble or exchanged (CsxH3-xPW12O40), this trend is 

broken by all of the compositions studied. The observed improvements are substantially higher using 

heteropolyacid additives at similar pH to that observed with the conventional acid addition or the 

addition of any constituent additives. The different behaviour with heteropolyacid additives with 

various amounts of Cs suggests an additional affect in increasing the amount of H2O2 observed, in 

addition to the acid stabilisation for the synthesised H2O2, where the heteropolyacid structure is 

required. For example at a pH of 1.6 the promotion effect of HNO3 is an enhancement in the rate of 

H2O2 synthesis of 45 molH2O2kgcat
-1h-1. However, using Cs2HPW12O40 as an additive for the 2.5 wt.% 

Au – 2.5 wt.% Pd / TiO2  catalyst the enhancement in the rate of H2O2 formation is much greater at 113 

molH2O2kgcat
-1h-1 despite a less acidic pH of the reaction solution. Comparison of the H2 conversion and 

H2O2 selectivity (Table 3) of reactions containing heteropolyacid additives revel that reactions 

containing the heteropolyacid additives have increased H2 conversion compared to the catalyst alone. 

The observation that the heteropolyacids alone are not able to synthesise H2O2 and show no synergistic 

effect for H2O2 degradation when used in combination with the catalyst suggests that the enhanced H2 

conversion is not resulting from the hydrogenation of H2O2 and that in fact the less acidic (x = 1-2.5) 

materials have similar H2O2 selectivity to the catalyst alone. It can be observed that the selectivity 

towards H2O2 of the reactions decreases with the acidity of the acid, suggesting that acid stabilisation 

is a factor but not the only reason for the higher observed concentrations of H2O2 produced. What is 

observed is that in the presence of heteropolyacid, H2 conversion of the AuPd catalyst increases 

resulting in greater formation of H2O2 suggesting that the heteropolyacid is promoting the ability of the 

catalyst to selectively activate H2 to produce H2O2 and not over hydrogenation. 

The ability of heteropolyacids to selectively promote the direct synthesis of hydrogen peroxide could 

occur from a number of reasons previously suggested in the literature. Firstly it has been recently 

proposed that the direct synthesis occurs through a hydrogen oxidation/oxygen reduction reaction 

couple similar to electrochemical Oxygen Reduction Reactions where protic solvents are required and 

the activity depends on the concentration of protons in the solution28. Heteropolyacids are able to 
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conduct protons effectively in aqueous solutions and therefore enhance proton mobility towards the 

catalyst surface if they were to be in proximity or form a coating on the catalyst. Heteropolyacids have 

been used as modifiers to surfaces to increase proton mobility29 and also as electrolytes in the oxygen 

reduction reaction using Pt catalysts where it has been hypothesised that the Keggin ion is able to 

stabilise H2O5
+ aquaions with strong proton activity resulting in promising performance30. It has also 

been reported that the presence of heteropolyanions can accelerate hydrogenation reactions including 

reductive carbonlylation of nitrobenzene31 and the hydrogenation of propargyl alcohol using 

homogeneous PdCl2 complxes32. In this study it was suggested that the redox properties of the 

heteropolyacid bound to Pd could maintain the Pd in an active state. Bronsted acidity has also been 

shown to have a positive promotional effect in the hydrogenation of aromatics using Pt catalysts where 

the proximity of acid sites to Pt leads to the Pt becoming electron deficient and increases activity33.  

It is clear that in this case the presence of heteropolyacid additives increases the rate of hydrogen 

activation resulting in hydrogen peroxide synthesis and not the over hydrogenation of hydrogen 

peroxide, which could be supressed by the acidity of the additives. Hydrogen activation and the turnover 

of the sites needed for hydrogen activation / oxidation could be promoted by the enhanced proton 

mobility of the HPA additives in the solution accelerating the consumption of protons from the solution 

and allowing turnover of the active sites as it has been shown that the rate of H2O2 synthesis is dependent 

on the hydrogen partial pressure but not the oxygen partial pressure so an increase in H2 turnover would 

result in increased H2O2 productivity34.  

To investigate the stability of HPA additives as recoverable promoters, after reactions of the AuPd 

bimetallic catalyst with the 50 mg addition of CsxH3-xPW12O40 x = 2 and 2.5 the solids were recovered 

by centrifugation and dried before the mixture of catalyst and additive was re-tested with the results 

shown in Table 4. These additives were chosen as they showed minimal amounts of Pd leaching in the 

reactions. It was observed that the productivity of the catalyst and additive combination was maintained 

with no loss in activity observed for the Cs2.5H0.5PW12O40 additive which retained a near 3 fold increase 

on the baseline catalyst activity and only a small loss in activity was observed for the Cs2HPW12O40 

additive, possibly due to the higher solubility of the additive.   

In conclusion we have demonstrated that it may be feasible to use a heterogeneous acid additive to 

promote the direct synthesis of hydrogen peroxide and have shown it could be reusable, although some 

leaching of the constituents Cs and W were observed. In addition it was observed that as well as 

stabilising the hydrogen peroxide that has been produced by decreasing the pH of the reaction solution 

a promotional effect on the catalytic activity towards H2O2 synthesis is achieved through the use of these 

HPA additives the origin of this effect will be investigated in subsequent studies.  
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Figure 1 – Productivity of 2.5 wt.% - Au 2.5% wt. Pd / TiO2 towards the direct synthesis of H2O2 with 
addition of HNO3 to the reaction mixture in order to vary reaction pH.  

 
Reaction conditions: Catalyst (0.01 g), total pressure 4 MPa, H2 /O2 = 0.525, 1200 rpm, 5.6 g 
CH3OH + 2.9 g H2O (66 wt. % CH3OH), 0.5 h, 2 OC.  
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Figure 2 – Hydrogen peroxide productivity with addition of various additives (10 mg) to a standard 

reaction with 2.5 wt.% - Au 2.5% wt. Pd / TiO2 – dotted line is the activity of the catalyst alone.

 

Reaction conditions: Catalyst (0.01 g), total pressure 4 MPa, H2 /O2 = 0.525, 1200 rpm, 5.6 g 
CH3OH + 2.9 g H2O (66 wt. % CH3OH), 0.5 h, 2 OC.  
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Table 1. Catalytic activity of CsxH3-xPW12O40 towards H2O2 synthesis and its subsequent degradation, 

when utilised alone and in combination with 2. 5 wt. % Au – 2.5 wt. % Pd / TiO2.  

 

[a]Rate of H2O2 synthesis :  Catalyst (0.01 g), total pressure 4 MPa, H2 /O2 = 0.525, 1200 rpm, 5.6 g 
CH3OH + 2.9 g H2O (66 wt. % CH3OH), 0.5 h, 2 OC. 

[b] H2O2 degradation : Catalyst (0.01 g), 2.9 MPa,  H2 / CO2, 1200 rpm, H2O2 (0.68 g, 50 wt. %)5.6 g 
CH3OH + 2.21 g H2O (66 wt. % CH3OH), 0.5 h, 2 OC. 

 

 

 

 

 BET 

Surface 

Area 

m2 / g 

H2O2 

Productivity[a]/ 

molH2O2 kgcat
-1h-

1 

H2O2 

Degradation[a]/ 

molH2O2 kgcat
-1h-1 

H2O2 

Productivity[b]/ 

molH2O2 kgcat
-1h-

1 

H2O2 

Degradation[b] 

/molH2O2 kgcat
-

1h-1 

  Additive Only Additive + Catalyst 

No Additive - 0 0 64 213 

H3PW12O40 <1 0 35 157 230 

Cs0.1H2.9PW12O40 <1 0 39 143 240 

CsH2PW12O40 4 0 63 153 260 

Cs2HPW12O40 50 0 88 105 309 

Cs2.5H0.5PW12O40 112 0 124 99 350 

Cs3PW12O40 121 0 187 29 429 
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Table 2. Leaching during the direct synthesis of H2O2 using 2.5 wt. % Au – 2.5 wt.% Pd/TiO2 and 
CsxH3−xPW12O40 and the activity of leached metal towards subsequent H2O2 synthesis. 

 

 Reaction Conditions: Total pressure 4 MPa, H2 /O2 = 0.525, 1200 rpm, 5.6 g CH3OH + 2.9 g H2O 
(66 wt. % CH3OH), 0.5 h, 2 OC. 

  

Catalyst 

Pd / ppm Au / ppm 
Cs / 

ppm 

W / 

ppm 

Productivity  of reaction 

solution 

/ molH2O2 kgcat
-1h-1  

 

No CsxP3-xW12O40 0 0 0 0 0 

H3PW12O40 9 0 0 1834 19 

Cs0.1H2.9PW12O40 8 0 0.05 1723 17 

CsH2PW12O40 5 0 0.6 1096 12 

Cs2HPW12O40 2 0 183 564 3 

Cs2.5H0.5PW12O40 1 0 150 359 3 

Cs3PW12O40 1 0 95 240 3 
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Figure 3. H2O2 Productivity for 2.5 wt. % Au – 2.5 wt. % Pd / TiO2 and CsxH3-xPW12O40 as a function 
of additive loading.  

 

  

Reaction conditions: Catalyst (0.01 g), total pressure 4 MPa, H2 /O2 = 0.525, 1200 rpm, 5.6 g 
CH3OH + 2.9 g H2O (66 wt. % CH3OH), 0.5 h, 2 OC. 
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Figure 4. The effect of Cs-exchanged HPAs, dilute HNO3 and H2WO4 on promoting the direct synthesis 

of H2O2, utilising 2.5 wt.% - Au 2.5% wt. Pd / TiO2.  

 

Reaction conditions: Catalyst (0.01 g), total pressure 4 MPa, H2 /O2 = 0.525, 1200 rpm, 5.6 g 
CH3OH + 2.9 g H2O (66 wt. % CH3OH), 0.5 h, 2 OC. 
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Table 3. The effect of CsxH(3-x)PW12O40 addition on catalytic activity of 2.5 wt.% - Au 2.5% wt. Pd / 

TiO2 towards the direct synthesis of H2O2.  

 

 

 

 

 

 

 

 
Reaction conditions: Catalyst (0.01 g), total pressure 4 MPa, H2 /O2 = 0.525, 1200 rpm, 5.6 g 
CH3OH + 2.9 g H2O (66 wt. % CH3OH), 0.5 h, 2 OC. 

 

 

 

 

 

  

 H2O2 Productivity[a] 

/mol H2O2kgcat
-1 h-1

 

H2  

Conversion / % 

H2O2  

Selectivity / % [b] 

No Additive 64 21 61 

H3PW12O40 301 70 85 

Cs0.1H2.9PW12O40 299 69 86 

CsH2PW12O40 225 66 63 

Cs2HPW12O40 161 55 54 

Cs3PW12O40 48 17 22 
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Table 4. Reusability of 2.5 wt.% - Au 2.5% wt. Pd / TiO2 - CsxH(3-x)PW12O40 towards the direct synthesis 

of H2O2.   

Catalyst system 

2.5%  Au – 2.5 %  Pd / TiO2 

+ additive 

Productivity Fresh / 

molH2O2 kg
cat

-1
 h

-1
 

Productivity Used / 

molH2O2 kg
cat

-1
 h

-1
 

Cs
2.5

H 
0.5

PW
12

O
40

 155 155 

Cs
2
HPW

12
O

40
 161 130 

 

Reaction conditions: Catalyst (0.01 g), total pressure 4 MPa, H2 /O2 = 0.525, 1200 rpm, 5.6 g 
CH3OH + 2.9 g H2O (66 wt. % CH3OH), 0.5 h, 2 OC. 
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Supporting information.  

Supporting information describes catalytic activity of common supports, as well as increasing 

concentrations of CsNO3, towards the direct synthesis and degradation of H2O2. 
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