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Abstract 

 

Coupling reactions to form new C-C bonds are extensively used in industrial synthetic 

processes. Gold has been shown to be an active catalyst for such reactions however, conflicting 

reports exist as to whether cationic Au or metallic Au is acting as the active species. We 

prepared a heterogeneous catalyst consisting of atomically dispersed Au-Clx supported on 

carbon and showed this to be active in the homocoupling of phenylboronic acid to biphenyl. 

However; characterisation of the catalyst materials, even after just a short exposure time to the 

reactants, revealed rapid reduction and sintering of the Au species into larger metallic 

nanoparticles which we propose to be the true active species in this instance. This study 

suggests that if cationic Au is an active catalyst, it must be stabilised against reduction and 

agglomeration by either forming complexes which are more stable than common chlorides or 

by strongly anchoring them firmly onto alternative support materials; as in this case the carbon 

supported Au-Cl species were easily reduced.  

  



Coupling reactions to form new C-C bonds are widely used in the pharmaceutical, 

agrochemical and fine chemical industries.[1] Suzuki coupling catalysts are typically 

homogenous palladium-based catalysts that are used to couple organo-boron compounds with 

organic halides or triflates, forming new C-C bonds.[2] One of the most widely used coupling 

reactions in an industrial context is the synthesis of the fungicide Boscalid, where Pd-based 

catalysts are used in a Suzuki coupling reaction to produce a biaryl intermediate in a one-step 

reaction process, rather than the five synthetic steps previously utilised.[1a] The substrate 

tolerance and general applicability of these transformations make such coupling catalysts a key 

synthetic tool in the production of many high value materials.  

Typically the catalytic cycle of the palladium catalysed reaction under basic conditions 

involves the oxidative addition of the aryl halide to a Pd(0) centre followed by a transmetalation 

of an aryl substituent from a boronate species to generate a di(aryl) Pd(II) species. Reductive 

elimination of the di(aryl) species then regenerates the initial Pd(0) centre.[3] Extensive studies 

have been conducted on the development of homogeneous Pd catalysts for numerous organic 

transformations, however, the final separation of such catalysts from the reaction mixtures 

remains a significant challenge. Heterogeneous-type Suzuki coupling catalysts have also been 

synthesised by immobilising palladium complexes onto high surface area supports (e.g., silica, 

zeolites and activated carbon) thus allowing the catalysts to be more easily separated from the 

product by filtration.[4]  

Besides palladium-based materials, several other metals have been proposed to be effective 

catalysts for these reactions. Corma et al. postulated and subsequently demonstrated that 

Au(III) could be active as a Suzuki coupling catalyst due to (i) Au(III) being isoelectronic with 

Pd(II) and (ii) the redox couple of Au(III) – Au(I) being isoelectronic with the Pd(II) – Pd(0) 

species needed to effect the reaction.[5] Carbon – carbon coupling has also been observed by 

Au(I) complexes via transmetallation of Au(I) to Pd(II).[6] Corma and co-workers prepared 

gold supported on nanocrystalline ceria and demonstrated that this material was able to catalyse 

the homocoupling of phenylboronic acid in the presence of a base. In subsequent FT-IR studies 

they were able to demonstrate that the activity of the Au/CeO2 catalyst is directly proportional 

to either (i) the concentration of Au(III) species present on the gold nanoparticles / support 

interface or (ii) the concentration of highly dispersed cationic Au species stabilised on the CeO2 

support material.[7] To demonstrate the catalytic activity of cationic-species, a Au(III) Schiff 

base complex was synthesised and shown to be active in this reaction.[8] Au(III) has also been 

able to form carbon – carbon bonds by oxidative coupling of vinyl groups in vinylgold 

intermediates.[9] In addition, simple gold-containing salts like AuCl and NaAuCl4 have also 

reported to be active in the homocoupling of phenylboronic acids.[10] Recently a 

photochemical, visible light induced Suzuki-type coupling of arylboronic acid and 

aryldiazonium satls was developed.[11] Guzman et al. also showed that metallic gold 

nanoparticles supported on both CeO2 and ZrO2 are also active in the homocoupling reaction 

of phenylboronic acid. [12] The activity of these catalysts has also been correlated to the 

crystallite size of the support material, with smaller crystallites being better able to stabilise the 

Au(III) species. Hasmi and co-workers also observed homocoupling of boronic acids when 

they prepared gold (III) complexes from boronic acids.[13]  

These studies collectively suggest the Au(III) species are the active entities for this reaction. 

However, more recently multiple studies have claimed otherwise and demonstrated the activity 



of gold nanoparticles in the reaction. For instance, PVP-stabilised Au colloids in aqueous 

solution have been shown to be active, as have base-free metallic Au na noparticles supported 

on Al-Mg oxides.[6b, 14] 

Malta et. al. recently demonstrated using in-situ X-ray absorption spectroscopy (XAS) studies 

that the active form of the Au/C catalyst used for acetylene hydrochlorination is comprised of 

atomically dispersed AuClx species which are thermally stable under high temperature 

conditions (i.e., 200 °C).[15] The acetylene hydrochlorination reaction is proposed to occur via 

the Au(I) – Au(III) redox cycle as predicted through correlations with standard electrode 

potentials, which suggested to us that this catalyst could also be active as a homocoupling 

catalyst.[16] In this study, we have investigated this Au/C single site catalyst for the 

homocoupling of phenylboronic acid and compared it’s performance to that of a sol-

immobilised Au/C nanoparticle catalyst and a simple gold salt (HAuCl4).  

 

Results & Discussion 

 

The recent discovery that gold cations dispersed on high surface area activated carbon supports 

can catalyse the gas phase acetylene hydrochlorination reaction at high temperatures suggested 

that not only can single atom catalysts operate and retain an atomic dispersion under harsh 

reaction conditions, but that they could become technologically significant in some industrial 

processes.[15a] Homocoupling to create new C-C bonds is widely used in the synthesis of many 

chemical materials, and cationic Au species have been postulated to be for active for such 

reactions, either at the interfacial periphery of supported metallic nanoparticles or stabilised as 

isolated species on oxide materials. We have prepared 1wt% Au/C catalysts by the 

immobilisation of colloidal metal Au nanoparticles and through the impregnation of Au from 

aqua regia (to generate atomically dispersed AuClx species) using a high surface area activated 

carbon material as catalyst support. 

X-ray diffraction (XRD) patterns of the catalysts prepared by sol immobilisation, (1% Au/C 

(sol)) and with aqua regia (1% Au/C (AR)), are shown in Figure 1(a). In the case of the 1% 

Au/C (sol) catalyst, where polymer stabilised metallic nanoparticles existed in solution prior to 

immobilisation, a clear diffraction pattern consistent with f.c.c. Au (ICCD 01-071-4164) was 

obtained, with the principal reflection at 38 (2), corresponding to the set of Au {111} planes. 

Analysis using the Scherrer equation suggested an average crystallite size of 6 nm in this (1% 

Au/C (sol)) sample. In contrast, the fresh 1% Au/C (AR) sample showed no features consistent 

with the presence of Au nanocrystals implying a high dispersion of Au existed in this catalyst. 

Figure 1(b) however demonstrated that heat treatment of the 1% Au/C (AR) catalyst, under a 

nitrogen atmosphere (in order to prevent combustion of the carbon support material), during 

an in-situ XRD experiment eventually caused sintering of the Au species into discrete 

detectable metallic nanoparticles. Figure 1(b) demonstrates that no diffraction peaks 

characteristic of f.c.c Au were observed until the temperature of the reaction cell reached 310 

C. This implies that the Au species in the 1% Au/C (AR) sample have a tendency to remain 

in a highly dispersed state even at elevated temperatures up to ~300 C. When the temperature 



was increased above 310 C, the evolution of more distinct diffraction patterns showed the 

growth of these Au crystallites through thermally activated mobility of the Au species. 

Transmission electron microscopy (TEM) analysis of the 1% Au/C (sol), Figure 2(a), revealed 

homogeneous dispersion of Au nanoparticles on the activated carbon support. Analysis of the 

particle size distribution from such micrographs (Figure 2(b)) gave a mean particle size of 6.6 

nm with a spread of about  3nm, which is consistent with the value derived from XRD 

measurements. This particle size distribution is comparable with the previously reported Au 

nanoparticle catalysts prepared for this reaction which were supported on CeO2 and ZrO2.
[12] 

However, in direct contrast to these materials which were reported to contain substantial 

populations of Au+ stabilised by the oxide support, X-ray photoemission spectroscopy (XPS, 

Figure 2(c)) of our 1% Au/C (sol) catalyst showed it to consist of exclusively metallic Au with 

a characteristic binding energy of 84 eV. This difference in Au speciation is probably due to 

the catalyst being prepared by a sol-immobilisation method in the presence of a strong 

reductant, NaBH4, which facilitates complete reduction of the HAuCl4 precursor. STEM-

HAADF analysis of the fresh 1% Au/C (AR) catalyst, (Figure 3), revealed the presence of a 

near complete atomic dispersion of Au species on the carbon support, once again consistent 

with our deductions from XRD analysis. XPS analysis of this 1% Au/C (AR) sample also 

suggested the presence of metallic Au. However, it is now well recognised that Au-Clx species 

supported on carbon can be susceptible to reduction by the X-ray flux used in XPS analysis 

resulting in the generation of Au clusters and nanoparticles from highly dispersed cationic 

species.[15a, 16-17] 

X-ray absorption spectroscopy (XAS) was carried out on the fresh 1% Au/C (AR) catalyst to 

verify that the fresh catalyst contained only highly dispersed cationic Au species rather than 

the metallic Au species detected by XPS analysis. The normalised Au L3- edge X-ray 

absorption near edge structure (XANES), shown in Figure 4(a), supported the HAADF-STEM 

analysis and confirmed that this catalyst consisted of highly dispersed cationic Au species. The 

presence of a white line absorption feature (indicative of partial 5d band occupancy) having a 

normalised intensity value of 0.76 when compared to appropriate standards (protocol reported 

in [15a] and used for the analysis presented in this study) suggested that the catalyst comprised 

of a mixture Au(I)/Au(III) species with no features of the post-edge spectrum being consistent 

with bulk Au. In addition, significant intensity in the Fourier transform (FT) corresponding to 

references for Au-Cl type species can be seen in the extended X-ray absorption fine structure 

(EXAFS) presented in Figure 4(b). These findings are consistent with our previous reports on 

the preparation of active atomically dispersed Au/C catalysts for the acetylene 

hydrochlorination reaction. [15a] 

Using these catalysts, we conducted homocoupling reactions using phenylboronic acid in the 

presence of base to produce biphenyl as the major coupling product. These reactions were 

performed in air, the oxygen present in the air is might be a stoichiometric oxidant during the 

reaction. It should be noted that phenol was produced as the minor product in all reactions as a 

result of oxidation of the aryl boronate species in solution. Figure 5(a) shows the conversion 

versus time-on-line profiles for the 1% Au/C (AR) and 1% Au/C (sol) heterogeneous reactions 

and the HAuCl4 homogeneous reaction. Each reaction was performed with an equal amount of 



gold (0.005 mmol). The 1% Au/C (sol) catalyst showed minimal conversion (2-3%) of 

phenylboronic acid throughout the 6 h reaction period. While many reports claim that oxide 

supported nanoparticles are active for this reaction, in this particular case the PVA stabilised 

Au particles dispersed on C were inactive despite having a mean particle size comparable to 

those in these other studies.[12, 14a, 14b, 18] As in many examples of catalysis using polymer 

stabilised nanoparticles, it is known that the presence of the ligand can hinder reactivity through 

blocking of the active sites. In addition, other studies utilised wet impregnation methods to 

produce nanoparticulate Au catalysts that were free of polymer stabilisers. In this case, with 

PVA being sparingly soluble in the reaction solvent, it is highly likely that the catalytic surface 

is completely blocked by the PVA polymer residing on the nanoparticles after preparation, 

especially as there is precedent in the literature for activity in the case of PVP-stabilised 

colloidal Au which demonstrates that Au nanoparticles in this size range can in some instance 

be active.[18] 

The catalyst prepared using aqua regia (1% Au/C (AR)), which is initially atomically dispersed, 

shows good activity for the homocoupling of phenylboronic acid reaction, reaching 25% 

conversion after 6 h. The progressive increase of conversion value with increasing reaction 

time also suggests that there is no catalyst deactivation occurring. In common with the 1% 

Au/C (AR) catalyst, the homogeneous reaction carried out using HAuCl4 also reached 24% 

conversion after 6 h of reaction. However, it should be noted that the conversion tends to 

plateau over the course of the reaction in this latter case. Figure 5(b) summarises the selectivity 

values obtained for each of the catalysts system. The 1% Au/C (sol) catalyst produced only 

traces of biphenyl at the low conversions achieved, and displayed a meagre 4% selectivity, 

confirming the proposed mechanism in the literature that phenol production is not a consecutive 

reaction of biphenyl. Reactions using biphenyl as the reactant resulted in no significant phenol 

production. The 1% Au/C (AR) catalyst produced biphenyl as the major product at 60.5 % 

selectivity irrespective of conversion levels, along with a significant amount of phenol, 

typically 39.5%. Due to the limited scope of this study, which was purely to investigate the 

effectiveness of this class of catalysts for homocoupling reactions as compared to sol-

immobilised catalysts, no additional experiments were conducted to optimise the potential 

yield of biphenyl over phenol.  

It has been reported that simple Au-chloride salts are active catalysts for this reaction. In 

addition many studies show that metallic Au nanoparticles, even after additional treatment with 

NaBH4 to remove any cationic species, can still be active catalysts, especially when dispersed 

on basic support materials.[10, 14a] Due to the similar activity levels displayed by the HAuCl4 

and the 1% Au/C (AR) catalyst, that latter of which is known to consist of supported Au-Cl 

species in the fresh catalyst, we further investigated the stability of our catalyst.[15a] 

Characterisation of the 1% Au/C (AR) catalyst after 6 h of reaction by XANES, as shown in 

Figure 6(a), revealed a significant evolution of the catalyst structure, which now much more 

closely resembled the metallic Au standard. Furthermore, EXAFS analysis shown in Figure 

6(b) revealed significant Au-Au interactions when comparing against the observed intensity of 

the Fourier transform with that of the metallic Au standard. The Au-Cl FT intensity was greatly 

reduced compared to the fresh catalyst (Figure 4(a)) suggesting that the atomic dispersion had 

become unstable and undergone significant sintering under reaction conditions. A linear 



combination fitting analysis (using KAuCl4, AuCl and metallic Au standards) of the fresh and 

used 1% Au/C (AR) samples shown in Figure 7(a) confirmed that the Au was cationic in nature 

in the fresh sample and had roughly a 1:1 Au(I) to Au (III) chloride species. TEM analysis, 

Figure 7(b), of the 1% Au/C (AR) sample after reaction showed that the catalyst now consisted 

of large nanoparticles with a mean particle size of between 30-40 nm (representative image 

shown in Figure 7(c)) supporting the XAS analysis. Despite this high degree of sintering, even 

after filtering of the reaction solution, only very low amounts of Au (9 ppb) were measured by 

ICP-MS in the reaction solution.  

A sample of the 1% Au/C (AR) catalyst was recovered from the reaction after 6 h, washed with 

EtOH and then dried before being retested. The activity of this sample was re-tested for 

durations of 1 and 2 h due to the sample showing no deactivation during the initial reaction 

time-on-line. Figure 8 shows that this catalyst showed similar activity upon re-use when 

compared to the fresh sample, which suggests that the catalyst nanostructure did not change 

significantly during the reaction itself and the transformation from an atomically dispersed to 

a nanocrystallline form occurred immediately on exposure to the reactants. It was also observed 

during the reaction using the homogeneous HAuCl4 catalyst, that the colour of the reaction 

solution changed from yellow to purple suggesting Au reduction from a cationic to metallic 

form under the reaction conditions. To confirm if the similar reduction was occurring in the 

supported 1% Au/C (AR) catalyst, this catalyst was suspended in a solution containing all the 

ingredients for reaction and was filtered after only 5 min of contact at room temperature. SEM 

analysis (Figure S1) revealed the presence of Au nanoparticles in the size range observed 

previously by TEM in the sample that had been used for 6 h. This coupled with the observation 

that the catalyst displayed a constant reaction rate and is re-usable, supports the hypothesis that 

it is the initial exposure to the reactants that causes the significant rapid reduction and 

aggregation of the atomically dispersed Au species into particulate form.  

 

We propose that previous reports which concerned the use of HAuCl4 and AuCl as catalysts 

for the homocoupling of phenylboronic acid, could in fact undergo a similar significant 

reduction to metallic nanoparticles either under reaction conditions or even just on mere 

exposure to the reactants. Stable Au cations in a system which uses polar solvents to allow 

complete dissolution of the base and reactants, will require strong interaction with the support 

material. The use of supports such as CeO2, ZrO2 or TiO2 which can stabilise Au cations at the 

nanoparticle interface periphery or at surface vacancies sites has been previously reported. So 

has the use of Au cationic complexes with high stability constants, such as the Schiff bases, [7, 

12, 19]. Such stabilisation strategies are important as the stability of Au-Cl species towards the 

reactants is minimal in the case of our 1% Au/C (AR) catalyst. The reduction of the Au-Cl 

entities in our case presumably occurs by the oxidation of the aryl boronate species generated 

in-situ through reaction of the phenylboronic acid with the added base, which results in phenol 

production and the reduction of the Au species. The activity levels of the non-ligand protected 

gold nanoparticles produced in this study compare favourably with the activities reported for 

the Au/ CeO2 and Au/ZrO2 systems taking into account the differences in particle size and 

reaction conditions. To better understand the role of cationic Au in these coupling reactions, 

more stable cationic Au complexes are required which display a better stability to the reducing 

nature of the boronate species. However, this enhanced stability may come at a cost in terms 

of the overall reactivity. Our future studies on this reaction will focus on the use of sulfur-



stabilised Au/C catalysts which have been shown to be especially stable in the acetylene 

hydrochlorination reaction.[20] 

Conclusions  

We prepared an atomically dispersed Au/C catalyst using an aqua regia impregnation method 

as a model for supported cationic Au complexes which have been previously used as catalysts 

for the homocoupling of phenylboronic acid. This catalyst showed activity in the homocoupling 

of phenylboronic acid towards biphenyl and was re-usable. However, detailed structural 

characterisation revealed that exposure to the reactants resulted in rapid reduction and 

agglomeration of the Au species into nanoparticles. The activity of the reduced Au species was 

comparable to that described in previous reports, and our experiments demonstrated that 

supported cationic Au-Clx is not stable to the reducing species present in the reaction solution. 

To fully elucidate the role of cationic Au more stable complexes need to be produced and 

investigated. However, this may reduce the overall activity of the catalysts by restricting the 

action of the redox cycle required for the reaction to proceed.   



Experimental 

The 1 wt% Au/C (AR) catalyst was prepared by a wet impregnation with aqua regia. Powdered 

activated carbon (Norit ROX 0.8, 100 - 140 mesh) was used as support. HAuCl4.xH2O (Alfa 

Aaesar, 99.9 %) was dissolved in 5.4 mL aqua regia (3 parts by volume [HCl (Fisher, 32 

wt.%)]: 1 part by volume [HNO3 (Fisher, 70 wt. %)]) and added dropwise to the activated 

carbon while being stirred continuously. The mixture was left to stir for 60 min at room 

temperature after which it was placed in a furnace at 140 °C for 16 h under a N2 flow. Sol 

immobilisation was used to prepare another Au/C catalyst (designated Au/C (sol)). For this 

preparation aqueous solutions of HAuCl4.3H2O ((Alfa Aesar, 99.9 %) and polyvinyl alcohol 

(PVA) (1wt%, Aldrich, MW 9000-10000, 80% hydrolysed) were prepared. The desired amount 

of these solutions (to make 1wt% Au and Au/PVA w/w=1.2) was added to 800 mL of water. 

A fresh solution of NaBH4 (0.1 M, Aldrich, 99.99%) was prepared and 6.6 ml added to the 

Au+PVA solution (NaBH4 : Au =5:1). It was then stirred for 30 mins to allow the sol to 

generate. The carbon support (Norit ROX 0.8, 100 - 140 mesh, desired amount for 1wt% Au 

loaded catalyst) was then added to the sol mixture, together with a few drops of concentrated 

H2SO4 (Fisher Laboratory reagent grade, >95 %). After 1 h of stirring the mixture was filtered, 

washed thoroughly with distilled water, and left to dry for 16 h at 110 °C. 

In a typical catalytic test, methanol (5 mL, Fisher Laboratory reagent grade) was added to a 

flask (50 mL) containing phenylboronic acid (0.3 mmol, Sigma Aldrich > 97.0 % HPLC-

grade), potassium carbonate (0.4 mmol) and catalyst (100 mg of 1wt % Au/C). Catalytic testing 

was performed using a Radleys carousel magnetic stirrer at 45 °C and 800 rpm. O-xylene was 

used as an internal standard. The catalytic activity of gold (III) chloride was tested using a 

solution of HAuCl4.3H2O (Alfa Aesar, 99.9 %). The reaction mixture was analysed using 

Agilent Technologies 1200 series HPLC equipped with 2 reverse phase columns (Agilent 

Poroshell 120, SB-C18, 4.6x150 mm, 2.7 µm) connected in series and a DAD detector 

(G1315D - 1260 DAD VL). Acetonitrile (50 %, Fischer, HPL gradient grade) and water (50 

%, Fischer, HPL gradient grade) was used at the mobile phase (0.5 mL/min). 

Powder X-ray diffraction (XRD) spectra were acquired between 5° and 80° using an X’Pert 

Pro PAN Analytical powder diffractometer employing a Cu Kα radiation source operating at 

40 keV and 40 mA. Analysis of the spectra obtained was carried out using X’Pert High Score 

Plus software. In-situ XRD was performed on a Panalytical X’Pert diffractometer with an 

Anton Paar 900K in-situ cell. The XRD spectra were collected at temperatures between 25°C 

and 600 °C under an N2 flow (10 mL/min). The sample was heated at a rate of 10 °C/min and 

was kept for 5 min at a certain temperature before the spectra were collected.  

Materials for examination by scanning transmission electron microscopy (STEM) were dry 

dispersed onto a holey carbon TEM grid. These supported fragments were examined using the 

HAADF-STEM imaging mode in an aberration corrected JEOL ARM-200CF scanning STEM 

operating at 200kV. A JEOL 2100 TEM operating at 200 kV was used to study the particle size 

distribution of the Au/C (sol) and spent Au/C (AR) catalyst. These samples were dispersed in 

ethanol and a drop of the solution applied onto a holey carbon TEM grid and allowed to 

evaporate. ImageJ was used to measure the particle sizes.  

XAFS data was collected at the B18 beamline at the Diamond Light Source in Harwell, UK. 

The measurements were performed using a QEXAFS set-up with a fast-scanning Si (111) 



double crystal monochromator and a 36 element Ge fluorescence detector. Data has been 

processed using Athena software. 

XPS was carried out using a Thermo Scientific K-alpha photoelectron spectrometer with 

monochromatic AlKα radiation. The resulting spectra were processed in CasaXPS and 

calibrated against the C(1s) line at 284.7 eV. 

SEM imaging on the used catalysts was performed on a Tescan MAIA3 field emission gun 

scanning electron microscope (FEG-SEM). Samples were dry dispersed onto 300 mesh Cu 

grid supported holey carbon film and imaged using the backscattered electron detector at 15 

kV. Samples were uncoated 
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Figure 1 – X-ray diffraction patterns of a) 1% Au/C prepared by sol-immobilisation (█) and 

aqua regia (AR) treatment (█) b) in-situ X-ray diffraction analysis of the 1% Au / C (AR) 

catalyst at various elevated temperatures under an inert nitrogen atmosphere. 

 

  

 

b) 

a) 



Figure 2 – a) Bright-field TEM micrograph of the 1% Au/C (sol) catalyst, b) its 

corresponding particle size distribution and c) the Au4f region of its XPS spectrum. 

 

 

 

  

a) 

b) 

c) 



Figure 3 - Representative HAADF-STEM images of atomically dispersed Au species on an 

aqua regia treated carbon support. 

  



Figure 4 a) Ex-situ Au L3 edge–normalized XANES spectra of the fresh 1% Au/C (AR) 

catalyst (█) and a gold-foil reference material (); b) Fourier transform of k3-weighted χ 

EXAFS ex-situ data of the fresh 1% Au/C (AR) catalyst (█) and a gold-foil reference (). 

Variation in magnitude of Fourier transform is plotted as function of distance R from the Au 

absorber. 

  

  

a) 

b) 



Figure 5 - a) Catalytic activity and b) selectivity data of 1%Au/C (AR) (█), 1%Au/C (sol) 

() and HAuCl4 () for the homocoupling of phenylboronic acid. 

 

 

Reaction conditions: Phenylboronic acid (0.3 mmol), K2CO3 (0.4 mmol) and catalyst (100 

mg of 1wt % Au/C) in 5 mL MeOH. Stirred at 800 rpm at 45 °C. O-xylene was used as an 

internal standard. 

  

b) 

a) 



Figure 6 - a) Ex-situ Au L3 edge–normalized XANES spectra of a used 1% Au/C (AR) 

catalyst (█) and a gold-foil reference material (); b) Fourier transform of k3-weighted χ 

EXAFS ex-situ data of the used 1% Au/C (AR) catalyst (█) and a gold-foil reference (). 

Variation in magnitude of Fourier transform is plotted as a function of distance R from the 

Au absorber. 

 

  

b) 

a) 



Figure 7 - a) Results from linear combination fitting of the signals of the fresh (left) and used 

(right) 1% Au/C (AR) catalyst. The different gold phases in this plot are differentiated by the 

following keys: █ Au(0), █ Au(I) and █ Au(III). b) BF-TEM micrograph of the 1% Au/C 

(AR) catalyst after 6 h reaction and c) its corresponding particle size distribution. 

 

 

a) 

b) 



 

  

c) 



Figure 8 – Conversion versus time-on-line curves for the fresh 1% Au/C (AR) catalyst (█) 

and a used 1% Au/C (AR) catalyst (). 
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