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The diffusion of methanol in zeolite HY is studied using tandem quasielastic neutron 

scattering (QENS) experiments and molecular dynamics (MD) simulations at 300-400 K. The 

experimental diffusion coefficients were measured in the range 2-5 x 10-10 m2s-1 and 

simulated diffusion coefficients measured in the range of 1.6-3.2 x 10-9 m2s-1. Activation 

energies were measured as 8.8 and 6.9 kJ mol-1using QENS and MD respectively. Differences 

may be attributed predominantly to the experimental use of a dealuminated HY sample, 

containing significant defects such as strongly adsorbing silanol nests, compared to a perfect 

simulated crystal containing only evenly distributed Brønsted acid sites. Experimental and 

simulated diffusivities measured in this study are lower than those obtained from those 

previously calculated in siliceous faujasite, due to methanol H-bonding to Brønsted acid 

sites as observed in the MD simulations. However, both experimental and simulated 

diffusivities were significantly higher than those obtained in NaX, due to the higher 

concentration of extraframework cations present in the previously studied structures. 
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1. Introduction 

The behaviour of methanol in different zeolites is of great interest to a number of catalytic 

processes such as the methanol-to-hydrocarbons process1-4 and the alkylation of aromatic 

hydrocarbons.5 The faujasite structure on which zeolites Y and X are based, though primarily 

used for the fluid catalytic cracking of heavy oil fractions to lighter hydrocarbons,6,7 has 

been studied for the side chain alkylation of aromatics with alkali metal substituted Y 

zeolites using methanol,8,9 and the conversion of methanol to dimethylether.10,11 

Understanding any microporous catalytic process requires detailed knowledge of the 

diffusion behaviour of species confined in the catalyst. However, the unique structures 

associated with each zeolite topology mean that prediction of diffusion behaviour using 

quantitative theory is not possible. The study of transport properties, particularly using 

microscopic methods (concerned with direct measurement of molecular motion) has been 

applied both experimentally12-17 and theoretically18-26 to investigating molecular diffusion in 

faujasite zeolites. In particular, the potential for combined experimental and theoretical 

studies of these systems using complementary techniques such as quasielastic neutron 

scattering (QENS) and molecular dynamics (MD) simulations has  been reported in a number 

of studies.27 Recent work has shown how state-of-the-art MD simulations can obtain 

excellent agreement with experimentally measured diffusivities with QENS and neutron 

spin-echo techniques, and provide qualitative insight such as preferred siting of linear28,29 

and spherical sorbates in zeolites.30  

Though an understanding of molecular diffusion as a function of zeolite topology is crucial 

for optimisation of a catalytic process, the composition such as the presence and 

concentration of counterions in the zeolite structure will also have a significant effect on 

molecular transport. Previous QENS studies have demonstrated this feature, observing that 

n-alkanes in MFI zeolites undergo slower diffusion by a factor of 3.8-5.2 when Na+ 

counterions are present compared to the fully siliceous structure.31,32 In terms of methanol, 

the adsorption behaviour has been studied showing strong coordination with Na+ 33   in 

addition to a range of other counterions34  and Brønsted acid sites35 in faujasite zeolites. The 

significant interaction with these sites would be expected to hinder molecular diffusion 

through the structure. 
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Experimentally, diffusion studies of methanol in faujasite have been performed only using 

NaX, as the methods used require larger crystal sizes. A comparison of zero-length column 

(ZLC) and PFG-NMR methods showed good agreement in the activation energy (11 kJ mol-1) 

upon extrapolation to zero loading.36 The PFG-NMR measurements showed a maximum in 

diffusivity at a loading of 8 molecules per faujasite cage. Comparison between the two 

techniques is difficult, as traditional ZLC measurements are only suited to low 

concentrations. However, the tracer ZLC method allowed direct comparison at 100°C, giving 

results that agree with this trend in the variation with loading. 37 

Molecular dynamics simulations have also been used to study methanol diffusion in 

faujasites, without the crystal size constraint. Comparison between NaX (Si/Al = 2.4) and 

siliceous Y was made,38 showing that the presence of counterions can significantly inhibit 

the diffusion (by a factor of 22 at higher temperatures) with an activation energy higher by a 

factor of 4 with the counterions present. The increase was attributed to a strong interaction 

between the methanol oxygen and the Na+ counterion. Longer MD simulations39 of this 

system found that activation energies for long range (intercage) motion decrease with 

loading, and that at lower loadings surface-mediated (intracage) diffusion dominates. Cation 

behaviour upon methanol adsorption was also studied,40 showing that the extra-framework 

Na+ in certain crystallographic sites can move to the centre of the supercage, hindering 

methanol motion upon interaction with the methanol. The cation mobility is also limited at 

higher methanol loadings.  Later MD simulations incorporated this cation mobility, giving 

qualitative agreement with the experimentally observed diffusivity maximum at lower 

concentrations.41 

To our knowledge, no studies have been reported measuring microscopically the diffusion 

of methanol in zeolite HY, though this zeolite has been studied for activity in methanol 

dehydration42 and methanol-to-olefin transformations43 post dealumination. As previously 

mentioned, study of higher silica faujasites is not feasible using methods such as PFG-NMR 

as they necessitate larger crystals, which are unavailable for these zeolites. This problem 

stems from the timescale of the experiment (μs to ms) during which a molecule may reach 

the edges of a small crystallite, restricting its diffusion and invalidating the use of the Stokes-

Einstein equation in calculating the diffusivity. The QENS method, which measures 

movement over the nanoscale, does not suffer from this limitation, allowing intracrystalline 
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diffusion in sub-micron crystals to be quantified. Indeed, the QENS method has been applied 

to systems particularly relevant to the methanol-to-hydrocarbons process in ZSM-5, 

studying methanol dynamics44,45 and motion of smaller46 and larger hydrocarbons.31,47-49 

 

In this paper, we report a combined experimental/theoretical microscopic study of 

methanol diffusivity in a commercial sample of zeolite HY (Si/Al = 30) using QENS 

experiments and MD simulations. We obtain acceptable agreement between the two 

techniques in measured and calculated self-diffusivities (Ds) when differences between the 

experimental sample and the modelled structure are taken into account, and find a logical 

trend in diffusivities when comparing with previous studies of siliceous faujasite and NaX 

when considering the differing concentration of coordination sites between studies.  

 

2. Methodology 

2.1 Quasielastic Neutron Scattering Experiments 

The HY samples used were commercial zeolite catalysts obtained from Zeolyst International 

(CBV720, Si/Al ratio = 30) with the bulk crystallinity verified by powder X-ray diffraction in 

recent studies.50,51 The zeolite HY samples were received in the catalytic protonated form, 

already steam dealuminated to this composition. The samples were dehydrated at 120˚C 

under flowing helium for 4 hours.  After cooling to room temperature, methanol was then 

loaded using He as a carrier gas to a loading of 6 molecules per unit cell. The samples (4.5 

grams in total) were transferred inside a glovebox under argon to thin walled aluminium 

containers of annular geometry.  All measurements were performed using the time-of-flight 

backscattering neutron spectrometer OSIRIS52 at the ISIS Pulsed Neutron and Muon Source. 

The cells were placed in a top-loading closed cycle refrigerator, and a resolution 

measurement was taken at a base temperature of 6 K. QENS measurements were then 

taken at 300, 330, 360 and 400 K. Pyrolitic graphite 002 analyser crystals were used giving 

an energy resolution of 24.5 µeV with energy transfers measured in a window of ±0.55 meV, 

the detector covered measurements over a in a Q range of 0.2–1.5 Å-1. The measurement 

was taken of an empty zeolite sample and the signal was then subtracted from the signal of 

the loaded zeolite, so that only the signal from the methanol could be extracted.  In this way 
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any scattering from the aluminium container, which is very low in comparison with the 

empty zeolite is also subtracted. No further corrections were necessary. All QENS spectra 

were fitted using the neutron analysis software DAVE.53 

 

2.2 Molecular Dynamics Simulations 

2.2.1 The Zeolite HY Structure 

The zeolite Y structure has cubic mFd 3  symmetry.54 Periodic boundary conditions were 

employed and a 2x2x2 supercell of 4609 atoms was used. Aluminium sites and charge 

compensating protons were added to match the ratio of Si/Al =30 and were located as far 

from each other as possible in accordance with Dempsey’s rule55 with the hydroxyl group 

protruding into the supercage. Full ionic charges were assigned to the framework species for 

all simulations, with the Coulombic summations being treated using the Ewald method. The 

supercell with dimensions of 48.49 Å in the Cartesian directions is depicted in figure 1. 

 A flexible model of the zeolite framework was used. There has been debate regarding the 

use of a flexible framework when the sorbate is significantly smaller than the pore aperture, 

and the influence of the force field used on the measured diffusivities. Examples of recent 

studies into the effect of pore breathing in diffusion of small molecules include a 

comprehensive study by Ghysels et al 56 of MTG relevant small molecules in small pore 

zeolites and SAPO structures, introducing a new descriptor (the accessible window area) 

Fig 1. The 2x2x2 zeolite HY supercell used, viewed from (left) the 110 direction and (right) the 111 

direction showing the structure of the faujasite cages. All experimental visualisations in this study 

were created using the visualisation software package Aten1.8.31.49 
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which correlated well with the number of ethene crossings of 8 membered ring windows in 

a number of structures.  In the context of force field comparisons, Zimmerman et al. studied 

methane diffusion AFI, LTL and MTW zeolites comparing the general valence force field of 

Nicholas57 with the Demontis58 model which considers only interactions between nearest 

neighbours. They found that depending on the topology studied and loading used, the 

flexibility potentials can influence the results qualitatively as well as quantitatively, 

concluding that careful choice of the representative force field is necessary to improve on 

the rigid framework approximation. Garcia-Sanchez et al. 59 also concluded that diffusivities 

obtained depend very much on the force field used when comparing the Nicholas force field 

with that of Sauer and Hill 60 when studying methane diffusion in LTA zeolites. They found 

that at certain loadings the flexible Hill and Sauer model give higher diffusivities than the 

rigid framework approximation, with contradictory results obtained using the Nicholas 

model. It is therefore important when considering such framework flexibility that the 

chosen force field is suitable for the zeolite under study.  

The potentials used to describe the flexible, acidic zeolite framework in the present work 

were taken from work studying acidic zeolite frameworks by Schröder et al 61  stemming 

mainly from empirical fitting to structural and physical properties of α-quartz and Al2O3 with 

additional fitting of the bridging hydroxyl groups to ab-initio data. These potential 

parameters have been widely used have been shown to reproduce structural and physical 

properties of faujasite zeolites well 62 and are thus considered appropriate for study of small 

molecule diffusion in this system.  Parameters include a Buckingham potential to describe 

Si-O, Al-O and O-O interactions, along with a harmonic three-body potential to describe the 

O-Si-O and O-Al-O triads (listed in table 1), and a Morse potential describing the bond 

between the acidic proton and hydroxyl  framework oxygen (Ob). A cut-off distance of 10 Å 

was used.63 

 

2.2.2 Methanol Parameters 

The intramolecular methanol potential parameters were taken from the work of Plant et 

al.38 who modified those of Blanco and Auerbach64 after Mulliken analysis of DFT 

calculations. The partial charges were tested by comparison of the simulated IR spectrum 
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with  the corresponding experimental IR and gave good agreement,65,66 the intramolecular 

methanol bond, angle and dihedral parameters were originally derived  by fitting of ab initio 

data to millimeter wave spectroscopy 67,68 and electron diffraction.69   The methanol-

methanol interactions were adjusted from those in the CVFF70 forcefield and are 

represented by a Lennard-Jones potential the parameters of which, along with the atomic 

charges and intramolecular bonding, angle and dihedral parameters are listed in table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The potentials describing the interaction between methanol and the zeolite framework 

were also adapted by Plant et al. from the work of Blanco and Auerbach and were scaled 

slightly from the original parameters.  The original values were obtained from the CVFF 

force field and were adjusted to fit heats of adsorption in faujasites 71 and other zeolites,72-74 

and also PFG-NMR diffusion coefficient measurements in MFI zeolites.75 Said parameters 

were derived for methanol diffusion in siliceous faujasites rather than HY. For this reason 

Zeolite-Zeolite Interactions 
Buckingham Potential 

Atoms A (eV) ρ (Å) C (eV  Å6) 

Si- -O 1283.907 0.32052 10.66158 

Si- -Ob 983.5566 0.32052 10.66158 

O- -O 22764.0 0.149 27.88 

Al- -O 1460.3 0.29912 0 

Al- -Ob 1142.6775 0.29912 0 

Ob- -O 22764.0 0.149 27.88 

O- -Hb 311.97 0.25 0 

Morse Potential 

Atoms D (eV) α (Å-1) r0 (Å) 

Ob- -Hb 7.0525 2.1986 0.9845 

Three-body potential 

Atoms K (eV rad-2) θ(°) 

O-Al-O/Ob 2.09724 109.47 

O-Si-O/Ob 2.09724 109.47 

Table 1: Potential parameters describing the zeolite-zeolite interactions, where Ob 

and Hb are the hydroxyl oxygen and hydrogen respectively. 
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the potentials describing the interaction of methanol with the acidic bridging framework 

hydroxyl were taken from the work of Kiselev76 Vetrival et al.77 implemented and listed in 

work by Shubin and Catlow,78 investigating butanol isomer behaviour in H-ZSM-5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Atomic Charges 

Species  Charge (a.u.) 

C -0.093 

H 0.1 

OMeOH -0.432 

HMeOH 0.225 

Intramolecular Potentials 

Bonds k (eV Å-2) Length (Å) 

C-H 29.56 1.105 

C-OMeOH 33.33 1.420 

H-OMeOH 46.97 0.945 

Angles  k eV (rad-2) θ(˚) 

C-OMeOH-HMeOH 5.6 108.32 

H-C-OMeOH 5.5 106.90 

H-C-H 4.4 108.38 

Dihedrals K(eV) Α β 

H-C-OMeOH-HMeOH 0.00762 1.0 3.0 

Table 2: Potential parameters describing intramolecular methanol interactions, where 

OMeOH and HMeOH are the methanol hydroxyl oxygen and hydrogen respectively. 
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Methanol-Zeolite Interactions 

Atoms  ϵ (eV) σ (Å) 

O/Ob--HMeOH 0.004987 2.557 

O/Ob--OMeOH 0.010545 2.764 

O/Ob--C 0.006594 2.958 

O/Ob--H 0.004987 2.557 

O/Ob--C 0.00828 3.150 

Hb--HMeOH 0.000851 1.784 

Hb-- OMeOH 0.00338 2.920 

Hb--C 0.00299 2.806 

Hb--H 0.000851 1.784 

Methanol-Methanol Interactions 

Atoms  ϵ (eV) σ (Å) 

H—H/HMeOH 0.00165 2.450 

H--C 0.00338 2.920 

H--OMeOH 0.00404 2.650 

OMeOH- -OMeOH 0.00988 2.860 

OMeOH--C 0.00828 3.150 

OMeOH--HMeOH 0.00404 2.650 

C-- HMeOH 0.00338 2.920 

Fig 2. Pre-equillibriation configuration of the MD simulation of methanol in HY 

Table 3: Lennard-Jones potential parameters describing methanol-zeolite interactions. 

Table 4: Lennard-Jones potential parameters describing methanol-methanol interactions. 
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The methanol molecules were placed in the centre of the faujasite supercages in the 

supercell, avoiding close contact with the channel walls. The loadings of 6 molecules per 

unit cell were chosen to match those of the experiment. An example of the starting 

configuration is shown in figure 2. The system was then equilibrated at the desired 

temperature for 1 ns in the canonical (NVT) ensemble. A Berendsen79 thermostat was used 

to maintain the temperature constant, with a time constant for thermal energy exchange 

set at 1 ps. This thermostatting procedure has led to successful and stable equilibration in 

previous work28-30,80 After the equilibration run, the production run of 10 ns in the 

microcanonical (NVE) ensemble was carried out at 300, 330, 360 and 400 K. A timestep of 

0.5 fs was used and the atomic coordinates were saved every picosecond (every 2000 

steps). All simulations were carried out using the DL_POLY_4 code81. The production time of 

10 ns was chosen because it was sufficient to obtain true diffusive motion, illustrated by a 

linear mean square displacement (MSD) plot.  The carbon atom of each molecule then had 

its coordinates logged, allowing self-diffusion coefficients to be calculated from the Einstein 

relationship. 

 

 

3. Results and Discussion 

3.1 Quasielastic Neutron Scattering 

QENS spectra at 360 K at each temperature are shown at 4 Q values in figure 3. The spectra 

are fitted to a delta function convoluted with the resolution measurement taken at 6 K, a 

single Lorentzian function (which was enough of describe the data satisfactorily) and a flat 

background function. The Lorentzian component is consistently broadening with Q at all 

temperatures. 
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Q = 0.21 Å-1 

Q = 0.64 Å-1 

Q = 0.93 Å-1 

Q = 1.35 Å-1 

 -0.6             -0.4               -0.2                  0                   0.2                0.4                0.6 
                          Energy Transfer meV  

Fig 3. S(Q,ω) at 4 Q values for methanol in HY at 360 K. (--) represents the total fit, (--) 

represent the resolution function, the Lorentzian component and the flat background. A 

single Lorentzian quasielastic component is observable. 

S (Q, ω) Arb. units 
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The Q dependencies of the HWHM of the Lorentzian component are plotted for all 

temperatures in figure 4. A linear dependence of the HWHM with Q2 is adhered to at all 

four temperatures, indicative of Fickian diffusion. The error in the neutron data points in 

figure 3 are assigned based on Poisson statistics, while the error in the Lorentzian HWHM 

fits (figure 4) are assigned using a Monte Carlo method where data sets are generated 

virtually within the neutron data point error bars and then fitted. The measured diffusion 

coefficients are in a range of 2–5 x 10-10 m2s-1 and are listed in table 4 and plotted in figure 5.  

The Arrhenius dependence, plotted in figure 6 gives an activation energy of 8.8 kJ mol-1. We 

note that the DS values obtained by QENS are higher by an order of magnitude than all 

experimental diffusion coefficients measured of methanol in NaX (Si/Al = 1.2) and MD 

studies in NaY (Si/Al = 2.4). This observation may be attributed to the high concentration of 

counterions throughout the structure of low silica NaY which may be hindering diffusion. 

These extra framework counterions are not present in HY, which instead has bridging 

hydroxyls attached to the framework. 

 

Fig 4. Q dependencies of the HWHM of the Lorentzian component of each QENS spectrum for 

methanol in HY at all 4 temperatures. The linear dependence with Q2 suggests Fickian diffusion. 

300 K 

360 K 

330 K 

400 K 
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The less hindered diffusion in HY is also illustrated by the lower activation energy of 

diffusion from our QENS studies than from the experimental studies  and MD simulations in 

NaX. We note also that our QENS measurements result in diffusion coefficients that are 

lower than those obtained previous MD simulations in siliceous faujasite by a factor of 20 at 

~360 K and 400 K. This discrepancy is reasonable given the lack of proton sites in the 

siliceous MD simulation, removing the potential for favorable H-bonding between the 

methanol OH groups and the Brønsted acid sites (or terminal hydroxyls) present in the 

aluminated structure. The removal of this H-bonding potential is also combined with the use 

of a perfect zeolite crystal in the simulations, where defects and grain boundaries on the 

scale of a few nanometers would exist in the experimental sample, contributing additionally 

to the observed discrepancy. Importantly, the methanol loading is not the same for our 

QENS studies and the previous MD simulations (6 molecules per unit cell and 8 molecules 

per unit cell respectively). The H-bonding capability is further illustrated in our MD 

simulations reported in 3.2. 

T K 
QENS 

(present work) 

MD 

(present work) 

MD in siliceous 

Y (ref 48) 

MD in NaX 

(ref 48) 

PFG-NMR 

NaX (ref 46) 

Tracer ZLC in 

NaX (ref 47) 

300 
2.05 x 10-10 

±0.32 x10-10 

1.61 x 10-9 - - - - 

330 2.9 x 10-10 

±0.56 x10-10 

2.15 x 10-9 - - - - 

350 - - 8 x 10-9 - - - 

360 4 x 10-10 

±0.93 x10-10 

2.68 x 10-9 - - - - 

373 - - - - 6 x 10-11 7 x 10-11 

400 4.9 x 10-10 

±1.2 x 10-10 

3.21 x 10-9 1 x 10-8 4.7 x 10-11 - - 

Ea kJ mol-1 8.8 6.9 5.8 24 14 - 

Table 4. Self-diffusion coefficients (Ds) of methanol in HY and activation energies of diffusion (Ea) 

measured from the current study in comparison with previous studies of other faujasite systems. 
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Fig. 6. Arrhenius plots and calculated Ea for methanol in HY from diffusion coefficients 

measured by QENS and MD. 

 

1/T x 106 K-1 

Fig. 5. Plot of diffusion coefficients of methanol in different faujasite systems between 300 – 400 K measured 

using different methods, including the QENS and MD measurements in the current study. 
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3.2 Molecular Dynamics Simulations 

The mean squared displacement (MSD) plots at each temperature are shown in figure 7, we 

note that the linearity of each plot confirms that our statistics are sufficient in calculating 

the self-diffusivity. Calculated Ds values are listed in table 5. 

 

With regard to our QENS experiments, our calculated Ds values are higher by a factor of 7.8, 

7.4, 6.7 and 6.5 with each increasing temperature.  The calculated values are expected to be 

at the upper limit of experiment due to the use of a perfect crystal with evenly distributed 

Brønsted acid sites and the discrepancy is of a magnitude similar to those shown for n- and 

isoalkanes in silicalite.28,30 The defects may be particularly significant upon comparison with 

our high silica HY sample, which as noted previously35 was synthesized through steam 

dealumination, which would leave significant defects such as silanol nests which may act as 

strong methanol adsorption sites, hindering diffusion. The hindrance may also be illustrated 

by the higher activation energy measured by QENS, higher by ~2 kJ mol-1 potentially due to 

the additional energy necessary to overcome the binding energy to silanol nests or other 

defects such as extraframework aluminum, or grain boundaries on the nanoscale.  

Fig 7. MSD plots at each temperature for methanol in HY. 
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With respect to previous simulations, our calculated diffusion coefficients are lower than 

those obtained in the siliceous structure,38 by roughly a factor of 3 at 400 K, with an 

activation energy higher by 1.1 kJ mol-1. This observation is sensible due to the presence of 

Brønsted acid sites in our simulated zeolite structure, allowing for favourable H-bonding 

interactions between the acid sites and the methanol molecules slowing diffusion. Examples 

of these observed H-bonds are shown in figure 8, showing both end-on and side-on 

geometries as observed to be stable configurations in previous studies.82-84 

 

 

 

 

 

 

We note that the bond lengths are similar to those seen in reference 38 for NaX. However, 

the diffusion coefficients calculated in NaX are lower by a factor of 68 than our simulated HY 

system (1 order of magnitude lower than our experiment). The NaX Si/Al ratio in reference 

38 was 2.4, compared to 30 in our study. This far higher population of Na+ coordination sites 

would explain the significant reduction in methanol mobility, further illustrated by the 

activation energy of 24 kJ mol-1 (compared to 6.9 and 8.8 kJ mol-1 for our simulated and 

experimental HY systems respectively).  

From figure 5 we observe a logical trend in measured diffusivities given the systems under 

study, and the methods used when studying methanol in faujasite systems. The highest 

diffusivities are calcuated when using MD simulations in the siliceous structure, as the 

coordination sites acting as potential barriers for diffusion are not present as in the other 

systems. The second highest diffusivities are observed by our MD simulations in the HY 

structure, slower than the referenced siliceous simulations due to H-bonding observed 

between the methanol and the Brønsted acid sites. The third highest diffusivities are 

measured in the HY structure using QENS, we expect this as MD simulations usually yield 

Fig 8. Typical H-bonded configurations of methanol in HY exhibiting both end-on and 

side-on geometry. 

2.45 Å 

2.74 Å 

3.17 Å 

2.69 Å 2.69 Å 

2.36 Å 
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higher diffusivities than experiment due to the use of a perfect crystal as previously 

mentioned. Again, this factor is particularly significant in our comparison as our 

experimental samples were brought to this composition through steam dealumination, 

leaving defects such as silanol nests throughout the crystal structure which may act as an 

adsorption trap for methanol molecules, slowing their diffusion further. The slowest 

diffusivities are measured in NaX, with similar values obtained using PFG-NMR and tracer 

ZLC in methods36,37 and MD simulations in reference 38, where the high concentration of 

counterions (Si/Al = 1.2 in the experiments and 2.4 for the MD simulations) slow diffusion 

through strong interactions of the methanol oxygen with the counterion.  

 

4. Summary and Conclusions 

We have reported the microscopic measurement of methanol diffusion in zeolite HY using 

QENS experiments and MD simulations. Measurements between 300 – 400 K gave 

experimental diffusion coefficients in the range of 2–5 x 10-10 m2s-1 giving an activation 

energy of 8.8 kJ mol-1, and theoretical diffusion coefficients of 1.6–3.2 x 10-9 m2s-1 giving an 

activation energy of 6.9 kJ mol-1 . The discrepancy is of a magnitude previously observed 

between these methods for similar systems, and attributed primarily to defects in the 

experimental sample related to its synthesis method. The measurements in HY are lower 

than those obtained by simulations in siliceous faujasite due to favourable H-bonding 

interactions between methanol and framework bridging hydroxyls as observed in the MD 

simulations. Our experimental and theoretical measurements are all significantly higher 

than previous studies of methanol diffusion in NaX (higher by a factor of 68 in when 

comparing simulations), attributed to the lower concentration of extraframework cations in 

the zeolite framework. The study highlights the power of combined theoretical and 

experimental microscopic studies in probing the effect of zeolite composition on diffusion of 

catalytically relevant species in microporous catalysts.  
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