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Linear mixed models for replication data to efficiently allow
for covariate measurement error

Jonathan W. Bartlett, Bianca L. De Stavola and Chris Frost

Department of Medical Statistics, London School of Hygiene & Tropical
Medicine, Keppel Street, London, WC1E 7HT

Abstract

It is well known that measurement error in the covariates of regression models generally
causes bias in parameter estimates. Correction for such biases requires information concern-
ing the measurement error, which is often in the form of internal validation or replication
data. Regression calibration (RC) is a popular approach to correct for covariate measurement
error, which involves predicting the true covariate using error-prone measurements. Likeli-
hood methods have previously been proposed as an alternative approach to estimate the
parameters in models affected by measurement error, but have been relatively infrequently
employed in medical statistics and epidemiology, partly because of computational complexity
and concerns regarding robustness to distributional assumptions. We show how a standard
random-intercepts model can be used to obtain maximum likelihood (ML) estimates when
the outcome model is linear or logistic regression under certain normality assumptions, when
internal error-prone replicate measurements are available. Through simulations we show that
for linear regression, ML gives more efficient estimates than RC, although the gain is typically
small. Furthermore, we show that RC and ML estimates remain consistent even when the
normality assumptions are violated. For logistic regression, our implementation of ML is con-
sistent if the true covariate is conditionally normal given the outcome, in contrast to RC. In
simulations, this ML estimator showed less bias in situations where RC gives non-negligible
biases. Our proposal makes the ML approach to dealing with covariate measurement error
more accessible to researchers, which we hope will improve its viability as a useful alternative
to methods such as RC.

1 Introduction

Standard statistical regression models assume that the covariates or explanatory variables in the
regression model are observed exactly. While this is true for certain variables, observed values of
variables can often be considered error-prone measurements of the true covariates in which we are
primarily interested. It is well known that in general, ignoring error in covariates results in biased
estimates of the parameters of the model relating the outcome to the true covariates [1, 2].

Many different methods have been developed for correcting the bias in such naive estimates,
with the aim of estimating the association between the outcome and true covariates of interest using
the observed error-prone measurements. Usually, such correction methods require information
about the measurement error, often in the form of replication or validation datasets, whereby
independent replicate error-prone measurements or the true covariate are observed for a subset of
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subjects. Furthermore, depending on the correction method employed, one must usually also make
assumptions about the true covariate and the measurement error, which would not be necessary
had the true covariate been observed without error.

Regression calibration (RC) is arguably the method most commonly used in epidemiology
to allow for covariate measurement error [2]. For a linear regression outcome model, regression
calibration gives consistent estimates of the parameters of interest. For non-linear outcome models
such as logistic regression, regression calibration has been shown to be approximately consistent,
although non-trivial biases can occur if the covariate effects are strong or the measurement error
is large [3].

Maximum likelihood (ML) has also been advocated for allowance for covariate measurement
error [4, 5], and it is an established technique in common use for fitting structural equation models
where latent variables represent the true covariate [6]. To use parametric likelihood, one must
specify a parametric model for the observed data, i.e. the outcome and the error-prone measure-
ments of the covariate. A model for the ‘full’ or ‘complete’ data can be specified as the product
of the outcome model, the measurement error model, and a model for the true covariate, so long
as covariate measurement error is assumed to be non-differential [7]. The likelihood function for
the observed data is found by marginalizing the distribution of the ‘full’ data over the distribution
of the true covariate, which is unobserved or ‘latent’. For a correctly specified parametric model,
ML is consistent and asymptotically efficient, and so ought to be considered as an alternative to
simpler methods such as regression calibration.

A number of factors have probably contributed to parametric likelihood methods not having
been used more often for covariate measurement error correction. First, commands to fit models
via ML which allow for covariate measurement error are not universally available in statistical soft-
ware packages. Notable exceptions include the CME wrapper for GLLAMM in Stata [5], Mplus [8],
and proc NLMIXED in SAS, which can be adapted to fit joint models [9]. In contrast, regression
calibration can be implemented relatively easily using standard statistical packages. Second, max-
imizing the likelihood function for the observed data can be computationally burdensome. Unless
joint normality is assumed for the outcome, true covariate and measurement errors, the density
function of the observed data generally involves an intractable integral over the distribution of
the unobserved true covariate. Numerical integration methods such as Gaussian quadrature have
being successfully employed to deal with this, although estimation can often be slow, especially
with multiple true covariates. Third, researchers may be concerned that the strong assumptions
made by parametric ML may not be valid, which may violate the validity of resulting estimates
and inferences.

In this paper we aim to address both the issue of computational complexity and robustness
for the ML approach when independent replicate error-prone measurements are available. We
show that when the outcome model is linear regression, ML estimates for the joint model can be
readily found by fitting a standard random-intercepts linear mixed model, routines for which are
widely available in statistical packages. We show that this approach can also be used to find ML
estimates when the outcome model is logistic regression and the true covariate is conditionally
normal, given the outcome. We also show how Wald-type confidence intervals can be obtained
using the estimates and standard errors reported by the fitted linear mixed model, and for logistic
regression, how Fieller’s theorem can be used to construct confidence intervals (Appendix A). For
both types of outcome models, we use simulations to investigate the finite sample performance
of RC and ML, using characteristics which may be typical of epidemiological studies. We also
use simulations to explore robustness of RC and ML to some of their parametric assumptions.
For linear regression, we show that the ML estimator remains consistent even when the normality
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assumptions upon which it is derived do not hold. We introduce our approach in the context
of simple linear and logistic regression with a single covariate which is measured with error, and
in Appendix B extend the approach to the case of multiple covariates, some of which may be
measured without error.

2 Linear regression

2.1 Model specification

We assume that data are available for i = 1, .., n independent subjects. We suppose that an
outcome Yi follows a linear regression model conditional on the covariate of interest, Xi:

Yi = α + βXi + εi (1)

where εi ∼ N(0, σ2
ε ) and is independent of Xi. Furthermore, we assume that Xi ∼ N(µX , σ

2
X). The

outcome Yi is observed, but Xi is not. Instead, for the ith subject, Ni error-prone measurements,
Wi = (Wi1, ..,WiNi

)T of Xi are available. In general, the number of error-prone measurements for
subject i, Ni, is a random variable with some discrete distribution taking positive integer values.
A common study design is one in which a randomly selected proportion π of subjects have Ni = 2
error-prone measurements of Xi, with the remaining subjects having Ni = 1. This corresponds
to Ni taking value 2 with probability π and taking value 1 with probability 1 − π. We condition
on the realized values of Ni throughout, on the assumption that Ni is independent of all other
variables and therefore contains no information regarding the parameters of interest. We note that
sometimes Ni may be fixed by design, e.g. Ni = 2 for all subjects.

We assume a classical measurement error model, so that:

Wij = Xi + Uij (2)

where Uij ∼ N(0, σ2
U) for j = 1, .., Ni. The measurement errors Uij are assumed independent of

each other, and of Xi. We further assume that the measurement errors are non-differential, so
that Yi and Wi are independent conditional on Xi. This is equivalent to Uij being independent
of the residual errors εi. Together these assumptions define a joint model for the observed data
and the unobserved true covariate Xi. Figure 1 shows diagramatically the relationship between
the observed variables Wi and Yi, and the unobserved variable Xi when Ni = 2.

The ratio of the variance of the true covariate to that of the error prone measurements:

λ =
σ2
X

σ2
X + σ2

U

is known as the reliability ratio. Ignoring covariate measurement error and fitting the regression
of Yi on a single measurement Wi1 leads to an unbiased estimate of λβ [1].

2.2 Regression calibration

Regression calibration (RC) involves calculating E(Xi|Wi) (or an estimate of this) for each subject,
and then fitting the linear regression of Yi on these values. Under the assumed model, Wi follows a
one-way random-intercepts model, with random effect variance σ2

X and within-subject variance σ2
U .

The components of variance can be estimated using the ANOVA estimators, or under the normality
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assumptions previously described, using either ML or restricted ML (REML) [11], giving estimates
of σ2

X , σ2
U and µX . Under this assumed model, Wi and Xi are jointly normal, and from standard

results for multivariate normal distributions (e.g. Appendix S3 of [11]) we have:

E(Xi|Wi) = µX +
σ2
X

σ2
X +

σ2
U

Ni

(∑Ni

j=1Wij

Ni

− µX

)
. (3)

Regression calibration then proceeds by fitting the regression of Yi on Ê(Xi|Wi), which is found
by substituting the estimates of σ2

X , σ2
U and µX into equation (3). The slope estimate from this

regression model, β̂RC, is then an estimate of β. When the outcome model is linear regression,
β̂RC is a consistent estimator of β so long as the parameters needed to calculate E(Xi|Wi) are
consistently estimated as n → ∞. This is satisfied when n × P (Ni > 1) → ∞ as n → ∞, which
ensures that the number of subjects with two or more error-prone measurements tends to infinity.

We note that naive standard errors and confidence intervals for β̂RC obtained from fitting the
model for Yi with Ê(Xi|Wi) ignore uncertainty in the parameters involved in E(Xi|Wi). One
approach to valid inference is to use bootstrapping (see Appendix A.9.5 of [2]).

2.3 Maximum likelihood

To find the ML estimates of the joint model, we maximize the likelihood function given the observed
data, Yi and Wi. Our strategy is to factorise the log likelihood function as:

l(θ|Yi,Wi) = log(f(Yi,Wi|θ))

= log(f(Yi|θ)) + log(f(Wi|Yi,θ)) (4)

where θ = (α, β, σ2
ε , µX , σ

2
X , σ

2
U) is the vector of model parameters. Since Xi and εi are independent

and normal, it follows that Yi is marginally normal with mean and variance:

µY = α + βµX (5)

σ2
Y = β2σ2

X + σ2
ε . (6)

Furthermore, since Xi and Yi are jointly normal, Xi given Yi is also normal. We can therefore
write:

Xi = γ0 + γY Yi + bi (7)

where bi ∼ N(0, σ2
X|Y ) is an independent normally distributed residual and:

γ0 = µX −
βσ2

X(α + βµX)

β2σ2
X + σ2

ε

(8)

γY =
βσ2

X

β2σ2
X + σ2

ε

(9)

σ2
X|Y = σ2

X −
β2σ4

X

β2σ2
X + σ2

ε

(10)

follow from standard results for multivariate normal distributions (e.g. Appendix S3 of [11]). Then
since Wij = Xi + Uij, substituting for Xi using equation (7) we have

Wij = γ0 + γY Yi + bi + Uij
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where Uij ∼ N(0, σ2
U) is independent of bi. This shows that Wij given Yi follows a random-

intercepts model, with random-intercepts variance σ2
X|Y , within-subject variance σ2

U , and a fixed
effect of Yi.

The parameter vector φ = (µY , σ
2
Y , γ0, γY , σ

2
X|Y , σ

2
U) is a one-to-one function of the original

model parameter vector θ = (α, β, σ2
ε , µX , σ

2
X , σ

2
U). Furthermore, in terms of the new parametriza-

tion φ, f(Yi) and f(Wi|Yi) share no parameters. Since the two subsets of parameters are varia-
tionally independent, it follows that the ML estimate of φ can be obtained by maximizing the two
likelihood components separately [12].

In the first part of the log likelihood (equation (4)), log(f(Yi|φ)), the ML estimates of µY and
σ2
Y are simply the sample mean and sample variance with n in the denominator. The second part of

the log likelihood, log(f(Wi|Yi,φ)), is that of a random-intercepts model, and so standard software
can be used to fit a random-intercepts model for Wi given Yi, using either ML or restricted ML
(REML), giving estimates γ̂0, γ̂Y , σ̂2

X|Y , σ̂2
U .

To obtain the ML estimate of β, we solve for β using equations (6), (9) and (10), which gives:

β =
γY σ

2
Y

σ2
X|Y + γ2Y σ

2
Y

. (11)

The ML estimate of β can thus be calculated as:

β̂ML =
γ̂Y σ̂

2
Y

σ̂2
X|Y + γ̂2Y σ̂

2
Y

. (12)

Like β̂RC, β̂ML is consistent if as n → ∞, n × P (Ni > 1) → ∞. In Appendix A.1 we show how
Wald type confidence intervals for β̂ML can be constructed, using the estimates and corresponding
standard errors for γ̂Y , σ̂2

X|Y and σ̂2
Y . In Appendix B.1 we show how the approach can be extended

to include multivariate Xi and error free covariates Zi.

2.4 Simulations

In Table 1 we give simulation results comparing RC with ML, simulated under the model described
previously. For all scenarios, without loss of generality, we set β = 1 and σ2

X = 1. We varied
the value of σ2

ε to consider either weak, moderate or strong associations between Yi and Xi,
corresponding to a correlation between Yi and Xi of 0.2, 0.5 and 0.8. Values for the measurement
error variance σ2

U of 1/2, 1 and 2 were used, corresponding to reliability ratios λ of 2/3, 1/2 and
1/3 respectively. The results for each scenario are based on 10,000 simulations, with n=5,000
subjects, 500 of whom have two error-prone measurements, and the remaining 4,500 have just one.
The simulations were performed using R 2.8.0 [13], using the lmer command of the lme4 package
to fit the random-intercepts models. Wald-type confidence intervals were calculated as described
in Appendix A.1, using the reported standard error for γ̂Y from lmer. We calculated the standard
error for σ̂2

X|Y using the appropriate element of the inverted observed information matrix.
RC and ML are consistent for a linear regression outcome model under the conditions previously

described, and our simulations showed little bias for the sample size and scenarios considered (Table
1). The variability of RC was very similar to ML - ML only being appreciably more efficient for
scenario 9, when the reliability ratio was 1/3 and the association between Xi and Yi very strong.
Indeed for most scenarios, the RC and ML estimate for a given dataset were very similar. For
example, for scenario 1, the standard deviation of the difference between them was 0.002.
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The empirical coverage of the Wald confidence intervals for β̂ML were close to their nominal 95%
level for all scenarios. However, as λ decreased and the correlation between Yi and Xi increased,
the coverage rates of the one-sided intervals using the lower limit of the 95% interval became closer
to 100% while the coverage of the one-sided interval using the upper limit became closer to 95%,
rather than their 97.5% nominal coverage rates. This was a symptom of the fact that the sampling
distribution of β̂ML was positively skewed. The result was that the two-sided Wald intervals had
close to the correct coverage level.

2.5 Relationship between RC, ML and method of moments

Our simulations show that for the setup used, which is typical of many epidemiological studies,
β̂RC and β̂ML are not identical, although they usually give very similar point estimates. In the
special case in which Ni = N• for some N• > 1 for all subjects, RC and ML are asymptotically
identical, i.e. β̂RC = β̂ML with a probability that tends to 1 as n→∞ and n× P (Ni > 1)→∞.
In this case, β̂RC is also identical to a method of moments estimate of β, which is obtained by
dividing the naive estimate from regressing Yi on the mean of the k measurements W i, by:

σ̂2
X

σ̂2
X +

σ̂2
U

N•

, (13)

where the estimates of σ̂2
X and σ̂2

U are the same ones used by RC to calculate Ê(Xi|Wi).
More typically, the number of replicates Ni is different for different subjects. In this case, the

residual variance of Yi given E(Xi|Wi) (and Ê(Xi|Wi)) differs for subjects with different values
of Ni. This heterogeneity in residual variance is ignored by the OLS estimator of β. This means
that the implementation of RC we have considered is inefficient compared to ML. The residual
variance of the regression of Yi on E(Xi|Wi) for subject i can be shown to be equal to:

σ2
ε + β2σ2

X

1− σ2
X

σ2
X +

σ2
U

Ni

 . (14)

This suggests that the inefficiency of RC is likely to be small if either β2σ2
X is small relative to

σ2
ε , i.e. when Xi explains only a small proportion of the variation in Yi, or if σ2

U is small relative
to σ2

X . Our simulation results in Tables 1 and 2 appear to confirm this, with efficiency differences
between RC and ML only apparent when the correlation between Yi and Xi was large and the
reliability ratio λ was small.

2.6 Robustness

A natural concern for methods which adjust for covariate measurement error is robustness to any
additional assumptions which are made, in particular those which would not be necessary if the
true covariate Xi were observed. Without normality assumptions, the expression given in equation
(3) for E(Xi|Wi) is the best (in the sense of minimizing mean squared error of prediction) linear
prediction of Xi given Wi (see Appendix 4 of [2]). Furthermore the mean µX and variances σ2

X and
σ2
U involved in E(Xi|Wi) are estimated consistently by the ML estimator (derived under normality

assumptions) even if Xi or the Uij are not normally distributed [18]. Lastly, for a linear regression
outcome model, unbiased estimates of β are obtained by fitting the model using the best linear
prediction of Xi given Wi [17]. It thus follows that the RC estimator β̂RC we have described is
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consistent even if Xi or Uij are not normally distributed. We also note that normality of the errors
εi is not needed, since the consistency of the OLS estimators does not rely on such an assumption.

When σ2
U is known and Ni = 1 for all subjects, the ML estimator based on normality (‘normal

model ML’) of Xi is consistent even if Xi is not normal [1]. It is therefore also of interest whether
the ML approach based on normality assumptions, as described in Section 2.3, in which σ2

U is
simultaneously estimated with the other model parameters, remains consistent under deviations
from the normality assumptions. The assumed model includes assumptions of normality for Xi,
Uij and εi. If Xi and εi are not both normally distributed, the linear mixed model for Wi given
Yi is in general misspecified in a number of ways. First, the random effects bi are not normally
distributed. Second, the variance of these random effects may vary as a function of Yi. Lastly,
the conditional mean function E(Xi|Yi) may be a more complicated function of Yi, and so the
fixed effects structure of the mixed model may be misspecified. In Appendix C, we show that the
likelihood score equations for the linear mixed model have zero expectation without requiring any
normality assumptions. It then follows from the theory of estimating equations (see for example
Appendix A6 of [2]) that the ML estimators solving these equations remain consistent without
requiring normality of Uij, Xi or εi. Similarly, the ML estimator of variance for σ2

Y is consistent

regardless of the marginal distribution of Yi. It thus follows that β̂ML remains consistent even if
some or all of the normality assumptions are violated.

To investigate the finite-sample performance of RC and normal model ML under non-normal
Xi, we performed simulations in which Xi was log-normally distributed. If A ∼ N(0, σ2), then
Var(eA) = eσ

2
(eσ

2 − 1) [14]. We therefore simulated Xi by exponentiating a random draw from
N(0, 0.481), so that Var(Xi) = 1. The resulting distribution ofXi thus had skew of 2.84. Under this
data generating model, the conditional distribution of Xi given Yi is not normal, the conditional
mean depends on higher order terms than merely Yi, and the conditional variance of bi, the best
linear prediction residual, also varies with Yi.

Table 2 shows the results of the simulations, with 10,000 simulations used for each scenario. As
before, there was little evidence of bias in RC or normal model ML based on joint normality. The
variability of both RC and normal model ML were similar to when Xi was normally distributed
for a reliability ratio of 2/3 or 1/2. For a reliability ratio of 1/3, both RC and normal model
ML were more variable than they were for normal Xi. The efficiency advantage of normal model
ML over RC was greater compared to that when Xi was normally distributed. For the simulation
results of Table 2 we used the same Wald confidence intervals which are derived on the basis of Xi

being normally distributed, and so under non-normality we would expect the coverage to deviate
from the nominal level. However, in our simulations the coverage of these confidence intervals was
reasonable, only being slightly below the nominal 95% level, although the one-sided coverage rates
were incorrect as described previously.

3 Logistic regression

We now suppose that Yi is a binary random variable, which given a covariate Xi, follows a logistic
regression model:

P (Yi = 1|Xi) =
exp(α + βXi)

1 + exp(α + βXi)
. (15)

As before, we assume that Xi is not observed, but that Ni error-prone measurements are available,
as described earlier.
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3.1 Regression calibration

Regression calibration is implemented in the same way as when the outcome model is linear
regression (unless subjects are sampled on the basis of Yi, i.e. case-control sampling). For logistic
regression however, regression calibration results only in approximately consistent estimates of β.

3.2 Maximum likelihood assuming conditional normality

Analogous to the linear regression case, our strategy is to fit a linear mixed model for Wi given Yi.
We assume that Xi|Yi ∼ N(γ0 + γY Yi, σ

2
X|Y ). The assumption that Xi is normal given Yi implies

a logistic regression for Yi given Xi [19], with:

β =
γY
σ2
X|Y

. (16)

If the measurement errors Uij are normal, it follows that Wij given Yi is normal with:

Wij = γ0 + γY Yi + bi + Uij.

Thus as with a linear regression outcome model, Wij follows a random-intercepts model given Yi,
which can be fitted using standard software.

The ‘conditional normal ML’ estimate of β is then given by:

β̂ML =
γ̂Y
σ̂2
X|Y

. (17)

In contrast to the case of a linear regression outcome model, under this model, β is a function only
of parameters in the conditional distribution of Xi|Yi. As for linear regression, an approximate
95% Wald confidence interval can be constructed for β̂ML. Since γ̂Y and σ̂2

X|Y are asymptotically

normal and uncorrelated, we can also construct a 95% confidence interval for β̂ML using Fieller’s
theorem (see Appendix A.2). In Appendix B.2 we show when our approach can be extended to
accommodate multivariate Xi and error-free covariates Zi.

3.3 Simulations

We first compared the performance of RC with conditional normal ML under conditions for which
our approach is indeed the correctly specified ML estimator, i.e. when Xi|Yi is normally distributed
with constant variance. We considered both a rare (P (Yi = 1) = 0.1) and a common outcome
(P (Yi = 1) = 0.5), a weak effect of Xi on Yi (β = 0.1, corresponding to a standardized odds ratio
(OR) of 1.11) and a relatively large effect (β = 1, corresponding to an OR of 2.72). As before, we
considered reliability ratios of 2/3, 1/2 and 1/3.

The simulation results of Table 3 show that RC had little bias when the effect size was small.
For a large effect size, there was a downward bias in RC, which was increased for larger P (Yi = 1).
As expected, conditional normal ML had negligible bias for all scenarios. In general, RC was
less variable than conditional normal ML, with the difference increasing with smaller values of
the reliability ratio, larger effect sizes, or a more common outcome. Despite the bias of RC in
these situations, the root mean square error (RMSE) of RC was less than conditional normal ML,
except for scenarios 10 and 11. With increasing sample sizes, bias would dominate the RMSEs, so
that conditional normal ML would have smaller RMSE than RC. Both the Wald-type confidence

9



intervals and those based on Fieller’s theorem had coverage levels close to their nominal 95% level.
However, while the one-sided coverage rates of the Wald intervals differed from 97.5% when λ
decreased and β increased, the one-sided intervals based on Fieller’s theorem had coverage close
to their nominal 97.5% rate.

3.4 Robustness

The usual parametric model used in the context of covariate measurement error assumes marginal
normality for Xi and normally distributed measurement error. If Xi ∼ N(µX , σ

2
X), then unless

β = 0, the conditional distribution of Xi given Yi is not normal. However, as noted by Freedman
et al [15, 16], if either the outcome Yi is rare or the effect of Xi on Yi is small, the distribution
of Xi will be approximately both marginally and conditionally normal given Yi. We therefore
examined the robustness of our previously described conditional normal ML approach when Xi is
marginally normal as opposed to conditionally normal given Yi. With Xi marginally normal, our
conditional normal ML estimator does not give the maximum likelihood estimate for the true data
generating model. The likelihood function for the joint model with Xi marginally normal involves
an intractable integral, which must be approximated either by analytical quadrature techniques or
numerically via simulation.

With Xi marginally normal and Yi given Xi logistic, the conditional distribution of Xi given
Yi is not normal (unless β = 0), and furthermore the conditional variance Var(Xi|Yi) in general
differs depending on whether Yi = 0 or Yi = 1. For the reasons outlined earlier for robustness
in the case of linear regression, if we fit the linear mixed model for Wi given Yi and Var(Xi|Yi)
depends on Yi, the ML estimator of σ2

X|Y is a consistent estimator of the mean of the conditional

variances Var(Xi|Yi) over the distribution of Yi, which here is equal to:

P (Yi = 1)Var(Xi|Yi = 1) + P (Yi = 0)Var(Xi|Yi = 0).

The bias in the ‘conditional normal ML’ estimator of β when Xi is marginally normal thus reduces
to the bias of the method of normal discriminant analysis when its assumption of conditional
normality with constant variance are violated.

Table 4 shows the results of simulations in which Xi was generated as marginally normal. As
with the simulations with Xi|Yi normal, we see that the bias of RC is small except for when there
is a large effect of Xi on Yi. Despite the fact that the conditional normal MLE β̂ML is not the
MLE for the true data generating model in these simulations, it had little bias in the scenarios
considered, presumably because normal discriminant analysis is relatively robust to the assumption
of conditional normality [20]. Also of interest was that the coverage of the confidence intervals
were very similar to when Xi was conditionally normal given Yi.

4 Discussion

We have proposed a new approach for obtaining maximum likelihood estimates of covariate effects
in linear and logistic regression in which the covariates are measured with error. We have restricted
our attention to situations in which the true covariate cannot be observed, but internal replicate
error-prone measurements are available for a subset of subjects. By using standard linear mixed
models to model the error-prone measurements conditional on the outcome, our approach efficiently
accommodates varying numbers of error-prone measurements between subjects.
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For a linear regression outcome model, ML had smaller sampling variability than RC in simu-
lations, although the differences were small for most scenarios. The greatest efficiency advantage
for ML occurred when measurement errors were large and when the association between true co-
variate and outcome was also large. Both our implementation of RC and the normal model ML
estimators are predicated on normality of the true covariate, the measurement errors, and the
outcome regression error, but remain consistent even when some or all of these are not normally
distributed. Our simulations confirm this property in the case of a log-normally distributed true
covariate. Bootstrapping or sandwich type estimators of variance could be used to construct con-
fidence intervals for ML estimates when the normality assumptions are in doubt, although in our
simulations confidence intervals based on normality performed as well with a log-normal covariate
as with a normally distributed true covariate.

For a logistic regression outcome model, our proposed method gives consistent estimates of the
effect of interest when the covariate is normally distributed conditionally on Yi, i.e. within the
diseased and non-diseased groups, as opposed to RC, which is in general inconsistent, although its
bias is typically small. For the majority of scenarios we considered, RC had smaller RMSE than
conditional normal ML, although for larger sample sizes we would expect conditional normal ML
to be superior as bias then dominates the RMSE. Under the more usual assumption of marginal
normality for the true covariate, the conditional normal ML estimator had less bias, but larger
sampling variability than RC. Despite the fact that the conditional normal ML estimator was
misspecified in this situation, there was little bias for the scenarios considered.

Many estimation methods have been proposed which allow some relaxation of parametric as-
sumptions, usually for the unobserved true covariate. At one end of the spectrum are the con-
ditional score and corrected-score approaches [21]. These methods make no assumptions about
the distribution of the true covariate, and thus are consistent regardless of the true distribution.
They are computationally fast, but are not available in statistical software packages, and are poten-
tially inefficient compared to correctly specified parametric approaches. Non-parametric likelihood
methods assume the unobserved covariate is a random variable, but make no further assumptions
about its distribution, and thus are also potentially inefficient [22]. In response, methods have been
proposed which assume the latent covariate’s distribution belongs to a flexible class of continuous
distributions [23]. When the outcome model is linear regression, ML based on normality of the
unobserved covariate is consistent even when the distribution is not normal, and so may be prefer-
able to these more complex approaches. With a logistic regression outcome model, consistency of
our ML implementation relies on the distributional assumptions for the unobserved covariate, and
so use of semiparametric approaches such as the conditional score method may be advisable when
normality is in doubt.

Recently, parametric multiple imputation (MI) has been proposed and investigated as a method
for dealing with covariate measurement error. Cole, Chu and Greenland proposed using MI with
a survival outcome model and validation data [24], while Messer and Natarajan considered its
implementation for a binary outcome when validation data are available [9]. Freedman et al
considered an implementation of MI when measurements may be biased, but a substudy with
unbiased replicates is available [16]. With replication data, the true covariate is missing for all
study subjects, and so conventional software for MI cannot usually be used. Having fitted the
random-intercepts model for Wi given Yi in our ML approach, imputations of Xi can be made by
drawing values of the random-intercepts, with mean equal to the best linear unbiased prediction
(BLUP) and variance equal to its conditional variance [10]. As the number of imputations increases,
the resulting MI estimate will converge to the ML estimate, while for a finite number of imputations
the MI estimator is less efficient than the ML estimator, and so there may be little benefit in using
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imputation in this case [25]. However, MI may be useful when the outcome model is logistic
regression and there are error-free covariates which are not jointly normal with the unobserved
covariate(s). In such a situation, having fitted the linear mixed model for Wi given Yi (and the
error-free covariates), one can multiply impute the unobserved Xi from its conditional distribution
given observed data, fit the logistic regression model to each of the imputations, and average the
resulting parameter estimates across imputations in the usual way.

Our proposal for using ML for covariate measurement error is easily implemented using standard
random-intercepts models, which can be fitted using many modern statistical packages. The ML
estimate is obtained by simply substituting the relevant parameter estimates into equation (11) for
a linear regression outcome model and equation (16) for a logistic regression outcome model. We
believe the exposition of the ML approach via random-intercepts models makes the ML approach
more transparent, which in turn increases its viability as an alternative to simpler methods such
as RC.

A Confidence intervals for β̂ML

A.1 Linear regression

We restate equation (11) which gives β, the parameter of interest, in terms of the alternative model
parametrization:

β =
γY σ

2
Y

σ2
X|Y + γ2Y σ

2
Y

. (18)

Since the likelihood factors into two components, σ̂2
Y is asymptotically uncorrelated with both γ̂Y

and σ̂2
X|Y . Furthermore, a standard result for linear mixed models is that the estimators of fixed

effects parameters are asymptotically uncorrelated with the estimators of the variance component
parameters [11]. Thus γ̂Y and σ̂2

X|Y are asymptotically uncorrelated, and so for large sample

sizes (σ̂2
Y , γ̂Y , σ̂

2
X|Y ) ∼ N

(
(σ2

Y , γY , σ
2
X|Y ),Σ = diag(Var(σ̂2

Y ),Var(γ̂Y ),Var(σ̂2
X|Y ))

)
. Then by the

multivariate delta method it follows that in large samples [14]

β̂ ∼ N
(
β,JΣJT

)
where J denotes the Jacobian matrix of the transformation (σ2

Y , γY , σ
2
X|Y ) 7→ β:

J =
(

∂β
∂σ2

Y

∂β
∂γY

∂β
∂σ2

X|Y

)
.

Partial differentiation of equation (18) then gives, after some simplification:

Var(β̂) =
γ2Y σ

4
X|Y Var(σ̂2

Y ) + σ4
Y (σ2

X|Y − σ2
Y γ

2
Y )2Var(γ̂Y ) + γ2Y σ

4
Y Var(σ̂2

X|Y )

(σ2
X|Y + γ2Y σ

2
Y )2

.

This variance can be estimated by replacing each parameter by its respective estimate. Using

the observed information matrix one can estimate the variance of σ̂2
Y by

2σ̂4
Y

n
. A standard error

for γ̂Y is given by the linear mixed model output of software packages, and most packages also
give a standard error for σ̂2

X|Y . An approximate 95% confidence interval for β̂ can be found as

β̂ ± 1.96

√
V̂ar(β̂).
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A.2 Logistic regression

From equation (11) the log odds ratio of interest β is given by:

β =
γY
σ2
X|Y

.

Analogous to the linear regression case, using the multivariate delta method after partial differen-
tiation of the expression for β, we have:

Var(β̂) =
Var(γ̂Y )

σ4
X|Y

+
γ2Y Var(σ̂2

X|Y )

σ8
X|Y

.

Substituting estimates of γY and σ2
X|Y and their standard errors gives an estimate of Var(β̂), from

which a Wald type confidence interval can be calculated.
An alternative confidence interval for β̂ can be found using Fieller’s theorem [26], as the ratio

of two normally distributed random variables. Using the fact that γ̂Y and σ̂2
X|Y are asymptotically

uncorrelated, a 95% confidence interval for β̂ can be found as:(
f1 −

√
f 2
1 − f0f2
f2

,
f1 +

√
f 2
1 − f0f2
f2

)

where

f0 = γ̂2Y − 1.962Var(γ̂Y )

f1 = γ̂Y σ̂
2
X|Y

f2 = σ̂4
X|Y − 1.962Var(σ̂2

X|Y )

B Multiple covariates

B.1 Linear regression

Let Xi = (Xi1, .., Xip)
T denote a p-vector of covariates for subject i which can only be measured

with error, and Zi denote a q-vector of error-free covariates. To avoid having to specify the
distribution of Zi specify our model conditional on Zi. We assume that Xi ∼ N(ΓZi,ΣX|Z), where
Γ is a p× q matrix of regression coefficients. To reduce notational complexity, we assume that first
element of Zi is equal to 1, representing an intercept term.

Suppose Yi follows a linear regression model given X and Z:

Yi = βTXXi + βTZZi + εi

where εi ∼ N(0, σ2
ε ) is independent of Xi and Zi.

Let Nij denote the number of error-prone measurements available for subject i of covariate Xij.
As before we assume classical measurement error, so that the kth error-prone measurement of Xij,
denoted Wijk, is given by:

Wijk = Xij + Uijk

13



where Uijk ∼ N(0, σ2
Uj

) is measurement error. We assume the measurement errors Uijk are inde-

pendent across k, j, and are independent of Xi, Zi and εi. We write Wij = (Wij1, ..,WijNij
)T for

the vector of measurements of covariate j, and Wi = (Wi1, ..,Wip)
T . We can then write

Wi = DiXi + Ui

where

Di = 1Ni1×1 ⊕ 1Ni2×1 ⊕ ...⊕ 1Nip×1,

Ui = (Ui1, ..,Uip)
T

and

Uij = (Uij1, .., UijNij
)T

for j = 1, ..p.
Analogous to the univariate X case, one can show that Yi|Zi ∼ N(δTZi, σ

2
Y |Z) where

δY = ΓTβX + βZ (19)

σ2
Y |Z = βTXΣXβX + σ2

ε (20)

and that Wi is normal given Yi with

E(Wi|Yi) = Di(γZZi + γY Yi)

and

Var(Wi|Yi) = DiΣX|Z,Y DT
i + ΣUi

where

γZ = Γ− ΣXβXσ
−2
Y |Z(βTXΓ + βTZ) (21)

γY = ΣXβXσ
−2
Y |Z (22)

ΣX|Z,Y = ΣX − ΣXβXσ
−2
Y |Zβ

T
XΣX (23)

ΣUi
= σ2

U1
INi1
⊕ σ2

U2
INi2
⊕ ...⊕ σ2

Up
INip

. (24)

This means that Wi follows a linear mixed model given Yi and Zi. The structure of Di means
that the fixed effects of Zi and Yi are distinct for each of the p covariates contained in Xi. The
variance covariance matrix for Wi given Yi and Zi means that there are p random effects with
an unstructured variance covariance matrix ΣX|Z,Y with design matrix Di. Lastly, the residual
covariance matrix is the same as for Wi, i.e. a diagonal matrix, with the values along the diagonal
corresponding to the measurement error variances of the different measurements.

The likelihood component corresponding to Yi given Zi can be maximized by fitting the least
squares regression of Yi on Zi, giving the ML estimate of δY . Similarly the residual variance
estimate from this regression is an estimate of σ2

Y |Z . We illustrate how the linear mixed model
for Wi given Yi and Zi can be fitted using SAS Proc Mixed. We assume the dataset is in so
called ‘long’ form, where each row corresponds to a single measurement Wijk. It is convenient to
generate a new variable, which here we call ‘covariate’, indicating which component of Xi Wijk is

14



a measurement of, i.e. for a measurement Wijk, ‘covariate’ would be equal to j. For example, with
p = 2 covariates measured with error and Zi = (1, Z1

i )T , representing a constant term and a single
error-free covariate Z1

i , the dataset rows corresponding to a subject with one measurement of the
first unobserved covariate and two measurements of the second would be:

Yi Z1
i Wijk covariate

Y1 Z1
1 W111 1

Y1 Z1
1 W121 2

Y1 Z1
1 W122 2

The linear mixed model could then be specified in SAS by:

proc mixed data=myDataset;

class covariate;

model w = covariate z1(covariate) y(covariate) / noint;

random covariate / subject=id type=un;

repeated / group=covariate;

end;

Analogous to the univariate Xi case, one can show that

βX = (ΣX|Z,Y + σ2
Y |ZγY γ

T
Y )−1γY σ

2
Y |Z

and that

βZ = δY − (δY γ
T
Y + γTZ)βX .

The ML estimates of βX and βZ can be calculated analogously to the univariate Xi case using
these formulae.

B.2 Logistic regression

The results for logistic regression can also be extended when Xi and Zi are jointly normal given
Yi. Thus suppose that:(

Xi

Zi

)
∼ N

((
γX0 + γXY Yi
γZ0 + γZY Yi

)
,

(
ΣX|Y ΣXZ|Y
ΣZX|Y ΣZ|Y

))
.

This implies that Yi follows a logistic regression given Xi and Zi, with log odds ratios:(
βX
βZ

)
=

(
ΣX|Y ΣXZ|Y
ΣZX|Y ΣZ|Y

)−1(
γXY
γZY

)
. (25)

It also follows that Xi is normal given Zi and Yi, with:

E(Xi|Zi, Yi) = γ0 + γY Yi + γZZi

Var(Xi|Zi, Yi) = ΣX|Z,Y

where

γ0 = γX0 − ΣXZ|Y Σ−1Z|Y γZ0

γY = γXY − ΣXZ|Y Σ−1Z|Y γZY

γZ = ΣXZ|Y Σ−1Z|Y

ΣX|Z,Y = ΣX|Y − ΣXZ|Y Σ−1Z|Y ΣZX|Y .
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Now we assume error-prone measurements of Xi are available as described in the previous section
for linear regression. In this case we have:

E(Wi|Zi, Yi) = Diγ0 + γY Yi + γZZi

Var(Wi|Zi, Yi) = DiΣX|Z,Y DT
i + ΣUi

.

This again is a linear mixed model which can be fitted using standard software. In contrast to
the previous section, here we have a constant term in the notation in the fixed effects part of the
model.

Multivariate regression of Zi on Yi gives the ML estimates of γZ0, γZY and ΣZ|Y . Fitting the
above linear mixed model to Wi given Zi and Yi then gives the ML estimates of γ0, γY , γZ and
ΣX|Z,Y . It is then straightforward to show that:

γZ = ΣXZ|Y Σ−1Z|Y
γXY = γY + γZγZY

ΣXZ|Y = γZΣZ|Y

ΣX|Y = ΣX|Z,Y + ΣXZ|Y Σ−1Z|Y ΣZX|Y .

These formulae can be used to calculate the ML estimates of these parameters, and then these can
be inserted into equation (25) to calculate the ML estimates of βX and βZ .

C Unbiasedness of likelihood score equations for the mixed

model for Wi given Yi

We show that the likelihood score equations for the linear mixed model for Wi given Yi remain
unbiased without requiring normality of Xi or Uij. Irrespective of whether Xi and εi are both
normally distributed, we can always express Xi in terms of its best linear prediction given Yi as:

Xi = γ0 + γY Yi + bi (26)

where E(bi) = 0,Cov(Yi, bi) = 0, and γ0 and γY are as given in equations (8) and (9). The random
term bi is no longer necessarily normally distributed, and its variance may vary as a function of
Yi. The expression in equation (10) for σ2

X|Y then equals the mean conditional variance of the bi.
Thus Yi and bi are not necessarily independent, although they are uncorrelated. We can write:

Wi = Xi1Ni×1 + Ui

= γ01Ni×1 + γY Yi1Ni×1 + bi1Ni×1 + Ui. (27)

We now let γ = (γ0, γY )T and let Xi denote the Ni × 2 design matrix for the fixed effects in the
above model. This is simply a matrix whose first column has entries equal to one and second
column with entries Yi. In this notation:

Wi = Xiγ + bi1Ni×1 + Ui. (28)

From standard linear mixed model theory (for example Chapter 6 of [11]), the likelihood score
corresponding to the fixed effects of the linear mixed model for Wi given Yi can be expressed as:

X T
i V−1i Wi −X T

i V−1i Xiγ (29)
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where Vi = σ2
X|Y 1Ni×Ni

+ σ2
UINi

denotes the variance covariance matrix of Wi given Yi under the

assumed model. We now substitute for Wi using equation (28), which gives

X T
i V−1i (Xiγ + bi1Ni×1 + Ui)−X T

i V−1i Xiγ
= X T

i V−1i 1Ni×1bi + X T
i V−1i Ui. (30)

Now since E(bi) = 0, taking expectations (conditional on Ni) gives:

E(X T
i V−1i 1Ni×1bi) = Cov(X T

i V−1i 11×Ni
, bi) = 0

because Cov(Yi, bi) = 0. Similarly, because Cov(Yi, Uij) = 0 (because of the assumed independence
between Uij and both Xi and εi), E(X T

i V−1i Ui) = 0.
The likelihood score corresponding to σ2

X|Y is given by:

−0.5tr(V−1i 1Ni×Ni
) + 0.5(Wi −Xiγ)TV−1i 1Ni×Ni

V−1i (Wi −Xiγ) (31)

where tr() denotes the trace of a square matrix. By a standard result for the expectation of
quadratic forms (e.g. Appendix S5 of [11]), the expectation of the expectation of the second part
of the likelihood score is equal to:

0.5(E(Wi −Xiγ)TV−1i 1Ni×Ni
V−1i E(Wi −Xiγ) + tr(V−1i 1Ni×Ni

V−1i Var(Wi −Xiγ))). (32)

Then since Wi−Xiγ = 1Ni×1bi+Ui, it follows that E(Wi−Xiγ) = 0. Furthermore, the assumption
of independence between the errors Uij and both Xi and εi imply that bi is uncorrelated with Uij.
This in turn means that Var(Wi − Xiγ) = Vi, and so the expectation of the second part of the
score is equal to:

0.5tr(V−1i 1Ni×Ni
V−1i Vi) = 0.5tr(V−1i 1Ni×Ni

). (33)

The expectation of the likelihood score corresponding to σ2
X|Y thus has expectation zero.

Lastly we consider the likelihood score component corresponding to σ2
U , which is given by:

−0.5tr(V−1i ) + 0.5(Wi −Xiγ)TV−1i V−1i (Wi −Xiγ). (34)

Taking expectations, and as above using the fact that E(Wi−Xiγ) = 0, that Var(Wi−Xiγ) = Vi,
and the rule for the expectation of quadratic forms, we have:

−0.5tr(V−1i ) + 0.5tr(V−1i V−1i Vi) = 0 (35)

so that the likelihood score for σ2
U also has expectation zero. Since the conditional expectation of

the score equations given Ni is zero, the marginal expectation is also zero.
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