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We give the first polynomial upper bound on the mixing time of the edge-flip Markov

chain for unbiased dyadic tilings, resolving an open problem originally posed by Jan-
son, Randall, and Spencer in 2002 [14]. A dyadic tiling of size n is a tiling of the unit

square by n non-overlapping dyadic rectangles, each of area 1/n, where a dyadic rect-

angle is any rectangle that can be written in the form [a2−s, (a+ 1)2−s]× [b2−t, (b+
1)2−t] for a, b, s, t ∈ Z≥0. The edge-flip Markov chain selects a random edge of

the tiling and replaces it with its perpendicular bisector if doing so yields a valid

dyadic tiling. Specifically, we show that the relaxation time of the edge-flip Markov
chain for dyadic tilings is at most O(n4.09), which implies that the mixing time is at

most O(n5.09). We complement this by showing that the relaxation time is at least

Ω(n1.38), improving upon the previously best lower bound of Ω(n logn) coming from
the diameter of the chain.

2010 Mathematics subject classification: Primary 60J10

Secondary 68Q87, 05B45, 52C20

1. Introduction

We study the edge-flip Markov chain for dyadic tilings. An interval is dyadic if it can be

written in the form [a2−s, (a+ 1)2−s] for non-negative integers a and s with 0 ≤ a < 2s.

A rectangle is dyadic if it is the Cartesian product of two dyadic intervals. A dyadic

tiling of size n is a tiling of the unit square by n non-overlapping dyadic rectangles with

the same area 1/n; see Figure 1. Lagarias, Spencer, and Vinson [15] showed that dyadic

tilings are precisely those tilings that can be constructed by bisecting the unit square,
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(a) (b) (c)

Figure 1: (a) A dyadic tiling of size 16 with a vertical bisector. (b) A dyadic tiling of size

16 with both a vertical and horizontal bisector. (c) A tiling that is not dyadic; the vertical

component of the shaded rectangles is not a dyadic interval.

either horizontally or vertically; bisecting each half again, either horizontally or vertically;

and repeatedly bisecting all remaining rectangular regions until there are n total dyadic

rectangles, each of equal area. We necessarily assume n is a power of 2. There is a natural

Markov chain which connects the state space of all dyadic tilings of size n by moves we

refer to as edge-flips.

We analyze this edge-flip Markov chain over the set of dyadic tilings of size n. Given

any dyadic tiling, this chain evolves by selecting an edge of the tiling uniformly at random

and replacing it by its perpendicular bisector, if doing so yields a valid dyadic tiling of

size n; an illustration is given in Figure 2(a). Our main result gives the first polynomial

upper bound for the mixing time of this Markov chain. (The precise definitions of mixing

time and relaxation time are deferred to Section 2.2.) In this paper, all logarithms have

base 2.

Theorem 1.1. The relaxation time of the edge-flip Markov chain for dyadic tilings of

size n is at most O(nlog 17). As a consequence, the mixing time of this chain is at most

O(n1+log 17).

The best previously known lower bound for the mixing time is Ω(n log n), which is

a simple consequence of the fact that the diameter of the Markov chain is of order

n log n [14]. In the theorem below we improve this bound.

Theorem 1.2. The relaxation time and mixing time of the edge-flip Markov chain for

dyadic tilings of size n are both at least Ω(n2 log φ), where φ =
√

5+1
2 is the golden ratio.

We note that log 17 ≈ 4.09 and 2 log φ ≈ 1.38.

1.1. Related Work

The edge-flip Markov chain for dyadic tilings was first considered by Janson, Randall, and

Spencer in 2002 [14], who showed it is irreducible but left as an open problem to derive

that the mixing time is polynomial in n. Instead, they presented another Markov chain,

which has additional global moves consisting of rotations at all scales, and showed that
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this chain mixes in polynomial time. However, applications of the comparison technique

of Diaconis and Saloff-Coste [9] have failed to extend this polynomial mixing bound to

the more natural edge-flip Markov chain (which, in fact, corresponds to only performing

rotations at the smallest scale).

Cannon, Miracle, and Randall considered the mixing time of the edge-flip Markov chain

for a weighted version of dyadic tilings [2]. In this version, given a parameter λ > 0, the

stationary probability of a dyadic tiling x is proportional to λ|x|, where |x| is the sum of

the length of the edges of x. The Metropolis rule [22] is incorporated into the edge-flip

Markov chain so that the chain has the desired stationary distribution. They showed

the mixing time of this chain is at least exponential in n2 for any λ > 1, and at most

O(n2 log n) for any λ < 1. This establishes a phase transition at critical point λ = 1,

which corresponds to the unweighted case considered here. However, their techniques did

not extend to the critical point, and they left as an open problem bounding the mixing

time when λ = 1; it is notoriously often quite difficult to bound mixing times at or near

critical points. Our main result, Theorem 1.1, uses a different, non-local approach to

finally answer the question of [14] and [2] by showing the mixing time of the edge-flip

Markov chain at critical point λ = 1 is at most polynomial in n, substantially less than

the mixing time when λ > 1. Furthermore, our Theorem 1.2 combined with the result

for the weighted case in [2] shows that the behavior at the (unweighted) critical point

λ = 1 is also substantially different than when λ < 1. While it follows from the path

coupling analysis in [2] that the relaxation time is O(n) for all fixed λ < 1, Theorem 1.2

establishes a super-linear lower bound on the relaxation time when λ = 1.

It is a general principle in statistical physics that in systems with some bias parameter

(temperature) that induces different phases, the mixing time of natural heat-bath dynam-

ics should be as fast as possible (the diameter of the state space) at high temperature, a

larger polynomial at the critical temperature, and exponential at low temperature. How-

ever, there are very few instances for which this behavior has been rigorously confirmed.

Exceptions are the Ising model on complete graphs [16, 10], regular trees [11], and the

two-dimensional lattice [18], and the Potts model on the complete graph [8] and the two-

dimensional lattice [12], all of which required significant effort to analyze. The edge-flip

Markov chain for dyadic tilings is an example of heat-bath dynamics, and the parameter

λ introduced by Cannon, Miracle, and Randall can be viewed as a function of inverse

temperature. Their work confirms exponential mixing at low temperature (λ > 1) and

polynomial mixing at high temperature (λ < 1). Our work shows that the mixing time

at the critical point (λ = 1) is indeed polynomial but strictly larger than the diameter of

the state space (which is n log(n)/2), providing further evidence for the general statistical

physics principle above.

Variants of the edge-flip Markov chain offer a natural way to sample from many struc-

tures, but establishing rigorous polynomial upper bounds on the mixing time has often

proven difficult, even in simple cases. Perhaps the most studied case is that of trian-

gulations of a given point set; efficiently generating uniformly random triangulations of

general planar point sets has been a problem of great interest in computer graphics and

computational geometry. However, the mixing time of the edge-flip Markov chain for tri-

angulations remains open in the general case, and no polynomial upper bound is known.
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The only known exception is for n points in convex position, which corresponds to trian-

gulations of a convex polygon. In this case, the edge-flip Markov chain is known to mix

in at most O(n5) steps [21], but the correct order of the mixing time is still unknown.

For the case of lattice triangulations, which are triangulations of an m×n grid of points,

no polynomial upper bound on the mixing time is known even when m ≥ 2 is kept fixed

as n→∞. The only known results in this case are limited to the weighted case [3, 4, 25].

Another example of a related Markov chain that uses natural edge-flip type moves is the

switch Markov chain for sampling from graphs with a given degree sequence. In this chain,

at each iteration two random non-adjacent edges are removed and their four endpoints

are randomly rematched; the move is rejected if it results in a multiple edge. Again, in

the general case the mixing time of this Markov chain is unknown, though polynomial

upper bounds exist when certain restrictions are placed on the degree sequence [7, 13].

For the case of rectangular tilings, results for the mixing time of the edge-flip Markov

chain have been quite rare. One important result was obtained for domino tilings, which

are tilings of an n×n square by rectangles of dimensions 1× 2 or 2× 1. In this case, the

edge-flip Markov chain is known to mix in time polynomial in the number of dominoes,

a result that heavily relies on the connection between domino tilings and random lattice

paths [19, 23].

The case of dyadic tilings exhibits interesting asymptotic properties that have been

studied by combinatorialists [14, 15]. Tilings in which all rectangles are dyadic, but may

have different areas, have been used as a basis for subdivision algorithms to solve problems

such as approximating singular algebraic curves [1] and classifying data using decision

trees [24]. In both of these examples, the unit square is repeatedly subdivided into smaller

and smaller dyadic rectangles until the desired approximation or classification is achieved,

with more subdivisions in the areas of the most interest (e.g., near the algebraic curve

or where data classified differently is close together).

1.2. Proof ideas

We identify a certain block structure on dyadic tilings that allows us to relate the spectral

gap of the edge-flip Markov chain to that of another, simpler Markov chain. In the simpler

Markov chain, which we refer to as the block dynamics, for each transition a large region

of the tiling is selected and retiled uniformly at random, if possible. At the smallest scale,

n = 4, these correspond to exactly the moves of the (lazy) edge-flip Markov chain. The

structure of these block moves allows us to set up a recursion that relates the spectral

gap of the edge-flip Markov chain for tilings of size n with that of sizes smaller than n

and that of the block dynamics. This produces an inverse polynomial lower bound on

the spectral gap of the edge-flip Markov chain.

Specifically, we adapt a bisection approach inspired by spin system analysis [5, 20]. We

bound the spectral gap γk of the Markov chainMk for dyadic tilings of size n = 2k by the

product of the spectral gap γblock of the block dynamics Markov chain and the spectral

gap γk−1 of Mk−1, and then use recursion to obtain γk ≥ (γblock)k = (γblock)logn. As

γblock is constant, this implies a polynomial relaxation time and thus a polynomial mixing

time.

To establish the explicit upper bound in Theorem 1.1, we use a coupling argument
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to bound γblock; see, e.g., Chapter 13 of [17]. The distance metric we use is a carefully

weighted average of two different notions of distance between tilings. We do a case analysis

and show this distance metric contracts by a factor of at least 1 − 1/17 in each step,

implying the spectral gap γblock is at least 1/17.

We use a distinguishing statistic to show the mixing time and relaxation time of the

edge-flip Markov chain for dyadic tilings are at least Ω(n1.38); again, see Chapter 13

of [17]. That is, we define a specific function f on the state space of all dyadic tilings of

size n = 2k. By considering the variance and Dirichlet form of f , and using combinatorial

properties of dyadic tilings, we can give an upper bound on the spectral gap and thus a

lower bound on the relaxation and mixing times.

2. Background

Here we present some necessary information on dyadic tilings, including their asymptotic

behavior, and on Markov chains, including mixing time and local variance.

2.1. Dyadic Tilings

A dyadic interval is an interval that can be written in the form [a2−s, (a + 1)2−s] for

non-negative integers a and s with 0 ≤ a < 2s. A dyadic rectangle is the product of two

dyadic intervals. A dyadic tiling of size n = 2k is a tiling of the unit square by n dyadic

rectangles of equal area 1/n = 2−k that do not overlap except on their boundaries; see

Figure 1. Let Ωk be the set of all dyadic tilings of size n = 2k. We say a dyadic tiling

has a vertical bisector if the line x = 1/2 does not intersect the interior of any dyadic

rectangle in the tiling. We say it has a horizontal bisector if the same is true of the line

y = 1/2. It is easy to prove that every dyadic tiling of size n > 1 has a horizontal bisector

or a vertical bisector.

The asymptotics of dyadic tilings were first explored by Lagarias, Spencer, and Vinson

[15], and we present a summary of their results. Let Ak = |Ωk| denote the number of

dyadic tilings of size n = 2k. The unit square is the unique dyadic tiling consisting of

one dyadic rectangle, so A0 = 1. There are two dyadic tilings of size 2, since the unit

square may be divided by either a horizontal or vertical bisector, so A1 = 2. One can

also observe that A2 = 7, A3 = 82, A4 = 11047, ... . In fact, the values Ak can be shown

to satisfy the recurrence Ak = 2A2
k−1−A4

k−2; we include a proof of this fact as presented

in [14], because we will use these ideas later.

Proposition 2.1 ([15]). For k ≥ 2, the number of dyadic tilings of size 2k is

Ak = 2A2
k−1 −A4

k−2.

Proof. A dyadic tiling of size 2k has a horizontal bisector, a vertical bisector, or both. If

it has a vertical bisector, the number of ways to tile the left half of the unit square is Ak−1;

by mapping x→ 2x, we can see that the left half of a dyadic tiling of size 2k is equivalent

to a dyadic tiling of the unit square of size 2k−1 because dyadic rectangles scaled by

factors of two remain dyadic. Similarly, mapping x → 2x − 1, the right half of a dyadic
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tiling of size 2k is equivalent to a dyadic tiling of size 2k−1. We conclude the number of

dyadic tilings of size 2k with a vertical bisector is A2
k−1. Similarly, by appealing to the

maps y → 2y and y → 2y − 1, the number of dyadic tilings of size 2k with a horizontal

bisector is A2
k−1. The number of dyadic tilings of size 2k with both a horizontal and a

vertical bisector is A4
k−2, as each quadrant of any such tiling is equivalent to a dyadic

tiling of size 2k−2. This follows from appealing to the map (x, y) → (2x, 2y) for the

lower left quadrant, and appropriate translations of this for the other three quadrants.

Altogether, we see Ak = A2
k−1 +A2

k−1 −A4
k−2 = 2A2

k−1 −A4
k−2.

It is believed this recurrence does not have a closed form solution. As proved in [15],

Ak ≈ φ−1ω2k = φ−1ωn, where φ = (1 +
√

5)/2 is the golden ratio and ω = 1.84454757...;

an exact value for ω is not known.

We now define a recurrence for another useful statistic. We say that a dyadic tiling has

a left half-bisector if the straight line segment from (0, 1/2) to (1/2, 1/2) doesn’t intersect

the interior of any dyadic rectangles. Figure 1(a) does not have a left half-bisector, while

Figure 1(b) does. We are interested in the number of ways to tile the left half of a

vertically-bisected dyadic tiling of size 2k such that it has a left half-bisector. Appealing

to the dilation maps defined in the proof of Proposition 2.1, this number is A2
k−2. Among

all possible ways to tile the left half of a vertically-bisected tiling σ ∈ Ωk, we define fk
to be the fraction with a left half-bisector. We see

fk =
A2
k−2

Ak−1
.

We can similarly define right half-bisectors, top half-bisectors, and bottom half-bisectors

by considering the straight line segments between (1/2, 1/2) and, respectively, (1, 1/2),

(1/2, 1), and (1/2, 0). Then fk is also the fraction of tilings of the right half of vertically-

bisected tiling σ with a right half-bisector, or the fraction of tilings of the top or bottom

halves of a horizontally-bisected tiling σ with a top or bottom half-bisector, respectively.

Note f2 = 0.5, f3 = 4/7 ≈ 0.571, and f4 = 49/82 ≈ 0.598. We now examine the

asymptotic behavior of fk.

Lemma 2.2. For all k ≥ 3, fk = 1
2−f2

k−1
.

Proof. This follows from the recurrence for Ak given in Proposition 2.1:

fk =
A2
k−2

Ak−1
=

A2
k−2

2A2
k−2 −A4

k−3

=
1

2− A4
k−3

A2
k−2

=
1

2− f2
k−1

.

We can use this recurrence to study the asymptotic behavior of the sequence {fk}∞k=2.

Lemma 2.3. The sequence {fk}∞k=2 is strictly increasing and bounded above by (
√

5− 1)/2.

Furthermore, limk→∞ fk = (
√

5− 1)/2.
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Proof. Note f2 = 0.5 < (
√

5− 1)/2. Suppose by induction that fk−1 <
√

5−1
2 . Then

fk =
1

2− f2
k−1

<
1

2−
(√

5−1
2

)2 =
4

8− (6− 2
√

5)
=

4

2 + 2
√

5
=

2

1 +
√

5
=

√
5− 1

2
.

To show fk < fk+1 for all k ≥ 3, it suffices to show x < 1/(2 − x2) for all x ∈[
0.5, (

√
5− 1)/2

)
. This is equivalent to showing the polynomial x3− 2x+ 1 is positive in

that range. Factoring shows this polynomial has roots at 1, (
√

5−1)/2, and −(
√

5+1)/2,

and is positive in the range
(
−(
√

5 + 1)/2, (
√

5− 1)/2
)
. This implies fk < fk+1, so the

sequence is strictly increasing.

The sequence {fk}∞k=2 is bounded and monotone, so it must converge to some limit β.

To find β, we consider the function g(x) = 1/(2−x2), which is the recurrence for the fk.

This function is continuous away from
√

2 and −
√

2, and thus certainly is continuous on[
0.5, (

√
5− 1)/2

]
, the range of possible values for the fk and their limit β. This continuity

implies

g(β) = g

(
lim
k→∞

fk

)
= lim
k→∞

g(fk) = lim
k→∞

fk+1 = β.

Thus the limit β is necessarily a fixed point of g(x). The fixed points of g(x) are exactly

the three roots of x3 − 2x + 1 found above, and the only one in
[
0.5, (

√
5− 1)/2

]
is

(
√

5− 1)/2. We conclude limk→∞ fk = (
√

5− 1)/2, as desired.

2.2. Markov Chains

We will consider only discrete time Markov chains in this paper, though identical results

hold for the analogous continuous time Markov chains. Any finite ergodic Markov chain

converges to a unique stationary distribution π. The time a Markov chain with transition

matrix P takes to converge to its stationary distribution is measured by the total variation

distance, which captures how far the distribution after t steps is from the stationary

distribution given a worst case starting configuration:

‖P t − π‖TV = max
x∈Ω

1

2

∑
y∈Ω

|P t(x, y)− π(y)|.

The mixing time of a Markov chain M is defined to be

tmix(ε) = min{t : ‖P t′ − π‖TV ≤ ε ∀ t′ ≥ t}.

For convenience, as is standard we define tmix = tmix(1/4).

We will bound the mixing time of the edge-flip Markov chain for dyadic tilings by

studying its relaxation time and spectral gap. The spectral gap γ of a Markov chain M
with transition matrix P is 1−λ2, where λ2 is the second largest eigenvalue of P . A lazy

Markov chain is one where P (x, x) ≥ 1/2 for all x ∈ Ω; for a lazy Markov chain M, the

relaxation time, denoted by trel, is then the inverse of this spectral gap. We will see in

the next section that the edge-flip Markov chain for dyadic tilings is lazy. The following

well-known proposition relates the relaxation time and mixing time for Markov chains;

for a proof, see, e.g., [17, Theorem 12.3 and Theorem 12.4].
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Proposition 2.4. Let M be an ergodic Markov chain on state space Ω with reversible

transition matrix P and stationary distribution π. Let πmin = minx∈Ω π(x). Then:

(trel − 1) log

(
1

2ε

)
≤ tmix(ε) ≤ log

(
1

επmin

)
trel.

We will bound the spectral gap, and thus the relaxation and mixing times, of the edge-

flip Markov chain for dyadic tilings by considering functions on the chain’s state space.

For f : Ω→ R, the variance of f with respect to a distribution π on Ω can be expressed

as:

varπ(f) =
∑
x∈Ω

π(x) (f(x)− Eπ[f(x)])
2

=
1

2

∑
x,y∈Ω

π(x)π(y)(f(x)− f(y))2.

We will only be considering the variance with respect to the uniform distribution on Ω, so

the subscript π will be omitted. For a given reversible transition matrix P on state space

Ω with stationary distribution π, the Dirichlet form, also known as the local variance,

associated to the pair (P, π) is, for any function f : Ω→ R,

E(f) =
1

2

∑
x,y∈Ω

[f(x)− f(y)]2π(x)P (x, y).

As we see in the following well-known proposition, the Dirichlet form and variance of a

function f can be used to bound the spectral gap of a transition matrix, and therefore

the relaxation time and mixing time of a Markov chain; see, e.g., [17, Lemma 13.12].

Proposition 2.5. Given a Markov chain with reversible transition matrix P and sta-

tionary distribution π, the spectral gap γ = 1− λ2 of P satisfies

γ = min
f :Ω→R

varπ(f)6=0

E(f)

varπ(f)
.

3. The Edge-Flip Markov Chain Mk

Let n = 2k. For k ≥ 1, the edge-flip Markov chainMk on the state space Ωk of all dyadic

tilings of size 2k is given by the following rules.

Beginning at any σ0 ∈ Ωk, repeat:

• Choose a rectangle R of σi uniformly at random.

• Choose left , right , top, or bottom uniformly at random; let e be the corresponding

side of R.

• If e bisects a rectangle of area 2−k+1, remove e and replace it with its perpendicular

bisector to obtain σi+1 if the result is a valid dyadic tiling; else, set σi+1 = σi.

An example of an edge-flip move of Mk is shown in Figure 2(a); two selections of R

and e that do not yield valid moves are shown in (b) and (c). Let Pk,edge denote the

transition matrix of this edge-flip Markov chain and γk its spectral gap. For every valid

edge flip, there are two choices of (R, e) that produce that move. This implies every move
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R e

(a)
(a)

R e

(b)
(b)

Re

(c)
(c)

Figure 2: A random rectangle R and one of its edges e are selected in each iteration of

Mk. (a) Random choices of R and e as shown yield a valid edge flip. (b) Random choices

of R and e as shown do not yield a valid edge flip as flipping edge e results in a tiling

that is not dyadic. (c) Random choices of R and e as shown do not yield a valid edge flip

as flipping edge e does not produce a tiling of the unit square by rectangles.

between two tilings differing by an edge flip occurs with probability 1/(2n) = 2−k−1, so

all off-diagonal entries of Pk,edge are 2−k−1 or 0.

The Markov chainMk, in a slightly different form, was introduced by Janson, Randall

and Spencer [14]. Note Mk is lazy, as for any rectangle R of a dyadic tiling at most one

of its left and right edges can be flipped to produce another valid dyadic tiling. This is

because if R’s projection onto the x-axis is dyadic interval [a2−s, (a+1)2−s] for a, s ∈ Z≥0,

then flipping its left edge yields a rectangle with x-projection [(a−1)2−s, (a+1)2−s] and

flipping its right edge yields a rectangle with x-projection [a2−s, (a+ 2)2−s]. If a is even,

the first of these intervals is not dyadic, while if a is odd, the second is not, so at most

one of these edge flips produces a valid dyadic tiling. Similarly, at most one of R’s top

and bottom edges yields a valid edge flip. This implies in each iteration with probability

at least 1/2 a pair (R, e) is selected that does not yield a valid edge flip move.

It was previously shown that this Markov chain is irreducible [14], so Mk is ergodic

and thus has a unique stationary distribution. The uniform distribution satisfies the

detailed balance equation, implying both that Mk is reversible and that its stationary

distribution is uniform on Ωk.
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3.1. The Block Dynamics Markov Chain Mblock
k

To analyze the mixing time of Markov chain Mk, we will appeal to a similar Markov

chain that uses larger block moves instead of single edge flips. We use in a crucial way

the bijection between tilings in Ωk−1 and the left or right (resp. top or bottom) half of

a tiling in Ωk that has a vertical (resp. horizontal) bisector, as discussed in the proof of

Proposition 2.1. For k ≥ 2, the block dynamics Markov chain Mblock
k on the state space

Ωk of all dyadic tilings of size 2k is given by the following rules.

Beginning at any dyadic tiling σ0, repeat:

• Uniformly at random choose a tiling ρ ∈ Ωk−1.

• Uniformly at random choose Left , Right , Top, or Bottom.

• To obtain σi+1:

– If Left was chosen and σi has a vertical bisector, retile σi’s left half with ρ, under

the mapping x→ x/2.

– If Right was chosen and σi has a vertical bisector, retile σi’s right half with ρ,

under the mapping x→ (x+ 1)/2.

– If Bottom was chosen and σi has a horizontal bisector, retile σi’s bottom half with

ρ, under the mapping y → y/2.

– If Top was chosen and σi has a horizontal bisector, retile σi’s top half with ρ,

under the mapping y → (y + 1)/2.

• Else, set σi+1 = σi.

Let Pk,block be the transition matrix of this Markov chain and let γk,block be its spectral

gap. Any valid nonstationary transition of Mblock
k occurs with probability 1/(4|Ωk−1|).

This Markov chain is not lazy, but it is aperiodic, irreducible, and reversible. This implies

it is ergodic and thus has a unique stationary distribution, which by detailed balance is

uniform on Ωk.

4. A Polynomial upper bound on the mixing time of Mk

Recall we wish to show the mixing time of Mk is polynomial in n = 2k, not polynomial

in k. We show the spectral gap γk ofMk and the spectral gap γk−1 ofMk−1 differ by a

multiplicative constant (specifically, 1/17) by appealing to the Dirichlet forms of both of

these Markov chains as well as the block dynamics Markov chain Mblock
k . We can then

use recursion to show γk is bounded below by (1/17)k, which, because k = log n, gives a

polynomial upper bound on the relaxation time and thus on the mixing time of Mk.

For any function f : Ωk → R, we will denote the Dirichlet form of f with respect

to transition matrix Pk,edge and the uniform stationary distribution as Ek,edge(f). The

Dirichlet form of f with respect to transition matrix Pk,block and the uniform stationary

distribution will be Ek,block(f). We will let the variance of function f on Ωk with respect

to the uniform stationary distribution be vark(f). Here the k indicates which state space

Ωk we are considering, rather than which distribution on Ωk the variance is taken with

respect to; all variances we consider will be with respect to the uniform distribution.

Because we consider two different Markov chains on the same state space Ωk, there

are two different notions of adjacencies on this state space, each corresponding to the
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moves of one of these Markov chains. For x, y ∈ Ωk, we say x ∼e y if x and y differ by a

single edge flip move of Mk and x ∼b y if x and y differ by a single move of the block

dynamics chain Mblock
k . More specifically, if x and y differ by a retiling of their left half

(implying x and y both have a vertical bisector and are the same on their right half), we

say x ∼L y; then x ∼R y, x ∼T y, and x ∼B y are defined similarly for the right, top,

and bottom halves.

Theorem 4.1. For any k ≥ 2, the spectral gap γk of the edge-flip Markov chain Mk

satisfies

γk ≥ γk,block · γk−1.

Proof. We begin by relating the Dirichlet forms for block dynamics and for the edge-

flip dynamics, which will allow comparison of their spectral gaps. Recall that for any

function f : Ωk → R,

Ek,block(f) =
1

2

∑
x,y∈Ωk
x∼by

π(x)Pk,block(x, y) (f(x)− f(y))
2
.

This sum can be split into four terms, corresponding to the type of block move (left, right,

top, or bottom) transforming x into y. If x and y differ only in their top-left quadrants,

then x could transition to y via either a left block move or a top block move; each of these

moves occurs with probability 1
4|Ωk−1| , and the total probability of Pk,block(x, y) = 1

2|Ωk−1|
will be split correspondingly between the terms for left block moves and top block moves.

We now analyze the first of these terms, containing all x, y differing by a retiling of

their left halves. For xL, xR ∈ Ωk−1, by xLxR below we mean the tiling in Ωk with a

vertical bisector whose left half is xL under the map x→ x/2 and whose right half is xR
under the map x→ (x+ 1)/2.

ELk,block =
1

2

∑
x,y∈Ωk
x∼Ly

1

|Ωk|
1

4|Ωk−1|
(f(x)− f(y))2

=
1

8

∑
xR∈Ωk−1

∑
xL,yL∈Ωk−1

1

|Ωk|
1

|Ωk−1|
(f(xLxR)− f(yLxR))2

=
1

4

∑
xR∈Ωk−1

|Ωk−1|
|Ωk|

1

2

∑
xL,yL∈Ωk−1

1

|Ωk−1|2
(f(xLxR)− f(yLxR))2

 .

We note that the second sum above is over all pairs of tilings in Ωk−1. While the Dirichlet

form of a function sums over all pairs of states that differ by a transition of a Markov

chain, the variance of a function sums over all pairs of states, regardless of the local

structure imposed on the state space by the Markov chain. In fact, we have written the

second sum above suggestively, and note that it is in fact a variance of a function over

the state space Ωk−1. For each xR ∈ Ωk−1, the function f |xR : Ωk−1 → R given by

f |xR(z) = f(zxR) has variance vark−1(f |xR) (with respect to the uniform distribution)

that is exactly equal to the term in parentheses above. Because the variance of a function
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is the same regardless of which transitions on the state space we are considering, it is

through this variance we can relate Ek,block, which we have calculated above, to a Dirichlet

form for edge-flip moves. That is, by Proposition 2.5, we can bound this variance with

the Dirichlet form of f |xR associated to Pk−1,edge and the spectral gap γk−1 of Mk−1.

Thus,

ELk,block =
1

4

∑
xR∈Ωk−1

|Ωk−1|
|Ωk|

vark−1(f |xR) ≤ 1

4

∑
xR∈Ωk−1

|Ωk−1|
|Ωk|

Ek−1,edge(f |xR)

γk−1
.

We now see that the Dirichlet form for the edge-flip Markov chain on Ωk−1 is

Ek−1,edge(f |xR) =
1

2

∑
xL,yL∈Ωk−1
xL∼eyL

π(xL)Pk−1,edge(xL, yL) (f(xLxR)− f(yLxR))
2

=
∑

xL,yL∈Ωk−1
xL∼eyL

1

|Ωk−1|
1

2n
(f(xLxR)− f(yLxR))

2
.

Using this expression, we see that

ELk,block(f) ≤ 1

4γk−1

∑
xR∈Ωk−1

|Ωk−1|
|Ωk|

 ∑
xL,yL∈Ωk−1
xL∼eyL

1

|Ωk−1|
1

2n
(f(xLxR)− f(yLxR))

2


=

1

4γk−1

∑
x,y∈Ωk
x∼ey
x∼Ly

1

|Ωk|
1

2n
(f(x)− f(y))

2
.

We now compare this to the Dirichlet form for the edge flip Markov chain on Ωk, which

we recall is

Ek,edge(f) =
1

2

∑
x,y∈Ωk
x∼ey

1

|Ωk|
1

2n
(f(x)− f(y))

2
.

We note for every x, y ∈ Ωk such that x ∼e y, at least one of and at most two of x ∼L y,

x ∼R y, x ∼T y, and x ∼B y hold. Thus each summand of Ek,edge(f) appears at most

twice as a summand of

Ek,block(f) = ELk,block(f) + ERk,block(f) + ETk,block(f) + EBk,block(f).

It follows that

Ek,block(f) ≤ 1

4γk−1
· 2 · (2Ek(f)) =

Ek,edge(f)

γk−1
.

Note this implies that for any f ,

vark(f) ≤ Ek,block(f)

γk,block
≤ Ek,edge(f)

γk,block · γk−1
.

Let f be chosen to be the function achieving equality in vark(f) ≤ Ek,edge(f)
γk

. We conclude

γk =
Ek,edge(f)

vark(f)
≥ γk,block · γk−1.
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In Section 5 we prove that γk,block is at least 1/17 for sufficiently large k. This can be

used to bound the spectral gap, the relaxation time, and finally the mixing time of Mk.

Theorem 4.2. There exists a positive integer k0 such that for all k ≥ k0, γk,block ≥ 1/17.

Proof. See Section 5. We introduce a distance metric on dyadic tilings, and then give

a coupling where the distance between two tilings decreases in expectation after one

iteration by a multiplicative factor of 1 − 1
17 for all k sufficiently large. By a result of

Chen [6] (see also [17, Theorem 13.1]), this implies the theorem.

We are now ready to prove our first main theorem, Theorem 1.1, which states that the

relaxation time of Mk for n = 2k is O(nlog 17) and its mixing time is O(n1+log 17).

Proof of Theorem 1.1 By Theorems 4.1 and 4.2, the spectral gap of Mk satisfies

γk ≥
1

17
γk−1 ≥ 17−(k−k0)γk0 ,

where k0 is the value from Theorem 4.2. Since γk0 is a constant that does not depend

on n,

γk = Ω
(
17−k

)
= Ω

(
n− log 17

)
= Ω

(
n−4.09

)
.

Because Mk is a lazy Markov chain, its relaxation time satisfies

trel = O
(
nlog 17

)
.

To use this to bound the mixing time of Mk, we appeal to Proposition 2.4, though we

first must calculate πmin. For π the uniform distribution, minx∈Ωk π(x) = 1/|Ωk|. By

Proposition 2.1, |Ωk| < 2|Ωk−1|2, so a loose bound is 1/πmin = |Ωk| < 22k = 2n. This

implies

tmix = O
(
n1+log 17

)
.

5. The spectral gap of the block dynamics

We now present the proof of Theorem 4.2, which states that there exists a positive integer

k0 such that for all k ≥ k0, the spectral gap γk,block is at least 1/17.

Proof of Theorem 4.2 We start defining the distance between two dyadic tilings

x, y ∈ Ωk. In order to do this, we recall the notion of half-bisectors. We say that a tiling

x has a left half-bisector if the line segment from (0, 1/2) to (1/2, 1/2) does not intersect

the interior of any dyadic rectangle. In an analogous way we can define a right half-

bisector using the line segment from (1/2, 1/2) to (1, 1/2), a top half-bisector using the

line segment from (1/2, 1) to (1/2, 1/2), and a bottom half-bisector using the line segment
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from (1/2, 1/2) to (1/2, 0). Note that if x has a horizontal bisector, then it has both a

left half-bisector and a right half-bisector. However, x may have a left half-bisector but

no horizontal bisector. For example, the dyadic tiling in Figure 1(a) has top, right and

bottom half-bisectors, but no left half-bisector.

Now we define the distance between x and y as follows. For each of the four possible

half-bisectors, let `1 be the number of such half-bisectors that are present in either x

or y, but not in both of them. Also, for each of the four possible quadrants (top-left,

top-right, bottom-left and bottom-right) of x and y, let `2 denote the number of such

quadrants for which the rectangles in x intersecting that quadrant are not the same as

the rectangles in y intersecting that quadrant. Then, introducing a parameter b > 0 that

we will take to be sufficiently large later, we define the distance between x and y as

d(x, y) = b`1 + `2.

For instance, consider the two dyadic tilings in Figure 1(a,b). In this case we have `1 = 1

due to the left half-bisector that is present in (b) but not in (a), and `2 = 3 for top-left,

top-right and bottom-left quadrants. The distance between these two tilings is then b+3.

Our goal is to couple two instances of the block dynamicsMblock
k , one starting from a

state x ∈ Ωk and the other from a state y ∈ Ωk, such that the distance between x and y

contracts after one step of the chains. More precisely, letting Ex,y denote the expectation

with respect to the coupling, and if x′ and y′ are the dyadic tilings obtained after one

step of each chain, respectively, we want to obtain a coupling and a value ∆ > 0 such

that

Ex,y[d(x′, y′)] ≤ (1−∆)d(x, y) for all x, y ∈ Ωk. (5.1)

Once we have the above inequality, then a result of Chen [6] (see also [17, Theorem 13.1])

implies that γk,block ≥ ∆.

We will use the following simple coupling between x′ and y′:

• Uniformly at random choose a tiling ρ ∈ Ωk−1.

• Uniformly at random choose Left, Right, Top or Bottom.

• Retile the choosen half (left, right, top or bottom) of x with ρ, if possible.

• Retile the choosen half (left, right, top or bottom) of y with ρ, if possible.

For a more detailed description of the retiling step, see the definition of the transition

rule of Mblock
k in Section 3.1. When we update the left (resp., right) half of x and ρ

contains a horizontal bisector, note that x′ will contain a left (resp., right) half-bisector.

Similarly, if we update the top (resp., bottom) half of x and ρ contains a vertical bisector,

then x′ will contain a top (resp., bottom) half-bisector. In any of these cases, we say that

the retiling yields a half-bisector of x.

The remaining of the proof is devoted to showing that we can set b large enough so

that (5.1) holds with ∆ = 1
17 . In order to see this, we will split into three cases, and show

that (5.1) holds with ∆ = 1
17 for each case.

Case 1: x and y have no common bisector.

The maximum number of common half-bisectors of x and y in this case is two. Figure 3

illustrates the three possible configurations for the number of common half-bisectors of
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4b+ 4 3b+ 4 2b+ 4− id(x, y) =

(a) (b) (c)

Figure 3: Possible configurations for the half-bisectors of x and y in case 1. In figure (c),

i ∈ {0, 1} denotes how many grey quadrants are tiled identically in x and y.

x and y. Consider first that x and y have no common half-bisector, which is illustrated

in Figure 3(a) and has d(x, y) = 4b+ 4. Then, whichever half (left, right, top or bottom)

is chosen to be retiled, note that either x or y is actually retiled, but never both. With

probability
|Ω2
k−2|

|Ωk−1| = fk the retiling yields a half-bisector, which increases the number of

common half-bisectors between x and y, and thus decreases their distance by b. Hence,

using that fk ≥ 1/2, we have

Ex,y[d(x′, y′)] = d(x, y)− fkb ≤ 4b+ 4− b

2
<

(
1− 1

17

)
(4b+ 4),

where the last step is true by setting b large enough (in this case, b ≥ 1 suffices).

Now consider that x and y have one common half-bisector, and use Figure 3(b) as a

reference, with x being the left tiling and y being the right tiling. We have d(x, y) = 3b+4.

If we retile the left or right halves, so only x gets retiled, and the retiling yields a half-

bisector, then the number of common half-bisectors of x and y decreases by 1. A similar

behavior happens if we retile the top half. However, if we retile the bottom half, and

the retiling does not yield a half-bisector, then the number of common half-bisectors

decreases by 1. Hence, using that fk ≥ 1/2, we obtain

Ex,y[d(x′, y′)] ≤ d(x, y)− 3fkb

4
+

(1− fk)b

4
≤ 3b+ 4− b

4
<

(
1− 1

17

)
(3b+ 4),

where the last step is true by setting b large enough (in this case, b ≥ 4 suffices).

Finally, suppose x and y have two common half-bisectors, as illustrated in Figure 3(c),

where they may or may not be tiled the same in the quadrant bounded by these common

half-bisectors. In this case d(x, y) = 2b+ 4− i, where i = 1 if they agree on this quadrant

and i = 0 otherwise. Retiling the left and top halves can yield a new common half-

bisector, while retiling the right and bottom halves may remove a common half-bisector.

Moreover, if i = 1 and we retile the right or bottom halves, the tilings of the bottom-right

quadrant of x and of y may become different, increasing the distance between x and y

by 1. Putting these together, we have

Ex,y[d(x′, y′)] ≤ d(x, y)− 2fkb

4
+

2(1− fk)b

4
+ i

2

4

≤ 2b+ 4− i

2
− (2fk − 1)b

2
=

(5− 2fk)b

2
+ 4− i

2
.

Since fk →
√

5−1
2 as k → ∞, the right-hand side above goes to

(
6−
√

5
2

)
b + 4 − i

2 . In
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4− i b+ 4− i 2b+ 4 4− id(x, y) =

(a) (b) (c) (d)

Figure 4: Possible configurations for the half-bisectors of x and y in case 2. The value of

i ∈ {0, 1, 2, 3} denotes the number of grey quadrants which is tiled identically in x and y.

particular, for k ≥ 10, the coefficient of b above satisfies 5−2fk
2 < 2

(
1− 1

17

)
, and so we

can set b large enough so that Ex,y[d(x′, y′)] ≤
(
1− 1

17

)
(2b+ 4− i). We note this is the

tight case, as 6−
√

5
2 > 2

(
1− 1

16

)
, so this particular coupling and distance metric cannot

be used to show the spectral gap is at least 1/16. This concludes the first case.

Case 2: x and y have a common bisector, but neither x nor y has both bisectors.

Without loss of generality we assume x and y both have a vertical bisector and neither

has a horizontal bisector. Each of x and y has at least 2 and at most 3 half-bisectors.

Figure 4 illustrates the four possible configurations for the number of half-bisectors of

x and y; the shaded quadrants are those where x and y could have the same tiling. In

all the situations of Figure 4, if we retile the left or right halves, then we match up

the configuration of x and y in that half. In particular, if x and y don’t agree on the

presence of left half-bisector, then they also do not have the same tiling of the top left

or bottom left quadrants, so the decrease in distance due to a retiling of the left half, a

move that occurs with probability 1/4, is (b + 2). If x and y agree on the presence of a

left half-bisector and have the same tiling on i′ ∈ {0, 1, 2} of the two left quadrants, then

the decrease in distance due to a retiling of the left half is (2 − i′). The same holds for

right half-bisectors and retilings of the right half. As there are no moves of the coupling

that can increase the distance between x and y, it can be shown that in all of the cases

shown in Figure 4 the distance decreases by 1/4 in expectation. Hence,

Ex,y[d(x′, y′)] ≤ d(x, y)− d(x, y)

4
≤
(

1− 1

17

)
d(x, y),

which concludes the second case.

Case 3: y has both vertical and horizontal bisectors.

Here there are three situations, depending on whether x has two, three or four half-

bisectors; see Figure 5. In the situation of Figure 5(a), if the left or right halves are

retiled, then we match up x and y in that half, decreasing the distance by b + 2. But if

we retile the top or bottom halves, then we may increase the distance by b if the retiling

does not yield a half-bisector. Hence,

Ex,y[d(x′, y′)] ≤ d(x, y)− 2(b+ 2)

4
+

2(1− fk)b

4
=

(4− fk)b

2
+ 3.

Since 4−fk
2 → 9−

√
5

4 <
(
1− 1

17

)
2, the right-hand side above is smaller than

(
1− 1

17

)
(2b+ 4)

when k and b are large enough. A similar situation occurs in Figure 5(b), but the distance
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d(x, y) =

(a) (b) (c)

2b+ 4 b+ 4− i 4− i

Figure 5: Possible configurations for the half-bisectors of x and y in case 3. The value of

i ∈ {0, 1, 2, 3} denotes the number of grey quadrants which is tiled identically in x and y.

increases a bit more when the top or bottom half is retiled as quadrants that were equal

in x and y may become different. In this case, we have

Ex,y[d(x′, y′)] ≤ d(x, y)− (b+ 4− i)
4

+
2(1− fk)b

4
+

2

4
=

(5− 2fk)b

4
+

6− i
4

.

Since 5−2fk
4 → 6−

√
5

4 <
(
1− 1

17

)
, the right-hand side above is smaller than

(
1− 1

17

)
(b+

4−i) when k and b are large enough; this is the second tight case, where we see contraction

by a factor of 1− 1
17 but not by 1− 1

16 . Finally, for the situation in Figure 5(c), regardless

of which half we choose to retile, the distance will not increase; if we choose a half

containing a quadrant on which x and y differ, the distance will decrease. Each quadrant

on which x and y differ is contained in two halves and thus is retiled so that x and y

agree there with probability 1/2. That is,

Ex,y[d(x′, y′)] ≤ d(x, y)− d(x, y)

2
≤
(

1− 1

17

)
d(x, y).

This concludes the third case. We have shown that for all possible tilings x and y, it holds

that Ex,y[d(x′, y′)] ≤
(
1− 1

17

)
d(x, y). This implies γk,block ≥ 1

17 for all k sufficiently large,

as desired.

6. Lower bound on the mixing time of Mn

In this section we give the proof of Theorem 1.2, which gives improved lower bounds on

the mixing and relaxation times of Mk. For this, we define the following subsets of Ωk:

Ω+
k = {x ∈ Ωk : x has both a horizontal and a vertical bisector} ,

Ω
|
k = {x ∈ Ωk : x has a vertical bisector} , and

Ω−k = {x ∈ Ωk : x has a horizontal bisector} .

By definition, we have Ω+
k = Ω

|
k ∩ Ω−k . We start with the following simple lemma.

Lemma 6.1. For all k ≥ 2, we have

|Ωk|
|Ω+
k |

=
2

f2
k

− 1 ≥ 2φ+ 1.

Furthermore, limk→∞
|Ωk|
|Ω+
k |

= 2φ+ 1, where φ =
√

5+1
2 is the golden ratio.



18 S. Cannon, D. A. Levin, and A. Stauffer

(a) (b) (c) (d)
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Figure 6: The construction of a tiling to count
∏k−2
i=0 |Ωi|2. A rectangle with number a

indicates that we tile it with a tiling from Ωk−a, appropriately scaled.

Proof. Using that |Ω+
k | = |Ωk−2|4, and Proposition 2.1, we have

|Ωk|
|Ω+
k |

=
2|Ωk−1|2 − |Ωk−2|4

|Ωk−2|4
=

2

f2
k

− 1.

By Lemma 2.3, fk ≤
√

5−1
2 = 1

φ = limk→∞ fk. This, along with the identity φ2 = 1 + φ,

implies the lemma.

We will also require the following technical estimate.

Lemma 6.2. For any k ≥ 2, we have

1

|Ωk|
k−2∏
i=0

|Ωi|2 ≤ φ−2k+2.

Proof. We will show how to estimate
∏k−2
i=0 |Ωi|2 via the construction of a tiling in

Ωk. We start with a tiling with both a horizontal and a vertical bisector, as in Fig-

ure 6(a). Then we inductively do the following. Both quadrants of the left half are tiled

independently with a uniformly random tiling from Ωk−2. In the top-right quadrant, we

add a vertical bisector and complete the two halves of this quadrant with independent,

uniformly random tilings from Ωk−3. Finally, in the bottom-right quadrant, we create

a horizontal and a vertical bisector, reaching the tiling in Figure 6(b). Then we take

this bottom-right quadrant, and iterate the procedure above; see Figure 6(c,d) for the

configurations after one and two more iterations. This iteration continues until creating

a bisector will result in rectangles of area less than 2−k. In the case where an attempt is

made to divide a rectangle of area 2−k+1 into four rectangles of equal area by adding both

a horizontal and vertical bisector, we instead add just a horizontal bisector, resulting in

two rectangles each of area 2−k.

Let Υk ⊂ Ωk be the set of tilings obtained in this way. Note that the number of tilings

in Υk is exactly
∏k−2
i=0 |Ωi|2. Since Υk ⊂ Ω+

k , we have that |Υk||Ωk| ≤
|Ω+
k |
|Ωk| , where the first

expression is exactly the value we wish to bound. Using the construction above until
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Figure 6(b), we obtain that

|Υk|
|Ωk|

≤ |Ω
+
k |
|Ωk|

|Ω|k−2|
|Ωk−2|

,

where the second factor stands for the fact that the top-right quadrant must contain a

vertical bisector. Iterating this in the bottom-right quadrant, we obtain

|Υk|
|Ωk|

≤ |Ω
+
k |
|Ωk|

|Ω|k−2|
|Ωk−2|

|Ω+
k−2|
|Ωk−2|

|Ω|k−4|
|Ωk−4|

... (6.1)

Proposition 2.1 gives that

|Ω|k|
|Ωk|

=
|Ωk|+ |Ωk−2|4

2|Ωk|
=

1

2

(
1 +
|Ω+
k |
|Ωk|

)
≤ 1

2

(
1 +

1

2φ+ 1

)
=

φ2

2φ+ 1
,

where the inequality follows from Lemma 6.1. For even k, because |Ω|0| = 0 the last term

we can obtain in (6.1) is
|Ω+

2 |
|Ω2| , so we can write

|Υk|
|Ωk|

≤

k/2−2∏
i=0

|Ω+
k−2i|

|Ωk−2i|
· |Ω

|
k−2i−2|
|Ωk−2i−2|

 |Ω+
2 |
|Ω2|

≤ 1

2φ+ 1

(
1

2φ+ 1
· φ2

2φ+ 1

) k
2−1

=
φ−2k+4

2φ+ 1

≤ φ−2k+2,

where the last expressions come from, respectively, identities for φ and the easily-checked

inequality 2φ + 1 > φ2. When k is odd, the last term in (6.1) is
|Ω|1|
|Ω1| because |Ω+

1 | = 0,

so we can write

|Υk|
|Ωk|

≤

(k−3)/2∏
i=0

|Ω+
k−2i|
|Ωk−2i|

· |Ω
|
k−2i−2|

|Ωk−2i−2|

 ≤ ( 1

2φ+ 1
· φ2

2φ+ 1

) k−1
2

≤ φ−2k+2,

where again the last expression is the result of applying identities for φ and simplifying.

We are now ready to prove our second main theorem, giving a lower bound on the

mixing and relaxation times of Mk of Ω(n2 log φ), where φ = (
√

5 + 1)/2 is the golden

ratio.

Proof of Theorem 1.2 We will derive a upper bound on the spectral gap γk. To do

this, we consider the test function f : Ωk → {0, 1} such that

f(x) is 1 if x ∈ Ω
|
k, and 0 otherwise. (6.2)

We will apply this function to the characterization of the spectral gap in Proposition 2.5.
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We start by showing that the variance of f is bounded away from 0 as k →∞. Recall

that vark denotes variance with respect to the uniform measure on Ωk.

Claim 6.3. With f : Ωk → {0, 1} as in (6.2), we have that

lim
k→∞

vark(f) =
√

5− 2.

Proof of claim. We start by writing

vark(f) =
∑
x∈Ω

|
k

∑
y∈Ωk\Ω|k

1

|Ωk|2
=
|Ω|k| · |Ωk \ Ω

|
k|

|Ωk|2
. (6.3)

Since |Ω|k| = |Ωk−1|2, using Proposition 2.1 we obtain

|Ω|k| =
|Ωk|+ |Ωk−2|4

2
=
|Ωk|+ |Ω+

k |
2

, (6.4)

and

|Ωk \ Ω
|
k| = |Ωk| − |Ω

|
k| =

|Ωk| − |Ω+
k |

2
. (6.5)

Plugging (6.4) and (6.5) into (6.3), we get

vark(f) =
1

4

(
1 +
|Ω+
k |
|Ωk|

)(
1− |Ω

+
k |
|Ωk|

)
=

1

4

(
1−

( |Ω+
k |
|Ωk|

)2
)
.

Then Lemma 6.1 yields

lim
k→∞

vark(f) =
1

4

(
1− 1

(2φ+ 1)2

)
.

Plugging in the value of φ completes the proof of the claim.

Now it remains to obtain an upper bound for E(f). Let ∂Ω
|
k be the set of tilings in

Ωk \Ω
|
k which can be obtained from a tiling in Ω

|
k via one edge flip. Recall for two tilings

x, y ∈ Ωk, we write x ∼e y if x can be obtained from y by one edge flip. Hence,

E(f) =
∑
x∈∂Ω

|
k

∑
y∈Ω

|
k : y∼ex

1

|Ωk|
1

2n
.

Note that each tiling in ∂Ω
|
k has a horizontal bisector and is not in Ω+

k . This means that

it has exactly one edge flip that can bring it into Ω
|
k, which is the flip that creates a

vertical bisector. Then, we have

E(f) =
|∂Ω
|
k|

2n · |Ωk|
.

Now we need to describe the set ∂Ω
|
k. It is a set of tilings with no vertical bisector,

but with one edge flip that creates a vertical bisector; see Figure 7. Note that the edge

whose flip creates a vertical bisector must be a horizontal edge of length 1 which flips to

a vertical edge of length 2/n. From now on we will refer to this edge as the pivotal edge.
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Figure 7: A tiling in ∂Ω
|
k, with the dashed edge being the flip that brings the tiling into Ω

|
k.

Ωk− 2 Ωk− 2 Ωk− 2 Ωk− 2 Ωk− 2 Ωk− 2

Ωk− 3 Ωk− 3

Ωk− 2 Ωk− 2

Ωk− 3 Ωk− 3

Ωk− 4 Ωk− 4

(a) (b) (c) (d)

Figure 8: The construction of a tiling in ∂Ω
|
k. The grey areas represent the part that

contains the pivotal edge.

In order to estimate the cardinality of ∂Ω
|
k, we will describe a procedure to construct

a tiling x ∈ ∂Ω
|
k, observing the position of the pivotal edge. Note that x must have a

horizontal bisector, which splits [0, 1]2 into its top and bottom halves. Assume that the

pivotal edge is in the top half of x. This implies that the bottom half of x must itself

contain a vertical bisector since the pivotal edge must be the only edge that forbids a

vertical bisector to exist, see Figure 8(a). The two quadrants in the bottom half are

simply any tilings of Ωk−2. Note also that the top half of x must contain a horizontal

bisector, otherwise x 6∈ ∂Ω
|
k, see Figure 8(b). Then we iterate the above construction:

among the two halves of the top half, one must contain the pivotal edge, say the bottom

one, while the other contains a vertical bisector, each side of which being completed with

a tiling from Ωk−3, which gives the configuration in Figure 8(c). Continuing this for k−2

steps concludes the construction.

To estimate the cardinality of ∂Ω
|
k, note that in each step of the construction we have

two choices for where the pivotal edge is: either in the top half or the bottom half of the

corresponding region. Therefore, the number of tilings in ∂Ω
|
k is

|∂Ω
|
k| =

k∏
i=2

(
2|Ωk−i|2

)
= 2k−1

k−2∏
i=0

|Ωi|2 =
n

2

k−2∏
i=0

|Ωi|2.



22 S. Cannon, D. A. Levin, and A. Stauffer

Hence,

E(f) =
1

4|Ωk|
k−2∏
i=0

|Ωi|2 ≤
1

4
φ−2k+2

where the last step follows from Lemma 6.2. Therefore, there exists a constant c > 0

such that

γk ≤ cφ−2k.

This implies that the relaxation time and mixing time satisfy

trel, tmix ≥
1

c
φ2k =

1

c
φ2 logn =

1

c
n2 log φ = Ω(n2 log φ).

This completes the proof of the theorem.
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