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Abstract
In this paper we present geometry which has been designed to fit a layperson’s 
description of a ‘time machine’. It is a box which allows those within it to 
travel backwards and forwards through time and space, as interpreted by an 
external observer. Timelike observers travel within the interior of a ‘bubble’ 
of geometry which moves along a circular, acausal trajectory through 
spacetime. If certain timelike observers inside the bubble maintain a persistent 
acceleration, their worldlines will close.

Our analysis includes a description of the causal structure of our spacetime, 
as well as a discussion of its physicality. The inclusion of such a bubble in a 
spacetime will render the background spacetime non-orientable, generating 
additional consistency constraints for formulations of the initial value 
problem. The spacetime geometry is geodesically incomplete, contains naked 
singularities, and requires exotic matter.

Keywords: closed timelike curves, classical energy conditions,  
naked singularities

(Some figures may appear in colour only in the online journal)

1.  Introduction

The possibility that some spacetime geometries permit retrograde time travel has long been a 
preoccupation of both general relativists and popular fiction [24]. Among physicists, General 
Relativity’s allowance for closed timelike curves (CTCs) resulting from exotic spacetime 
geometry is a subject of heated debate. While CTCs are—strictly speaking—a mathematical 
possibility; they are philosophically undesirable. In a fashion similar to the debate over the 
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physicality of curvature singularities, we burn to know whether the physical laws of our uni-
verse would actually permit CTCs to form.

Most of this discussion has taken place in the context of the derivation and analysis of 
geometries where CTCs exist. Thus, the bulk of the debate involves arguments concerning 
physical plausibility of these specific examples.

We can classify most of the CTC spacetimes into one of three types.
In the first class: CTCs naturally appear in very symmetric geometries characterized as 

having strong angular momentum. Gödel derived the first geometry to contain CTCs: a homo-
geneous universe filled with rotating dust [14]. The Kerr spacetime and the Tomimatsu–Sato 
spacetimes [35] are rotating vacuum geometries, and all contain CTCs near their centre. 
CTCs can be generated by infinitely long cylinders of rotating matter, known as Tipler cyl-
inders [34, 36]. Two moving cosmic strings can generate CTCs as they pass near enough to 
one another [6, 16].

The second class geometries are those which have been deliberately designed to contain 
CTCs for the purpose of studying the physical consequences. Famously, two mouths of a tra-
versable wormhole can be accelerated with respect to one-another, harnessing the effect of the 
‘twin paradox’ to generate CTCs in a region where none were previously present [8, 11]. The 
Ori [32] and Ori-Soen [31] spacetimes generate CTCs through an escalating frame dragging 
effect in a toroidal domain.

The third class of geometries are the exotic geometries which have been engineered to 
permit superluminal travel; where although generating CTCs were not the direct intention, 
they occur as a natural consequence. The Alcubierre warp drive [1] can be used to generate 
CTCs [9, 15]; as can the Krasnikov tube [10, 23]. Note, however, that due to the details of 
their construction it is not possible to generate CTCs within a single warp bubble or tube. A 
timelike observer would need to travel through a succession of tubes or bubbles, undergoing 
acceleration between each, for their worldline to close.

Although CTCs are generally held to be unphysical, we have not yet discovered a uni-
versal mechanism or argument which would preempt the formation or existence of CTCs in 
our universe. Rather, the bulk of the counterargument is piecemeal, identifying the specific 
unphysical idiosyncrasies or impracticalities of each individual geometry where CTCs are 
present [20, 28]:

	 •	The CTCs in the Kerr geometry lie behind the black hole’s event horizon, and since a 
physical Kerr black hole cannot be spun up beyond its extremal limit [38], the CTCs 
remain inaccessible to the outside universe.

	 •	Tomimatsu–Sato geometries are vacuum spacetimes possessing naked singularities, and 
are not recognized as the endstate of gravitational collapse.

	 •	The remaining mentioned models of the first class require infinite distributions of matter.
	 •	Traversable wormholes are forbidden by the topological censorship theorem, requiring 

matter which violates the classical energy conditions [12].
	 •	Spacetimes geometries which permit superluminal travel require matter source which 

must violate the classical energy conditions [24, 29, 30].

General arguments against the formation of CTCs have also been proposed. The ambition is 
that these arguments would forbid the construction of a physical time machine in our universe.

Hawking’s chronology protection conjecture [17, 22] attempts to curtail the formation of 
CTCs, and is concerned with a CTC whose presence in the spacetime is preceded by a com-
pactly generated Cauchy horizon. The argument follows that null matter, in following the 
coiling null geodesic which approaches the Cauchy horizon compact closed null curve as 
a limiting curve, will cause the energy density in the volume of spacetime near the Cauchy 
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horizon to diverge. Thus, these spacetimes are not stable, and are more likely to generate a 
black hole than a time machine [37].

The conjecture’s reliance on compactly generated Cauchy horizons limits the scope of the 
counterargument. Closed timelike curves can form in a spacetime without being preceded by 
a closed null curve. However, a theorem by Maeda et al concerning these geometries argues 
that if such a spacetime obeys the classical energy conditions, it cannot also be geodesically 
complete (it must contain singularities) [27].

Finally, Gibbons and Hawking have argued that our physical requirement for spinor struc-
ture in our spacetime should impose a constraint on which spacetimes are permissible and 
which ones are not. They find, for instance, that wormholes must exist in pairs, in order to 
retain the appropriate spinor structure through the rest of the spacetime [13].

In spite of this rich history of study, the menagerie of CTC geometries is by no means com-
plete. The purpose of this paper is to add a simple model of the second class to the list: a spa-
cetime which means to fit the popular conception of a ‘time machine’. It is a box which travels 
‘forwards’ and then ‘backwards’ in time along a circular path through spacetime (figure 1). 
Delighted external observers would be able to watch the time travellers within the box evolv-
ing backwards in time: un-breaking eggs and separating cream from their coffee.

2. TARDIS geometry

The Traversable Acausal Retrograde Domain in Spacetime (TARDIS) is a bubble geom-
etry, derived in a similar way to the Alcubierre warp drive, which uses a shell of exotic 

t

x

A B

Figure 1.  A schematic of the timelike observers confined to the interior and exterior of 
the bubble. Observers A (inside the bubble) and B (outside the bubble) experience the 
events in dramatically different ways. Arrows indicate the local arrow of time. Within 
the bubble, A will see the B’s events periodically evolve, and then reverse. Outside the 
bubble, observer B will see two versions of A emerge from the same location: one’s 
clock hands will turn clockwise, the other counterclockwise. The two versions of A will 
then accelerate towards one another and annihilate.
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matter to transport timelike observers along a trajectory which, to external observers, 
appears acausal. Unlike the Alcubierre drive, the TARDIS bubble follows a closed trajec-
tory in spacetime, and observers must maintain a persistent, constant acceleration to have 
a closed worldline.

2.1.  Metric

Our geometry has the following metric:

( ) ( ) ( )= −
+

− + +
+
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�

(1)

Similar to the Alcubierre bubble, this metric relies on a top-hat function h(x, y, z, t) to partition 
the interior of the bubble h(x, y, z, t)  =  1 from the exterior spacetime h(x, y, z, t)  =  0.

The exterior of the bubble and the interior of the bubble are both flat Minkowski vacuums. 
To illustrate, consider that under the coordinate transformation:

ξ λ ξ λ= =t xsin , cos( ) ( )� (2)

the interior metric (when h(x, y, z, t)  =  1) explicitly takes the form of the metric of Rindler 
spac etime:

ξ λ ξ= − + + +s y zd d d d d .2 2 2 2 2 2� (3)

In this context the Rindler geometry has a modified topology, amounting to identifying 
the surfaces λ = 0 with λ π= 2  in the maximal extension Rindler geometry. Thus, within our 
bubble, trajectories described with constant spatial coordinates: ξ = = =R y Y z Z, ,˜ ˜ ˜ will be 

CTCs. Such curves are not geodesics. If =L , 0, 0, 0a
R

1[ ]˜  denotes a normalized vector tangent 

to one of these CTC, and Ka  =  [0, 1, 0, 0] is an orthogonal spacelike vector:

∇ =K L L
R

1
.a b

b a ˜

An observer moving along one of these curves will feel an acceleration equal to R1/ ˜: the wider 
the ‘radius’ of the circular CTC, the weaker the acceleration required to travel along it.

For the purpose of this paper, we shall define the boundary of the bubble to have rounded 
boxy shape (whose size is given in terms of radial parameter R) moving along a circle of 
‘radius’ A in the x  −  t plane (see figure 2):

= − − − + −h x y z t H R z y x t A, , , 4 4 4 2 2 2 2( ) ( [ ] )� (4)

where H(x) denotes the Heaviside function.
We smoothly approximate the Heaviside function using a hyperbolic tangent function:

α
= +H x

x1

2

tanh

2
.( ) ( )

� (5)

The α parameter is used to define the thickness of the bubble wall: the larger it is, the more 
abrupt the transition between the interior and exterior geometries.

All of the numerical models plotted in this paper share the parameters A  =  100, R  =  70 

and α = 1

6000 000
.
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2.2.  Causal structure

2.2.1.  Null geodesics.  By design, the light cones of this spacetime are meant to tip in a way 
which allows observers inside the bubble to travel along circular CTCs (see figure  3). To 
illustrate the details of the causal structure of our geometry we have numerically integrated 
and plotted null geodesics crossing the slice y  =  0, z  =  0 in figure 4. Since the intersection of 
null geodesics dictates the orientation of the lightcones, it is clear that they tip in the desired 
fashion. Observers inside the bubble will clearly be able to see and interact with their past and 
future selves, as null geodesics move through and across the geometry. Also, for an arrow of 
time to be consistent inside the bubble, an external observer would see two versions of the 
objects inside of it: one version evolving forwards in time, the other backwards.

Some of the null curves in figure 4 may undergo dramatic lensing when they intersect with 
the walls of the bubble: appearing to ‘kink’. These kinks in the trajectory occur at the boundary 
of the bubble in places where the orientation of timelike vectors differs dramatically on the 
inside (sideways) from the outside (vertically). These locations are illustrated with a dashed 
line in figure 4.

(a)

(c)

(b)

(d)

Figure 2.  Evolution of the boundaries of the bubble, as defined in section  2.1, as 
seen by an external observer. At T  =  −100 the bubble will suddenly appear, and split 
in to two pieces which will move away from one another ( = − = −T T75, 50). At 
T  =  0, the two bubbles will come to rest, and then begin accelerating towards one-
another ( = + = +T T75, 50). Whereupon, at T  =  +100 the two bubbles will merge 
and disappear. (a) TARDIS boundaries at T  =  0. (b) TARDIS boundaries at =±T 50.  
(c) TARDIS boundaries at =±T 75. (d) TARDIS boundaries at =±T 100.

B K Tippett and D Tsang﻿Class. Quantum Grav. 34 (2017) 095006



6

It should be noted that our software could not illustrate some of these geodesics beyond 
where many of these ‘kinks’ occur due to underlying issues involving their parametrization. 
Thus, some of the null curves in figure 4 deceptively appear to end in the vicinity of the dashed 
line. In terms of an affine parametrization μ, and the interior coordinates given in the metric 
from equation (2), the null vectors at a point λ ξ=r y z, , ,a [ ] on this plane satisfy:

( )
( ) ( ) )

( )
( )

ξ
µ

λ
µ
ξ

λ
λ λ

ξ
ξ

=
+

± + +

=
−

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

b
b b

b
h y z

h y z

d

d

d

d

1

cos 2
sin 2 1 2 cos 2 .

, ,

1 , ,

2

�

(6)

The kinks in the null geodesic all occur along the surface λ + =bcos 2 0( ) : where one of 

the two null vectors must satisfy =ξ
µ

0d

d
, while the other satisfies =λ

µ
0d

d
. Thus, when a null 

geodesics encounters this surface, it will either move in a purely ‘radial’ direction, or move 
tangentially to a ‘circle’ centred at = =x t0, 0. And thus, depending on the affine parametri-

zation µ λ ξ,( ) we are using, either λ
µ

d

d
 or ξ

µ
d

d
 will diverge. The numerical errors generated by 

these divergences halt the execution of our Maple plot, even though the metric is smooth and 
continuous at and near these points.

2.2.2.  Global causal structure.  The embedding of the TARDIS bubble in the exterior space-
time dramatically modifies the spacetime’s causal structure. To illustrate these effects, it is 
helpful to put ourselves in the shoes of an astrophysicist (named ‘Tim’) who has concerned 
himself with the problem of determining what effect the bubble geometry would have on 
the future time evolution of some test matter, positioned on a constant time hypersurface in 
the coordinate past of the bubble’s formation. Tim, in his confusion, would surely describe the 

Figure 3.  The light cones inside the bubble are meant to tip in a circular path relative 
to the exterior light cones. For illustrative purposes we have chosen to make counter-
clockwise and upwards the ‘future’ directions in our diagram. This orientation is 
confirmed in the null curve diagram in figure 4.

B K Tippett and D Tsang﻿Class. Quantum Grav. 34 (2017) 095006
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issues he encounters by using the terminology ordinarily used to describe the causal structure 
of Minkowski space.

Begin by considering the null geodesics which are destined kink across the dashed line in 
figure 4 twice. Suppose that the affine parameter we choose to describe the given null curves’ 
position initially increases with time coordinate t. Since some of these geodesics will refract 
across the bubble walls in a way which ultimately turns them in the direction of decreasing 
coordinate t; the spacetime manifold is not time orientable [18]. Tim poetically describes the 
effect of the bubble as having ‘reflected’ these null geodesics in time.

Tim will therefore make a note that, while most of the null geodesics begin at past null 
infinity and end at future null infinity; there will be a family of ‘reflected’ null geodesics 
which have both endpoints at past null infinity, and another family which have both endpoints 
at future null infinity. Tim’s friends might helpfully point out that in a non-time orientable 
spacetime, the concepts of ‘future null infinity’ and ‘past null infinity’ are meaningless as 
descriptors, and that the global causal structure of this spacetime is dramatically different 
from that of Minkowski spacetime, but Tim marches on.

In describing the setup of the initial value problem on a constant time hypersurface in the 
coordinate past of the bubble, Tim will note that any such hypersurface (no matter how far 

Figure 4.  Null geodesics travelling through a cross section  = =y z0, 0. The 
intersection of null curves can indicate the orientation of the light cone. The curves are 
colour coded according to the conformal infinities they extend towards. The red and 
green curves have both endpoints at the same respective conformal null infinity, while 
the blue ones stretch from one null infinity to the other.

B K Tippett and D Tsang﻿Class. Quantum Grav. 34 (2017) 095006
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in the ‘past’) will be intersected twice by these ‘reflected’ null geodesics, and thus any initial 
conditions posed on such a surface would be subject to additional consistency conditions. 
A specific photon, deposited on the hypersurface in one location, may need to reappear in a 
second place on the same hypersurface as it crosses the surface after being reflected by the 
bubble (figure 5). Tim’s helpful friends will remind him that this specific property disqualifies 
these constant time hypersurfaces from being Cauchy surfaces [18], but Tim stops for no one.

Tim goes on, and manages to come up with some initial data which satisfies these additional 
constraints, and now seeks to evolve the system forward in time. In doing so, Tim discovers 
that there are limits to how far a numerical evolution of initial data posed on such a hyper-
surface would progress into the future. Among the null geodesics which have an endpoint at 

one of the singularities located where = =x h x y z t0, , , , 1

2
( )  are lines which act as a bound-

ary for the family of null curves which have both endpoints at future null infinity (figure 5). 
Tim would describe this collection of geodesics as forming a ‘Cauchy horizon’; where new 
information which was not present on his hypersurface (originating from the singularity, or 
from future null infinity) might skew his system’s evolution in unforseeable ways. His friends 
might disagree that this surface is a true Cauchy horizon, arguing that the ‘reflected’ null 
geodesics pass beyond this surface, and thus, potentially interact with the information origi-
nating from ‘future null infinity’ or the singularity. The events occurring in the far far future 
will influence the constraints applied to the data on Tim’s initial surface as a form of a global 
consistency condition [11].

Additionally, since the null curves generating the ‘Cauchy Horizon’ are not compactly 
generated (instead, they have an endpoint), Hawking’s chronology protection conjecture will 
not apply to this spacetime [17, 19]. This is not the first CTC spacetime to have this attribute 
[5, 7, 21, 26, 33].

Figure 5.  Tim has drawn a diagram, explaining his difficulties in setting up an initial 
value hypersurface and simulation. Two families of null curves in this diagram are 
‘reflected’ by the bubble geometry. The red curves start and end at ‘past’ null infinity, 
causing them to intersect spacelike hypersurfaces in more than one place and forcing 
initial conditions placed on these surfaces will also need to satisfy additional consistency 
conditions. The green curves start and end at ‘future’ null infinity, bringing in new 
information which was not present on the initial hypersurface, and making predictions 
past the ‘Cauchy horizon’ impossible.

B K Tippett and D Tsang﻿Class. Quantum Grav. 34 (2017) 095006
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2.3.  Geometry and matter

The stress energy tensor required to generate this spacetime is nonzero only at the boundary 
of the bubble (points satisfying 0  <  h(x, y, z, t)  <  1). Since we have taken a ‘metric-first’ 
approach to deriving this geometry, the source matter can be readily found using the Einstein 
equation. However, there is no expectation that it would behave like any familiar type of 

Figure 6.  (a) The Kretschmann scalar along z  =  0, y  =  0. (b) The value G N Nab
a b along 

= =z y1, 1, where Na is a null vector field along the surface.

B K Tippett and D Tsang﻿Class. Quantum Grav. 34 (2017) 095006
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matter, since this constraint was not factored into the derivation of this geometry. Graphs 
of the components of the stress energy tensor in this region of the spacetime are not very 
informative.

A more interesting set of questions to ask is whether this geometry is physically reason-
able? Is the matter everywhere finite, or are there singularities? Does the spacetime curve in 
a way consistent with familiar matter: are the the classical energy conditions satisfied [18]?

There are naked curvature singularities in the Kretschmann scalar (figure 6(a)) and in the 
first principal invariant of they Weyl tensor at points where the top hat function has values 

=h x y z t, , , 1

2
( )  and the shell intersects the plane x  =  0. Along these 2-surfaces, g g g, ,t t x x x t, , ,  

are all equal to zero, meaning that these locations are not part of the spacetime manifold and 
that the spacetime is geodesically incomplete. Geodesic incompleteness is an expected prop-
erty for a spacetime which does not satisfy the chronology protection conjecture [21, 27].

Furthermore, the geometry in the nonsingular parts of the bubble is also unphysical. In 
figure  6(b) we plot the G N Nab

a b (where Na are null vectors) for a = =y z0, 0 slice. In 
Einstein gravity, this quantity corresponds to the energy density as seen along null geodesics. 
That it has a negative value in some places implies that this matter will not satisfy the null 
energy condition.

Note, however, that interpreting these aspects of the geometry in terms of the matter 
required to create it depends upon the relationship between the two as it is specified by the 
Einstein Equation. In generalized theories of gravity, the Einstein equation is only a first order 
approximation to a more sophisticated relationship between the geometry and the matter 
in the spacetime [3, 4]. Introducing extra degrees of freedom between these two allow for 
the possibility that classically forbidden curvature can be generated without requiring mat-
ter which violates the classical energy conditions. F(R) theories of gravity have been used 
to derive traversable wormholes, and accelerating cosmological expansion using physically 
plausible matter [2, 25].

3.  Discussion

This spacetime is both fascinating and problematic.
On one hand, it explicitly possesses many attributes of a ‘time machine’ from popular 

fiction: embedding a compact region with circular closed timelike curves in a simple, asymp-
totically flat background. There are places where an observer inside the bubble will travel 
‘sideways’ in time relative to external observers; and other places where the the arrow of time 
inside the bubble must be retrograde to direction of time just outside the bubble wall. As such, 
it works as a playground for examining the consequences such a time machine would have on 
the global causal structure. The presence of such a bubble would impose strong consistency 
constraints on the information imposed on any spacelike hypersurface to the ‘past’ or ‘future’ 
of the bubble. Furthermore, since timelike observers can exit the bubble after completing only 
a half-tour, the inclusion of a TARDIS bubble to the spacetime can render the entire manifold 
non time-orientable.

On the other hand, the spacetime possesses naked singularities and requires manifestly 
unphysical matter to generate it. The violation of the classical energy conditions is unsurpris-
ing, since the derivation of this metric mirrors that of the Alcubierre warp drive, and both 
bubbles are seen by outside observers to be travelling superluminally.

One question which has dogged us as we constructed this geometry is whether the multi-
ple unphysical aspects are necessary consequences of the desired causal structure, or merely 
artifacts arising from its derivation or symmetry. Specifically, it is expected that the energy 
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conditions should be violated, or that the spacetime be singular [21, 27]; but it is it necessary 
for our spacetime to be both?

For example, it may be possible to use Israel junction conditions to connect the CTC 
Rindler interior with the Minkowski exterior by identifying a pair of 3-surfaces in a way 
which satisfies the classical energy conditions.

Or, on the other hand, considering the way in which Alcubierre warp drives can be used to 
generate CTCs without singularities might provide a clue to removing the singularities from 
the TARDIS bubble.

Regardless, we are sure that the coming years will provide ample motivation for further 
study in this field.
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