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ABSTRACT: 3D core-shell nanostructures could resolve key problems existing in conventional 

planar deep-UV LED technology due to their high structural quality, high-quality non-polar 

growth leading to a reduced quantum-confined Stark effect, and their ability to improve light 

extraction. Currently, a major hurdle to their implementation in UV-LEDs is the difficulty of 

growing such nanostructures from AlxGa1-xN materials with a bottom-up approach. In this paper, 

we report the successful fabrication of an AlN/AlxGa1-xN/AlN core-shell structure using an 

original hybrid top-down/bottom-up approach, thus representing a breakthrough in applying core-

shell architecture to deep-UV emission. Various AlN/AlxGa1-xN/AlN core-shell structures were 

grown on optimized AlN nanorod arrays. These were created using Displacement Talbot 

Lithography, a two-step dry-wet etching process, and optimised AlN MOVPE regrowth conditions 

to achieve the facet recovery of straight and smooth AlN non-polar facets, a necessary requirement 

for subsequent growth. Cathodoluminescence hyperspectral imaging of the emission 
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characteristics revealed that a 229 nm deep-UV emission was achieved from the highly uniform 

array of core-shell AlN/AlxGa1-xN/AlN structures, which represents the shortest wavelength 

achieved so far with a core-shell architecture. This hybrid top-down/bottom-up approach 

represents a major advance for the fabrication of deep-UV LEDs based on core-shell 

nanostructures. 

KEYWORDS: nanorod, core-shell, AlN, AlGaN, TEM, EDX, Cathodoluminescence 

It is well-known that the III-Nitride semiconductors are an important class of materials for 

devices emitting in the ultraviolet (UV) with applications including: UV curing,1 medical 

diagnostics, phototherapy,2 optical sensing,3 security, communications,4 sterilisation and water and 

air purification.5,6,7 These applications are made possible thanks to the widely tunable bandgap 

energy of AlGaN alloys ranging from 3.4 eV for GaN to 6.2 eV for AlN.  The emission wavelength 

of AlGaN-based LEDs can cover the entire UV-A, UV-B, and UV-C spectral range. This 

represents one of the major advantages compared to the mercury lamps and gas lasers that possess 

a fixed and limited emission spectrum. Additionally, III-Nitride UV-based LEDs and LDs are 

compact, robust, environmentally-friendly, offer a long lifetime and have a considerably lower 

power requirement. However, while visible white-light LEDs based on indium-containing III-

Nitrides are today sufficiently efficient and cheap to be established as the leading technology for 

public and home lighting, UV LEDs still require substantial improvements. Currently, the external 

quantum efficiency (EQE) of AlxGa1-xN LEDs barely reach a maximum of 40 % in the UV-A,8 

20% in the UV-B,9 and up to a few percent in the deep UV-C.8,10 This is significantly lower than 

the 80 % EQE achieved for GaN-based blue LEDs.11,12 This gap in terms of efficiency between 

deep UV and visible LEDs is due to several factors, such as the high density of point and extended 
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defects, which can act as non-radiative recombination centres in AlN and AlxGa1-xN materials,13,14 

the low carrier injection and difficulties in achieving efficient p-doping in AlN-rich AlxGa1-xN 

alloys,15,16 the poor light extraction,17,18,19 and the internal electric field in quantum wells,20,21 

which are exacerbated compared to GaN due to the much larger spontaneous polarisation 

properties of AlN-based materials.22  

In a large part, these challenges result directly from the approach employed to fabricate these 

LEDs, which is nowadays based on a planar technology. The use of 3D nanostructures is an 

approach to address and mitigate some of these challenges. In particular, the use of nanorod arrays 

can allow the reduction of extended defects compared to those in the initial planar template by 

means of dislocation bending23 or filtering,24,25 thus reducing the threading dislocations density in 

the active region. Furthermore, a core-shell nanostructure configuration, with the core along the c-

direction, involves radial growth of the quantum wells (QWs) on non-polar facets where strong 

spontaneous and piezoelectric polarisation are absent.26 The mitigation of the quantum-confined 

Stark effect (QCSE) will improve the overlap between electron and hole wave functions and thus 

the emission efficiency. Additionally, high densities of basal-plane stacking faults (BSFs) have 

been observed in planar non-polar AlGaN layers,27 since BSFs can effectively compensate lattice 

translations between islands that occur during the early stage of heteroepitaxial growth.28 In 

contrast, nanostructures aligned along the c-direction are formed from growth in the polar 

direction, for which BSFs are not observed away from the substrate interface. Therefore, the non-

polar sidewalls of core-shell nanostructures offer the prospect of a higher structural quality for the 

QWs, and hence an increase in the internal quantum efficiency (IQE).  Moreover, the QW growth, 

occurring radially to the nanorod core, can dramatically increase the overall emitting area over that 

of a planar equivalent.29 Such a benefit is important because poor efficiency in nitride LEDs at 
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high current injection occurs at high carrier densities. Spreading a high current over the larger 

emissive surface area of core-shell structures brings the device back into its high-efficiency, low-

carrier density regime.30 Finally, the use of nanostructures also improves the light extraction 

efficiency (LEE) of the devices, for example by randomising the angular distribution of the 

photons in the LED.31,32 

However, a key obstacle to the implementation of core-shell structures in UV devices is the 

difficulty of growing such regular structures in AlxGa1-xN-based materials. Whereas the selective 

area growth (SAG) of GaN nanorod arrays and subsequent InGaN/GaN based core-shell LEDs has 

been demonstrated by metal organic vapour phase epitaxy (MOVPE),33,34,35,36 the SAG of AlN and 

Al-rich AlGaN nanorods has not been achieved yet due to the very high sticking coefficient and 

the low diffusion length of Al atoms.37,38 A recent report of AlGaN nanorods by molecular beam 

epitaxy (MBE) on a Si substrate,39 shows how AlGaN nanostructures could be used to circumvent 

the challenges of planar technology. However, they require a GaN pedestal grown on Si to initiate 

the nucleation.39,40,41 Ultimately, sapphire substrates and GaN-free structures are required for 

devices operating in the UV-C regime to avoid absorption of the UV-C light. Additionally, MBE-

based nanorods have, up to now, only been demonstrated to be suitable for the growth of axial 

structures and not core-shell structures, which provide larger active areas. The recent report of Kim 

et al. represents the only success to date to create an AlGaN/AlN core-shell structure.42 They report 

the fabrication of AlN nanorods on a sapphire substrate by polarity-selective epitaxy and etching 

(PSEE) and achieved a 260 nm emission from core-shell MQWs. Their results further highlight 

the potential of the core-shell geometry with an improved PL intensity and IQE of the MQW over 

one grown on planar AlN. However, their approach is based on the use of Al-polar AlN inversion 

domains to create the core, which leads to irregular and unorganised structures; unsuitable for real 
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devices. An alternative route, already demonstrated for InGaN/GaN core-shell nanorod 

arrays,43,44,45 uses top-down etching followed by MOVPE regrowth. It is a promising route for the 

fabrication of uniform and highly organised AlN nanorod arrays that will subsequently allow the 

creation of AlGaN/AlN core-shell devices.46,47 We have recently demonstrated this first critical 

step prior to creating device structures with active quantum wells.38 

In this paper, we present uniform and organised core-shell AlN/AlGaN/AlN nanorod arrays with 

a vertical nonpolar AlGaN/AlN single QW, using this hybrid top-down/bottom-up approach. The 

emission characteristics of the AlGaN/AlN QW are studied in detail by cathodoluminescence 

hyperspectral imaging. Uniform emission from the non-polar facets is tuned to cover the UV-C 

spectral range from 265 nm to 229 nm, which represents the shortest wavelength achieved so far 

with a core-shell architecture. The results show the potential of the hybrid top-down/bottom-up 

approach to achieve nonpolar core-shell AlGaN/AlN nanorod arrays on a wafer scale to achieve 

deep-UV light emitting devices.  

 

RESULTS AND DISCUSSION 

The AlGaN/AlN nonpolar core-shell nanorod array was fabricated using a hybrid approach 

composed of top-down etching and subsequent bottom-up MOVPE regrowth.  To create the AlN 

nanorod cores, a ~4-5 µm AlN template grown by MOVPE on (0001) sapphire substrates was 

employed. We used Displacement Talbot Lithography (DTL) to fabricate a metal dot mask via a 

lift-off process, in a similar way to our previous work.38,47 A detailed description of the DTL 

patterning and lift-off process is presented in the Methods section. This fast and robust fabrication 
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process, performed on a full 2-inch wafer, allows the creation of a hexagonal array of metal dots 

with a diameter of ~250 nm and a pitch of 1.5 µm, as shown in Figure S2. 

Inductively coupled plasma (ICP) etching with a chlorine chemistry was then used to transfer 

the metal mask into the 2-inch AlN template, following the optimum etching conditions presented 

in our previous work and detailed in the Methods section.38,47 A potassium hydroxide (KOH) based 

wet etching was then applied by soaking the wafer in AZ 400K at 20 °C. Figure 1.a shows an SEM 

image of the resulting smooth and straight sidewalls created after both the dry and wet etching 

processes. This is further evidenced by TEM observation on scratched AlN etched nanorods in 

Figure 2.a and S4. AlN nanorods with a diameter of ~130 nm and a height of 1.8 µm were achieved. 

Note, the wet etching step reduces the nanorod diameter from that obtained after dry etching 

(Figure S3). AZ 400K solution was chosen as an etchant due to its low concentration of KOH, 

allowing a better control of the structure shape and etch rate. Note that similar wet etch chemistry 

has been used to control the dimensions of dry etched GaN nanorods,48 although AlN and GaN 

have different chemical reactivity. 

Subsequently, the AlN nanorod scaffold was placed in a MOVPE reactor for the regrowth of 

AlN facets, at 1100 °C, 20 mbar, a V/III ratio of 30554 and with H2 as the carrier gas. 38,47 More 

details are given in the Methods section. Figure 1.b demonstrates that AlN regrowth has been 

achieved along the whole height of the nanorod. Well-defined m-plane facets are formed along the 

nanorod sidewall together with a truncated pyramid on the top composed of six (10-11) semi-polar 

planes and a top c-plane. In contrast to previous reports of AlN regrowth on etched nanorods,46,47 

straight and smooth non-polar sidewall facets are achieved. Further evidence from TEM 

observations on scratched AlN faceted nanorods can be found in Figure 2.b and S5. An m-plane 

growth rate of ~ 1 nm/min was extracted from SEM and TEM observations before and after 
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regrowth.

 

Figure 1. Cross-section SEM images of (a) AlN nanorod arrays after ICP dry etching and AZ400K 

wet etching and (b) AlN faceted nanorod arrays after MOVPE regrowth. The inset in (a) and (b) 

show a tilted-view of the AlN etched and faceted nanorods, respectively. 

This significant advance results from the choice of AlN regrowth conditions and the initial 

morphology and configuration of the AlN nanorod array after the two-step etching process. Firstly, 

the formation of smooth and straight facets is enhanced at low pressure and high V/III ratio.47 Low 

pressure enhances Al-adatom diffusion, allowing a complete coverage of the AlN nanorod. High 

V/III ratio reduces the growth rates of both the c- and m-planes relative to the a-plane growth rate, 

favouring a complete coverage of the AlN nanorod, but also mitigating the growth on the top 

pyramidal part, which is not favourable for a smooth and straight facet regrowth.46,47 Secondly, the 

use of straight and smooth AlN etched nanorods prevents the formation of regrowth steps that can 

be induced by etch damage, especially in these growth conditions where the m-plane growth rate 

is lowered.47 The small nanorod diameters used in this work allows the formation of m-plane facets 

along the whole height of the nanorod, which is not the case for larger diameters.47  Finally, the 

use of a relatively large 1.5 µm pitch allows good gas-phase diffusion of the growth reagents to 
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the base of the nanorods, which ensures that there is no variation in the m-plane growth rate along 

the height of the nanorod.46  

 

Figure 2. TEM images of scratched (a) AlN nanorod arrays after ICP dry etching and AZ400K 

wet etching and (b) AlN faceted nanorod arrays after MOVPE regrowth.  

Following the AlN faceting regrowth step, an AlGaN shell was created by adding 2 sccm of 

TMGa for 2 minutes and setting the NH3 flow rate to 500 sccm (V/III = 1638), with otherwise the 

same growth conditions, resulting in an approximate thickness of ~ 2-3 nm based on the m-plane 

AlN growth rate previously extracted. An AlN cap layer was then grown for 15 minutes with the 

same AlN conditions to create an AlGaN/AlN SQW (AlGaN SQW 1). The resulting core-shell 

structures are displayed in Figure 3a and 3b. Both SEM and TEM images show straight and smooth 

sidewalls and a fully-formed nanopyramid on the top. No visible extended defects, such as 

threading dislocations (TDs) or basal stacking faults (BSFs), are observed in the nanorod shown 

in Figure 3.b. The creation of the 130 nm diameter AlN nanorod array has acted to filter the TDs, 

as shown in Figure 2.a and S4, so that zero or at the most one TD is observed in the resulting 
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nanorods after AlN regrowth.24,25 Any TDs present often bend towards the lateral free surfaces and 

can be seen as surface pits in Figure 2.b and Figure S5. Figures 3c, 3d and 3e display the 

aluminium, nitrogen and gallium concentration, respectively, of the grown core-shell structures as 

measured by EDX spectroscopy. Gallium incorporation is observed across the whole height of the 

nanorod as well as on the semi-polar plane.  

 

Figure 3. (a) Cross-section SEM and (b) TEM pictures of AlN/AlGaN SQW core-shell structures 

(AlGaN SQW 1) grown by MOVPE. (c) Al, (d) N and (e) Ga concentration maps obtained by 

EDX spectroscopy.  
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The optical emission of the AlN/AlGaN/AlN core-shell structures was assessed by room-

temperature high-resolution cathodoluminescence (CL) hyperspectral imaging in a low vacuum 

SEM (ESEM) and is presented in Figure 4. The intensity map in Figure 4.b shows the extracted 

emission intensity of the SQW between 4.9-5.5 eV for a single AlN/AlGaN/AlN core-shell 

nanorod (Figure 4.a). Higher emission intensity arises from the top of the nanorod, at the corners 

between the semi-polar and non-polar planes, and where regrowth has taken place on the etched 

planar AlN surface between the nanorods. Indeed, after the two etching steps, hexagonal trenches 

are created at the base of the nanorods (inset in Figure 1.a). While these do not impact the AlN 

faceting regrowth step, preferential incorporation seems to occur during the SQW growth. This 

“parasitic growth” could be suppressed by passivating the AlN bottom c-plane with a hydrogen 

silsesquioxane layer.Error! Bookmark not defined.  

Focusing on the nanorod emission characteristics, Figure 4.c shows a line spectrum extending 

from top to bottom of the nanorod (excluding the parasitic emission), and displayed on a log scale. 

Both the AlN near band edge (NBE) emission and AlGaN SQW emission can be observed along 

the whole height of the nanorod. The broad AlN NBE emission at 5.8-6.0 eV (207-214 nm) 

displays a higher intensity on the top semi-polar part of the nanorod. The AlN NBE emission range 

agrees with that reported in the literature at room temperature.49,50,51 A lower energy broad 

emission band is generally observed between 2.6 and 4.3 eV for all samples (Figure S6 and S7). 

The high intensity of the defect luminescence is partly due to the low vacuum mode in which the 

CL images where acquired and is not indicative of the quality of the sample (see Supporting 

Information for further discussion). The defect band, initially observed in the AlN template,47 

could be related to O-complexes and/or Si-complexes and other native defects, such as vacancies. 

38,47,52,53 The AlGaN SQW shows two emission energies: one centred around 5.13 eV (242 nm) on 
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both the m-plane facets and semi-polar facets; and a second one centred around 5.22 eV (238 nm) 

having a higher intensity and localised at the corners between the semi-polar and non-polar 

nanorod facets. The small energy shift occurring at the corners between the semi-polar and non-

polar planes could be due to a change of the surface morphology at the intersection, preferential 

incorporation of species as a result of strain relaxation at the corners, or from a local change of the 

QW thickness, similar to that observed for InGaN/GaN core-shell structures.54,55 Note that the 

higher intensity could also result from a local change to the QW thickness or enhanced light 

extraction. 

 

Figure 4. (a) Tilted SEM images of AlGaN SQW 1. (b) Related intensity map extracted over the 

SQW emission range of 4.9-5.5 eV. (c) Log-scale RT spectral line-spectrum extracted along the 

length of the nanorod displayed in (a) from the region highlighted by the dashed rectangle.   
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Based on the results presented in Figure 4, additional AlGaN/AlN SQW growths have been 

performed in order to improve the emission characteristics, such as intensity and uniformity, but 

also to tune the emission wavelength. Figure 5.a, b and c display the characteristics obtained at 

lower growth temperature and higher pressure (AlGaN SQW 2) while Figure 5.d, e and f shows 

the characteristics for an additional increase in TMGa flow rate (AlGaN SQW 3). The SQW 

thickness can be approximately estimated to be ~ 2-3 nm and ~ 10-15 nm respectively for AlGaN 

SQW 2 and 3. More details on the SQW growth conditions are given in the Methods section. 

Compared to AlGaN SQW 1 (Figure 4.b), the intensity map extracted for AlGaN SQW 2 between 

5-5.7 eV (Figure 5.b) suggests an improved intensity of the emission from the nanorod sidewalls 

to that from the planar c-plane. The line spectrum extracted from the top to the bottom of the 

nanorod in Figure 5.c confirms the improvement of the AlGaN SQW emission centered around 

229 nm (5.41eV): it has a similar intensity to the AlN NBE, and a good emission uniformity across 

the whole height of the nanorod. Utilising a lower growth temperature and higher pressure likely 

decreased the Al-adatom diffusion, and hence mitigated any preferential incorporation on strain-

relaxed surfaces. The lower emission wavelength of the SQW can be explained by Ga desorption 

during the ramp in temperature between the SQW growth and the AlN cap layer growth.  
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Figure 5. (a) Tilted SEM images of AlGaN SQW 2. (b) Corresponding intensity map extracted 

over the SQW emission range of 5-5.7 eV. (c) Log-scale RT spectral line-spectrum extracted along 

the length of the nanorod displayed in (a) from the region highlighted by the black dashed 

rectangle. (d) Tilted SEM images of AlGaN SQW 3. (e) Corresponding intensity map extracted 



 14 

over the SQW emission range of 4.4-5 eV. (f) Log-scale RT spectral line-spectrum extracted along 

the length of the nanorod display in (d) and from a region highlighted by the dashed rectangle.   

The increase in TMGa flow rate by a factor of five (AlGaN SQW 3), while keeping all other 

growth conditions constant, results in a clear red-shift of the emission energy range of the SQW, 

from 5-5.7 eV to 4.4-5 eV (Figure 5.e). The intensity is no longer uniform (Figure 5.e) with some 

small differences observed from different parts of the nanorod, with higher intensities at the 

intersections between the semi-polar and non-polar planes, at intersections between two non-polar 

planes (vertical line along the height of the nanorod) and at the bottom of the nanorod. The 

emission along the height of the nanorod is also no longer uniform with a slight red-shift in 

emission energy from the bottom to the top of the nanorod. The five-fold increase in TMGa, while 

keeping the same growth time, is expected to lower the emission energy and increase the growth 

rate; thus creating a thicker AlGaN layer. As already reported for InGaN/GaN core-shell 

nanorods,56,57 a small thickness gradient along the height of the nanorod can lead to a gradual shift 

of the emission. Additionally, the observation of a higher intensity at the intersections of the planes 

can also arise from the growth of a thicker layer since it leads to preferential incorporation of 

species on strain-relaxed regions.54,55 This preferential incorporation can lead to the formation of 

a quantum-wire-like structure that will enhance the recombination rate and hence the intensity. 

Regardless of the small non-uniformity of the emission observed for AlGaN SQW 3, the overall 

SQW intensity is drastically improved for growth conditions of AlGaN SQW 3. Indeed, while the 

AlN NBE emission remains more or less at the same intensity (~105 counts) between AlGaN SQW 

2 and 3 (respectively, Figure 5c and 5f), the AlGaN SQW intensity is increased by an order of 

magnitude in AlGaN SQW 3. Similarly, significant improvement in the nanorod intensity relative 

to the planar c-plane is also observed. This can be clearly observed in Figure 6 which compares 
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for the three AlGaN SQWs the spectra acquired on the m-plane nanorod sidewalls (full line) with 

the one acquired on the planar un-passivated c-plane (dashed line). While the intensity is increased 

by a factor 1.5 for the SQWs emitting at 242 nm and 229 nm (respectively AlGaN SQW 1 and 2), 

the enhancement factor reaches 5 for the SQW emitting at 265 nm (AlGaN SQW 3). For all AlGaN 

SQWs, the enhancement could be attributed to the higher structural quality of the AlN nanorod 

template compared to the c-plane in between, and to a better overlap between the electron and hole 

wave functions within the non-polar SQW. In addition, the polarisation dependence on substrate 

orientation should be considered. For c-plane growth, polarisation switching from light with a 

dominant polarisation of E⊥c to light with a dominant polarisation of E || c occurs when the Al 

concentration increases. The switch occurs between x ≈ 0.25 (~ 300 nm emission)58,59 and x ≈ 0.8 

(~230 nm)60 depending on the strain in the QW, its thickness and the internal electric fields.60,61 

For m-plane growth, the change in the SQW symmetry results in a modification of the valence 

subbands which leads to the lowest energy transition being strongly polarised along E||c for a wide 

range of Al compositions.62,63 Hence, the emission is likely to be polarised along E||c for both the 

bottom c-plane and lateral nanorod m-planes, with the latter orientation resulting in less 

reabsorption due to reduced guiding in the plane of the QW. Further improvement for AlGaN 

SQW 3 could be due to higher carrier confinement and/or reduced carrier leakage due to the thicker 

QW. These results demonstrate that optimising the growth conditions enables tuning of the 

emission wavelength and significantly improves the intensity while maintaining a high or 

relatively high emission uniformity from the whole height of the nanorods.  
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Figure 6. CL spectra acquired for the three AlGaN SQWs showing both emission from the m-

plane nanorod sidewalls (full line) and also from the c-plane material in between the nanorods 

(dashed line). 

     A striking result that is observed in all the AlGaN SQWs relates to the peak emission 

wavelength coming from the different planes. As observed in the line spectra extracted along the 

height of the nanorods in Figure 5.c and 5.f and on the CL spectra acquired on both c-planes and 

m-planes in Figure 6, no difference in the peak wavelength was observed between different planes. 

The resulting high uniformity of the emission of the overall core-shell structures, irrespectively of 

the plane orientation, represents a major advantage compared to visible InGaN/GaN core-shell 

structures where the indium incorporation is highly sensitive to the plane orientation.64,65 For 

visible InGaN/GaN core-shell structures this generally induces a change of the EL peak emission 

position as a function of the injection current.36   

     It should be noted that although several electrically-injected InGaN/GaN core-shell LEDs 

emitting in the visible have been demonstrated, there are still further obstacles before devices based 

on AlGaN/AlN core-shell structures are realised. One major issue is the poor n-type conductivity 
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of the AlN layer forming the core. This could be circumvented by the use of mid to high Al content 

n-type AlGaN layer for which relatively good carrier density has been reported.66 Since the hybrid 

top-down/bottom-up approach can be transferred to any III-nitride template, both binary and 

ternary alloys, its application to state of the art n-type AlGaN layers represents the most promising 

solution for electrically-injected core-shell structures emitting in the deep UV. 

CONCLUSION 

The paper demonstrates an original and reproducible approach for creating highly uniform and 

organised arrays of core-shell AlN/AlGaN/AlN nanorods that avoids the difficulties of creating 

bottom up nanostructures in the AlGaN materials system. In the combined top-down-

etching/bottom-up-growth approach, we employ the recently-developed nanolithographic 

technique of Displacement Talbot Lithography to create a metal dot etch mask across a full 2-inch 

wafer via lift-off. The successful fabrication of uniform AlN nanorods with smooth vertical facets 

is then achieved by the sequential use of dry etching, wet etching and MOVPE regrowth using 

optimised conditions. This led to large areas of uniform nanorods with an aspect ratio as high as 

12. A future reduction of the nanorod pitch from 1.5 to 1 µm with the same nanorod aspect ratio, 

which we believe is technically feasible with this technique, would lead to a two-times 

enhancement of the active area compared with planar QWs; thus potentially allowing more 

efficient LED operation by mitigating droop. 

An AlGaN single quantum well has been successfully regrown on the AlN nanorods along their 

entire height, as determined by detailed electron-beam spectroscopic measurements, with a 

significant improvement of the emission coming from the non-polar facets compared to the c-plane 

planar growth. Deep UV emission at 229 nm is reported on AlN/AlGaN/AlN core-shell structures 

for the first time. No facet-dependent alloy incorporation is observed, in contrast to visible-
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emitting core-shell structures, which will simplify the implementation of these 3D structures into 

electrically-driven devices by allowing a more stable emission wavelength with drive current. 

The approach for creating nanostructures that combines top-down-etching with bottom-up 

growth shows great promise for the fabrication of deep-UV LEDs based on core-shell 

nanostructures due to the flexibility of creating cores with a wide range of AlxGa1-xN alloy 

compositions and the controllability of creating regular arrays with a high degree of diameter and 

height uniformity. Such LEDs will have application, for example, in water and air sterilisation. 

METHODS 

Displacement Talbot Lithography Patterning. Commercial AlN templates (Nanowin) were 

spin-coated at 3000 rpm with a bottom antireflective layer (BARC) (Wide 30C, Brewer Science) 

to obtain a layer thickness of 290 nm, followed by a 240 nm layer of positive photoresist (Ultra-i 

123, Dow Electronic Materials). We used Displacement Talbot lithography (DTL) (PhableR 100, 

Eulitha) to expose the photoresist with a ~375 nm laser source through a conventional photomask 

comprising 800-diameter holes in a hexagonal arrangement with a 1.5 µm pitch. The initial 

proximity gap was set to 150 μm and the displacement during exposure was 71.2 μm, 

corresponding to eight Talbot lengths. After exposure, a post-exposure bake for 1 min 30 sec at 

120 °C was applied before development in MF-CD-26. Figure S1 shows the 260 nm diameter 

openings achieved after the DTL patterning process. 

AlN Nanorod Array Fabrication.  An electron-beam evaporator was used to deposit 10 nm of 

Au and 200 nm of Ni on the AlN wafer to create metal masks in the circular opening at the AlN 

surface. The positive resist and wet-developable BARC was used to create a lift-off profile with 

MF-CD-26 developer and the AlN wafer cleaned in a 2 min reactive-ion etching (RIE) oxygen 
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plasma to remove any BARC residue prior to evaporation. The resulting ~250 nm Au/Ni dots after 

lift-off are displayed in Figure S2. AlN nanorods were then created using an inductively coupled 

plasma (ICP) dry etcher (Oxford Instruments System 100 Cobra) using conditions reported 

previously.38 Any passivation layer on the slightly undercut nanorod sidewalls (Figure S3.a) was 

then removed in buffered oxide etchant prior to further wet-etching in AZ400K potassium-

hydroxide-(KOH)-based developer to further smooth and shrink the diameters of the nanorods 

(Figure 1.a and S3.b). Finally, the Ni mask was removed in HCl:HNO3, 3:1. 

Faceting regrowth of AlN nanorods by MOVPE. The bottom-up regrowth of AlN and AlGaN 

was carried out in a 1 x 2” horizontal Aixtron MOVPE reactor. The employed growth parameters 

are summarised in Table 1. The growth conditions to satisfy a smooth and straight AlN faceting 

regrowth follow our previous report,38  and summarized here: a growth temperature of 1100 °C, a 

pressure of 20 mbar, 10 sccm in TMAl flow rate, 4000 sccm in NH3 flow rate (V/III ratio of 30554) 

and H2 as the carrier gas. AlGaN single quantum well (SQW) growth was performed for three 

different conditions: for AlGaN SQW 1, depicted in Figure 3 and 4, a growth temperature of 1100 

°C, a pressure of 20 mbar, 10 sccm in TMAl flow rate, 2 sccm in TMGa flow rate, 500 sccm in 

NH3 flow rate (V/III ratio of 1638) and H2 as the carrier gas; for AlGaN SQW 2, depicted in Figure 

5a, b and c, a growth temperature of 1050 °C, a pressure of 100 mbar, 10 sccm in TMAl flow rate, 

2 sccm in TMGa flow rate, 500 sccm in NH3 flow rate (V/III ratio of 1638) and H2 as the carrier 

gas; for AlGaN SQW 3, depicted in Figure 5d, e and f, a growth temperature of 1050 °C, a pressure 

of 100 mbar, 10 sccm in TMAl flow rate, 10 sccm in TMGa flow rate, 500 sccm in NH3 flow rate 

(V/III ratio of 499) and H2 as the carrier gas. The AlN cap layer was grown with the same 

conditions as the AlN faceting regrowth step.  
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Growth step Temperature 

(°C) 

Pressure 

(mbar) 

NH3 

(sccm) 

TMAl 

(sccm) 

TMGa 

(sccm) 

V/III ratio 

AlN faceting 1100 20 4000 10 x 30554 

AlGaN SQW 1 1100 20 500 10 2 1638 

AlGaN SQW 2 1050 100 500 10 2 1638 

AlGaN SQW 3 1050 100 500 10 10 499 

AlN cap 1100 20 4000 10 x 30554 

Table 1. Growth parameters employed for the different samples 

Structural Characterisation. Scanning electron microscopy (SEM) was used to monitor the 

fabrication process and determine the morphology and dimensions of the structures, using a 

Hitachi S-4300 SEM. The morphology and chemical information of AlGaN/AlN core-shell 

structures were investigated using a JEOL 2100 200 kV TEM. The core-shell nanorods used for 

TEM observations were mechanically removed from the wafer and deposited on a carbon grid, 

hence no mechanical-polishing or focused ion beam thinning has been performed.   

Optical Characterisation. Cathodoluminescence hyperspectral imaging measurements were 

carried out on the AlGaN/AlN core-shell nanorods at room temperature in a modified FEI Quanta 

250 field emission scanning electron microscope. The electron beam energy was set to 15.0 keV 

and the beam current to ~7 nA. A reflecting objective (NA 0.28) with its axis perpendicular to the 

electron beam collected the light and focused it on the 50 μm entrance slit of the spectrograph 
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using an off-axis paraboloidal mirror. The spectrograph had a focal length of 125 mm, and the 

diffracted light from the 600 lines/mm grating was focused onto a cooled electron-multiplying 

charge-coupled device (EMCCD) detector. 
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