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ABSTRACT
Doublet line emission and absorption is common in astronomical sources (e.g. [OIII],
[OII], NaD, MgII). In many cases, complex kinematics in the emitting source can
cause the doublet lines to merge, making characterisation of the source kinematics
challenging. Here, we present a non-parametric method for resolving merged doublet
emission when the line ratio and wavelength difference is known. The method takes as
input only the line ratio and wavelength difference, using these quantities to resolve the
components of the doublet without resorting to fitting (e.g. using multiple Gaussians)
or making any assumptions about the components’ line profiles (save that they are the
same for both components). The method is simple, fast and robust. It is also ideal for
visualisation. We show that the method recovers line profiles of merged emission lines
in simulated data. We also show, using simulated data and mathematical analysis, that
the method does not significantly increase noise levels in the extracted lines, and is
robust to background contamination. We demonstrate the strength of the method by
applying it to strongly merged [OIII] 5007/4959 Å in Active Galactic Nuclei (AGN).
A python implementation of the method is provided in the appendix.

Key words: line: profiles – methods: analytical – ISM: jets and outflows – ISM:
kinematics and dynamics – stars: kinematics and dynamics

1 INTRODUCTION

Complex kinematics are common in astronomical objects
(e.g. Mullaney et al. 2013; Zakamska & Greene 2014; Za-
kamska et al. 2016), with extremely asymmetric and non-
Gaussian profiles ubiquitous. A non-parametric classifica-
tion of such kinematics from emission or absorption lines
using, for example, skew, kurtosis or percentiles can be used
to quantify the kinematic structure of the emitting gas.

In many cases, the analysis of emission or absorption
lines is complicated by the fact that many common atomic
lines are observed as doublets, e.g. [OIII] 5007/4959 Å, [OII]
3727/3730 Å, MgII 2796/2803 Å, NaD 5892/5898 Å, CaH/K
3935/3970 Å. High velocities can cause the line profiles to
merge (see e.g. Greene et al. 2012; Zakamska & Greene 2014;
Zakamska et al. 2016). And while simple kinematic struc-
tures can be fit using Gaussian mixture models (e.g. Mul-
laney et al. 2013), reconstructing extremely complex line
profiles requires a large number of free parameters. More-
over without careful fitting procedures, continuum emission

? c.villforth@bath.ac.uk

can throw off fits using multiple components, especially in
noisy data. Fitting can therefore be challenging when ap-
plied to large samples.

A non-parametric approach to decompose doublet emis-
sion is therefore valuable for recovering the underlying line
profiles for further analysis. Methods for decomposing dou-
blet line profiles by exploiting symmetry in the different lines
are known in the literature (e.g. Junkkarinen et al. 1983).
However no general mathematical framework for this ap-
proach is known.

In this paper we focus on the general problem of
merged doublet lines, and introduce and test a simple non-
parametric method for resolving merged doublet line profiles
when the line ratio and wavelength difference is known. The
method is a fast, simple alternative to parametric fitting
techniques and requires as an input only the line ratio and
wavelength separation. No estimate of the line shape is re-
quired. The method is introduced in Section 2; as an example
application, the method is applied to strongly-merged [OIII]
5007/4959 Å doublets in Active Galactic Nuclei (AGN) in
Section 3 and compared to a commonly used fitting ap-
proach; we discuss practicalities associated with using the

© 2018 The Authors
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Figure 1. Simulations showing the performance of the method. Left: Application of the method to noise-free merged Gaussian emission

lines for different numbers of iterations (order of the transform). Individual lines are shown in grey, and the fully-merged emission line is
shown in dashed grey. The transformed data from orders 2, 3, and 10 are shown as cyan, orange and dark red dashed lines, respectively.

The transform is well converged to the underlying line profile at order 10. Right: same as upper left, but with noise added to data. In

both cases, the line ratio of the simulated doublet is R = 1/3, the separation between the lines is δ = 1 and the width of each line is
σ = 0.5. The noise added in the right panel is Gaussian with σnoise = 0.01.

method in Section 4; and a summary of our findings, as
well as possible use cases, and caveats and limitations of the
method, are provided in Section 5. An implementation of the
method in Python is given in Appendix A, and discussion
and derivations supplementary to the main text are given in
Appendix B.

2 METHOD

Here, we describe the method used for doublet decomposi-
tion. The basic idea is that, since the line profiles are iden-
tical, one of the lines can be removed by subtracting the
profile of the other. The method shifts the full line profile,
multiplied by the line ratio R, by the wavelength difference δ
and subtracts it from the data. This is repeated for a number
of iterations. The continued iterations effectively correct for
the fact that the full line profile, rather than an individual
line profile, is used for subtraction. We will show below that
this simple procedure of shifting and subtracting the data
recovers the underlying line profile correctly. A visualization
of the method is shown in Fig. 1 (left panel).

We emphasise that the method makes no assumption re-
garding the underlying line profile, and hence is valid for any
line profile. Furthermore, we will show later in Section 4.2
that continuum emission which can be approximated as lin-
ear across the wavelength range of interest does not affect
the performance of the method. Emission lines not associ-
ated with the doublet, however, should be removed before
the method is applied. Nevertheless we have examined the
effect of line contamination, and discuss this topic later in
Section 4.5.

We will now explain the method in detail. Let y(x) de-
note the flux observed at wavelength x (i.e. the signal). This
can be expressed as

y(x) = f1(x) + f2(x), (1)

where f1(x) and f2(x) are the two lines which make up the

doublet, and we have ignored contributions such as noise and
interference from the tails of other lines near the doublet –
we discuss such complications later. The assumption which
underpins our method is that the two lines which make up
the doublet are similar in the geometrical sense, i.e. line 1
can be obtained from line 2 by rescaling the former, then
shifting the rescaled line along the x-axis by some amount.
This can be expressed mathematically as follows: the two
lines, f1(x) and f2(x), are defined to be similar if there exists
an R and δ such that

f2(x) = R f1(x + δ). (2)

Note that R is the line ratio of line 2 relative to line 1, and
δ is the x position of peak 1 relative to peak 2 (i.e. the
wavelength difference between the two lines); if peak 1 is
centred at x = 0, then peak 2 will be centred at x = −δ.
In other words R is the line ratio and δ is the wavelength
difference of the two peaks which make up the doublet. 1

Our method is to apply a transformation to y(x) which
yields f1(x). Once f1(x) has been obtained in this manner,
f2(x) can then be obtained trivially by applying Eqn. (2).
The shape of each single line can then be analyzed in detail.
The transformation is as follows, where g(x) is an arbitrary
function and g̃(x) denotes its transform (we use the notation
g̃ to denote the transform of a function g throughout this
work):

g̃(x) ≡
∞∑

m=0
(−1)mRmg(x + mδ). (3)

Note that the transformation involves superimposing copies
of the function g(x), scaled by factors 1 ,−R, R2, −R3, . . .

1 Note that that R and δ reflect the intrinsic properties of the

two lines, and not their manifestations in the doublet y(x). E.g.
if the doublet y(x) exhibits two local maxima, then R does not

necessarily correspond to the relative heights of these maxima,

nor does δ necessarily correspond to their separation.

MNRAS 000, 1–13 (2018)
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Figure 2. Application of the transform to merged [OIII] emission for a number of SDSS AGN with strongly merged [OIII] emission.
The data was background-subtracted before applying the transform. We assumed a line ratio R = 1/3. For comparison, fits with two and

three pairs of Gaussians are shown as dotted and dash dotted black lines respectively. For the fit, we show the solution for the main line,
rather than the full doublet for better comparison with the result from the transform; note that fits are performed for the full doublet.

(which correspond to m = 0, 1, 2, 3, . . . ), at respective posi-
tions x = 0, δ, 2δ, . . . ; we emphasise that R and δ enter into
the transformation. Proof that applying the transformation
to y(x) yields f1(x), i.e. that

ỹ(x) = f1(x), (4)

is provided in Appendix B1.
With the above in mind we can restate our key result.

The transformation, Eqn. (3), can be used to extract the
two lines which make up a doublet, assuming the doublet
is known to be composed of two similar peaks (Eqn. (2)),
and the line ratio and wavelength difference are known. Note
that the method requires shifting spectra in wavelength, if
the sampling of the data does not match the shift applied;
interpolation of data points is required.

This is demonstrated in Fig. 1 (left panel), where the
method is used to resolve a simulated doublet with R = 1/3,
δ = 1 and a Gaussian underlying line shape with width σ =

0.5. We use this simulated doublet to test the performance
of the method later in Section 4.

We will now apply the method to astronomical data
(Section 3) and then discuss considerations for the use of
the method in Section 4.

3 EXAMPLE APPLICATION: OUTFLOWS IN
TYPE 2 AGN

To show the strength of the method, we now apply the
method to astronomical data. However, as outlined in Sec-
tion 2, the method is generally applicable to doublet lines:
the method is not just limited to the specific application
considered in this section. For instance, here we apply the
method to emission lines, although it is also applicable to
absorption.

As a test case, we chose AGN with asymmetric
[OIII] 5007/4959 Å emission. The lines are separated by
∼ 3000 km s−1. The [OIII] emission in AGN traces the
narrow-line region (NLR). The NLR represents the extended
gas ionised by emission from the AGN (Antonucci 1993; Urry
& Padovani 1995). The NLR size correlates with the lumi-
nosity of the AGN and has a size between 10 − 104 pc (e.g.
Schmitt et al. 2003; Liu et al. 2013). Outflows are common
in the NLR and are observed through blueshift with respect
to the host galaxy, strong asymmetries in the emission lines
(e.g. Crenshaw et al. 2009; Bae & Woo 2014), and detailed
kinematic modelling of spatially resolved NLRs (e.g. Rupke
& Veilleux 2011; Crenshaw et al. 2014; Carniani et al. 2015).

MNRAS 000, 1–13 (2018)
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Figure 3. Effect of the fact that the wavelength does not directly onto the velocity. The example simulates typical [OIII] 5007/4959

doublets, the test case for this method. The left panel shows a line width of 500 km s−1. Minimal residuals in the tail of the line are
apparent. The right panel shows a well merged doublet, where no residuals are seen as a result of the use of wavelength instead of velocity.

The line ratio of the simulated doublet is 1/3, the separation between the lines is δ = 1 and the width of each line is σ = 0.5.

Asymmetries in the observed narrow lines are common since
dust in the NLR obscures part of the emission from the out-
flow, causing line profiles with blueshifted wings (e.g. Mul-
laney et al. 2013; Zakamska et al. 2016). These outflows form
part of a multiphase outflow seen in different gas phases (e.g.
Cicone et al. 2012; Aalto et al. 2012; Rupke & Veilleux 2011;
Rupke et al. 2005; Rupke & Veilleux 2013; Liu et al. 2013,?).
The velocity and radial extent of these outflows can be used
to estimate outflow rates which can in many cases be well in
excess of star formation rates in the host galaxy (e.g. Car-
niani et al. 2015). The physics of the large-scale outflows
seen in AGN is still under investigation (e.g. Fabian 2012;
Faucher-Giguere & Quataert 2012), but it is widely believed
that such outflows can have a profound effect on the host
galaxy by removing gas or terminating star formation in the
host galaxy through so-called AGN feedback (e.g. Di Matteo
et al. 2005; Hopkins et al. 2008; Fabian 2012, and references
therein). Studying narrow-line region kinematics, especially
at the highest velocities most affected by merged doublet
lines (Zakamska & Greene 2014; Zakamska et al. 2016), is
therefore of great interest for galaxy evolution studies. NLR
emission in AGN is therefore a test case in which line pro-
files show complex kinematics and cannot be easily approx-
imated by parametric fits, and the wings of the lines trac-
ing the highest velocities are of great interest. The method
presented here is therefore ideally suited for this case since
it allows decomposition of merged doublets irrespective of
the shape of the two lines, even when they are merged (see
Fig. 1).

A detailed review of the physics of outflows from both
AGN and starburst is beyond the scope of this paper; we
refer the reader to the literature for a detailed treatment of
the physics of outflows (e.g. Heckman et al. 1990; Faucher-
Giguere & Quataert 2012; Fabian 2012; Heckman & Thomp-
son 2017, and references therein).

Here, we apply the method to AGN with a range of
narrow line kinematics. Spectra are taken from the Sloan
Digital Sky Survey (SDSS) (Abazajian et al. 2009) covering
the rest frame wavelength range 3800–9200 Å and have a

spectral resolution of Rspec ≈1850–2200. We selected Type
2 AGN to avoid contamination from iron emission (e.g. Ko-
vacevic et al. 2010; Vestergaard & Wilkes 2001) or broad H β

emission, since a contaminating line is a complication which
the method was not designed to account for. We discuss the
effect of a contaminating line on the results of the method
in more detail in Section 4.5.

We applied the method to AGN for which [OIII] is in
the SDSS spectral window (Z ≤ 0.7) and a significant detec-
tion of [OIII] is present, leaving > 1000 spectra, depending
on the cut-off used for [OIII] detection. Of those, a large frac-
tion were visually inspected to check for obvious residuals;
the transform was found to be robust. Here we present, for
the sake of brevity, results for only four of the AGN we con-
sidered, chosen to exhibit a range of line profiles, thus illus-
trating that the method works irrespective of the underlying
line shape. Specifically, we choose three sources showing the
strongly skewed emission lines to illustrate the performance
of the transform for merged emission lines. The chosen ob-
jects show a range of S/N, illustrating the performance of
the transform under different levels of noise. Additionally, we
show a double-peaked [OIII] emitter to demonstrate that the
method recovers even complex line profiles without residu-
als.

Before applying the method, continuum emission was
removed by locally fitting a linear function, and then sub-
tracting the continuum. Having a (flat) non-zero continuum
contribution does not adversely affect recovery of the emis-
sion line shapes (see Section 4.2, Fig. 4); the transform was
applied to non-continuum subtracted data as well and shown
to be reliable. We show the continuum subtracted data to
allow better assessment of the residuals.

The aforementioned four [OIII] doublets, as well as the
results of applying the transform to them, are shown in
Fig. 2. The [OIII] doublets are significantly merged in some
of the cases shown here. The transform separates the two
lines, revealing the underlying line shape. Note that the
transform does not alter the peak of the line. The trans-
form allows recovery of the tail of the line, revealing the

MNRAS 000, 1–13 (2018)



Resolving merged doublet lines 5

high-velocity structure in the outflow. The example of the
double-peaked emission line (bottom left panel) shows that
the transform can recover even complex line shapes reliably.
The method therefore enables study of the complex kine-
matics in powerful outflows without having to rely on fitting
models with a large number of free parameters.

For comparison, the results of applying a conventional
fitting procedure to resolve the doublets are also shown in
Fig. 2. The fitting procedure we employed is similar to those
commonly employed in the field, and involved modelling
each line of the doublet as either two (similarly to e.g. Mul-
laney et al. 2013) or three Gaussians, with the line ratio and
wavelength difference of the lines coupled and fixed. The
standard scipy function curve_fit was used for minimisa-
tion.

The top row in Fig. 2 corresponds to the most strongly-
merged doublets. It is not obvious what the ‘true’ underlying
line shape is for these cases. Hence we first discuss weakly-
merged doublets in the figure (bottom row), where the un-
derlying line shape is more ‘obvious’. Here we see that the
line shapes obtained from the transform appear correct: they
are in excellent agreement with those of the 5007 Å line. By
contrast, the two-Gaussian-component fits fail to reproduce
key features of the line shape. While the three-component
fits reproduce the line shape better, significant convergence
issues start to emerge; all four doublets required the starting
parameters to be modified to achieve converged fits. With
regards to the strongly-merged doublets (top row), similarly
to the weakly-merged doublets, the transform yields a line
shape which closely resembles that of the 5007 Å line, while
obtaining reasonable-looking fits with the fitting procedure
is more difficult. Additionally, for the noisier line profile
(upper left), the three-component fitting procedure required
considerable modification of starting parameters to achieve
a good fit. By contrast the transform performs equally well
for lower S/N data. This can be difficult to achieve in large
samples.

This comparison highlights the key strength of the
transform over conventional fitting procedures: it reproduces
line shapes without the need for carefully choosing input pa-
rameters or dealing with issues such as convergence or choice
of initial conditions which bedevil conventional fitting proce-
dures. The transform also remains robust for lower S/N data
that can be challenging for modeling. Moreover the trans-
form involves only a single operation on the data array per
order, regardless of the complexity of the line shape. Hence
the transform will outperform fitting procedures which in-
volve optimisation over many free parameters – we note that
using many free parameters are necessary to capture com-
plex line shapes.

All further applications of the transform in this work
are to simulated data, which has the advantage over real
data that the correct solution is known. Simulated data thus
affords a more rigorous test of the transform. Specifically,
we test the performance of the transform in the presence
of continuum contamination, line contamination, noise and
when the line ratio has an error.

4 CONSIDERATIONS FOR USE OF METHOD

The transformation defined in Eqn. (3) can be applied to a
doublet y(x), comprised of two merged, geometrically sim-
ilar lines, in order to extract the individual lines f1(x) and
f2(x). We showed in Fig. 1 that this method recovers ideal,
noise-free data. In this section, we will discuss the numerical
implementation of the method, as well as the effect of issues
in real data: specifically, contamination from noise, back-
ground, and errors in the line ratio R and peak separation
δ.

It should be noted that the spectra this method will be
applied to are given either as a function of wavelength or
frequency. Earlier, we explicitly assumed that the lines were
geometrically similar in wavelength. The emission lines are,
however, similar in velocity v, not wavelength λ. Now, for
a source with rest wavelength λrest, the mapping between
observed wavelength λ and source velocity v is given by (for
v � c)

λ =
( v

c
+ 1

)
λrest (5)

where c is the speed of light. Hence, since the two lines have
different values of λrest, there is no mapping between λ and
v common to both lines. A result of this is that if the two
lines are geometrically similar in velocity then they are not
geometrically similar in wavelength, and vice versa. Hence
our earlier assumption of similarity in wavelength, which
underpins the transform, is invalid. However, the transform
remains valid for all intents and purposes if λ1 ≈ λ2. This
is shown in Fig 3, where doublets, geometrically similar in
velocity, have been transformed into the wavelength frame
before the transform is applied to extract the underlying
line shape. It can be seen from the figure that the resulting
residuals are minimal if the velocity separation of the line
is comparable to the width of the line (right panel), and
only become noticeable for line widths much smaller than
the separation (left panel). Even in this case, the errors are
negligible (∼ 1% for a realistic case shown in Fig. 3) and
affect only the tail of the lines. These results imply that if
the method is to be used for doublets comprised of well-
separated lines, each line should separately be transformed
to the velocity frame. However, the case of very well sep-
arated lines is not the intended use case of this transform,
and discussion of this is beyond the scope of this paper.

We now discuss how limitations such as noise, back-
ground, and errors in the assumed line ratio, affect the per-
formance of the transform.

4.1 Truncation and convergence

As can be seen from its definition, Eqn. (3), the transforma-
tion involves an infinite number of iterations. Each term m in
the sum corresponds to a shifted and scaled version of g(x),
with Rm the scale factor and mδ the shift applied to g(x).
In numerical implementations of the transformation, it is of
course necessary to truncate the infinite summation. We re-
fer to the term m = M at which the summation is truncated
as the order, i.e. terms in Eqn. (3) with m > M are omitted.
Thus in numerical implementations Eqn. (3) becomes

g̃(x) ≡
M∑
m=0
(−1)mRmg(x + mδ). (6)

MNRAS 000, 1–13 (2018)
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Figure 4. Simulations showing the performance of the transform for imperfect background subtraction. Left: A linear background has

been added to the signal (the model doublet, described in the main text). Right: Data to which the transform has been applied, identical
to the data in the left, but with the background is fit and subtracted. The extracted line shapes are correct, regardless of the presence of

a linear background in the signal. The line ratio of the simulated doublet is 1/3, the separation between the lines is δ = 1 and the width

of each line is σ = 0.5.

We henceforth assume that the transform is defined by the
above equation as opposed to Eqn. (3).

For application to the data, we therefore need to know
by which M the calculation should be truncated so that con-
vergence is achieved. Recall that convergence and the order
of the transformation have been demonstrated in Fig. 1 (left
panel). This doublet was designed to be representative of
real-world [OIII] doublets (see Section 3). We use the same
doublet when we examine the effects of background, noise,
and uncertainty in R and δ below.

Fig. 1 shows the working of the method, as described
in Section 2: the data is shifted and subtracted from itself,
the increasing iterations correcting for the over-subtraction
(which gives rise to the residuals shown in the inset fig-
ure). As can be seen from the figure, the transform corrects
for residuals of the previous iterations further and further
from the peak of the main line. Choosing a particular or-
der M means that the transform is converged over a wave-
length range ≈ Mδ downstream from the main line (where
downstream means in direction of the minor line). The order
should therefore be chosen keeping in mind the wavelength
range of interest. Similarly, to avoid edge effects, if applying
the transform to the order of M, a background of width Mδ

should be included (this is discussed in detail in Section 4.2).

Note that the transform converges only for R < 1. The
main line should therefore always be chosen so that the line
ratio is smaller than one, which can be achieved by reorder-
ing the lines. R = 1 constitutes a special case. Here, the trans-
form does not converge since, unlike for the case of R < 1,
successive iterations always perform corrections of the same
magnitude. However, the transform still yields converged re-
sults over a wavelength range Mδ from the peak of the main
line. Choosing a suitable M, as described generally above, is
therefore of greater importance for R = 1.

In summary, the order M should be chosen keeping in
mind the wavelength range ∆λ of interest so that ∆λ ≈ Mδ

(Mδ both up- and down-stream of the main line).

We emphasise that due to the simplicity of the method,

computation time is minimal, irrespective of order. Further-
more, note that while we have modelled the line shape here
as a Gaussian, we emphasise that our method is general in
that it works for any line shape; the method makes no as-
sumption about the underlying line shape, e.g. that it is a
Gaussian.

4.2 Continuum contamination

Generally, spectral data will have a non-zero continuum.
This can be fit for and subtracted, but residuals are likely
to remain. Here, we discuss how continuum contamination
affects the performance of the transform. In the following we
refer to continuum contamination from any source as back-
ground.

To account for noise or a background, Eqn. (1) can be
generalised to

y(x) = f1(x) + f2(x) + η(x), (7)

where η(x) describes the contribution to the observed dou-
blet due to noise and a background. We now investigate how
the addition of η(x) affects the ability of the transform to ex-
tract the singlet f1(x) (Eqn. (4)).

We begin with a general result. Applying the transform
to Eqn. (7), and exploiting Eqn. (4) and the linearity of the
transform (see Appendix B2), it follows that

ỹ(x) = f1(x) + η̃(x). (8)

Hence if the doublet exhibits noise or a background, then
applying the transform still obtains the singlet f1(x) but with
the transform of the background, η̃(x), added to it.

Ideally the background would be perfectly subtracted
before the transform is applied to the doublet. If it is not, we
can generally approximate the background as linear across
the doublet. For this reason we now consider how the pres-
ence of a linear background affects the results. A linear back-
ground corresponds to η(x) = Ax+C, where A and C are con-
stants, and in Appendix B3 it is shown that its transform is

MNRAS 000, 1–13 (2018)



Resolving merged doublet lines 7

given by

η̃(x) = A′x + C′, (9)

where

A′ = A
1 − (−R)M+1

1 + R
(10)

and

C′ = C
1 − (−R)M+1

1 + R
−Aδ

R
(1 + R)2

[
1+M(−R)M+1−(M+1)(−R)M

]
.

(11)

(Recall that M is the order of the transform; see Eqn. (6)).
Hence a linear background becomes a linear background in
the transform, albeit shifted and rescaled such that the gra-
dient A′ and intercept C′ differ from the background in the
raw data.

Crucially, the nature of the line obtained from the trans-
form is unaffected by the presence of the linear background;
the shifted and rescaled background is simply added to the
singlet f1(x) extracted from the transform. Thus f1(x) (and
hence f2(x) via Eqn. (2)) can be extracted from ỹ(x) by sub-
tracting the transformed background (see Eqn. (8)).

Fig. 4 shows the effect of applying the transform to our
model doublet in the presence of a linear background. As can
be seen from the left panel of Fig. 4, applying the transform
to the data yields the single line plus a linear background
with a different gradient and intercept, as predicted by the
above equations. Note, however, that there are edge effects
due to the fact that the simulated array is not of infinite
length; for increasing orders of the transform, we observe
edge effects due to the fact that the shifted data contains no
information beyond the limit of the data, and this boundary
is shifted further and further left. This effect is visible only
when a non-negligible background is present. This should be
taken into account when choosing the wavelength range as
well as the order M of the transform (see also Section 4.1).
Specifically, if applying the transform with order M, a back-
ground of width Mδ should be included upstream to avoid
the edge effect adversely affecting features of interest.

In the right panel of the figure the linear background
in the transformed data has been fit and removed, leaving
a single line which is indistinguishable from the ‘true’ line.
Imperfect background subtraction therefore does not affect
the transform. The transform is robust to background con-
tamination.

4.3 Noise

Noise will be present in all astronomical datasets. We now
consider the effect of noise. Specifically, we consider Gaus-
sian additive noise: η(x) is a random variable with mean 0
and variance σ2, i.e. 〈η(x)〉 = 0 and 〈η(x)2〉 = σ2 for all x. In
this case it can be shown (see Appendix B4) that, for all x,
the mean and variance in η̃(x) are given by

〈η̃(x)〉 = 0 (12)

and

〈η̃(x)2〉 = σ2
[
1 − R2(M+1)

1 − R2

]
(13)

respectively, where we have assumed that R < 1. Eqns. (12)
and (8) imply that Gaussian additive noise does not ‘distort’
the singlet obtained from the transform:

〈ỹ(x)〉 = f1(x). (14)

However Eqn. (13) implies that the fluctuations in the noise
are always magnified by the transformation, with larger
magnifications as M is increased (with a limiting value of
1/(1 − R2) as M → ∞) or as R approaches 1. Though, as
mentioned above, this does not affect the shape of the single
line obtained from the transform, and thus Gaussian addi-
tive noise will not cause biases in line shape analysis. To re-
state, the transformation will recover the correct line shape
in the presence of Gaussian additive noise (and assuming
no other complications such as contamination from other
emission lines, e.g. contamination from other emission lines)
regardless of the signal-to-noise ratio.

For R = 1 Eqn. (12) still applies, but 〈η̃(x)2〉 is instead
given by (see Appendix B4)

〈η̃(x)2〉 = σ2(M + 1). (15)

This diverges as M → ∞. However, this problem is
sidestepped since, as discussed in Section 4.1, in practice
we consider only a finite wavelength range, and hence it is
sufficient to use a finite M.

However, while Eqns. (13) and (15) imply that the mag-
nitude of the the noise in the transform is the same for all
x, these equations have been derived assuming the presence
of noise at all wavelengths. In practice we would be consid-
ering a finite wavelength range, and the obvious course of
action is to assume that there is no noise outwith the con-
sidered range. In this case noise is not present at all wave-
lengths, and Eqns. (13) and (15) break down. The result is
that 〈η̃(x)2〉 becomes x-independent. This is an edge effect
which could significantly complicate the task of correctly fit-
ting the underlying line shape. This problem can, however,
be sidestepped by using a sufficiently large wavelength range
so that the line shape is converged before the distance Mδ is
comparable to the distance from the main peak to the edge.

In Fig. 1 (right panel) the transform is applied to
our model doublet, but with noise with standard deviation
σnoise = 0.01 added to the data. Crucially, the underlying
line shape is still recovered reliably despite the noise. More-
over, as in the noise-free data, M = 10 is sufficient to obtain
converged results. As mentioned above, the magnitude of the
noise will be magnified by the transform. For the R, δ, M
and σnoise in the simulated data, Eqn. (13) predicts that the
noise in the transformed data will have standard deviation
σ̃noise = 0.0106, which corresponds to a 6% magnification.
This increase is too small to be noticeable in the figure. Fur-
ther results for the case R = 1, where the magnification in
the noise is substantial, are presented in Appendix B5.

4.4 Uncertainty in line ratio and peak separation

The appropriate values of R and δ to use in the transform
(Eqn. (6)) might not be known exactly. Hence it is desirable
to know the effect of applying the transform with slightly
incorrect values of R and δ. In practice the line separation
will be known to a high accuracy; it is the line ratio which
has the dominant source of uncertainty. Hence we focus on
the effect of uncertainty in R here.

MNRAS 000, 1–13 (2018)



8 Villforth et al.

0 2 4 6 8 10
Wavelength [arbitraty]

0.0

0.2

0.4

0.6

0.8

Fl
ux

 [
ar

bi
tr

at
y]

Individual Doublet Lines
Doublet Emission
Transform: order 2
Transform: order 3
Transform: order 10

4 5 6
0.025

0.000

0.025

0.050

0 2 4 6 8 10
Wavelength [arbitraty]

0.0

0.2

0.4

0.6

0.8

Fl
ux

 [
ar

bi
tr

at
y]

Individual Doublet Lines
Doublet Emission
Transform: order 2
Transform: order 3
Transform: order 10

4 5 6
0.025

0.000

0.025

0.050

Figure 5. Effect of applying the transform with an incorrect line ratio R. The left panel corresponds to a 5% error in R, the right one a

10% error. In both cases the ‘true’ line ratio of the simulated doublet is 1/3, the separation between the lines is δ = 1, and the width of
each line is σ = 0.5.

Fig. 5 shows the effect of applying the transform to our
model doublet, but using slightly ‘wrong’ values of R, namely
5% and 10% above and below the true value of R. It is clear
from the figure that the effect of using slightly incorrect
values of R here is small. To elaborate, here, when the order
of the transform is sufficiently high to yield convergence (i.e.
by order M = 10), using a value of R which differs from the
true value by 10% yields errors with magnitude . 2% of the
maximum in the doublets. However, such small errors may
not result for all doublets. To facilitate further investigation
of this, equations quantifying the effect of using incorrect R
and δ in the transform are provided in Appendix B6.

4.5 Contamination from emission lines

Doublet emission might be contaminated by unassociated
line emission, either from the astrophysical source itself or
from sky emission. The resulting transform will consist of
the transform of the doublet, with the the transform ap-
plied to any contaminating line emission superimposed on
top of it. (This follows from the linearity of the transform;
see Appendix B2). In other words, the contaminating line
will be shifted and subtracted from the dataset, resulting in
residuals in the transform with separation δ and amplitude
R times the original amplitude of the contaminating line.

This is illustrated in Fig. 6, for cases of broad (left
panel) and narrow (right panel) contaminating lines with
10% flux of the main line. It can be seen that the residu-
als resulting from the broad contaminating line are minimal;
while the transform does not remove the contaminating line,
it does not increase the error resulting from contamination
further. By contrast the narrow contaminating line intro-
duces noticeable residuals at intervals of δ from the location
of the contaminating line, which decrease in amplitude with
distance from it. As for the broad line, the transform does
not remove the narrow contaminating lines. The transform
will therefore result in a residual in the presence of line con-
tamination, but the amplitude of this is always smaller or
equal to the initial line.

All of the above observations should be borne in mind

if the transform is to be applied in the presence of contami-
nated line emission.

5 SUMMARY AND DISCUSSION

Here, we have presented a method (Section 2) that allows
the non-parametric separation of merged doublet emission
lines when the line ratio is known. The method is generally
robust for noisy data and recovers the emission line with high
precision without introducing significant noise (Section 4).
The transform is also robust to background contamination.

More specifically, we have presented mathematical
derivations and simulation results which show that the
method is robust in the presence of a linear background
(Section 4.2), and does not inflate noise considerably (Sec-
tion 4.3) unless the line ratio is close to 1. The method is
also numerically fast, enabling it to be easily applied to large
datasets for further processing without the need to fit emis-
sion lines. Another appealing feature of the method is that
it is easily implemented; python source code is included in
Appendix A. We have also applied the method to extreme
AGN-driven outflows (see Section 3, Fig. 2) and show that
it allows line shapes to be recovered, including the scien-
tifically interesting high-velocity wings that trace the most
high-velocity structures in the outflow.

To conclude this paper we summarise the requirements
for reliable use of of the method, and suggest possible future
applications.

5.1 Requirements for use of method

The method presented here can be a powerful tool for de-
composing doublet emission. However the following limita-
tions should be kept in mind when applying the method.

• Sampling: The data needs to be sampled appropriately
both for any features to be recovered as well as the wave-
length difference δ.
• Noise levels and S/N: For low values of R, noise is only

mildly increased by the transform. The noise levels in the

MNRAS 000, 1–13 (2018)



Resolving merged doublet lines 9

0 2 4 6 8 10
Wavelength [arbitrary]

0.0

0.2

0.4

0.6

0.8

Fl
ux

 [
ar

bi
tr

ar
y]

Doublet Lines
Doublet Emission
Contamination
Transform: order 2
Transform: order 3
Transform: order 10

0 2 4 6 8 10
Wavelength [arbitrary]

0.0

0.2

0.4

0.6

0.8

Fl
ux

 [
ar

bi
tr

ar
y]

Doublet Lines
Doublet Emission
Contamination
Transform: order 2
Transform: order 3
Transform: order 10

Figure 6. Simulations showing the effect of line contamination on the transform. As in Fig 1, R = 1/3, σ = 0.5 and δ = 1. We show

two extreme cases, the left panel shows contamination from a line much broader than the doublet line (σ = 1.25) and the right panel
shows contamination from a narrow emission line (σ = 0.1). Both contaminating lines have 10% of the flux in the main line. We see

that the broader emission line does not strongly affect the transform, with the line shape recovered well. The narrow emission line

results in residuals with decreasing amplitude with separations δ, as the transform shifts and subtracts the contaminating line from the
contaminated doublet.

transform diverge as R approaches 1 for infinite number of
iterations in the method M. However, since the wavelength
range ∆λ used in practice is limited, and therefore the num-
ber of iterations required for convergence of the transform is
limited to M ≈ ∆λ/δ, the noise level does not reach infinity.
Noise levels should be considered for low signal-to-noise data
and line ratios R ∼ 1. The increase in noise level is discussed
in Section 4.3 and in more general terms in Appendix B4.
There is therefore no formal signal-to-noise requirement for
the use of the method, and while the transform will increase
noise levels for typical cases (R < 1, M < 10), the increase is
small, only by a few per cent.

• Continuum background subtraction: Flat as well as lin-
ear backgrounds do not affect the transform; see Fig. 4 as
well as Section 4.2 and Appendix B3.

• Line ratios: The line ratio needs to be known; if the
assumed line ratio is incorrect, the transform does not return
the underlying line shape. The error introduced is discussed
in Section 4.4 and in Appendix B6. For small errors ∼ 5% in
the line ratio, the resulting errors in the transform are small
(< 1%; see Fig. 5).

• Special case – line ratio R = 1: In the case of line ratio 1,
the transform does not converge on an infinitely large wave-
length range. However, the transform still converges over a
limited wavelength range. In this case M should be chosen
carefully; see Section 4.1 as well as 4.3.

• Contamination by other emission lines (e.g. FeII or H β

in case of the [OIII] doublet) cannot be accounted for us-
ing the method. However, this limitation equally applies to
any other method that can be used to decompose merged
doublets. The resulting residuals are outlined in Section 4.5.

Under these conditions, the method allows decomposi-
tion of a doublet for further non-parametric characterisation,
such as percentiles or skew measurements. The method also
allows separation of stacked spectra, which might not follow
ideal parametric functions. It allows the direct comparison of
different doublet lines, such as [OIII] and [OII], without re-

quiring a parametrization. The method is also ideally suited
for visualisation purposes for strongly-merged doublets, as
shown in Section 3, Fig. 2. The strength of the method is its
speed and simplicity, which makes it ideal for application to
large samples.

5.2 Future applications

As explained above, the method can be used for any doublet
emission with suitable data. Here we list a few scientific cases
for which the data would be suitable.

• [OII] 3727/3730 Å: This doublet is heavily merged, with
a separation of only ∼ 250 km s−1. [OII] however is used
for kinematic studies at redshifts for which [OII] is shifted
outside of the optical range (Patricio et al. 2018). The line
ratio is insensitive to density above a density threshold of
104 cm−3 and so can be assumed to be fixed for most cases
(Draine 2011).
• MgII 2796/2803 Å is seen in absorption in outflows from

AGN. With a velocity separation of only ∼ 750 km s−1,
merged emission lines can be common. If the emission can
be assumed to be either optically thick or thin, the line ratio
is known (Kovacevic et al. 2010).
• Velocity delay maps are commonly used to study the

kinematics of the broad line region (BLR) of AGN (Welsh
& Horne 1991). BLR lines show complex profiles; for MgII,
where the doublet has a velocity separation of ∼ 750 km s−1,
the doublet causes significant smearing. If the line is opti-
cally thick, the method presented here can be used to de-
compose BLR emission since the line ratio is known.
• Absorption line kinematics: while we have discussed and

visualised the method in terms of emission lines, the method
is equally suitable for absorption-line doublets (such as MgII
or NaD outflows). As for the case of emission lines, contam-
ination from other lines will affect the transform and result
in residuals, see Section 4.5 for details.
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• The transform is also ideal for quick visualisation of
merged doublet emission without requiring fitting.

Naturally, this list is not complete. Moreover, since the prob-
lem of separating doublets comprised of identically-shaped
singlets is encountered in many fields of science, there is the
prospect of the method being applied generally outside of
astrophysics.

In summary, we have presented a simple non-parametric
method for resolving merged doublet emission. The method
is robust to linear background contamination. The method
can be used for a wide range of science cases as well as
visualisation. python code for implementation is given in
Appendix A.
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APPENDIX A: PYTHON IMPLEMENTATION
OF ALGORITHM

The function to implement the transform in Python is pre-
sented below. As an input, the function takes the wavelength
array, the flux array, δ, R, and optionally the order M (de-
noted in the code below as delta, R and order, respectively).
flux.scipy.interpolate is used to interpolate the spec-
trum and allow evaluation of the spectrum after the wave-
length shift is applied. However such interpolation is not an
essential aspect of the method, and it would be possible to
write a function which did not rely on this.

import numpy
import s c ipy . i n t e r p o l a t e

def twin peaks ( wl , f lux , de l ta , R, order =10):
”””
A func t i on to separa t e doub l e t l i n e s .
The ou t f l ow s are not what they seem .
x : input wave length array
y : input f l u x array
d e l t a : o f f s e t between the two l i n e s ,
same un i t as x ( p o s i t i v e i f s ho r t e r
wave length l i n e has lower f l u x )
R: r a t i o (<1) between emiss ion l i n e s ,
order : order to which to co r r e c t for ,
d e f a u l t i s 10 , note t ha t h i gher order
have no e f f e c t i f wave length range i s
s ho r t e r than order ∗ o f f s e t
r e turns : f l u x a f t e r transform
”””
#In t e r p o l a t i o n to a l l ow eva l ua t i on o f the
#spectrum at d i f f e r e n t wave length a f t e r
#s h i f t i n g the array
rawf = sc ipy . i n t e r p o l a t e . in te rp1d ( wl , f lux ,
bounds error=False , f i l l v a l u e =0)

MNRAS 000, 1–13 (2018)

http://dx.doi.org/DOI: 10.1051/0004-6361/201218793; eprintid: arXiv:1204.5881
http://adsabs.harvard.edu/abs/2011piim.book.....D
http://adsabs.harvard.edu/abs/2011piim.book.....D
http://dx.doi.org/10.1088/0004-637X/746/1/86;
http://dx.doi.org/10.1088/0004-637X/746/1/86;
http://dx.doi.org/DOI: 10.1086/191522
http://dx.doi.org/DOI: 10.1086/191522
http://dx.doi.org/10.1086/160653
http://dx.doi.org/10.1086/160653
http://dx.doi.org/10.1088/0067-0049/189/1/15
http://dx.doi.org/10.1088/0067-0049/189/1/15
http://dx.doi.org/10.1093/mnras/stt751
http://dx.doi.org/10.1093/mnras/stt751
http://dx.doi.org/10.1093/mnras/sty555
http://dx.doi.org/10.1093/mnras/sty555
http://dx.doi.org/10.1088/0004-637X/768/1/75;
http://dx.doi.org/10.1086/320357
http://dx.doi.org/10.1086/320357
http://dx.doi.org/10.1093/mnras/stw718
http://dx.doi.org/10.1093/mnras/stw718


Resolving merged doublet lines 11

out f = numpy . z e r o s l i k e ( f l u x )
out f += f l u x
for i in range (1 , order +1):

#Spectrum i s s h i f t e d and added
#to o r i g i n a l da t a s e t .
out f += (−1)∗∗ i ∗ R∗∗( i )

∗ rawf ( wl + i ∗ de l t a )
return out f

We now outline how this function can be applied. As a
first step, the spectrum needs to be loaded. The function re-
quires a wavelength and flux array with sufficient wavelength
resolution. No error data are required. The wavelength and
flux arrays can be assigned in the usual manner, e.g.

wl , f l u x = . . .

(where ... signifies code specific to the problem at hand).
In this example, we are applying the transform to an [OIII]
doublet with a wavelength difference of 47.945 Å and a line
ratio of 1/3, as in the test cases shown in Section 3. Since the
stronger line has a longer wavelength, the wavelength differ-
ence delta must be given as positive. For a doublet were the
shorter wavelength line is stronger, the wavelength difference
delta would be given as negative. The line ratio R should al-
ways be < 1. Accordingly, for this case delta=47.945 and
R=1./3 in the function. The only other information required
by the transform is the order. In this example, we choose 10,
which will apply the transform over 10*delta≈500 Å. Hence
transform in this example is applied as follows:

trans form = twin peaks ( wl=wl , f l u x=f lux ,
d e l t a =47.945 ,
R=1./3 ,

order =10)

The function returns the transformed spectra, transform,
with the same array shape as the input spectrum. A com-
parison between the original spectrum and transform could
be plotted as follows:

import pylab
pylab . p l o t ( wl , f l u x )
pylab . p l o t ( wl , trans form )

APPENDIX B: FURTHER RESULTS

B1 Derivation of Eqn. (4)

To derive Eqn. (4), we first substitute Eqn. (2) into Eqn. (1).
This gives

y(x) = f1(x) + R f1(x + δ), (B1)

which becomes

f1(x) = y(x) − R f1(x + δ) (B2)

after rearranging. Now, substituting this equation into itself
recursively gives

f1(x) =y(x) − R
[
y(x + δ) − R f1(x + 2δ)

]
(B3)

=y(x) − Ry(x + δ) + R2 f1(x + 2δ) (B4)

=y(x) − Ry(x + δ) + R2
[
y(x + 2δ) − R f1(x + 3δ)

]
(B5)

=y(x) − Ry(x + δ) + R2y(x + 2δ) − R3 f1(x + 3δ) (B6)

=y(x) − Ry(x + δ) + R2y(x + 2δ) − R3
[
y(x + 3δ) (B7)

− R f1(x + 4δ)
]

(B8)

= . . . (B9)

=y(x) − Ry(x + δ) + R2y(x + 2δ) − R3y(x + 3δ) (B10)

+ R4y(x + 4δ) − R5y(x + 5δ) − . . . . (B11)

This can be expressed concisely as

f1(x) =
∞∑

m=0
(−1)mRmy(x + mδ), (B12)

which yields Eqn. (4) after comparing the right-hand side
with Eqn. (3).

B2 Linearity of the transform

A pleasing aspect of the transformation is that it is linear,
i.e. for a constant C and arbitrary functions g and h,

T[Cg] = CT[g] (B13)

and

T[g + h] = T[g] + T[h], (B14)

where T[g] ≡ g̃(x) denotes the result of applying the trans-
form to g(x). These equations can be derived straightfor-
wardly from Eqn. (3), or, for the case of finite order M,
Eqn. (6).

B3 Derivation of Eqn. (9)

Consider Eqn. (8) with η(x) = Ax +C. From the definition of
the transformation with finite order M, Eqn. (6), we have

η̃(x) =
M∑
m=0
(−1)mRm

[
A(x + mδ) + C

]
(B15)

=(Ax + C)
M∑
m=0
(−R)m + Aδ

M∑
m=0

m(−R)m. (B16)

This becomes Eqn. (9) after applying the well-known equa-
tion

M∑
m=0

rm =
1 − rM+1

1 − r
, (B17)

to the first term, and an analogous equation (obtained from
differentiating the above equation)

M∑
m=0

mrm =
r

(1 − r)2
[
1 − (M + 1)rM + MrM+1

]
(B18)

to the second term. Note that both these equations are only
valid for r , 1. Hence in deriving Eqn. (9) from Eqn. (B15)
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we have tacitly assumed that (−R) , 1, which is inconse-
quential since we are only interested in R > 0.

B4 Derivation of Eqns. (12) and (13)

Consider if η(x) is a random variable corresponding to addi-
tive Gaussian noise with mean and variance 〈η(x)〉 = 0 and
〈η(x)2〉 = σ2 for all x. Taking the expected value of η̃(x)
yields

〈η̃(x)〉 =
M∑
m=0
(−1)mRm〈η(x + mδ)〉, (B19)

where we have used Eqn. (6) and exploited the linearity of
the expected value (i.e., 〈(a + b)〉 = 〈a〉 + 〈b〉). Eqn. (12)
follows from this since 〈η(x)〉 = 0 for all x.

Now, since 〈η̃(x)〉 = 0, the variance in η̃(x) is given by
〈η̃(x)2〉. Noting that

η̃(x)2 =
M∑

m,n=0
(−1)mRmη(x + mδ)(−1)nRnη(x + nδ) (B20)

=

M∑
m,n=0

(−1)m+nRm+nη(x + mδ)η(x + nδ), (B21)

(B22)

it follows that

〈η̃(x)2〉 =
M∑

m,n=0
(−1)m+nRm+n〈η(x + mδ)η(x + nδ)〉, (B23)

where again we have exploited the linearity of the expected
value.

To proceed further we assume that there are no corre-
lations in the noise over length-scales δ in x, in which case
〈η(x +mδ)η(x + nδ)〉 = 0 for n , m. With this, all terms n , m
in the above equation vanish, leaving

〈η̃(x)2〉 =
M∑
m=0
(−1)2mR2m〈η(x + mδ)2〉 =

M∑
m=0
(−1)2mR2mσ2,

(B24)

where in the last equality we have used the fact that
〈η(x)2〉 = σ2 for all x. Noting that (−1)2m = 1, this can
in turn be re-expressed as

〈η̃(x)2〉 = σ2
M∑
m=0
(R2)m, (B25)

which yields Eqn. (13) after using Eqn. (B17), where note
that Eqn. (B17) is only valid if r , 1 and hence Eqn. (13)
only applies if R2 , 1, or equivalently R , ±1. For the special
case R = 1 the above equation can be easily shown to be
equivalent to Eqn. (15).

B5 Divergence in noise if R = 1

Fig. B1 (left panel) shows the effect of the transform on a
doublet with line ratio R = 1 in the presence of noise. It
is clear that the noise is magnified with increasing order of
the transformation, as discussed in Section 4.3. Analogous
results for R = 1/3 are shown in the right panel of Fig. B1.

The transform can still be used for line ratios R = 1, but

great care should be taken; the number of iterations applied
should be carefully considered.

B6 Uncertainty in R and δ

Here we present an expression which describes the effect of
applying the transformation with incorrect values of R and
δ. We use Rt and δt to denote the ‘true’ line ratio and peak
separation for the doublet under consideration, and R and δ

to denote the line ratio and peak separation actually used in
the transform. Assuming that R and δ are ‘close’ to the true
values, i.e. that ∆R ≡ (R−Rt) and ∆δ ≡ (δ− δt) are small, the
error in the transform of y(x), given by Eqns. (1) and (2),
from the true result ỹ(x) = f1(x) (Eqn. (4)), is as follows:

∆ỹ(x) =
[

f̃1(x; Rt, δt) − f1(x)
]
∆R
Rt
+

[
f̃ ′1 (x; Rt, δt) − f ′1 (x)

]
∆δ,

(B26)

where g̃(x; R, δ) denotes the transform of g(x) using R and
δ; and g′(u) denotes the value of the derivative of g(x) with
respect to x, evaluated at x = u. Note that in the above
f̃ ′1(x; Rt) is the transform of the derivative of f1(x) (and not
the derivative of the transform). Note also that this equation
applies for M →∞, i.e. g̃(x; R, δ) is defined as the right-hand
side of Eqn. (3).

The derivation of this equation is as follows. Expanding
ỹ(x) as a Taylor series about R = Rt and δ = δt gives

∆ỹ(x) ≡ ỹ(x; R, δ) − ỹ(x; Rt, δt)

=
∂ ỹ(x; R, δ)

∂R
∆R +

∂ ỹ(x; R, δ)
∂δ

∆δ,
(B27)

where the derivatives in the above are evaluated at (R, δ) =
(Rt, δt), and we have ignored quadratic and higher-order
terms in ∆R and ∆δ. The task now is to evaluate deriva-
tives.

We begin with ∂ ỹ(x; R, δ)/∂R. Taking the derivative of
Eqn. (3) with respect to R gives

∂ ỹ(x; R, δ)
∂R

=

∞∑
m=0
(−1)mmRm−1y(x + mδ), (B28)

which becomes

∂ ỹ(x; R, δ)
∂R

= R−1
t

∞∑
m=0
(−1)mmRm

t

[
f1(x+mδt)+Rt f1(x+(m+1)δt)

]
(B29)

after using Eqns. (1) and (2), setting (R, δ) = (Rt, δt), and
factorising. Now, by expanding the right-hand side into two
summations, we obtain ∂ ỹ(x; R, δ)/∂R = S1 + S2, where

S1 = R−1
t

∞∑
m=0
(−1)mmRm

t f1(x + mδt) (B30)

and

S2 =
∞∑

m=0
(−1)mmRm

t f1(x + (m + 1)δt). (B31)

S2 can be expressed as

S2 = R−1
t

∞∑
m=1
(−1)m(m − 1)Rm−1

t f1(x + mδt). (B32)
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Figure B1. Simulations showing the effect of noise on a transform with a line ratio of R = 1 for order=100. Left: A doublet comprised

of two Gaussians with R = 1, σ = 0.5 and δ = 0.1. Divergence of the noise is noticeable over a large number of iterations in this case. The
right panel shows the same noise level and line separation, but with a line ratio of R = 1/3. The noise does not diverge in this case.

Hence we obtain

∂ ỹ(x; R, δ)
∂R

= S1 + S2 = R−1
t

∞∑
m=1
(−1)mRm

t f1(x + mδt) (B33)

after combining the two sums and exploiting the fact that
the m = 0 term in S1 is 0. Moving the m = 0 term in Eqn. (3)
to the left-hand side and applying the resulting equation to
the above equation, we obtain

∂ ỹ(x; R, δ)
∂R

=
1
Rt

[
f̃1(x; Rt, δt) − f1(x)

]
. (B34)

We now turn to ∂ ỹ(x; R, δ)/∂δ. Taking the derivative of
Eqn. (3) with respect to δ gives

∂ ỹ(x; R, δ)
∂δ

=

∞∑
m=0
(−1)mmRmy′(x + mδ), (B35)

where recall that y′(u) denotes the value of ∂y(x)/∂x evalu-
ated at x = u. This becomes

∂ ỹ(x; R, δ)
∂δ

=

∞∑
m=0
(−1)mmRm

t

[
f ′1 (x +mδt)+ Rt f ′1 (x + (m+ 1)δt)

]
(B36)

after using Eqns. (1) and (2), and setting (R, δ) = (Rt, δt).
Note that the right-hand side of the above equation resem-
bles Eqn. (B29). The difference is that the above has f ′1 (x)
instead of f1(x), and is missing the factor R−1

t present in
Eqn. (B29). With this in mind, following the same proce-
dure we used above to derive Eqn. (B34) from Eqn. (B29),
we obtain

∂ ỹ(x; R, δ)
∂R

= f̃ ′1 (x; Rt, δt) − f ′1 (x). (B37)

Finally, Eqn. (B26) results from substituting
Eqns. (B34) and (B37) into Eqn. (B27).

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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