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Abstract 

The pathological hallmarks of Systemic sclerosis (SSc) constitute an inter-related triad of 

autoimmunity, vasculopathy and tissue remodeling. Many signaling mediators have been implicated in 

SSc pathology; most focusing on individual components of this pathogenic triad and current treatment 

paradigms tend to approach management of such as distinct entities. The present review shall examine 

the role of vascular endothelial growth factor (VEGF) in SSc pathogenesis. We shall outline potential 

mechanisms whereby differential vascular endothelial growth factor-A (VEGF-A) isoform expression 

(through conventional and alternative VEGF-A splicing,) may influence the relevant burden of 

vasculopathy and fibrosis offering novel insight into clinical heterogeneity and disease progression in 

SSc. Emerging therapeutic approaches targeting VEGF signaling pathways might play an important 

role in the management of SSc, and differential VEGF-A splice isoform expression may provide a tool 

for personalized medicine approaches to disease management.   
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dcSSc diffuse cutaneous SSc, DU digital ulceration, ECM extracellular matrix, EndoMT endothelial-

to-mesenchymal transition, ERA endothelin-1 receptor antagonists, HIF hypoxia inducible factor, HRE 

hypoxia response elements, HSP heparin sulphate proteoglycan, HSC haemopoietic stem cells, Id1 

Inhibitor of DNA binding protein-1, IL-1β Interleukin 1β, IL6 interleukin-6, ILD interstitial lung 

disease, IPF idiopathic pulmonary fibrosis, lcSSc limited cutaneous SSc, mRSS modified Rodnan skin 

score, MSC mesenchymal stem cell, MVEC microvascular endothelial cell, NC nailfold 

capillaroscopy, NO nitric oxide, NP neuropilin, PAH pulmonary arterial hypertension, PDE5 

phosphodiestrase-5, PDGF platelet derived growth factor, PDGFR platelet derived growth factor 

receptor, PlGF placental growth factor, RNAPIII anti-RNA polymerase III autoantibody, RP 

Raynaud’s phenomenon, Scl-70 anti-topoisomerase autoantibody, SSc Systemic sclerosis, TK tyrosine 

kinase, TGFβ transforming growth factor-β , TNFα tumour necrosis factor-α , VEGF vascular 

endothelial growth factor, VEGFR vascular endothelial growth factor receptor.
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Introduction 

Systemic sclerosis (SSc) is a rare multisystem autoimmune disease whose pathological hallmarks 

constitute a triad of vasculopathy, autoimmunity and aberrant tissue remodeling, manifesting as 

Raynaud’s phenomenon (RP), circulating autoantibodies and cutaneous fibrosis (scleroderma) 

respectively. SSc is a heterogeneous disease whose clinical phenotype and major subgroup 

classifications are largely defined by the relative presence and extent of tissue fibrosis and 

vasculopathy. Autoantibody expression has strong associations with particular clinical phenotypes[1] 

but these associations are not absolute and the presence and severity of clinical features vary widely 

between individuals. Despite this, management approaches are relatively uniform focusing 

predominantly on immunosuppression and vasodilation[2]. LeRoy was the first to propose an 

important inter-relationship between the pathological hallmarks of the disease, suggesting vasculopathy 

as an important driver of tissue remodeling and autoimmunity[3]. Many signaling pathways have been 

implicated in SSc pathogenesis with a significant focus on the pro-fibrotic potential of transforming 

growth factor-β (TGFβ), platelet derived growth factor (PDGF), connective tissue growth factor 

(CTGF), serotonin and interleukins[4], although therapeutic trials targeting specific pro-fibrotic 

molecular targets to date have been disappointing[5-7].  

 

Therapeutic approaches targeting the molecular pathways relating to vasculopathy and tissue hypoxia 

have been less extensively studied in SSc but emerging evidence suggests an important role of proteins 

including hypoxia inducible factor (HIF)[8] and vascular endothelial growth factor (VEGF)[9-14] in 

SSc pathogenesis. Indeed, recent clinical trials demonstrating the efficacy of small molecule tyrosine 

kinase inhibitors targeting VEGF receptor signaling[15] has led to renewed interest in the potential role 

of VEGF in SSc. This review examines the available evidence of VEGF signaling in SSc and explores 

the potential contribution to SSc pathogenesis. We shall describe emerging evidence concerning the 

competing influence of differential VEGF splice isoform expression and the potential implications for 

therapeutic approaches targeting VEGF in SSc.  

Vasculopathy in Systemic sclerosis 

Endothelial injury is an important initiating event in SSc and vasculopathy occurs early in the disease 

process. Endothelial dysfunction and apoptosis, increased vascular permeability, vessel wall 

remodeling, platelet aggregation, and a perivascular inflammatory cell infiltrate pre-date the 

development of established tissue fibrosis[16-18]. Clinical manifestations of RP and morphological 

capillary changes at the nailfold (Figure 1) precede the onset of overt cutaneous fibrosis by an average 

of four years[19, 20]. A 20-year prospective study following the disease course of patients with RP, 

noted transition on nailfold capillaroscopy (NC) from giant capillaries to capillary loss occurring in 

close temporal relationship to the emergence of clinical features that led to a diagnosis of definite SSc 

(usually defined by the emergence of cutaneous fibrosis)[20]. A number of studies have also identified 

a positive and progressive association between the severity of microangiopathy on NC and the extent 

of skin fibrosis[21-25]. Indeed, ‘early’ changes are more frequently identified in limited cutaneous SSc 

(lcSSc)[23, 26] whereas ‘late’ changes are more prevalent in diffuse cutaneous SSc (dcSSc)[19, 25]. 

The rate of progression of NC changes (and skin fibrosis) varies according to autoantibody 

specificities. For example, SSc patients carrying anti-RNA polymerase III autoantibodies (RNAPIII) 

have been noted to develop enlarged capillaries and capillary loss earlier in the disease course (4 vs. 15 

years) than patients with anti-centromere autoantibody (ACA)[20].   

 

Unsurprisingly, the progression of NC changes, predict the severity of peripheral vascular 

manifestations. For example, in lcSSc and dcSSc, capillary loss that accompanies ‘late’ NC pattern 

carries an increased risk of developing new digital ulcers (DU) compared with preserved capillary 

number seen in ‘normal’ or ‘early’ patterns[23, 27]. In that vein, DU are more common in dcSSc than 

lcSSc[28]. However, whilst DU are significantly less common in SSc sine scleroderma (ssSSc), no 

association with NC pattern has been identified in this subset, perhaps reflecting low study 

numbers[28]. Larger capillary loop diameter and greater numbers of giant capillaries have also been 

used to predict the future development of DU in SSc, demonstrating the association between 

disorganized neoangiogenesis and inadequate tissue perfusion[29].  

 

The principle pathological effect of vasculopathy in SSc is tissue hypoxia. Indeed, oxygen saturations 

in fibrotic skin of SSc patients are notably low (pO2 23.7+/-2.1mmHg compared to 33.6+/-4.1mmHg in 
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healthy controls (p<0.05))[11]. Tissue hypoxia in SSc is further exacerbated by the oxygen demands of 

the inflammatory milieu and impaired oxygen diffusion secondary to aberrant tissue remodeling and 

accumulation of extracellular matrix proteins.  

 

Tissue hypoxia leads to over-expression of cell signaling molecules such as HIF and VEGF that protect 

cells from oxidative stress, promote wound healing and enhance tissue perfusion through 

neoangiogenesis[30]. 

Hypoxia inducible factor (HIF)  

HIF is a family of transcription factors within the PER ARNT SIM transcription group[31]. HIF is a 

heterodimer consisting of an α subunit (HIF1α, 2α, 3α; whose expression is dependent on local tissue 

oxygenation[32]) and a β subunit (a constitutively expressed nuclear protein)[31]. Under normoxic 

conditions, HIFα is rapidly degraded by proteasomes and is therefore only detected at significant levels 

under hypoxic conditions[31]. As HIFα accumulates, the HIFα/β dimer (hereafter referred to as HIF1, 

2, 3) binds to hypoxia response elements (HRE) to up-regulate gene transcription[32]. HIF1α is 

expressed widely throughout almost all tissues, whereas HIF2α paralog is differentially expressed in 

endothelium, renal, hepatic, pulmonary and brain tissue[33]. HIF1 has been implicated in a number of 

diseases characterized by altered angiogenesis, inflammation and fibrosis [32, 34] including pulmonary 

arterial hypertension (PAH)[35], which can occur as a manifestation of SSc related vasculopathy.  

Vascular endothelial growth factor (VEGF) family 

The VEGF family comprises placental growth factor (PlGF) and four mammalian VEGF subgroups 

(VEGF A-D). Figure 2 illustrates the biological actions of VEGF receptors (VEGFR) and the 

associated co-receptors. 

 

VEGF-A was initially described as a vascular permeability factor[36] and subsequently shown to 

exhibit both mitogenic and angiogenic properties[37, 38]. Levels are precisely controlled such that a 

single allele deletion results in embryonic failure[39] and VEGFR1 gene mutation causes disorganized 

endothelial cell lining and failed angiogenesis[40]. However, its biological actions now appear wider, 

including neutrophil chemo-attraction[41] and fibrosis[42]. Hypoxia is a major up-regulator of VEGF-

A both via up-regulation of HIF[32] and via hypoxic VEGF-A mRNA stabilization[43].  

 

Variable splicing of the 6th and 7th exons of VEGF-A results in different isoforms (hereafter referred to 

as VEGF-Axxxa); named according to their respective number of amino acids (e.g. VEGF-A165a)[44]. 

VEGF-A165a is the dominant pro-angiogenic factor amongst the VEGF-A family acting through the 

principle receptor (VEGFR2)[45], to stimulate neoangiogenesis through proliferation and migration of 

endothelial cells to form new tubular vessel structures[46].  

 

Until recently, all VEGF isoforms were considered pro-angiogenic factors. However, since 2002 a 

number of alternative splice variants of VEGF-A (VEGF-Axxxb and VEGF-Ax) have been identified, 

some of which inhibit angiogenesis through competitive binding of VEGFR2[47-49] and absence of 

neuropilin-1 (NP-1) co-receptor binding (Figure 2)[50]. The latter also directs alternative intracellular 

trafficking in favour of VEGFR2 degradation[51]. However, VEGF-Axxxb isoforms may have 

physiologically beneficial roles in placental neoangiogenesis and pre-eclampsia during pregnancy[52] 

and the inhibition of tumour growth and metastatic progression in many cancers[47]. 

 

Other members of the VEGF family (VEGF-B-D and PIGF) also promote angiogenesis through co-

binding of VEGFR1 and NP-1[53]. VEGF-B also plays a role in fatty acid transport and may provide a 

therapeutic target for insulin resistance and type 2 diabetes[53]. VEGF-C and VEGF-D signal through 

an alternative VEGFR3, promoting lymphangiogenesis in embryonic and postnatal periods [53].  

The potential role of VEGF in SSc related vasculopathy  

In view of the characteristic microvascular manifestations of SSc, VEGF-A pathways have attracted 

interest as potentially important drivers of disease pathogenesis. In view of the pronounced capillary 

drop out found in SSc, the authors of early studies were surprised to identify high levels of circulating 

serum VEGF-A in both early[9] and established SSc [22, 54], although serum VEGF-A was noted to 

be comparatively lower in SSc patients with DU[9, 55]. VEGF associations with systemic organ 
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manifestations of SSc have been less extensively studied and are notably varied. Circulating VEGF-A 

levels in SSc pulmonary vasculopathy are contradictory[56, 57]. Limited data shows no correlation 

between elevated serum VEGF-A with ultrasound parameters of renal vasculopathy[58]. One study has 

reviewed VEGF-A through non-invasive sampling of tears of SSc patients and found levels to be 

surprisingly low possibly explained by reduced tear secretion associated with dry eye syndrome[59]. 

 

The elevated VEGF-A levels initially appeared at odds with the obliterative microangiopathy 

associated with progressive capillary loss[9, 60, 61]. A proposed explanation for these apparently 

conflicting findings is cellular compartmentalization of VEGF-A and its receptors; a biological concept 

that might be important in healthy lung homeostasis[62]. However, the identification of VEGF-A 

splice variants with opposing angiogenic function provides a deeper and more compelling explanation. 

VEGF-A165a and VEGF-A165b isoforms differ by only six amino acids at exon 8. Commercially 

available VEGF-A ELISAs are unable to differentiate between these isoforms. Thus, aforementioned 

studies[9, 22, 54, 60, 61] likely detected pan-VEGF-A (representing co-detection of VEGF-Axxxa and 

VEGF-Axxxb soluble isoforms). Subsequent studies used isoform VEGF-A165b specific detection 

methods to confirm an association between VEGF-A165b and the ‘late’ avascular patterns on NC[14]. 

Furthermore, those with ‘early’ nailfold changes (i.e. few microvascular changes) have similar VEGF-

A165b levels to healthy controls[14], suggesting that anti-angiogenic isoform expression evolves with 

disease progression, although longitudinal studies have yet to confirm this.   

 

VEGF receptor status in SSc skin, serum and cell culture is mixed and inconclusive[11, 63-66]. 

However, higher levels of circulating soluble VEGFR2 appear to be associated with telangiectasia[64]. 

Urokinase-type plasminogen activator receptor (uPAR), which is required for VEGFR2 internalization, 

is reduced in SSc skin[50]. Additionally, NP-1 is reduced in skin and serum[50, 65] and associates with 

DU and more advanced (active/late) NC patterns in SSc[65]. Interestingly, despite evidence of 

microvasculopathy at the nailfold, reduced serum NP-1 does not appear to associate with specific NC 

patterns in those with pre-SSc[67]. However, exposure of MVEC to patient sera attenuates NP-1 

expression; a phenomenon demonstrated even by sera from pre-SSc donors[67]. In combination, the 

functional status of VEGFR2 appears to be impaired from multiple co-factors, potentially reducing the 

pro-angiogenic potential of VEGF-Axxxa and potentiating VEGF-Axxxb inhibitory action. 

 

Given the relationship between NC pattern and VEGF-A165b, and known correlations between capillary 

density and both gas transfer[22] and the presence of SSc-related pulmonary disease (both interstitial 

lung disease (ILD) and PAH)[68], the relationship between inhibitory VEGF-Axxxb isoforms and 

pulmonary vasculopathy is of interest but has not been investigated to date. Interestingly, transgenic 

mice over-express anti-angiogenic pulmonary VEGF-A165b do not develop vascular abnormalities[42] 

whereas overproduction of VEGF-A164a (the murine equivalent of VEGF-A165a) results in increased 

vessel number and wall thickness[69] and dilated and disorganized vasculature[70] suggesting it is the 

relative rather than absolute level of the anti-angiogenic isoforms that dictates vascular morphology.  

 

The roles of VEGF-B-D have been less extensively investigated in SSc. VEGF-C/D regulate 

lymphangiogenesis and lymphatic endothelium (Figure 2). SSc lesional skin displays a progressive 

reduction in lymphatic number[71, 72] despite the fact that circulating VEGF-C and cutaneous VEGF-

D[73] and its receptor (VEGFR3)[72] are increased. This might indicate impaired downstream 

signaling of VEGFR3 or the presence of splice variants of VEGF-C/D with opposing functions; akin to 

the aforementioned VEGF-Axxxb isoforms. In one study, plasma VEGF-D levels were shown to 

increase at the time of PAH diagnosis[74]. 

The potential role of VEGF-A in fibrosing disease 

HIF and VEGF-A have been implicated in a number of fibrosing diseases including graft versus host 

disease, hepatic fibrosis and idiopathic pulmonary fibrosis (IPF) [75-82].  

 

A pro-fibrotic role for VEGF-A165a in SSc is supported by the demonstration of increased collagen 

induction in both healthy and SSc dermal fibroblasts in response to VEGF-A165a with more pronounced 

effects observed in SSc fibroblasts[83]. Serum panVEGF-A levels in SSc correlate with skin scores[60] 

and increased levels are associated with dcSSc[9, 60] and anti-topoisomerase autoantibodies (anti-Scl-

70)[9, 84]. PanVEGF-A and HIF1α are increased in SSc hypoxic lesional skin[8, 11] and over-

expressed by dermal fibroblasts cultured under hypoxic conditions[85]. Furthermore, panVEGF-A is 

overexpressed in non-lesional skin predating the onset of fibrosis[11] implicating VEGF-A as an early 
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signaling protein in fibrosis. However, whilst lesional skin is notably hypoxic, the pO2 of non-lesional 

skin is normal[11] suggesting that VEGF-A expression may be stimulated by factors beyond hypoxia.  

 

To date, the focus of VEGF-A165b investigation in SSc has been with regard to its anti-angiogenic 

function and there are few observations reported with regard to fibrosis in SSc. Studies have identified 

increased VEGF-A165b in the skin (mRNA) and plasma of SSc patients[12, 14], which may account for 

the majority of panVEGF-A overexpression[12]. VEGF-A165b appears to be particularly elevated in 

certain autoantibody profiles (anti-centromere and anti-Scl-70)[86, 87] although, in contrast to 

panVEGF-A, VEGF-A165b levels (in skin and plasma) do not apparently correlate with extent of skin 

involvement[12, 14]. Recent data from murine models of an alternative fibrotic disease (IPF), suggest 

that VEGF-Axxxa isoforms act as pro-fibrotic drivers of IPF whilst the VEGF-A165b isoform has 

opposing anti-fibrotic properties[42]. In this model, the balance between VEGF-A165a and VEGF-A165b 

expression may also be important in IPF pathogenesis[42]. Considering this parallel fibrotic disease, it 

may be hypothesized that VEGF-A165b could detrimentally contribute to the progressive vasculopathy 

in SSc whilst encouraging regression of skin fibrosis later in disease. Interestingly, VEGF-A165b 

appears to be higher in the skin of early SSc (despite comparable circulating plasma levels)[12]. This 

may suggest the occurrence of early isoform switching.  

 

There is conflicting data regarding the association of circulating panVEGF-A levels with the degree of 

pulmonary fibrosis on computerized tomography[22, 57, 60, 88]. As discussed for SSc-PAH, VEGF-

Axxxb isoform expression has not been specifically studied and conflicting reports in SSc-ILD may be a 

consequence of panVEGF-A detection. 

What is the potential cellular source of VEGF-A isoforms in SSc? 

If VEGF-A is at the forefront of disease initiation then identifying its cell origin is paramount to 

understanding and modifying its signaling network. In SSc, panVEGF-A and VEGF-A165b is expressed 

in fibroblasts, endothelial and perivascular inflammatory cells[11, 12] with additional expression of 

VEGF-A165b in vascular smooth muscle cells in ex vivo lesional skin[12]. Circulating mononuclear 

cells[89] and skin keratinocytes[8, 11] also produce increased panVEGF-A levels.  

 

In vitro, cultured microvascular endothelial cells (MVEC) express higher VEGF-A165b (co-localized 

with increased VEGFR2 but with impaired signaling function) than controls[12] (Figure 3). 

Additionally, when MVEC, from non-lesional SSc skin, are co-cultured in vitro with activated 

fibroblasts from lesional skin, panVEGF-A and CD31 expression in the former are reduced whilst 

VEGF-A165b is increased[90]. This is associated with reduced microtubule formation and increased 

endothelial-to-mesenchymal transition (EndoMT)[90], demonstrating the potential paracrine activity of 

SSc fibroblasts on the vasculature and potential to perpetuate the cycle posed by the vascular 

hypothesis[90]. 

 

Platelets are an important source of circulating panVEGF-A in SSc[91] and recent investigation has 

also proven them to be an important source of VEGF-A165b[92]. Furthermore, tubule formation by 

dermal MVEC in vitro is impaired when incubated with SSc platelet releasate[92] potentially due to 

the anti-angiogenic action of VEGF-A165b. It is not known whether the platelet load of VEGF-

Axxxa/xxxb isoforms remains consistently elevated in SSc or whether isoform switching occurs at some 

stage in the disease course.  

Additional mediators implicated in enhanced VEGF-A signaling in Systemic sclerosis 

Whilst hypoxia is the major driver of VEGF-A expression, other cytokines and growth factors can 

potentiate VEGF signaling, or are themselves potentiated by VEGF-A expression, which could have 

important implications for SSc pathogenesis. For example, angiopoietins (Ang-1 and -2) are additional 

regulators of angiogenesis. Under normoxic conditions, Ang-1 aims to maintain vessel stability through 

Tie2 signaling, whilst Ang-2 is released under hypoxic stress and acts differentially to either facilitate 

angiogenesis or angio-regression depending on the presence or absence of VEGF-A respectively[93]. 

Reported circulating levels of angiopoietins and Tie2 are variable in the literature[84, 88, 93-96]. 

However, noting the results of a recent study, there is a reduction in Ang-1/-2 ratio in serum of both 

pre-SSc and SSc with particular association with DU history[93]. Furthermore, increased vascular 

expression of Ang-2, reduced Tie2 and comparable Ang-1 in SSc skin versus controls[93] potentially 

represents a shift towards an anti-angiogenic environment. Progressive study regarding the association 
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of Ang-2 with VEGF-Axxxb isoforms may help map the divergent nature of Ang-2 with VEGF-A 

expression and the implications of VEGF-A isoforms on angiopoietin function. 

 

Inhibitor of DNA binding protein 1 (Id-1) is a transcription factor and chemokine required for 

endothelial cell migration and is reduced in SSc endothelial cells, resulting in impaired endothelial cell 

response to VEGF-A stimulation[97]. The influence of Id-1 expression on responses to specific VEGF-

A isoforms has not been investigated. 

 

Increased plasma 8-isoprostane reflects increased oxidative stress in SSc[98] and contributes to 

impaired angiogenesis[98] via increased TXAR/RhoA/ROCK expression and signaling[98] and 

subsequent inhibition of VEGF-A induced endothelial cell migration[98]. Interestingly, increased 

plasma 8-isoprostane appears specific to dcSSc and SSc-ILD and not present in lcSSc and SSc-

PAH[98]. Once again, further investigation of these pathways with respect to specific VEGF-A 

isoforms and correlation with SSc subtype is of interest. 

 

Elevated levels of TGFβ are evident in skin and lung tissue[99] and peripheral B cells[100] in SSc 

alongside increased TGFβ receptor excretion by cultured SSc fibroblasts[101]. HIF1 increases TGFβ 

transcription, which in turn stabilizes HIF1α[85, 102](Figure 3). This provides potential for TGFβ 

mediated indirect VEGF-A stimulation, but it also directly stimulates VEGF-A production in SSc 

dermal fibroblasts[103]. Furthermore, the effects of HIF and TGFβ on VEGF-A are synergistic in 

human MVEC in vitro via complimentary action at the HRE on the VEGF promoter region[104]. 

Moreover, and relevant to SSc pathogenesis, TGFβ encourages a switch from proximal to distal 

splicing of VEGF-A exon 8 via p38 MAPK signaling[105] favouring VEGF-A165b production in 

cultured SSc-MVEC[12]. This could ameliorate VEGF-A mediated fibrosis and offer an explanation 

for the late improvements in skin thickening that characterizes the natural history of SSc. Increased 

VEGF-A165b in SSc may therefore in part be directed by TGFβ, potentially as part of a negative 

feedback loop and resulting in mRSS plateau and late improvement. 

 

Treatment of cultured retinal epithelial cells with tumour necrosis factor-α [TNF α], meanwhile, 

induces a switch from dominant VEGF-A165b at rest to VEGF-A165a[105]. To our knowledge this 

relationship has not been investigated in SSc specifically. Whilst a previous trial of anti-TNFα agents 

failed to demonstrate definite improvement in scleroderma[106], the theoretical effects of TNFα 

inhibition on VEGF-A isoform switching in arresting scleroderma progression is of interest. 

 

PDGF is known to stimulate VEGF-A via phosphatidylinositol 3 kinase[107]. PDGF and its receptors 

(PDGFR) are increased in SSc and in vitro, PDGF can attenuate panVEGF-A production by SSc 

fibroblasts[11]. Furthermore, there is PDGFR up-regulation (in skin and lung fibroblasts) in response 

to TGFβ stimulation[108]. Thus, it is possible that PDGF may compliment TGFβ directed VEGF-A 

activation in SSc fibroblasts. 

 

Hypoxia induces increased synthesis of CTGF mRNA in both healthy and SSc dermal fibroblasts via 

HIF1α dependent pathways[109]. Circulating CTGF is increased in SSc and associations have been 

found with diffuse skin disease, pulmonary fibrosis and disease duration[110]. In vitro, CTGF levels 

are over-expressed in SSc mesenchymal stem cells (MSC) and increased further by VEGF-A 

stimulation[111].  

 

Caveolins (Cav) are the principle protein constituent of caveolae (cell membrane invaginations that act 

as ‘gate keeper’ organelles for a range of cell signaling tasks)[112]. Cav-1 and -2 are the principle 

caveolins in EC, fibroblasts and adipocytes. Cav-1 acts to down-regulate TGFβ[113, 114] and VEGF-A 

signaling[111] through receptor internalization providing protection against fibrosis such that Cav-1 

knockout mice develop SSc-like features[115]. Accordingly Cav-1 levels and therefore VEGFR2 

degradation are reduced in SSc[111, 114] with resultant increase in CTGF expression[111]. Impaired 

expression of Cav-1 in SSc may therefore contribute to increased VEGF-Axxxa/xxxb signaling via 

VEGFR2.   
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Cytokines such as interleukin-1β (IL-1β) and Interleukin-6 (IL-6) are pro-inflammatory and pro-

fibrotic mediators that induce HIF and VEGF-A through NFκB[53] and signal transducer and activator 

(Stat3)[116] respectively. Circulating IL-1β is increased in SSc[117] and up-regulates panVEGF-A 

production in vitro SSc fibroblasts[11]. IL-6 is raised in sera[100] and cultured fibroblasts (with further 

TNFα driven attenuation)[118] and peripheral B cells[100] of patients with SSc, with a correlation 

between B cell derived IL-6 and mRSS[100]. Accordingly, the potential for anti-IL-6 receptor antibody 

(Tocilizumab) to treat skin disease in SSc is currently under investigation [119]. 

Effects of hypoxic design on HIF paralog expression and vascular pathology 

In rodent models, differential HIF1α and HIF2α paralog expression occur in chronic intermittent 

hypoxia ((CIH); as is found in obstructive sleep apnoea) as opposed to chronic continuous hypoxia 

((CCH); as occurs in chronic lung disease) and important differences in vascular sequelae occur under 

these varying hypoxic conditions[30]. Specifically, CIH exposure induces HIF1α and inhibits HIF2α in 

mice resulting in systemic hypertension[120, 121] compared to protective effects of heterozygous 

HIF1α+/- and HIF2α+/- on pulmonary vascular remodeling and PAH in transgenic rodents under 

CCH[122, 123]. SSc uniquely demonstrates both patterns of intermittent tissue hypoxia with distinct 

attacks of RP early in disease course, as well as more continuous tissue ischaemia as structural vascular 

changes progress. We hypothesize, the transition from early disease where vasculopathy and fibrosis 

are developing to established RP and scleroderma may both be precipitated by and feed forward to 

influence differential HIF paralog function and downstream VEGF-Axxxa/xxxb signaling. Notionally, 

this may explain the heterogeneity of vascular manifestations in lcSSc versus dcSSc. Indeed, an 

association between a HIF1A (gene encoding HIF1α) polymorphism and ACA lcSSc suggests further 

evaluation of HIF signaling in SSc is warranted [124]. 

Implications of VEGF-A signaling in the management of Systemic sclerosis 

Phosphodiestrase-5 (PDE5) inhibitors and dual endothelin-1 receptor antagonists (ERA) form an 

integral part of current pharmaceutical therapy for SSc related digital and pulmonary vasculopathy. 

PDE5 inhibitors effectively improve SSc-RP and digital blood flow through inhibition of cyclic 

guanosine monophosphate degradation and attenuation of nitric oxide (NO) driven vasodilation[125]. 

VEGF-A and NO are known reciprocal activators[43], however, PDE5 inhibition in SSc related RP 

does not appear to alter circulating panVEGF-A levels in sera[125], which may suggest that either 

NO/VEGF-A potentiation occurs locally in tissues or that by the time PDE5 inhibitors are initiated 

other factors influencing VEGF-A dominate. 

 

In the previously described in vitro model, Corallo et al., [90] demonstrated the ability of ERA to 

reduce EndoMT and reverse the ratio of panVEGF-A:VEGF-A165b in favour of angiogenesis. Indeed, 

in some studies NC patterns demonstrate devolution after ERA therapy[126]. Furthermore, Corrado et 

al., [127] suggested that ERA may have anti-fibrotic potential in SSc-ILD. Further study to examine 

the potential of ERA to ameliorate progression of both vasculopathy and fibrosis is warranted. 

 

Drugs directly targeting VEGF signaling are now used in a variety of clinical settings including 

malignancy[53], retinopathy[53] and IPF[15].  The latter, Nintedanib (a blanket tyrosine kinase 

inhibitor including VEGFR1-3, PDGFR and fibroblast growth factor receptor,) has been shown to slow 

disease progression in IPF[15] and is currently being evaluated in SSc-ILD (NCT02597933) following 

encouraging work using pre-clinical murine models of lung fibrosis, skin fibrosis and PAH[4]. The 

effect of Nintedanib on VEGF-A165b signaling specifically is however unknown. 

Concluding remarks 

The evidence presented suggests VEGF-A in particular is an important signaling factor contributing to 

SSc pathogenesis even at the earliest clinically detectable stages of disease. More precisely, the anti-

angiogenic isoform VEGF-A165b contributes to progressive capillary loss and tissue ischaemia. Herein, 

we have discussed multiple mediators of VEGF signaling and potential implications in SSc, including 

but not exclusive to: HIF as a major up-regulator of VEGF-A, the divergent angiogenic potential of 

Ang-1/-2, pro-inflammatory cytokine IL-6 and pro-fibrotic TGFβ with the ability to ‘flip the switch’ to 

proximal VEGF-A165b splicing. Of equal importance in the complex SSc story, are the potential 

cellular sources of VEGF-A isoforms. We have considered with particular interest inflammatory cells, 

platelets, endothelial cells and fibroblasts; all of which have been demonstrated to produce anti-
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angiogenic VEGF-A165b and have been repeatedly implicated in SSc pathology. Whilst SSc is 

primarily a disease of vascular pathology, fibroblasts undeniably play a role in bolstering the vicious 

cycle through paracrine action, altering endothelial function and phenotype and encouraging a switch 

in favour of VEGF-A165b production.  

 

With increasing interest in VEGF-A in SSc, a deeper understanding of the isoform specific 

responsibilities is required. In particular the role of VEGF-A165b in fibrosis is yet to be elucidated. In 

collating the literature presented here, we have postulated on our own hypotheses. HIFα paralog 

expression, determined by the nature of tissue hypoxia and local cytokine expression in SSc may 

contribute to differential VEGF-A isoform expression and is currently the focus of further 

investigation. Extrapolating from knowledge in parallel diseases, it may be hypothesized that VEGF-

A165b is inhibitory of both angiogenesis and fibrosis and may therefore account for progressive 

microvascular destruction and the natural regression in skin fibrosis that accompanies established SSc. 

Furthermore, the relative ratio of VEGF-Axxxa:-Axxxb may be important in determining the burden of 

these clinical features and thus variance in clinical phenotype. This raises the question, whether 

targeted inhibition of VEGF-A165b may then have beneficial effects on vascular abnormalities but 

worsen tissue fibrosis? Alternatively, if tissue oxygenation is improved through inhibition of VEGF-

A165b, would this break the cycle of the Vascular hypothesis and ultimately abrogate both pathologies?  

Ultimately, identifying a single molecular target in this multifaceted disease continues to be a 

challenge. However, VEGF-A and its specific isoforms remain in the spotlight as both potential future 

biomarkers and therapeutic targets. 
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Figure legends: 

 
Figure 1 illustrates the evolution of SSc specific nailfold capillaroscopy (NC) changes, from normal 

through early, active and late patterns[129]. Normal NC pattern as seen in healthy individuals, is 

recognized by 7-9 regular hairpin shaped capillaries per millimeter. Early pattern maintains capillary 

number but enlarged* (>20μm limb diameter) and occasionally giant** (>50 μm) capillaries are 

present. Active pattern shows frequent giant capillaries, microhaemorrhages∞ and some reduction in 

capillary number. Late pattern is classified primarily by severe capillary loss and evidence of 

neoangiogenesis⌘ with few/absent giant capillaries/microhaemorrhages. 

 

 
Figure 2 adapted from collective reports from[43, 45, 48, 53, 130], illustrates vasculogenic actions of 

VEGF family through their respective signaling receptors including three tyrosine kinase receptors 

(VEGF receptor-1 (VEGFR1/flt1), VEGF receptor-2 (VEGFR2/KDR/flk1), VEGF receptor-3 

(VEGFR3/flt4)), supported by co-receptors (neuropilin-1 (NP-1), neuropilin-2 (NP-2) and heparin 

sulphate proteoglycan (HSP)). VEGFR2 is the principal receptor for VEGF-A signaling including 

VEGF-Axxxb isoforms with additional low affinity binding for VEGF-C and VEGF–D following 

proteolysis. VEGFR1 and VEGFR3 impose regulatory function on VEGFR2. VEGF-A binding to NP-

1 and HSP is isoform specific, dependent upon exon splicing[43, 49, 53]. Lack of VEGF-Axxxb affinity 

for NP-1 contributes to its anti-angiogenic action. Data reporting the affinity of VEGF-A121a for NP1 is 
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mixed and therefore inconclusive[48]. Abbreviations: BM basement membrane, EC endothelial cell, 

ECM extracellular matrix, HSC haemopoietic stem cells, PlGF placental growth factor, TK tyrosine 

kinase.  

 

 
Figure 3 demonstrates the pathway of hypoxia induced VEGF-A induction via HIF and hypoxia 

mRNA stabilization[32, 43, 53, 104]. Known cellular sources of VEGF-A in SSc are illustrated based 

on available evidence (panVEGF-A = (a), VEGF-A165b = (b))[11, 12, 89, 91, 92, 103, 111, 114, 131]. 

*TGFβ and HIF1α synergistically increase VEGF-A in endothelial cells[104]. Whilst TGFβ has been 

shown to favour VEGF-A165b production in SSc-MVEC, similar evidence is not available in other cell 

lines, where only results for panVEGF-A have been reported. Abbreviations: HRE hypoxia response 

elements (found in the VEGF-A gene promoter region).  
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