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Mechanical strain can lead to a synthetic gauge field that controls the dynamics of electrons in
graphene sheets as well as light in photonic crystals. Here, we show how to engineer an analogous
synthetic gauge field for lattice vibrations. Our approach relies on one of two strategies: shearing
a honeycomb lattice of masses and springs or patterning its local material stiffness. As a result,
vibrational spectra with discrete Landau levels are generated. Upon tuning the strength of the
gauge field, we can control the density of states and transverse spatial confinement of sound in
the metamaterial. We also show how this gauge field can be used to design waveguides in which
sound propagates with robustness against disorder as a consequence of the change in topological
polarization that occurs along a domain wall. By introducing dissipation, we can selectively enhance
the domain-wall-bound topological sound mode, a feature that may potentially be exploited for the
design of sound amplification by stimulated emission of radiation (SASERs, the mechanical analogs
of lasers.)

Electronic systems subject to a uniform magnetic field
experience a wealth of fascinating phenomena such as
topological states [1] in the integer quantum Hall ef-
fect [2] and anyons associated with the fractional quan-
tum Hall effect [3]. Recently, it has been shown that
in a strained graphene sheet, electrons experience exter-
nal potentials that can mimic the effects of a magnetic
field, which results in the formation of Landau levels and
edge states [4, 5]. Working in direct analogy with this
electronic setting, pseudo-magnetic fields have been en-
gineered by arranging CO molecules on a gold surface [6]
and in photonic honeycomb-lattice metamaterials [7, 8].

In this article, we apply insights about wave propaga-
tion in the presence of a gauge field to acoustic phenom-
ena in a nonuniform phononic crystal, using the appropri-
ate mechanisms of strain-phonon coupling and frictional
dissipation, in contrast to those present in electronic and
photonic cases. The acoustic metamaterial context in
which we implement gauge fields provides us with signifi-
cant control [9–11] over frequency, wavelength, and atten-
uation scales unavailable in the analogous electronic real-
izations. For example, a metamaterial composed of stiff
(e.g., metallic) components of micron-scale length may
be suitable for control over ultrasound with gigahertz-
scale frequencies, whereas cm-scale metamaterials may
provide control over kHz-scale sound waves. We develop
two strategies for realizing a uniform pseudo-magnetic
field in a metamaterial based on the honeycomb lattice,
i.e., “mechanical graphene” [12]. In the first strategy,
we apply stress at the boundary to obtain nonuniform
strain in the bulk, which leads to a Landau-level spec-
trum, whereas in the second strategy, we exploit built-
in, nonuniform patterning of the local metamaterial stiff-
ness. This second strategy shows how the unique control-
lability of metamaterials can lead to novel designs inac-

cessible in the electronic context, and may be useful in
scaling up these phenomena to long acoustic waveguides.

We explore acoustic phenomena associated with the
Landau-level spectrum. For example, the acoustic ana-
log of Shubnikov-de Haas oscillations [13] corresponds
to a sharp peak in the phonon density of states at the
Landau-level frequency. In addition, sound modes are
confined within a length scale set by the analog of the
magnetic length. Even stronger confinement of sound
modes can be engineered at a domain wall associated
with a change in the effective mass of the phononic exci-
tations, which localizes phonon modes that are analogous
to the topological domain-wall states in the Su-Schrieffer-
Heeger model of polyacetylene [14]. We show how this
domain-wall-bound mode exhibits robustness against a
type of disorder that may come in the manufacturing
of acoustic metamaterials—disorder in the stiffness of
each component. Like other realizations of topological
states [15, 16] in mechanical [17–27], acoustic [28–36], and
photonic [37] metamaterials, this characterization may
help with the design of robust devices. We show that
introducing dissipation on just one of the two sublattices
enhances the domain-wall-bound sound mode. This fea-
ture may be implemented in the acoustic context using a
material immersed in a viscous fluid (appropriate for low-
Reynolds number, e.g., micro-scale metamaterials), or by
including dampers (e.g., small dashpot dampers at every
components for cm-scale realizations) within the material
design. We suggest this feature may be exploited for the
design of acoustic couplers, rectifiers, and sound amplifi-
cation by stimulated emission of radiation (SASERs).

Mechanical graphene. We begin with a minimal, mi-
croscopic model of an acoustic metamaterial—a set of
nodes positioned at the vertices of a honeycomb lattice
and connected by rods to their nearest neighbors (see
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FIG. 1: (a) Mechanical graphene—a set of rods and nodes
based on the honeycomb structure. The dashed line indi-
cates the shape of a unit cell. (b) The lattice with a pure
shear strain. (c) The shift of a Dirac point within the phonon
spectrum of mechanical graphene due to the applied strain
can be used to define an effective vector potential. (d) An
externally applied nonuniform pure shear deformation that
corresponds to a constant magnetic field. The external stress
is applied by a torque τ on the boundary rods. (e) A non-
uniform patterning of the local material stiffness that leads
to a constant magnetic field. We consider periodic boundary
conditions along x and free boundary conditions along y.

Fig. 1a) [12]. The compressional stiffness of the rods κ is
determined by their fixed Young’s modulus E, variable
cross-section area S, and length a via ES/a. We assume
the rods to be so slender that their bending stiffness is
significantly lower than their compressional stiffness. We
model the rods as central-force harmonic springs, whose
elastic energy U is given in terms of the strain δr/a by

U(δr) = 1
2κ (|r + δr| − a)

2
. For small strains, this energy

can be linearized in terms of node displacements u1 and
u2 as U(u1,u2) = 1

2κ (e · [u1 − u2])
2
, where e ≡ r/|r|

is the unit vector along the spring. (In Fig. 1a, we de-
fine the initial configuration for the node positions and
stiffnesses.) Given this potential, we examine the linear
equation of motion for acoustic vibrations of the lattice:

−müαi =
∂U

∂uαi
=
∑
j,β

Dαβ
ij u

β
j , (1)

where uαi are the α = x, y components of displacement

of the ith site and Dαβ
ij are components of the dynam-

ical matrix. In a periodic lattice, the solutions to this
equation of motion are plane waves uqe

i(ω(q)t−q·x), where
both the dispersion relation ω(q) and the normal modes
uq are found from the corresponding eigenvalue problem
for each wavevector q.

To lowest order in perturbation theory around point K
[defined by qK ≡ (0, 4π/3

√
3a)], the dynamical matrix

for the two bands near the frequency ω0 ≡
√

3κ/2m
reduces to [38]

D = −1

2
ω2
0(aδq + A) · σ + (1 + V )ω2

0I, (2)

where I is the 2×2 identity matrix, δq ≡ q−qK , and σ ≡
(σx, σy) contains Pauli spin matrices. The gauge field
A and potential V are both zero for the homogeneous
honeycomb lattice. From the structure of Eq. (2), we
note that the dispersion around qK has the form of a
Dirac cone, i.e., two bands touch at the Dirac point [39].

Synthetic gauge field. We now proceed to show that
unlike uniform lattice deformations that merely shift this
Dirac cone in wavevector space, nonuniform deformations
can lead to an effective synthetic gauge field for sound.
For uniform strain (Fig. 1b), A and V are both constant
throughout the lattice. On the other hand, for a nonuni-
form but slowly varying strain, the position of the local
Dirac point varies from one region to another (Fig. 1c),
which corresponds to spatially dependent fields A and V .
In terms of the affine component U and nonaffine compo-
nent W of the displacement denoting, respectively, com-
mon and relative displacements of the two sublattices,

A(x, y) =a(qK · ∇)U + 3 (εps,−εxy) + (Wy,−Wx)/a,

and V = 1
2 Tr ε, where εij ≡ (∂iUj + ∂jUi)/2 is the linear

affine strain and εps ≡ (εxx − εyy)/2 is its pure shear
component.

To simplify the design of an acoustic device based on
this strained lattice, we now consider those lattice strains
that can be obtained by applying forces only on the
boundary. Such a configuration requires that the forces
in the bulk of the material balance each other. In the
material we consider, this force-balance condition is sat-
isfied provided that the nonaffine displacements depend
on the affine strain via Wx = εxya and Wy = εpsa. Thus,
we obtain the following expression for the gauge field in
a boundary-strained material:

A(x, y; ε) = a(qK · ∇)U + 4 (εps,−εxy) . (3)

For acoustic systems, we can also follow a second strat-
egy: patterning the local material stiffness to achieve a
spatially dependent gauge field A. For example, we can
smoothly vary the composition or thickness of the rods
to change their effective spring constants to κi = κ+δκi,
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FIG. 2: Mechanical Landau levels: (a) A pseudo-magnetic
field leads to Landau levels around the Dirac point. (b) As
the magnetic field increases, the zeroth-Landau-level band
flattens. Band flatness can be characterized by the inverse
magnetic length `−1. (c) The inverse magnetic length scales
as the square root of the magnetic field. (d) Density of states
for the zeroth Landau level, for the same values of B as in (b).
The peak at the Dirac frequency rises as the bands flatten.
(e) Visualizations of the zeroth Landau level at two different
wavevectors. For q = qK , this mode has a Gaussian profile
around the waveguide center, whereas far from this point, at
q = 0, the mode decays exponentially away from the edge.

where i = 1 . . . 3 labels springs in the lattice unit cell.
We find that the gauge field and potential are given by

A(x, y; δκ) =

(
−1

3

2δκ1 + δκ2 + δκ3
κ

,
δκ2 − δκ3√

3κ

)
,

V =
δκ1 + δκ2 + δκ3

3κ
. (4)

To obtain a Landau-level spectrum, we select A and
V such that (for units in which a = 1)

∇×A = Bẑ = const; V = 0. (5)

For any selection satisfying the conditions of Eqs. (5), the
dynamical matrix in Eq. (2) has the form of the Hamilto-
nian for a Dirac electron in a plane with a constant mag-
netic field B applied perpendicular to that plane [40, 41].
Let us now consider two practical solutions to Eqs. (5):
(i) an externally applied nonuniform pure shear deforma-
tion, and (ii) nonuniform patterning of the spring con-
stants along the y-direction.

For case (i), we find the particle displacements
throughout the lattice by substituting Eq. (3) into
Eqs. (5) and solving the resulting partial differential
equation: ∂yUx + ∂xUy = −Bx/2, with the additional
constraint ∂xUx = ∂yUy = 0, which corresponds to non-
volumetric pure shear deformations. The resulting dis-
placements satisfy: Ux = 0 and Uy = −Bx2/4. Note that
for the honeycomb lattice, this condition can be realized
using the boundary stresses illustrated in Fig. 1d.

For case (ii), we substitute Eqs. (4) into Eqs. (5) to find
the condition

√
3∂x(δκ2 − δκ3) − ∂y(δκ2 + δκ3) = 3κB

for the spatial dependence of the spring constants. We
consider a material uniform along the x-direction. This
condition is satisfied for spring constants given by

µ ≡ δκ2
κ

=
δκ3
κ

= −δκ1
2κ

=
By

3
, (6)

which is visualized in Fig. 1e.
Mechanical Landau levels. Now that we have proposed

metamaterial architectures that realize the acoustic ana-
log of a constant magnetic field, we go on to explore the
physical consequences of this field for sound waves. To
proceed, we focus on an architecture that is peculiar to
the acoustic context, i.e., we select the realization of a
patterned metamaterial waveguide described by Eqs. (6).
Such a quasi-one-dimensional waveguide is uniform along
the x-axis, graded along the y-axis, and is subject to no-
stress boundary conditions on its top and bottom (see
Fig. 1e). The constant pseudo-magnetic field leads to a
Landau-level spectrum for frequencies near ω0 (Fig. 2a).

Let us focus on the acoustic band corresponding to
the most prominent Landau level: n = 0. In Fig. 2b, this
band is plotted for several values of the pseudo-magnetic
field B; as the pseudo-magnetic field increases, the band
flattens over a larger region in wavevector space, which
leads to an increasing peak in the density of acoustic
states (Fig. 2d). The width of this flat region defines an
inverse length scale `−1, which scales as `−1 ∼

√
B/a

(Fig. 2c). This length scale is the acoustic analog of the
magnetic length in a Landau level [39]. An acoustic mode
in a Landau level has a Gaussian profile with a trans-
verse confinement given by ` (Fig. 2e). The transverse
location of this mode within the waveguide is controlled
by the mode wavenumber qx, in contrast to an index-
graded waveguide in which the location is determined
by mode frequency. Consequently, in our case, the loca-
tion of sound at a targeted frequency can be significantly
tuned via the mode wavenumber (Fig. 2e and [39]).

Sublattice-polarized domain wall modes. The n = 0
Landau level at qx = qK,x ≡ 2π/3a has frequency ωK ,
is located at the waveguide center, and involves displace-
ments exclusively on one sublattice. Modes with these
properties generically appear in regions across which Ax
changes sign, i.e., their local dispersions have Dirac cones
on opposite sides of point K. As an example, we con-
sider a waveguide with two domain walls that separate
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(d) (e)

FIG. 3: (a) Waveguide with two domain walls separating two
regions with µ = 0.08 from a central region with µ = −0.08.
Bonds are colored according to their spring constants as in
Fig. 1e. Periodic boundary conditions are applied along x.
(b) Variation of the effective Dirac mass m(y) (dashed line)
and midgap-mode amplitude for qx = 2π/3a on either sub-
lattice (solid lines). (c) Visualization of midgap mode with
sublattices distinguished, showing strong sublattice polariza-
tion. Each point on the A (B) sublattice is represented by
a green (blue) disc whose area is proportional to the am-
plitude of the midgap mode. (d) Sublattice polarization of
the domain-wall-bound mode in the presence of disorder in
the spring constants [39]. (e) Even in the presence of strong
(14%) disorder, we observe sublattice polarization due to the
topological origin of the mode.

a uniform central region with spring constants set by
µ = −0.08 from two regions, one above and one below,
that each have µ = 0.08 (Fig. 3a). At qx = qK,x, the
spectrum as a function of qy near point K is described
by a gapped 1D Dirac Hamiltonian centered about ωK ,
with effective mass proportional to Ax [39]. The “spin”
degree of freedom corresponds to the two sublattices of
the honeycomb lattice: eigenstates of σz with eigenvalue
±1 involve displacements solely on one sublattice. When
the mass m(y) varies spatially, domain walls at which
m(y) changes sign harbor exponentially localized midgap
modes that are “spin-polarized”, i.e., confined to a single
sublattice [14, 42]. The sublattice on which the mode
is localized is determined by the sign of the change in
mass upon crossing the domain wall. Fig. 3b–c shows

FIG. 4: Single-mode response χ of Landau-level states in me-
chanical graphene, including the effect of damping on one sub-
lattice and for pseudo-magnetic field values (a) B = 0.0 and
(b) B = 0.3. Colors correspond to the different Landau-level
bands identified in Fig. 2a. Insets: wavenumber-dependent
attenuation rate η of the corresponding bands. (c) The
steady-state response (for B = 0.3) to external periodic forc-
ing with frequency close to the Dirac frequency and at an edge
that is situated 50 unit cells to the left of the section shown.
Each point is represented by a disc whose area is proportional
to the amplitude of the response. (d) Zoom-in of (c) shows
that the Landau-level mode is selectively enhanced due to the
presence of sublattice-biased damping.

the numerically-obtained midgap mode for the domain
wall geometry in Fig. 3a, whose components on sublat-
tice A (B) fall off exponentially from the top (bottom)
domain wall. The robustness of the sublattice polariza-
tion under disorder in the spring constants is shown in
Fig. 3d-e and is explained in the SI [39].

Selective enhancement. The sublattice polarization of
the Landau-level states can be used to selectively en-
hance these modes under external drive by employing
site-dependent damping. For example, for positive mag-
netic fields, the Landau-level states live only on the A-
sublattice of the honeycomb unit cell [4, 40]. If we in-
troduce damping of the form −γu̇B into the equation of
motion, Eq. (1), such that only the displacements of the
B-sublattice are damped, then the Landau-level acoustic
waves would not be attenuated, whereas the rest of the
sound waves, which generically are split between the A
and B sublattices, would have a nonzero attenuation [39].
To characterize this selective enhancement, we study the
attenuation rate η(q) as a function of mode wavevector,
as well as the self-response function χ(ω) which mea-
sures the displacements in response to a drive at fre-
quency ω [39]. In Fig. 4a–b, we plot χ(ω) and η(q) for
the Landau-level bands with −2 ≤ n ≤ 2, in response
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to an oscillatory drive that is proportional to the cor-
responding mode displacement vector. In the absence
of the pseudo-magnetic field B, the response is under-
damped, but no mode stands out as having a largest
peak in χ (Fig. 4a), whereas for nonzero B, χ exhibits a
strong peak at a frequency ω0, corresponding to the ze-
roth Landau-level (Fig. 4b). Therefore, when an edge of
the metamaterial is driven near ω0, the pseudo-magnetic
field combined with selective damping leads to selective
enhancement of acoustic Landau-level modes (Fig. 4c–d)
relative to the rest of the attenuated acoustic spectrum.

Towards mechanical lasers. This phenomenon is the
acoustic analog of selective enhancement of microwave
modes realized in Ref. [43]. Just as selective enhancement
for light waves may lead to the design of novel parity-
time-symmetric [44, 45] and topological [8] lasers, anal-
ogously, selective enhancement of sound waves may be
useful in the design of sound amplification by stimulated
emission of radiation (SASERs), i.e., the acoustic ana-
log of lasers, acoustic couplers and rectifiers. The design
of such devices [46] would involve acoustic resonators,
acoustic drive, and nonlinearity of response. A potential
architecture for this device may involve resonators at ev-
ery node in the metamaterial, with an external acoustic
source populating the states within each resonator.

Note added. After our work was submitted, we learned
about Ref. [47] that examines Landau levels in metama-
terials composed of acoustic resonant cavities.

Acknowledgments. We gratefully acknowledge fund-
ing from FOM, NWO, and Delta Institute for theoretical
physics (H.A., A.S., J.P., and V.V.) and from EPSRC
Programme Grant No. EP/N031776/1 (H.S.).

H.A. and A.S. contributed equally to this work.

∗ Electronic address: vitelli@uchicago.edu

[1] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802
(2005).

[2] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[3] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[4] F. Guinea, M. I. Katsnelson, and A. K. Geim, Nature

Phys. 6, 30 (2010).
[5] N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui,

A. Zettl, F. Guinea, A. H. Castro Neto, and M. F. Crom-
mie, Science 329, 544 (2010).

[6] K. K. Gomes, W. Mar, W. Ko, F. Guinea, and
H. C. Manoharan, Nature 483, 306 (2012).

[7] M. C. Rechtsman, J. M. Zeuner, A. Tünnermann,
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SUPPLEMENTARY INFORMATION FOR “SONIC LANDAU LEVELS AND SYN-

THETIC GAUGE FIELDS IN MECHANICAL METAMATERIALS”

Here, we provide derivations for Eqs. (3, 5) of the main text, the domain-wall-localized

modes, and selective enhancement.

Synthetic gauge fields for strain and patterning

In a periodic material, the equations of motion (1) admit plane-wave solutions u =

uqe
i(ω(q)t−q·x) associated with the eigenvalue problem D(q)uq = mω2

quq, where the dynam-

ical matrix of the two-dimensional honeycomb lattice is:

D(q) =
1

m

3∑
α=1

κα

 Pα −Pαeiq·δα

−Pαe−iq·δα Pα

 , (S1)

where Pα = eαe
T
α. Of the four bands of this dynamical matrix, two of them are degenerate

at the Dirac point. Using first-order perturbation theory around the Dirac point, we find

the following form for the dynamical matrix projected onto the two Dirac bands:

D0 = − 3κ

4m
aδq · σ +

3κ

2m
I, (S2)

where σ ≡ (σx, σy), which involves the Pauli spin matrices

σx =

 0 1

1 0

 and σy =

 0 −i

i 0

 . (S3)

Using this approach, we introduce various perturbations. The deformation of the lattice is

given by U1,2 = U±W/2, where the different signs correspond to the different sublattices.

This deformation changes the components of the dynamical matrix via δα → δ̃α and Pα →

P̃α, where

δ̃α = (I +∇U)δα (S4)

P̃α = Pα + (∇U)Pα + Pα(∇U)T

+ (eTα ε eα + eTαW/a) (I− 3Pα) + eαW
T/a+ WeTα/a, (S5)

and (∇U)ij = ∂iUj. Substituting these parameters into Eq. (S1) and using perturbation

theory, we obtain Eq. (3) of the main text.

1



In the main text, we discussed those configurations in which the lattice strain results

from stress applied only to the boundaries. For such configurations, we imposed the force

balance condition within the bulk of the lattice: δUtot/δW = 0, where Utot is the potential

energy associated with each unit cell and is given by

Utot(R) =U1(R,R) +
1

2
[U2(R,R− a2) + U2(R + a2,R)]

+
1

2
[U3(R,R− a1) + U3(R + a1,R)] , (S6)

where Uα(R1,R2) = κ
2

(eα · [U2(R2)−U1(R1)])
2. Solving the force-balance equation

δUtot/δW = 0 using this energy, we get the result Wx = εxya and Wy = 1
2
(εxx − εyy)a

presented in the main text.

To obtain Eq. (5) of the main text, we insert different spring constants for each of the three

springs inside of each unit cell into Eq. (S1) and keep the leading terms in the expansion.

The sublattice-polarized modes

Some of our results for the sublattice-polarized modes can be understood using a con-

nection between mechanical graphene and the Jackiw-Rebbi model [1]. Note that, for

the waveguide described in the main text, κ2 = κ3 and V = 0, which is equivalent to

δκ2 = δκ3 = −δκ1/2 ≡ κµ. This case with staggered spring constants along the y-direction

is reminiscent of the Su-Schrieffer-Heeger model [2]. Using the formula for the synthetic

gauge field in Eq. (3) of the main text, we find the following form for the dynamical matrix:

D = D0 +
1

3
ω2
0µ(y)σx. (S7)

Thus, we see that the dimensionless parameter µ plays the role of the effective mass in

the Jackiw-Rebbi model. For modes of the honeycomb-lattice waveguide near the Dirac

frequency, we can obtain the form of the eigenmodes using the zero mode solution of the

Jackiw-Rebbi model: u(y) ∝ exp
[
−
∫ y
0
µ(y) dy

]
. Thus, for the sharp domain wall of Fig. 3,

for which the effective mass is a step-function, we find solutions at the domain wall which

decay exponentially away from the domain wall. On the other hand, for a mechanical

Landau-level mode obtained using material patterning, the mass varies linearly with y, i.e.,

µ ∝ y, and the mode indeed has a Gaussian profile (see Fig. S1). Furthermore, the solutions

to the Jackiw-Rebbi model exhibit a parity anomaly, which can be used to ascertain that the

domain-wall-bound modes as well as the Landau-level modes are both sublattice-polarized.
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FIG. S1: Visualizations of the zeroth Landau level for different wavenumbers. For qx = 2π/3a, this

mode has a Gaussian profile and is located precisely at the waveguide center due to a symmetry

of the Dirac cone: the modes with frequency above (below) ωK live on the lower (upper) half of

the waveguide. We observe edge states with Gaussian profiles for wavenumber qx near 2π/3a. For

example, when qx = 2/a (thus qx < 2π/3a) the mode has a Gaussian profile and is located near

the top edge of the waveguide (brown curve). In contrast, when qx = 2.2/a (thus qx > 2π/3a)

the mode has a similar shape, but is located near the bottom edge of the waveguide (light blue

curve). Far from the Landau level, at qx = 0 (π), the mode decays exponentially away from the

top (bottom) edge. This figure is an expansion of Fig. 2e of the main text.

Topological robustness of the domain-wall mode

In this part, we explain in detail the robustness of the sublattice-polarized domain wall

mode in the presence of disorder.

As explained in the main text, a domain wall across which the mass µ(y) in Eq. (S7)

changes sign will always carry a domain-wall-bound mode. Intuitively, this mode corresponds

to a Landau-level-like mode but in the presence of a spatially dependent magnetic field given

by the derivative µ′(y). Thus, the existence of the domain-wall bound mode requires µ to

change (and, in particular, change in sign) across the domain wall.

One of the consequences of nonzero µ is to break a chiral symmetry in this system.

This chiral symmetry preserves the reflection symmetry of the Dirac cone: the cone looks

the same right-side up as upside-down. Furthermore, this is the symmetry necessary to
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preserve the sublattice polarization (i.e., the fact that the mode lives on only one of the

two sublattices) of the domain-wall bound mode. From the fact that µ has to vary across

the domain wall and this violation of chiral symmetry, one might suppose that the domain-

wall mode’s existence also seems to presuppose that it will not be robust against disorder.

However, quantitatively, the terms that break this chiral symmetry are small so that the

domain-wall modes are nearly perfectly polarized on one sublattice (see Figs. S3 and S4).

Let us first explain the origins of topological robustness in this system and how it relies

on chiral symmetry. If the dynamical matrix has form

D =

 0 H

H† 0

 , (S8)

then we say that the system does have chiral symmetry. For this dynamical matrix, we can

calculate the winding number of detH, which is the integral of ∇k ln detH, over a periodic

contour γ in the Brillouin zone. The determinant detH is a complex number for each

wavevector, and traces out a closed path in the complex plane as the wavevector follows the

contour γ (see Fig. S2b). The integral counts how many times the path encloses the origin

detH = 0, and in particular, 1
2πi

∫
γ
dk · ∇k ln detH is unity when the origin is enclosed

once and zero otherwise. It thus forms a topological invariant for our system, often called

the Herring number in the context of Dirac cones [3, 4]. Only in the case when the vector

potential is zero does this integral become not well-defined, because in that case the contour

passes through the center of the Dirac cone, at which point detH = 0.

Notably, in our system, D has the form of Eq. (S8) only near the Dirac cone. Away

from points K and K ′, chiral symmetry does not hold and other diagonal terms enter the

dynamical matrix. However, near the Dirac cone, where all of the phenomena considered in

this work take place, these achiral terms are small and the chiral symmetry holds approx-

imately. As a result, the topological robustness associated with this chiral symmetry can

also be observed, as we explore in Fig. S4 for the sublattice polarization.

To check that the sublattice polarization remains significant in the presence of system

disorder, we have performed numerical simulations of disordered waveguides. In Figure S4

we present the results of these simulations in which we note that although increasing disorder

does somewhat affect the sublattice polarization, the effect is small in absolute terms. Even

when the disorder strength is around 15% of the initial spring stiffness, the mode remains
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FIG. S2: Topological invariants in a 2D Brillouin zone with a constant gauge field A. (a) A

schematic of the location of the Dirac points when the gauge field is constant. When A = (Ax, 0)

and the x-component Ax is positive, the Dirac cone at qK shifts to the left and the cone at qK′

shifts to the right (top panel). For Ax negative, these cones shift in the opposite direction. When

the Dirac cones shift, it is possible to define a winding contour around the Dirac cones that connects

qK′ with itself via a vertical path across the Brillouin zone. (b) When the quantity ∇k ln detH

[see Eq. (S7)] is integrated along the contour defined in (a), as long as the chiral symmetry of

the honeycomb lattice is respected, the resulting quantity is an integer called the Herring number.

This number is zero when Ax > 0 (small circle, which doesn’t enclose the origin) and unity when

Ax < 0 (large circle, which does enclose the origin). Thus, this number counts the Dirac cones

within the contour and can only change when the sign of Ax changes as, e.g., in the case of the

Landau level or the domain wall presented in the main text.

polarized within 5% of its initial, near-perfect, polarization.

Selective enhancement

We use the drag matrix Γ =

 γI 0

0 γ′I

 with γ′ = 0 to model sublattice-biased

dissipation. With the presence of these drag forces, the equation of motion becomes

mü+ Γu̇+Du = 0. Now consider an external driving force F(R, t) = F(R)eiωt which oscil-

lates in time. With this force, the inhomogenous equation of motion is mü+ Γu̇+Du = F.
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FIG. S3: Amplitude of the midgap mode for quasi-one dimensional waveguides with different sizes

N = 20 (black) and N = 60 (yellow) along the transverse direction plotted on a log-linear scale.

For each system size, the amplitude of the vibrational mode on the two sublattices A and B are

shown as solid and dashed lines respectively, as a function of y-position relative to the domain wall

at y = 0. The component on sublattice A decays exponentially away from the domain wall, similar

to the exponentially decaying domain-wall mode shown in Fig. 3b of the main text. The mode

also has a component on sublattice B, which decays exponentially away from the waveguide edges.

This component arises because an edge termination is similar to a domain wall with a different

mass sign change compared to the actual domain wall in the system. The relative amplitudes of

the two components are set by the boundary conditions at the edges: the loose node condition at

the system edge requires that uA = uB, as the nodes at the boundary can not balance a nonzero

force from the interior springs.

To find the solutions, we use Bloch functions, i.e., the normal modes of the periodic struc-

ture, to expand the drive as F(R, t) = eiωt
∑

nk Fnkunke
ik·R. A steady-state solution, if it

exists, oscillates with the same frequency ω as the drive. The steady-state solution can be

expanded as u(R, t) = eiωt
∑

k cnkunke
ik·R. From the equation of motion, we find that the

coefficients cnk obey

cnk =
Fnk

−mω2 + iΓnkω + λnk
, (S9)

where Γnk =
∑

n′ u
†
n′kΓunk and λnk are the eigenvalues of the dynamical matrix, Eq. (1) in

the main text. We expect the response to depend strongly on the damping. To see this,

consider Γnk to be a real number. If Γ2
nk > 2λnkm (corresponding to the overdamped limit),
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FIG. S4: Effect of disorder in the spring constants on the sublattice polarization of modes bound to

domain walls (see Fig. 3 in the main text). (a) We consider waveguides that are infinite along the

x-direction and have N unit cells along the y-direction. The disorder is implemented by rescaling

each spring constant with spring constant κ+ δκ by a random number X via (1 +X)κ+ δκ, where

X is chosen from a uniform distrubution on the interval [−s, s] where we call the number s the

disorder strength (x-axis of panel a). We then plot the relative weight of each mode on a sublattice

averaged over 100 realizations of the disorder in panel (a). We note that it is always near unity

(see inset). Even for disorder strength ∼ 10%, we note that the modes are still mostly polarized

on one sublattice. Even for the most disordered cases we consider, the relative sublattice weight

is 0.95, which indicates that the sublattice polarization of the domain-wall bound mode is robust

against disorder in the spring constant. (b) Domain-wall bound mode amplitudes on each lattice

site for several realizations of the disorder, with different disorder strengths. We note that even

in the case in which the effects of the disorder on the mode are appreciable, the mode is still very

strongly polarized on one of the sublattices.
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then the amplitude of the response never rises above Fnk/λnk – it attains this limiting

value at low frequencies and falls off as F/mω2 at higher frequencies. If on the other

hand, Γ2
nk < 2λnk (corresponding to the underdamped limit), the response develops a peak

at ω2
p = λnk/m − Γ2

nk/2m
2, whose height diverges as 1/Γnk. Therefore, at low damping,

the response will be dominated by modes whose natural frequency is close to the driving

frequency. If for example, the lattice is driven by forcing atoms along one edge in an

oscillatory manner, then Fnk will be appreciable for several modes, but the only modes to

have a strong response will be those whose natural frequency is close to the driving frequency.

This observation can be used to selectively enhance the zeroth Landau level mode, as

seen in Fig. 4 of the main text. In Fig. 4a-b, we plot χ(ω) ≡ cnk/Fnk for n corresponding

to Landau levels −2,−1, 0, 1, and 2, for k = qK . In the insets, we plot the attenuation

rates η, corresponding to the imaginary parts of the frequency spectrum, for these modes

as a function of k along the ΓKM cut of the Brillouin zone. For both quantities, the

zeroth Landau level mode is selected for nonzero B: it has a stronger response and smaller

attenuation than the other modes. We then drive the lattice with force F(t) = eiωtx̂ (ω near

ω0), on two of the lattice points (near but slightly above the waveguide center), and observe

the amplitude of the steady-state response sufficiently far away from this drive. We note

that the Landau-level mode is selectively enhanced.

[1] R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976).

[2] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).

[3] C. Herring, Phys. Rev. 52, 365 (1937).

[4] T. Kariyado and Y. Hatsugai, Sci. Rep. 5, 18107 (2015).

8


	Draft-17-08-16
	SI-17-08-16

