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When a swollen, thermoresponsive polymer gel is heated in a solvent bath, it expels solvent and
deswells. When this heating is slow, deswelling proceeds homogeneously, as observed in a toroid-
shaped gel that changes volume whilst maintaining its toroidal shape. By contrast, if the gel is
heated quickly, an impermeable layer of collapsed polymer forms and traps solvent within the gel,
arresting the volume change. The ensuing evolution of the gel then happens at fixed volume, leading
to phase-separation and the development of inhomogeneous stress that deforms the toroidal shape.
We observe that this stress can cause the torus to buckle out of the plane, via a mechanism analogous
to the bending of bimetallic strips upon heating. Our results demonstrate that thermodynamic
instabilities, i.e. phase transitions, can be used to actuate mechanical deformation in an extreme
thermodynamics of materials.

The term “extreme mechanics” is often used in refer-
ence to mechanical structures with prescribed instabil-
ities that enable large deformations and configurations
that are hard to achieve by other means [1]. An exam-
ple of this is Euler buckling, which refers to the case
of a straight, slender, homogeneous elastic rod that is
compressed at its ends by an applied stress [Fig. 1(a)]
[2]. Below a critical stress, τc, there is a stable energy
minimum corresponding to the deflectionless equilibrium
configuration of a straight rod [Fig. 1(b), dashed curve].
In contrast, above τc, the energy minimum becomes a
maximum and the straight rod configuration becomes un-
stable, with two new minima describing the stable, bent
configuration of the rod [Fig. 1(b), solid curve]; this de-
formed state is thus achieved via a mechanical instability
above τc.

Experimentally, shape actuation is often realized with
polymeric materials, such as polymer gels, which are
crosslinked polymer networks immersed in a solvent
[3]. These respond to external stimuli by swelling or
deswelling and equilibrate when the total free-energy,
consisting of a polymer-solvent mixing contribution and
the entropic elasticity of the polymer network, is mini-
mized [4]. In a so-called thermoresponsive gel, the inter-
play between these two contributions to the free energy
can be adjusted via temperature. Interestingly, if there
are inhomogeneities in the polymer distribution within
the gel, striking swelling patterns [5] can be achieved;
these are oftentimes similar to the topographical fea-
tures observed in soft tissues [6–8]. This strategy has
also proven useful in the design of tunable surface pat-
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FIG. 1. (a) Elastic rod that is compressed at its ends by a
tension τ . Left: straight rod; right: two examples of buckled
rods. (b) Total energy of a compressed rod as a function of de-
flection for values of tension τ less than (dashed) and greater
than (solid) a critical tension τc. (c) Free-energy density of
a polymer gel as a function of polymer volume fraction φ for
temperatures below a transition temperature T ∗, where the
gel is in the swollen phase at low φ, and above T ∗, where it
can be forced into a phase coexistent state.

terns [9] and self-folding origami [10]. Importantly, in all
these instances, the gel swells quasistatically and is thus
equilibrated with the surrounding solvent bath through-
out the process.

However, polymer gels can also exhibit discontinu-
ous phase transitions between polymer-solvent mixed
and segregated phases, corresponding to swollen and
deswollen states. Furthermore, they can also exhibit
phase coexistence where different parts of the gel are
either solvent-rich or solvent-poor [3, 11]. In thermore-
sponsive gels below a threshold temperature, T ∗, the sys-
tem is in an equilibrium swollen state, where the free en-
ergy is minimum [Fig. 1(c), dashed curve]. In contrast,
above T ∗, the gel can exhibit phase coexistence and be
characterized by a free energy with two minima [Fig. 1(c),
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FIG. 2. (a) Quasistatic deswelling of a toroidal gel equilibrated at 25.1, 30.7, 33.5 ◦C. Scale bar: 1mm. (b) Temperature-
dependence of the ring radius, R, and the tube radius, a, for a torus of initial aspect ratio (R/a)i = 3.0. (c) R vs a for tori
with an (R/a)i of (N) 1.6, (�) 3.0, and (•) 5.9 undergoing quasistatic deswelling. The solid lines are linear fits to the data.
The intercepts of the fits are, from top to bottom (in mm): (0.02 ± 0.06) mm, (−0.037 ± 0.015) mm, and (0.042 ± 0.011) mm;
these are all close to zero, consistent with deswelling happening at constant ξ. The slopes m of these fits are shown in (d)
as a function of (R/a)i. The closed symbols are the results obtained in computer simulations. The solid line corresponds to
m = (R/a)i. (e) Simulation snapshots of a toroidal gel that is deswelling quasistatically.

solid curve]. Importantly, due to the gel’s shear rigidity,
this last equilibrium arrangement of coexistent phases
must additionally minimize the free-energy cost associ-
ated with the inhomogeneous distribution of the polymer
network. Swelling equilibria thus depend on and influ-
ence the shape of the gel; the order parameter associated
to the phase transition then couples to the shape, poten-
tially affecting it in what we could call an extreme ther-
modynamics of materials. Unlike the mechanical case of
Euler buckling, in this case, a thermodynamic instability
is exploited to achieve large-scale material deformations.

In this Letter, we explore this idea using thermorespon-
sive gels made of poly-N-isopropylacrilamide (pNIPAM)
and shaped as a toroid. First, we demonstrate the ac-
tuation of volume changes at fixed toroid shape. Next,
we discuss our observations that after rapid heating, the
toroid undergoes large shape changes and buckles out of
the plane. We find that the toroid undergoes internal
phase-separation at constant volume, leading to a po-
larized arrangement of solvent and polymer within its
cross-section that results in a substantial internal stress
difference. Through simulation and analytical modeling,
we demonstrate that the observed arrangement is respon-
sible for the toroid’s buckling, confirming the notion of
extreme thermodynamics as a means to achieve shape ac-
tuation.

We fabricate toroidal gels by first forming toroidal
droplets of a precursor NIPAM solution, which is then
UV-polymerized [12–14]. When heated past the lower
critical solution temperature (LCST), pNIPAM gels en-
ter a deswollen, polymer-rich phase, characterized by a
small volume. Snapshots of the quasistatic evolution of
a toroidal gel are shown in Fig. 2(a). Both the ring ra-
dius, R, and the tube radius, a, decrease with increasing
temperature, as shown in Fig. 2(b). The rate of decrease
is highest at 32.5◦C, which corresponds to the LCST of
pNIPAM [15]. Above this temperature, both R and a
remain essentially constant, as also shown in Fig. 2(b);
at these temperatures the gel is deswollen and optically

opaque, as seen in the rightmost image in Fig. 2(a).

Since the gel remains isotropic and homogeneous dur-
ing the quasistatic heating process, any change in the
polymer matrix brought about by changes in φ must oc-
cur uniformly throughout the gel. Thus, all macroscopic
lengths are expected to rescale by the same amount, im-
plying that the aspect ratio of the torus, ξ ≡ R/a, re-
mains unchanged. To test this, we plot R as a function
of a for all tori as they deswell, and find that they are
linearly related, as shown for three representative exam-
ples in Fig. 2(c). We also find there is a one-to-one cor-
respondence between the slopes, m, obtained from the
linear fits of the data, and the aspect ratio of the tori
measured before deswelling. This is shown in Fig. 2(d),
and confirms our expectations. We also perform dissipa-
tive particle dynamics (DPD) computer simulations to
further test our results [12]. Representative snapshots of
a simulated gel as it deswells are shown in Fig. 2(e). Con-
sistent with the experimental results, R is linearly related
to a, with a slope that corresponds to the aspect ratio
before deswelling; the associated data points are shown
in Fig. 2(d) with closed symbols.

In striking contrast with these observations, when we
rapidly raise the temperature from the swollen phase at
∼ 10◦C to the deswollen phase at 40.0◦C, the gel buck-
les, adopting a “PringleTM”-like shape, as shown for a
torus with ξ = 3.3 in Fig. 3(a,b). This state persists
over time scales from minutes to hours, depending on the
overall dimensions of the torus, and eventually evolves
while developing other characteristic features, as shown
in Figs. 3(c,d). In spherical and cylindrical pNIPAM
gels subjected to abrupt temperature changes, there is
a “plateau period” over which the gel retains its original
volume, followed by the formation of surface patterns [16]
that are reminiscent of those we observe for tori at long-
times [Figs. 3(c,d)]. The origin of this non-quasistatic
evolution is the formation of a deswollen, collapsed-
polymer layer, leading to extremely slow deswelling of
the bulk of the gel, which, as a result, essentially main-
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FIG. 3. Evolution of toroidal gels after rapid heating. The experimental image pairs (a,b), (g,h), and (k,l) are taken (a,g,k)
0s, (b) 104s, (h) 158s, and (l) 201s after heating. Pairs (e,f), (i,j), and (m,n) are simulations for gel shells; images on the left
correspond to the initial state, while images on the right correspond to the final state. The initial aspect ratio of the tori are:
(a) 3.3, (e) 3.0, (g) 4.8, (i) 5.3, (k) 1.7, and (m) 2.4. Images (c,d) correspond to the long-time evolution of the toroidal gel in
(a,b). (c) is 3 min and (d) is 10 mins after the abrupt temperature change. Scale bars: 1mm.

tains a constant volume [17, 18]. The long-time patterns
seen in our toroidal gels suggest that a similar situation
occurs in our case and that the evolution we observe af-
ter rapid heating essentially happens at constant volume;
this is supported by the observation that the time over
which the toroid buckles is much shorter than the plateau
period. Hence, after rapid heating, the gel is out of equi-
librium with the solvent bath and is thus not constrained
to maintain a constant osmotic pressure Πbath, but rather
a constant volume. In this situation, a swollen gel is
not allowed to change its total polymer volume fraction.
However, since the swollen gel has been brought to a
temperature above the LCST of pNIPAM, the homoge-
neously mixed state of the gel becomes unstable to sep-
aration into solvent-rich and solvent-poor regions. We
then postulate that the shape transformation observed
in experiment is due to this phase-separation at constant
volume.

As the boundary of the torus already consists of a
collapsed-polymer layer, we expect that the solvent-poor
region grows from this layer inward into the bulk, in a
manner akin to heterogeneous nucleation. Furthermore,
since a gel is a contiguous medium, the interface between
solvent-rich and solvent-poor regions is laminated. This
interface frustrates the homogeneity of the polymer ma-
trix and leads to a residual stress. We therefore expect
that the phase-coexistent state adopted by the gel will
tend to minimize this inhomogeneity. In the case of a
sphere, the result is a solvent-poor skin of uniform thick-
ness over the surface. The non-constant curvature of the
toroidal surface, however, leads to a skin of non-uniform
thickness. Since the toroidal gel has higher ring curva-
ture on its interior surface than on its exterior, we ex-
pect that a thicker polymer layer will form near the axis
of revolution of the torus, as illustrated in the rightmost
schematic in Fig. 4(a). This is indeed seen in experiment
and is particularly clear at long-times, where the solvent-
poor skin has clearly thickened and appears opaque, as
shown in Figs. 3(c,d).

To confirm our interpretations, we consider that,
within the torus, a fraction f of the gel is solvent poor
and undergoes a volume change relative to its initial vol-
ume, up < 0. The remaining fraction (1 − f) of the
gel is solvent-rich and increases its volume by a factor
ur > 0. The total volume constraint yields a “lever
rule” fup + (1 − f)ur = 0, which is a general fea-
ture in phase-separation with a conserved order param-
eter [19, 20]. Using the Flory-Rehner theory of polymer
gels [12] and considering a cylindrical geometry, which
amounts to neglecting ring curvature for now, we can
determine equilibrium values for the strain ur and up
and the fraction f ; from this, we confirm that phase-
coexistent equilibria exist for temperatures T above the
LCST at constant volume and that the polymer volume
fraction for the solvent-poor region is much larger than
that of the solvent-rich region [12]. We then incorporate
perturbatively the toroid’s ring curvature on the phase-
coexistence and find that it is favorable for the solvent-
poor region to be thicker near the axis of revolution of
the torus and thinner away from the axis [12], further
confirming our previous assertions. Interestingly, the re-
sultant configuration is reminiscent of a bimetallic strip
composed of two metals of differing thermal expansion
coefficients that are laminated together, as illustrated in
the leftmost schematic in Fig. 4(a); under heating, the
strip bends, increasing curvature due to the torque that
results from the differing thermal stresses in the two met-
als [21]. In our case, the laminated coexistent phases of
the gel have a similar stress differential. We then fo-
cus on the ring-shape of the gel, ignore fine details of
the cross-section, and develop a long-wavelength elastic
model where the polymer matrix in the two laminated co-
existent gel regions are each at fixed polymer volume frac-
tions. Within this coarse-grained view of the gel, the net
compressive stress, σ, exerted by the outer, solvent-poor
shell on the inner, solvent-rich region is: σ = E(ur−up),
where E is the gel’s effective Young’s modulus.

To describe buckling, we balance the stress σ against
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the rigidity of the torus. In general, toroidal bending
is described by three-dimensional elasticity. However, in
our simplified model we treat the torus as an elastic rod
defined by a circular centerline of length L. This cen-
terline is characterized at each point by its curvature κ
and torsion τ , which are determined by the rotation rate
of the Frenet-Serret frame; see inset in Fig. 4(b). We
consider an effective inextensible rod elastic free-energy
H [2], in which the centerline degrees of freedom are en-
coded in changes in curvature ∆κ and changes in torsion
∆τ at fixed length:

H =

∫ L

0

ds

(
1

2
B∆κ2 +

1

2
C ∆τ2 + ∆κ b̂ ·M

)
. (1)

The first two terms in Eq. (1) represent a rod with
Hookean response to bending (and bending rigidity B)
and twisting (and torsional rigidity C). The third term
in Eq. (1) is associated to the swelling torque M acting
on the centerline. This model becomes strictly applicable
in the limit ξ � 1. However, since the extensile rigidity
remains much larger than the bending or torsional rigidi-
ties for significantly smaller ξ [22], it still applies down to
the experimental values of ξ where buckling is observed.

Right away, we see that our simple model indicates
that the torus experiences swelling stresses that act to
increase the ring curvature, reminiscent of the thermal
stresses that bend bimetallic strips. Owing to the rela-
tively high energy cost of length changes, the torus is un-
able to attain a uniformly increased curvature whilst re-
maining planar, because any deformation that preserves
both the length and winding number of a closed planar
loop also leaves the integrated curvature for that loop
unchanged [23]. To overcome this, the torus buckles out
of the plane, which is what we observe experimentally.

To find the buckling threshold and modes, we perform
a linear stability analysis [12, 24] of Eq. (1). This analysis
depends on two dimensionless numbers: the rigidity ra-
tio C/B and the stress ratio M/(Bκ), where M ≡ |M|.
We find that the torus is unstable to buckling above a
threshold value of M/(Bκ) at fixed C/B, as shown in
Fig. 4(b). This is seen in experiments, where tori with
ξ . 3 do not buckle; see Fig. 3(k,l) for a representative
example. Note that “Pringling” is the first of the buck-
ling modes that is accessible upon increasing M/(Bκ)
at fixed C/B. For even larger M/(Bκ), higher modes
become unstable [Fig. 4(b)].

Let us now estimate the quantities in Eq. (1) and
further compare to experiments. The swelling torque
M = −fxπa2σ b̂ can be estimated as the cross-product
of the lever arm fx n̂ with force πa2σ t̂. Here, f is a
good approximation of the fraction of the cross-sectional
area occupied by the solvent-poor region, and x is the
center-of-area of the surface skin within the cross-section,
which measures the imbalance of skin thickness due to
surface curvature. Note that x > 0 because the shell is
thicker closer to the axis of revolution of the torus. To
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FIG. 4. (a) Schematic of a bimetallic strip before (top
left) and after (bottom left) heating. A slice through the
cross-section of a phase-separated toroid is shown on the right
with centerline (dashed red), cross-sectional radius a, polar-
ized arrangement of solvent-rich (blue) and solvent-poor (or-
ange) regions with corresponding strains ur and up, and the
swelling moment M. (b) Prediction of instability from lin-
ear stability analysis in terms of dimensionless measures of
the swelling moment, M/(B κ), and the ring rigidity, C/B.
The inset schematically shows the Frenet-Serret frame in an
unperturbed ring, as well as the “Pringling” and the next-
two-lowest modes. Note that for uniform incompressible tori
with a circular cross-section, elasticity theory dictates that
C/B ≈ 2/3.

estimate the rigidities we consider that a uniform rod
of circular cross-section radius a has B ≈ 1

4πa
4E and

C/B ≈ (1 + ν)−1, with ν the Poisson ratio. Crucially,
since the gel is in the plateau period where the volume re-
mains constant, we may regard it as rubber-like and hence
incompressible; thus we take ν ≈ 1/2 and C/B ≈ 2/3.
We then find that M/(Bκ) ≈ 4fξ, where we have used
that x ≈ a, due to the highly polymer-dense region at
the toroidal surface, and that |up| ≈ 1, since this region
contains very little solvent [12]. Theoretically, the buck-
ling threshold for C/B = 2/3 is M/(Bκ) ≈ 1.4. Con-
sidering that buckling is seen above ξ ≈ 3, this implies
that f ≈ 0.1. We can test this expectation by consid-
ering the ratio of deswollen to swollen gel volumes in
the quasistatic experiments (see Fig. 2); in all cases, we
obtain f ≈ 0.1, consistent with the theoretical expecta-
tions. Moreover, as M/(Bκ) ∼ ξ, the theoretical predic-
tions of the buckling modes shown in Fig. 4(b) relate well
to the experiments. Specifically, increasing ξ in the ex-
periments results in a transition from tori that are stable
against buckling to ones that “Pringle,” and subsequently
to tori that deform via more complicated shapes, which



5

are reminiscent of the higher buckling modes predicted
by the linear-stability analysis.

To further confirm that a swollen interior surrounded
by a dense shell that is thicker near the axis of revolu-
tion results in buckling, we perform DPD simulations of
toroidal shells having a nearly constant volume. Since
we model the toroidal shell by a 4-coordinated mesh of
harmonic bonds [12], the curvature of the shell ensures
that the effective rigidity of the portion closer to the axis
of revolution is greater than the portion away from the
axis, simulating the variable thickness observed in ex-
periments. Remarkably, the simulations reproduce the
“PringleTM”-like shape seen experimentally, as shown for
a torus with ξ = 3.0 in Figs. 3(e,f). Furthermore, the
data can be fit to the hyperbolic paraboloid shape char-
acteristic of Pringles [12]. Our simulations confirm that
buckling is indeed related to the heterogeneous structure
of our gels, in which a solvent-poor layer is forced to
coexist with a solvent-rich bulk, and that in the pro-
cess the volume of the gel remains essentially constant.
We also note that we also find modes other than “Prin-
gling.” These are seen for higher values of ξ; an example
is shown in Figs. 3(i,j), which compares well with the ex-
perimental result shown in Figs. 3(g,h). In addition, for
sufficiently small ξ, no buckling is observed, consistent
also with our experiments and theory, and buckling oc-
curs only for ξ & 3, also consistent with our experimental
findings.

We have shown that rapidly heated tori composed of
polymer gel can undergo constrained phase separation to
form solvent-rich and solvent-poor regions and that the
polarized arrangement of these regions within the torus
can result in out-of-plane deformations. Our theoretical
analysis also predicts that thin, curved pNIPAM gel rods
would buckle when f & 0.35 ξ−1, where in general f is
the volume fraction of solvent-poor gel and ξ−1 = κa
is the product of rod curvature κ and the tube radius.
While the shapes attained in our experiments are typ-
ical for rings that buckle due to mechanical instability,
we emphasize that our results are entirely due to a ther-
modynamic instability. Thus, our work is suggestive of
an “extreme thermodynamics” where shape actuation is
achieved by passage through a phase transition.
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by K. Dušek (Springer, Berlin, Heidelberg, 1993) pp. 1–
26.

[12] See Supplemental Material at [URL will be inserted by
publisher] for details on (i) the generation of toroidal
polymer gels and the quasistatic deswelling experiments,
(ii) the DPD cmputer simulations, (iii) the fit of the simu-
lation Pringle-like shape to a hyperbolic paraboloid, (iii)
the phase coexistence equilibrium at constant volume for
cylindrical polymer gels, (iv) the role of ring curvature on
this phase coexistence, and (v) the linear stability anal-
ysis of the ring model.

[13] Y.-W. Chang, A. A. Fragkopoulos, S. M. Marquez, H. D.
Kim, T. E. Angelini, and A. Fernández-Nieves, New J.
Phys. 17, 033017 (2015).

[14] E. Pairam, H. Le, and A. Fernández-Nieves, Phys. Rev.
E. 90, 021002 (2014).

[15] H. G. Schild, Prog. Polym. Sci. 17, 163 (1992).
[16] E. Sato Matsuo and T. Tanaka, J. Chem. Phys. 89, 1695

(1988).
[17] R. Yoshida, K. Sakai, T. Okano, Y. Sakurai, B. You Han,

and K. Sung Wan, J Biomater. Sci. Polym. Ed. 3, 155
(1992).

[18] T. Okano, Y. H. Bae, H. Jacobs, and S. W. Kim, J.
Control. Release 11, 255 (1990).

[19] P. M. Chaikin and T. C. Lubensky, Principles of Con-
densed Matter Physics (Cambridge University Press,
Cambridge, 1995).

[20] H. B. Callen, Thermodynamics and an Introduction to
Thermostatistics (Wiley, 1985).

[21] S. Timoshenko, J. Opt. Soc. Am. 11, 233 (1925).
[22] M. S. Dimitriyev, Function through form in soft matter:

the influence of bounded geometries in heated gels and
fluctuating proteins, Ph.D. thesis, Georgia Institute of
Technology, School of Physics (2017).

[23] A. Pressley, Elementary differential geometry (Springer-
Verlag, London, 2010).

[24] B. Audoly and Y. Pomeau, Elasticity and Geometry:
From hair curls to the non-linear response of shells (OUP
Oxford, 2010).

http://dx.doi.org/10.1016/j.eml.2015.09.004
http://dx.doi.org/10.1016/j.eml.2015.09.004
http://books.google.com/books?id=tpY-VkwCkAIC
http://dx.doi.org/10.1007/3-540-56791-7_1
http://dx.doi.org/10.1007/3-540-56791-7_1
http://dx.doi.org/ 10.1021/ma401773w
http://dx.doi.org/ 10.1021/ma401773w
http://dx.doi.org/10.1039/B713263H
http://dx.doi.org/10.1039/B713263H
http://dx.doi.org/10.1039/C1SM05152K
http://dx.doi.org/10.1103/PhysRevLett.106.105702
http://dx.doi.org/10.1103/PhysRevLett.106.105702
http://dx.doi.org/10.1002/adfm.200900622
http://dx.doi.org/10.1002/adfm.200900622
http://dx.doi.org/10.1021/nn300079f
http://dx.doi.org/10.1007/BFb0021126
http://dx.doi.org/10.1088/1367-2630/17/3/033017
http://dx.doi.org/10.1088/1367-2630/17/3/033017
http://dx.doi.org/10.1103/PhysRevE.90.021002
http://dx.doi.org/10.1103/PhysRevE.90.021002
http://dx.doi.org/10.1016/0079-6700(92)90023-R
http://dx.doi.org/10.1063/1.455115
http://dx.doi.org/10.1063/1.455115
http://dx.doi.org/ 10.1163/156856291X00250
http://dx.doi.org/ 10.1163/156856291X00250
http://dx.doi.org/ 10.1016/0168-3659(90)90138-J
http://dx.doi.org/ 10.1016/0168-3659(90)90138-J
http://dx.doi.org/10.1017/CBO9780511813467
http://dx.doi.org/10.1017/CBO9780511813467
http://dx.doi.org/10.1364/JOSA.11.000233
http://dx.doi.org/10.1007/978-1-84882-891-9


Supplementary Information

May 18, 2018

1 Generation of toroidal hydrogels and details of the quasistatic
deswelling experiments

We fabricate toroidal gels by first forming toroidal droplets of a precursor solution consisting 5% NIPAM,
0.2% crosslinker bis-acrylamide, 0.2% (w/v) photo-initiator Irgacure 2959, and 94.6% deionized water, inside
a yield-stress material made of a mixture of Dow Corning R© 9041 silicone elastomer blend and 10cst silicone
oil [1]. The process consists of injecting the precursor fluid through a needle into a rotating bath containing
the yield-stress material. At sufficiently high rotation speeds, the stresses involved exceed the yield stress,
and we can successfully generate a curved jet that closes onto itself to form a toroidal droplet. Once made,
the shape is stabilized by the elasticity of the yield-stress material [2]. We induce polymerization of the
precursor fluid by illuminating the sample with UV-light while keeping it over an ice bath, which assists with
heat dissipation and prevents macro-phase separation of pNIPAM aggregates during polymerization. The
resultant toroidal gel is removed from the yield-stress material by repeated cleaning with alcohol and water,
and maintained in deionized water.

Quasistatic deswelling experiments are performed by transferring a fully swollen gel into a water bath that
is placed over a platform with temperature control capability; the temperature of the bath is measured using
a thermocouple of sensitivity ±0.1 ◦C. The volume and shape transition of the toroidal gel are monitored
using a CCD camera. To ensure quasistatic deswelling, we change the temperature at a rate ≤0.4 ◦C/hour.
Alternatively, we change the temperature in small steps, waiting as needed after each step until no size
change is detected; the results we observe are identical. We also emphasize that the deswelling behavior is
fully reversible.

2 Simulation information

In our computational model, we utilized dissipative particle dynamics (DPD), a particle-based mesoscopic
simulation technique, whose soft potentials and pairwise forces preserve local hydrodynamics while allowing
for simulations with longer length and time scales [3, 4, 5]. The governing dynamics between beads in
DPD are set by three main forces, F =

∑
j 6=i F

C
ij + FD

ij + FR
ij . The conservative force FC

ij = aij w(rij) r̂ij
leads to excluded volume. In this expression, aij is the repulsion parameter between beads i and j, and
w(rij) = 1− r̂ij is a weighing function, where r̂ij = rij/rC , with rij = |ri− rj| and rC the cut-off distance of
the excluded volume potential. The dissipative force FD

ij = −γ w2(rij) (r̂ij ·vij) r̂ij, with vij the difference in

velocity between beads i and j, accounts for viscous interactions, while the random force FR
ij = σ w(rij) ξij ·

(∆t)−1/2 r̂ij represents the effect of thermal fluctuations. In the expression for FR
ij , ξij is a standard normal

variable with zero mean and ∆t is the time-step of the velocity verlet algorithm; the time-step dependence is
required to guarantee that Brownian motion, which is characterized by a magnitude of the displacement-step
that scales with the square-root of the time-step, is recovered upon integration. The random and dissipative
forces are related by σ2 = 2 γ kB T , with kB the Boltzmann constant and T the temperature, due to the
fluctuation-dissipation theorem. For our simulations, we set aij = 25, rC = 1, γ = 4.5, kB T = 1, and ρ = 3
(all dimensional parameters are given in DPD units) [3].

We developed two different toroidal gel models to describe the slow and rapid heating rates in the
experiments. For slow heating rates, we represent the toroidal polymer network using randomly connected
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(a) (b)

Figure S.1: (a) Example image of a toroidal polymer network used to model quasistatic deswelling. (b)
Illustration of a toroidal mesh with close-up, used to model the rapid heating rate experiments.

Mesh beads

Centerline beads

Portion of the bond
that is closer to the
centerline bead (blue)

Portion of the bond
that is closer to the
bead on the toroidal
mesh (green)

Figure S.2: Cross-sectional view of toroids for rapid heating simulations. The beads in the toroidal mesh
and centerline beads are shown in green and blue, respectively. Each mesh-centerline bond is represented
with a half-green and a half-blue color scheme for illustration purposes.

bead-spring chains. In this approach, the flexible chains are composed of beads connected by a harmonic
potential given by Ubond = kbond (r− req)2 and a bending potential given by Ubend = kbend (1 + cos θ). Here,
kbond is the bond stiffness, req is the equilibrium separation length between beads, kbend is the bending
stiffness and θ is the angle between two polymer bonds sharing a common bead. In our simulations, we set
kbond = 35, req = 0.6, and kbend = 1. To construct our toroidal gel network, we randomly distribute crosslink
points in a 60× 60× 60 simulation domain and then connect them with nearby neighbors via flexible chains
using a connectivity of 6. The toroidal geometries are cut out from the corresponding cubic networks and
placed in a 100 × 100 × 100 simulation domain filled with a viscous solvent with density ρ = 3 represented
by DPD beads. Deswelling of toroidal gels is achieved by varying the gel-solvent repulsion parameter aN−S
[6]. Theta-solvent conditions correspond to aN−S = 25. Lower values of aN−S correspond to good solvent
and higher values correspond to poor solvent conditions. To model the collapse of the toroidal gel, we start
at theta-solvent conditions and incrementally decrease the solvency until we reach aN−S = 35. Figure S.1a
shows a snapshot of our toroidal network in theta-solvent conditions. The swelling kinetics of our random
polymer network model, in the case of spherical geometries, agrees well with Tanaka’s theory for the swelling
of gels [6, 7].

Due to computational constraints, our gel model cannot be directly used to model the rapid heating
rate experiments with macroscopic gels, which is characterized by the formation of a dense, stiff skin at the
gel-solvent interface. To model the effects of the stiff gel skin which forms in these cases, we use a simplified
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model that is composed of a toroidal shell constructed using a tetrahedral mesh with an average spacing of
∼0.35, as shown in Fig. S.1b. Nodes in the mesh are connected by harmonic bonds. To mimic the effect of
the gel heating rate, we arrange beads along the toroidal centerline and connect them to the beads forming
the shell. Mesh-centerline bonds are shown in the cross-sectional view in Fig. S.2, where half of each bond
is colored in blue (parts closer to the centerline bead) and the other half is colored in green (portion of the
bond closer to the mesh bead). The initial equilibrium bond length for the mesh-centerline bonds was set
to 5. The harmonic bonds in the shell have stiffness k = 500, while the mesh-centerline harmonic bonds
have stiffness k = 100. Note that we do not impose a DPD repulsion between the beads in the mesh, as this
would have effects on the mesh properties that we want to avoid. The repulsion between mesh-solvent beads
is aM−S = 100. The density of the fluid is ρ = 3, yielding an average spacing between solvent beads of about
0.7. The smaller spacing between beads in the mesh and the relatively large repulsion between mesh-solvent
beads ensures that solvent particles which are initially inside of the toroidal mesh remain trapped during
the rapid heating process. To model this rapid heating, we instantaneously decrease the mesh-centerline
equilibrium bond length from 5 to 3. The final bond length is selected based on the numerical stability of
the shell model.

3 Comparison between simulation and PringleTM shape

We compare the simulation results to the PringleTM shape predicted by our elastic ring model by fitting the
simulated centerline, an example of which is shown in Fig. S.3(a) below, to a ring that lies on a hyperbolic
paraboloid z = q (x2 − y2), which, in polar coordinates is given by

(x, y, z) = R

(
cos(θ + δ), sin(θ + δ), q R cos(2θ + δ)

)
, (1)

where R is the radius of the projection of the ring onto the xy-plane, δ is a phase-offset, and q determines
the amplitude of the out-of-plane component of the buckled ring. To perform this fit, we first translate and
rotate the simulated points such that (i) the origin x, y, z = 0 coincides with their center-of-mass and (ii) the
z-axis aligns with the principle axis corresponding to their smallest dimension. Next, we fit the projected
ring radius R against the projection of the simulated centerline to the xy-plane. Using this value of R,
we fit q R2 cos(2θ + δ) to the z-axis projection of the centerline, as shown in Fig. S.3(b), obtaining values
of A = q R2 and the phase-offset δ. For the specific case shown in this figure, we obtain an amplitude of
A/R ≈ 0.068 and δ ≈ 0.242 radians. As evidenced by Figs. S.3(b,c), the buckled shape is well-approximated
by a ring on a hyperbolic paraboloid, i.e., the PringleTM shape.

We note that since we lack a three-dimensional view of the toroids in the experiments, we cannot provide
a similar quantitative analysis of the observed, buckled Pringle-like shape.

4 Phase coexistence in a gel rod

To address the phase-coexistence between solvent-poor (deswollen) shell and solvent-rich (swollen) interior,
we approximate the toroid by a cylinder with identified end-caps; the toroid’s ring curvature lifts the cylinder’s
polar symmetry. In the absence of ring curvature, symmetry dictates that the cylinder can only change its
length by a stretching factor Λ`, the radius of the solvent-rich region by a factor Λt, and the thickness of the
solvent-poor region by Λn. This situation is illustrated in Fig. S.4. The total free-energy, in the reference
space R, is given by

F

π a2
=(1− f)

[
1

2
µ0

(
Λ2
` + 2

φ0
φr Λ`

)
+ F(φr)

]
+ f

[
1

2
µ0

(
Λ2
` + φ0

φ−2p + φ−2r

φ−1r Λ`

)
+ F(φp)

]

+ p

[
(1− f)

φ0
φr

+ f
φ0
φp
− 1

] (2)
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(a)

(b)

(c)

z(θ)

θ radians

Figure S.3: (a) Buckled shape from DPD simulation, with extracted centerline (right) and xy-plane. (b)
Height of the ring as measured along the z-axis of (a), together with a fit to A cos(2θ + δ), where A = q R2

is the amplitude of the ring deformation and δ is a phase offset, accounting for the choice orientation in the
xy-plane; in this example, we find δ ≈ 0.242 (radians) and A/R ≈ 0.068. (c) Overlay of the data with the
fit ring on a portion of the corresponding hyperbolic paraboloid surface.
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Figure S.4: Schematic of phase-separated cylinder (a) before and (b) after deformation along with cylindrical
coordinates. In the reference configuration (a), L is the length of the cylinder, b is the radius of the solvent-
rich region, h is the thickness of the solvent-poor skin, Rr is the solvent-rich region, Rp is the solvent-poor
region. Tr is the solvent-rich region and Tp is the solvent-poor region in the target configuration (b).

where µ0 is the shear rigidity of the gel before phase-separation, with polymer volume fraction φ0; after
phase-separation, the gel has a solvent-poor shell with polymer volume fraction φ−1p = Λn Λt Λ`φ

−1
0 and

solvent-rich interior with polymer volume fraction φ−1r = Λ2
t Λ`φ

−1
0 . The parameter p is a Lagrange multiplier

that enforces the constant volume condition. The mixing free energy density F is modeled by the Flory-
Rehner theory [8, 9]; for description of the continuum approach, see e.g. [10]. In order to describe the
first-order phase transition that occurs in the neutral polyNIPAM gels, the Flory-Rehner theory is extended
via a virial expansion of the osmotic pressure [11], leading to a volume fraction-dependent Flory parameter,
which may be approximated as

χ(φ, T ) ≈ χ1(T ) + χ2 φ (3)

where χ2 is typically taken to be fixed by experiment with a value χ2 > 1/3 [12]; temperature sets the value
of χ1 which determines the swelling state of the gel. Minimizing the total free-energy Eq.2 with respect to
φr, φp, Λ` gives stress-balance conditions; minimization with respect to f yields a chemical potential-balance
condition between the two phases; minimization with respect to p yields the “lever rule”

f =
φ−1r − φ−10

φ−1r − φ−1p
(4)

which is simply a consequence of mass and volume conservation and thus holds for systems undergoing phase
separation into two distinct phases [13]. Note that in the manuscript, in order to clarify the form of our
elastic model, we introduce the strains ur and up where

ur ≡
φ0 − φr
φr

; up ≡
φ0 − φp
φp

(5)

which allows the lever rule Eq. 4 to be recast as

f =
ur

ur − up
. (6)

Fig. S.5 outlines the theoretical predictions for the equilibrium state of a long cylindrical gel, with fixed
solvent and polymer mass, as a function of Flory parameter χ1, which is a proxy for temperature. In
particular, we focus on gels that contain a much greater mass of solvent than polymer, characterized by a
low single-phase polymer volume fraction φ0, and consider three cases of polymer dilution: φ0 = 0.01, 0.015,
and 0.02. We use representative values µ0 = 10−4kBT/v and χ2 = 0.56 (see [12]). Equilibrium values of
the polymer volume fraction are shown in Fig. S.5(a), where we note that for small χ1, there is a single
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Figure S.5: (a) Values of solvent-poor volume fraction φp (solid) and solvent-rich volume fraction φr (dashed)
after constrained phase separation are shown as a function of χ1, with inset highlighting the low-φ regime,
showing variation in the solvent-rich volume fraction φr. (b) Fraction f of solvent-poor phase in the reference
state is shown as a function of χ1.

equilibrium volume fraction, given by φ0, and for larger χ1, the gel phase-separates and the equilibrium
state is characterized by coexistent solvent-rich and solvent-poor phases with volume fractions φr (dashed
curve) and φp (solid curve), respectively. Thus, the gel undergoes a first-order deswelling phase transition
resulting in the large, discontinuous jump in φp from φ0. We find, however, that the solvent-rich region is
characterized by a volume fraction φr that decreases continuously from φ0; this is emphasized in the inset
of Fig. S.5(a), which focuses on a smaller range of volume-fraction and a larger range of χ1 to highlight the
variation in φr. Note that for more dilute gels (lower φ0), the phase-separation transition occurs at higher
χ1 and variation of φr from φ0 is diminished. We emphasize, though, that there is still a variation in φr
from φ0 for the case of φ0 = 0.01; this variation is apparent after zooming in appropriately.

To better understand the behavior of the phase-separated volume fractions, refer to Fig. S.5(b), which
shows the fraction f of the cylinder that is occupied by solvent-poor gel. Since the solvent-poor region
grows from the deswollen boundary of the cylinder, rather than the core, where it would need to grow from
a critical nucleus, f grows continuously from 0. Within this picture, the solvent-poor region obtains more
polymer mass from the solvent-rich region in order to grow, decreasing the polymer volume fraction φr of
the solvent-rich region; this decrease is continuous because the growth of f is continuous. The observed
increase in the rate of change of φr in the inset of Fig. S.5(a) and of f in Fig. S.5(b) with larger values of
χ1 can be explained by recalling that phase-separation in gels is different from phase-separation in fluids
due to the presence of shear rigidity: the formation of separate phases results in an inhomogeneous strain of
the polymer network, resulting in a free-energy cost, which limits the growth of separate phases. However,
since the elastic modulus µ0 is independent of χ1, for sufficiently large χ1 (sufficiently poor solvent), the
portion of the free-energy density due to solvent-polymer mixing overwhelms the elastic part of the free-
energy density. As a result, the limiting role of polymer network rigidity in the growth of the solvent-poor
phase becomes progressively less important, leading to the increased rate of change of f with χ1, and the
associated increased change in φr.

Finally, the shift of the transition value of χ1 to lower values with increasing φ0 is due to the correspond-
ingly higher energy density of solvent-polymer mixing with increasing φ0: for increasing values of φ0 (in the
regime of φ0 � 0.5), there is increasing contact between polymer and solvent molecules (with maximum
mixing at φ0 = 0.5). Thus, the effect of solvent-quality change is greater, resulting in a lower transition
value of χ1, as well as a greater rate of change in φr and f with increasing χ1.

We also emphasize that our model holds in the low f limit, which is our case, since for larger values of f ,
we would not be able to treat the skin as an elastic shell and would have to resort to solving the continuum
equilibrium equations. (We note that f ≈ 0.1 is consistent with the magnitude predicted by our cylinder
model.)
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b(θ) = b0 (1− p cos θ)

b0

Figure S.6: Adding curvature to the gel cylinder necessitates a polarization p of the solvent distribution,
described as a displacement of the interface between coexistent regions as shown above.

5 Phase separation in tori: introducing ring curvature as a per-
turbative correction

To determine the effect of the toroid’s ring curvature on the phase coexistence, we start with the above
cylindrical core-shell model and add the effect of ring curvature κ = 1/R perturbatively. Note that adding
the ring curvature lifts the axial symmetry of the cylinder. As a result, we may no longer assume that the
solvent-poor skin has as uniform thickness as a function of the angular coordinate θ; in general, the thickness
varies as a function of θ. Equivalently, the position of the interface between solvent-rich and solvent-poor
regions is no longer at a fixed radius, viz. ρ = b in the polar coordinates of Fig. S.5. In general, the interface
position may be decomposed in Fourier modes as b(θ) = b0 + b1exp iθ + b2exp 2iθ + . . . , where bn denotes
the amplitude of the nth mode. However, in analogy with the multipole expansion of the scalar potential
in electrostatics, the expansion of b(θ) can be expressed in terms of multipole moments; for example, b0
characterizes a scalar “charge,” b1 a vector “polarization,” b2 a rank-2 tensor “quadrupole,” etc. Note that
the curvature is a vector quantity κ = κb̂, where b̂ is the centerline’s binormal direction. Therefore, the
lowest-order term in the free-energy of the gel ring that incorporates coupling between curvature and interface
shape b(θ) is a coupling between the curvature vector κ and the vector part of the interface shape, i.e. the
polarization p. Since the toroid is symmetric with respect to a reflection about its plane, spanned by the
tangent vector t̂ and normal vector n̂, the coupling between p and κ in the free-energy must maintain this
symmetry. Thus, the coupling is proportional to the triple product, (p× t̂) ·κ = −κn̂ ·p. As the curvature-
polarization coupling term above is the leading-order coupling of polarization to the ring curvature, the
remainder of the free-energy is a function of the magnitude |p| alone. The equilibrium orientation of the
polarization p, as found by minimizing the free-energy, must therefore point toward the axis of revolution,
i.e. in the n̂ direction, or away, i.e. in the −n̂ direction; such a configuration is shown in Fig. S.6. This allows
us to set p = −pn̂. Additionally, the same symmetry argument informs coupling of the polarization to the
bending strain, proportional to the change in curvature ∆κ. Therefore, we conclude that the swelling torque
M that is described in the manuscript is proportional to the polarization: |M| ∝ p.

In order to show that the ring curvature of the toroid leads to a solvent distribution where the polymer-
dense region is near the axis of revolution of the toroid, i.e. where p > 0, we consider the change in the free
energy of the cylinder in phase-coexistent equilibrium Eq. 2 due to the addition of a ring curvature κ and a
polarized solvent distribution with polarization p. As the addition of these terms lifts the axial symmetry of
the cylinder, the homogeneous deformations described by Λt, Λ`, and Λn generally acquire inhomogeneous,
anisotropic corrections. These corrections are described by a strain tensor ε, the scale of which is set by
the small parameters κ and p. Thus, we are able to consider a separation of scales: the phase-separation,
resulting in the solvent-rich core surrounded by the solvent-poor shell, is described by the large deformation
matrix elements {Λt,Λ`,Λn} and can be approximated by the values obtained in the cylindrical limit of
the gel; the small inhomogeneous strain corrections ε can then be worked out in the linear elastic regime.
Following this analysis (see [14]), we find that p aligns in the direction of t̂ × κ = −κn̂. This confirms the
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intuition developed in quasistatic deswelling experiments, where the stress of maintaining coexistent phases
is minimized if the deswollen phase is located closer to the axis of revolution and the swollen phase is pushed
in the opposite direction.

6 Linear stability analysis of the ring model

To determine the stability of the planar ring, we parametrize the centerline as

γ′(s) = R
(

cos
s

R
, sin

s

R
, 0
)

+ ζ
( s
R

)
b̂ = γ(s) + ζ

( s
R

)
b̂ (7)

where ζ is a small out-of-plane deflection and b̂ = (0, 0, 1). The resulting Frenet-Serret frame is given by

t̂′ =
∂sγ

′

|∂sγ′| ≈
(

1− 1

2
(∂sζ)2

)
t̂ + ∂sζ b̂

n̂′ =
∂st̂
′

|∂st̂′|
≈ −(∂sζ)(∂ssζ) t̂ +

(
1− 1

2
(∂ssζ)2

)
n̂ + ∂ssζ b̂

b̂′ = t̂′ × n̂′ ≈ −∂sζ t̂− ∂ssζ n̂ +

(
1− 1

2
((∂sζ)2 + (∂ssζ)2)

)
b̂.

(8)

However, in general, the cross-section orientation can rotate independently of the transverse frame {n̂′, b̂′}
[15]; we may express the rotated transverse frame as(

d̂1

d̂2

)
=

(
cosχ sinχ
− sinχ cosχ

)(
n̂

b̂

)
. (9)

The curvature is given by κ = t̂ × ∂st̂ and the torsion by τ = d̂2 · ∂sd̂1; to find the new curvature κ′ and
torsion τ ′, derivatives are taken with respect to the new arclength parameter s′, where |dγ′/ds′| = 1. The
rod free-energy H is given, to second order in ζ and χ, by

H ≈ B

2R2

∫ 2πR

0

ds

[
χ2 +

C

B
(∂sssζ + ∂sζ + ∂sχ)

2 − M

Bκ

(
(∂ssζ)2 − 2(∂sζ)2 − χ2

)]
. (10)

Note that choice of angle χ represents a gauge degree of freedom; it is convenient to choose χ = −∂ssζ−∂sζ+χ̃
so that

H ≈ B

2R2

∫ 2πR

0

ds

[(
1 +

M

Bκ

)
(∂ssζ + ∂sζ − χ̃)2 +

C

B
(∂sχ̃)

2 − M

Bκ

(
(∂ssζ)2 − 2(∂sζ)2

)]
. (11)

Taking advantage of periodic boundary conditions, we expand ζ and χ̃ in Fourier modes as

ζ =

∞∑
n=−∞

ζ̂ne
ins/R, ζ̂−n = ζ̂∗n

χ̃ =

∞∑
n=−∞

ˆ̃χne
ins/R, ˆ̃χ−n = ˆ̃χ∗n

(12)

which allows us to write the energy as a quadratic form:

H =

∞∑
n=−∞

(ζ̂n ˆ̃χn)†Hn(ζ̂n ˆ̃χn) (13)

where

Hn =

(
(n2 − 1)2 + M

Bκ

(
1 + M

Bκ

)
(n2 − 1)(

1 + M
Bκ

)
(n2 − 1) 1 + M

Bκ + C
Bn

2

)
. (14)
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Stability of the planar ring only holds when Hn is a positive-definite matrix. Thus, the stability threshold
is given by

detHn = n2
[
C

B

(
M

Bκ
+ (n2 − 1)2

)
− M

Bκ

(
M

Bκ
+ 1

)
(n2 − 2)

]
= 0 , (15)

which results in the curves shown Fig.4(b) in the manuscript.
We now comment on the validity of the rod model in comparison to the experiments, which show a

buckling instability at an aspect ratio of ξ ≈ 3. While this aspect ratio is rather small for the slender
rod approximation used in this model, we expect that the model is qualitatively correct. An indicator
of the breakdown of the slender rod approximation comes from a comparison of the extensional energy
Eext ∼ V E(∆L/L)2, where ∆L/L is the strain due to changing the length L of the ring by ∆L, with the
bending energy Ebend ∼ LB(∆κ)2 [16]. For small strains ε, ∆L ∼ εL and ∆κ ∼ ε/R. Since length L ∼ R
and the volume V ∼ Ra2, the ratio of the two energies is given by

Ebend

Eext
∼ B

ER2a2
. (16)

In terms of the Young’s modulus E, the bending modulus B scales with the second moment of area, B ∼ Ea4,
so

Ebend

Eext
∼ a2

R2
= ξ−2 . (17)

Therefore, at ξ = 3, the bending energy is expected to be almost an order of magnitude smaller than the
extensional energy.
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