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ABSTRACT: A series of two-coordinate copper tert-butoxide complexes bearing 5-, 6- and 7-membered ring N-heterocyclic car-

benes, prepared by protonolysis of (NHC)CuMes with tBuOH, have been used as catalytic precursors in the semi-hydrogenation of 

alkynes with silanes/tBuOH and the hydroboration of alkynes with HBPin. Both processes proceed with high regioselectivity and 

show enhancements with 6- and 7-membered ring carbenes. 

INTRODUCTION 

Manipulation of the stereoelectronic properties of a lig-
and to enhance activity within a metal coordination sphere 
is the name of the game in homogeneous catalysis. In the 
case of heterocyclic carbene ligands, this has driven the de-
velopment of alternatives to the original1 Arduengo-type 
unsaturated/saturated 5-membered ring N-heterocyclic 
carbenes (NHCs),2,3 in particular; cyclic alkyl amino car-
benes (CAACs),4 abnormal/mesoionic carbenes5 and bisox-
azoline derived NHCs.6 An additional class of carbene lig-
ands that has received some attention in recent years is one 
based on ring-sizes of > 5.7 Often referred to as ring-ex-
panded carbenes or RE-NHCs, these offer enhanced donor 
capabilities and an increased steric profile in comparison 
to their 5-membered ring counterparts;8 features that 
should help to facilitate key processes in catalytic cycles in-
cluding oxidative addition (electronic enhancement) and 
reductive elimination (steric enhancement). Moreover, the 
wide N-C-N angle that is a particular feature of RE-NHCs 
results in the N-substituted wingtips being pushed down 
towards the metal, stabilizing low coordination numbers 
and/or unusual oxidation states.9 As a result, there may be 
further enhancement of a desired catalytic pathway, or al-
ternatively, the advent of new processes.  

The use of metal RE-NHC complexes in catalysis is still 
relatively limited and has for the most part focussed on 
Pd,10 together with a smaller number of reports employing 
Ru,11 Rh,12 Ir,13 Ni,14 Pt,15 Cu16 and Au.17 The paucity of work 
is somewhat surprising given that, in the vast majority of 
direct comparisons between RE-NHCs (most commonly, 
6- and 7-membered ring systems) and imidazolidin-2-yli-
dene, a beneficial effect is observed 

We have been interested in the reactivity of RE-NHCs in 
conjunction with the first-row metals Ni14a,b,d,9a,18 and Cu.19 
During efforts to prepare a hitherto unknown mononu-
clear copper hydride complex, (6-Mes)CuH19a,20 through 
reaction of the tert-butoxide complex (6-Mes)CuOtBu (I) 
with silanes, we found that the combination of I and Et3SiH 

in the presence of PhCCMe (1) and tBuOH at room tem-
perature led to semi-hydrogenation of the alkyne to give 
just the Z-isomer of PhCH=CHMe (2, Scheme 1). A likely 
pathway for the reaction involves syn-hydrocupration of 
the alkyne to afford a Cu-alkenyl species, followed by pro-
tonolysis by the alcohol. Circumstantial support for this 
mechanism was provided by the isolation and structural 
characterization of alkenyl complex II from a stoichio-
metric reaction of I, Et3SiH and 1. 

 

 
 

Scheme 1 Semi-hydrogenation of PhCCMe (1) by (6-

Mes)CuOtBu (I) 

Recent years have witnessed a number of reports on homoge-

neous alkyne semi-hydrogenation catalysts, the aim being to de-

velop systems that alleviate some of the issues of selectivity and 

over-reduction associated with the well-known commercially 

used heterogeneous Lindlar catalyst.21 Much of the focus has 

been on cheap and sustainable metals, including Mn,22 Fe,23 

Co24 and Ni.25 Copper complexes26 have proved very versatile 



 

 

in preventing the over reduction of typically challenging sub-

strates such as aryl- and diaryl substituted alkynes, especially 

ones containing functional groups. Encouraged by our initial 

findings above, as well as the reports by Tsuji and Lalic with 

the 5-membered ring NHC precursor (IPr)CuOtBu,26a,b we now 

describe a catalytic investigation with a series of (NHC)CuOtBu 

complexes that differ both in ring-size (5, 6 and 7-membered 

ring carbenes) and N-substituents. In the course of investigating 

the influence of other variables (reductant, substrate and alco-

hol) on catalytic activity, we have established that this same 

range of (NHC)CuOtBu complexes catalyze the -hydrobora-

tion of internal alkynes. In both catalytic processes, the presence 

of RE-NHC ligands leads to higher activity than found with the 

5-membered ring analogues.    

 

RESULTS AND DISCUSSION 

The preliminary catalytic study shown in Scheme 1 em-
ployed 5 mol% I, 1.1 equiv Et3SiH and 1.1. equiv tBuOH.19a 

Under these conditions, the conversion of PhCCMe (1) to 
Z-PhCH=CHMe (2) was very slow, requiring almost 2 
weeks to go to completion at room temperature. The reac-
tion time could be cut to 17 h by raising the temperature to 

60 C, although there was now a slight loss of selectivity 
(96:4 Z:E). No evidence for over-reduction to alkane was 
found. 

In a number of instances, Et3SiH has been shown to be a 
relatively unreactive silane for semi-reduction reac-
tions.23b,26a,b Indeed, upon trialling a range of other trialkyl 
and mixed aryl/alkyl silanes for the semi-reduction of 1 
(Table 1, Entries 1-5), we observed improved activity in all 
cases, as evidenced by product formation within 2 h, even 
at a lowered catalyst loading of 1 mol%. Polymethylhy-
drosiloxane (PHMS) proved to be particularly active (Entry 
6), generating an 85% yield of product within only 1 h. 

 

Table 1. Catalytic semi-hydrogenation of PhCCMe by 1 as 

a function of silanea  

 

Entry Silane I (mol%) Yield of 2 (%)b 

1 EtMe2SiH 1 Trace 

2 Me2PhSiH 1 5 

3 MePh2SiH 1 34 

4 Ph3SiH 1 2 

5 Ph3SiH 5 57 

6c PHMS 1 85 

aConditions: 1 (0.22 mmol), I (1 or 5 mol%), 1.1 equiv silane, 1.1 

equiv tBuOH, C6D6 (0.5 mL), 25 C, 2 h. bYield of 2 determined 

by 1H NMR spectroscopy using 1,3,5-(MeO)3C6H3 as an internal 

standard. cReaction time of 1 h. 

 
Investigation of the reaction as a function of NHC ligand 

led us to prepare a number of new (RE-NHC)CuOtBu com-
plexes using the method employed previously for I, namely 
incorporation of free RE-NHC into polynuclear [Cu(Mes)]n 
to give (NHC)CuMes (ESI), followed by protonolysis with 
tBuOH. This afforded the new 7-Mes, 6-o-Tol and 6-Xylyl 
derivatives III-V as highly air-sensitive, cream colored sol-
ids in yields of 17-93%. To broaden the scope of the 
(NHC)CuOtBu complexes for investigation, the same syn-
thetic approach was used to make the known 6-Dipp ana-
logue VI,20d as well as the known five-membered ring 
SIMes and IPr derivatives VII27 and VIII.20a 

 

 
Scheme 2. Synthesis of (NHC)CuOtBu complexes  

 
The X-ray structures of III and IV are shown in Figure 1. 

As VI and VII were only previously characterized by NMR 
spectroscopy,18,27 they too were isolated for structural anal-
ysis (Figure 1). Table 2 shows a comparison of the Cu-
CNHC/Cu-O distances and the N-C-N bond angle across the 
series of tert-butoxide complexes shown in Scheme 2. A 
further comparison of the different NHCs was provided by 
calculations of the percentage buried volume (%Vbur) using 
the SambVca programme.28 There is a fairly steady increase 
in steric profile of the 6-membered NHC ligands on mov-
ing from o-tolyl (IV, entry 3) to mesityl (I, entry 1) to dipp 
(VI, entry 4) substituents, whereas the increase in ring size 
upon moving from 6-Mes to 7-Mes (entries 1 and 2) brings 
about only a small increase. 

The activity of I versus III-VIII for the semi-reduction of 
2 with PHMS is summarized in Table 3. Entries 1, 2 and 6 
reveal a clear trend in decreasing product yield as a func-
tion of ring-size in the order 6 >5 >7 for N-mesityl substi-
tuted carbenes These differences are highlighted more 
clearly at a lower Cu loading (Entries 7-9). The results also 
reveal a dependency on the N-substituent, with product 

yield decreasing in the order N-mesityl > N-xylyl  N-o-

tolyl  N-dipp (Entries 1, 3-5). This suggests there is a 
‘Goldilocks’ effect in which substituents are either too 
small (tolyl) or too large (dipp) to be effective, whereas the 
2,6-dimethylphenyl substitution pattern present in 



 

 

 

 
Figure 1. Molecular structures of III, IV, VI and VII with ellipsoids shown at 30% probability level. In all cases, hydrogen 

atoms have been omitted for clarity. Also omitted for IV is the minor disordered component of C11. For VI, only one of the 
two molecules present in the asymmetric unit is shown. 

 
Table 2. Structural comparison of (NHC)CuOtBu complexes  

Entry (NHC)CuOtBu r(Cu-CNHC)/Å r(Cu-O)/Å N-C-N/ %Vbur
a 

1 I 1.874(2) 1.8016(15) 117.65(18) 44.0 (38.6) 
2 III 1.8818(14) 1.8032(10) 119.51(13) 45.4 (40.2) 
3 IV 1.881(5) 1.809(3) 117.3(4) 38.1 (33.5) 
4 VI 1.885(3) 1.808(2) 116.8(3) 52.0 (46.4) 
5 VII 1.844(3) 1.788(2) 107.8(3) 38.2 (32.9) 
6 VIII20a 1.8641(18) 1.8104(13) 103.42(15) 44.6 (39.1) 

aValue calculated at M-CNHC distance of 2.0 Å and, in parentheses, 2.28 Å. Parameters used: Bondi radii scaled by 1.17, a 3.5 Å sphere 

radius, 0.1 exhaustiveness and excluding hydrogens. 

 
 
both I and V is ‘just right’ to be effective. Interestingly, 

studies with the 6-Dipp complex VI revealed that this ef-
fectively inactive complex could be ‘activated’ to some ex-
tent by changing from tBuOH, to EtOH or iPrOH, which 
afforded  product yields of 52 and 31% respectively after 2 
h (2 mol% loading).29 Activity increased further with iPrOH 
over a longer reaction time (73% after 48 h), but was un-
changed with EtOH. Such variations could reflect the rela-
tive stabilities of the alkoxide complexes (6-Dipp)CuOiPr 
and (6-Dipp)CuOEt in their own right,30 their susceptibil-
ity to react with silane to yield [(6-Dipp)CuH]2, as well as 
the ease of protonolysis of the alkenyl intermediate. The 
tert-butoxide precursors were subsequently tested in the 

semi-hydrogenation of PhCCPh (3), as well as the termi-

nal alkynes, 1-hexyne (4) and PhCCH (5). For 3, there was 
a change in order of activity (Scheme 3), with the SIMes 
complex VII now the most active. I and III were the least 
effective of the copper precursors, at least in part as a result 
of the limited solubility of the alkenyl complexes (6/7-
Mes)CuC(Ph)=CH(Ph), which deposited as a fine yellow 
powders during the course of catalytic runs.31 The 6-Mes 
derivative (6-Mes)CuC(Ph)=CH(Ph) (IX) was isolated and 
structurally characterized (ESI). With the terminal alkynes 
4 and 5, no precipitation took place and, as a result, the 
performance of I and III improved (Scheme 3). Similar ac-
tivity was found for all of the copper complexes, with the 
exception of IV, suggesting again that the N-ortho-tolyl 
group is simply too small to be effective.  



 

 

Further studies (Scheme 4) with a low loading of I (0.5 
mol%) were probed to discriminate the reactivity of differ-
ent internal alkynes. Replacement of the Me group in 1 by 
a trimethylsilyl group (10) shut down reactivity, whereas a 
butyl group afforded good product yields with both elec-
tron-donating and –withdrawing substituents on the aryl 
ring (11-14). Dialkyl substituted alkynes (16, 17) proved re-
active in the short (3 h) term, but underwent no further 
conversions over 24 h. The same behavior was observed 
upon incorporation of functionalized substituents onto an 
aryl ring (15).32    

 
Table 3. Catalytic semi-hydrogenation of PhCCMe by 

(NHC)CuOtBua  

 
 

Entry (NHC)CuOtBu Yield of 2 (%)b 

1 I 94 
2 III 82 
3 IV 22 
4 V 87 
5 VI Trace 
6 VII 85 
7 VIII 33 
8c I 86 
9c III 66 
10c VII 76 

aConditions: 1 (0.22 mmol), (NHC)CuOtBu (5 mol%), 1.1 equiv 

PHMS, 1.1 equiv tBuOH, C6D6 (0.5 mL), 25 C, 2 h. bYield of 2 

determined by 1H NMR spectroscopy using 1,3,5-(MeO)3C6H3 as 

an internal standard. c2 mol% (NHC)CuOtBu. 

 

 
 

Scheme 3. Semi-hydrogenation activity of (NHC)CuOtBu as a 

function of alkyne. Conditions as given in Table 3. 

Catalytic Hydroboration of Alkynes. Given the central 
role of [(NHC)CuH]2 in the catalytic semi-hydrogenation, 
the activity of I was tested with other E-H substrates be-
sides silanes (Scheme 1). Although NH3∙BH3 gave very little 
conversion of 1,22 HBPin proved to be reactive, although to 

bring about quantitative hydroboration rather than semi-
hydrogenation (Table 4).33 The reaction was highly regiose-

lective, giving a 96:4 ratio of - and -vinyboronate prod-

ucts 27 and 28.34,35 The preferential formation of the -
product 27 is consistent with a hydrocupration pathway.33 
Indeed, a low temperature 1H NMR spectrum following ad-
dition of HBPin to I confirmed generation of [(6-
Mes)CuH]2.20d,36 As with semihydrogenation, the use of Cu 
catalysts for hydroboration has received considerable in-
terest. While many of the studies (including some with 
NHC ligands) have focussed on terminal alkynes,37 there 
are far fewer examples of Cu-catalyzed hydroboration of 
more challenging internal alkynes.38  

 

 

Scheme 4. Substrate scope for semi-hydrogenation with I 

showing conversions after 3 h and (in parentheses) 24 h. Con-

ditions: RCCR (0.22 mmol), I (0.5 mol%), 2 equiv PHMS, 2 

equiv tBuOH, C6D6 (0.5 mL), 25 C. Product yields deter-

mined by 1H NMR spectroscopy using 1,3,5-(MeO)3C6H3 as 

an internal standard. 

 
Using 1 once again as a test substrate, I was shown to re-

tain both high activity and high regioselectivity even at cat-
alyst loadings as low as 0.2 mol% (Table 4, entries 1-3). As 
expected given the proposed hydrocupration pathway, the 
6-Mes alkenyl complex II exhibited similarly high activity 
to I (entry 4). In comparison to I, both IV and VI again gave 
poor yields. In addition, both of the 5-membered ring NHC 
complexes VII and VIII now also showed poor activity, 
while the 7-Mes complex III proved to be the most active 
(entry 5). 

 
 
 
 
 
 
 
   



 

 

Table 4. (NHC)CuOtBu catalyzed hydroboration of 

PhCCMe (1) with HBPina 

 
 

Entry (NHC)CuOtBu 
(mol%) 

t (h) Yield of 
27+28 
(%)b 

27:28 
ratiob 

1 I (1) 1 97 96:4 
2 I (0.5) 2 64 96:4 
3 I (0.2) 3 59 96:4 
4c II (0.2) 3 77 96:4 
5 III (0.2) 3 89 96:4 
6 IV (0.2) 3 2 - 
7 VI (0.2) 3 44 63:37 
8 VII (0.2) 3 13 96:4 
9 VIII (0.2) 3 21 78:22 

aConditions: (NHC)CuOtBu, 1.1 equiv HBPin, C6D6 (0.5 mL), 

room temperature. Values are the average of two runs. bDetermined 

by GC using 1,3,5-(MeO)3C6H3 as an internal standard. cII = (6-

Mes)CuC(Ph)=CH(Me). 

 
A preliminary probe of the activity of I towards series of 

internal alkynes with different substituents (Scheme 5) re-
vealed similarities to the results of semi-hydrogenation e.g. 

reduced activity of ArCCSiMe3 relative to ArCCMe and 

ArCC(butyl). 
 

  
 

Scheme 5. Yield and - (29-32) and - (33-36) ratio (in pa-

rentheses) of hydroboration products catalyzed by I. 

 
A recent DFT study of (NHC)Cu catalyzed alkyne hy-

droboration39 showed that the rate-determining step in the 

formation of -hydroboration products was the initial in-
teraction of the alkyne with (NHC)CuH. When HBPin was 
added to (6-Mes)CuC(Ph)=CH(Me) (II) at 196 K and the 
reaction monitored at 222 K by 1H NMR spectroscopy, [(6-
Mes)CuH]2 had already formed, consistent with the high 
reactivity of the intermediate formed upon interaction of 
the borane with the alkenyl complex that makes it too 
short-lived to detect even at low temperature. 

 

SUMMARY AND CONCLUSIONS 

A series of (NHC)CuOtBu complexes bearing 5-, 6- and 7-
membered ring N-heterocyclic carbene ligands have been 
prepared and investigated as precursors for the semi-hy-
drogenation and hydroboration of alkynes with silanes and 
pinacolborane respectively. Both reactions take place with 

high selectivity to afford (Z)-alkenes and -hydroboration 
products respectively through a common hydrocupration 
pathway. 

The enhancement of catalysis by 6- and 7-membered ring 
NHCs compared to their 5-membered ring counterparts is 
the major finding of these studies. Moreover, we have also 
observed that 2,6-dimethylphenyl derived N-substituents 
on the NHC are optimal for catalysis. Additional studies of 
(NHC)Cu catalyzed reactions are underway in our group to 
probe the generality of ring-expanded NHC enhancements 
in catalysis.  

EXPERIMENTAL SECTION 

All manipulations were carried out using standard Schlenk, high vac-

uum and glovebox techniques. Solvents were purified using an MBraun 

SPS solvent system (hexane, pentane, Et2O) or under a nitrogen atmos-

phere from sodium benzophenone ketyl (benzene, THF). C6D6 and 

THF-d8 were vacuum transferred from potassium. NMR spectra were 

recorded at 298 K (unless otherwise stated) on Bruker Avance 400/500 

NMR and Agilent 500 MHz spectrometers and referenced to solvent 

signals as follows: benzene (1H,  7.16; 13C{1H},  128.0), THF (1H,  

3.58; 13C{1H},  67.2; 19F, externally to CFCl3 ( 0.0). High resolution 

mass spectrometry was conducted using a MaXis HD quadrupole APCI 

time-of-flight (APCI-QTOF) mass spectrometer (Bruker) with anal-

yses performed in APCI positive mode. GC-MS analysis was per-

formed on an Agilent 7890A Gas Chromatograph. Elemental analyses 

were performed by Elemental Microanalysis Ltd, Okehampton, Devon, 

UK. Literature methods were used for the preparation of Cu(Mes)n,40 

(6-Mes)CuOtBu (I),19a 6-o-Tol,7 6-Xylyl,7 6-Dipp7 and 7-Mes.7 

(7-Mes)CuOtBu (III). 7-Mes (141 mg, 0.42 mmol) and Cu(Mes)n 

(77 mg, 0.42 mmol) were combined in benzene (5 mL) in a J. Youngs 

resealable ampule and stirred for 1 h. The resulting solution was con-

centrated and pentane added to yield a near colorless precipitate of (7-

Mes)CuMes. The solid was isolated by cannula filtration and dried un-

der vacuum. It was then dissolved in benzene (5 mL) and tBuOH (1 

mL) added. After stirring for 2 h at room temperature, the solution was 

reduced to dryness and the residue re-dissolved in a minimum amount 

of C6H6 and then re-precipitated with hexane. This process was re-

peated twice more, after which the resulting precipitate was isolated as 

a colorless solid. Crystalline material was obtained from benzene/hex-

ane. Yield 163 mg (93 %). 1H NMR (500 MHz, C6D6): 6.75 (s, 4H, Ar), 

3.05 (m, 4H, NCH2CH2), 2.24 (s, 12H, CH3), 2.10 (s, 6H, CH3), 1.49 

(quint, 3JHH = 3.0 Hz, 4H, NCH2CH2), 1.18 (s, 9H, C(CH3)3). 13C{1H} 

NMR (126 MHz, C6D6): δ 213.3 (s, NCN), 145.3 (s), 137.4 (s), 134.3 

(s), 130.3 (s), 68.3 (s), 52.0 (s), 37.0 (s), 25.5 (s), 21.0 (s), 18.7 (s). 

Anal. calcd for C27H39N2OCu: C, 68.83; H, 8.34; N, 5.95; found C, 

68.96; H, 8.34; N, 5.84. 

(6-o-Tol)CuOtBu (IV). Prepared as for III by reaction of 6-o-Tol 

(prepared in-situ from [6-o-Tol∙H]BF4 (500 mg, 1.42 mmol) and 

KHMDS (312 mg, 1.56 mmol)) with Cu(Mes)n (259 mg 1.42 mmol) 

followed by reaction with tBuOH to yield IV as an off-white solid. 

Yield 95 mg (17%). Crystalline material was obtained from ben-

zene/hexane. 1H NMR (500 MHz, C6D6): 7.16-6.94 (m, 8H, Ar), 2.62-

2.46 (m, 4H, NCH2),‡* 2.13 (s, 6H, CH3), 1.28 (m, 2H, NCH2CH2), 1.26 

(s, 9H, C(CH3)3). 13C{1H} NMR (126 MHz, C6D6): 201.9 (s, NCN), 

146.9 (s), 134.7 (s)*, 134.6 (s)‡, 131.8 (s)‡, 131.7 (s)*, 128.6 (s), 128.4 

(s), 128.3 (s), 128.2 (s), 127.7 (s), 68.6 (s), 45.4 (s)*, 45.3 (s)‡, 37.1 (s), 

21.1 (s)*, 21.0 (s)‡, 18.0 (s)‡, 17.9 (s)*. More than one set of signal was 



 

 

apparent (ESI), which we assign to major (‡) and minor (*) conform-

ers.18a Anal. calcd for C22H29N2OCu: C, 65.89; H, 7.29; N, 6.99; found 

C, 65.85; H, 7.27; N, 6.68. 

(6-Xylyl)CuOtBu (V). Prepared as for III by reaction of 6-Xylyl 

(prepared in-situ from [6-Xylyl∙H]BF4 (500 mg, 1.22 mmol) and 

KHMDS (269 mg, 1.34 mmol)) with Cu(Mes)n (223 mg, 1.22 mmol), 

followed by reaction with tBuOH. The product was recrystallized from 

THF/hexane to yield V as an off-white solid. Yield 122 mg (23 %) 1H 

NMR (500 MHz, C6D6): δ 6.99 (t, J = 7.7 Hz, 2H, Ar), 6.92 (d, J = 7.7 

Hz, 4H, Ar), 2.41 (m, 4H, NCH2), 2.13 (s, 12H, CH3), 1.28 (m, 2H, 

NCH2CH2), 1.21 (s, 9H, C(CH3)3). 13C{1H} NMR (126 MHz, C6D6) δ 

202.7 (s, NCN), 145.2 (s), 135.1 (s), 129.4 (s), 68.4 (s), 43.6 (s), 37.0 

(s), 20.7 (s), 18.1 (s). Anal. calcd for C24H33N2OCu: C, 67.18; H, 7.75; 

N, 6.53; found C, 66.78; H, 7.75; N, 6.55. 

(6-Dipp)CuOtBu (VI). Prepared as for III by reaction of 6-Dipp 

(prepared in-situ from [6-Dipp∙H]Br (300 mg, 0.62 mmol) and 

KHMDS (136 mg, 0.68 mmol)) with Cu(Mes)n (113 mg, 0.62 mmol) 

followed by reaction with tBuOH to afford VI as an off-white solid. 

Crystalline material was obtained from benzene/hexane. Yield 110 mg 

(33%). NMR data matched those in the literature.20d 

(SIMes)CuOtBu (VII). Prepared as for III by reaction of SIMes 

(made in-situ from [SIMes∙H]Cl (563 mg, 1.64 mmol) and KHMDS 

(330 mg, 1.6 mmol)) with Cu(Mes)n (300 mg, 1.64 mmol) followed by 

reaction with tBuOH to give VII as an off-white solid. Crystalline ma-

terial was obtained from toluene/pentane at -30ºC. Yield 520 mg (72 

%). 1H NMR data matched those in the literature.27 13C{1H} NMR (126 

MHz, C6D6): δ 204.9 (s, NCN), 138.3 (s), 136.1 (s), 135.8 (s), 129.9 

(s), 68.0 (s), 50.4 (s), 34.4 (s), 21.0 (s), 18.0 (s). The extreme air-sensi-

tivity of VII precluded all attempts to measure CHN microanalysis 

data. 

(IPr)CuOtBu (VIII). Prepared as for III by reaction of IPr (400 mg, 

1.03 mmol) with Cu(Mes)n (188 mg, 1.03 mmol) in C6H6 (5 mL), fol-

lowed by reaction with tBuOH (1 mL) in C6H6 to give VIII as an off-

white solid. Yield 268 mg (49 %). 1H NMR data matched those in the 

literature.41  

Typical Catalytic Procedures. (i) Alkyne semi-hydrogenation: To a 

flame dried J. Youngs NMR tube was added 1-phenylpropyne (0.22 

mmol), PMHS (0.24 mmol), 1,3,5-(MeO)3C6H3 (0.022 mmol, internal 

standard) and 500 L of 2.2 x 10-3 M C6D6 stock solution of 1. Catalysis 

was initiated by addition of tBuOH (0.24 mmol) and reactions followed 

by 1H NMR spectroscopy. After the desired reaction time, solutions 

were filtered through a silica plug (hexane as eluent) and the filtrate 

reduced to dryness using a flow of N2. The residue was dissolved in 

minimal CHCl3 and washed through a silica plug with hexane to afford 

alkene products. (ii) Alkyne hydroboration: To a flame dried J. Young’s 

resealable NMR tube was added 1-phenylpropyne (66.5 L, 0.51 

mmol), 1,3,5-(MeO)3C6H3 (100 μL from a 0.2 M stock solution in 

C6D6, internal standard) and I (400 L from a 0.025 x 10-3 M stock 

solution in C6D6). HBPin (81.2 μL, 0.560 mmol, 1.1 equiv) was added 

to initiate the reaction. The solution was shaken at room temperature 

for 3 h at which point the clear yellow solution was flushed through a 

silica plug with CH2Cl2. The resulting solution was reduced to dryness 

and analysed by GC.  

X-ray crystallography. Data for III, IV and VI were collected using 

a Rigaku SuperNova instrument and a Cu-K source while those for 

VIII, (7-Mes)CuMes (ESI), (6-Xylyl)CuMes (ESI), (6-Dipp)CuMes 

(ESI) and IX (ESI) were obtained using a Rigaku Xcalibur instrument 

equipped with Mo-K radiation. All experiments were conducted at 

150 K, with the exception of that for III, which was implemented at 

210 K. Structures were solved using Olex-242 and refined using 

SHELXL.43 Refinements were generally straightforward with a few no-

table exceptions which follow herein. 

The data pertaining to IV are representative of a small single crystal 

obtained after cardinal efforts to extract a suitable sample from a batch 

of very twinned material. The result is an unequivocal testimony to an 

excellent modern diffractometer and area detector. The methyl group 

based on C11, in the compound, was seen to be disordered in a 80:20 

ratio. C-C distances involving the two components of this atom were 

restrained to being similar in order to assist convergence. The motif in 

VI was seen to consist of two molecules and the proximity of a hydro-

gen atom attached to the apical NHC carbon (C3) in one moiety is sug-

gestive of a C-H∙∙∙O interaction with the tBu oxygen (O2) in the other 

molecule [H3A-O2, 2.29 Å; O2-C3, 3.075(4) Å; C3-H3A-O2; 138.0o]. 

The asymmetric unit in VII was seen to contain half of a benzene mol-

ecule, proximate to a crystallographic inversion center, in addition to 

one molecule of the copper complex. Data integration and subsequent 

refinement of the model take account of the fact that the crystal was a 

twinned by a 180o rotation, in direct space, about 1 0 0.  

Crystallographic data for all compounds have been deposited with 

the Cambridge Crystallographic Data Centre as supplementary publi-

cations CCDC 1845505-1845512 for III, IV, VI, VIII, (7-Mes)CuMes, 

(6-Xylyl)CuMes, (6-Dipp)CuMes and IX, respectively. Copies of these 

data can be obtained free of charge on application to CCDC, 12 Union 

Road, Cambridge CB2 1EZ, UK (fax(+44) 1223 336033), e-mail: de-

posit@ccdc.cam.ac.uk. 
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