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Driving Style Modelling with Adaptive Neuro-fuzzy 

Inference System and Real Driving Data 

Yuxiang Feng, Simon Pickering, Edward Chappell,  

Pejman Iravani and Chris Brace 

Abstract. With different cognitive abilities and driving style preferences, car-

following behaviors can vary significantly among human drivers. To facilitate 

the replications of human driving behaviors on chassis dynamometer using a 

robot driver, this paper proposes a novel fuzzy logic driver model that attempts 

to perform humanized driving behaviors in the car-following regimes. An adap-

tive neuro-fuzzy inference system was developed to tune the fuzzy model using 

real driving data collected from an instrumented vehicle. Driver’s cognition pa-

rameters, such as headway distance, vehicle speed and pedal positions, were 

modelled as system inputs. Meanwhile, driver’s action parameters, such as pe-

dal movements and gear selection, were selected as system outputs. Three mod-

els that possess different driving styles were calibrated using the system. After-

wards, in order to evaluate its performance of emulating human behaviors, the 

established fuzzy models were examined in a simulation scenario that is an-

chored to standard WLTC drive cycle tests.  

 

Keywords: Human Factors · Driving Style Simulation · Car-following Model · 
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1 Introduction 

While the concept of driving style was first proposed by Elander et al. in 1993 [1], the 

variances between each individual’s driving habits have been realized for many dec-

ades, with the earliest research published in 1949 [2]. As defined by Elander et al., 

“driving style concerns the way individuals choose to drive, or driving habits that 

have become established over a period of years. While several different definitions of 

this concept have been proposed by following researchers [3, 4], it can be inferred that 

driving style generally refers to the driver’s own habitual choice of driving manoeu-

vre, which consists of the preference of car-following behaviors, driving patterns, and 

gear shifting strategies, etc [5]. It has been roughly categorized into three groups (ag-

gressive, normal, and defensive) in most studies [6, 7]. Drivers belong to different 

groups can have very distinct driving preferences, which can cause significant vari-

ances in fuel consumption and exhaust emissions. Thus, identifying the difference in 
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each individual’s driving style can contribute to the development of more personal-

ized advanced driver assistance systems (ADAS), and facilitate the promotion of eco-

driving. 

While the difference of driving style can be reflected in many scenarios, such as 

car-following, free flow, driving under instructions, etc., car-following regimes are of 

particular interest. As a critical research area in microscopic traffic flow studies, car-

following behavior mainly refers to the driver’s longitudinal control of the vehicle 

when following a leading vehicle with a headway distance [8]. It can be noted that 

both the driver’s cognition and action characteristics can be reflected in the preferred 

headway distance and driving patterns. Therefore, car-following regimes can be a 

prominent driving scenario for driving style investigations.  

There have been several different models developed to simulate car-following sce-

narios. For example, the Gazis-Herman-Rothery model that formulated the accelera-

tion of the following vehicle as a function of its speed, the driver’s reaction delay, the 

relative speed and distance between both vehicles [9]. Meanwhile, Yang and Zu de-

veloped a linear model that incorporated the desired following distance as an addi-

tional input [10]. Alongside with these equation-based models, several data-driven 

models were also established. Fuzzy logic [11, 12] and neural network [13, 14] have 

been adopted to simulate car-following behaviors based on experimental data.  

While all these approaches can be used to simulate car-following behaviors, fuzzy 

logic is more favored because its incorporation of vagueness. This feature increases 

its similarity to human reasoning, as human drivers’ perceptions about the traffic en-

vironment is based on inaccurate estimation. However, it should be noted that the 

determination of membership functions is a major challenge in developing fuzzy logic 

controllers.  

Therefore, as a continuation of previous research [5], this paper proposes to devel-

op an adaptive neuro-fuzzy inference system (ANFIS) to calibrate a fuzzy logic car-

following driver model. The performance of this model is evaluated through a simula-

tion scenario that is anchored to standard World-wide harmonized Light duty Test 

Cycle (WLTC) drive cycle tests. This study is part of a research program aiming to 

incorporate the variance of driving style into drive cycle research using a robot driver. 

Therefore, calibrating a driver model with ANFIS and real driving data can increase 

its similarity to human drivers. This research can improve the understanding of driv-

ing style variances, and their correlations with fuel consumption. Moreover, as Real 

Driving Emissions (RDE) tests will be introduced in future type approval require-

ments, it should be noted that driving style of the test driver could influence the veri-

fication result of the vehicle. Meanwhile, the Portable Emission Measurement Sys-

tems (PEMS) in RDE tests may also be less accurate than laboratory equipment. Thus, 

it would be beneficial to replicate these RDE tests on a chassis dynamometer with 

driving style variance incorporated. Furthermore, more economical and personalized 

advanced driver assistance systems (ADAS) and autonomous vehicle control strate-

gies can potentially be developed with this model [15]. 

2 Methodology 

 



The collected real driving data and the established adaptive neuro-fuzzy inference 

system are introduced in this section. Meanwhile, the adopted simulation environment 

for evaluating the calibration performance is also briefly described. 

2.1 Real Driving Data Collection 

The real driving data used in this study were collected in a previous research [5]. 

Three participants were requested to drive an instrumented VW Sharan along a select-

ed route, as shown in Figure 1. The vehicle was equipped with an Influx Rebel CT 

OBD data logger, a Continental 77 GHz long range ARS 308 radar and a Nextbase 

512G dashcam. Therefore, both the vehicle state information and headway distance 

can be recorded with the vehicle. Meanwhile, the sensor fusion approach proposed in 

previous research [16] was also performed to improve the accuracy of headway dis-

tance measurements by fusing data from radar and monocular dashcam. A total of 100 

trips were recorded, with an average duration of 63 minutes. Each trip was approxi-

mately 45 miles, and consisted of a combination of urban, rural, and highway seg-

ments. With the collected real driving data, the car-following events during these 

recorded trips were isolated, and prominent parameters from drivers’ perception, such 

as headway distance, vehicle speed and pedal position, were extracted and synthe-

sized for model calibration.  

 

 

Fig. 1. Route for real driving data collection [5] 

2.2 Adaptive Neuro-fuzzy Inference System 

The ANFIS with hybrid learning algorithm proposed by Jang [17] was adopted for 

this study. This training algorithm is a combination of the least-squares and back-

propagation gradient descent methods, which can achieve a faster convergence rate 



and better performance in avoiding local minima. The architecture of this ANFIS is 

shown in Figure 2.  

 

Fig. 2. Architecture of established ANFIS 

It can be noted from Figure 2 that the established ANFIS has five layers. A brief 

description of each layer is discussed below: 

Layer 1: This is the fuzzification layer, with each node representing a specific lin-

guistic variable of input parameters. There are a total of 15 nodes in this layer. 5 

nodes (Very Slow, Slow, Medium, Fast, Very Fast) for vehicle speed, 5 nodes (Very 

Small, Small, Medium, Large, Very Large) for pedal position, and 5 nodes (Very 

Close, Close, Medium, Far, Very Far) for headway distance. The Gaussian member-

ship function is selected. The output of each neuron is the degree of membership, 

which can be represented as, 

O1i = μAi(x) = exp[−
(x − ci)

2

2𝑎𝑖
2 ] (1) 

where {ai, ci} are the premise parameters. 

Layer 2: This layer contains the fuzzy rules. Each neuron corresponds to a Sugeno 

type fuzzy rule. The output of each node is the product of all inputs: 

O2i = wi = μAi(x)μBi(y)μCi(z)  (2) 

where wi is the firing strength of each rule. 

Layer 3: The normalized firing strength is calculated in this normalization layer, 

which can be denoted as. 

O3i = w̅i =
wi

∑ wi
n
i

 (3) 



Layer 4: This is the defuzzification layer, where the weighted consequent value of 

a given rule is determined as, 

O4i = w̅ifi = w̅i(pix + qiy + riz + si) (4) 

where {pi, qi, ri, si} are the consequent parameters. 

Layer 5: There is a single neuron in this output layer. Its generated value is deter-

mined as the summation of all outputs from previous layer, which can be denoted as, 

O5i = ∑w̅ifi =
∑ wifii

∑ wii

 (5) 

In order to evaluate the tuning performance of ANFIS, the collected real driving 

data were randomly divided into two subsets. 70% of the data were used as training 

data to calibrate the model, and the remaining 30% were used as testing data for eval-

uation.  

2.3 Simulation Environment 

To facilitate the evaluation of the established driver model, it was connected to a 

Simulink dynamic vehicle model developed in previous study [5]. This vehicle model 

consists of five subsystems, each representing the engine, vehicle body, tires, brake, 

and gearbox respectively. All these components were parameterized using the specifi-

cations of VW Sharan to increase its similarity to the instrumented vehicle. The estab-

lished vehicle model can receive throttle pedal position, brake pedal position, and gear 

selection as inputs, and generate corresponding vehicle speed, engine rpm, and fuel 

consumption as output. The performance of this vehicle model was validated in a 

previous study through comparisons with the collected experimental data on chassis 

dynamometer [5]. Meanwhile, a fixed update frequency of 2Hz was adopted for the 

simulation to imitate the cognitive delay of human drivers [18].  

 

 

Fig. 3. Speed profile of WLTC drive cycle 

Alongside with the vehicle model, a car-following simulation scenario was also 

created. In order to incorporate driving style variances into drive cycle research, the 
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speed profile of WLTC was assigned to an imaginary leading vehicle. As shown in 

Figure 3, the speed profile of Class 3 WLTC was selected according to the power-

weight ratio of the instrumented vehicle. Therefore, instead of directly providing the 

speed profile to the host driver, the drive cycle information was converted to the vari-

ations of headway distance. This setting can better reveal the difference of drivers’ 

cognition and action characteristics. Meanwhile, different driving styles recorded in 

real world car-following scenarios can also be reflected in this simulation scenario. It 

should be noted that although the difference between the desired and actual speed 

profile will increase, the influence of driving style can be better revealed in proce-

dures that are anchored to the standard drive cycle tests. Owing to the lack of real 

driving data over 110 km/h, only the first three segments of the drive cycle were se-

lected as the driver models were specifically tuned for this speed range. 

3 Results 

The results are presented in three sections, discussing the tuning results of the ANFIS, 

the driving style variances, and the correlation with fuel consumption. 

3.1 Tuning Results of ANFIS 

Three driver models representing each human participant were calibrated using the 

established ANFIS. The tuned membership functions were illustrated in Figure 4.  

 

 
          (a) Driver 1                                (b) Driver 2                               (c) Driver 3 

Fig. 4. Membership functions of three driver models 

As shown in Figure 4, the tuned membership functions vary significantly among 

the three driver models, indicating their different driving styles. It can be noted that 

the first model’s membership functions of vehicle speed and pedal position are more 

located to the right, while headway distance more to the left. This phenomenon indi-

cates that the first driver model tends to be more aggressive as it has a higher cogni-

tion level of fast speed and large pedal position, and a lower level of large headway 

gap. Similarly, the third model tends to be more defensive with the opposite trends of 

membership functions. Meanwhile, the second model can be regarded as a normal 

driver comparing with the other two models. This finding is in coincidence with a 



previous driving style classification study based on the same dataset [15], which im-

proves the validity of the tuning results.   

To evaluate the tuning performance of the established models, the Root Mean 

Square Error (RMSE) was adopted to compute the difference between data and 

ANFIS output. The final RMSE were 0.1011, 0.0794, and 0.0856 respectively. Thus, 

it can be noted that the tuned driver models possess the driving styles of human par-

ticipants. 

3.2 Driving Style Variances 

As the established three driver models possess relatively different driving styles, they 

were examined in the proposed car-following simulation scenario to evaluate their 

difference. The headway distance and throttle pedal position were selected as the 

prominent factors to reveal the variances. 

  

 

Fig. 5. Headway distance profiles of three driving styles 

 

Fig. 6. Throttle pedal distributions of three driving styles 

 



From Figure 5, it can be noted that the established driver models have different 

headway distance profiles. While their basic shapes were similar, the average head-

way gaps were computed as 17.7m, 18.7m and 20.4m respectively. This finding cor-

relates with the common definitions of these driving styles, as aggressive drivers are 

more likely to tailgate, and defensive drivers prefer a larger safe distance. Meanwhile, 

as shown in Figure 6, the aggressive model shows a greater proportion of large throt-

tle movements (15.3% more than defensive when throttle > 50%), while the defensive 

model is more distributed in small throttle scale (73.6% when throttle < 50%). This 

phenomenon indicates that the aggressive model has a higher tendency of harsh accel-

eration, and the defensive model is milder on vehicle manoeuvre. Therefore, it can be 

noted from both findings that the tuning performance of ANFIS was satisfying. 

3.3 Correlation with Fuel Consumption 

Alongside with headway distance and throttle pedal position, the correlations between 

simulated driving styles and fuel consumption were also investigated. The probability 

density distribution of fuel consumption was computed to demonstrate its variations 

between different driving styles. As illustrated in Figure 7, it can be noted that the 

aggressive driver shows a larger possibility of high fuel consumption manoeuvres 

than the other models, especially for driving events that consumed more than 6 liters/h 

(6.3%). Meanwhile, the defensive driver occupies the largest proportion (63.4%) in 

low fuel consumption range (0  3 liters/h). While the differences between fuel con-

sumption were not significant, it can still be noted that the aggressive model tends to 

have more high fuel consumption manoeuvres, while the defensive model has fewer. 

 

 

Fig. 7. Fuel consumption distributions of three driving styles 

4 Conclusions 

 



The primary aim of using an adaptive neuro-fuzzy inference system to calibrate a 

fuzzy logic car-following driver model from real world driving data was achieved. 

With the collected real driving data of three human participants, corresponding driver 

models were developed using the proposed approach. Afterwards, these models were 

connected to a Simulink vehicle model to examine their performance in imitating 

human driving styles. Meanwhile, the correlations between these simulated driving 

styles and fuel consumption were also investigated. 

It was found that the tuning performance of the established ANFIS was satisfying. 

The models’ output had a high correlation with the collected real driving data. Mean-

while, the driving style variations revealed from headway distance, throttle pedal 

position, and fuel consumption also validated the tuning performance.    

The major contribution of this paper is to develop fuzzy logic driver models that 

can perform humanized car-following behaviors recorded in real world driving sce-

narios. Moreover, the proposed simulation scenario can incorporate driving style vari-

ances into procedures that are anchored to the standard drive cycle tests, and hence 

add more variations to the existing drive cycle tests. 

As future work, these established driver models will be used to control a robot 

driver, and hence operate real vehicles on a chassis dynamometer. Therefore, the per-

formance of these models can be experimentally evaluated. 
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