
        

Citation for published version:
Rusimova, K, Purkiss, R, Howes, R, Lee, F, Crampin, S & Sloan, P 2018, 'Regulating the femtosecond excited-
state lifetime of a single molecule', Science, vol. 361, no. 6406, pp. 1012-1016.
https://doi.org/10.1126/science.aat9688

DOI:
10.1126/science.aat9688

Publication date:
2018

Document Version
Peer reviewed version

Link to publication

This is the author's version of the work.  It is posted here by permission of the AAAS for personal use, not for
redistribution.  The definitive version was published in Science on 07/09/2018: Rusimova, K, Purkiss, R, Howes,
R, Lee, F, Crampin, S & Sloan, P 2018, 'Regulating the femtosecond excited-state lifetime of a single molecule'
Science. , http://dx.doi.org/10.1126/science.aat9688

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161919015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1126/science.aat9688
https://researchportal.bath.ac.uk/en/publications/regulating-the-femtosecond-excitedstate-lifetime-of-a-single-molecule(57236463-b299-42be-87ff-6c3d71f62632).html


Submitted Manuscript: Confidential 

1 

 

Title: Regulating the femtosecond excited-state lifetime of a single molecule 

Authors: K. R. Rusimova1, R. M. Purkiss1, R. Howes1, F. Lee1, S. Crampin1,2, P. A. Sloan1, 2,∗. 

Affiliations: 

1Department of Physics, University of Bath, Bath, BA2 7AY, UK. 

2Centre for Nanoscience and Nanotechnology, University of Bath, Bath, BA2 7AY, UK. 

*Correspondence to: p.sloan@bath.ac.uk 

Abstract: The key to controlling reactions of molecules induced with the current of a scanning 

tunneling microscope (STM) tip is the ultrashort intermediate excited ionic state. The energy and 

position of the injected current sets the initial condition of the excited state, thereafter its 

dynamics determines the reaction outcome. We show that an STM can directly and controllably 

influence the excited state dynamics. For the STM-induced desorption of toluene molecules from 

the Si(111)-7x7 surface, as the tip approaches the molecule, the probability of manipulation 

drops by two orders of magnitude. A two-channel quenching of the excited state is proposed, an 

invariant surface channel and a tip-height dependent channel. We conclude that picometer tip-

proximity regulates the lifetime of the excited state from 10 to below 0.1 femtoseconds. 

One Sentence Summary: Picometer tip proximity of a scanning tunneling microscope quenches 

single molecule reaction. 

 

Main Text:  

Using the tip of a scanning tunneling microscope (STM) to initiate chemical reactions offers a 

route to controllable single-molecule chemistry (1, 2). Through the mechanical interaction 

between tip and target molecule, or by the electric field in the gap, the STM can induce 

molecular change across a ground-state potential energy landscape (3). The STM tunneling 

current, however, can generate excited states of a molecule and hence give enhanced specificity, 

and more varied outcomes, to the manipulation action, e.g., bond dissociation (4, 5), 

isomerization (6), or tautomerization (7). The specificity arises by controlling the energy (5) or 

position (7, 8) of the single electron (or hole) excitation within a single molecule. The ensuing 

molecular dynamics and hence the final outcome evolve naturally from that point. Having the 

ability to control and influence the dynamics of the excited-state itself, would open new paths to 

control matter, and its reactions, at the molecular level. 

 

We find that the lifetime of the positive ion of single toluene molecules on the Si(111)-7×7 

surface can be directly controlled by the STM. By bringing the tip close to the molecule (600 to 

800 pm), we regulated the excited-state mediated reaction outcome (molecular desorption) by 

over two orders of magnitude. We correlate this to a reduction of the excited-state lifetime by 

approximately two orders of magnitude. We propose that a new electronic state is generated by 

the tip-molecule interaction that provides an additional decay channel for the excited-state, thus 

quenching the excited-state before its natural surface-limited lifetime elapses. We anticipate this 
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work to be a starting point for other more complex molecular systems where there are multiple 

excited-state outcomes where this technique could be used to instigate, probe and control them. 

The quenching process relies on fundamental quantum processes and should be applicable to a 

wide class of molecule/surface systems.   

 

Multiple molecular adsorbates have been shown to react to the STM tunneling current (1), 

especially benzene and derivatives (5, 9). Broadly, the probability per electron of inducing a 

molecular reaction is higher on the Si(111)-7×7 surface than on the Si(100)-2×1 surface, and 

orders of magnitude higher than on metal surfaces (7-9). On metals, lifetimes of molecular ion-

states are as low as 0.1 fs (10), but the reduced density of states in semiconductors lead to longer 

excited-state lifetimes. The theory of dynamics induced by electronic transition (DIET) links 

greater lifetimes of excited states to higher probabilities of reaction (such as bond breaking or 

desorption) (11). Benzene, chlorobenzene, and toluene on Si(111)- 7×7 have all been extensively 

studied (5, 9), and are highly sensitive to tunneling current.  

 

Figure 1 shows a series of STM images charting the positive ion resonance (or negative-bias 

“hole”) induced manipulation of a single chemisorbed toluene molecule on the Si(111)-7×7 

surface. At the imaging conditions used (+1 V, 100 pA) chemisorbed toluene molecules were 

unperturbed by the STM (12) and appeared as dark features against the bright spots that were the 

adatoms of the silicon surface.  Chemisorbed toluene molecules formed a 2,5-di-σ bonding 

configuration with the surface, forming one covalent bond to a silicon adatom (colored red) and 

one to a neighboring silicon rest atom (second layer atoms with dangling bonds) (Fig. 1A). To 

manipulate the molecule, during a raster scan from bottom to top, the tip was halted atop the 

molecule, and current injection was performed (−1.3 V, 900 pA) for 8 s.  

 

Figure 1D shows the tip height variation during this process. In step i, the tip was halted above 

the molecule. The feedback loop was disabled, and the tip retracted by 1 nm before the voltage 

was ramped to the desired manipulation value with the set-point current at 20 pA. In step ii, the 

feedback loop was then re-engaged. In step iii, the set-point current changed to the required 

injection current, resulting in the tip approaching the surface closer than its initial value by an 

amount ∆zI. Charge-injection continued, and in this particular case, after 0.35 s of charge 

injection, the molecule-adatom bond was broken leading to desorption. The underlying (bright) 

silicon adatom was exposed, causing the tip to withdraw by ∆zM to restore the set-point current 

(step iv). Resuming the interrupted image scan of Fig. 1B resulted in a “half-moon” feature at the 

molecular adsorption site typical of a manipulation event occurring mid-scan. Subsequent image 

scans (Fig. 1C) had the conventional Si(111)-7×7 surface appearance, including the silicon 

dangling bond at the original location of the toluene molecule. 

 

From the fraction of ~ 120 toluene molecules that were manipulated after an injection time t, we 

deduced a time-dependent probability of manipulation P(t) for a single-molecule consistent with 
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the first-order rate equation dP(t)/dt = k [1 − P(t)], where k is the rate of manipulation. Figure 2A 

illustrates this for injection parameters of +1.6 V, 450 pA. Figure 2B illustrates how the 

manipulation rate k varied with tunneling current for electron injection at +1.6 V. Figure 2C 

presents data for hole injections at −1.3 V and at −1.0 V. For electron injection, the rate 

increased linearly with injection current (see fit to Fig. 2B). For hole-injection at low current (2 

to 10 pA) we again found a linear dependence, but beyond 10 pA the rate of manipulation was 

approximately constant; the fitting function of Fig. 2C is discussed below. 

 

The number n of electrons (or holes) that drive a single-molecule manipulation (4) leads to a 

power-law dependence of the rate k with current I, k ∝ In. Hence, for electron injection, the near 

linear dependence n = 0.8 ± 0.1 indicates a one-electron process (9). Similarly, at low-currents a 

one-hole process is responsible for desorption. However, for hole-injection at currents above 10 

pA, the near constant rate implies a largely current-independent process. If the current is not 

driving the manipulation, what does?  

 

The manipulation rates observed were a factor of 104 greater than those occurring in purely 

thermally-driven desorption of toluene from Si(111)-7×7 (12). Hence, the presence of the STM 

tip is required for this manipulation to take place. Possible tip-molecule interactions that might 

drive manipulation are mechanical, i.e. a short-range chemical interaction between tip and 

molecule, or result from the electric field of the tunnel junction. However, we can rule out both. 

Figure 3A shows the tip-height z during the electron and hole injections performed at different 

currents. The tip height z is the distance from the center of the bonding Si adatom to the center of 

the leading atom of the STM tip - see methods. In all cases, z exceeds 600 pm. To identify 

possible mechanical manipulation, we modified the manipulation experiments by setting the bias 

during step ii to 0 V, disabling the feedback loop, and setting z to a specific value (schematic, 

Fig. 3B). For each z value, we then measured the outcome of ∼ 90 single-molecule manipulation 

experiments with an 8-s “exposure” of each target molecule. Little or no desorption was 

observed for z at or above 600 pm (shaded portion of Fig. 3B). Thus, in the height regime of the 

current-manipulation experiments, no mechanical manipulation occurred, and the desorption that 

did occur was consistent with that expected for a thermally-driven process (see Supplementary 

Materials for z < 600 pm discussion).  

 

We eliminated the possibility of an electric-field induced manipulation mechanism by modifying 

step ii so that, with feedback disabled, the tip retracted an additional distance from the surface. 

We applied a −10 V bias to generate an electric field E ≈ V /z in the junction comparable to that 

in the current-injection experiments, and whose magnitudes are shown in Fig. 3C. In this case, 

however, there was no current. As shown by the data presented in Fig. 3D, without the current, 

there was little or no manipulation. 
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A similar linear to constant rate crossover appears in two previous works (13, 14). There, tip 

induced band bending (TIBB) was put forward as a possible explanation. Since then detailed 

theoretical work and scanning tunneling spectroscopy shows that TIBB only occurs if the 

semiconductor is in depletion (15, 16). For our work with n-type Si this would be for electron 

injection. Therefore TIBB cannot explain our hole injection results nor the results of (13). The 

doping level here and in (14) also preclude any significant TIBB even if in the depletion regime 

(17). Instead the model proposed here is consistent with all three reports. 

 

The final outcome of the molecular manipulation can be either that the molecule completely left 

the surface (desorption), or that it reattached to the surface elsewhere (diffusion). We label an 

outcome as diffusion if, in an “after” STM image, e.g. Fig. 1C, the manipulated molecule 

appeared at an adjacent binding site. All other manipulation outcomes are classified as 

desorption. For all injection currents used, we found a branching ratio B of the probability of 

desorption to diffusion that was constant throughout the hole-injection experiments, Bh = 0.037 ± 

0.004. It was also constant for electron injections with Be = 0.24 ± 0.03 over the reported range 

of currents. Furthermore, there is no evidence of other forms of manipulation, e.g., 

intramolecular bond dissociation (5), in either current regime.  

 

Recasting the rate of manipulation in terms of the probability per injected charge of manipulation 

(electron or hole), Pe = ke/I where e is the magnitude of the electron charge, yields Pe as a 

function of the tip height z during the current injections. For electron injection, as expected for a 

one-electron process (Fig. 4A) Pe was fairly constant over the range of z studied. For −1.3 V hole 

injection, Fig. 4B, Pe dramatically increased with z (i.e., decreasing current), until at ∼ 800 pm, 

we found a near-constant region. Figure 4C shows data for −1.0 V hole injections (10 to 900 

pA), where for all injections, we found the same dramatic increase in the manipulation 

probability as the tip withdrew from the surface.  

 

The desorption of toluene, via a DIET process, follows a three-step process (18): (i) Excitation 

by capture of the injected charge by the toluene molecule; (ii) Dynamics, the evolution of the 

ionic molecule on its excited state potential; (iii) Detachment, with decay of the state 

(neutralization) leaving a vibrationally excited neutral molecule and leading to molecule-surface 

bond breaking and the final outcome of desorption or diffusion. Given that for the same z 

change, Pe was constant for electron injection, we conclude that step i was also constant for hole 

injection. That is, the change in the “spot size” of the tunneling current caused by the change in 

the z must be insignificant and did not change the fraction of the current captured by the 

molecule. Given the invariance of the branching ratio Bh we further conclude that step iii was the 

same for all the experiments presented in Fig. 4B. Within a DIET model, what remains to 

influence the probability of manipulation is step ii, specifically, the lifetime of the excited state 

(19). 
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For the similar system of benzene on Si(100), Alavi et al. (20) identified a hole excited-state 

lifetime of ∼ 10 fs and a probability per hole injection similar to our findings. Further, in line 

with theoretical predictions for long-lived excited states (19), Alavi et al. reported a monotonic 

and near linear dependence of the manipulation probability on the hole excited-state lifetime. 

Therefore, for our hole injections we relate our maximum (i.e. constant region) manipulation 

probability per hole of (320 ± 10) × 10−9, with an excited state lifetime of 10 fs, and use the 

linear dependence, Pe = βτ where β = 32 × 10−9 fs−1 to map our measured probability of 

manipulation to an excited state lifetime τ. The result is an excited-state lifetime that changes by 

two orders of magnitude from 10 fs to below 0.1 fs [see right-hand-side axes of Fig. 4, B and C]. 

A value of order 0.1 fs is more typical of that of adsorbates on metal surfaces (10), indicating 

that the proximity of the tip transforms the molecule-semiconductor system into a metal-

molecule-semiconductor system.  

 

Studies of cyclohexadiene on Si(100) (21, 22) have shown the creation of an interface electronic 

state at the location of the molecule as an STM tip approaches. The new state lies near the Fermi 

level and in tandem with its creation, the highest occupied molecular orbital (HOMO) at −1.5 V 

broadened and reduced in intensity as the tip approaches closer. Given our system also contains a 

π-bonding orbital on a 6-member carbon ring that is di-σ bonded to a Si substrate, we propose 

that at our higher currents (closest approach) a similar interfacial electronic-state results in the 

reduced probability per hole of manipulation by providing a new decay channel for the excited 

molecular which reduces its lifetime and concomitantly the probability of manipulation.  

 

The lifetime of an excited state is the inverse of its relaxation rate R = 1/τ . Here we propose two 

components for the relaxation of the positive ion state: a fixed rate arising from the presence of 

the surface RS = 1/τS, with τS = 10 fs; and a z-dependent rate accounting for the effect of the tip, 

RT(z) = 1/τT(z) giving R = RS + RT(z). This tip-mediated relaxation channel will be related to the 

density of states of the interface state, ρi , through Fermi’s Golden Rule. An analogous scheme is 

used to describe the STM excitation, direct measurement, and z-dependent quenching of the 

millisecond spin-excitation in single atoms (23). 

 

Figure 4D presents schematic energy level diagrams for three regimes of tip-height. (I) large tip-

molecule separation with surface dominated excited state relaxation and thus reaction, (II) 

intermediate-z range with onset of an (assumed near the Fermi level) interface state tip-

dependent quenching and (III) small-z separation with tip-dependent interface state quenching 

dominating the excited state relaxation. These three regimes are indicated in the rate 

dependencies of Figs. 4A, B and C. 

 

For a tip-molecule system with localized electronic structure, the force between tip and molecule 

has been calculated as F ∝ Im with m between 1 and 2 (24). This calculation invoked a wave 

function overlap argument and should be broadly similar to the perturbative physics of the initial 
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generation of an interface state by our STM tip. Thus, we make the connection RT(z) ∝ ρi(z) ∝ 

exp(−2κz)m, leading to a z-dependence of Pe of 

 

𝑃𝑒(𝑧) =
𝛽𝜏𝑆

1+exp[−2𝜅𝑚(𝑧−𝑧0)]
 [eq 1] 

 

where τT(z0) = τS and κ = (1.17 ± 0.06) A−1 as found from Fig. 3A. A surface-limited model, Pe = 

βτs, has a constant lifetime and so constant manipulation probability. This surface-only model 

fits the +1.6 V electron injection in Fig. 4A, noting that below ∼ 800 pm, there is a possible 

slight decrease in Pe, suggesting that the negative-ion state is also perturbed by the interface 

state. For −1.0 V hole injection shown in Fig. 4C, the fit is purely exponential, Pe(z) ∝ exp(2κz), 

corresponding to a tip-dominated dynamics. For −1.0 V, at all currents, the tip was near the 

molecule, hence the excited-state dynamics were always tip-limited. At −1.3 V, the tip was 

slightly further removed from the surface. Thus, Fig. 4B shows a fit to Eq. 1 with m = 1.1 ± 0.1, 

and demonstrates a cross-over at z0 = (830 ± 20) pm from a tip-limited to a surface-limited 

regime.  

 

Our initial finding of a near invariant rate of manipulation can therefore be reconciled with a 1-

hole process. For a 1-hole process the rate is defined as k = PeI/e. Combining this with the tip-

dependent manipulation probability Pe of Eq. 1 gives the fit to the rate of manipulation (dashed 

line) in Fig. 2C. At large tip-molecule separation (low current) the traditional linear k ∝ I 

dependence is evident. For higher currents that led to a closer tip and quenching the molecular 

excited state, the rate of manipulation became k = I/Im = I(−0.1 ± 0.1) giving, as Fig. 2C shows, the 

largely rate invariant region of manipulation.  

 

Molecules that require more than one electron (or hole) for manipulation, for example C-Cl 

dissociation of chlorobenzene (5) or diffusion of NH3 (25) should naturally be more sensitive to 

any tip modification of the excited state. We would also expect, alongside other semiconducting 

molecule/surface systems, any molecule/surface system that displayed long lived excited state, 

for example molecule/single-atomic-layer-insulator/metal systems (26), to be sensitive to tip 

induced modification of the excited state. 
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Fig. 1. STM imaging and time-trace of single molecule manipulation. (A to C) High-resolution 

STM images and (below) corresponding schematic diagrams of the manipulation procedure 

(imaging parameters +1 V, 100 pA, 3 nm by 3 nm). (A) Before manipulation image: a half unit 

cell of Si(111)-7×7 is outlined, the white circle atop the missing-adatom like dark spot location 

indicates the position of a single toluene molecule. (B) During image, (C) after manipulation 

image. (D) Time-trace of the tip height during manipulation charge injection (see text for 

details). 
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Fig. 2. Rate of manipulation. (a) Time-dependence of the fractional manipulated molecule 

population (injection parameters +1.6 V and 400 pA; 117 molecules). Also shown is the fit to 

P(t) = 1 − e−kt. (B) Rate of manipulation for electron injection at +1.6 V with a linear fit. (C) 

Rate of manipulation for hole injection at −1.3 V (filled circles) and at −1.0 V (open triangles). 

Fit details of tip-dependent model (dashed line) given in main text. 
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Fig. 3. Mechanical and electric-field tip-induced interactions. (A) Tip-surface separation as a 

function of tunneling current during charge injection: filled circles, hole injection at −1.3 V; 

unfilled diamonds, electron injection at +1.6 V. (B) Probability of manipulation after 8 s in the 

mechanical presence of the tip (0 V, 0 pA). (C) Estimated electric field (magnitude) in the 

junction between tip and surface as a function of the current I during the charge injection 

manipulation experiments: filled circles, hole injection at −1.3 V; unfilled diamonds, electron 

injection at +1.6 V. (D) Probability of manipulation after 8 s with only the electric field 

interaction (−10 V, 0 pA). 
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Fig. 4. Manipulation suppression at close tip proximity. (A) +1.6 V electron injection data from 

Fig. 2B recast as probability per electron as a function of the tip height. Similarly (B) −1.3 V 

hole injection recast data from Fig. 2C. (C) −1.0 V hole injection. Blue lines show surface 

limited excited state dynamics, red line models tip-limited dynamics - see text for details. Black 

curve of (B) is a fit to Eq. 1. Right-hand side axis of (B) and (C) gives the inferred excited-state 

lifetime τ of the positive-ion with a value of 10 fs for purely surface limited dynamics. (D) 

schematic energy level diagrams depicting three regimes of tip manipulation suppression – see 

text for details. 
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Materials and Methods 

UHV STM 

 

Experiments were performed at room temperature with an Omicron STM1 in an ultrahigh 

vacuum (UHV) chamber with a base pressure below 1×10-10 mbar.  Nanonis control electronics 

was used alongside a suite of LabVIEW programs to automate the experimental procedure, see 

ref. (9). Pre-cut Si(111) samples (n-type, phosphorus doped, 0.001-0.002 Ω cm, 6×1019 – 3×1019 

dopants per cm3) were reconstructed to form the Si(111)-7×7 surface by repeated high 

temperature (1250 °C) resistive sample heating (27).  

 

Tungsten tips were etched in a 2 M NaOH solution and out-gassed in vacuum to remove any 

tungsten-oxide (28). Toluene was purified by the freeze-pump-thaw technique with liquid 

nitrogen and checked for purity with a quadrupole mass spectrometer. We chose toluene for this 

study because of its thermal stability at room temperature, its ease of STM-induced molecular 

desorption, and its lack of STM current induced intramolecular bond breaking (9).  

 

To prepare a partially toluene covered surface (~3 molecules per unit cell) the Si(111)-7×7 

surface was dosed through a computer-controlled leak valve. Stability during the injection was 

ensured by a drift-compensation software (100 fm/s up to 10 pm/s in all 3 directions). All 

voltages are applied to the sample with the tip grounded through a Femto pre-amplifier. 

 

Automated experiments 

 

To manipulate ~120 individual molecules at each set of injection parameters (tunnel current and 

bias voltage) we used a home-made LabVIEW control program running in combination with a 

bespoke MATLAB analysis suite (27). Each automated experimental sequence involves the 

following steps: (1) LabVIEW takes a 25 nm × 25 nm overview image of the silicon surface; (2) 

MATLAB analyses the image to identify all atomic and molecular locations and randomly picks 

a user-specified number n of injection sites. All selected molecules are located on top of faulted 

middle silicon adatoms, belonging to different unit cells; (3) LabVIEW moves the STM tip to the 

first set of x-y coordinates specified by MATLAB. The STM takes a 3 nm × 3 nm image of the 

surface and performs a cross-correlation with the same region cropped out from the “big” 

overview image in order to correct for any drift that has occurred in the interim. (4) Once the 

correct injection location has been established, the STM takes a series of three 3 nm × 3 nm 

consecutive images, as described in Fig. 1 and the main text; (5) Steps (3) and (4) are repeated n 

times for each set of injection co-ordinates; (6) Finally, the STM takes a 25 nm × 25 nm 

overview image of the silicon surface after all n injection experiments have been performed. 

Each experimental sequence like this takes about 15-20 min and involves up to 20 individual 

current injections into single molecules. See ref. (29) for a time-lapse video of the automation 

procedure. 

 

Details of manipulation measurement 

 

Toluene is di-σ bonded to the Si(111)-7×7 surface, forming a covalent bond to a silicon adatom 

and another to a neighboring silicon restatom (30).  In line with our previous work (9) we only 

inject into molecules bonded to faulted middle adatoms. Previously we reported on the local 
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manipulation of the toluene/Si(111)-7×7 system. For electron injection we found two 

populations depending on their precise chemisorption geometry (choice of two 

crystollographically equivalent rest-atoms). This resulted in two rates of desorption, dependent 

upon whether the tip was atop the center of the molecule, or more atop the position of the 

bonding adatom. The former gave a higher rate of manipulation than the latter. For the 

experiments reported here, we only report on the faster process for those molecules where the 

adsorption configuration placed the molecule directly under the tip.  

 

 

The Si(111)-7×7 exhibits nonlocal manipulation whereby the injected charge flows across the 

surface and induces molecular desorption some 10 nm distant from the injections site (31-33). 

Here, for electrons, our injection voltage of +1.6 V is well below the thresholds for nonlocal 

manipulation with electrons of +2.0 V (32). For the hole injections of -1.3 V, we are just at the 

onset of hole induced nonlocal manipulation for faulted-middle molecules. At this threshold the 

nonlocal probability is lower than that reported here for the local manipulations (33). The 

probability of nonlocal manipulation of a FM molecule with -1.3 V injection is given in ref (33) 

as (4.3 ± 0.5) × 10-15.  Nonlocal processes will therefore not influence our single-molecule 

experiments. The rate of manipulation was determined from the time dependent manipulation 

probabilities using the methods presented in ref (32). 

 

The spread of rate data points in Fig. 2B was consistent with similar STM experiments (34), 

given the inherent uncertainties of the STM tip’s chemical composition. To minimize this 

influence, we monitor the STM images of the Si(111)7x7 surface so they appear as shown in Fig. 

1. We also gathered a statistically significant number of manipulation events for each set of 

injection parameters. 

 

Absolute tip-height 

 

To present absolute tip-heights we correlate the onset of the mechanically induced manipulation 

shown in Fig. 3B, with the onset of the repulsive force as measured by AFM (35) found at 600 

pm relative to the center of the bonding silicon adatom. 
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Supplementary Text 

Mechanical Manipulation 

Only for z < 500 pm did we begin to see evidence for mechanical manipulation, which we 

attributed to the close approach of the STM tip modifying the neutral potential energy surface of 

the molecule-surface system by lowering the barrier to desorption or diffusion by ~ 100 meV, 

which enhanced thermally activated molecular desorption and diffusion . This < 500 pm region 

mostly likely reflected direct contact between tip and molecule (36). Quantitatively, even at the 

shortest separations, the effective rate of mechanical manipulation is a small fraction (kmech < 

0.03 s−1 ) of that caused by hole-injection, as seen in Fig. 2C. 

 

Possible experimental limitation 

For hole injections at the lower voltage of −1.0 V, Fig. 2C, the rate of manipulation was also 

largely constant over all the currents probed. Because this invariant region had a different rate 

from the invariant region for −1.3 V, by a factor 2, we discounted the possibility that the plateau 

is caused by experimental measurement limitation. Moreover, the similar findings of refs (13, 

14) point to the rate-invariant region being a true measurement and not simply an experimental 

artefact. 

 

Negative-ion probability invariance. 

An interface state situated on the molecule would explain the lack of obvious z dependence (Fig. 

4A) for electron injections. The negative-ion state is located within the silicon back-bonding 

orbitals that underlie the bonding molecule-adatom site, whereas the positive-ion state is located 

on the molecule itself (9, 37). Thus, an interface state located on the molecule would have larger 

Franck-Condon overlap with the positive-ion state then the positive-ion state. This is consistent 

with the findings here that hole injections are much more sensitive to the tip proximity than 

electron injections. 

 

Junction electric field 

At room temperature the Si(111)-7×7 surface does not exhibit tip-induced band-bending (15). 

The surface acts as a metal. We therefore model the STM E-field as that between two spheres 

with opposite charge q of radius R a distance 2×z0 apart, the surface plane lying at the midpoint 

defined as z = 0. This gives the z dependence of the field as 

 

𝐸(𝑧) =
𝑞

4𝜋𝜖0
[

1

(𝑅 + 𝑧0 − 𝑧)2
+

1

(𝑅 + 𝑧0 + 𝑧)2
]. 

 

To justify the use of the standard parallel plate capacitor form E=V/z we ensure that the E-field 

in the gap only changes by 10 % across the gap. Solving E(z0)/E(0) = 1.1 for a gap of 0.7 nm 

gives a minimum radius of the tip as 4.6 nm. Scanning electron microscopy of our STM tips 

shows that typically they have a radius of curvature of a few tens of nanometers.  Therefore the 

parallel plate capacitor relation E=V/z is well justified. 

 

Furthermore, the work of ref (21) shows a constant signal in their STS measurements of the 

interface state across a range of tip heights. Thus the interface state is unperturbed, or at least has 

no measureable change induced by the variations of the junction E-field.  


