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Abstract—Unlike AM and PM systems, FM systems do
not necessarily require the use of a dual I/Q receiver for
unambiguous phase measurement. In this paper we describe
this phenomenon in detail and work out the conditions when
single-channel phase measurements can be used for the reliable
measurement of the phase and the Doppler frequency of targets
in FMCW radars systems. The developed theory is applied to
surveillance and automotive radar systems to determine the
velocity bounds for the unambiguous measurement of phase.
The influence of phase noise in the same context is discussed.
Results of coherent averaging on the data acquired using a
single-channel radar system are presented to validate the theory.

I. INTRODUCTION

Accurate measurements of frequency and phase is central
to the working of modern radar systems and are directly
related to the accurate measurement of parameters like range,
bearing, and velocity that are fundamental to the successful
detection, tracking, and imaging, etc. of the targets of interest.
In this paper we focus on the fundamental systems engineering
problem of analysing simple system architectures for the
reliable measurement of the phase in target returns using
homodyne FMCW radar systems.

Fig. 1 shows a homodyne FMCW architecture employing
in-phase (I) and quadrature (Q) mixers to demodulate the
received radar signal. The instantaneous time-domain ampli-
tude and phase can be extracted by employing this scheme.
Fig. 2 shows a simpler architecture utilising a single mixer
to demodulate the received signal which is then digitised
and operated on by complex Fast Fourier Transform (FFT)
processing. Although this method cannot be used to obtain the
instantaneous phase of the received signal, we note that this
is not usually required for radar applications. Post-FFT phase
measurement can prove sufficient for the desired targets, and
it is the purpose of this paper to analyse the conditions under
which no ambiguity will occur in the phase measurement
when using the system in Fig. 2. We will also demonstrate
the successful application of this type of system in coherent
averaging.

When the system in Fig. 2 is used, it results in a significant
saving in costly hardware and engineering effort especially
at microwave and millimetre wave frequencies. However this
system cannot measure the negative frequency portion of the
spectrum. Therefore, the system shown in Fig. 2 will measure
the phase unambiguously only if the demodulated frequency
spectrum is confined to one sideband. After downconversion,

Fig. 1. Block diagram for time-domain phase measurement using an FMCW
radar

Fig. 2. Block diagram for frequency-domain phase measurement using an
FMCW radar

the spectra of AM (amplitude-modulated) and PM (phase-
modulated) signals are zero-centred which means that half of
the modulation spectrum lies in the negative frequency region.
Therefore, the I/Q demodulation scheme of Fig. 1 becomes
necessary to extract the full (amplitude and phase) spectrum.
In contrast FM (frequency-modulated) spectra are centred at
an offset fm from the carrier. Therefore after demodulation
the baseband spectrum having bandwidth B is centred around
the baseband modulation frequency fm. If |fm| − B/2 > 0
then all the modulation power lies in only one side of the
origin and the system in Fig. 2 can be used to extract the
phase information in the signal unambiguously. The only cost
is that the thermal noise from the image sideband will always
be present, so the noise floor will be 3 dB higher than could
be achieved using I/Q mixers. In the following we will analyse
this phenomenon for FMCW radars.



Fig. 3. Illustration of the demodulation scheme for all three types of
modulation.

II. GENERAL ANALYSIS OF MODULATED SIGNALS

In this section we mathematically analyse AM, PM and FM
signals. Our analysis is motivated by [1]. Let the AM, PM and
FM carrier signals be defined as below:

SAM (t) = A1 [1 +ma (t)] cos (ω0t+ θ0) (1)
SPM (t) = A2cos (ω0t+mθ(t) + θ0) ; |mθ| < 1 (2)
SFM (t) = A3cos ([ω0 − ωm] t+ θ0) , (3)

where θ0 represents an unknown phase shift relative to
the local oscillator (LO) signal. In (3) we have considered
frequency modulation resulting in a frequency translation by
ωm. Now consider the demodulation of these signals with a
LO at the carrier frequency ω0 as illustrated in Fig. 3. The
signal components in the baseband will be as follows:

S′
AM (t) = A′

1ma (t) cos (θ0) (4)
S′
PM (t) ≈ A′

2mθ (t) sin (θ0) (5)
S′
FM (t) = A′

3cos (ωmt− θ0) . (6)

Note that S′
AM (t) is scaled by cos(θ0) that scales the

amplitude from maximum (for θ0 = 0) to zero (for θ0 = π/2).
We also notice that in S′

PM (t) the sin(θ0) term scales the
message signal from maximum (for θ0 = π/2) to zero (for
θ0 = 0). In practice θ0 varies randomly [2]. Hence, for the
faithful reproduction of the AM and PM signals we need to
employ the quadrature channel.

In contrast, it can be noted that S′
FM (t) is immune to any

amplitude or phase ambiguities even in the case of employing
a single channel detector. The reason is that instead of residing
around the carrier (as in the case of AM and PM signals), the
FM signal resides at an offset from the carrier. In other words,
while the spectrum of the demodulated AM and PM signals
are centred at zero frequency, the spectrum of FM signals is
centred at the offset frequency ωm. Therefore, the full phase
information can be extracted from FM signals using various
signal post processing techniques, most notably the complex
FFT.

In practice instead of a signal tone (ωm in (3)) the de-
modulated FM signal may contain a band of frequencies,
due to signal components (like multiple targets) or due to
noise components (like phase noise around a single target).
For unambiguous phase measurement using a single-channel
receiver, therefore, all signal and noise components must
remain at a frequency offset from the carrier.

Fig. 4. Illustration of swept frequency vs time graph for a stationary, an
approaching, and a receding target. The beat frequency is positive in all cases.

III. ANALYSIS OF FMCW RADAR SIGNALS

FMCW radars use various types of waveforms and cor-
responding signal processing schemes to extract the range
and Doppler information of the targets of interest [3]. In this
section we will use the linear up-ramp signal bearing in mind
that the result can be extended to other linear ramp waveforms.

Fig. 4 shows the transmit ramp as well as the receive ramps
for a stationary, an approaching, and a receding target. BS and
TS are the swept-bandwidth and sweep-time respectively. τd
is the round trip time delay due to a target at range R. The
beat signal due to the stationary target can be written as,

SIF (t) = A0cos (2πfb0t− θ0) , (7)

where,
|fb0| =

BS
TS

τd. (8)

Note the similarity between (6) and (7). The Doppler shift
due to an approaching target at R causes the instantaneous
received frequency to be larger than that for a stationary
target. The beat frequency decreases correspondingly. For a
fast enough target, the Doppler shift could be large enough
so that the received signal’s instantaneous frequency is larger
than the instantaneous transmit frequency as shown in the top
plot in Fig. 4. The beat frequency will be positive in this case.
One can easily extend the same arguments for a down-ramp: in
that case the beat frequencies will normally be positive except
for a rapidly receding target.

A. Phase measurement in the absence of Doppler

The rapid-approaching situation in Fig. 4 cannot happen
for stationary targets. Therefore it is reasonable to conclude
that for stationary target detection applications, like foreign
object debris (FOD) detection, the full phase spectrum can be
measured unambiguously using the system in Fig. 2.



Fig. 5. Phase noise leakage in the negative frequency region.

B. Phase measurement for moving targets

Let the beat (IF) frequency produced by the stationary target
at range R be −fb0. The beat frequency for an approaching
target at the same range will be −fb0 + fD. It follows from
Fig. 4 that the beat frequency will always remain negative if
fD < |fb0| (assuming an up-chirp). Therefore, for a given
set of radar parameters, we can derive a relationship for the
maximum allowable target velocity ν that does not change the
sign of the beat frequency as follows:

fD =
2ν

λ
<
BS
TS

τd ⇒ ν <
λBSR

cTS
, (9)

where λ is the carrier’s wavelength and c is the speed of light.
For down-ramps, (9) also sets the bound on the maximum
velocity receding targets could have without changing the sign
of the beat frequency. Thus for triangular sweeps (9) sets the
dynamic range of allowable velocities that would result in
unambiguous phase measurement.

From (9) it is apparent that the velocity dynamic range can
be increased by reducing the Doppler frequency relative to
the beat frequency of a given target. This can be done by
increasing λ and/or increasing the sweep rate BS/TS .

C. Effect of phase noise

Phase noise appears as noise sidebands on the target re-
sponse. When the target is very close in range some of the
noise sidebands can spread into the negative frequency region.
When using the single-channel receiver of Fig. 2 the negative
frequency portion of the target spectrum would wrap around
and appear as increased noise in the positive frequency region.
This is illustrated in Fig. 5.

However it is known that for close ranges the phase noise
decorrelates heavily so that the noise sidebands are minimised
[4]. For short ranges, the phase noise is decorrelated as 20
dB/decade [4], so if the target’s spectrum is steeper than -20
dB/decade there will be residual phase noise that can spill-
over and then fold-over. This can happen when a large target
is close to the radar.

This effect can be even more pronounced when the target
is at a farther range but the target peak appears at a lower
frequency due to Doppler shift. The phase noise decorrelation
(i.e. the difference in the transmitted and received phase noise

TABLE I
PARAMETERS OF EXAMPLE RADARS

Parameters Surveillance Automotive
Carrier Frequency 76.5 GHz 24 GHz
Carrier Wavelength 3.9216 mm 12.5 mm
Sweep Time TS 2 ms 1 ms
Coherent Processing Interval (CPI) 2 ms 64 ms
Doppler Resolution, 1/CPI 500 Hz 15.625 Hz
Velocity Resolution, λ/(2CPI) 0.98 m/s 0.0977 m/s
Swept Bandwidth BS 600 MHz 150 MHz
Doppler Shift at 1 m/s 510 Hz 160 Hz

TABLE II
MAXIMUM VELOCITY FOR UNAMBIGUOUS PHASE MEASUREMENT

Range Surveillance Automotive
m/s mph m/s mph

1 m 3.92 8.77 6.25 14
10 m 39.2 87.7 62.5 140

100 m 392 877 625 1400

processes) will essentially be according to the target’s actual
range. Detailed calculations of the effect must be carried
out using the detailed phase noise spectra. This problem can
also be alleviated if λ and/or the sweep rate is increased as
explained above.

IV. APPLICATION TO FMCW RADAR SYSTEMS

A. Maximum velocity calculations

The application of (9) to radar systems is straightforward.
Table I shows the parameters of a surveillance radar and
an automotive radar. Table II shows the maximum permitted
velocities calculated using (9) for targets at various ranges. It is
apparent that in most practical situations the target velocities
are under these limits. This is a strong result that suggests
that a single-channel demodulator followed by complex FFT
processing can be used for coherent processing and phase
measurement in a wide variety of situations. For lower carrier
frequencies the requirement for the maximum velocities is
even more relaxed as evidenced by this example.

B. Effect on Range-Doppler algorithms

FMCW radars employ various waveforms to extract the
true range and Doppler information from radar signals. These
include triangular sweeps, the chirp sequence waveform, the
multiple FSK waveform, and the intertwined chirp sequence
waveform [3]. In general the triangular sweep will have the
Doppler limit of (9) on both the up-sweep and the down-sweep
(i.e. approaching as well as receding targets). Other waveforms
employing only the up-ramp or the down-ramp respectively
will have the Doppler limit for approaching or receding targets
only.

V. MEASUREMENT RESULTS FROM A PRACTICAL FMCW
RADAR SYSTEM

In this section we present the results of coherent averaging
performed on signals measured using the 76.5 GHz surveil-



Fig. 6. Radar scene display from a single FMCW sweep. Three target peaks
are visible. The bins size is 25 cm.

Fig. 7. Variation of noise power with averaging

lance radar system of Table I based on Fig. 2. If the phase is
measured faithfully using the system in Fig. 2 then coherent
averaging should result in N -times improvement in the SNR,
where N is the number of signal records being averaged [5].

A raw display of the scene being analysed is shown in Fig.
6. Three target peaks can be seen along with the raised noise
floor due to phase noise around them. The bins displayed in
the abscissa are 25 cm each. The ordinate is normalized to
the highest signal in the scene. The dB units are arbitary in
that they are not relative to any common reference (this is a
common way of displaying range-profiles in radar systems).

50 sweeps of complex radar data from this scene were
recorded and the coherent average was computed. First the
phase noise bins shown in Fig. 6 were analysed. The dotted
line in Fig. 7 shows the decrease in noise power versus an
increasing number of averages by varying N from 1 to 50. The
result has been normalised to the noise power when N = 1.
The solid line is a plot of the function 1/N on the semi-
log scale. The result shows an agreement with the theoretical

Fig. 8. Improvement in SNR due to coherent averaging. The mean noise level
before averaging is also displayed for comparison.

prediction of the improvement in SNR.
In Fig. 8 the coherently averaged data has been plotted,

along with the mean noise level from Fig. 6 (i.e. without
averaging). The improvement in SNR as well as the phase
noise sidebands is apparent which leads to better definition
in the scene.

VI. CONCLUSION

In this work we analysed the effectiveness of the FMCW
radar architecture employing only a single channel detector
followed by complex FFT processing to extract the phase
information. A mathematical analysis of various modulation
schemes was presented to give the idea a strong theoretical
foundation. It was found that the said radar architecture
successfully measures the phase information for static
targets. For moving targets a maximum velocity condition
was derived for unambiguous phase measurement. Practical
examples demonstrated that this condition is easily met in a
wide variety of applications. Coherent averaging performed
on measurements from a surveillance FMCW radar system
shows an improvement in SNR according to the theoretical
prediction, signifying reliable phase measurement.

ACKNOWLEDGMENT

This work was partially supported by Innovate UK.

REFERENCES

[1] D. G. Tucker, “The synchrodyne and coherent detectors,” Wireless Engi-
neer, July 1952.

[2] S. Haykin, Communication systems, 4th ed. John Wiley & Sons, 2001.
[3] M. Kronauge and H. Rohling, “New chirp sequence radar waveform,”

Aerospace and Electronic Systems, IEEE Transactions on, vol. 50, no. 4,
pp. 2870–2877, October 2014.

[4] K. Siddiq, R. J. Watson et al., “Phase noise analysis in FMCW radar
systems,” 12th European Radar Conference (EuRAD), pp. 501–504, Sept
2015.

[5] M. A. Richards, Fundamentals of radar signal processing. McGraw-Hill,
2005.


