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ABSTRACT

This is the first in a series of papers examining the demographics of star-forming galaxies at 0.2 < z < 2.5 in

CANDELS. We study 9,100 galaxies from GOODS-S and UDS having published values of redshifts, masses, star-
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formation rates (SFRs), and dust attenuation (AV ) derived from UV–optical SED fitting. In agreement with previous

works, we find that the UV J colors of a galaxy are closely correlated with its specific star-formation rate (SSFR) and

AV . We define rotated UV J coordinate axes, termed SSED and CSED, that are parallel and perpendicular to the star-

forming sequence and derive a quantitative calibration that predicts SSFR from CSED with an accuracy of ∼ 0.2 dex.

SFRs from UV–optical fitting and from UV+IR values based on Spitzer/MIPS 24µm agree well overall, but systematic

differences of order 0.2 dex exist at high and low redshifts. A novel plotting scheme conveys the evolution of multiple

galaxy properties simultaneously, and dust growth, as well as star-formation decline and quenching, exhibit “mass-

accelerated evolution” (“downsizing”). A population of transition galaxies below the star-forming main sequence is

identified. These objects are located between star-forming and quiescent galaxies in UV J space and have lower AV and

smaller radii than galaxies on the main sequence. Their properties are consistent with their being in transit between

the two regions. The relative numbers of quenched, transition, and star-forming galaxies are given as a function of

mass and redshift.

Keywords: galaxies: evolution – galaxies: fundamental parameters – galaxies: high-redshift – galaxies:

star formation – galaxies: structure
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1. INTRODUCTION

Understanding galaxy evolution is challenging in part

because galaxy properties are so rich. Galaxies have

baryonic mass, dark matter mass, and radial mass pro-

files of both quantities. Their spectral energy distribu-

tions (SEDs) reflect different star-formation histories,

and they have different color and luminosity profiles.

Structure is a key parameter, including flattening, ir-

regularity, and bulge-to-disk ratio. Added to these are

black hole masses, AGN activity, and environmental

properties. Formulating a coherent vision for the evolu-

tion of all of these properties and their interrelationships

is a formidable task.

Two-color diagrams have emerged as a simple visual

tool for understanding galaxies, especially the UV J dia-

gram (rest-frame U −V vs. rest-frame V −J). An early

version of UV J was introduced by Labbé et al. (2005),

who used observed I−Ks vs. Ks− [4.5], which translate

to rest-frame UV J at z ∼ 3. Large scatter was detected

in Ks − [4.5] at fixed I − Ks, which suggested (from

models) that two kinds of galaxies were present: galax-

ies reddened by old age and galaxies reddened by dust.

The first use of UV J was therefore to discriminate age

from dust. Interest in this use gained impetus when star-

formation quenching was identified as a key phase in the

life of massive galaxies (e.g., Bell et al. 2004; Faber et al.

2007), and questions arose as to where, when, and why

quenching happens. Because massive galaxies are also

dusty (e.g., Reddy et al. 2006), having a tool to iden-

tify the location of an individual galaxy along the evolu-

tionary track from dusty/star-forming (SF) to quenched

became important.

The first rest-frame UV J diagram of distant (z ∼ 2.5)

galaxies was presented by Wuyts et al. (2007). A large

spread in V − J at fixed U − V was again seen, and the

identification of the high-(V − J) objects as dusty and

SF was confirmed by 24µm detections. The elongated,

slanting locus of SF galaxies in the UV J diagram was

attributed to different amounts of dust reddening.

Williams et al. (2009) presented the first richly popu-

lated high-redshift UV J diagram, based on deep IRAC

data in the UKIDSS/UDS field. Higher object numbers

revealed two separate clumps of red galaxies for the first

time: quiescent and dusty/SF. The border between the

two regions was determined, a robust prescription that

remains effective today at separating these two galaxy

types. Williams et al. (2009) also studied how the UV J

diagram evolves with redshift. An increase in quies-

cent objects with time was clearly seen, with the first

quenched red galaxies appearing at z ∼ 2.0 − 2.5. It is

now commonplace to use the UV J diagram to identify

quiescent galaxies in high-redshift samples.

Evidence of additional richness in UV J emerged in

subsequent studies. Williams et al. (2010) combined

SED-derived specific star-formation rates (SSFRs) with

galaxy UV J colors to map out the distribution of SSFR

in UV J space. “Stripes” of constant SSFR were seen

within the SF population. These stripes ran roughly

parallel to the long axis of the SF locus, with higher

SSFR in stripes toward the bottom of the distribution,

i.e., bluer U − V . Similar stripes in SSFR were seen by

Patel et al. (2011) for galaxies at z ∼ 0.8, and stripes

in stellar age were seen by Whitaker et al. (2012a) us-

ing data from the NEWFIRM survey. Ages and SS-

FRs in these studies were determined by fitting stellar

population models to UV–optical SEDs only. Arnouts

et al. (2013) demonstrated a close link between the

dust attenuation AV determined from UV–optical colors

and the infrared excess based on Spitzer/MIPS 24µm,

and Straatman et al. (2016) demonstrated SSFR stripes

using MIPS-based star formation rates (SFRs) out to

z = 2.5.

This paper is the first in a series that combines

new CANDELS estimates of dust content and star for-

mation from Santini et al. (2015) with comprehensive

structural data by van der Wel et al. (2012) based

on CANDELS imaging. For this, we employ the offi-

cial CANDELS multiwavelength photometry catalogs in

GOODS-S (Guo et al. 2013) and UDS (Galametz et al.

2013). The depth of these catalogs permits extending

the useful mass limit down to ∼ 109.5M� at z ∼ 2.5,

which is the estimated mass of the Milky Way at this

redshift (van Dokkum et al. 2013; Papovich et al. 2015).

Because our aim is to establish accurate trends and cor-

relations, our sample is magnitude-limited at the bright

level H = 24.5 to ensure excellent-quality data. (The

completeness of the sample is discussed in Section 2.7.)

This first paper concentrates on the UV J systemat-

ics of SF galaxies. These are presented using a grid of

diagrams laid out by mass and redshift on which evolu-

tionary paths are superimposed. “Downsizing” in SSFR,

dust, and quenching are clearly visible. The aforemen-

tioned stripes in SSFR are clearly visible, and their sta-

bility with mass and redshift is examined. A quantita-

tive calibration is presented that estimates UV–optical

SSFRs from UV J to an accuracy of 0.2 dex for most

galaxies. Such a calibration is useful for quick estimates

and for instances where a full SED is not available (e.g.,

gradient measurements, Wang et al. 2017). The SEDs of

galaxies with similar UV J colors are shown to be similar

from FUV to K, and a check is made on the consistency

of SED modeling assumptions (τ -models plus Calzetti

foreground-screen dust are assumed) by comparing the

de-reddened colors of galaxies to the original τ -model
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tracks. Transition galaxies below the main sequence are

identified and are located near the quenched/SF bound-

ary in UV J , as expected. Their low AV and small radii

further signify fading star formation. Their numbers

are given relative to quenched and SF galaxies for test-

ing future theoretical models. Finally, a comparison is

made of UV–optical SSFRs to 24µm values that con-

siders residuals about the SF main-sequence (SFMS),

not just absolute values, as have been used previously.

Overall agreement from these various checks is good, but

discrepancies in SSFR of order 0.2 dex in zero point are

found at high and low redshift that merit future follow-

up.

This paper is organized as follows. Section 2 de-

scribes the sources of data, sample selection, and the

method used to calculate residual quantities used in the

paper. How SSFR, dust attenuation, and SED shape

vary across the UV J diagram and the empirical calibra-

tion to estimate SSFR from UV J colors are shown in

Section 3. Section 4 examines the dust-corrected UV J

diagram and the clues that it offers to the accuracy of

the SED modeling assumptions and how star formation

proceeds in galaxies on the SFMS. Transition galaxies

are discussed in Section 5, and the relative numbers of

SF, transition, and quiescent galaxies as a function of

mass and redshift are presented in Section 6. Our sum-

mary and conclusions are given in Section 7. UV–optical

SFRs are compared to 24µm SFRs in the Appendix.

In this paper, all magnitudes are on the AB sys-

tem (Oke 1974), and the following cosmology has been

adopted: H0 = 70 km s−1 Mpc−1, Ωm = 0.3, and

ΩΛ = 0.7.

2. DATA AND SAMPLE SELECTION

This study makes use of the rich multi-wavelength and

ancillary datasets produced by the Cosmic Assembly

Near-Infrared Deep Extragalactic Legacy Survey (CAN-

DELS; Grogin et al. 2011; Koekemoer et al. 2011). Out

of the five fields targeted in the survey, we use data from

the first two available fields of the survey, the southern

field of the Great Observatories Origins Deep Survey

(GOODS-S, Giavalisco et al. 2004) and the UKIDSS

Ultra-Deep Survey (UDS, Lawrence et al. 2007). The

data can be retrieved from the Rainbow database (Barro

et al. 2011), a central repository of CANDELS-related

data that can be accessed via a web-based interface.1

Below, we summarize the catalogs as well as our sample

selection criteria.

1 The Rainbow database can be accessed at
http://rainbowx.fis.ucm.es.

2.1. Multi-wavelength Photometric Catalogs

Multi-wavelength photometric catalogs exist for both

GOODS-S (Guo et al. 2013) and UDS (Galametz et al.

2013), and the reader is referred to the cited papers for

more details on source identification and measurement.

Briefly, for both fields, the catalogs were constructed

from a combination of ground- and space-based obser-

vations, spanning the U -band through to 8µm. Objects

were selected from the HST/WFC3 F160W (H-band;

1.6µm) images and cross-matched to the other datasets.

Consistent multi-wavelength photometry was measured

using TFIT (Laidler et al. 2007).

2.2. Redshifts and Rest-frame Photometry

The redshifts used in this study include a combination

of broadband photometric, moderate-resolution spectro-

scopic, and grism redshifts. Our first choice, when possi-

ble, is to use reliable-quality spectroscopic redshifts from

the literature, which are available for both GOODS-

S and UDS, or redshifts based on HST/WFC3 grism

spectroscopy (for GOODS-S only; Morris et al. 2015).

Photometric redshifts were taken from the catalog of

Dahlen et al. (2013), which provides median values of

z based on SED fitting outputs from 11 different meth-

ods. In all, spectroscopic redshifts were used for 22.3%

of our final sample, grism redshifts for 5.1%, and pho-

tometric redshifts for 72.6%. The consistency among all

three redshift sources has been previously demonstrated

(Dahlen et al. 2013; Morris et al. 2015). Rest-frame

magnitudes in various standard filters, from FUV to K,

were computed from the redshifts and multi-wavelength

observations (D. Kocevski et al., in preparation) using

the EAZY code (Brammer et al. 2008), which fits a set

of galaxy SED templates to the observed photometry.

Uncertainties for a given rest-frame magnitude were es-
timated by combining in quadrature the flux error in the

nearest observed-frame bandpass with the template mis-

match error determined by Brammer et al. (2008, their

Figure 3).

2.3. Stellar Masses and Dust Attenuation

The stellar masses, M∗, and the visual attenuation,

AV , used here were derived from SED fitting proce-

dures applied to the NUV–NIR photometry. Recently,

the CANDELS collaboration released a catalog of “of-

ficial” stellar masses for the GOODS-S and UDS fields

that combine the results from ten separate SED fitting

methods (Santini et al. 2015). These median masses

are more robust than any individual mass determina-

tion, as they average over variations in the assumptions

used in each method (e.g., star-formation histories, dust

prescription, and metallicity). A Chabrier (2003) initial
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mass function (IMF) is assumed. The typical formal un-

certainty in the median stellar masses is ∼ 0.1 dex, based

on the scatter of the methods. A detailed assessment of

the methods used to derive stellar masses is presented

by Mobasher et al. (2015).

To ensure more robust values of AV , we combined re-

sults from five methods (labeled 2aτ , 2dτ , 12a, 13aτ , and

14aτ by Santini et al. 2015) and computed the median

AV . The methods were chosen based on their similar

simplifying assumptions (τ -models and the Calzetti dust

law applied as a foreground screen). The typical formal

uncertainty in the median AV is ∼ 0.1 mag based on the

scatter of the methods.

2.4. Structural Parameters

Galaxy structural parameters, as measured by GAL-

FIT (Peng et al. 2002), are available for all CANDELS

galaxies. Details on the measurement procedure and

catalog construction were presented by van der Wel

et al. (2012). Briefly, GALFIT was applied to the

HST/WFC3 F160W (H-band) images. Each galaxy was

fit with a single-Sérsic model, and the best-fitting Sérsic

index, semi-major axis (SMA), ellipticity, axis ratio, and

position angle were computed along with uncertainty es-

timates. The typical uncertainty in these quantities is

. 10% for galaxies in our sample (van der Wel et al.

2012). In this work, we use the effective radius along

the major axis (i.e., SMA). SMA is used as the indicator

of galaxy size, rather than circularized effective radius,

Reff , because the latter depends on the axis ratio b/a

(Reff ≡
√
b/a × SMA), while SMA is a more faithful

indicator of intrinsic size for inclined disks.

Because we used GALFIT measurements based only

on the H-band images, which correspond to different

rest-frame wavelengths as a function of redshift, our

structural parameters may be affected by color evolu-

tion. However, this and future papers are primarily

concerned with relative values of SMA for galaxies in

narrow bins of mass and redshift. Therefore we need

not correct for color evolution. Corrections are likely to

be small. van der Wel et al. (2014) offered corrections as

a function of M∗ and z to standardize observed galaxy

sizes to V -band. For a SF galaxy with redshift between

1 < z < 2, the correction is . 10%.

2.5. Mid- and Far-infrared Data

Infrared (IR) observations from Spitzer/MIPS 24µm

are available for both fields as part of the FIDEL sur-

vey (Pérez-González et al. 2008a). In addition, Her-

schel observations of GOODS-S were taken as part of the

GOODS-Herschel (Elbaz et al. 2011), HerMES (Oliver

et al. 2012), and PEP (Magnelli et al. 2013) surveys,

while Herschel data for UDS were obtained as part of the

CANDELS-Herschel campaign (Inami et al., in prepa-

ration). The MIPS and Herschel data were re-reduced

by Rawle et al. (2016), merging all available data in

the archive. Reductions were compared to GOODS-

Herschel and PEP public catalogs, and images and

fluxes are similar. For UDS there is no public release to

compare to. Catalogs for MIPS were created with direct

detections in several passes, using a PSF-fitting algo-

rithm (Pérez-González et al. 2005). The Herschel bands

used a prior-based algorithm (using positions from MIPS

and IRAC) including deletion of non-resolved neighbors

(a difference with the PEP and GOODS-Herschel cata-

logs). Fluxes were measured with a PSF-fitting method,

as explained by Pérez-González et al. (2010). This

gave individual catalogs in the five Herschel bands plus

70µm in GOODS-S. Merged PACS and SPIRE cata-

logs were then produced as explained by Rawle et al.

(2016), assigning to each PACS or SPIRE source the

coordinates of its most probable IRAC/MIPS counter-

part. Altogether, we have complete wavelength cover-

age at Spitzer/MIPS 24µm and Herschel PACS 100 and

160µm and SPIRE 250, 350, and 500µm.

MIPS 24µm sources will prove to be our major source

of IR fluxes because they are available for the largest

number of galaxies. In GOODS-S, the typical rms un-

certainty is 4µJy, and the faintest sources are 20µJy,

making them 5-σ detections. In UDS, the typical rms

uncertainty is 14µJy and the faintest sources are 50µJy,

making them 3.6-σ detections. Source detection is lim-

ited by confusion at the faintest levels.

The far-IR merged catalogs were cross-correlated with

the CANDELS optical–IRAC catalog (G. Barro, private

communication) using a 2′′ search radius for MIPS and

PACS. The large radius meant that several CANDELS

sources were often seen within the search region, and

the one with smallest projected distance was selected as

the counterpart, not the brightest IRAC 8µm source.

2.6. Star-formation Rates

The UV–optical SFRs used in this work do not come

directly from the SED fitting results (Santini et al.

2015) but were rather derived from the rest-frame near-

ultraviolet (NUV; λ ≈ 2800 Å) luminosities after cor-

recting for dust using AV from the Santini et al. (2015)

SED fits. We originally preferred this approach because

of its simplicity, more direct relation to the observed

SED, and less dependence (we thought) on the assumed

star-formation history. However, comparison to the San-

tini results shows virtually no differences, and so our

SSFR values are effectively the same as standard SED-

fitting values using τ -models and a Calzetti et al. (2000)



6 FANG ET AL.

foreground screen. We will therefore often refer to the

two methods interchangeably as “UV–optical SED fit-

ting”. The UV absorption assumed at λ ≈ 2800 Å is

ANUV = 1.8AV . After correcting the NUV luminosity

by this, we converted the NUV luminosity to SFR using

the Kennicutt & Evans (2012) calibration:

SFRUV,corr [M� yr−1] = 2.59 × 10−10LNUV,corr [L�],

(1)

where the calibration constant assumes a Kroupa (2001)

IMF (essentially identical to the Chabrier IMF used by

Santini et al. (2015)) and LNUV,corr ≡ νLν(2800 Å) ×
100.4ANUV .

The above UV–optical rates form the backbone of SS-

FRs used in this paper, but SSFRs based on adding raw

UV and IR luminosities are also considered. Herschel

data are far too sparse to make a comparison at high

redshift. Indeed, as shown in the Appendix, only 27% of

the sample has photometry from Spitzer and only 35% of

these objects are detected by Herschel. The only statis-

tically meaningful test we can make is with MIPS 24µm.

An extensive comparison is presented in the Appendix.

The main result is that SFRUV,corr is broadly consistent

with these UV+IR rates, so we adopt SFRUV,corr as our

fiducial measure of star-formation activity because it is

available for all galaxies.

Given the severe reduction in sample size (and conse-

quent biases that this may present), our analysis would

be essentially impossible if it were confined to the small

subset of IR-detected objects. We also eschew the com-

mon alternative of using a calibrated “ladder” of SFRs

ranging from far-IR to optical values (e.g., Wuyts et al.

2011), because the tests in the Appendix reveal small

but significant systematic differences, and we prefer the

homogeneity of having all SFR values on the same sys-

tem.

2.7. Sample Selection

The full GOODS-S and UDS catalogs contain 34,930

and 35,932 objects, respectively. The sample used in our

analysis is constructed by applying the following selec-

tion cuts to the catalogs:

1. Observed F160W magnitude H < 24.5, as recom-

mended by van der Wel et al. (2014) to ensure

robust GALFIT measurements

2. Photometry quality flag PhotFlag = 0 to exclude

spurious sources, e.g., star spikes and hot pixels,

as provided in the catalogs of Santini et al. (2015)

3. SExtractor CLASS STAR < 0.9 to reduce contami-

nation by stars

4. Redshifts within 0.2 < z < 2.5 and stellar masses

within 9.0 < logM∗/M� < 11.0 to maximize the

sample size while maintaining high mass complete-

ness for the majority of our final sample (e.g., Tal

et al. 2014)

5. Well-constrained GALFIT measurements (quality

flag = 0; van der Wel et al. 2012).

The most important cut in choosing the sample is

the H = 24.5 magnitude limit. In addition to en-

suring GALFIT accuracy (see above), we also depend

on having reliable photometric redshifts. Dahlen et al.

(2013) saw an increase in photometric redshift errors

from ∆z/(1+z) = 0.04 at H = 23.0, 0.045 at H = 24.0,

and 0.06 at H = 25.0. The fraction of outliers also in-

creased from 4% to 5% to 12% at these levels. Because

our goal of establishing reliable correlations at faint lev-

els requires high-quality data, we adopt H < 24.5 to

optimize both GALFIT measurements and photometric

redshifts.

The final sample contains 9,135 galaxies: 4,028 from

GOODS-S and 5,107 from UDS, or roughly one-eighth of

the original catalogs. The H < 24.5 cut is the most re-

strictive, followed by the mass and redshift limits. Star-

forming galaxies (based on UV J) make up 88% of the

final sample (8,060 objects). Table 1 details the selec-

tion criteria and the resulting sample sizes after each

cut. Of particular note is the GALFIT quality flag

cut, which excludes ≈ 13% of the selected objects lying

within our mass and redshift limits. Figure 1 presents a

UV J diagram showing color postage stamps of a sample

of galaxies with bad GALFIT values that have been ex-

cluded by this cut. Visual inspection shows that ∼ 75%

of these galaxies appear to suffer from contamination

from nearby objects, some fraction of which are mergers

and disturbed. The remaining ∼ 25% appear normal.

However, many of these latter objects have small angu-

lar sizes, which may preclude reliable fits (van der Wel

et al. 2012). In this paper, we are not in general using

absolute counts of objects, so the loss of these objects

per se is not an issue. We have also verified that the ex-

cluded GALFIT objects have almost precisely the same

SFR distribution in each mass–redshift bin as the re-

tained objects, so there is no bias created as a function

of SFR. Though losing these objects has little impact on

our study, future counting studies will need to take the

loss of these objects into account.

Aside from GALFIT, our sample selected down to

H = 24.5 is virtually 100% complete photometrically

but corresponds to different mass limits at different red-

shifts and colors. This is illustrated in Figure 2. Photo-

metric redshift errors remain below 10% down toH = 26
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Table 1. Sample Selection Cuts

Cut GOODS-S UDS Combined

Full catalog 34,930 (100%) 35,932 (100%) 70,862 (100%)

F160W< 24.5 9,904 (28.4%) 12,223 (34.0%) 22,127 (31.2%)

PhotFlag = 0 9,607 (27.5%) 11,392 (31.7%) 20,999 (29.6%)

CLASS STAR< 0.9 9,376 (26.8%) 11,090 (30.9%) 20,466 (28.9%)

0.2 < z < 2.5 7,656 (21.9%) 9,534 (26.5%) 17,190 (24.3%)

log M∗ < 11.0 7,585 (21.7%) 9,445 (26.3%) 17,030 (24.0%)

log M∗ > 9.0 4,683 (13.4%) 5,810 (16.2%) 10,493 (14.2%)

GALFIT flag = 0 4,028 (11.5%) 5,107 (14.2%) 9,135 (12.9%)

Star-forming 3,581 (10.3%) 4,479 (12.5%) 8,060 (11.4%)

Quiescent 447 (1.3%) 628 (1.7%) 1,075 (1.5%)

0.0 0.5 1.0 1.5 2.0
V−J

0.5

1.0

1.5

2.0

U
−

V

9.7 < log M* < 11.0     0.5 < z < 1.5

Figure 1. UV J diagram showing color thumbnail images,
3′′ on a side, of a random sample of galaxies with bad GAL-
FIT measurements (i.e., GALFIT quality flag ≥ 1; van der
Wel et al. 2012). The lines delineate the quenched region as
given by Williams et al. (2009). Visual inspection of the im-
ages reveals that ∼ 75% of such galaxies are either disturbed
or contaminated by neighboring objects, while the remain-
ing ∼ 25% have no obvious problems aside from being small,
which may preclude reliable fits.

(Dahlen et al. 2013), which is good enough to show

which galaxies are removed by the H < 24.5 cut. The

sample contains nearly all except the reddest galaxies

above 109.5M� at z = 2.0 but is severely limited to just

the very bluest galaxies at 109M� at z = 2.5. Quan-

titatively, SF galaxies with V − J < 0.5 are 99% com-

plete at 109.5M� and 51% complete at 109M�, while

SF galaxies with 0.5 < V − J < 1.2 are 91% complete

at 109.5M� and 29% complete at 109M�. SF galax-

ies with V − J > 1.2 are only 43% (13%) complete at

109.5 (109)M�. The small clump of quiescent galaxies

below H = 26 appears dubious (likely from photomet-

ric errors), but all other quiescents are captured except

for a smattering near ∼ 109.5−10M�. In particular, the

general truncation of quiescents below 1010M� appears

real rather than a result of our magnitude cut.

To summarize, our sample includes all SF galaxies in

most bins but is . 50% complete for M∗ < 109.5M�
and z & 2. Red galaxies above 1010M� are captured

everywhere, which includes nearly all of them. These

estimates are consistent with the completeness limits

quoted by van der Wel et al. (2012).

2.8. Residuals from the SSFR–Mass and Size–Mass

Relations

Some of our parameters (e.g., SSFR, SMA) show

strong trends with stellar mass and/or redshift. For our

analysis, we “divide out” these trends and use quanti-

ties that are normalized to the typical galaxy at a given

mass and redshift. In particular, we calculate residu-

als in SSFR and SMA relative to the SSFR–mass and

size–mass relations.

Figure 3 plots the SSFR–mass relation for galaxies in

our five adopted redshift bins, using the dust-corrected

SSFRs, SSFRUV,corr, described in Section 2.6. The dis-

tributions of points in Figure 3 clearly trace out the

SFMS at these redshifts (e.g., Daddi et al. 2007; Noeske

et al. 2007; Salim et al. 2007; Whitaker et al. 2012a),
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Figure 2. Apparent H magnitude vs. stellar mass M∗ in the
highest redshift bin z = 2.0 − 2.5. The sample magnitude
limit at H = 24.5 is shown (dashed line). Quiescent galaxies
(which are selected using UV J , see Figure 5) are the red
points. Filled and open circles are at z = 2.0 − 2.25 and
z = 2.25 − 2.5, respectively. SF galaxies are grey. Their
vertical width reflects their colors due to dust reddening,
with dustier galaxies trending toward fainter H magnitudes.
The SF sample at this redshift is strongly biased to bluer
galaxies, and dust-reddened galaxies with V − J > 1.2 and
M∗ < 1010M� are largely lost. Nearly all quiescents are
captured except for a handful just below the magnitude limit
at 109.5−10M� (the clump at H & 26 is dubious).

while the “green valley” appears as the tail of objects

below the SFMS (abbreviated because only galaxies de-

fined as SF are used). Linear fits were made after exclud-

ing outliers, as follows. An initial fit to all SF galaxies

was made, then objects greater than 1.5σ away from the

fit were excluded. A second fit was made on this pruned

sample, with a new estimate of σ, and galaxies greater

than 1.5σ away were removed. A third fit was made us-

ing this final sample and adopted as the final fit. The

parameters of the fits are provided in Table 2. We opt

for this approach in order to obtain relations that pass

reasonably close to the highest-density ridge line of the

SFMS.

After the fits were in hand, vertical offsets from the

relations were calculated for galaxies in each redshift

bin. These residuals are denoted ∆ log SSFRUV,corr with

galaxies lying above (below) the best-fit relation defined

to have positive (negative) residuals. ∆ log SSFRUV,corr

is used later to quantify the relative star-formation ac-

tivity for galaxies in a given mass and redshift bin.

While the fits include galaxies outside the nominal mass

range of the sample, our use of relative quantities at

fixed mass and redshift means that our results are gen-
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Figure 3. SSFRUV,corr vs. stellar mass in the five redshift
bins used in this study. Only UV J-defined SF galaxies are
shown (see Figure 5). In each panel, the red line indicates
the best-fit linear relation to galaxies located on the ridge
line of the SFMS (see Table 2 for fit parameters). The fits
were performed by iteratively excluding outlying points (see
text). Residuals from the fit, denoted ∆ log SSFRUV,corr, are
used later to quantify the relative star-formation activity for
galaxies in a given mass and redshift bin.

erally insensitive to the exact slopes or zero points of

the fits.

A slightly altered fitting procedure was used to cal-

culate the size–mass relation for SF galaxies. Outliers

were iteratively removed as above, but transition galax-

ies with ∆ log SSFRUV,corr< −0.45 dex were also re-

moved. These prove to be smaller than galaxies on the

main sequence (see Figure 17) and therefore need to be

excluded. Figure 4 shows the resulting size–mass rela-

tion for the retained sample. Fit parameters are given

in Table 3. Our slopes are systematically shallower by

∼ 0.05 − 0.1 dex compared to the fits of van der Wel

et al. (2014). These discrepancies do not affect our re-
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Table 2. Parameters of SSFR–Mass Fits

Redshift Range Slope a Zeropoint b

0.2 < z < 0.5 −0.009 −9.296

0.5 < z < 1.0 −0.063 −8.987

1.0 < z < 1.5 −0.184 −8.860

1.5 < z < 2.0 −0.255 −8.748

2.0 < z < 2.5 −0.311 −8.714

Note—The best-fit linear relations are of
the form log SSFR = a(logM∗ − 10) + b,
with SSFR in yr−1 and M∗ in M� and
were determined after excluding outliers.

Table 3. Parameters of SMA–Mass Fits

Redshift Range Slope a Zeropoint b

0.2 < z < 0.5 0.192 0.599

0.5 < z < 1.0 0.155 0.548

1.0 < z < 1.5 0.136 0.497

1.5 < z < 2.0 0.121 0.472

2.0 < z < 2.5 0.141 0.394

Note—The best-fit linear relations are of
the form log SMA = a(logM∗ − 10) + b,
with SMA in kpc and M∗ in M� and were
determined after excluding outliers and
transition galaxies (∆ log SSFRUV,corr<
−0.45 dex).

sults because we are concerned only with relative size

differences at fixed mass and redshift. Including galax-

ies outside the mass range of the sample would also not

affect our conclusions for the same reason.

2.9. Sources of Uncertainties in SED-Derived

Quantities

Finally, various sources of uncertainties in the CAN-

DELS SED-fitting parameters should be considered. Ac-

cording to Mobasher et al. (2015), the rms uncertainty

in relative stellar masses (which are of primary interest

here) comes mainly from the age–dust degeneracy and

is about 0.2 dex on average (their Table 9). The CAN-

DELS AV value determines the dust correction to L2800

and therefore affects our measured SFR. AV depends on

three assumptions: (1) that galaxy stellar populations

0.4
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Figure 4. Galaxy semi-major axis (SMA) vs. stellar mass
in the five redshift bins used in this study. Solid red lines
indicate the best-fit linear relation when outliers as well as
transition galaxies (∆ log SSFRUV,corr< −0.45 dex) are ex-
cluded (see Table 3 for fit parameters). The points plotted
are the surviving points used to calculate the final relations.
Residuals from the fit, denoted ∆ log SMA, are used later to
characterize the relative sizes of galaxies in a given mass and
redshift bin.

are described by single τ -models, (2) that all stars suf-

fer the same amount of dust absorption and reddening

(foreground screen), and (3) that the reddening curve is

well described by a Calzetti law. With regard to (1), it

turns out that τ -models, so often assumed in SED fit-

ting, are extreme in having very blue and narrow values

of V −J , which has the effect of both increasing and nar-

rowing the derived values of AV . Other star-formation

histories (such as composite models with old and young

stars) would place populations to the right of τ -models

in UV J and yield both lower AV by a few tenths of a

magnitude and lower SSFR by a few tenths of a dex

(Wang et al. 2017).

The Calzetti law may also not be universal. Salmon

et al. (2016) found a steeper reddening vector for heavily

reddened galaxies. Applying the Salmon curve produces
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a difference in dust-corrected CSED (defined in Section

3) of −0.1 mag for AV = 2 mag, resulting in SSFR that

is about 0.1 dex higher than we obtain. Kriek & Conroy

(2013) found a different form of the reddening curve in

certain galaxy spectral classes. Their corrections would

decrease our SSFRs by ∼ 0.25 dex on average and add

additional rms scatter of ∼ 0.24 dex in quadrature to our

error bars. The effect comes principally from reducing

the reddening at 2800 Å, not from changing the stellar

populations.

In further support of our AV values, Forrest et al.

(2016) calculated the UV slope β, infrared excess, and

AV using UV–optical SED fitting for z = 1 − 3 galax-

ies. They found tight relations among all three dust

estimates and claimed a close relation between dust and

V −J , in agreement with our results. Finally, Figure 22

in the Appendix plots AV vs. the ratio of SSFRUV+IR

to the uncorrected UV rate, SSFRUV. If AV is correctly

determined, the two should agree perfectly, and it is re-

assuring to see a strong correlation, albeit with some

systematic offsets of order 0.25 mag that merit further

investigation.

However, the real concern is not errors in AV per

se but the impacts they could have on SSFRUV,corr.

Of prime interest in future work is the accuracy of

the residual ∆ log SSFRUV,corr about the SFMS. This

is tested independently of AV in the Appendix by com-

paring to residual ∆ log SSFRUV+IR from MIPS 24µm.

A total rms scatter is found of 0.24 dex, which, if as-

signed equally to both quantities, implies an rms error

in ∆ log SSFRUV,corr of 0.17 dex. In addition, system-

atic zero point differences of order 0.2 dex appear on the

main sequence that vary with redshift. However, since

relative values of SSFR on the MS ridgeline are pre-

served, such errors do not affect our conclusions, at least

not for main sequence galaxies. Errors may be larger for

transition and quenched galaxies, as mentioned in the

Appendix, but these objects are not the major focus of

this paper.

3. SYSTEMATIC TRENDS IN THE UV J DIAGRAM

Figure 5 shows the rest-frame UV J diagram for all

galaxies in the final sample. Most of our sample lies

within the SF region. The locus of SF galaxies in Figure

5 is not a line but is rather extended in two directions,

having one long axis and one short axis crosswise to

it. As is known, these two coordinates can be identified

with two important parameters of galaxies, namely AV
and SSFR.

To further quantify these relationships, we define ro-

tated coordinate axes, hereafter SSED and CSED, that

are parallel and perpendicular to the SF sequence, re-

0.0 0.5 1.0 1.5 2.0 2.5
V−J

0.0

0.5

1.0

1.5

2.0

2.5

U
−

V
S SED

C SED

Quiescent

Star-forming

9.0 < log M* < 11.0     0.2 < z < 2.5

Figure 5. Rest-frame UV J diagram for all 9,135 galaxies
in the final sample (9.0 < logM∗/M� < 11.0 and 0.2 <
z < 2.5). The solid black lines separate quiescent and SF
galaxies, according to the definition of Williams et al. (2009)
for z = 1 − 2. The set of axes in the lower-right corner
indicates the rotated coordinates, SSED and CSED, that are
used to facilitate our analysis. The dashed line indicates the
best-fit relation to the SF galaxies used to define SSED and
CSED.

spectively, as shown in Figure 5. To determine the ori-

entation, all the SF galaxies in Figure 5 were first fit

with a linear relation (U − V vs. V − J), and then the

slope of this line is used to define

SSED = (V − J) cos θ + (U − V ) sin θ (2)

= 0.82(V − J) + 0.57(U − V ) (3)

CSED = (U − V ) cos θ − (V − J) sin θ (4)

= 0.82(U − V ) − 0.57(V − J), (5)

where θ = 34.8◦ is the inverse tangent of the slope of

the best-fit line. The naming convention of these new

coordinates reflects the fact that SSED and CSED are like

principal components: SSED measures the net slope of

the spectrum from U to J while CSED is approximately

the curvature, given by the slope difference above and

below the 4000 Å break.

A feature of our analysis is dividing the sample into

narrow bins of redshift and mass. By doing so, under-
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lying systematic trends emerge more clearly that might

remain hidden if all masses and redshifts are lumped to-

gether. Our basic visualization tool is a diagram show-

ing a grid of scatter plots, each corresponding to a bin of

redshift and stellar mass. The grid is divided into four,

0.5-dex-wide mass bins between 9.0 < logM∗/M� <

11.0 and five redshift bins between 0.2 < z < 2.5. By

presenting all scatter plots in this master coordinate sys-

tem, one can more easily spot evolutionary trends as a

function of redshift and/or mass.

The grid system is also a convenient way to connect

galaxies in a given scatter plot with their progenitors

and descendants. To illustrate this, Figure 6 shows a

sample grid diagram of scatter plots overlaid with stellar

mass growth tracks based on estimates of how galaxies

grow in mass with time (Moster et al. 2013; Papovich

et al. 2015). Scatter plots along a given trajectory then

represent the evolutionary states of galaxies of the same

final mass at different times.

Variations in the steepness of the mass-growth trajec-

tories reflect the differing growth rates of low-mass vs.

high-mass galaxies after z = 2.5 (e.g., Behroozi et al.

2013; Moster et al. 2013). High-mass galaxies accumu-

late their stellar mass earlier than low-mass galaxies, a

phenomenon loosely termed “downsizing” (Cowie et al.

1996). This is evident as the steeper trajectories of mas-

sive galaxies in Figure 6, which signify little mass growth

at late times. We see other manifestations of such mass-

accelerated evolution throughout this work.2 However,

galaxies move upward and to the right as they grow in

mass, and the general trend is that scatter plots in the

lower-left corner of the grid evolve into scatter plots in

the upper right corner.

3.1. A (Universal) Relation between CSED and SSFR

Figure 7 shows the UV J evolution of SF galaxies in

the grid diagram from z = 2.5 to z = 0.2. Inspection of

the figure reveals several trends:

1. The mean location of the SF sequence shifts to-

ward larger CSED (toward the upper left) with

increasing galaxy mass and cosmic time. These

shifts are accompanied by a fall in SSFR, suggest-

ing that CSED is closely related to SSFR.

2. Galaxies progressively fill in the dusty region of

the SF sequence, toward larger SSED (and redder

2 Because “downsizing” has been applied in many different con-
texts, some far removed from the original usage in Cowie et al.
(1996), we prefer the term “mass-accelerated evolution” to express
the fact that more massive galaxies appear to evolve through their
life cycles faster than smaller galaxies, and therefore that many
qualities appear first in massive galaxies and later in smaller ones.

1010 M☉ today

1010.5 M☉ today 1010.7 M☉ today
(Milky Way)

1011 M☉ today
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Figure 6. Scatter plots of galaxies in narrow mass and red-
shift bins arranged in a master grid of mass vs. redshift to
illustrate the evolution of galaxy properties. The variables in
the scatter plots are arbitrary – they can be UV J diagrams
or any pair of X,Y variables; here they are left empty. Su-
perposed on the scatter plot grid is a separate (and invisible)
mass–redshift coordinate system scaled to match the mass–
redshift axes of the grid. Mass growth tracks of galaxies are
plotted in this separate coordinate system, illustrating how
galaxies move through the mass–redshift grid as they evolve.
Four representative tracks are shown, labeled by their stellar
masses at z = 0. The vertical positions of the points are the
middles of the redshift intervals. The horizontal positions as-
sume that the vertical edges of each panel correspond to the
mass limits of each bin. Scatter plots along a given growth
track are progenitors and descendants of one another. Galax-
ies generally evolve diagonally upwards through the grid to
higher masses at later times. The Milky Way track is from
Papovich et al. (2015), while the others are from Moster et al.
(2013).

V − J), as they evolve. This is consistent with

their having a higher dust content at late times

and in more massive galaxies (e.g., Whitaker et al.

2012b).

3. The buildup of objects in the quiescent region is

clearly evident at all masses; moreover, quiescent

objects appear earlier at higher masses.

Each of the evolutionary trends enumerated above

exhibits mass-accelerated evolution. This is evident

by choosing a mass–redshift bin (e.g., log M∗/M� =

10.0−10.5 and z = 1.5−2.0) and visually identifying the

corresponding bin at smaller mass that best matches it.
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Figure 7. Rest-frame UV J diagram, divided into narrow stellar mass and redshift bins. Points are color-coded by the dust-
corrected, UV-based SSFR, SSFRUV,corr. The arrow is the Calzetti reddening vector for ∆AV = 1 mag. The rotated vectors at
upper right show the rotated coordinates, CSED and SSED. Crosses indicate the median error bars in U − V and V − J for SF
galaxies. The SF sequence shifts to redder colors as age and dust content increase. The quiescent population is seen to form
first at higher mass. The shift upwards in U − V (and CSED) is due to falling SSFRs with time, while the shift to redder V − J
is due to more dust. Moreover, a clear gradient in SSFRUV,corr, running nearly parallel to CSED, is seen in all panels except the
bottom two with log M∗/M� < 10.0 and z > 2.
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Invariably one finds the lower-mass bin at later redshift

(i.e., log M∗/M� ≈ 9.5 − 10.0 and z ≈ 0.5 − 1.0), con-

firming that higher-mass galaxies evolve more quickly.

We conclude that not only the rate of quenching but

also the SSFR and specific rate of dust production are

both subject to mass-accelerated evolution. Dust pro-

duction is naturally connected to star formation because

more dust is generated as stellar nucleosynthesis pro-

duces more metals. But it is interesting that dust con-

tent, as evidenced by mean V − J , seems to vary more

strongly with mass than with redshift compared to the

other two parameters. The dust content of galaxies is

examined further in Figure 11 and in future papers.

Another striking feature seen in nearly every panel

of Figure 7 is the presence of a gradient in SSFRUV,corr

running parallel to CSED. This gradient is evident as the

pattern of colored stripes, each stripe representing a dif-

ferent value of SSFRUV,corr. Such a gradient was previ-

ously noted by Williams et al. (2010); Patel et al. (2011);

Arnouts et al. (2013), and Straatman et al. (2016). The

fact that a gradient is seen in every bin suggests that

SSFRUV,corr is well-correlated with CSED across a large

range in mass and redshift.

To more easily visualize the stripes, Figure 8 plots

a modified UV J diagram that uses the rotated coordi-

nates CSED and SSED. The rotated coordinates do a

fairly good job of capturing the tilt of the SF sequence

in UV J space, i.e., lines of constant SSFRUV,corr run

nearly horizontally in most panels. However, there is

a progressive difference between CSED and SSFRUV,corr

that is visible as a mild tilt in lines of constant SSFR.

The tilt increases towards higher redshift and lower

mass, culminating in the two leftmost bottom panels

(M∗ < 1010M� and 2.0 < z < 2.5), where the ro-

tated coordinates are significantly misaligned relative

to the stripes of constant SSFRUV,corr. Tests indicate

that photometric errors are too small to cause this dis-

crepancy, but a factor may be strong [O III] emission in

the V filter at the lowest masses and highest redshifts.

These two panels are not used in the calibration below.

Aside from the lower-left two bins, the striped

SSFRUV,corr pattern looks nearly fixed as a function

of mass and redshift; i.e., at fixed CSED, the same value

of SSFRUV,corr is found independent of M∗ and z. To

investigate this, Figure 9 presents two versions of the

“rotated” UV J diagram. The gradient in SSFRUV,corr

is clearly seen, even when galaxies over a wide range in

mass and redshift are included. This combined with the

small dispersion supports the hypothesis that the gra-

dient is basically a fixed pattern “embedded” in UV J

space through which galaxies move as they evolve.

Figure 8. Modified UV J grid diagram using the rotated co-
ordinates CSED and SSED, divided into narrow stellar mass
and redshift bins. Points are color-coded by SSFRUV,corr.
In this parameter space, lines of constant SSFRUV,corr run
nearly parallel to the horizontal axis, SSED, though the rela-
tion is not perfect, as an increasing tilt is seen towards lower
mass and higher z. In the two leftmost bottom panels, the
rotated coordinates do not accurately describe these galaxies
(see Figure 7).

Finally, Figure 10 illustrates this even more directly.

Very little systematic dependence of the residuals on

either redshift or stellar mass is seen, indicating that

the relation, to first order, is independent of mass and

redshift. The dashed line roughly divides the sample

into SF and quiescent objects. A quadratic fit to the

data (obtained after excluding > 2σ outliers) is:

log SSFRUV,corr = −1.95C2
SED − 0.82CSED − 8.35, (6)

with SSFRUV,corr in yr−1. The 1σ vertical scatter about

the fit is 0.20 dex (after excluding > 2σ outliers). In-

cluding the two problematic bins would not change the

fit significantly.

Figure 10 indicates that the gradient in SSFRUV,corr

seen in the UV J diagram is a (nearly) fixed relation:

for SF galaxies, there is little systematic offset from the

backbone of the relation between galaxies of different

masses or redshifts. This tightness means that a galaxy’s

SSFR can be estimated to first order just by knowing

its location in the UV J diagram. In more detail, some
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Figure 9. Stacked diagrams using the rotated coordinates
CSED and SSED. The entire sample is plotted except galax-
ies with M∗ < 1010M� and 2.0 < z < 2.5 (see Figure 8).
Black contours are logarithmically spaced and indicate the
density of points. The colored 2D pixels show the median
value (top panel) and the 1σ dispersion (bottom panel) in
log SSFRUV,corr in each pixel. Only pixels containing ≥ 10
objects are plotted. The top panel shows that SSFRUV,corr is
correlated with CSED, while the bottom panel indicates that
the typical dispersion in log SSFRUV,corr in a pixel is gen-
erally . 0.25 dex. This small value suggests that the SSFR
gradient is a fixed pattern “embedded” in the UV J diagram,
through which galaxies move as they evolve.

systematic residuals are seen with mass and redshift,

which can be demonstrated quantitatively by including

mass and redshift as additional parameters in the fit:

log SSFRUV,corr = −1.81C2
SED − 0.91CSED (7)

−0.18 log M∗ + 0.094z − 6.83.

The mass term contributes more than the redshift term,

but both are subdominant in the fit compared to the

color terms. Moreover, including M∗ and z only de-

creases the scatter in log SSFRUV,corr by an additional

0.02 dex (to 0.18 dex) relative to Equation 6. (The final

scatter of 0.18 dex corresponds to a factor of 1.5.) Use

of either Equation 6 or 7 is thus a convenient way to

estimate SSFR when only UV J colors are available.

Finally, we call attention to the diffuse cloud of aber-

rant objects lying > 2σ below the mean relation at blue

values of CSED in Figure 10. Nearly all turn out to

have bluer-than-normal FUV continua (see Figure 14)

and return systematically low values of AV , which in

turn cause low SSFRUV,corr. We have examined their

photometric redshift uncertainties (68% confidence in-

tervals) and find that, while some of the most extreme

outliers have larger uncertainties, the rest have uncer-

tainties comparable to the main sample. These objects

are discussed further in Sections 3.4 and 4.

3.2. Previous Work on SSFR in the UV J Diagram

The first mention of SSFR stripes in UV J was by

Williams et al. (2010), who also used SFRs based on

UV–optical SED fitting.3 They lumped all masses

(log M∗/M� = 9.5 − 11.5) and all redshifts (z = 1 − 2)

together and did not test for stability of the pattern with

time and mass or calibrate it as a quantitative measure

of SSFR. Patel et al. (2011) analyzed a mixture of field

and cluster galaxies in the redshift range 0.6–0.9 using

similar techniques, and their conclusions regarding UV J

and SFR were similar. Patel et al. (2012) further noted

that the highly reddened end of the SF locus tends to

be dominated by galaxies with high inclinations, provid-

ing evidence for dust. Whitaker et al. (2012a) analyzed

the UV–optical SEDs of z = 0 − 2.5 galaxies from the

NEWFIRM survey (Whitaker et al. 2011) and obtained

similar stripes, albeit in stellar age, not SSFR.

The above studies all determined SFR from SED

fitting, which is highly influenced by the UV J col-

ors per se. A desirable check is whether independent,

IR-based SFR values give the same pattern. Arnouts

et al. (2013) analyzed the infrared excess, LIR/LUV, in

NUV−r vs. r − K and found that the vector NRK

(analogous to our SSED) can recover IR luminosity (in-

ferred from 24µm) with a scatter of 0.22–0.27 dex. They

also identified a vector running cross-wise to the long

axis of the SF distribution in NUV rK that is analo-

gous to CSED, but they did not present a quantitative

calibration of it versus SSFR.

The most recent work (Straatman et al. 2016) used

ground-based photometry from the ZFOURGE survey

augmented with Spitzer/MIPS 24µm data. This sam-

ple goes deeply to high redshift, and it is reassuring to

3 By “striped”, we mean that contours of constant SSFR are
parallel to SSED and that SSFR falls with increasing CSED.
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Figure 10. SSFRUV,corr vs. CSED for our sample (excluding
objects in the lowest-mass, highest-redshift bins, for which
CSED is not reliable; Figure 8). Galaxies are color-coded by
redshift (top panel) and stellar mass (bottom panel). The
gray dashed line roughly divides the sample into SF and qui-
escent objects. The black curve indicates the quadratic fit
to the data (Equation 6). The rms scatter in SSFRUV,corr

about the fit is 0.20 dex (after excluding 2σ outliers). In-
cluding M∗ and z in the fit reduces the scatter to 0.18 dex.
Points outlined in black are objects > 2σ below the relation
with CSED< 0.5. Most of these aberrant objects turn out
to have brighter-than-normal FUV spectra and are discussed
further in Sections 3.4 and 4.

see that prominent stripes are still seen in UV J using

these IR-based SSFRs. Interestingly, their stripes also

tend to fall apart beyond z ∼ 2, analogous to the two

low-M∗/high-z panels in Figure 7. This is further evi-

dence that the different distributions in these two pan-

els are real and are not caused by photometric errors.

Straatman et al. (2016) also provided a partial calibra-

tion of the diagram using a sideways coordinate similar

to CSED vs. SSFR, and the results agree with ours in

Equations 6 and 7 to within 0.1 dex at z = 1.25. How-

ever, their work treats only heavily reddened galaxies

(V − J > 1.0) whereas our calibration is valid for all

reddenings. Their redshift term is also roughly three

times larger than ours, which may reflect systematic

differences between SSFRUV,corr and SSFRUV+IR ver-

sus redshift. Such differences are discussed further in

the Appendix.

The net result of these several works is that the diag-

onal locus of SF galaxies in UV J (or NUV rK) always

shows finite width in SSFR, which must in turn reflect

the width of the SFMS (0.3 dex, Whitaker et al. 2012b).

The locus is therefore a map of SFMS residuals spread

out by different amounts by dust reddening, a point first

made by Patel et al. (2011). The scatter in CSED is a

clue to how galaxies evolve through the UV J diagram,

which we return to in Section 4.

3.3. Dust in the UV J Plane

Figure 11 replots the UV J grid diagram in Figure

7 but this time color-coding points by AV . The typi-

cal dust offset increases along the galaxy evolutionary

tracks in Figure 6. This signals a growth in dust in in-

dividual galaxies, likely due to a growth in interstellar

medium (ISM) metallicity with time (e.g., Reddy et al.

2010). Figure 11 may be the first time that a dust indi-

cator, in this case AV , is followed as a function of mass

and time long enough to see the growth of dust along ac-

tual evolutionary tracks. Closer inspection confirms the

conclusion in Section 3.1 that dust forms first in massive

galaxies at high redshift and forms in smaller galaxies at

later times, in agreement with previous work (e.g., Mar-

tis et al. 2016). This suggests that heavy element syn-

thesis is yet another example of mass-accelerated evolu-

tion in galaxies, in agreement with studies of the mass–

metallicity relation (e.g., Zahid et al. 2011; Henry et al.

2013a,b; Sanders et al. 2015), which always shows that

massive galaxies are more metal-rich at every redshift.

In each panel of Figure 11, the contours of equal

reddening are seen to run approximately vertically for

strongly SF galaxies. We show below in Figure 16 that

the vertical nature (and narrow width) of the iso-AV
contours is a consequence of our estimating dust by fit-

ting to τ -models (see Section 2.3). However, the point

here is that the SED-fitting procedure used by CAN-

DELS yields contours of iso-SSFR and iso-AV that are

not orthogonal: the former follow the reddening vector,

while the latter follow approximately constant V − J .

A similar trend between V − J and AV was observed
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Figure 11. Rest-frame UV J diagram, divided into narrow stellar mass and redshift bins. Points are color-coded by visual
attenuation AV . The arrow is the Calzetti reddening vector for ∆AV = 1 mag. Crosses indicate the median error bars in U −V
and V − J for SF galaxies. The overall attenuation for SF galaxies increases with mass and time, and dust is seen to form first
in massive galaxies (an example of mass-accelerated evolution). Contours of constant AV run nearly vertically, i.e., parallel to
V −J , except for a population of low-AV objects running along the top of the SF distribution, which are identified as transition
galaxies in Section 5. Quiescent galaxies have uniformly low attenuation.
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by Price et al. (2014), Forrest et al. (2016), and Martis

et al. (2016).

Also visible in Figure 11 is a collection of low-AV but

SF objects running along the top of the SF distribution

between the SFMS and the quiescent region. These low-

AV objects are identified in Section 5 with a population

of “transition galaxies” below the main sequence. As

discussed there, their small radii, low SSFRs, and low

AV are consistent with their losing ISM as star forma-

tion ends.

3.4. Rest-frame SEDs Across the UVJ Diagram

The small dispersion in SSFRUV,corr across the UV J

diagram (Figure 9) implies that galaxies with the same

UV J colors have similar SSFRs that are (nearly) in-

dependent of mass and redshift. Does this similarity

extend to their entire SEDs? To explore this question,

we study the SEDs, spanning the rest-frame far-UV to

the near-IR, of SF galaxies in small bins in the UV J

plane (see also Reddy et al. 2015). The rest-frame pho-

tometry is derived from EAZY (Section 2), and we use

magnitudes in the FUV, NUV, U , B, V , R, I, J , H,

and K bandpasses to construct the SEDs.

Figures 12 and 13 present a montage of SEDs for

a sampling of UV J bins for SF galaxies. The SEDs

get steeper with increasing SSED, which mainly reflects

the increased reddening due to dust (Figure 11). Sec-

ond, galaxies have lower redshift toward increasing CSED

(Figure 12), reflecting the aging of the overall stellar

populations with time. Third, the average mass in-

creases with SSED (Figure 13), consistent with increas-

ing dust content in more massive galaxies (e.g., Reddy

et al. 2010; Whitaker et al. 2012a). Moreover, the scatter

in SED shape (Figure 12) correlates mildly with z, par-

ticularly at redder SSED: the UV slope becomes steeper

toward lower redshift. This may be consistent with the

increase in dust content (and metallicity) in galaxies

with time. However, no residual trends are seen with

M∗ within the bins (Figure 13).

The broad conclusion from these figures is that the

overall dispersion in the SEDs at a given location in

UV J is generally small, and hence that the UV J col-

ors are a good predictor of the rest of the spectrum for

most galaxies. However, there is at least one aberrant

population, namely the low-lying points below the main

relation in Figure 10, which were mentioned in Section

3.1. Most of them turn out to have brighter FUV con-

tinua than average for their location in UV J . This is

shown explicitly in Figure 14, where their SEDs are plot-

ted in comparison to the average SED at that location in

UV J . The SED fitting process has returned low values

of AV for them (see Section 4), and thus low values of

SSFRUV,corr. Perhaps these objects have composite stel-

lar populations due to a recent small burst of star forma-

tion that is not well-matched by τ -models. Aside from

these objects, the observed FUV scatter seems compara-

ble to the error bars, though there is room to hide more

aberrant cases like the galaxies just discussed. Future

studies should look for further correlations that may be

hidden in the FUV residuals.

4. DUST-CORRECTED UV J DIAGRAM

The dispersion of SF galaxies in V − J is mainly due

to varying amounts of dust reddening (e.g., Wuyts et al.

2007; Patel et al. 2011, 2012). Indeed, the existence of

stripes in Figure 7 shows that galaxies with the same

SSFR can have different amounts of AV . To what ex-

tent, then, are the intrinsic, dust-free colors of SF galax-

ies similar? Because we have estimates of dust attenu-

ation (AV ), we can correct the observed colors and ex-

amine the resulting distributions in the UV J diagram.

Undoing the effect of dust will also help us to understand

how the methodology of using τ -models has shaped the

derived values of SSFR and AV .

To remove dust reddening, we take the measured AV
and apply the Calzetti et al. (2000) attenuation law

to determine the appropriate attenuation in U and J ,

i.e., AU = 1.5AV , AJ = 0.35AV . The resulting dust-

corrected UV J diagrams are shown in Figure 15. SF

galaxies populate a fairly narrow locus that extends di-

agonally upward, with SSFRUV,corr decreasing along the

sequence. Broadly speaking, the locus of dust-corrected

points conforms to the theoretical dust-free model at

all masses and redshifts. However, the scatter about

the model track is not zero, which could reflect intrinsic

variations in galaxy properties that are not adequately

captured by the SED fitting methods used thus far. In

particular, we highlight the aberrant galaxies from Fig-

ure 10 with black circles. As discussed earlier and high-

lighted in Figure 14, these objects have brighter FUV

continua than other galaxies of the same UV J colors.

They are discussed more below.

Initially, the model track runs nearly vertically in the

UV J diagram because at early ages, the amount of U -

band light (from young stars) falls more rapidly than

the redder light (from older stars) as the SFR decreases

with time. This agrees with the dust-corrected data: the

gradient in SSFRUV,corr is essentially vertical. After a

while, both U −V and V −J increase together, and the

track bends toward the upper right as it passes into the

quiescent region. Given that there is scatter in the data,

we consider how the model track changes if its param-

eters are adjusted. Figure 16 plots the dust-corrected

UV J diagram for galaxies with 10.0 < log M∗/M� <

10.5 in two redshift bins. Varying τ results in only slight
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Figure 12. Rest-frame SEDs (before dust correction) of SF galaxies from the same regions of the UV J diagram, color-coded by
redshift. Galaxies are divided into bins 0.1 mag wide in CSED and 0.2 mag wide in SSED, centered around the values indicated
in each panel; the number of objects in each bin is given. Galaxies in the same bin are predicted to have similar values of
SSFR and AV based on having similar SSED and CSED, and the observed uniformity of SEDs is consistent with this. Only a
subset of all bins are included. SEDs are in Fν , normalized at V . Points with error bars indicate the median uncertainties in
the rest-frame FUV fluxes in each bin; the observed FUV scatter is consistent with the error bars. U , V , and J passbands
are marked with arrows. SSED and CSED reflect the overall tilt and curvature (“convexity”) across these three filters. Dust
reddening causes a steepening of the SED from left to right as SSED increases. Increasing SSFR causes a decreasing convexity
from top to bottom as CSED decreases. Among the reddest SEDs (rightmost column), UV slopes steepen toward lower redshift,
consistent with aging stars and increasing dust with time.

differences in the shape of the model trajectories; what

changes most is the rate at which galaxies move along

the track.

Now suppose we adopt a delayed-τ model for the star-

formation history. If the rise time is short, a galaxy’s

colors would remain blue, and it would hover near the

t = 0 point in the trajectory. Then as the SFR declines,

the galaxy would trace the same path as a standard

τ -model. In other words, it is not easy to distinguish

between delayed-τ and normal τ -models from UV J col-

ors alone. More generally, UV J alone may not be able

to say much about a galaxy’s previous star-formation

history or its duration (τ value). In addition, it is ap-

parent from Figure 16 that variations in τ alone cannot

reproduce the scatter in the observed data.

We sound a final cautionary note about the assumed

star-formation histories. τ -models, though commonly

used, turn out to be extreme in yielding the bluest pos-

sible V −J values and thus the largest reddenings. Alter-

native star-formation histories tend to lie to the right of

the τ tracks. For example, constant star-formation mod-

els evolve along the reddening vector (Patel et al. 2011),

while mixtures of very old and very young stars also lie

to the right (Wang et al. 2017). With such models as

starting points, the derived AV can be much smaller. It

is wise to keep in mind that the generic τ -model assump-
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Figure 13. Identical to the SEDs in Figure 12 but now color-coded by stellar mass. SSED, and thus dust content, is strongly
correlated with stellar mass. No residual trend with mass is seen within a bin.

tion, so often made, is in fact extreme in the amounts

of reddening it yields.

Whereas the tracks were relatively insensitive to τ ,

metallicity has a much stronger effect on the location of

the tracks (Figure 16). In particular, model V −J colors

are reddened with increasing metallicity (line blanket-

ing). This means that V − J could, in principle, serve

as a metallicity indicator. However, dust reddening is

degenerate with metallicity, making the two effects hard

to disentangle without independent information.

The degeneracy between dust and metallicity leads

to two related issues when dust-correcting UV J col-

ors. First, the values of AV derived from SED fitting

depend on the chosen metallicity of the models. The

common assumption of solar metallicity means that AV
is overestimated for galaxies more metal-rich than this

and underestimated for more metal-poor galaxies. This

is important, for example, when interpreting AV values

for low-mass galaxies at high redshift, which presumably

have sub-solar metallicities (e.g., galaxies in the lower-

left panels of Figure 15).

The second issue relating to the dust–metallicity de-

generacy arises when averaging the outputs of several of

the CANDELS SED-fitting codes, as we have done to

obtain AV (actually the median value, see Section 2.3).

While most of the codes fix Z to solar, a few allow Z

to vary. This means that the “best-fit” templates for a

given galaxy may have different metallicities, depending

on the code, and, consequently, different values of AV .

Hence the median AV will be skewed higher or lower

than if all the codes used only solar-metallicity models.

This is important because the resulting dust-corrected

colors would show dispersion like that seen in the lower

panels of Figure 16, specifically, the plume of points ex-

tending toward redder dust-corrected V − J . (These

points are among those outlined in black in Figure 15.)

We have separately verified that the metallicities of these

objects, as inferred from the SED-fitting codes that al-

low Z to vary, are generally super-solar. Consequently,
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Figure 14. Rest-frame SEDs (before dust correction) of
the aberrant galaxies identified in Figure 10, in bins of SSED

and CSEDand color-coded by redshift. The black curve in
each panel is the mean SED for SF galaxies at the indicated
location in UV J space. In general, the aberrant galaxies have
elevated FUV fluxes relative to the overall SF population.
Objects in the top row have lower-than-average FUV fluxes,
consistent with their being transition (green valley) objects,
rather than SF galaxies.

the AV values from these same codes are smaller than

those that assume solar metallicity, driving the derived

median AV for these galaxies down. A possible expla-
nation for this is the fact that these aberrant galaxies

have bluer-than-normal FUV continua than other galax-

ies with the same UV J colors (Sections 3.1 and 3.4).

This would cause the fitting codes to return lower AV
values and possibly higher metallicities for those codes

that vary Z.

Finally, the morphology of the unreddened τ -model

tracks allows us to understand why the iso-AV contours

in Figure 11 are vertical. This is explained by the ar-

row in the lower-left panel of Figure 16, which applies

1.5 mag of AV reddening along the Calzetti vector to a

set of galaxies on the strongly SF portion of the solar-Z

τ -model tracks. Because this portion is nearly verti-

cal, the act of parallel translation creates a new set of

reddened galaxies that is also vertical. The SED-fitting

undoes the dust translation and brings a galaxy back to

an assumed unreddened stellar population model. It is

thus no wonder that the dereddened galaxies closely fol-

low solar-Z τ -models in most panels—it would be very

surprising had it been otherwise.

A final important point is the distribution of galaxies

along the τ -model tracks, specifically the U−V locations

of the bluest ones. As noted in Section 3.2, the scatter in

CSED at a given mass and redshift arises from the scatter

of galaxy residuals about the SFMS, which is observed to

be approximately ±0.3 dex rms (Whitaker et al. 2012a).

Because of this scatter, most mass/redshift bins contain

blue galaxies with U − V < 0.50. A galaxy’s age must

be < 0.8 Gyr for it to remain this blue, regardless of τ

(e.g., Figure 16 and Wang et al. 2017). But the age of

the Universe increases by 6 Gyr from z = 2.5 to z = 0.5.

Therefore, if all galaxies started out as blue τ -models at

z = 2.5, even the slowest-evolving objects should have

aged away into the redder regions of the UV J diagram

by z = 0.5, yet this is not seen. Nevertheless, there is

a strong net flow from blue to red as some galaxies peel

off the SFMS to enter the quiescent region.

These two features—weak average color evolution of

the blue cloud itself combined with a strong net flow

from the blue cloud to the red sequence—may perhaps

be reconciled by imagining continual modest fluctua-

tions in the SFR as long as galaxies remain on the main

sequence, followed by eventual quenching of star forma-

tion. Occasional upward fluctuations in SFR would con-

tinuously repopulate the blue end of the τ track. These

excursions are represented schematically by the vertical

double arrow in the lower-left panel of Figure 16. The

long SF period would then be followed by some (sepa-

rate) event that plucks galaxies out of the blue cloud and

directs them toward the quiescent region. A similar pic-

ture of galaxies bobbing up and down randomly about

a slowly falling SFMS ridge line has been advanced by
Tacchella et al. (2016). This picture has significant im-

plications for the structural properties of galaxies on the

SFMS and will be explored further in future papers.

5. TRANSITION GALAXIES

A population of galaxies is located in the SF region

of the UV J diagram but whose SSFRs lie well below

the main sequence (Figure 3). These transition objects

represent a bridge between SF and quiescent galaxies.

For any particular galaxy, it is not known whether it is

moving from the main sequence to the quiescent region

because its star formation is going out, or whether it

is moving backwards towards the main sequence due to

some “rejuvenation” process (e.g., Martin et al. 2007;

Fang et al. 2012; Salim et al. 2012). However, because

the net flow of galaxies is from SF to quiescent, the ma-
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Figure 15. Dust-corrected UV J diagram, divided into narrow stellar mass and redshift bins. Individual galaxies have been
corrected for AV . Points are color-coded by SSFRUV,corr. Error bars represent median uncertainties in the photometry and
the derived AV values. The magenta curve shows the evolutionary track for a dust-free, τ = 3 Gyr, solar-metallicity stellar
population model from Bruzual & Charlot (2003). Applying the dust correction shifts points blueward in both colors, resulting
in a narrow locus of points that roughly coincides with the stellar population model. Points outlined in black are the bright-FUV
aberrant galaxies that lie low in Figure 10. They account for nearly all the points that scatter to the right of the dust-free track,
due to their having low returned values of AV .
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Figure 16. Dust-corrected UV J diagram for galaxies with
10.0 < log M∗/M� < 10.5 in two redshift bins (gray points).
Error bars indicate median uncertainties in the colors for
SF galaxies in each bin. Various Bruzual & Charlot (2003)
stellar population models are plotted in each panel. Col-
ored curves in the left column are dust-free, solar metallicity
tracks with different values of τ . In the right column, the
tracks are dust-free, τ = 3 Gyr models of different metallici-
ties. Colored circles indicate an age of 3 Gyr (top row) and
1 Gyr (bottom row). The locations of the tracks are rather
insensitive to the star-formation timescale τ , but vary sig-
nificantly with metallicity. The arrow in the lower-left panel
illustrates 1.5 mag of AV reddening applied to strongly SF
galaxies on the τ track. The small double arrow schemati-
cally represents τ -models undergoing SFR fluctuations.

jority of these objects must be fading. At low redshift,

such objects are known to have properties distinct from

actively SF objects. In particular, their disks appear to

be fading as their bulges build up, and their visible-light

radii are consequently shrinking (Fang et al. 2013). At

higher redshifts, galaxies are observed to undergo simi-

lar transformations, though at a more rapid pace. Such

quenching is triggered by a compaction event that trans-

forms the galaxy into a compact “blue nugget” that then

turns into a quenched “red nugget” (Barro et al. 2014,

2017). In either case, quenching is associated with a

shrinkage in size (e.g., Pandya et al. 2017).

Figure 17 shows the relation between SSFR and size

for SF galaxies. Most objects lie on or close to the

SFMS, but a tail of low-SSFR objects is seen in most

panels. Moreover, these objects have smaller sizes and

Figure 17. ∆ log SSFRUV,corr vs. ∆ log SMA (semi-major
axis) for galaxies that lie within the SF region of the UV J
diagram, divided into narrow stellar mass and redshift bins.
Points are color-coded by the SED-derived visual attenua-
tion, AV . Red dashed lines show our criterion to select tran-
sition galaxies, ∆ log SSFRUV,corr< −0.45 dex. This value
was chosen by eye to best separate ridge-line main-sequence
galaxies from transition objects, which turn out to have low
AV and small radii.

lower dust attenuation on average than those on the

SFMS itself. Indeed, the average attenuation continues

to fall as SSFR declines, which suggests that the de-

cline in SFR is due to the loss of ISM, consistent with

fading galaxies. Our results are consistent with Patel

et al. (2011) and Cava et al. (2015), who found a de-

cline in ISM tracers such as MIPS 24µm and [O II] in

and near the quenching boundary for galaxies at z ∼ 1.

Forrest et al. (2016) also showed that objects near the

quenching boundary exhibit lower AV and SSFR, as we

find. A similar trend between AV and SFR is also seen in

nearby massive galaxies (Zahid et al. 2013). The relative

number of transition galaxies increases with stellar mass

and with decreasing redshift, consistent with the over-

all growth of the quiescent population with cosmic time

(e.g., Bell et al. 2004; Faber et al. 2007; Pérez-González

et al. 2008b; Muzzin et al. 2013).

Having identified transition galaxies, we show in Fig-

ure 18 where they lie in the UV J diagram. By construc-

tion, these galaxies are chosen to have low SSFRs, and
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therefore we expect to find them inside the SF region but

close to the quiescent boundary. Most are indeed found

there. The scatter of transition galaxies further from

the boundary at higher redshift could be due to larger

photometric errors rather than to real evolution among

the transition galaxy population. In addition, some of

the scatter is due to the aberrant objects previously

identified as having bluer-than-normal FUV continua

and lower SSFRUV,corr than other galaxies with similar

UV J colors. As a result, they would be misidentified

as transition galaxies based on their (abnormally low)

∆ log SSFRUV,corr. Pandya et al. (2017) have identified

transition galaxies in CANDELS data using similar cri-

teria to ours. They likewise found smaller radii, higher

mass densities, as well as higher Sérsic indices, also con-

sistent with disk fading. They note, as we do, that such

galaxies’ UV J colors seem to represent a bridge between

SF and quiescent galaxies.4

In summary, if most transition galaxies are fading,

their locations represent the quenching paths taken by

galaxies between the SF and quiescent regions, and Fig-

ure 18 suggests that these paths are mass-dependent.

The most massive galaxies appear to move into the qui-

escent region from right to left horizontally, consistent

with the simultaneous shutting down of star formation

and loss of interstellar dust (Barro et al. 2014). The

least massive galaxies move upward and to the right,

roughly parallel to the unreddened 3-Gyr τ -model track,

which is consistent with the lower dust content of low-

mass galaxies. Intermediate-mass galaxies have transi-

tion paths that lie between these extremes.

6. BLUE CLOUD, GREEN VALLEY, AND RED

SEQUENCE FRACTIONS VERSUS MASS AND

REDSHIFT

The UV J diagram provides valuable information on

the changing frequencies of galaxies in various stages of

SF activity due to evolutionary effects. We therefore

close this overview of the UV J diagram by examining

how the populations of blue, SF galaxies and red, qui-

escent objects evolve as a function of time and mass.

The “blue cloud” was originally defined as a relative

overdensity in color–magnitude diagrams consisting of

strongly SF galaxies on the SFMS. Quiescent, quenched

galaxies populate another overdensity called the “red

sequence”. And the transition galaxies identified in Sec-

tion 5 are often called “green valley” galaxies, so named

4 On the other hand, within a given mass–redshift bin, the tran-
sition galaxies are in the process of fading whereas the quiescent
galaxies faded at earlier times and the SF galaxies will fade at
later times. This should be taken into account when comparing
transition galaxies to quiescent and SF galaxies at the same epoch.

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0 1 2
0.0

0.5

1.0

1.5

2.0

0 1 2 0 1 2 0 1 2

V−J

U
−

V

9.0 < log M* < 9.5 9.5 < log M* < 10.0 10.0 < log M* < 10.5 10.5 < log M* < 11.0

0.2 < z < 0.5
0.5 < z < 1.0

1.0 < z < 1.5
1.5 < z < 2.0

2.0 < z < 2.5

Figure 18. Rest-frame UV J diagram, divided into narrow
stellar mass and redshift bins. Only transition (green points)
and quiescent (red points) galaxies are shown. Shaded pan-
els indicate bins where the transition population is probably
strongly contaminated by SFMS galaxies that are scattered
into the transition region by photometric errors or by strong
emission-line contamination of the broad-band photometry.
Error bars indicate median uncertainties in the rest-frame
colors for transition galaxies. The locations of transition
galaxies vary as a function of mass in a way that suggests
that the typical quenching path in UV J is modulated by the
disappearance of dust. Many of the most deviant transition
galaxies turn out to be members of the aberrant FUV-bright
population highlighted in Figure 10, which return low values
of AV and SSFRUV,corr under SED fitting. They may not be
normal transition galaxies.

because they exhibit intermediate color corresponding to

a dip in the galaxy number density (e.g., Balogh et al.

2004; Martin et al. 2007). The blue cloud and red se-

quence were originally defined using single colors, such

as U−V (Bell et al. 2004) and U−B (Faber et al. 2007).

However, dust can also redden galaxies, sending strongly

SF galaxies into the green valley and even onto the red

sequence. The extent of the contamination when only

one color such as U−V is used was quantified by Bram-

mer et al. (2009). Subsequent works (e.g., Patel et al.

2011; Arnouts et al. 2013) stressed the importance of

using two-color diagrams such as UV J and NUVrK to

properly isolate red sequence and green valley galaxies;

Figure 7 in this paper validates this technique.

Our sample is highly complete to H = 24.5 mag,

enabling a census of galaxies in various evolutionary
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Figure 19. ∆ log SSFRUV,corr histograms of galaxies divided into mass and redshift bins. Red sequence galaxies are defined to
lie to the left of the red lines (∆ log SSFRUV,corr< −1.0 dex), green valley objects in between the blue and red lines, and blue
cloud galaxies to the right of the blue line (∆ log SSFRUV,corr> −0.45 dex). The total number of galaxies in each bin is given in
black. Color-coded numbers in the upper-left indicate the fraction of red sequence, green valley, and blue cloud galaxies in each
panel. For comparison, the magenta numbers at upper-right are the fractions of UV J-defined quiescent galaxies from Figure
20(a). Grey shaded panels indicate bins that are < 90% complete in SF and/or quiescent galaxies. The relative number of red
galaxies increases at the expense of the blue galaxies as a function of time and stellar mass. A clear bimodality is particularly
evident at higher masses and lower redshifts.
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stages. However, Section 2.7 also drew attention to the

roughly 15% of the galaxies that were excluded due to

bad GALFIT flags. Such objects tend to be disturbed,

have nearby neighbors, and/or are very small in radius.

However, separate tests show that the excluded fraction

has the same SSFRUV,corr distribution as the retained

galaxies at all masses and redshifts, and so the use of

the sample to derive relative numbers of blue, red, and

green valley galaxies should be reasonably reliable.

Figure 19 shows histograms of the number of galax-

ies versus ∆ log SSFRUV,corr. The various fractions vary

smoothly with mass and time with little sign of mea-

surement noise. A clear bimodality is also evident in

several panels, particularly at higher masses and lower

redshifts. Incompleteness notwithstanding, the fraction

of galaxies on the red sequence increases with mass and

time from small values to a maximum of ∼ 60% at high

mass and late times. Second, the fraction of galaxies

in the blue cloud decreases with mass and time from a

maximum of nearly 100% to a minimum of ∼ 20% at

high mass and late times. The typical fraction of galax-

ies in the green valley increases with mass and time from

a minimum of a few percent to a maximum of ∼ 15% at

high mass and late times. Mass-accelerated evolution is

also strongly evident in this figure, the red sequence be-

ing first established at high redshift in the most massive

galaxies.

A summary of these numbers is shown in Figure 20,

which plots the fraction of quiescent, green valley, and

SF galaxies as a function of mass and redshift. We iden-

tify quiescent galaxies in two ways: (1) the definition

used in Figure 19, ∆ log SSFRUV,corr< −1.0 dex and

(2) galaxies lying in the quiescent region in the UV J

diagram in Figure 7. The quiescent fraction increases

with time and is greater in more massive galaxies (mass-

accelerated evolution). In general, our two definitions of

quiescence give similar results. That they differ some-

what is to be expected, as the relation between color

and SSFR is not perfect. This can be seen from the

scatter present in Figure 10, which plots CSED against

SSFRUV,corr. Galaxies identified as quiescent accord-

ing to SSFR may not be included in a UV J-selected

sample, and vice versa. Agreement could be improved

by adjusting the quiescent boundaries in UV J to bet-

ter capture low-SSFR galaxies. One modification would

be to eliminate the vertical cut at V − J = 1.6, which

may be excluding dustier quiescent galaxies. Also, our

CSED–SSFRUV,corr calibration (Equation 7) can be used

to optimize the diagonal quiescent boundary in UV J as

a function of mass and redshift. Our findings here are

qualitatively consistent with Ownsworth et al. (2016),

who also found mass-accelerated evolution in the quies-

cent fraction when selecting galaxies at a constant num-

ber density and tracking their evolution with time. Sim-

ilar trends in the quiescent fraction were also observed

by Martis et al. (2016), who used the UV J criteria to

select quiescent galaxies in the larger UltraVista DR1

sample.

Moving on to the green valley galaxies, Figure 20(b)

plots their fraction as a function of mass and redshift.

Green valley objects are defined to be galaxies that are

not SF or quiescent, i.e., FGV = 1 − FQ − FSF. FQ is

defined in two ways, as stated above. The difference be-

tween the two is a measure of the uncertainty in FQ. Our

adopted FSF is based on a strict cut in ∆ log SSFRUV,corr

and is well-defined by the fall-off in numbers below the

main sequence (Figure 19). Using these fractions, we

obtain the values shown in Figure 20(b) for FGV. The

agreement between the UV J- and ∆ log SSFRUV,corr-

based fractions is generally good, with a typical discrep-

ancy of only a few percent. This difference can be viewed

as a measure of the uncertainty in FGV. Finally, for

completeness, we show in Figure 20(c) the fraction of SF

galaxies, defined to have ∆ log SSFRUV,corr> −0.45 dex.

The results in this section depend on the reliability

of our SSFR values. Readers are referred to the Ap-

pendix for further discussion of differences between our

preferred SSFRUV,corr and UV+IR-based rates and the

possible impact on the fractions presented here.

7. SUMMARY AND CONCLUSIONS

This paper, the first in a series, utilizes a rich database

of ∼ 9,100 galaxies with 0.2 < z < 2.5 and 9.0 <

logM∗/M� < 11.0, taken from the GOODS-S and UDS

regions of the CANDELS program, to study the overall

demographics of SF galaxies, focusing on the UV J di-

agram. By dividing the sample into narrow mass and

redshift slices, we have uncovered some new regularities

in galaxy evolution and clarified and strengthened pre-

viously known ones. Our major findings are as follows:

1. SF galaxies in the UV J diagram trace out a slant-

ing two-dimensional distribution. As modeled here

using τ -models reddened by a Calzetti foreground

screen, these two dimensions are interpreted as

variations in SSFR and dust reddening. Loci of

constant SSFR trace out “stripes” that run along

the long axis of the distribution. The value of

SSFR in each stripe is closely related to the co-

ordinate CSED, which runs perpendicular to the

long axis. We find a nearly universal trend be-

tween SSFR and CSED, indicating that a galaxy’s

SSFR can be estimated just from U−V and V −J
(Equation 6) with a scatter of only ∼ 0.2 dex.
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Figure 20. Panel (a): Quiescent fraction as a function of redshift in four stellar mass bins (colored lines). Quiescent galaxies are
identifed in two ways: ∆ log SSFRUV,corr< −1.0 dex (squares/solid lines) or objects lying within the quiescent region in the UV J
diagram (circles/dashed lines). Panel (b): The green valley fraction, defined as the objects that remain after subtracting off the
quiescent and SF galaxies. Panel (c): The SF fraction, defined as the fraction of galaxies with ∆ log SSFRUV,corr> −0.45 dex.
In all panels, open symbols denote bins that suffer from incompleteness (the shaded panels in Figure 19).

2. The diagonal extent of the SF locus in the UV J

diagram is mainly a dust sequence: galaxies with

redder V −J suffer higher visual attenuation (AV ).

Moreover, dust attenuation (and, presumably, gas-

phase metallicity) increase steadily with mass and

time. The observed increase in AV is an example

of “mass-accelerated evolution”, i.e., more massive

galaxies reach higher AV earlier.

3. The full UV–near-IR rest-frame SEDs of galaxies

with the same UV J colors are strikingly similar,

being (nearly) independent of mass and redshift.

A small population of galaxies is identified with

brighter-than-average FUV continua. SED fitting

for these objects returns low values of AV and

SSFRUV,corr, moving them below the calibration

in Equation 6. Perhaps their stellar populations

are not well fit by single τ -models because they

are composite (mixtures of old and young stars).

4. Galaxies in the dust-corrected UV J diagram gen-

erally lie close to solar-metallicity τ -model tracks,

but this is required by the SED-fitting procedure.

Over long times, galaxies flow from blue to red

along the tracks, resulting in both the global de-

cline of average SSFR on the SFMS and the grad-

ual buildup of the quiescent population. Both

trends occur faster in massive galaxies and are thus

additional examples of mass-accelerated evolution.

However, the persistent presence of SF galaxies
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with blue U − V colors and young nominal ages

(. 0.8 Gyr) at all masses down to z = 0.5 suggests

that SFRs may fluctuate while galaxies are on the

main sequence, broadening the SFMS and main-

taining a population that looks blue and young

until late times.

5. A population of transition galaxies is identified

with SSFRs more than a factor of three below the

SFMS ridge line, between the SF and quiescent

regions in the UV J diagram. Given the net flow

of galaxies to the quiescent region, the majority of

these objects must be fading. They have system-

atically smaller radii and lower dust attenuation

than main-sequence galaxies of the same mass and

redshift, which suggests that falling SFR is associ-

ated with a loss of ISM. Transition galaxies enter

the quiescent region from different directions de-

pending on their dust contents: dusty galaxies en-

ter from larger to smaller V −J at nearly constant

U − V while dust-free galaxies become redder in

both colors. Galaxies with intermediate dust con-

tent move on tracks between these two extremes.

6. The fractions of SF, quiescent, and transition

galaxies are computed as a function of time and

mass. The fraction of red galaxies increases

smoothly with time with similar mass-accelerated

evolution seen in the other parameters studied

here. The basic aspects of galaxy evolution, at

least after z ∼ 2.5, are fairly well-described as a

function of time and mass.

7. An Appendix investigates agreement between our

adopted measure of SFR, which uses the dust-

corrected L2800 luminosity, and SFR determined

from UV+IR luminosities. In addition to abso-
lute rates, we also compare residuals about the

SFMS, which is a more stringent test than used

in previous studies. The total random scatter

within a given mass–redshift bin is 0.24 dex for the

residual–residual comparison (0.17 dex for each

quantity separately), but systematic zero point off-

sets of order 0.2 dex, varying with redshift, are also

seen. The far-IR luminosities of transition galax-

ies exceed their low SFRs, perhaps because of dust

heating by older stellar populations.

In conclusion, it is worth cautioning yet again that

certain key findings, notably AV and hence SSFRUV,corr,

depend on the CANDELS SED-fitting process, which

assumes declining-τ stellar population histories and

Calzetti reddening by a foreground screen. In real-

ity, the dust is not in a foreground screen, and actual

stellar population histories are not τ -models. It will be

interesting to see how conclusions based on AV change

as refinements to both of these assumptions are made.
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APPENDIX

A. COMPARISON OF DUST-CORRECTED UV-BASED SSFRS TO IR-BASED VALUES

Our use of SSFRUV,corr values throughout this paper is mandated by the fact that traditional IR-based SFRs do

not go deep enough to reach our target population of M∗ = 109M� at z = 2 − 2.5. The sources of the IR data were

described in Section 2.5. We are using the deepest observations that exist in these fields, and the reductions have

been done to the faintest reliable levels. Nevertheless, the far-IR data (even PACS 100µm) are not deep enough to

provide an unbiased sample. Spitzer/MIPS 24µm values are available for more objects but give a less reliable SFR.

We demonstrate the limits of the IR data first and then compare our SSFRUV,corr values to values based on MIPS

24µm.

Figure 21 shows the number of available galaxies in our four redshift ranges. The figure illustrates the scarcity of IR

data at our target mass limit. For example, in the redshift bin z = 0.5 − 1.0, MIPS coverage in the smallest mass bin

logM∗ = 9.0− 9.5 is only 11%, and PACS coverage is practically zero. At z = 2.0− 2.5, both are essentially zero. The

mass of the Milky Way at z = 2.5 was ∼ 109.5M� (Papovich et al. 2015), and our goal of studying the star-formation

histories of Milky Way progenitors at this redshift is impossible with existing IR data.

It is still of interest to ask how well values of SSFRUV,corr agree with IR data when the latter are available. For

this comparison, we use MIPS 24µm values because that sample is larger. Our adopted LIR is determined from the

24µm-based conversion of Rujopakarn et al. (2013), denoted LIR (R13). The choice of LIR (R13) as a standard is

motivated by their claim that it provides a more robust estimate of LIR when only 24µm is available. The R13 method

corrects LIR downward as compared to values from local templates, especially above z = 1.5, where observed 24µm

probes PAH emission (rest-frame 8−12µm; Tielens 2008). The justification for the correction given by Rujopakarn

et al. (2013) is that PAH emission strength increases at high redshift due to the fact that distant SF regions are

physically more extended than local ones, which increases the available surface area of the photodissociation regions

from which PAH emission originates. To account for this effect, the R13 method rescales the local IR templates to

correct for the redshift evolution in the SED shape. This conversion produces LIR values in reasonable agreement

(0.13 dex scatter) with those based on direct far-IR measurements from Herschel (Figures 3 and 4 of R13).

The LIR (R13) values were converted to SSFRUV+IR using the formula of Wuyts et al. (2011):

SFRUV+IR [M� yr−1] = 1.09 × 10−10 (LIR + 3.3LNUV) [L�], (A1)

where LIR is the integrated 8−1000µm luminosity, and LNUV ≡ νLν(2800 Å) is the rest-frame near-UV luminosity

measured at 2800 Å. The effective coefficient in front of the UV term in Equation A1 is 3.60 × 10−10, whereas our

adopted conversion factor (Equation 1) to compute SSFRUV,corr is 2.59×10−10, which is ≈ 25% smaller. This translates

to a ∼0.1 dex offset between the two rates, which is small compared to the total scatter in SSFRUV+IR. Because we

use the R13 method to derive LIR, we label these rates as SSFRUV+IR (R13).

The Calzetti attenuation curve implies

A2800 = 1.8AV = 2.5 log

(
SSFRUV+IR

SSFRUV

)
, (A2)

where SSFRUV is the raw UV SSFR uncorrected for absorption. That means that A2800 versus the ratio on the

right-hand side should follow the 1-to-1 line, or alternatively, that AV versus the ratio should follow a line of slope

2.5/1.8 = 1.4. This prediction is tested in Figure 22. Agreement for the deeper GOODS-S sample is quite good: the

correlations are strong in most panels with an rms scatter in AV of about 0.35 mag (after rejecting 3σ outliers and

without making any correction for errors in the SSFR ratio). The shallower UDS points also follow the relations but

with larger scatter. The points scatter more at high redshift, and varying systematic offsets for GOODS-S of about
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Figure 21. Histograms showing numbers of galaxies in four redshift bins versus stellar mass. The black histogram (“All”)
shows the whole sample of 8,060 SF galaxies from Table 1 (this includes transition galaxies as well as SFMS galaxies). The
overplotted blue histogram shows the galaxies in the All sample that have good Spitzer/MIPS 24µm data, and the overplotted
red histogram shows the number of galaxies with good Herschel/PACS data at 100µm.

±0.3 mag are evident, but it appears overall that AV from fitting the UV–optical spectrum is capable of rank ordering

galaxies by AV in a given mass–redshift bin to better than 0.35 mag. This agrees with the findings of Arnouts et al.

(2013) and Forrest et al. (2016), who likewise compared AV to other reddening measures.

Figure 23 now compares SFRUV+IR versus SFRUV,corr. The dashed line is the one-to-one line. Agreement is again

good with an offset of −0.03 dex and a total rms scatter of 0.23 dex for GOODS-S. (UDS scatters slightly more,

0.3 dex.) Assigning error bars equally to both quantities would yield 0.16 dex for SFRUV,corr alone. This scatter is

consistent with what we would predict based on the scatter in AV in Figure 22. That is, adopting an average 0.35-mag

scatter in AV (0.63 mag scatter in A2800) results in a scatter of 0.25 dex in SFRUV,corr. This is generally where most

comparisons leave off, using total SFRs. But this is not adequate for studying galaxy properties above and below the

SFMS, which is the goal of future papers. For this, accurate residuals are needed, which is more challenging. Absolute

values can produce good-looking correlations because they cover several dex, and yet they may fail to properly rank

galaxies by their residuals, which are much smaller.

The more stringent test is shown in Figure 24, which compares residuals in both measures of SSFR with respect to

the main-sequence ridgeline. To our knowledge, this test has never been shown before. Three conclusions are evident.

First, agreement using GOODS-S data is reasonable in most panels; UDS as usual scatters more. The rms residual

scatter per panel is 0.24 dex for GOODS-S (for SFMS galaxies, after rejecting 3σ outliers). Assigning this scatter

equally yields an rms internal scatter of 0.17 dex for SSFRUV,corr alone. This is the uncertainty that is relevant to

ranking galaxies by their residual in a given mass–redshift bin. The level of agreement is actually remarkable, given the
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Figure 22. AV values from SED fitting to SF galaxies vs. the ratio of specific star-formation rate SSFRUV+IR to the raw,
uncorrected UV rate, SSFRUV. The sample used is galaxies on the ridge line of the SFMS (∆ log SSFRUV,corr> −0.45 dex in
Figure 17) with good MIPS 24µm LIR values. GOODS-S galaxies are in black; the shallower UDS sample is in red. Dashed
lines show the predictions of Equation A2. Correlations are good in most panels, with offsets of about ±0.3 mag, depending on
redshift. The rms scatter about the lines for the GOODS-S sample is typically ∼ 0.35 mag. This is the maximum scatter in AV
per galaxy, not allowing for any error in the SSFR ratio.

high dust content of many of these objects, for which the L2800 corrections approach 2 dex (see Figure 22). That said,

SSFRUV,corr does tend to overestimate the SFR at low redshift but underestimate it at high redshift. The offsets reach

up to ∼0.2 dex. Similar trends are seen in Figure 22. Finally, the scatter is perceptibly larger for massive galaxies at

high redshift. These tend to be very dusty, and it is possible that much of the star formation is simply not revealed

in UV–optical light and that AV is too low. This merits further follow-up. All in all, this test confirms acceptable

agreement between SSFRUV,corr and SSFRUV+IR (R13) for main-sequence ridge line galaxies and establishes the utility

of SSFRUV,corr to study properties above and below the SFMS.

Although both measures of SSFR agree reasonably well, the systematic trends seen in Figures 22 and 24 could

suggest the need for a redshift-dependent correction to SSFRUV,corr. Figure 22 indicates that at the highest redshifts,

AV is underestimated by 0.3 mag, while at the lowest redshifts it is overestimated by 0.3 mag. Making this correction

boosts SSFRUV,corr by ∼ 0.2 dex at the highest redshifts and reduces it by the same amount at the lowest redshifts,

consistent with the offsets seen in Figure 24. Galaxies in between these redshifts suffer smaller corrections. The net

result is to broaden the dynamic range of SSFRUV,corr across redshift. It is possible that corrections should be applied

to SSFRUV,corr to account for this effect. In particular, the offsets at low redshift seen in Figure 22 may be due to

the presence of composite (young+old) stellar populations, which the SED fitting methods used here do not include in

their models. Indeed, Wang et al. (2017) find that fitting a composite model with a τ -model results in an overestimate
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Figure 23. SFRUV+IR based on MIPS 24µm vs. SFRUV,corr from this paper. The samples are the same main-sequence ridge
line galaxies as in Figure 22. The black points are from GOODS-S; the red points are from UDS. The dashed line shows equality
between the two measures. The total rms scatter of the black points is 0.23 dex; the shallower UDS sample scatters slightly
more (0.3 dex).

of both AV (by up to ∼ 1 mag) and SSFR (by up to a factor of ∼ 3). We note in passing that this effect is stronger for

transition galaxies (SSFR is overestimated by ∼ 5×), meaning that the width of the green valley in ∆ log SSFRUV,corr

may be compressed relative to the SFMS. On the other hand, at high redshift, the offsets seen in Figure 24 go the other

way. This may be due to uncertainties in modeling the PAH region of the IR SEDs, making it challenging to accurately

recover the IR flux based on e.g., 24µm measurements alone. It is also worth noting that there is a long-standing

discrepancy between integrating the instantaneous cosmic SFR density compared to the cosmic stellar mass density,

in the sense that integrating the SFR density overproduces stars by ∼ 0.2 dex by z ∼ 1 (Madau & Dickinson 2014).

Using our (lower) values of SSFR at z ∼ 2 would bring these two into better agreement.

Given the uncertainties discussed above, it is not obvious which system, SSFRUV+IR or SSFRUV,corr, is the “truth”.

Hence, we opt not to apply any corrections to SSFRUV,corr in this paper, pending further investigations into the

systematics of SED fitting at high and low redshifts. For now, it is good to know that there appear to be SSFR

“systems” (analogous to the photometric systems of old), that corrections among them are of order 0.2 dex, but that

these corrections are not large enough to disturb the relative rankings of SSFR from one object to another, especially

if these are done in restricted bins of mass and redshift.

We turn attention now to the transition galaxies. For them, SSFRUV+IR (R13) overestimates SSFR by 0.16 dex on

average and by more than 1 dex in some cases. In general, the traditional 24µm LIR method seems to overestimate

SFRs for SF galaxies well below the SFMS. A similar increasing offset between SSFRUV+IR and SSFRUV,corr at low SFR

has been seen at least four times in previous investigations. Patel et al. (2011) employed three different SFR estimators

to measure the decline in SFR as galaxies fall into dense environments. Good agreement was obtained between the

SED-fitting method and [O II] strength (both Calzetti-corrected), but a much smaller decline was seen using LIR-based

SFRs. They hypothesized that LIR overestimates SFR at low star-formation levels. A similar conclusion was reached

by Salim et al. (2009), who compared SFRs from SED fitting to Spitzer/MIPS 24µm fluxes. The MIPS values seemed

consistently too high, especially for low-SFR galaxies. Next, Arnouts et al. (2013) developed a process to estimate

LIR from rest-frame NUV−r and r − K colors. Their method effectively calibrated LIR as a function of these two

colors based on active SF galaxies, but it gave implausibly high LIR values when applied to low-SFR galaxies. The

failed objects lie adjacent to the quiescent region, which is identified in the present paper with galaxies in transition
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Figure 24. Residuals in SSFRUV+IR based on MIPS 24µm vs. values of SSFRUV,corr from this paper. Residuals are calculated
by subtracting the linear fits of SSFR vs. M∗ in Table 2 from both quantities, and so any systematic zeropoint offset in each
panel is preserved. The samples are the same main-sequence ridge line galaxies as in Figures 22 and 23 except that transition
galaxies more than −0.45 dex below the fits in Figure 3 are also added (grey regions). Black points are from GOODS-S; red
points are from UDS. For SFMS galaxies, systematic offsets of up to ∼ 0.2 dex are apparent that vary with redshift. The rms
scatter is 0.24 dex, or 0.17 dex if assigned equally to each quantity. In contrast to the main sequence, transition galaxies have
systematically high values of SSFRUV+IR compared to SSFRUV,corr by up to 1 dex.

(Figure 18). The fourth finding is by Utomo et al. (2014), who stacked optical–MIPS SEDs for NEWFIRM galaxies in

various SFR bins. MIPS IR luminosities at 24µm overestimated SFRs by up to one dex compared to NUV–near-IR

SED stellar population models with the discrepancy increasing smoothly toward lower SFRs. Rates for the highest-SF

galaxies agreed. This is consistent with what we see in Figure 24.

Some of the above authors have hypothesized that the 24µm flux in low-SFR objects comes, at least in part, from

sources other than dust heated by star formation. For example, dust may be heated by old stars (e.g., Helou 1986;

Sauvage & Thuan 1994; Calzetti et al. 1995; Kennicutt 1998; Draine & Li 2001; Salim et al. 2009) or it may be hotter

(and thus radiate more efficiently at 24µm) when SSFR is low (Skibba et al. 2011). At z ∼ 2, where observed 24µm

is dominated by PAH features, the effect is compounded by the fact that PAH molecules can also be excited by cooler

stars in the diffuse ISM (Li & Draine 2002; Calzetti et al. 2007). Finally, at very low SSFR, 24µm flux can come

directly from old stars themselves (Figure 1 of Skibba et al. 2011).

In conclusion, we find a population of transition galaxies for which SSFRUV+IR is higher than SSFRUV,corr. These

objects have log SSFR values between −9.5 to −10.0 in Figure 10, with CSED values that match. Increasing their SSFR

values by ∼0.2 dex (to bring them in line with SSFRUV+IR) would place them off the relation in that figure established

by both bluer and redder galaxies, raising the question of where this deviation comes from. As discussed above, several
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works have provided abundant evidence from different directions that SSFRUV+IR is likely overestimated for transition

galaxies.

The structural properties of the transition galaxies also are consistent with their having low SSFR. Figure 17 shows

that transition galaxies have lower AV , as would be expected if their ISM is disappearing as star formation ends. Their

radii are also smaller, consistent with star formation fading in more extended disks (Fang et al. 2013). Pandya et al.

(2017) detected higher Sérsic indices in transition galaxies, which likewise would occur naturally when fading disks are

outshone by central bulges.

B. THE SFMS DERIVED FROM SSFRUV,corr VS. OTHER VALUES

An alternative way to assess the accuracy of SSFRUV,corr values is to compare to SF main sequences found by

others. For this, we use the extensive database on mean main-sequence measurements in the literature, as tabulated

and described by Rodŕıguez-Puebla et al. (2017). Figure 25 plots SSFR versus mass in redshift bins, while Figure

26 plots SSFR versus redshift in mass bins. Overall, agreement between SSFRUV,corr and other values is good with

the zero points agreeing well on average. However, there are systematic zero point offsets that vary with redshift. In

Figure 25, SSFRUV,corr is approximately 0.2 dex higher at low redshift and 0.3 dex lower than average at high redshift.

This means we tend to underestimate the increase in average SFR from low to high redshift, as shown more directly

in Figure 26. Our slopes also tend to be too flat at low z and too steep at high z, in contrast to slopes found by

others, which turn over strongly at high mass and low redshift (e.g., Whitaker et al. 2012a; Lee et al. 2015; Barro

et al. 2017). Part of the latter effect is because we define the main-sequence ridge line narrowly, taking only galaxies

> −0.45 dex while others have retained all SF galaxies according to UV J . This typically includes some transition

galaxies at high mass, which pulls the ridgeline down. These systematic residuals, though small, are at a level where

they could easily confuse attempts to order galaxies by their residuals about the main sequence, but not, as we noted

above, if comparisons are restricted to narrow mass and redshift ranges. Previous studies have often filled in missing

IR values with SED-based values (the so-called “ladder” approach, Wuyts et al. 2011). Such a mixture clearly has the

potential to introduces significant systematic errors, and it is precisely for this reason that we have preferred to use a

single SSFR method, SSFRUV,corr, throughout this paper.
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Pérez-González, P. G., Rieke, G. H., Villar, V., et al. 2008b,

ApJ, 675, 234
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Rodŕıguez-Puebla, A., Primack, J. R., Avila-Reese, V., &

Faber, S. M. 2017, MNRAS, 470, 651

Rujopakarn, W., Rieke, G. H., Weiner, B. J., et al. 2013,

ApJ, 767, 73

Salim, S., Fang, J. J., Rich, R. M., Faber, S. M., & Thilker,

D. A. 2012, ApJ, 755, 105



36 FANG ET AL.

Salim, S., Rich, R. M., Charlot, S., et al. 2007, ApJS, 173,

267

Salim, S., Dickinson, M., Michael Rich, R., et al. 2009,

ApJ, 700, 161

Salmon, B., Papovich, C., Long, J., et al. 2016, ApJ, 827, 20

Sanders, R. L., Shapley, A. E., Kriek, M., et al. 2015, ApJ,

799, 138

Santini, P., Ferguson, H. C., Fontana, A., et al. 2015, ApJ,

801, 97

Sauvage, M., & Thuan, T. X. 1994, ApJ, 429, 153

Skibba, R. A., Engelbracht, C. W., Dale, D., et al. 2011,

ApJ, 738, 89

Straatman, C. M. S., Spitler, L. R., Quadri, R. F., et al.

2016, ApJ, 830, 51

Tacchella, S., Dekel, A., Carollo, C. M., et al. 2016,

MNRAS, 457, 2790

Tal, T., Dekel, A., Oesch, P., et al. 2014, ApJ, 789, 164

Tielens, A. G. G. M. 2008, ARA&A, 46, 289
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