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Abstract—Moores law is rapidly approaching a long-predicted
decline, and with it the performance gains of conventional pro-
cessors are becoming ever more marginal. Cognitive computing
systems based on neural networks have the potential to provide a
solution to the decline of Moores law. Identifying common traits
in neural systems can lead to the design of more efficient, robust
and adaptable processors. Despite the potentials, large-scale
neural systems remain difficult to implement due to constraints
on scalability. Here we introduce a new hardware architecture
for implementing locally connected neural networks that can
model biological systems with a high level of scalability. We
validate our architecture using a full model of the locomotion
system of the Caenorhabditis elegans. Further, we show that
our proposed architecture archives a 9 fold increase in clock
speed over existing hardware models. Importantly the clock speed
for our architecture is found to be independent of system size,
providing an unparalleled level of scalability. Our approach can
be applied to the modelling of large neural networks, with greater
performance, easier configuration and a high level of scalability.

Keywords—neural network; neuromorphic; PNAA; Caenorhab-
ditis Elegans; reconfigurable hardware

I. INTRODUCTION

Moore’s Law has, thus-far, provided a clear path for
improving computational solutions and their associated power
efficiency through the shrinking of transistor scales. However
Moore’s Law is fast approaching its long-predicted end and
novel ways to continue the trend must therefore be devel-
oped [1]. Carver Mead drew parallels between the operation
of neurons and that of transistors, concluding that greater
efficiency may be achieved in transistor based systems by
fundamentally changing the way the devices are used [2].
Mead went on to coin the term ‘Neuromorphic Systems’ to
refer to computing platforms that are in some way inspired
by naturally occurring neural processing systems, and since
this original work there have been many attempts to imple-
ment various types of neuromorphic systems. In the last two
decades, there has been an increase in research efforts to
advance our understanding of brain behaviour using massively
parallel processing architectures [1]. Many such systems use
communications principles, such as packet switched networks,
to produce a fully connected and therefore highly configurable
neural architecture. Full connectivity between all neurons pro-
vides maximum flexibility, at the potential price of redundancy
in unused connections. While beneficial for investigating new
topologies or training regimes, this exhaustive architecture can
result in large hardware redundancies. The internal routing

often presents design challenges, and contributes significantly
to the scale or power consumption of the final device. Drawing
inspiration from nature, this work proposes a new reconfig-
urable neural architecture that is optimised for predominantly
locally connected network implementations. Section III out-
lines existing hardware neural arrays, comparing their power
consumption and implementations. The relevant approaches
for modelling neurons are discussed in section II, where the
key aspects, features and limitations of the various techniques
are reviewed. These concepts are then encapsulated in a
proposed programmable neuron array architecture (PNAA) in
section IV. Finally Section V details a C. elegans locomotive
model implementation using the PNAA architecture provided
in Section IV, with the validation of the results against previous
work and a discussion given in section VI.

II. MODELLING OF NEURONS

Representing the basic actions of a neural network in
hardware requires the selection of an appropriate and rep-
resentative model for the particular action or mechanism of
interest. There are a significant number of models available,
and a large subset of these see frequent use in neuromorphic
systems. It is important to note that neuromorphic hardware
is using a representation of a neuron (and synaptic behaviour)
to provide a suitably accurate implementation, not simply for
simulation purposes. Cases that require detailed neurological
representations (such as applications interfacing directly to
the nervous system itself) may require biophysically accurate
details, allowing for the precise and complex emulation of
neural systems. In contrast, neuromorphic systems that are
designed for a single computational task may use a more
abstract approach, resulting in greater computational efficiency
at the cost of biophysical accuracy. A number of available
models are shown in Figure 1, with the trade-off between
biophysical accuracy and computational efficiency illustrated.
One of the most famous biophysically accurate models was
constructed by Alan Hodgkin and Andrew Huxley, who were
exploring the relationship between chemical and electrical
signalling within a squid (Loligo forbesi) giant axon [3]. This
model has had a large impact in the field of neuromorphic
systems [4], however the use of this model is limited because
it is both computational expensive and does not scale well
for simulations of many neurons at a time. A significantly
simpler model, the binary model, was first developed in 1943
by McCulloch and Pitts [5]. In this model, each neuron has one
or more inputs and a single output. The inputs are summed and
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Fig. 1: The trade-off between biophysical accuracy and com-
putational efficiency for a number of model classes.

compared with an internal threshold that, when exceeded, acti-
vates the output. This economical approach to neural dynamics
is highly efficient, but less biologically relevant. There are
some models that appear to exist outside of the scale shown in
Figure 1, such as the Izhikevich model, which uses bifurcation
theory to greatly simplify the Hodgkin-Huxley dynamics [6].
The resultant model is highly efficient while providing a good
approximation of the bursting dynamics seen within nature,
however, the accuracy of the temporal morphology of individ-
ual action potentials is forfeit. Different models will require
different communications hardware support. Bio-physically
accurate models may require attenuation or dendrite emulation
as an inherent feature of their connection implementation.
Spiking neural networks will produce sparse pulse trains which
must be transmitted with known timings and amplitudes, while
binary systems will only require the communication of a single
bit. The model selection for any neuromorphic system must
therefore be considered before the interconnect technology is
designed. The trade-off for the modelling of neurons depends
partly on the scale of the network to be analysed. For example
if the number of neurons is low, the scope for using detailed
biophysical models may be justified, however as the number of
neurons moves into the 100s (and beyond) the simulation time
required may be difficult to justify. An effective understanding
of biological behaviour in neural networks can be achieved
by using a simplified approach to modelling neurons either
in simulations or on hardware emulators [7]. The method of
choice for implementing neural networks can therefore be
made in a pragmatic fashion based on a trade-off between
accuracy and speed, depending largely on the scale and size
of the network in question.

III. IMPLEMENTING NEURAL ARCHITECTURES

The implementation of connectivity in neuromorphic hard-
ware is device specific. For example, the SpiNNaker plat-

form has the ability to emulate massively parallel neural
networks. It uses a packet switched asynchronous network,
based on a fabric of ARM9 cores on dedicated multi-core
processors [8], [9] and [10]. The SpiNNaker architecture is
highly flexible, however it suffers from excessively high power
consumption when compared to other approaches. SpiNNakers
key strength is in its ability to handle arbitrary local and
global connections, in other words it supports full arbitrary
connectivity between any neurons, and it has been used in a
range of applications including tasks such as vision systems
[11]. Other example neuromorphic systems are TrueNorth and
Neurogrid. TrueNorth is a platform whereby (local) short-
distance communications are handled by an on-chip 64K
crossbar array and asynchronous routers, while (global) long-
distance communications are handled by protocols for intra-
chip connections [12]. In contrast, Neurogrid is a mixed
analogue-digital implementation that operates in the deep sub-
threshold region of the semiconductor device. Synaptic inputs
between spatially neighbouring neurons are distributed using
a custom local arbor system, or a multi-cast router [13].
A common denominator of neuromorphic platforms is the
flexibility to handle arbitrary levels of connectivity between
any and all neurons. Whilst this is a clear advantage in general,
for specific examples this can lead to less efficiency. A key
approach to manage this issue is the implementation of a neural
fabric that can be optimally configured for different scales of
connectivity, whilst retaining the reconfigurability of the large
scale neuromorphic implementations.

A. Modelling Connectivity

In order to understand the connectivity in hardware neural
networks we can apply ‘Rent’s Rule’ to relate the internal
(local) and external (global) connections in the network. Rent’s
Rule was described in [14] however the basis was first ex-
plained earlier in [15]. More specifically, Rent’s rule is the
relationship between the number of terminals (T) and internal
components, such as logic gates, (g) with the equation given
in Eq. 1.

T = tgp (1)

Where t and p are variables that define the connectivity of
the network in question and p <1. The relation can be used
to indicate the level of connectivity, for example in neural
networks, in which the terminals are synapses and the gates are
neurons. Understanding the value of p and how it correlates to
a network’s connectivity can be used to optimize the resulting
hardware implementation. An important aspect of Rent’s rule
is that if the equation is re-framed in terms of logarithms [16],
the relationship between T and g becomes linear when both
axes are expressed in logarithmic terms as shown in Eq. 2.

log(T ) = log(t) + p ∗ log(g) (2)

This results in an offset value log(t) and the slope (in the
log domain) determined by the Rent coefficient p. One of the
interesting observations in nature is that this coefficient tends
to be the same for all neural structures. Typically it is about
p = 0.75 for both lower order animals such as the C. elegans,
and human brains. A random circuit, however has a rent value
of p = 1 [16].
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B. Hardware Comparison

A comparison of SpiNNaker, Neurogrid and TrueNorth’s
relative power per neuron may be seen in Table I. SpiNNaker
is largely simulation focused, using conventional processors
to emulate its neural models. Both Neurogrid and TrueNorth,
however, are hardware implementations and have recognised
a significant power efficiency as a result. This supports the
theory that such dedicated hardware may provide low-power
neuromorphic processing solutions. All three of these systems

TABLE I: Power usage per neuron in three of the main
hardware neural network systems.

System Quoted Power Quoted Neuron Count Power Per Neuron
(W) (µW)

SpiNNaker 0.75 17,000 44.12
Neurogrid 3.10 1,000,000 3.10
TrueNorth 0.65 1,000,000 0.65

make use of packet-based communications resulting in fully
connected systems (i.e T = 1) that support the emulation
of any network topology. From a practical perspective, the
use of spiking neuron networks is an efficient mechanism
for modelling neural networks, and is particularly appropriate
for the hardware implementation on digital platforms such
as FPGAs. Given the locally connected nature of biological
networks it may be possible to improve the capabilities of the
packet-based systems by exploring the effect of local vs global
connectivity.

IV. EXISTING PROGRAMMABLE NEURAL ARRAY
ARCHITECTURE

In this section we demonstrate the limitation with an
existing programmable neural array that exploits local con-
nectivity, and we define our improved design that overcomes
such limitations.

A. Locally Connected Architectures

An existing architecture for implementing locally con-
nected neural arrays is that of Bailey [7]. In this approach
the forming of networks of neurons may be implemented by
connecting them all to a shared bus. If each neuron is assigned
an address it is possible to ensure that only one neuron drives
the bus at at a time using a global controller [7][17]. However,
this implementation has a fundamental drawback that the
address space must be accessed at every simulated time-step.
The implication of such an approach is that two clocks must
be implemented, the internal system clock, which drives the
address unit, and the simulation clock, which marks off a single
simulated time-step. Since every address (1 to n) must be
accessed in each system step, the simulation clock frequency,
Fc, is limited by the internal system clock frequency, Fi, as
shown in Equation 3. This means that the simulation clock
frequency is directly connected to the network size, making
this design unscaleable.

Fc =
Fi
n

(3)

An alternative solution is to consider the basic structure of
multilayer feed-forward neural networks, which are widely

used in a number of applications [18], [19], [20], [21]. In
this type of system the synapses and neurons are brought
together in what is referred to as a ‘node’. These nodes can be
arranged in layers, with each layer connected to the previous
and next layer by two separate buses. Input/Output (IO) units
are situated on the extremities of each layer and a full layer
of IO units is added as the first and last layers of the system.
Each row is assigned a unique address and a global address
controller is used to dictate which row of nodes are driving
the buses at any given time. An internal register in each
node controls which addresses the node receives input from,
allowing a node to connect to any of its neighbours in the
previous layer. Each node can operate in a number of modes,
such as forward, reverse or pass-through, depending on the
requirements of the network. This system allows a designer
to add as many layers as they desire with only the internal
system clock propagation delay acting to limit the simulation
clock rate. The simulation clock frequency is limited by the
number of nodes in a single layer. The internal clock frequency
is limited by the node propagation delay, which may differ
between network implementations if pass-through nodes are
utilized.

B. 2-Dimensional Hardware Architecture

We propose a 2-Dimensional architecture that overcomes
the issues with scalability in locally connected networks that is
present in the work of Bailey [7]. This Programmable Neural
Array Architecture (PNAA), shown in Figure 2, expands the
idea of locally connected networks into two-dimensions. The

A

A

A

A
B

B C C C C

CCCC

E

E

D

D

D

D

D

D

...

...

...

...

...

...

...

...

...

...

I/O

Node

Key:

Optional Connection

Programmed
Connection

Input

Fig. 2: Infrastructure of the PNAA, showing a number of ‘loop’
configurations labelled A to E. The circular nodes are the IO
blocks that surround all edges of the architecture, the square
nodes represent the processing, or neuron, blocks. Potential
connectivity is indicated by the dashed lines and in the example
loops given actual connectivity is indicated by a solid line.

system is made up of two distinct elements, the node, which is
an arbitrary neuron implementation and the IO block, operating
as a connection to external actuators and sensors. Nodes are
connected in loops, as shown in Figure 2. All nodes on a
loop can communicate with one another and are assigned an
address within the loop, with the largest loop dictating the
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largest address required. The system clock speed is dependent
on the network and may be loosely associated to the largest
number of connections that the most connected neuron requires
to or from itself. In Figure 2 loop ‘C’ is seen to be the largest
connected loop, with 8 units contained within its domain. The
system clock must therefore run at least 7 times slower than
the internal clock, regardless of the number of neurons used
overall. The loops are implemented as a ring of shift registers,
with a register located at each node input, meaning that
the propagation delay remains fixed regardless of loop size.
This architecture can mimic a fixed-width layered network by
simply assigning loops down the full length of each column.
This architecture supports two-dimensional scaling which is
independent of the system clock timings. A pseudo-global
connection can be achieved, with any node located a maximum
of one node away from any other node, and a single neuron can
send and receive in four directions at the same time allowing
for rapid transmission through a network. This architecture
can support locally connected networks with a small number
of global connections.

C. Intermediate Representation

In order to produce a scalable and practical PNAA it is
important to consider how a particular network may be synthe-
sised onto hardware. There are a number of different methods
for high-level representation of a network. An intermediate
translation must be defined to allow a user to move from
such high-level descriptions to a physical mapped solution and
this often reflects the physical architecture through its defined
structure. A number of different connection options are shown
in Figure 3 as an example of the available connection routing.
Each node can support four connections, with one starting on
each face of the node. These optional connections are used to
form loops of nodes, allowing data-flow between neurons.

Key:

Connection

Input
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Fig. 3: Examples of connection options for a node in the
PNAA, the interconnect blocks may be configured for X = not
used, 1 = straight and 0 = clockwise routing patterns. This
enables a programmable connection path between a source
node and a connected node.

The implications of the interconnect options offered by this
architecture must also be considered when mapping a high-
level design, and inherent to this is the concept of locality
between neurons. For two neurons to be connected they must
exist within the one-another’s neighbourhoods and it is there-
fore up to the synthesis engine to find an arrangement of nodes
which results in all nodes sitting within the neighbourhoods
of their connected nodes. This task becomes a fitting problem,

similar to that performed by FPGA synthesis engines. Neurons
sitting on the same row or column will share in the row or
column neighbourhood respectively. This can be used to create
layers of neurons, allowing a simple implementation of feed-
forward neural networks.

D. Configuration

Each node is connected to a set of interconnect switches
that can be configured to route connections to the neighbouring
nodes in a North, East, South, West fashion. The PNAA has
a rectangular structure and so the configuration process may
be split into columns, where each column starts and stops
with an IO block. Each neuron has three standard configurable
parameters, the input weights, the input bias and the threshold.
The bias and threshold values are singular for each neuron
block, whereas the weights are a vector with an entry for each
possible connected input.

V. RESULTS FROM A C. elegans LOCOMOTIVE MODEL

Section IV-B has provided an overview for a new type
of PNAA, demonstrating the fundamental principles by which
locally connected neural networks may be implemented in an
efficient fashion. In this section we demonstrate this architec-
ture using a working model of a biological system.

A. Overview of the C. elegans locomotory System Model

The locomotory system of the free living nematode
Caenorhabditis Elegans (C. elegans) was used demonstrate the
ability of this programmable neural array to replicate a real
neural network that exhibits a high level of local connectivity.
The C. elegans is a transparent free-living nematode with a
generation time of about 3.5 days [7]. With only 302 neurons
in its nervous system, the C. elegans is the only organism
to have had its connectome (the neuronal ‘wiring diagram’)
fully mapped [22]. The relative simplicity, and high level of
local connectivity of the C. elegans locomotory nervous system
makes it a good naturally occurring network against which ar-
tificial solutions may be verified. Subsets of neurons within the
C. elegans can be identified by the incorporation of appropriate
promoter sequences to drive expression of fluorescent proteins.
A micrograph image is given in Figure 4 where the animals
were transgenic for the expression of two fluorescent proteins
DS-red and GFP (green fluorescent protein). The subset of
neurones expressing the neuropeptide FLP-8 fluoresce green,
and those containing the putative receptor fluoresce red. To
demonstrate the operation of our model at a network level we
present simulations of the locomotory system of C. elegans
on the PNAA described in Section IV-B. The structure of
the C. elegans locomotory system is regular, and there are
very few variations from animal to animal within the species.
In total there are 86 neurons and 180 synapses [22]. There
are six different types of neuron and four different types of
synapse. Further, the locomotory system of the C. elegans
has already seen common usage in both the MBED Cellular
Automata Neuron model by Claverol et al [23] and by Bailey
[7]. The locomotion system that was modelled by Bailey used
a direct implementation VHDL model [17], and was based
upon work performed by Claverol [23]. This model showed
that an artificial neural network was capable of generating the
same motor neuron patterns as had been observed in living
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C. elegans. The locomotive model of the C. elegans may be
divided into small, repeated segments (as shown in Figure 5a).
Each segment exhibits a high order of local connectivity, with
relatively sparse connections from one segment to another. By
utilising the local connectivity seen within this model, it may
be implemented using the PNAA system described in IV-B
(an example mapping is shown in Figure 5b). The largest
loop within this implementation, which lies along the width
of a single segment, contains only 10 neurons. This system
therefore requires only 9 clock cycles per simulated system
time-step regardless of the number of segments implemented.
This represents a 9× speed increase in the 10 segment system
when compared to the direct implementation of Bailey [7].
The sensory AVA and AVB neurons are actually two single
neurons that connect along the entire length of the C. elegans.
These neurons have no incoming connections from within the
network and they may therefore be divided into a number
of identical neurons that are all driven by the same external
stimulus, as shown in Figures 5a and 5b.

B. Validation of the C. elegans Model using bi-phase stimu-
lation

In order to validate the mapping of the model onto the
PNAA, an RTL simulation was performed for a hypothetical C.
elegans with 10 segments. Forward and backwards locomotion
was achieved using a bi-phasic control signal which produced
the appropriate stimulation to the head and tail of the model,
the resulting motor neuron activations are shown in Figure
6a. The top trace (Control) shows the control signal, resulting
in motor neuron activation along both the ventral and dorsal
sides in a sinusoidal fashion. The result of the bi-phasic control
signal is an alternating forwards and backwards locomotion.
The top bank of traces represent the Dorsal motor neurons and
the lower bank the Ventral motor neurons, activation is shown
as a solid block of colour due to the high frequency oscillations

Fig. 4: Fluorescent subset of neurones within C. elegans show-
ing projections running alongside the pharynx. The overall
structure of the head region can be seen in the blue, overlaid
transmission. Image courtesy of John Chad and Ilya Zheludev
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(b) The segment from Figure 5a implemented on the PNAA architec-
ture with full scalability, extending the model to an arbitrary number
of segments is a simple case of inserting more columns, no changes
to the fundamental architecture are required.

Fig. 5: C. elegans locomotion model and equivalent architec-
ture

of the neurons outputs. Neurons numbered 0 are the head end,
and 9 the tail end. As the stimulus pulse is alternated from
head to tail and back again there is a propagating wave of
muscle activation along the length of the model. This wave
produces a sinusoidal locomotion action. Vertical lines are
drawn every 500 milliseconds on the x-axis. Activity begins
on the Ventral side at the head (VM0) and propagates steadily
down through the Dorsal muscles reaching the tail end (VD9)
in approximately 2900 milliseconds. Comparing this result to
that of Bailey and Claverol confirms the same propagating
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(a) Forward and backward locomotion behaviour of a 10 segment C. elegans model. The top trace (Control) shows a bi-phasic control signal, generating stimulus
applied to both the head and tail of the model, this results in motor neuron activation along both the ventral and dorsal sides in a sinusoidal fashion. The result
of the bi-phasic stimulus is an alternating forwards and backwards locomotion.

(b) Coiling behaviour of a 10 segment C. elegans model. A single control signal was used to trigger stimulus applied to both head and tail end on the ventral
side of the model, this results in motor neuron activation along the ventral side only, producing a coiling action towards the centre.

(c) UNC25 knockout behaviour of a 10 segment C. elegans model. A constant forward stimulus is applied to the model, this results in motor neuron activation
along the ventral and dorsal sides, producing a shrinking action towards the head end.

Fig. 6: C. elegans simulation results

waves are observed in all models. This evidence shows that
the PNAA model is behaving correctly when compared against
previous work.

C. Validation of the C. elegans Model Coiling Behaviour

A second behaviour explored in earlier models was coiling.
Figure 6b shows the activation of the Dorsal and Ventral motor
neurons in response to a stimulus applied to the Ventral side of
both the head and tail simultaneously. Motor neuron activation
begins at each end of the model and propagates towards the
centre. This muscle activation results in a coiling motion
towards the stimulus, which is consistent with the models of
both Bailey and Claverol and further confirms the effectiveness
of the PNAA model when compared to previous work.

D. Validation of the C. elegans Model UNC25 knockout Be-
haviour

A third behaviour explored in earlier models was when the
UNC25 gene knockout mutation is applied to the model. In this
circumstance the Dorsal and Ventral motor neurons response
to a constant stimulus is modified. Motor neuron activation
begins on both the Dorsal and Ventral sides of the model and
propagates from head to tail, this muscle activation results
in a shrinking behaviour as each of the motor neurons lock
into a constant firing mode. This behaviour manifests itself
in both the Dorsal and Ventral motor neurons firing in the
same sequence leading to all the neurons firing simultaneously
This result is consistent with the models of both Bailey and
Claverol and further confirms the effectiveness of the PNAA
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model when compared to their previous work.

VI. DISCUSSION OF RESULTS

A. Introduction

Given the range of possible modelling approaches for
systems such as the C. elegans locomotory system, there is
always a question over the correct level of detail to accurately
reflect the true biological behaviour in simulation. In many
cases it comes down to a subjective choice based on software
preferences, hardware availability and ease of use. However, it
is possible to have some basis for comparison using four fun-
damental criteria; biological accuracy, scalability, performance
(which could be in terms of speed, area or both) and flexibility.
Therefore we will consider the three fundamental parameters
of scalability, performance and flexibility in a qualitative
manner, using quantifiable metrics wherever possible. In each
case the proposed approach will be compared with the previous
hardware implementations of Claverol [23] and Bailey [7].

B. Biological Accuracy

As has been demonstrated in section V, the basic loco-
motory behaviour, coiling and the effect of UNC-25 knockout
has been validated in the model as implemented on the PNAA
architecture. These results are consistent not only with the
observed biological behaviour, but also with the hardware
models developed by Claverol [23] and Bailey [7]. There are
more mutation conditions that could be evaluated however
these three fundamental tests are validation of the efficacy
of the model as they show the independent neuron behaviour
under locomotion, the asymmetric behaviour of coiling and
the shrinking behaviour of the UNC-25 knockout. This clearly
demonstrates the fundamental behaviour of the model is cor-
rect.

C. Scalability

The key advantage of our PNAA approach is its 2-
dimensional nature and the ability to scale the model in both
axes arbitrarily. Using the software interface, the design is
abstracted to a network level making it very easy to generate
and programme a network accordingly. The connectivity is
assumed to be highly local, and while this will not provide the
full connectivity for completely arbitrary networks, global con-
nections can be defined in addition to the core local networks.
This is analogous to the approach used in the well known
GALS systems. Importantly, this feature permits the rapid
scaling of models such as C. elegans to an arbitrary number
of segments without any change in network architecture.

D. Performance (speed/resources)

From a resource perspective the PNAA is an efficient
method, by using a level of granularity that maps from the
neuron network level directly to hardware, with sufficient local
connectivity to ensure that the model utilizes the connectivity
available. The intrinsic efficiency of the clocking approach
leads directly to a speed improvement of 9× in the 10 segment
system when compared to the direct implementation of Bailey
[7]. This is primarily due to the efficient connectivity in
this implementation that limits the loop size, therefore for

locally connected networks, with relatively low numbers of
connections, a performance improvement can be dramatic as in
this case. The largest loop within this implementation, which
lies along the width of a single segment, contains only 10
neurons. This system therefore requires only 9 clock cycles
per simulated system time-step regardless of the number of
segments implemented.

E. Flexibility

The abstraction of the model to a hardware architec-
ture makes the whole approach extremely flexible from a
network definition and programming perspective. Unlike the
fully coded approaches of Claverol and Bailey. The library
based approach of Bailey meant that a standard synthesis
software tool would be required to configure the network,
making the ultimate design not necessarily representative of the
locally connected nature of the nervous system being analysed.
Using the software interface to define the connectivity and
the weights makes the process straightforward, and most
importantly the definition of an underlying hardware fabric
gives a known structure and fundamental behaviour that is
consistent and simple to extend or modify.

F. Future Work

Using the PNAA as a test platform, the impact of hardware
enforced locality on neural systems may be easily assessed.
Classic artificial neural models, such as convolutional neural
networks, demonstrate high measures of locality and further
mapping of these systems onto the PNAA will provide mean-
ingful insight into how a networks underlying structure and it’s
connection requirements relate to one another. A digital model
of the C. elegans is also under construction, using physical
constraints and a soft-body IK model to support simulations
of the nematodes locomotive response to neural stimulus.

VII. CONCLUSION

With Moore’s Law reaching its inevitable end, a new
processing paradigm must be developed. A number of neu-
rological hardware implementations have been identified and
compared, leading to the observation that most hardware
implementations are large systems with support for full global
connectivity. However, many naturally occurring neurological
systems are locally-connected specialised systems. A con-
straint focused approach has been outlined, resulting in a new
programmable neural array architecture or PNAA. Sections
IV outlines our novel approach to connectivity within neural
hardware. Focusing on predominantly local resources while
allowing a number of neurons to connect to any other neu-
ron within the system, this architecture can recognise speed
improvements over other address based systems. A form of
synthesis or intermediate representation is discussed, showing
how a design may be implemented on such a reconfigurable
architecture. Further, an implementation of the C. elegans
locomotive model is developed, validating our architecture and
resulting in a speed increase of around 9× that of previous
solutions when modelling a 10 segment system. Our approach
can be applied to the modelling of many different neural
networks, with a potential for greater performance, easier
configuration and most importantly a high level of scalability.
Such systems can provide a novel solution to the problems
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associated with conventional processing methods leading to
new and efficient processing technologies.
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