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Abstract: Capital efficiency and asset/liability management are part of the Enterprise

Risk Management Process of any insurance/reinsurance conglomerate and serve as quan-

titative methods to fulfill the strategic planning within an insurance organisation. There

has been a considerable amount of work in this ample research field, but invariably one of

the last questions is whether or not, numerically, the method is practically implementable,

which is our main interest. The numerical issues are dependent upon the traits of the

optimisation problem and therefore, we plan to focus on the optimal reinsurance design,

which has been a very dynamic topic in the last decade. The existing literature is fo-

cused on finding closed-form solutions that are usually possible when economic, solvency,

etc constraints are not included in the model. Including these constraints, the optimal

contract can only be found numerically. The efficiency of these methods is extremely

good for some well-behaved convex problems, such as the Second-Order Conic Problems.

Specific numerical solutions are provided in order to better explain the advantages of ap-

propriate numerical optimisation methods chosen to solve various risk transfer problems.

The stability issues are also investigated together with a case study performed for an

insurance group that aims capital efficiency across the entire organisation.

Keywords and phrases: Linear Programming, Optimal Reinsurance/Risk Transfer, Risk

Measure, Second-Order Conic Programming.
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1. Introduction

Various actuarial problems involve decision-making procedures that evaluate the most favourable risk

position of an insurance company. For example, capital efficiency and asset/liability management are

part of the Enterprise Risk Management Process of any insurance/reinsurance conglomerate and serve

as quantitative methods to fulfill the strategic planning within the organisation. The decision-makers are

prone to combine expert judgment with core quantitative methods, which involve numerical optimisation

and often, intensive computing skills. Therefore, many optimisation problems are not practically imple-

mentable in a straightforward manner to practitioners and academics that are not operation research

inclined. Unfortunately, numerical issues are anecdotally disregarded and for this reason, we aim to

implement optimisation algorithms that are hardly accessible to non-specialists in this field. In order to

better communicate the advantages and caveats of possible solutions, we plan to focus on optimal risk

transfer problems, but the numerical methods are transferrable skills when implementing other actuarial

problems.

Consider a two-player insurance setting where the first player is the risk holder who transfers a portion

of its risk to the second player. At the same time, the second player charges the first player to cover its cost

of transfer. This setting includes a very common risk transfer, known as reinsurance, where the two players

are known as the insurer and the reinsurer respectively; the transfer cost is known as the reinsurance

premium. The primary aim of optimal reinsurance design is to find the ‘best’ trade-off between risk-

bearing and profit-earning. The Stop-Loss reinsurance contract is optimal when minimising the variance

of an insurer’s retained risk is considered (see Borch, 1960) or when maximising the expected utility of

insurer’s final wealth (see Arrow, 1963). After the two pioneering works, optimal reinsurance problems

have been widely studied in various settings. For example, Gajek and Zagrodny (2000) and Kaluszka (2001

and 2004) have studied the variance-minimisation problem with premium principles including standard

deviation premium principle and mean-variance premium principle. In recent years, the risk-measure

based optimal reinsurance model has received vast attention. Two commonly used risk measures, Value-

at-risk (VaR) and Conditional Value-at-risk (CVaR), are treated by Cai and Tan (2007), Cai et al. (2008),

Cheung (2010), Asimit et al. (2013c) and Cui et al. (2013). On the other hand, optimal reinsurance

problems modeled with multiple risks or counterparty default risks are investigated by Bernard and

Ludkovski (2012), Cai and Wei (2012), Asimit et al. (2013a) and Cai et al. (2014).

As anticipated, a risk transfer is not always made in between two players, which is possible if multiple

reinsurance players accept to share the risk with one insurer or a pool of insurers. Alternatively, one

can place this risk sharing problem in the context of an insurance group that intends to achieve capital

efficiency (see Asimit et al., 2013b and Asimit et al., 2016). This standard risk management tool aims

to reduce the capital requirements for an insurance group that has multiple legal entities with specific

regulatory requirements, where many economic constraints are usually imposed internally and externally.

The problem is not tractable in closed-form solutions due its complexity, and therefore, it is rarely

discussed in the literature.

So far, the omnipresent model risk, i.e. the risk of choosing a wrong model, has been fashionably

ignored; data scarcity is a common problem in practice, which is a standard source for model error. The
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same problem arises if data do not reflect the future predictions, especially in extreme scenarios where

expert opinion is the usual choice for practitioners. In any of these cases, the underlying model is not

unknowable, but unknown, and the decision-maker is exposed to a higher level of uncertainty when robust

decisions are sought. Robust optimisation is precisely the standard method that helps in reducing the

model risk and it has been translated in the optimal reinsurance context by Balbás et al. (2015) and

Asimit et al. (2016). At a superficial level, one may think that the risk level increases as a result of

conservative/robust decisions, which in fact is not true, since the main aim is to reduce the change in

the chosen decision, if the “true” model would have been known. Thus, this näıve perception is actually

not true for robust optimised decisions and it would be interesting to show how one can take advantage

of computational methods when searching for robust decisions, rather than focusing on model-specific

closed-form solutions.

We have tried to justify, by discussing various strands of research on optimal risk transfers, but beyond

the optimal reinsurance problem, why numerical methods are of interest. Our goal is now to demonstrate

that computations are possible in an efficient manner. In the context of optimal reinsurance design,

the efficiency of the numerical methods is high for some particular convex problems as justified in Tan

and Weng (2014). This excellent paper provides the way forward in solving optimisation problems of

that type when multiple business lines and/or other risks (such as background, counterparty default and

model risks) are included in the model.

The remainder of this paper is organised as follows. Section 2 introduces the background knowledge of

this paper including some key definitions. Formulations of intended optimisation problems are explained

in Section 3. The uncertainty of model choice is discussed by analysing worst-case models in Section 4.

Section 5 provides numerical examples, while the main conclusions of the paper are summarised in

Section 6. All proofs are relegated in Section 7.

2. Background

Consider a two-player (only for simplicity, but further generalisations are possible) insurance setting

where the first player holds m lines of business (LOB) with random risks, denoted as X1, . . . , Xm,

which is defined on a probability space (Ω, E ,P) with Ω ⊆ <+. Assume that for each of the risks Xk,

k ∈M := {1, . . . ,m}, the first insurance player transfers I2k[Xk] to a secondary player, and its remaining

risk becomes I1k[Xk] = Xk − I2k[Xk]. There also exists a cost of transfer denoted by P . Consequently,

the after-transfer risk positions of the two players becomes

m∑
k=1

I1k[Xk] + P and

m∑
k=1

I2k[Xk]− P.

The risk preferences of the first and second player are represented by a risk measure (RM) denoted

as ρ1 and ρ2, respectively. Thus, there is a rationality constraint that both players’ after-transfer risk

position should be no worse than their before-transfer position. That is,

ρ1

(
m∑
k=1

I1k[Xk] + P

)
≤ ρ1

(
m∑
k=1

Xk

)
and ρ2

(
m∑
k=1

I2k[Xk]− P

)
≤ ρ2(0). (2.1)

Here are some properties of a RM that will later be recalled.



4

Definition 2.1. Let (Ω, E ,P) and X be a probability space and a linear space of random variables on Ω,

respectively. A RM ρ : X → < is translation invariant if

ρ(X + a) = ρ(X) + a for any X ∈ X and a ∈ <.

The comonotonic property of ρ requires that ρ
(
X + f(X)

)
= ρ(X) + ρ

(
f(X)

)
for any X ∈ X and

non-decreasing function f .

If ρ1 and ρ2 have the translation invariant property, the rationality constraints in (2.1) become

max

{
P , ρ2

(
m∑
k=1

I2k[Xk]

)}
≤ P ≤ min

{
P , ρ1

(
m∑
k=1

Xk

)
− ρ1

(
m∑
k=1

I1k[Xk]

)}
, (2.2)

where P is the minimum charge that the second player will agree in a transfer, while P is the maximum

price that the first player is prepared to pay in exchange for a risk transfer.

The set of possible ceding functions must satisfy I1k ∈ I := {f : 0 ≤ f(x) ≤ x}, for all 1 ≤ k ≤ m and

the set of feasible contracts, A consists of elements (I11, . . . , I1m, P ) ∈ Im × <. Alternatively, in order

to avoid potential moral hazard issues, the set of feasible contracts can be defined by Aco consisting of

elements (I11, . . . , I1m, P ) ∈ Imco ×<, where ceding functions are comonotone

Ico := {f : 0 ≤ f(x) ≤ x, f(x) and x− f(x) are non-decreasing in x ∀x}.

The risk transfer cost P is based on the second player’s risk preference and is usually based on another

RM, Π(·) such that

m∑
k=1

Π
(
I2k[Xk]

)
≤ P . Without loss of generality, it is assumed that the second player

has the same preference for all LOBs, but otherwise, the numerical technologies can be easily adapted.

There is a vast literature on RMs and it would be impossible to discuss all of them in one paper, but

we will focus on the most sensible ones that are socially accepted among academics and practitioners:

the classical standard deviation, the class of coherent RMs discussed in the seminal paper of Artzner

et al. (1999) and the well-known VaR. All of these RMs are formally defined now.

Definition 2.2. Let b ∈ <+ and Z be a random risk defined on (Ω, E ,P). The standard deviation RM

is given by ρ(Z) = EZ + b Sd(Z), where Sd(·) is the usual standard deviation.

A RM is law-invariant if the risk measurement is solely based on the risk distribution, i.e. risks equally

distributed are measured with the same exposure and all RMs are assumed to satisfy this property. One

of the most used RMs in practice that is not coherent is VaR. By definition, the VaR of a generic loss

variable Z at a confidence level a, VaRa(Z), is the a%-quantile, i.e.

VaRa(Z) := inf{z ≥ z0 : Pr(Z ≤ z) ≥ a},

where z0 := sup{z ∈ < : Pr(Z ≤ z) = 0} represents the left-end point of the distribution function of Z.

By convention, inf ∅ := +∞ and sup ∅ := −∞. The class of coherent RMs consists of law-invariant RMs

that are monotone, translation invariant, positive homogeneous and sub-additive (for details, see Artzner

et al., 1999). The subclass of coherent RMs that possesses the comonotonic property is known as the

distortion RMs (see Wang et al., 1997).
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Definition 2.3. Let g : [0, 1]← [0, 1] be a distortion function, i.e. non-decreasing and concave function

such that g(0) = 0 and g(1) = 1. Denote φ(·) := g
′
(1−·). Then a distortion RM has the following

representation ρg(Z) :=
∫ 1

0
φ(a)VaRa(Z)da, where the random risk Z is on (Ω, E ,P).

Note that the derivative of g is understood as the right derivative, whenever it does exist, which may

not exist for at most a countable set, due to the concavity property of g. A well-known distortion RM is

CVaR with distortion function g(x) = x
1−a ∧ 1, where x ∧ z := min(x, z). CVaR has appeared in various

forms in the literature (see Acerbi and Tasche, 2002), but we prefer using the following representation

CVaRa(Z) := inf
t∈<

{
t+

1

1− a
E(Z − t)+

}
, where (x)+ := max(x, 0), (2.3)

as first defined in Rockafeller and Uryasev (2000), due to its computational advance.

Not all coherent RMs are comonotonic, and a large parametric subclass of coherent RMs that are not

comonotonic is introduced by Fischer (2003) as follows:

Ψα(Z) := EZ + λ
(
E(Z − EZ)α+

)1/α
with 0 ≤ λ ≤ 1, 1 ≤ α ≤ ∞,

where α =∞ in the above is read as EZ + λ
(
V aR1(Z)− E(Z)

)
.

3. Empirical Risk Transfer Models

This section first describes the main optimal risk transfer problem to be solved by using our numerical

methods. We further explain the one LOB case and extend these results for the multiple LOBs by

providing formulations that can be implemented and solved in an efficient manner.

3.1. Main optimisation problem. The main problem that we propose to investigate is the weighted

average of two insurance players under various economic and/or rationality constraints like (2.2); its

mathematical formulation is as follows:

min
(I11,...,I1m)∈
A or Aco; P∈<

{
δ1ρ1

(
m∑
k=1

I1k[Xk]+ P

)
+δ2ρ2

(
m∑
k=1

(
Xk − I1k[Xk]

)
− P

)}

s.t.

m∑
k=1

Π
(
Xk − I1k[Xk]

)
≤ P, P ≤ P ≤ P , (3.1)

ρ1

(
m∑
k=1

I1k[Xk]

)
+ P ≤ ρ1

(
m∑
k=1

Xk

)
, ρ2

(
m∑
k=1

(
Xk − I1k[Xk]

))
≤ P.

where δ1, δ2 ≥ 0. The above contains the risk sharing problems, where the players cooperate to reduce

their risks, known as Pareto efficient transfers, and under certain conditions, the set of these transfers

are as given in the above-mentioned problem (see, for example, Aase 2002). The risk sharing problem

may require to optimise over Aco if the moral hazard is highly likely. Risk transfers within an insurance

group do not involve moral hazard, since each legal entity is owned in a certain proportion by the

same owner, and therefore, the feasibility set is A. Setting, (δ1, δ2) equal to (1, 0) or (0, 1), then (3.1)

becomes a standard optimal reinsurance contract evaluated from the point of view of the first and second

insurance player, respectively. We believe that formulation (3.1) is a fairly general problem and it worth

investigating.
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The optimisation problem (3.1) has infinite dimension, as one needs to search over all possible ceding

functions of I1k, k ∈ M. This issue can be overcome by reformulating (3.1) into a discretised setting.

Assume that a sample of size n, denoted by xk = (xk1, . . . , xkn)T , is available for Xk, k ∈ M. This is

possible if historical data is available, otherwise, a socially accepted proxy model can be used to draw

those samples. For each observed loss xki, i = 1, . . . , n, we assume that the first player transfers zki and

retains yki := xki− zki. Consequently, the decision variables, I1k, I2k, k ∈M, in (3.1) can be replaced by

vectors yk = (yk1, . . . , ykn)T and zk = (zk1, . . . , zkn)T respectively, and hence, the infinite-dimensional

optimisation problem (3.1) can be translated into the following (n× 2m+ 1)-dimensional problem.

Now, if we optimise over A, the risk transfers should satisfy yk ≤ xk, zk ≤ xk and yk + zk = xk for

all k ∈ M. Recall that the inequality (equality) between two vectors is understood componentwise, i.e.

a ≤ b (a = b) if and only if ai ≤ bi (ai = bi) for all i. For a given k ∈M, an allocation
(
yk, zk

)
of xk is

feasible in Aco if the vectors are increasingly ordered. That is,
0 ≤ yki ≤ xki, 0 ≤ yk,i+1 − yki, ∀i = 1, 2, . . . , n,

0 ≤ zki ≤ xki, 0 ≤ zk,i+1 − zki, ∀i = 1, 2, . . . , n,

yki + zki = xki, ∀i = 1, 2, . . . , n,

or equivalently, 
0 ≤ yki ≤ xki, yk,i+1 − yki ≤ xk,i+1 − xki, ∀i = 1, 2, . . . , n,

0 ≤ zki ≤ xki, zk,i+1 − zki ≤ xk,i+1 − xki, ∀i = 1, 2, . . . , n,

yki + zki = xki, ∀i = 1, 2, . . . , n.

The latter could be written as follows:

Ayk ≤ Axk,Azk ≤ Axk,yk + zk = xk,

where the n× n matrix A is defined by

A :=


1 0 · · · 0

−1 1 · · · 0

. . .
. . .

0 0 · · · 1

 .

Various problems that we further investigate are convex and reducible to Second Order Conic Program-

ming (SOCP). SOCP problems are convex optimization problems in which a linear function is minimised

over the intersection of various second-order (quadratic) cones. The standard form of SOCP has the

following representation

min
x

{
aT1 x

}
s.t. ‖Blx + bl‖ ≤ cTl x + dl, l = 1, . . . , L, Bx = a2,

where a1 ∈ Rn, Bl ∈ Rnl×n, bl ∈ Rnl , cl ∈ Rn, dl ∈ R, B ∈ Rp×n, a2 ∈ Rp. In addition, ‖·‖ represents

the Euclidean distance, i.e. ‖x‖ :=

(
n∑
i=1

x2i

)1/2

. A more concise introduction and summary on SOCP

can be found in the Appendix of Tan and Weng (2014).

SOCP problems have received considerable attention from researchers due to its wide range of applica-

tions (see Lobo et al., 1998, and Alizadeh and Goldfarb, 2003) and very efficient primal-dual interior-point
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methods that have been developed for such optimisation problems. The study of primal-dual interior

point methods for SOCP problems started with Nesterov and Todd (1997, 1998). These authors presented

their results in the context of optimisation over self-scaled cones, which includes the class of second-order

cones as a special case. Their work culminated in the development of a particular primal-dual method

called the NT method. Adler and Alizadeh (1995) studied the relationship between semi-definite prob-

lems, SOCP and the specialised so-called XZ + ZX method of Alizadeh et al. (1998) to SOCP. Then,

Alizadeh and Schmieta (1997) gave non-degeneracy conditions for SOCP and developed a numerically

stable implementation of the XZ + ZX method; this implementation is used in the SDPpack software

package. Subsequently, Monteiro and Tsuchiya (2000) proved that this method, and hence, all members

of the Monteiro-Zhang family of methods, have a polynomial iteration complexity. The computational ef-

fort of solving SOCP with a standard form is O
(
L1/2

)
iterations of O

(
n2
∑
nl
)

in the case of primal-dual

interior-point method. In practice, the special structure (e.g., sparsity) often allows solving the SOCP

more efficiently. There are now several packages available that may handle SOCP problems such as the

SDPpack package noted above and the Sturm’s SeDuMi, which is another widely available package that

is based on the Nesterov-Todd method.

Because of SOCP’s broad applicability and computational tractability, there are many studies showing

classes of optimisation problems that could be reformulated as SOCP problems. Although it may be

possible to formulate an optimisation problem as an SOCP, the task may be far from being trivial. For

example, problems with hyperbolic constraints are SOCP representable by using the fact that a constraint

of the form

wTw ≤ xy, where w ∈ <n, x, y ∈ <+,

is equivalent to the following second-order cone constraint∥∥∥∥∥∥
 2w

x− y

∥∥∥∥∥∥ ≤ x+ y.

For further details about transforming many kinds of constraints into second-order cone inequalities, we

refer the reader to Lobo et al. (1998) and Alizadeh and Goldfarb (2003).

The RMs in (3.1) are replaced by their sample estimators. Let Z be a discrete random variable with

possible outcomes {z1, . . . , zn}, each having the same chance to occur. Thus, the standard deviation RM

from Definition 2.2 is replaced by its unbiased estimator, 1
n1T z + b ‖Qz‖√

n−1 , where the n × n matrix Q is

defined as

Q :=


1− 1

n − 1
n · · · − 1

n

− 1
n 1− 1

n · · · − 1
n

...
...

. . .
...

− 1
n − 1

n · · · 1− 1
n

 .

By definition, 0 and 1 are column vectors of zeros and ones, respectively, where the dimension is not

explicitly given. The unbiased estimator is advisable for relatively large values of n, while the biased

estimator (with
√
n− 1 replaced by

√
n) is more appropriate for small n.

The VaR and all other distortion RMs dependent on the ordering of zi’s. Let z(1) ≤ z(2) ≤ . . . ≤ z(n)

be the order statistics sample. Then, the VaR-estimator for VaRa(Z) is z(dnae) with d·e being the ceiling
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function. Now, distortion RMs are a tad more cumbersome and its computational complexity largely

depends on whether or not the sample is ordered. That is, if the sample is increasingly ordered, z(i) = zi

for all 1 ≤ i ≤ n, then

ρg(Z) =

n∑
i=1

(
g
(
(n− i+ 1)/n

)
− g
(
(n− i)/n

))
zi. (3.2)

Otherwise,

ρg(Z) =

n∑
i=1

(
g
(
(n− i+ 1)/n

)
− g
(
(n− i)/n

))
z(i)

=

n∑
i=1

(
g
(
(n− i+ 1)/n

)
− g
(
(n− i)/n

))(
(n− i+ 1)CVaR(i−1)/n(Z)− (n− i)CVaRi/n(Z)

)

= b0 1T z +

n−1∑
i=1

bi CVaRi/n(Z),

where b0 = 1− g
(
(n− 1)/n

)
and bi = (n− i)

(
2g
(
(n− i)/n

)
− g
(
(n− i+ 1)/n

)
− g
(
(n− i− 1)/n

))
for

all 1 ≤ i ≤ n− 1.

3.2. One LOB case. It is first assumed that m = 1 in order to elaborate the simplest (3.1)-type

optimisation problems that one may have. Recall that ordered samples simplify the estimators that are

based on VaR or any other distortion RM.

Problem 3.1. Assume that (3.1) is optimised over Aco and without loss of generality x1 is assumed to

be increasingly ordered. Moreover, ρ1(·) = VaRa(·), ρ2(·) = E(·) + b Sd(·) and Π(·) = ρg(·). Therefore,

the following optimisation problem needs to be solved:

min
(y1,z1,P )∈
<n×<n×<

{
(δ1 − δ2)P + δ1y1a∗ + δ2

(
1

n
1T z1 + b

‖Qz1‖√
n− 1

)}

s.t.
1

n
1T z1 + b

‖Qz1‖√
n− 1

≤ P, P ≤ P ≤ P , (3.3)

y1a∗ + P ≤ x1a∗ , aT z1 ≤ P,

Ay1 ≤ Ax1,Az1 ≤ Ax1,y1 + z1 = x1,

where a∗ = dnae is a scalar and ai = g
(
(n−i+1)/n

)
−g
(
(n−i)/n

)
for all 1 ≤ i ≤ n due to equation (3.2).

It is not difficult to show that Problem 3.1 is in fact of the SOCP-type. One may show (as explained

in the beginning of the proof of Theorem 3.1) that (3.3) is solved by

min
(y1,z1,P,t)∈
<n×<n×<×<

{
(δ1 − δ2)P + δ1y1a∗ + δ2

(
1

n
1T z1 +

bt√
n− 1

)}
s.t.

1

n
1T z1 +

bt√
n− 1

≤ P, P ≤ P ≤ P ,

y1a∗ + P ≤ x1a∗ , aT z1 ≤ P, ‖Qz1‖ ≤ t,

Ay1 ≤ Ax1,Az1 ≤ Ax1,y1 + z1 = x1.

Problem 3.1 can be easily adapted when ρ1 is a distortion RM, since y1 is increasingly ordered and thus,

its contribution is just a linear function due to (3.2).
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Problem 3.2. Assume that (3.1) is optimised over A and without loss of generality x1 is assumed to be

increasingly ordered. Moreover, ρ1(·) = CVaRa(·), ρ2(·) = E(·) + b Sd(·) and Π(·) = ρg(·). Therefore,

the following optimisation problem needs to be solved:

min
(y1,z1,P )∈
<n×<n×<

{
(δ1 − δ2)P + δ1 min

s1∈<

{
s1 +

1

n(1− a)
1T (y1 − s11)+

}
+ δ2

(
1

n
1T z1 + b

‖Qz1‖√
n− 1

)}
(3.4)

s.t.
1

n
1T z1 + b

‖Qz1‖√
n− 1

≤ P, P ≤ P ≤ P ,

min
s1∈<

{
s1 +

1

n(1− a)
1T (y1 − s11)+

}
+ P ≤ CVaRa(X1),

b01
T z1 +

n−1∑
i=1

bi min
ci∈<

{
ci +

1

n− i
1T (z1 − ci1)+

}
≤ P,

y1 ≤ x1, z1 ≤ x1,y1 + z1 = x1,

where CVaRa(X1) is a scalar and it can be found via (3.2).

Theorem 3.1 shows that Problem 3.2 can be reduced to an SOCP representation and its proof is

relegated to Section 7.

Theorem 3.1. If δ1 > δ2 > 0, then Problem 3.2 is solved by the following SOCP:

min
(y1,z1,u1,w,P,s1,r1,t,e,c)∈<n×<n×<n

×<n×(n−1)×<×<×<×<×<n−1×<n−1

{
(δ1−δ2)P+δ1r1+δ2

(
1

n
1T z1+

bt√
n−1

)}

s.t.
1

n
1T z1 +

bt√
n− 1

≤ P, P ≤ P ≤ P , ‖Qz1‖ ≤ t, (3.5)

s1 +
1

n(1− a)
1Tu1 ≤ r1, 0 ≤ u1, y1 − s11 ≤ u1,

r1 + P ≤ CVaRa(X1), b01
T z1 +

n−1∑
i=1

biei ≤ P,

ci +
1

n− i
1Twi ≤ ei, 0 ≤ wi, z1 − ci1 ≤ wi, ∀i = 1, . . . , n− 1,

y1 ≤ x1, z1 ≤ x1,y1 + z1 = x1.

The case in which 0 < δ1 = δ2 is not covered by Theorem 3.1 and a different reformulation is needed.

It is not difficult to find that the optimisation problem (3.4) becomes in this setting as follows:

min
(y1,z1)∈<n×<n

{
min
s1∈<

{
s1 +

1

n(1− a)
1T (y1 − s11)+

}
+

(
1

n
1T z1 + b

‖Qz1‖√
n− 1

)}
(3.6)

s.t. max

{
P ,

1

n
1T z1 + b

‖Qz1‖√
n− 1

, b01
T z1 +

n−1∑
i=1

bi min
ci∈<

{
ci +

1

n− i
1T (z1 − ci1)+

}}

≤ min

{
P ,CVaRa(X1)− min

s1∈<

{
s1 +

1

n(1− a)
1T (y1 − s11)+

}}
,

y1 ≤ x1, z1 ≤ x1,y1 + z1 = x1,
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while the optimal P is any value that satisfies the first constraint. Then, (3.6) is solved by the following

SOCP:

min
(y1,z1,u1,w,s1,r1,t,e,c)∈<n×<n×<n

×<n×(n−1)×<×<×<×<n−1×<n−1

{
r1+

(
1

n
1T z1+

bt√
n−1

)}

s.t. s1 +
1

n(1− a)
1Tu1 ≤ r1, 0 ≤ u1, y1 − s11 ≤ u1, ‖Qz1‖ ≤ t, (3.7)

s1 +
1

n(1− a)
1Tu1 ≤ CVaRa(X1)− P ,

s1 +
1

n(1− a)
1Tu1 +

1

n
1T z1 +

bt√
n− 1

≤ CVaRa(X1),

s1 +
1

n(1− a)
1Tu1 + b01

T z1 +

n−1∑
i=1

biei ≤ CVaRa(X1),

1

n
1T z1 +

bt√
n− 1

≤ P , b01T z1 +

n−1∑
i=1

biei ≤ P ,

ci +
1

n− i
1Twi ≤ ei, 0 ≤ wi, z1 − ci1 ≤ wi, ∀i = 1, . . . , n− 1,

y1 ≤ x1, z1 ≤ x1,y1 + z1 = x1.

The latter equivalence could be proved in a similar manner as Theorem 3.1 is justified and therefore, its

proof is left to the reader.

Unfortunately, the 0 < δ1 < δ2 case makes the Problem 3.2 not tractable. The lack of convexity leads

only to reformulations that are not computationally efficient and for this reason, we do not further discuss

such a setting. In fact, all the remaining optimisation problems assume that δ1 > δ2 > 0, but one could

follow the same reasons as used in the reformulation (3.7), whenever the 0 < δ1 = δ2 setting is in place.

It would be interesting to point out that solving Problem 3.2 over Aco is a tad simpler. Thus, if x1

and y1 are increasingly ordered, then Problem 3.2 is simplified to solving:

min
(y1,z1,P )∈
<n×<n×<

{
(δ1 − δ2)P +

δ1
n(1−a)

(
(a∗−na)y1a∗+

n∑
i=a∗+1

y1i

)
+ δ2

(
1

n
1T z1 + b

‖Qz1‖√
n− 1

)}

s.t.
1

n
1T z1 + b

‖Qz1‖√
n− 1

≤ P, P ≤ P ≤ P ,

1

n(1− a)

(
(a∗ − na)y1a∗ +

n∑
i=a∗+1

y1i

)
+ P ≤ CVaRa(X1),

b01
T z1 +

n−1∑
i=1

bi min
ci∈<

{
ci +

1

n− i
1T (z1 − ci1)+

}
≤ P,

0 ≤ Ay1, y1 ≤ x1, y1 + z1 = x1.
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As before, the above is solved by the following SOCP:

min
(y1,z1,w,P,t,e,c)∈<n×<n

×<n×(n−1)×<×<×<n−1×<n−1

{
(δ1−δ2)P+

δ1
n(1−a)

(
(a∗−na)y1a∗+

n∑
i=a∗+1

y1i

)
+δ2

(
1

n
1T z1+

bt√
n−1

)}

s.t.
1

n
1T z1 +

bt√
n− 1

≤ P, P ≤ P ≤ P , ‖Qz1‖ ≤ t, b01T z1+

n−1∑
i=1

biei≤P,

1

n(1−a)

(
(a∗−na)y1a∗+

n∑
i=a∗+1

y1i

)
+P ≤CVaRa(X1),

ci +
1

n− i
1Twi ≤ ei, 0 ≤ wi, z1 − ci1 ≤ wi, ∀i = 1, . . . , n− 1,

0 ≤ Ay1, y1 ≤ x1, y1 + z1 = x1,

where the proof is once again left to the reader, since it requires similar arguments as we have seen before.

Problem 3.3. Assume that (3.1) is optimised over A and the moral hazard is only removed for the first

player. Thus, without loss of generality x1 and y1 are assumed to be increasingly ordered. Moreover,

ρ1(·) = VaRa(·), ρ2(·) = E(·) + b Sd(·) and Π(·) = ρg(·). Therefore, the following optimisation problem

needs to be solved:

min
(y1,z1,P )∈
<n×<n×<

{
(δ1 − δ2)P + δ1y1a∗+δ2

(
1

n
1T z1+b

‖Qz1‖√
n−1

)}

s.t.
1

n
1T z1 + b

‖Qz1‖√
n− 1

≤ P, P ≤ P ≤ P , y1a∗+P ≤ x1a∗ ,

b01
T z1 +

n−1∑
i=1

bi min
ci∈<

{
ci +

1

n− i
1T (z1 − ci1)+

}
≤ P,

0 ≤ Ay1, y1 ≤ x1, y1 + z1 = x1,

which can be solved efficiently as shown in Theorem 3.2.

Theorem 3.2. If δ1 > δ2 > 0, then Problem 3.3 is solved by an SOCP given by:

min
(y1,z1,w,P,t,e,c)∈<n×<n

×<n×(n−1)×<×<×<n−1×<n−1

{
(δ1 − δ2)P + δ1y1a∗+δ2

(
1

n
1T z1+

bt√
n−1

)}

s.t. ‖Qz1‖ ≤ t,
1

n
1T z1 +

bt√
n− 1

≤ P, P ≤ P ≤ P ,

b01
T z1 +

n−1∑
i=1

biei ≤ P, y1a∗+P ≤ x1a∗ ,

ci +
1

n− i
1Twi ≤ ei, 0 ≤ wi, z1 − ci1 ≤ wi, ∀i = 1, . . . , n− 1,

0 ≤ Ay1, y1 ≤ x1, y1 + z1 = x1.

The next setting aims to illustrate how to deal with non-comonotone RMs and we choose those defined

by Fischer (2003).

Problem 3.4. Assume that (3.1) is optimised over A and the moral hazard issues are removed from the

first player’s behaviour. Therefore, without loss of generality x1 and y1 are assumed to be increasingly
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ordered. Moreover, ρ1(·) = VaRa(·), ρ2(·) = E(·) + b Sd(·) and Π(·) = Ψα(·). Therefore, the following

optimisation problem needs to be solved:

min
(y1,z1,P )∈
<n×<n×<

{
(δ1 − δ2)P + δ1y1a∗+δ2

(
1

n
1T z1+b

‖Qz1‖√
n−1

)}

s.t.
1

n
1T z1 + b

‖Qz1‖√
n− 1

≤ P, P ≤ P ≤ P , y1a∗+P ≤ x1a∗ ,

1

n
1T z1 + λ

(
1

n

n∑
i=1

(
z1i −

1

n
1T z1

)α
+

)1/α

≤ P,

0 ≤ Ay1, y1 ≤ x1, y1 + z1 = x1.

Problem 3.4 can be efficiently solved if α ∈ {1, 2} and the corresponding reformulations are given in

Theorem 3.3.

Theorem 3.3. Assume that δ1 > δ2 > 0. If α = 1, then Problem 3.4 is solved by the following SOCP:

min
(y1,z1,P,t,u)∈

<n×<n×<×<×<n

{
(δ1 − δ2)P + δ1y1a∗+δ2

(
1

n
1T z1+

bt√
n−1

)}
s.t. ‖Qz1‖ ≤ t,

1

n
1T z1 +

bt√
n− 1

≤ P, P ≤ P ≤ P ,

1

n
1T z1 +

λ

n

n∑
i=1

ui ≤ P, y1a∗+P ≤ x1a∗ ,

0 ≤ ui, z1i −
1

n
1T z1 ≤ ui, ∀i = 1, . . . , n,

0 ≤ Ay1, y1 ≤ x1, y1 + z1 = x1.

If α = 2, then Problem 3.4 is solved by an SOCP given by:

min
(y1,z1,P,t,u)∈

<n×<n×<×<×<n

{
(δ1 − δ2)P + δ1y1a∗+δ2

(
1

n
1T z1+

bt√
n−1

)}
s.t. ‖Qz1‖ ≤ t,

1

n
1T z1 +

bt√
n− 1

≤ P, P ≤ P ≤ P ,

1

n
1T z1 +

λ

n
‖u‖ ≤ P, y1a∗+P ≤ x1a∗ ,

0 ≤ u, z1 −
1

n
1T z11 ≤ u, ∀i = 1, . . . , n,

0 ≤ Ay1, y1 ≤ x1, y1 + z1 = x1.

3.3. Multiple LOBs case. When the insurance players have more then one LOB, the numerical methods

are similar to what we have seen earlier. For the ease of exposition, assume now that m = 2. Unfortu-

nately, even if xk, yk and zk are increasingly ordered for k = 1, 2, none of x1 + x2, y1 + y2 or z1 + z2 are

ordered. Therefore, unlike the one LOB case, the empirical representation of V aR with multiple LOBs

cannot be written as a linear function of decision variables even if the optimisation problem is solved

over Aco. In fact, if ρ1 or ρ2 is VaR, our model (3.1) becomes a non-convex optimisation problem, and

hence, it cannot be reduced to an SOCP and requires special algorithms such as the Difference of Convex

Functions Algorithm (DCA). The DCA can be applied to solve a wide class of non-convex problems whose
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non-convex component can be written as a difference of two convex functions (including VaR). In techni-

cal terms, iterations between the primal space and the dual space finally lead to a convergence (see Tao

and An, 1998). The DCA has not been used in the actuarial literature, but has been successfully applied

by Wozabal et al. (2010) in the classical portfolio investment optimisation. However, as emphasised in

Tao and An (1998), the nature of the optimum obtained from DCA depends on the starting point chosen

by the algorithm, and hence, it is not computationally efficient in solving our optimisation model (3.1)

and we choose not to provide details on them..

Problem 3.5. Assume that ρ1(·) = CVaRa(·), ρ2(·) = E(·) + b Sd(·) and Π(·) = ρg(·). Moreover,

the portfolio consists of two independent LOBs and (3.1) is optimised over A. Therefore, the following

optimisation problem needs to be solved:

min
(y1,y2,z1,z2,P )∈

<n×<n×<n×<n×<

{
(δ1−δ2)P+δ1 min

s∈<

{
s+

1

n(1−a)
1T (y1+y2−s1)+

}

+δ2

(
1

n
1T (z1+z2)+b

√
‖Qz1‖2 +‖Qz2‖2

n− 1

)}

s.t.
1

n
1T (z1+z2)+b

√
‖Qz1‖2 +‖Qz2‖2

n− 1
≤ P, P ≤ P ≤ P ,

min
s∈<

{
s+

1

n(1−a)
1T (y1+y2−s1)+

}
+P ≤ CVaRa(X1+X2),

b01
T (z1 + z2) +

n−1∑
i=1

bi min
ci∈<

{
ci +

1

n− i
1T (z1 + z2 − ci1)+

}
≤ P,

yk ≤ xk, zk ≤ xk,yk + zk = xk, k ∈ {1, 2},

where CVaRa(X1 +X2) is a scalar and it can be found via (3.2).

Theorem 3.4. If δ1 > δ2 > 0, then Problem 3.5 is solved by the following SOCP:

min
(y1,y2,z1,z2,u,w,P,s,r,t,e,c)∈<n×<n×<n×<n

×<n×<n×(n−1)×<×<×<×<×<n−1×<n−1

{
(δ1−δ2)P+δ1r+δ2

(
1

n
1T (z1+z2)+

bt√
n−1

)}

s.t.
1

n
1T (z1+z2)+

bt√
n−1

≤P, P ≤P ≤P , ‖Q̂z12‖≤ t,

s+
1

n(1− a)
1Tu ≤ r, 0 ≤ u, y1 + y2 − s1 ≤ u,

r + P ≤ CVaRa(X1 +X2), b01
T (z1 + z2) +

n−1∑
i=1

biei ≤ P,

ci +
1

n− i
1Twi ≤ ei, 0 ≤ wi, z1 + z2 − ci1 ≤ wi, i = 1, . . . , n− 1,

yk ≤ xk, zk ≤ xk,yk + zk = xk, k ∈ {1, 2},

where zT12 = (zT1 , z
T
2 ) and Q̂ is an 2n× 2n block matrix given by:

Q̂ :=

 Q 0

0 Q

 .
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As a final note, recall that y1 + y2 is not ordered, even if y1 and y2 are increasingly ordered. Conse-

quently, further simplifications to Problem 3.5 (when optimisation is made over Aco) are not possible in

the same way that we have found for Problem 3.2.

4. Robust Optimisation

It has been assumed throughout Section 3 that xk, k ∈M, is drawn from a proxy model. In general,

uncertainty related to the underlying probability measure corresponding to the proxy model exists, and

there may be many possible choices to model the corresponding probabilities. It is assumed in the current

section that the buyer’s and seller’s set of beliefs (about the underlying probability measure) belong to

{P1, . . . ,PN}. That is, the buyer and seller model the uncertainty in a way that their risk measurements

are calculated with respect to some index sets S1,S2 ⊆ {1, . . . , N}, which is indicated by

ρ1
(
·;Pi

)
and ρ2

(
·;Pj

)
with i ∈ S1, j ∈ S2.

Let pikl := Pi
(
Xk = xkl

)
, xk =

(
xk1, . . . , xkn

)T
and pik =

(
pik1, . . . , pikn

)T
. Note that pik = 1

n1, i.e. Pi
is the empirical distribution where each possible outcome {xk1, xk2, . . . , xkn} has the same chance to occur.

That is, the proxy model assumed throughout Section 3 is a potential candidate of P ∈ {P1,P2, . . . ,PN}.
Models other than the empirical distribution can be obtained by discritising various fitted models. For

example, let Fi(·) = Pi(Xk ≤ ·) with k ∈ M denoting the cumulative distribution function (cdf ) of Xk

under Pi, then

pikl = Fi

(
xk,l+1 + xkl

2
; ν̂

)
− Fi

(
xkl + xk,l−1

2
; ν̂

)
for all i = 1, 2, . . . , N, k ∈M and l = 1, 2, . . . , n,

where ν̂ is the set of parameter estimates obtained via various estimation methods such as the Maximum

Likelihood estimation. By convention, xk0 = −∞ and xk,n+1 = +∞. More details about the construction

of candidate models can be found in Asimit et al. (2017). The LOBs are assumed to be independent

of each other, which helps us to write the model in a simpler way, but the lack of independence does

not create additional computational effort. Thus, instead of solving the optimisation problem (3.1), the

following worst-case model is proposed:

min
(I11,...I1m)∈
A or Aco; P∈<

max
(i,j)∈
S1×S2

{
δ1ρ1

(
m∑
k=1

I1k[Xk]+P ;Pi

)
+δ2ρ2

(
m∑
k=1

(
Xk−I1k[Xk]

)
−P ;Pj

)}
(4.1)

s.t. max
l∈S2

m∑
k=1

Π
(
Xk − I1k[Xk];Pl

)
≤ P, P ≤ P ≤ P ,

ρ1

(
m∑
k=1

I1k[Xk];Pi

)
+ P ≤ ρ1

(
m∑
k=1

Xk

)
, ∀i ∈ S1,

ρ2

(
m∑
k=1

(
Xk − I1k[Xk]

)
;Pj

)
≤ P, ∀j ∈ S2.

More details about the worst-case formulation, its advantages and caveats can be found in Asimit et al.

(2017). Recall that without loss of generality, sample sizes are the same amongst all LOBs, an assumption

that enables reduction in the notation abuse that we inevitably rely on during this paper.

Before giving some examples of (4.1) we need to define the risk measurements under various probability

measure Pi, i = 1, . . . , N . Let Z be a generic discrete random variable with possible outcomes {z1, . . . , zn}
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such that P(Z = zl) = pl. One may show that the standard deviation under P is

Sd
(
Z;P

)
= ‖Q̃z‖, where q̃l1l2 =

√
pl1
(
1{l1=l2} − pl2

)
for all 1 ≤ l1, l2 ≤ n,

where by definition, 1A represents the indicator operator corresponding to set A that equals to 1 if A

is true and 0 otherwise. Recall that when we work with the empirical measure, i.e. pi = 1/n for all

1 ≤ i ≤ n, then standard deviation has a correction factor of
√
n/(n− 1) in order to recover the use

of the standard sample variance unbiased estimator, which appears in all examples from Section 3. The

correction factor is advisable for reasonable sized samples and not for small samples. The current section

discusses robust formulations and therefore, it is expected to be in a situation where data scarcity is

present; the correction factor does not further appear in the case of empirical probability measure. Thus,

the standard deviation RM of Xk under Pi is given by

pTikxk + b‖Q̃ikxk‖, where q̃l1l2ik =
√
pikl1

(
1{l1=l2} − pikl2

)
for all 1 ≤ l1, l2 ≤ n.

The CVaR formulation from (2.3) now becomes

CVaRa

(
Xk;Pi

)
= inf
t∈<

{
t+

1

1− a
pTik
(
xk − t1

)
+

}
.

Other distortion RMs than CVaR depend on the knowledge of sample ordering. Whenever the sample is

known to be in ascending order, we may write

ρg
(
Xk;Pi

)
=

n∑
l=1

(
g

(
1−

l−1∑
s=1

piks

)
− g

(
1−

l∑
s=1

piks

))
xkl.

If there is no piece of information regarding the sample ordering, then distortion risk measures are more

cumbersome and for this reasons, this section avoids dealing with non ordered samples when distortion

risk measures other than CVaR are involved.

4.1. One LOB case. The case in which there is one single LOB, i.e. m = 1, is not difficult and not

very different than the their non-robust counterpart. To make our point, only one example is discussed

in details and is given by Problem 4.1.

Problem 4.1. Assume that (4.1) is optimised over Aco and without loss of generality, x1 is assumed to

be increasingly ordered. Moreover, ρ1(·) = ρg(·), ρ2(·) = E(·) + b Sd(·) and Π(·) = (1 + θ)E(·), θ > 0,

implying the following optimisation:

min
(y1,z1,P )∈
<n×<n×<

max
(i,j)∈
S1×S2

{
(δ1 − δ2)P + δ1ã

T
i1y1 + δ2

(
pTj1z1 + b‖Q̃j1z1‖

)}
s.t. max

l∈S2

{
pTl1z1

}
≤ P

1 + θ
, P ≤ P ≤ P ,

ãTi1y1 + P ≤ ãTi1x1, ∀i ∈ S1,

pTj1z1 + b‖Q̃j1z1‖ ≤ P, ∀j ∈ S2,

Ay1 ≤ Ax1, Az1 ≤ Ax1, y1 + z1 = x1,

where ãi1 := (ai11, . . . , ai1n)T with ai1l = g

(
1−

l−1∑
s=1

piks

)
− g

(
1−

l∑
s=1

piks

)
for all 1 ≤ l ≤ n.
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We are now able to transform the above into an SOCP that can be efficiently solved using standard

commercial solvers.

Theorem 4.1. If δ1 > δ2 > 0, then Problem 4.1 is solved by

min
(y1,z1,P,r,t1)∈

<n×<n×<×<×<m

r

s.t. (δ1−δ2)P+δ1ã
T
i1y1+δ2

(
pTj1z1+btj1

)
≤ r, ∀(i, j)∈ S1×S2,

ãTi1y1 + P ≤ ãTi1x1, P ≤ P ≤ P , ‖Q̃j1z1‖ ≤ tj1, ∀(i, j) ∈ S1 × S2,

pTj1z1 + btj1 ≤ P, pTj1z1 ≤
P

1 + θ
, ∀j ∈ S2,

Ay1 ≤ Ax1, Az1 ≤ Ax1, y1 + z1 = x1,

where m = |S2| is the cardinality of S2.

4.2. Multiple LOBs case. Robust optimisation with multiple LOBs is a difficult problem when dealing

with distortion RMs since the ordering is not preserved when summing the risks. The mathematical for-

mulation of the latter statement is that
(
X1+Y1, X+Y

)
may not be a comonotone vector even if

(
X1, X

)
and

(
Y1, Y

)
are comonotone vectors. Reformulations are possible, though a tad more cumbersome than

what we have seen by now, if CVaR is not used to order the buyer and/or seller risk preferences. Once

again, for the ease of exposition, it is assumed an insurance portfolio consisting of two LOBs, i.e. m = 2.

Problem 4.2. Assume that ρ1(·) = CVaRa(·), ρ2(·) = E(·) + b Sd(·) and Π(·) = (1 + θ)E(·), θ > 0.

Moreover, the portfolio consists of two independent LOBs and (4.1) is optimised over A. Thus, the

following optimisation problem must be solved:

min
(y1,y2,z1,z2,P )∈
<n×<n×<n×<n×<

max
(i1,i2,j1,j2)∈
S1×S1×S2×S2

{
(δ1−δ2)P+δ1 min

s∈<

{
s+

1

1− a
qTi1i2(y1+y2−s1)+

}

+δ2

(
pTj11z1+pTj22z2+b

√
‖Q̃j11z1‖2+‖Q̃j22z2‖2

)}
s.t. max

(l1,l2)∈
S2×S2

{
pTl11z1 + pTl22z2

}
≤ P

1 + θ
, P ≤ P ≤ P ,

min
s∈<

{
s+

1

1− a
qTi1i2(y1+y2−s1)+

}
+P ≤CVaRa

(
X1+X2;Qi1i2

)
, ∀

(
i1, i2

)
∈S1×S1,

pTj11z1+pTj22z2+b
√
‖Q̃j11z1‖2+‖Q̃j22z2‖2 ≤ P, ∀

(
j1, j2

)
∈ S2 × S2,

yk ≤ xk, zk ≤ xk, yk + zk = xk, k ∈ {1, 2},

where the probability measure Qi1i2 assigns the mass as follows

qi1i2 := (qi1i21, . . . , qi1i2n)T with qi1i2l = pi11l × pi22l, ∀1 ≤ l ≤ n.
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Theorem 4.2. If δ1 > δ2 > 0, then Problem 4.2 is solved by the following SOCP:

min
(y1,y2,z1,z2,w,s,e,P,r,t)∈<n×<n×<n×<n

×<n×m2×<m2×<m2×<×<×<

r

s.t. (δ1−δ2)P+δ1ei1i2 +δ2
(
pTj11z1+pTj22z2+bt

)
≤r, ∀(i1, i2, j1, j2)∈S1×S1×S2×S2,

P ≤ P ≤ P , pTl11z1 + pTl22z2 ≤
P

1 + θ
, ∀(l1, l2)∈S2×S2,

ei1i2 +P ≤CV aRa(X1+X2;Qi1i2), si1i2 +
1

1−a
qTi1i2wi1i2≤ei1i2 , ∀(i1, i2) ∈ S1×S1,

0≤wi1i2 ,y1+y2−si1i21≤wi1i2 , ∀(i1, i2) ∈ S1×S1,

pTj11z1+pTj22z2+bt ≤ P, ‖Q̂j1j2z12‖≤ t, ∀(j1, j2) ∈ S2 × S2,

yk ≤ xk, zk ≤ xk, yk + zk = xk, k ∈ {1, 2},

where m = |S1| and Q̂j1j2 is an 2n× 2n block matrix given by:

Q̂j1j2 :=

 Q̃j11 0

0 Q̃j22

 .

5. Numerical Illustrations

The current section is dedicated to providing numerical illustrations related to our previous optimi-

sation problems and not only. We first discuss the stability and consistency of the numerical results in

Subsection 5.1, while Subsection 5.2 focuses on a case study about capital efficiency within an IG.

5.1. Stability and consistency. The main aim is to provide analyses on the stability and consistency

of the empirical results for Problem 3.1. We adopt a procedure which is similar to the one presented

in Tan and Weng (2014). Recall that when we solve the empirical optimisation model (3.3), M = {1}
and for each given sample x1 =

(
x11, . . . , x1n

)T
, we find the optimal solutions y∗1 =

(
y∗11, . . . , y

∗
1n

)T
and

z∗1 =
(
z∗11, . . . , z

∗
1n

)T
. The solutions are called stable if we expect that the optimal solutions y∗1 and z∗1

always have the same functional form for a given x1. Consistency occurs when we expect that y∗1 and

z∗1 converge as the sample size n increases. Since y∗1 + z∗1 = x1, it is only sufficient to study stability and

consistency for z∗1. All optimisations are implemented on a desktop with 4 core Intel i7-3770 at 3.40GHz,

16GB RAM, running Linux x64, MATLAB R2014b, CVX 2.1.

The parametrisation for the Problem 3.1 assumes a Pareto loss X1 with Pr(X1 > x) =
(

2,000
x+2,000

)3
for

all x > 0, δ1 = 0.8, δ2 = 0.2, b = 0.5, P = 0 and P = 5, 000. The scatter plots of z∗1 against x1 are

shown in Figure 5.1 for Pareto loss samples and various sample sizes n. Our first observation is that the

empirical solutions mimics the functional form of z∗1i = x1i ∧ d, where d is a constant for i = 1, . . . , n.

Thus, it is useful to fit c(x1i − d1)+ ∧ c(d2 − d1) based on our data
(
x1i, z

∗
1i

)
for all i = 1, . . . , n and

estimate the three parameters using the Ordinary Least Square (OLS) regression. Note that we expect

the estimates of ĉ and d̂1 to be very close to 1 and 0, respectively. Furthermore, the goodness of fit is

tested by introducing an admissibility criterion. That is, the estimated pair of (ĉ, d̂1, d̂2) is said to be

admissible whenever ∣∣∣z∗1i − ĉ(x1i − d̂1)+ ∧ ĉ(d̂2 − d̂1)∣∣∣ < ε ∀i = 1, . . . , n,

otherwise, the fitted pair of (ĉ, d̂1, d̂2) is said to be inadmissible.
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Figure 5.1. Empirical solutions of z∗1 for Problem 3.1 with Pareto loss and various

sample sizes n.

We draw 1, 000 random samples from X1 for various sample sizes {150, 200, 250, 300, 350, 400, 450, 500}
and estimate the three parameters. Boxplots of those estimates are shown in Figure 5.2. The lower and

upper edge of each box represents respectively the lower and upper quartile, while the short line inside

the box represents the median. The end-point of each whisker represents the minimum or maximum

point estimate that is not an outlier, while outliers are marked as crosses inside the plot. Note that an

outlier is a point estimate which is away from the box for more than 1.5 times the interquartile range.

While Figure 5.2 gives a graphical illustration of (ĉ, d̂1, d̂2), Table 5.1 provides a numerical summary.

The evidence provided by Figure 5.2 and Table 5.1 is overwhelming. First of all, we notice that when

ε = 1%, the admissibility is 100% for all sample sizes. If ε is reduced to 0.1%, admissibility is still

over 92% for all sample sizes. Recall that we expect the estimates of ĉ and d̂1 to be close to 1 and 0,

respectively. The slope estimates are perfect, while a small variation from the null value is observed

for d1. Thus, we can conclude that our empirical results are very stable in terms of the shape of the

functional form of z∗i1 = xi1 ∧ d. Also, we notice that the standard errors are continuously decreasing as

the sample size n increases and therefore, we may conclude the consistency.

Finally, the average run-times for solving Problem 3.1 is summarised in Table 5.2.
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Figure 5.2. Boxplots of fitted ĉ, d̂1 and d̂2 for empirical solutions to Problem 3.1 with

Pareto loss distribution and various sample sizes n.

5.2. Case Study. Consider an Insurance group (IG) with two legal entities (LE), LE1 and LE2. Their

total future liabilities are denoted as X1 and X2, respectively. With the opportunity of risk sharing

amongst the LEs, LE1 transfers I21[X1] to LE2 and retains I11[X1] = X1 − I21[X1], while LE2 transfers

I12[X2] to LE1 and retains I22[X2] = X2 − I12[X2]. Also, assume that both LE1 and LE2 are CVaR-

regulated, and hence, their risk preferences are given by

ρk(·) := E(·) + λk
(
CVaRa(·)− E(·)

)
for k ∈ {1, 2}.

Recall that the CVaR-based risk capital approach is implemented within the Swiss Solvency Test (the reg-

ulatory environment in Switzerland) and our setting is realistic for such IG. This setting aims to produce

capital efficiency for an IG that operates in various insurance markets that are CVaR-regulated or the

regulatory environments that are considered equivalent with the CVaR-based risk capital requirements.
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n
Admissibility

mean of ĉ mean of d̂1 mean of d̂2
(ε = 0.01) (ε = 0.001)

150 100% 96.8% 1.00 (0.00) 4.37 (4.39) 3, 469.7 (661.41)

200 100% 97.7% 1.00 (0.00) 3.20 (2.94) 3, 377.4 (542.61)

250 100% 97.2% 1.00 (0.00) 2.73 (2.67) 3, 457.6 (519.35)

300 100% 96.0% 1.00 (0.00) 2.26 (2.18) 3, 381.3 (449.74)

350 100% 94.6% 1.00 (0.00) 2.07 (2.12) 3, 450.3 (427.89)

400 100% 94.7% 1.00 (0.00) 1.88 (1.87) 3, 401.1 (387.71)

450 100% 94.3% 1.00 (0.00) 1.67 (1.63) 3, 442.7 (381.75)

500 100% 92.7% 1.00 (0.00) 1.56 (1.58) 3, 386.9 (336.63)

Table 5.1. Proportion of admissible fitted solutions based on 1, 000 samples from a

Pareto loss and various sample sizes n. The last three columns summarise the mean

values and standard errors of the estimates.

n 150 200 250 300 350 400 450 500

Time (seconds) 0.90 1.24 2.75 3.33 6.14 7.32 12.59 17.36

Table 5.2. Average run-time for various sample sizes n

For example, Solvency II (the European Union regulatory regime) is a VaR-based environment, but Swiss

Solvency Test and Solvency II are considered equivalent by both parties. An IG has to meet the regula-

tory capital requirements at the IG level (based on the consolidated balance sheet) and at the individual

level. Therefore, we intend to analyse the aggregate capital efficiency by meeting the requirements at

the individual level, which is more stringent due to the IG diversification effect that is in place when risk

capital is set based on the consolidated balance sheet. For mathematical purposes, the confidence level a

could take different values, but due to the equivalence principle, it would be unrealistic to assume such

a scenario. Moreover, the risk preferences from above follow the well-known Cost-of-Capital approach

and λ1, λ2 are some parameters (usually greater than 6%) that reflect the cost of using the shareholders’

capital that is very sensitive to the tax regime. The Cost-of-Capital is very sensible to the level of taxation

and therefore, it is realistic to assume that λ1 6= λ2. Thus, our risk transfer problem is given by

min
(I11,I12)∈I×I

{
ρ1
(
I11[X1] + I12[X2]

)
+ ρ2

(
X1 +X2 − I11[X1]− I12[X2]

)}
, (5.1)

s.t. ρ1
(
X1 − I11[X1]

)
≤ C1, ρ2

(
I12[X2]

)
≤ C2,

where C1 and C2 are the asset fungibility limit for LE1 and LE2 respectively. A standard regulatory

constraint is to impose limits for asset transfer, which makes the assets to not be fully fungible, as we

actually assume. Note that the risk transfers are not necessarily comonotone as it is assumed in Asimit et

al. (2013b), where a similar, but unconstrained problem, is investigated. The objective function (5.1)

can be further written as

E
(
X1 +X2

)
+ λ1

(
CVaRa(T1)− ET1

)
+ λ2

(
CVaRa(T2)− ET2

)
,
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with T1 = I11[X1] + I12[X2] and T2 = X1 +X2 − I11[X1]− I12[X2]. Note that E(X1 +X2) is a constant,

and hence solving (5.1) is equivalent to solve the following infinite dimensional optimisation problem:

min
(I11,I12)∈I×I

{
λ1
(
CVaRa(T1)− ET1

)
+ λ2

(
CVaRa(T2)− ET2

)}
,

s.t. ρ1
(
X1 − I11[X1]

)
≤ C1, ρ2

(
I12[X2]

)
≤ C2.

This means that after sampling from X1 and X2 and using similar notations to those used in Sections 3

and 4, our aim is to solve the following finite dimensional optimisation problem

min
(y1,y2,z1,z2)∈
<n×<n×<n×<n

{
λ1 min

s1∈<

{
s1 +

1

n(1− a)
1T (y1 + y2 − s11)+

}
− λ1

n
1T (y1 + y2) (5.2)

+λ2 min
s2∈<

{
s2 +

1

n(1− a)
1T (z1 + z2 − s21)+

}
− λ2

n
1T (z1 + z2)

}
s.t.

1− λ1
n

1T z1 + λ1 min
s3∈<

{
s3 +

1

n(1− a)
1T (z1 − s31)+

}
≤ C1

1− λ2
n

1Ty2 + λ2 min
s4∈<

{
s4 +

1

n(1− a)
1T (y2 − s41)+

}
≤ C2,

yk ≤ xk, zk ≤ xk, yk + zk = xk, k ∈ {1, 2}.

As it has been done earlier, we further reformulate (5.2) in a way to enable efficient computations.

Theorem 5.1. Problem (5.2) is solved by the next LP:

min
(y1,y2,z1,z2,u1,u2,u3,u4,s,r)∈

<n×<n×<n×<n×<n×<n×<n×<n×<4×<4

{
M

(
λ1r1+λ2r2−

λ1
n
1T (y1+y2)− λ2

n
1T (z1+z2)

)
+r3+r4

}
(5.3)

s.t.
1− λ1
n

1T z1 + λ1r3 ≤ C1,
1− λ2
n

1Ty2 + λ2r4 ≤ C2,

s1 +
1

n(1− a)
1Tu1 ≤ r1, 0 ≤ u1, y1 + y2 − s11 ≤ u1,

s2 +
1

n(1− a)
1Tu2 ≤ r2, 0 ≤ u2, z1 + z2 − s21 ≤ u2,

s3 +
1

n(1− a)
1Tu3 ≤ r3, 0 ≤ u3, z1 − s31 ≤ u3,

s4 +
1

n(1− a)
1Tu4 ≤ r4, 0 ≤ u4, y2 − s41 ≤ u4,

yk ≤ xk, zk ≤ xk, yk + zk = xk, k ∈ {1, 2},

where M is a very large number.

One would wonder how large M should be. If X1 and X2 are non-negative liabilities, as we have

assumed by now, then if one aims to solve (5.3) accurate to n1 decimal places, then

M > 10n1 max

{
C1

λ1
,
C2

λ2

}
would be a good choice. For details, see the proof of Theorem 5.1 that is given in Section 7.

We are now ready to elaborate a numerical illustration for a fictitious IG such the future liabilities X1

and X2 are LogNormal distributed and their means and squared coefficients of variation are

EX1 = 1, 000, EX2 = 1, 500, CV 2
1 = 3, CV 2

2 = 1.5
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Plausible choices for the cost-of-capital rates are λ1 = 10% and λ2 = 12%. The choice of a = 99% is

made as it is the case within the Swiss regulatory environment. We set Ck = 40%×ρk
(
Xk

)
for k ∈ {1, 2}.

Three dependence models for the liabilities are assumed

(A) Independence;

(B) Gaussian copula with parameter ρ;

(C) Pareto copula.

Recall that the Pareto copula is given by

C(u, v; δ) :=
(

(1− u)−1/δ + (1− v)−1/δ − 1
)−δ

+ u+ v − 1, 0 ≤ u, v ≤ 1, δ > 0.

(for details, see Nelsen, 2006). The strength of dependence in the upper tail is known as the upper tail

dependence coefficient. This measure of dependence equals 2−δ for the Pareto copula and 0 for (A) and

(B). Recall that this measure of dependence is an asymptotic value and one should differentiate between

(A) and (B). When ρ > 0, as we assume a positive dependence among the risks, the Gaussian copula

allows a stronger dependence for concomitant extreme events than the independence case, and it is even

stronger as ρ increases. The Pareto copula allows a strong dependence, the strongest amongst the three

dependence models, which decreases as δ increases.

The numerical illustrations are based on a sample size n = 9, 000 and we have experienced compu-

tational difficulties for samples larger than 10, 000, but we believe than a sample of 9, 000 is sufficiently

informative for our purposes. The optimal solutions of y∗1 and z∗2 are presented by several scatter plots.

Recall that y∗1 and z∗2 represent the optimal level of risks retained by LE1 and LE2, respectively. The

scatter plots for the three dependence models are displayed in Figures 5.3 and 5.4
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Figure 5.3. Empirical solutions of y∗1 and z∗2 for Model (A) (left column) and Model

(B) with ρ ∈ {0.3, 0.8} (middle and right column).

Figures 5.3 and 5.4 show that y∗1 mimics a straight line, which suggests that a proportional risk transfer

is optimal when sharing X1. When analysing z∗2, a proportional share for X2 is observed with a limit
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Figure 5.4. Empirical solutions of y∗1 and z∗2 for Model (C) with δ ∈ {0.2, 1.2, 2.2}.

imposed by LE2. Therefore, two estimations via OLS (as detailed earlier) are further performed:

y∗1i = θ x1i and z∗1i = c min
(
x1i, d

)
for all i ∈ {1, . . . , n}

The results are summarised in Table 5.3.

Parameter Model (A) Model (B) Model (C)

ρ = 0.3 ρ = 0.8 δ = 0.2 δ = 1.2 δ = 2.2

θ 0.6635 0.6551 0.7670 0.8437 0.7734 0.6872

c 1.000 1.000 1.000 1.000 1.000 1.000

d 4, 264.8 4, 264.2 4, 716.4 4, 548.0 4, 681.9 4, 243.7

Table 5.3. Estimates for θ, c and d for various dependence models.

It becomes clear from Table 5.3 that non-trivial proportional risk sharing is optimal for LE1, while a

stop-loss risk sharing is optimal for LE2. The reason that LE2 prefers to release a high layer is due to a

higher cost of capital faced in its jurisdiction. LE1 and LE2 retain more risk for themselves (estimates

of θ̂ and d̂ are increasing) if stronger dependence in the upper tail is observed. This is not surprising

to observe a reduction of the diversification effect as a result of an increased dependence of concomitant

extreme events. The asset fungibility constraints have an important effect over the optimal risk sharing

and the immediate effect is that LE1 prefers a proportional “reinsurance” for its risk, which would not

have happened otherwise. It is well-known that an unconstrained risk sharing problem does not allow

proportional transfers, since only layer “reinsurance” is possible (for details, see Jouini et al., 2008).
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6. Conclusions

It is well-known that many actuarial applications involve optimisation and we have tried to provide

some of them related to risk sharing that may arise in many forms. Further, we have shown how one

may reduce those optimisation problems to efficient and reliable computations. These methods may be

extended to many other applications via similar ideas. We have shown that the results are credible by

performing stability and consistency checking. The final numerical example is meant to fully explain how

a practical problem may be implemented via existing optimisation techniques.

7. Proofs

The proof of Theorems 3.2-3.4, 4.1 and 4.2 are very similar to the proof of Theorem 3.1, and for this

reason, only the latter theorem is proved.

Proof of Theorem 3.1 It is not difficult to find that (3.4) is solved by the following surrogate

problem:

min
(y1,z1,u1,P,t)∈
<n×<n×<n×<×<

{
(δ1 − δ2)P + δ1 min

s1∈<

{
s1 +

1

n(1− a)
1Tu1

}
+ δ2

(
1

n
1T z1 +

bt√
n− 1

)}
s.t. 0 ≤ u1, y1 − s11 ≤ u1, ‖Qz1‖ ≤ t

1

n
1T z1 +

bt√
n− 1

≤ P, P ≤ P ≤ P , (7.1)

min
s1∈<

{
s1 +

1

n(1− a)
1Tu1

}
+ P ≤ CVaRa(X1),

b01
T z1 +

n−1∑
i=1

bi min
ci∈<

{
ci +

1

n− i
1T (z1 − ci1)+

}
≤ P, (7.2)

y1 ≤ x1, z1 ≤ x1,y1 + z1 = x1.

Let (y∗1, z
∗
1,u
∗
1, P

∗, t∗) be the optimal solution to the surrogate problem. Note that the objective function

in the above problem is increasing in u1 and t, and therefore, constraints 0 ≤ u1 and y1 − s11 ≤ u1

ensure that u∗1 = (y∗1 − s11)+, while ‖Qz1‖ ≤ t implies that t∗ = ‖Qz∗1‖. As a result, (y∗1, z
∗
1, P

∗) is also

feasible to the optimisation problem (3.4). If (y∗1, z
∗
1, P

∗) is not an optimal solution to (3.4), there must

exist another solution (y′1, z
′
1, P

′) such that

(δ1 − δ2)P ′ + δ1 min
s1∈<

{
s1 +

1

n(1− a)
1T (y′1 − s11)+

}
+ δ2

(
1

n
1T z′1 + b

‖Qz′1‖√
n− 1

)
< (δ1 − δ2)P ∗ + δ1 min

s1∈<

{
s1 +

1

n(1− a)
1T (y∗1 − s11)+

}
+ δ2

(
1

n
1T z∗1 + b

‖Qz∗1‖√
n− 1

)
= (δ1 − δ2)P ∗ + δ1 min

s1∈<

{
s1 +

1

n(1− a)
1Tu∗1

}
+ δ2

(
1

n
1T z∗1 +

bt∗√
n− 1

)
,

which implies that (y′1, z
′
1,u
′
1, P

′, t′), with u′1 = (y′1 − s11)+ and t′ = ‖Qz′1‖, is feasible to the surrogate

problem and also reduces the objective function value comparing to (y∗1, z
∗
1,u
∗
1, P

∗, t∗). This contradicts

the assumption that (y∗1, z
∗
1,u
∗
1, P

∗, t∗) is the optimal solution to the surrogate problem. Therefore,

(y∗1, z
∗
1, P

∗) must solve the optimisation problem (3.4) if it solves the surrogate problem.
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The final step is to show that the surrogate optimisation problem is equivalent to (3.5). Clearly, the

inequality constraints from (7.1) and (7.2) can be rewritten as follows:

max

{
P ,

1

n
1T z1+

bt√
n−1

, b01
T z1+

n−1∑
i=1

bi min
ci∈<

{
ci+

1

n− i
1T (z1−ci1)+

}}
≤ P ≤ P . (7.3)

The ordering of the three terms involved in the max operator is crucial for the coming proof.

Case I: Assume that the maximum in (7.3) is attained by the third term. We then show that

S∗ := (y∗1, z
∗
1,u
∗
1,w

∗, P ∗, s∗1, r
∗
1 , t
∗, e∗, c∗) solves (3.5) if and only if (y∗1, z

∗
1,u
∗
1, P

∗, t∗) solves the surrogate

optimisation problem. This means that we show the equivalence between the two optimisation problems

when the following constraint

max

{
P ,

1

n
1T z1+

bt√
n−1

}
≤ b01T z1+

n−1∑
i=1

bi min
ci∈<

{
ci+

1

n− i
1T (z1−ci1)+

}
is added to both problems.

Suppose first that S∗ solves (3.5). The objective function in (3.5) is increasing in P and r1 because

δ1 − δ2 > 0 and δ1 > 0. Thus, the inequality constraint s1 + 1
n(1−a)1

Tu1 ≤ r1 ensures that

s∗1 = arg min
s1∈<

{
s1 +

1

n(1− a)
1Tu∗1

}
and s∗1 +

1

n(1− a)
1Tu∗1 = r∗1 ,

while the constraint

b01
T z1 +

n−1∑
i=1

biei ≤ P for all i ∈ {1, . . . , n− 1}

becomes an identity at the optimum, forcing e to be as small as possible. Further, all constraints

ci +
1

n− i
1Twi ≤ ei, 0 ≤ wi, z1 − ci1 ≤ wi

became identities (due to similar arguments) implying that for all i ∈ {1, . . . , n− 1} we have that

c∗i =arg min
ci∈<

{
ci+

1

n−i
1T (z∗1−c∗i 1)+

}
, (z∗1 − c∗i 1)+ = w∗i ,

e∗i = c∗i +
1

n− i
1T (z∗1 − c∗i 1)+ and b01

T z∗1 +

n−1∑
i=1

bie
∗
i = P ∗.

Consequently, (y∗1, z
∗
1,u
∗
1, P

∗, t∗) is also feasible to the surrogate problem. Now, if (y∗1, z
∗
1,u
∗
1, P

∗, t∗) does

not solve the surrogate problem, then there must exist a feasible (y′1, z
′
1,u
′
1, P

′, t′) such that

(δ1 − δ2)P ′ + δ1 min
s1∈<

{
s1 +

1

n(1− a)
1Tu′1

}
+ δ2

(
1

n
1T z′1 +

bt′√
(n− 1)

)

< (δ1 − δ2)P ∗ + δ1 min
s1∈<

{
s1 +

1

n(1− a)
1Tu∗1

}
+ δ2

(
1

n
1T z∗1 +

bt∗√
(n− 1)

)

= (δ1 − δ2)P ∗ + δ1r
∗
1 + δ2

(
1

n
1T z∗1 +

bt∗√
(n− 1)

)
,

where the last step is a consequence of the fact that S∗ solves (3.5) and it was shown earlier. As a

result, the tuple (z′1, P
′, r′1, t

′) reduces, as compared to (z∗1, P
∗, r∗1 , t

∗), the objective value in (3.5), where

r′1 = min
s1∈<

{
s1 +

1

n(1− a)
1Tu′1

}
, which contradicts the assumption that S∗ is the optimal solution to

(3.5). In summary, if S∗ solves (3.5), then it must also solve the surrogate problem.
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We now prove the converse statement. Suppose that (y∗1, z
∗
1,u
∗
1, P

∗, t∗) solves the surrogate op-

timisation problem, but its counterpart S∗ does not solve (3.5). Therefore, there exists a feasible

S′ := (y′1, z
′
1,u
′
1,w

′, P ′, s′1, r
′
1, t
′, e′, c′) that solves problem (3.5). It follows directly that (y′1, z

′
1,u
′
1, P

′, t′)

is also feasible to the surrogate problem. Since S′ solves (3.5), but S∗ is not the optimal solution in (3.5),

we have that

(δ1 − δ2)P ′ + δ1r
′
1 + δ2

(
1

n
1T z′1 +

bt′√
n− 1

)
< (δ1 − δ2)P ∗ + δ1r

∗
1 + δ2

(
1

n
1T z∗1 +

bt∗√
n− 1

)
(7.4)

where r∗1 = min
s1∈<

{
s1 +

1

n(1− a)
1Tu∗1

}
. The identity could be proved via similar arguments given earlier,

since the objective function from (3.5) is increasing in r1 as δ1 > 0. Since (y∗1, z
∗
1,u
∗
1, P

∗, t∗) solves the

surrogate optimisation problem, we may write

(δ1 − δ2)P ∗ + δ1 min
s1∈<

{
s1 +

1

n(1− a)
1Tu∗1

}
+ δ2

(
1

n
1T z1 +

bt∗√
(n− 1)

)

≤ (δ1 − δ2)P ′ + δ1 min
s1∈<

{
s1 +

1

n(1− a)
1Tu′1

}
+ δ2

(
1

n
1T z′1 +

bt′√
(n− 1)

)

≤ (δ1 − δ2)P ′ + δ1r
′
1 + δ2

(
1

n
1T z′1 +

bt′√
(n− 1)

)
,

where the last step is due to the fact that S′ is feasible in (3.5). This contradicts (7.4), which justifies

the converse statement. Thus, the proof of Case I is complete.

Case II: Assume that the maximum in (7.3) is not attained by the third term. That is,

max

{
P ,

1

n
1T z1+

bt√
n−1

}
> b01

T z1+

n−1∑
i=1

bi min
ci∈<

{
ci+

1

n− i
1T (z1−ci1)+

}
.

We then show that S∗ := (y∗1, z
∗
1,u
∗
1,w

∗, P ∗, s∗1, r
∗
1 , t
∗, e∗, c∗) solves (3.5) if and only if (y∗1, z

∗
1,u
∗
1, P

∗, t∗)

solves the surrogate optimisation problem, by including the above constraint. The proof is a tad simpler,

since the constraint (7.2) becomes redundant, and it can be achieved by applying the same reasoning as

used in Case I. This concludes the proof.

Proof of Theorem 5.1 First of all, we show that the optimisation problem (5.2) is solved by the

following surrogate problem

min
(y1,y2,z1,z2,u1,u2,u3,u4)∈
<n×<n×<n×<n×<n×<n×<n×<n

{
M

(
λ1D1+λ2D2−

λ1
n

1T (y1+y2)− λ2
n

1T (z1+z2)

)
+D3+D4

}
s.t.

1− λ1
n

1T z1 + λ1D3 ≤ C1,
1− λ2
n

1Ty2 + λ2D4 ≤ C2,

0 ≤ u1, y1 + y2 − s11 ≤ u1, 0 ≤ u2, z1 + z2 − s21 ≤ u2, (7.5)

0 ≤ u3, z1 − s31 ≤ u3, 0 ≤ u4, y2 − s41 ≤ u4, (7.6)

yk ≤ xk, zk ≤ xk, yk + zk = xk, k = 1, 2,

where

Di = min
si∈<

{
si +

1

n(1− a)
1Tui

}
, for all i ∈ {1, 2, 3, 4}.

Note that the objective function in our surrogate problem is increasing in u1, u2, u3 and u4, and therefore,

constraints in (7.5) ensure that u1 = (y1 + y2− s11)+ and u2 = (z1 + z2− s21)+ at optimum. Similarly,
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constraints in (7.6) imply that u3 = (z1 − s31)+ and u4 = (y2 − s41)+. Also, M is a very large number

and acts as a penalty in the objective function of the surrogate problem, which forces to minimise the

term

λ1D1+λ2D2−
λ1
n

1T (y1+y2)− λ2
n

1T (z1+z2),

but maintaining to minimise D3 +D4 as well.2 Thus, any optimal solution of the surrogate optimisation

problem solves (5.2).

The final step is to show that the surrogate optimisation problem is equivalent to the problem displayed

in (5.3). In particular, we justify that S∗ :=
(
y∗1,y

∗
2, z
∗
1, z
∗
2,u
∗
1,u
∗
2,u
∗
3,u
∗
4, s
∗, r∗

)
solves the optimisation

problem (5.3) if and only if T ∗ :=
(
y∗1,y

∗
2, z
∗
1, z
∗
2,u
∗
1,u
∗
2,u
∗
3,u
∗
4

)
solves the surrogate problem.

Suppose now that S∗ solves (5.3), but T ∗ is not an optimal solution of the surrogate problem. The

objective function in (5.3) is increasing in r1, r2, r3 and r4 as λ1 and λ2 are positive. Thus, the inequality

constraint si + 1
n(1−a)1

Tui ≤ ri ensures that ,

s∗i = arg min
si∈<

{
si +

1

n(1− a)
1Tu∗i ,

}
and D∗i = s∗i +

1

n(1− a)
1Tu∗i for all i ∈ {1, 2, 3, 4}. (7.7)

Thus, T ∗ is also feasible to the surrogate problem. Recall that T ∗ does not solve the surrogate problem

and therefore, there must exist another feasible solution
(
y′1,y

′
2, z
′
1, z
′
2,u
′
1,u
′
2,u
′
3,u
′
4

)
such that

M

(
λ1D

′
1+λ2D

′
2−

λ1
n

1T (y′1+y′2)− λ2
n

1T (z′1+z′2)

)
+D′3+D′4 (7.8)

< M

(
λ1D

∗
1+λ2D

∗
2−

λ1
n

1T (y∗1+y∗2)− λ2
n

1T (z∗1+z∗2)

)
+D∗3+D∗4

= M

(
λ1r
∗
1+λ2r

∗
2−

λ1
n

1T (y∗1+y∗2)− λ2
n

1T (z∗1+z∗2)

)
+r∗3+r∗4 ,

where the last step is due to equation (7.7) and

D′i = s′i +
1

n(1− a)
1Tu′i and s′i = arg min

si∈<

{
si +

1

n(1− a)
1Tu′i

}
for all i ∈ {1, 2, 3, 4}.

By taking r′i = D′i, we get that
(
y′1,y

′
2, z
′
1, z
′
2,u
′
1,u
′
2,u
′
3,u
′
4, r
′, s′
)

is feasible in optimisation problem

(5.3), which improves the objective function of (5.3), as pointed out in (7.8). This contradicts our initial

assumption that S∗ solves (5.3). Thus, if S∗ solves (5.3), then T ∗ solves the surrogate problem.

The converse part can be argued in a similar manner as before, which explains in full the equivalence

between the surrogate problem and the optimsation problem displayed in (5.3). This completes our

proof.
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