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Abstract— Robotic assistants operating in multi-floor buildings
are required to use lifts to transition between floors. To reduce
the need for environments to be tailored to suit robots, and to
make robot assistants more applicable, it is desirable that they
should make use of existing navigational cues and interfaces
designed for human users. In this paper, we examine the
scenario whereby a guide robot uses a lift to transition between
floors in a building. We describe an experiment into combining
multiple data sources, available to a typical robot with simple
sensors, to determine which floor of the building it is on. We
show the robustness of this approach to realistic scenarios in a
busy working environment.

I. INTRODUCTION

A key challenge facing the adoption of assistive robots is in
ensuring they can be integrated into existing environments
with the minimum of effort. We are interested in how robots
can make use of the wealth of existing information, from
human design considerations and infrastructure, to operate
within such environments without them being modified and
without the need for excessive training.

The ROBO-GUIDE (ROBOtic GUidance and Interaction
DEvelopment) project is an interdisciplinary project bringing
together engineers and scientists working in computational
neuroscience, control systems, formal verification, natural
language, and psychology, to address how an assistive robot
can be designed and built with a comprehensive view to its
requirements. The aim of this project is to develop a guide
robot that can navigate inside a large working building, filled
with people who are not, on the whole, familiar with robotic
technology [1], [2], and to do so in a safe, and reliable
way [3]. It will ultimately be tasked with showing visitors
around the building and running errands, such as collecting
post.

An interesting challenge facing the robot is how it transitions
between floors whilst navigating the building. As with other
guide robots, our current work employs a wheeled mobile
platform (the Pioneer LX), which cannot handle stairs, and
so must use lifts to change floors. Prior work in this area
has tackled issues relating to identifying and entering a
lift [4] [5], identifying and pressing buttons within the lift

[6] [7] [8], or using a wireless interface to control the lift
[9]. Of particular note is work by Kang et al. [10], which
demonstrates mechanisms for both entering and leaving a lift,
as well as determining which floor the lift is on by reading
the floor indicators.

In this paper we are also concerned with the task of floor
determination. However, rather than rely on a single measure
(such as the indicator within the lift, which can easily be
obscured by other occupants), we are interested in how the
robot can make use of the multiple cues available to it, and
how it can more confidently estimate its location by combin-
ing information from these cues, which may be individually
unreliable. This is important in busy environments, where
it may not be possible for the robot to get a clear measure
from a single source. We therefore examine what sources of
information are readily available to the robot and investigate
the confidence with which these can be used to determine the
floor the robot is on, both individually and when combined,
in ideal and non-ideal situations.

In the remainder of this paper, we describe an experiment
into how confidently the robot can identify a particular
floor from a combination of readily-available human and
robotic navigational information. Section II gives details of
the robot and its operating environment; Section III discuss
timing the motion of the lift, speech recognition of the lift
announcements, image processing of the information boards
on each floor, localisation confidence and combined floor
estimation; Section IV provides experimental results in both
favourable and adverse conditions; and finally, we offer some
conclusions in Section V.

II. LIFT SCENARIO

ROBO-GUIDE is based on the Pioneer LX platform, a
mobile robot equipped with a laser rangefinder and mapping
software, sonar and impact sensors, accelerometers, and
speech synthesis software. For the guide task, we have also
equipped it with a USB microphone, a small camera, and a
mobile phone to provide a user interface, Fig. 1. Rather than
alter the building infrastructure, we are interested in how the
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Fig. 1. Pioneer LX platform equipped with cameras an microphone

robot can make use of the existing human-oriented interfaces,
and interactions with other building users, to help fulfil its
tasks. For example, to operate the lift, the robot will need
to request assistance from other lift occupants. However, we
are aware that interactions may not always be successful, or
trustworthy, and so the robot must be able to determine for
itself whether it has arrived and alighted on the desired floor.

In the following experiment, conducted in the Pam Liver-
sidge Building at The University of Sheffield1, we identify
several sources of data available to the robot, which can be
used to determine which floor it is on. Each measure can
be negatively affected in some way by other building users,
and so cannot be relied upon individually. To overcome these
detrimental effects, we combine the measurements using
a Bayesian filter, and show how the overall localisation
confidence is improved in scenarios where measurements are
both near-to and far-from ideal.

III. FLOOR DETECTION

A. Transit time

Upon entering the lift, the robot measures how long it is in
motion and uses this to estimate how many floors have been
transited. The measurement of transit time uses a number
of triggers such as vertical acceleration, air pressure change
and the opening and closing of the doors to start and stop the
timer at the appropriate moment. Unfortunately, the transit
time for a given number of floors is not constant, but depends
on factors such as the occupancy of the lift. A number of
data sets were collected to determine a mean transit time
which the robot can compare its measurement to in order to
produce a Probability Mass Function (PMF).

For the lift in the Pam Liversidge Building, the following

1In the Pam Liversidge Buidling floors are alphabetically labelled, from
the ground up, and include floor ‘C+’ due to a neighbouring mezzanine
level

relationships were determined

t̄transit(n) =

{
5 + 2.3n if apeak > 0
9 + 0.85n otherwise (1)

where t̄transit is the mean time (in seconds) the lift spends
in motion, n is the number of floors transited and apeak > 0
signifies positive vertical acceleration indicating the lift is
going up.

A time measurement from the robot (t) is compared with
(1) to produce a PMF indicating the probability of having
transited a certain number of floors

P (Floors Transited = i) =
1

ρ
|t̄transit(i)− t|−1 (2)

where ρ is a normalisation term given by

ρ =

N−1∑
i=1

|t̄transit(i)− t|−1 (3)

where N is the total number of floors. The distribution used
above requires no additional parameters (such as variance),
thus simplifying the implementation. It does, however, suffer
from a singularity should any of the measured times precisely
match the mean. This is mitigated by testing for this condi-
tion before the calculation of P (Floors Transited = i) and
assigning it to unity if necessary.

B. Speech recognition

The robot records audio in the lift using a low-budget
USB far-field microphone, the Andrea External USB Sound-
card/SuperBeam Microphone Bundle2, with a sample rate of
44.1kHz and 16-bit precision. The floor announcements are
the only in-lift measure of floor available because the visual
indication is high mounted and out of view of the robots
cameras.

We used audio collected for a previous study [1] as training
data for this experiment. The recognition system was built
using the Kaldi toolkit [11], using the SGMM decoding
approach [12]. The acoustic models were trained on the
WSJ British English spoken corpus. We used the speaker
adaptation (SAT) scripts to adapt the models to the acoustic
conditions of the lift. The pronunciation dictionary was
designed to fit the phrases uttered by the lift, and the
language model was created as a constrained grammar to
only allow the phrases that are uttered by the lift.

The confidence distribution for each announcement was
determined using the acoustic model scores for the n-best
list generated by the recogniser. In the previous study we
found an accuracy of 55% for the identification of floor
announcements. We used this figure to weight the values
appropriately for the combined measures.

2http://www.andreaelectronics.com/
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Fig. 2. Detection of the C floor information board

C. Vision processing

There is an information board outside the lift on each floor of
the Pam Liversidge Building, shown to the left of Fig. 2. The
robot captures an image of the board as soon as the lift doors
open, enabling it to decide whether or not it should leave the
lift based on the combined estimation technique discussed in
Section III-E. Due to distance of the board from the lift and
the relatively low camera resolution it is not possible for the
robot to read the text via an Optical Character Recognition
(OCR) technique. Instead, the distance between the two blue
bars, indicating the building and current floor respectively, is
correlated with each floor.

Fig. 2 illustrates the process of floor detection based on
an image of the information board. Firstly, the image is
thresholded in the Hue-Saturation-Value (HSV) colourspace
to isolate the blue areas as a binary image. This thresholded
image is then passed to a blob-analysis routine which calcu-
lates the area and centroid position of the two largest blobs.
The distance between the blobs is then calculated as

dscaled =
dcentroid√
Alargest

(4)

where dcentroid is the Euclidean distance between the cen-
troids and Alargest is the area of the largest blob. This
scaling ensures the algorithm is insensitive to the size of
the information board in a given image.

Finally, the scaled distance is compared with reference values
for each floor to produce a PMF

P ′(Floor = i) =
1

τ
|di − dscaled|−1 (5)

where di is the reference distance of the ith floors informa-
tion board and τ is a normalisation term similar to (3)

τ =

N∑
i=1

|di − dscaled|−1 (6)

An additional check of the angle between the line joining
the two centroids and vertical (θblobs) is performed in order
to discount erroneous images, such as when the board is

Fig. 3. Calculating localisation score by comparing laser rangefinder data
(black) to (a) the correct floor map (grey), (b) an incorrect floor map

occluded by a person. Therefore the final vision based PMF
is

P (Floor) =

{
P ′(Floor) if θblobs < 10o

U(1, N) otherwise (7)

where U(1, N) is the uniform distribution over the integer
interval [1, N ].

D. Mapping

Before the experiment, we used the onboard laser scanner
and inbuilt software (MobileEyes, Mapper 3, and ARNL
Server) to map the 7 floors of the building. A measure of
confidence of which floor the robot is on was generated by
comparing the laser point cloud data from the robot with
the pre-recorded maps of each floor, see Fig. 3. Unlike the
previous measures, however, it is necessary for the robot to
leave the lift before it can detect differences in the layout of
the various floors, as the areas immediately adjacent to the
lift are identical. Therefore, this measure is only taken as a
final check that the robot has left the lift on the correct floor.

E. Combined floor estimation

The previous sections have detailed processes for obtaining
PMFs from various sensors, indicating the confidence of the
robot being on a particular floor. These measurements are
combined using a Bayesian filter to produce a final estimate
of the robots position.

Initially the robot has some confidence that it is on a
particular floor, P (Initial Floor). This is likely to be a
degenerate distribution P (Initial Floor = i) = 1, meaning
the robot knows it starts on floor i. Alternatively, if the
robot is completely lost it may be the uniform distribution
P (Initial Floor) = U(1, N), where N is the number of
floors.

Upon entering the lift, the robot is able to detect which
direction it is travelling and measures the transit time PMF as
discussed in Section III-A. This PMF, P (Floors Transited)
is then used to predict which floor the robot is on, using the
following process for i = 1...(N − 1)
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Fig. 4. Prediction of the current floor by the robot. Initially located on D
floor, travelling to B floor

1) Shift the values of the P (Initial Floor) PMF by i
elements, to the right if the lift is going up, otherwise
to the left

2) Discard the out of range elements and fill the leftmost
(or rightmost) elements with zeros

3) Multiply by P (Floors Transited = i)
4) Sum these distributions to build up P ′(Floor|Transit)

This process discards some information from the
P (Initial Floor) corresponding to infeasible combinations of
initial floor and transit (such as being on the top floor of a
building, then going up 3 floors), leading to a non-unity sum.
To recover a correct PMF simply divide by a normalisation
term

P (Floor|Transit) =
1

α
P ′(Floor|Transit) (8)

where α is a normalisation term.

Finally, incorporate successive measures of the floor by
sequential application of Bayes theorem

P (Floor|Transit,Audio) =

1

β
P (Audio|Floor)P (Floor|Transit) (9)

P (Floor|Transit,Audio,Video) =

1

γ
P (Video|Floor)P (Floor|Transit,Audio) (10)

P (Floor|Transit,Audio,Video,Map) =

1

δ
P (Map|Floor)P (Floor|Transit,Audio,Video) (11)

where β, γ and δ are normalisation terms.

Fig. 4 shows an example of the calculations detailed above,
for a robot initially located on D Floor, travelling to B
Floor. The top plot shows each of the measurement distribu-
tions P (Audio|Floor), P (Video|Floor) and P (Map|Floor).

The robot knows it is initially on D Floor, therefore
P (Initialy Floor = D) = 1.0, this prior distribution can
be seen in the bottom plot.

The bottom plot in Fig. 4 illustrates each step of the
estimation detailed above. The second set of bars show the
prediction distribution P (Floor|Transit). Due to the variable
nature of the transit times, the maximum prediction proba-
bility is C Floor. Incorporation of the audio measurement
P (Audio|Floor) in the third set of bars, leaves a roughly
equal chance of being on Floors B or C. Incorporating the
video distribution in the fourth set of bars gives the robot
a high enough confidence (> 90%) of being on B floor
that it will leave the lift and progress to perform the map
measurement. Finally. incorporating the map measurements
in the final set of bars gives the robot a 97% confidence
of being on B Floor. If the confidence had gone down
significantly upon taking the map measurement the robot
would be sent back to the lift to re-acquire the video image
and if necessary re-enter the lift.

IV. EXPERIMENTAL RESULTS

In order to test the performance of the floor estimation
techniques discussed above, the robot was operated in the
lift a number of different times each with a different level of
complexity. Initial tests were performed in favourable condi-
tions, without any people or obstructions in the environment
to interfere with the measurements. A more complex series
of tests were conducted in which the robot was operated in
adverse conditions, with the addition of people and objects
in the environment.

A. Favourable conditions

A number of tests in favourable conditions were performed
and this section presents the results from one of these tests.
Fig. 5 illustrates the measurement probabilities obtained from
operating the actual robot in the lift without any additional
obstacles. It is clear that the audio measurement is reasonably
poor at distinguishing the correct floor, even in favourable
conditions, due to the low volume of the announcements and
background noise from the lift itself. The audio measurement
was still included in this experiment as it provides an initial
estimate of the floor before the lift doors have actually
opened. The video measurement provides a very distinct
indication of the correct floor whilst the map measurement
struggled to differentiate floors B-E due to the similarity of
their layout.

For each floor in Fig. 5, the robot was initially located
on another random floor. Assuming the robot knows its
starting floor with certainty, the Bayesian filtering technique
detailed in Section III-E is applied. Fig. 6 illustrates the floor
prediction after only measuring the transit time and Fig.
7 illustrates the combined floor estimate, which is clearly
a significant improvement over transit time and any single
measurement from Fig. 5.
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Fig. 5. Measurement probabilities in favourable conditions
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B. Adverse conditions

Fig. 8 illustrates the measurement probabilities calculated
from noisy data, including background conversations and
people moving in the lift and obstructing images and map
data. It should be noted that the video measurement on
Floor A is the uniform distribution, because the information
board was obscured by a person walking through the image,
meaning no useful information can be extracted.

The Bayesian filter was applied in the same way as for the
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Fig. 8. Measurement probabilities in adverse conditions

favourable test, Fig. 9 shows the transit time prediction Fig.
10 illustrates the results. It is clear than when there are dis-
turbances in the lift, the transit time prediction alone would
result in the robot incorrectly identifying the floor in the
majority of cases. Individually, the additional measurements
provide low levels of confidence in the correct floor, but
incorporation of all measures produces a much improved
estimate.
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Fig. 9. Floor prediction in adverse conditions
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V. CONCLUSION

This paper has detailed the process by which a mobile
guide robot is able to operate a lift with the aid of human
bystanders. The robot requests assistance with the operation
of the lift, but must be capable of determining when it has
arrived on the correct floor such that it may leave in a timely
fashion.

It has been shown that, by taking a number of different
environmental measurements both in and immediately ad-
jacent to the lift, an autonomous robot is able to correctly
determine its floor with high levels of confidence. This ability
has been demonstrated in both ideal circumstances, with
no obstacles or noise in the environment and in a more
challenging situation where all measurements were degraded.

By using a Bayesian filter to combine the various measure-
ments, the robot is not only able to predict which floor it is
on but also know its level of confidence in this prediction.
With knowledge of this confidence it is possible for the robot
to seek further human assistance [2] in the event that it is
unsure which floor it is on, for example this may take the
form of asking a bystander to confirm the floor.

This paper has solved a key problem in the deployment
of autonomous guide robots within a multistory building
environment design for humans. With the ability to navigate
a lift, further development is now needed of the additional
autonomous features required by an autonomous guidance
robot such as navigation in close proximity to humans and
the elicitation of the necessary assistance from bystanders.
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