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Abstract— This work presents the gait dynamic stability 

modelling for different walking terrains adopted by the motor. 

The sensory-motor transitional gait assessment is difficult in 

clinical environment in case of disorders. The aim of present 

study was to model and analyse dynamic stability thresholds for 

gait transitional phases. Experimental data were collected from 

four healthy subjects while walking on a force platform placed at 

ramp and level ground walking tracks. The rate-dependent 

variations in the center of pressure (COP) and ground reaction 

forces (GRF) were modelled as motor output and input 

responses. Finite difference and non-linear regression algorithms 

were implemented to model gait transitions. Dynamic stability 

estimation for ramp and level ground walking were performed 

by analysis in time and frequency domains. Our investigation 

provided interesting results; 1) the overdamped motor output 

response acts as a compensator for instabilities and oscillations in 

unloading phase and initial contact, and 2) prediction of ramp 

ascend walking as the least stable gait than ramp descend for 

healthy subjects. 

Keywords—dynamic; stability; gait; transient; frequency 

domain; ramp walk; model. 

I. INTRODUCTION  

Walking is an essential daily living activity in human’s life 
that becomes vital in case of gait impairments. The gait 
transitional phases are more critical while performing level 
ground and ramp walk activities. The neuromotor is the part of 
human brain that controls the stability. The dynamic stability of 
gait depends on the center of pressure (COP) and its rate 
dependent variations [1, 2]. The COP is defined as the path on 
the foot plantar surface, where all the external forces act [3]. 
While important advances have been achieved on gait static 
stability in the last decades, only a few research works have 
focused on the analysis of gait dynamic stability. Still, the 
neuromuscular response thresholds involved in balance control 
are largely unknown [4]. Some of these works have proposed 
to use the rate of change in the COP or center of mass (COM) 
acceleration aCOM, as neuromuscular motor responses to 
achieve dynamic stability. However, the correlation in the COP 
and the COM along with motor adaptation to gait transitional 
balance at different walking terrains, which remain unknown, 
are investigated in this work. 

Ageing, motor disorders and pathologies are main factors 
for gait impairments and fall risk [5]. The study by Heinemann 
revealed that about 75% of people over 65 years old have 

weight-bearing lower limb problems and also fall is the leading 
cause of accidental deaths in old age [6]. In normal conditions, 
two third of body weight lies at two third of body height [7]. 
The successful negotiation between body and environment 
reduces the chances of injuries due to fall risk. In relation to 
this, the ankle-foot, seen as the end-effector, plays a key role in 
the negotiation of balance during walking. Previously, the COP 
has been used to distinguish gait abnormalities, establishing a 
rehabilitation index and for evaluation of foot orthoses [3]. 
Under pathological conditions, the rate of change in the COP 
assesses impairments threshold clinically [1, 8]. The time 
derivative of the COP stands as an important measure, 
describing the motor output response to compensate 
instabilities [9].  

Only few works have studied the prediction of gait 
transitions in relation to gait dynamic stability. These works 
have used the first order negative exponential model, widely 
applied for gait stability analysis in loading phase, and where 
time constant and gains were estimated from time domain aCOM 
[2, 4, 5, 10]. Prediction of the COP and the GRF rate dependant 
variations in loading phase have been studied using the sample 
entropy algorithm [11]. The Savitzky Golay filter has been 
used to compute the COP velocity and analyze dynamic 
stabilities for four-foot conditions [8]. The study of the gait 
transitional stability for inclined surfaces has not shown 
relevant progress. However, analysis of this stability is critical 
to understand and predict slip and fall risks. In this work, we 
analyze the dynamic stability of gait transitional phases, gait 
unloading and effects of vibrations at the initial contact event. 
This investigation is performed for different terrain conditions, 
particularly for ramp walk activities, which require a complex 
neuromotor control. Furthermore, motor transient responses are 
modelled to estimate instability thresholds both in time and 
frequency domains. 

II. METHODS 

The experimental protocol consisted of an array of 12 
cameras connected to the Qualisys motion capture system with 
AMTI force platforms (BP 400600-2000) shown in Fig.1. The 
operating frequencies were 400fps and 1200Hz respectively. 
The force plate data was captured using 64 channel analogue 
output board (PCI-DAC6703) and synchronized with motion 
markers using Qualysis software (QTM) and Oqus cameras. 
The experiments were performed with four healthy subjects 
(ages 20±1; foot length 27±1cm; weight 72±7kg, heights 



175±7.5cm) and having no previous impairment history. Four 
trials were conducted for each subject at user self-selected 
normal walking speed for level ground (8m), ramp ascend and 
ramp descend (5.7m) walk. The ramp inclination was 5° from 
ground level. The experiments were performed with the 
consent of ethical approval from the University of Leeds. 

Each subject was instructed to look forward straight and 
perform three rhythmic steps before making contact with force 
plate almost in the middle. The motion data, captured from 
each subject, was exported as AVI file at 400fps. The rate 
dependant variations were measured using ImageJ, which is an 
advanced open source image processing software applied for 
biomechanical analysis [13, 14]. After selecting the desired 
region of interest and pre-processing steps, the GRF vector 
edges were detected from the Kymograph plot, which is an 
image analysis technique for single plane time-displacement 
motion. Here, this technique was applied to macroscale motion 
analysis as shown in Fig. 2(b-d). The finite difference 
algorithm was applied to the COP and the GRF vector paths 
extracted by kymograph (see Table 1). The rate of change in 
the GRF was normalized with body mass to obtain vibrations 
signals i.e. (ʹaCOM =GRF/mass) for respective subjects. The 
measurements and stability analysis was made for left foot 
considering symmetry in healthy subjects. 

TABLE1. Finite difference algorithm. 

 

The finite difference algorithm was implemented to 
determine the average rate of change. The averaging method 
can smooth the noise, however, the signal diminishes at gait 
unloading phase. The diminishing effect is compensated by a 
windowing technique. The one way ANOVA test was 
performed and proved the interclass stance time variance was 
insignificant i.e. p>0.05 (p=0.94 for ramp ascend, p=0.99 for 
ramp descend and p=0.93 for normal walk).  Results from 
multiple trials also showed that, windows sizes of 100 and 50 
frames, were the optimal for loading and unloading phases 
respectively. Exception was made for vertical aCOM signals as it 
takes most of the stance time to get stable. The modelling 
assumptions included: 1) the analysis performed along force 

 

Figure 2 (a) GRF vector position and magnitude in stance phase (blue – GRF 
position, red – COP position), Kymograph plot in (b) AP, (c) ML, (d) vertical 
directions for Ramp ascending walk. 

plate coordinate system i.e. X-axis for anterior-posterior (AP), 
Y-axis for medial lateral (ML) and Z-axis stands for vertical, 2) 
the neuromotor control was considered as a three degrees of 
freedom system i.e. AP, ML, Vertical directions, 3) In the finite 
difference algorithm, the initial values were assumed in the 
range to mean for all 16 trials, 4) the inertial effects were 
modelled as discrete and forced vibrations in sagittal plane. 

A. Modelling Scenarios 

The motor inputs (ʹaCOM) and controlled outputs (ʹCOP) were 
modelled at gait transient phases i.e. loading and unloading. 
Each phase was modelled and analysed in multiple directions. 
The following abbreviations were used:  

 A-L-COP velocity: Ramp ascending, loading phase 
COP velocity. 

 D-L-COP velocity: Ramp descending, loading phase 
COP velocity. 

 A-U-COP velocity: Ramp ascending, unloading phase 
COP velocity. 

 D-U-COP velocity: Ramp descending, unloading 
phase COP velocity. 

 N-L-COP velocity: Level ground walk at normal 
speed, loading phase COP velocity. 

 N-U-COP velocity: Level ground walk at normal 
speed unloading phase COP velocity. 

 A-L-ʹaCOM : Ramp ascending, loading phase rate of 
change in COM acceleration/vibration. 

 D-L-ʹaCOM : Ramp descending, loading phase rate of 
change in COM acceleration/vibration.  

 A-Vertical-ʹaCOM : Ramp ascending, vertical direction 
in sagittal plane rate of change in COM acceleration. 

 

 

 

 

 

 

Figure 1 Experimental protocol for gait dynamic stability analysis in anterior-posterior (AP), medial-lateral (ML) and vertical directions.  



III. RESULTS 

The posturographic test was performed over 16 feet to 
model dynamic stability. Motor I/O signals i.e. ʹaCOM and COP 
velocity presented a non-normal distribution. The Spearman’s 
correlation was applied using SPSS (IBM SPSS Statistics 22) 
for 16 trials in each case. The inter-trial average correlation 
was found between 0.9-1. The dynamic models were estimated 
using MATLAB curve fitting tool. The non-linear least square 
regression (least absolute residual) method was applied to 
estimate motor output response and sum of sinusoids used to 
model vibrations input signal. The gait transient responses 
were modelled maximizing the coefficient of determinant (R2) 
and 95% of confidence bounds. The sample plots are shown in 
Figures 3-6 for AP (L/U) and vertical directions. 

Our modelling approach achieved better accuracy than 
previously adopted parameter estimation based inverted 
pendulum or negative exponential models [5]. The gait cycle 
was categorized in loading and unloading phases, both in AP 
and ML directions for COP signal, and, AP and vertical 
directions for aCOM signal.  

A. Modelling equations for motor output response ʹCOP   

Motor output impulsive signals were modelled as two 
phase exponential functions using best fit coefficient of 
determinant (R2). The loading phase was observed to be 
decaying with significantly greater ʹCOP initial magnitudes, 
while unloading showed a growing response (see Fig. 3 and 4). 
Eq. (1) represents motor input signal as transient and steady 
state components. The average R2 lies in 99% for loading and 
84±2% for unloading phases including AP and ML for the 16 
trials.  

                                  ʹCOP = a ebt + c edt                               (1) 

where a and c are gains (Knet = a+c). Parameters b, d (±) are 

reciprocal of time constants (τnet = bd / b+d ). The time 

constants were positive for growing and negative for decaying 

exponential models. The time domain stability index (I), 

previously defined in [5, 10], has been extended in this work 

as shown in Eq. (2), by correlating loading (L) and unloading 

(U) during double limb stance support. 

                                                                   (2) 

where τL, τU are loading, unloading phase time constants 
respectively and KL and KU are respective gains. 

 

 

     

Figure 3 AP COP velocity at loading phase (a) Ramp ascend, (b) Ramp 
descend, (c) Level-ground walk at normal speed, where ∆Lf – change in foot 
length, ∆f – change in time in terms of frame rate, AP-anterior-posterior. 

 

    

    

     

Figure 4 AP COP velocity at unloading phase (a) Ramp ascend, (b) Ramp 

descend, (c) Level-ground walk at normal speed, where ∆Lf – change in foot 

length, ∆f – change in time in terms of frame rate, A-ascend, D-descend, N-
normal, U-unloading, AP-anterior-posterior. 



B. Modelling equations for motor input disturbance signal 
ʹaCOM 

The  input sensory disturbances were modelled as three phase 

sinusoid functions in Eq. (3). The ʹaCOM was assumed as 

undamped input to the motor as shown in Fig.5 and Fig.6. 

Finding the least instability in ML, the stability analysis was 

neglected in that direction. The R2 values lies 56±6%, 32±6%, 

and 65% for AP loading, unloading, and vertical directions. 

     ʹaCOM = a1 sin(b1t+c1)+ a2 sin(b2t+c2)+ a3 sin(b3t+c3)     (3) 

where a’s are amplitudes, b’s are frequency of oscillation and 
c’s are phase shifts. 

 

 

 

Figure 5 (a) Rate of change in ʹaCOM in AP direction at loading phase during 

(a) Ramp ascend, (b) Ramp descend, (c) Normal speed level-ground walk. 

 

 

 

Figure 6 (a) Rate of change in ʹaCOM in vertical direction during stance phase 

for (a) Ramp ascend, (b) Ramp descend, (c) Normal speed level-ground walk. 

For all 16 trials in each case, I/O time domain signals were 
modeled in Eq. (1) and Eq. (3). Laplace transform was 
implemented assuming single-input single-output linear time 
invariant (LTI) open loop systems. Frequency domain stability 
were characterized as phase and gain margins by obtaining 
Bode plot for individual model as shown in Fig. 7(b, c). The 
vibration signal was used as the motor input, while loading and 
unloading were motor output. The stability thresholds for 
output and input signals in both time and frequency domains 
are shown in Table 2(a) and Table 2(b) respectively. 

TABLE 2(a). The stability thresholds for motor output signals (ʹCOP) 
modelled as multi-phase exponentially decaying functions in loading phase and 
growing functions in unloading phase. 

Ramp/ 

level 

ground-

phase-

direction 

Time Domain Frequency Domain R2 

τ (frames) Net Gain K Gain 

Margin 

GM (dB) 

Phase 

Margin 

PM 

(deg) 

A-L-AP 2.802±0.02 3.78±0.016 ∞ 94.362 0.99 

D-L-AP 2.43±0.016 3.722±0.01 ∞ 94.92 0.99 

N-L-AP 2.427±0.02 4.470±0.02 ∞ 94.163 0.99 

A-L-ML 4.7±0.05 3.336±0.02 ∞ 92.808 0.99 

D-L-ML 3.35±0.04 3.01±0.02 ∞ 94.366 0.99 

N-L-ML 6.402±.056 2.989±0.01 ∞ 92.363 0.99 

A-U-AP 4.0±1.32 0.115±0.02 -26.3 87.23 0.45 

D-U-AP 3.588±1.76 0.025±0.00 -0.811 24.373 0.76 

N-U-AP 7.554±0.69 0.087±0.00 -20.5 84.58 0.90 

A-U-ML 4.07±0.135 0.015±0.00 -7.25 64.289 0.99 

D-U-ML 3.13±1.38 0.004±0.00 15.6 ∞ 0.99 

N-U-ML 3.510±0.04 0.003±0.00 18.1 ∞ 0.99 



TABLE 2(b). The instability threshold for motor input disturbance signals 

(ʹaCOM) modelled as sum of sinusoids functions. 

Ramp/ level 

ground-phase-

direction 

Frequency Domain R2 

Gain 

Margin 

GM (dB) 

Phase 

Margin PM 

(deg) 

A-L-AP -35.7 13.039 0.63 

D-L-AP -39.0 9.114 0.57 

N-L-AP -36.1 90.322 0.50 

A-U-AP 33.435 -44.356 0.056* 

D-U-AP 42.6 -23.6184 0.57 

N-U-AP -29.3 -89.560 0.32 

A-Vertical -110.0 89.1475 0.65 

D-Vertical -113 73.837 0.68 

N-Vertical -152 89.915 0.63 

*least predictive model for stability analysis. 
 

 

 

 

Figure 7 (a) Pole-zero plot in frequency domain, (b) Bode plot for motor 
output signals in gait loading and unloading phases. (c) Bode plot for motor 
input disturbance signal in AP-loading/unloading phase and vertical stance 
phases.  

IV. DISCUSSION 

The gait dynamics were modelled at transition states 

considering ʹaCOM and ʹCOP as motor I/O signals. The 

stability thresholds were modelled and analysed in time and 

frequency domains for level-ground walk, ramp ascend and 

ramp descend walk at normal speeds.  

A. ʹCOP motor output response – Time domain 

1). Time constant (τ) and gains (K)  

The impulsive nature motor outputs presented the highest time 

constant at ramp ascend during loading in AP direction i.e. 

14.2% more than ramp descend and normal walk which have 

mutual difference ‘τ < 1%’.  That is due to ramp resistance, 

delayed and insufficient push-off provided by the opposite 

limb during loading. Given the increased range of motion in 

normal walk, it took more transient time during AP direction 

unloading i.e. 70±10% higher than ramp ascend or descend 

which showed the ‘τ’ value in-range (>90%). The gains of AP 

loading phase were more significant than unloading phase and 

found to be 16.5% more in level ground walk as compared to 

ramp. During unloading, the ramp descend showed less time 

constants both in AP and ML directions due to inertial effect 

and lesser shear forces provided by the ground.  

2). Stability Index (I)   

For better understanding, the stability index (I) was used by 

correlating all time domain parameters. The loading phase 

with its overdamped response was observed to be most stable 

by location of poles on left hand side of s-plane as shown in 

Fig. 7(a). This suggests that the larger the stability numerator 

or smaller the denominator (Eq. (2)), the less instable is the 

system. In ML direction, both the level-ground and ramp 

(A/D) walk had maximum stability indices (1703±0.6, 

247±7.4, 732±0.14); which imply less instability. However, in 

AP direction the stability index valued maximum for ramp 

descend i.e. 99±0.03 and normal walk had least threshold i.e. 

16.5±0.14. Compared to ramp walk, the ascending was found 

to be relatively less stable (I = 23±0.01) than descending. 

During ramp descend, the GRF vector stayed closer to joint 

centers and reduced the load at joints, muscles energy 

dissipation response [15], implied more stability than ramp 

ascend. These thresholds described the reference for motor 

controlled outputs to adopt gait transitions and analysed 

further in frequency domain. 

B. ʹCOP motor output response – Frequency domain 

The Laplace transform was implemented over ʹCOP models 

and characteristics equations were obtained. The pole-zero’s 

location showed that the loading and unloading were stable 

and unstable transient phases respectively for all three walking 

conditions. The unloading was stayed unstable stance phase 

where COP was behind the COM vertical projection [12]. The 

Bode plot showed the stability margins for ramp ascend, 

descend and level ground walk (see Fig. 7b). Both in AP and 

ML directions, the loading signals were proved to be stable 

with positive phase margins 94±1° and infinite gain margins. 



There was no significant variation observed between level 

ground and ramp walk in loading w.r.t phase margin (PM) and 

gain margin (GM). However, during AP unloading phase, the 

ramp ascend was found to be the most unstable with GM (-

26.3dB) and ramp descend was least instable with GM (-

0.8dB) among all three walking conditions. Similarly, in ML 

unloading, the ramp ascending was marginally more unstable 

(-7.25, 64.23°) than descending and level walk. The frequency 

domain also showed the ramp ascending as less stable than 

ramp descending walk, in-consistent with time-domain 

analysis.  

C. ʹaCOM motor input response – Frequency domain 

The undamped input vibration models were least predictive 

w.r.t coefficient of determinant (R2). Applying the control 

theory, ʹaCOM stands for maximum input disturbance to which 

motor compensates for gaining stability. Here, the maximum 

disturbances and motor response were modelled and analysed. 

The input disturbance signal Bode plot in Fig. 7(c) showed 

that the ramp descending was marginally more unstable (GM 

= -39dB) in AP loading phase. However, during AP 

unloading, the level-ground walk was found to have a 

maximum disturbance with PM and GM (-89.5°, -29.3dB). 

Considering sagittal plane as the most significant, the 

maximum input instabilities were observed in level ground 

walk (GM = -152dB) than ramp walk. A study revealed the 

over-produced muscular energy dissipation during level 

ground walk [15]. During ramp ascend/descend, the input 

disturbances were found in close range in sagittal plane.   

The current research was extended to the analysis of the gait 

dynamic stability in frequency domain. The study was 

performed for level ground and ramp walk. The input 

disturbance to the motor and output controlled responses were 

modelled at gait transients. For future work, the exact 

correlation between ʹaCOM and the ʹCOP (I/O) signals and 

estimation of the motor controller will be investigated. This 

research work is part of wearable soft robotics design project 

and findings would be applied to characterize user needs, 

smart actuators design, gait impedance evaluation and control.  

V. CONCLUSION AND FUTURE WORK 

The aim of the current study was to investigate gait dynamic 

stability with varying terrain, which provides a tool for clinical 

assessment for orthotics. In frequency domain, the loading 

phase showed the most stable results for both level-ground and 

ramp walk. During unloading, the output ‘ʹCOP’ signal was 

found to be most unstable for ramp ascend both in AP and ML 

directions, However, the gains in ML direction were 

negligible. The input motor disturbances ʹaCOM were also 

found more unstable for ramp ascend than ramp descend. The 

motor responded continuously to both instabilities i.e. ʹaCOM 

during loading and ʹCOP during unloading in lead/lag control 

mode. The ʹCOP input signal in loading showed to be the 

most compensated signal generated by the motor during gait 

transitions. The outcome of this research work can be used for 

the design and evaluation of bipedal assistive or rehabilitative 

robotics. For future work, the research will include the 

estimation of motor behavioral control to adopt different 

terrain condition using modelled I/O signals. Furthermore, the 

scope of dynamic stability analysis will be extended to include 

subjects with gait impairments to incorporate patient’s clinical 

needs for the design of wearable soft orthotics. 
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