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Probabilistic locomotion mode recognition with wearable sensors

Uriel Martinez-Hernandez, Imran Mahmood and Abbas A. Dehghani-Sanij

Abstract— Recognition of locomotion mode is a crucial pro-
cess for control of wearable soft robotic devices to assist humans
in walking activities. We present a probabilistic Bayesian
approach with a sequential analysis method for recognition of
locomotion and phases of the gait cycle. Our approach uses
recursive accumulation of evidence, as biological systems do,
to reduce uncertainty present in the sensor measurements, and
thus improving recognition accuracy. Data were collected from
a wearable sensor, attached to the shank of healthy human par-
ticipants, from three locomotion modes; level-ground walking,
ramp ascent and ramp descent. We validated our probabilistic
approach with recognition of locomotion in steady-state and
gait phases in transitional states. Furthermore, we evaluated the
effect, in recognition accuracy, of the accumulation of evidence
controlled by increasing belief thresholds. High accuracy results
achieved by our approach, demonstrate its potential for robust
control of lower limb wearable soft robotic devices to provide
natural and safe walking assistance to humans.

I. INTRODUCTION

Wearable soft robotics has shown great technological

advances in recent years, specially on soft actuators and low-

level controllers to assist humans in walking activities [1].

However, recognition of locomotion mode for soft robots,

a high-level process that plays a crucial role for control of

walking assistive technologies, is still under development.

In this work, we present a probabilistic Bayesian approach,

that together with a sequential analysis method, allows to per-

ceive and recognise multiple locomotion modes (Figure 1).

Probabilistic approaches have provided accurate recognition

of locomotion from transfemoral amputees [2], [3]. Neuro-

muscular and mechanical sensor data from prosthetic legs

have also been used to recognise locomotion by combination

of classifiers [4]. Robust perception with soft sensors for

robot control have also been benefited from probabilistic

methods, dealing with the uncertainty present in the world,

e.g., sensor noise and environment dynamics [5].

For training our method, we collected multiple sensor

datasets from a wearable sensor worn by healthy human

participants. For validation, experiments to recognise lo-

comotion mode and gait cycle phases in steady-state and

transitional state were performed. Overall, high recognition

accuracy was achieved for all the experiments. This demon-

strates the enormous potential of our probabilistic method

for the development of robust wearable soft robotic devices,

capable to safely assist humans in walking activities.
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Fig. 1. High-level perceptual layer for recognition of locomotion modes
and gait cycle phases, implemented with a Bayesian approach that reduces
the uncertainty present in measurements from wearable sensors.

II. METHODS

A. Experimental protocol

Eight healthy male subjects, without any apparent gait

abnormality, participated in this investigation. Subjects’ ages

ranged between 24 and 34, heights were between 1.74 m

and 1.79 m, and weights were between 77.6 kg and 85 kg.

Participants completed five repetitions of three locomotion

modes; level-ground walking, ramp ascent and ramp descent.

B. Data collection and processing

Data were systematically collected from an inertial mea-

surement unit (IMU), which composed of an accelerometer

and gyroscope, was attached to the shank of human partici-

pants. IMUs have shown to be robust measurement devices

for control of soft wearable robots for rehabilitation [6]. We

also used a foot pressure insole, built with four piezoresistive

sensors, to identify the gait cycle through the detection of

heel contact and toe off [7]. Figure 2A shows the shank

velocity data collected at a sampling rate of 100 Hz and

processed using a second-order Butterworth filter with a cut-

off frequency of 10 Hz.

C. Bayesian classifier

We used a probabilistic Bayesian approach, that together

with a sequential analysis method, permitted to recognise

both locomotion mode and gait cycle phases from multiple

activities performed by humans. Our Bayesian formulation

recursively updates the posterior probability from the product

of the prior probabilities and likelihood as follows:

P (cn|zt) =
P (zt|cn)P (cn|zt−1)

P (zt|zt−1)
(1)

where P (cn|zt) and P (zt|cn) are the posterior probability

and likelihood at time t. The prior probability at time t− 1
is represented by P (cn|zt−1). For the initial time t = 0 we

assumed uniform prior probabilities P (cn|z0) =
1
N

. Properly

normalised probabilities are obtained by P (zt|zt−1). The

recursive process in Equation (1) is performed over all N
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Fig. 2. (A) Shank angular velocity from level-ground walking (black colour), ramp ascent (blue colour) and ramp descent (green colour) locomotion
modes. Dashed-lines show the standard deviation for each locomotion mode. (B),(C) Mean recognition error for locomotion and gait cycle phases for
increasing belief thresholds. (D) Recognition of locomotion in steady-state mode and gait cycle phases (divided in eight phases) in transitional state mode.

classes cn ∈ C. Each class cn corresponds to a (li, gj) pair,

where li and gj are the locomotion modes and gait cycle

phases. The sensor observations at time t are defined by

zt. The posteriors are the joint distributions over the joint

classes, then the beliefs over individual locomotion mode

and gait cycle phase are given by the marginal posteriors:

P (li|zt) =

J∑

j=1

P (li, gj|zt) (2)

P (gj |zt) =

I∑

i=1

P (li, gj |zt) (3)

with locomotion beliefs summed over all gait phases and

gait phases beliefs summed over all locomotion classes.

The likelihood is obtained by P (zt|cn) =
∑S

s=1
P (m|cn,s)

S
,

where P (m|cn, s) =
h(m,s)∑
m

h(m,s) is a nonparametric approach

based on histograms of sensor values from training data. The

number of observed values m for sensor s is represented by

h(m, s) and normalised by
∑

m h(m, s).
The accumulation of evidence, from the Bayesian process,

is stopped once the belief threshold θ ∈ [0.0, 0.05, . . . , 0.99]
is exceeded. Then, the maximum a posteriori (MAP) is used

to estimate and make a decision for the locomotion mode

and gait cycle phase as follows:

if any P (cn|zt) > θ then ĉ = argmax
cn

P (cn|zt) (4)

where ĉ provides the estimated locomotion mode and gait

cycle phase (l, g) pair. Thus, this output can be used for

control at mid- and low-levels of wearable robotic devices.

III. RESULTS

A. Recognition of locomotion mode and gait phases

First, we analysed the effects in accuracy for a set of belief

thresholds θ = [0.0, 0.05, . . . , 0.99] for all the locomotion

modes and gait phases. A mean recognition error of 0.5%

was achieved for all the locomotion modes (level-ground

walking, ramp ascent and descent) as shown in Figure 2B.

For recognition gait phases, we divided the gait cycle into

eight phases of the same size, which also allows to know

the progress of the gait cycle along time. Our probabilistic

method was able to achieved a mean error of 2.2% for all

the gait phases (see Figure 2C). These results with high

accuracy were obtained with θ = 0.99. We also observed

the capability of our approach to gradually improve the

recognition accuracy for increasing belief thresholds.

B. Recognition in steady-state and transitional states

Second, we analysed locomotion modes in steady-

state and transitional state with belief thresholds θ =
[0.0, 0.05, . . . , 0.99]. For the steady-state analysis, our

method recognised level-ground walking, ramp ascent and

descent locomotion modes with accuracies of 100%, 100%

and 98.5% respectively for θ = 0.99 (light grey bars in

Figure 2D). For transitional state, we analysed the recog-

nition accuracy for transitions between the eight phases of

the gait cycle for each locomotion mode. Transitions for

level-ground walking, ramp ascent and ramp descent were

recognised with 92.5%, 89% and 75.5% accuracies (dark

grey bars in Figure 2D). Results show the potential of our

method for the development of intelligent wearable robotic

devices to safely assist humans in thei walking activities.

IV. CONCLUSION

In this work, we presented a Bayesian approach with a

sequential analysis method for recognition of human locomo-

tion. Our approach demonstrated that recursive accumulation

of evidence, as biological systems do, provides accurate

recognition systems. Thus, interfacing our high-level percep-

tual layer method with mid- and low-level layers, offer a

robust control approach for lower limb wearable soft robotic

devices to safely assist humans in walking activities.
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