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Prediction of gait events in walking activities

with a Bayesian perception system

Uriel Martinez-Hernandez, Mohammed I. Awad, Imran Mahmood and Abbas A. Dehghani-Sanij

Abstract— In this paper, a robust probabilistic formulation
for prediction of gait events from human walking activities
using wearable sensors is presented. This approach combines
the output from a Bayesian perception system with observations
from actions and decisions made over time. The perception
system makes decisions about the current gait events, while
observations from decisions and actions allow to predict the
most probable gait event during walking activities. Further-
more, our proposed method is capable to evaluate the accuracy
of its predictions, which permits to obtain a better performance
and trade-off between accuracy and speed. In our work, we use
data from wearable inertial measurement sensors attached to
the thigh, shank and foot of human participants. The proposed
perception system is validated with multiple experiments for
recognition and prediction of gait events using angular velocity
data from three walking activities; level-ground, ramp ascent
and ramp descent. The results show that our method is fast, ac-
curate and capable to evaluate and adapt its own performance.
Overall, our Bayesian perception system demonstrates to be a
suitable high-level method for the development of reliable and
intelligent assistive and rehabilitation robots.

I. INTRODUCTION

Recognition of activities of daily living (ADL) is a key

task for the development of autonomous and rehabilitation

robots capable to understand human motion and provide

appropriate assistance [1], [2]. Particularly, walking across

multiple terrains, ramp ascent and ramp descent are essen-

tial activities that provide humans with independence for

living [3], [4]. However, these activities require coordinated

movements that become difficult to execute by elder people

or after suffering a physical injury [5].

Advanced sensors and sophisticated computational meth-

ods are required to achieve robust and reliable systems

for human motion analysis. In recent years, large progress

has been observed in wearable sensor technology –for in-

stance, lightweight inertial measurement units (IMUs), soft

kinematic sensors and multimodal interfaces [6], [7], [8],

[9]. In contrast, slow progress has been observed in the

deployment of fast and accurate computational methods for

human motion analysis, recognition of walking activities

and prediction of gait events [10], [11], [12]. Probably, this
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Fig. 1. Bayesian perception system for recognition and prediction of gait
events. The gait cycle is divided into eight gait events. Our method performs
two tasks; recognition of the current gait event (orange colour areas) and
prediction of next gait events (green colour areas). The prediction module
shows what is the next most and least probable gait event, represented by
dark green and light green colours respectively.

behaviour is related to the dependency on technology, which

has made the design of computational methods a research

line still under development.

In this work, we present a novel method for prediction of

gait events which extends our previous work for recognition

of walking activities [13]. First, our method for recognition

of walking activities uses a Bayesian formulation that has

demonstrated to be robust with different applications [14],

[15], [16], [17]. Second, our method for prediction of gait

events uses an approach based on the observation of deci-

sions and actions made over time [18], [19]. Our method

is motivated by the way in that humans make predictions

or expectations according to the information and changes

observed from their surrounding environment [20], [21]. The

use of both recognition and prediction results (Figure 1),

allows our approach to evaluate the accuracy of its predic-

tions in order to adapt and achieve a better performance

in accuracy and speed. These features make our perception

system adaptable and reliable to uncertainty from sensor

measurements and changes from the environment.

Our methods are implemented in a layered architecture

composed of physical, perception and prediction layers. This

type of architectures have shown to be a better approach

for the development of modular, autonomous and scalable



robotic systems [22], [23]. We use this architecture to val-

idate the performance of our method with experiments for

recognition and prediction of eight gait events (initial contact,

loading response, mid stance, terminal stance, pre-swing,

initial swing, mid swing, terminal swing) from multiple

walking activities. For these experiments we employed data

collected from multiple human participants wearing three

inertial measurement unit sensors, attached to their lower

limbs and performing three different walking activities. Re-

sults from our experiments demonstrate the capability of our

perception system to both, recognise and predict gait events

with high accuracy and small decision time from ADLs.

Overall, our probabilistic method for prediction of gait

events demonstrated to be robust, accurate and fast, which

makes it suitable to develop wearable robots that au-

tonomously provide safe and reliable assistance to humans

in their activities of daily living.

II. METHODS

A. Experimental protocol and data collection

For our investigation we used angular velocity data from

multiple IMU sensors worn by 12 healthy human partici-

pants. Anthropometric data from participants are as follows:

ages between 24 and 34 years old, heights between 1.70 m

and 1.82 m, and weights between 75.5 kg and 88 kg.

Data from IMU sensors were systematically collected

from each participant to train and test our proposed method.

For this process we employed three IMUs (Shimmer Inc.)

attached to the thigh, shank and foot of participants. The

signals received from sensors were sent to a workstation to

be processed and analysed. We also used two foot pressure

insoles sensors to detect the beginning and end of each gait

cycle. A sampling rate of 100 Hz was used for data collec-

tion from these sensors attached to the human body. Both

wearable devices, IMU and foot pressure sensors, provide

a lightweight and low cost platform for the investigation

and development of human-robot interaction, assistive and

rehabilitation robotic systems [24], [25]. Figure 2A shows

the sensors used for systematic data collection.

Participants were asked to walk normally at their self-

selected walking speed while wearing IMUs attached to their

lower limbs and foot pressure insole sensors. The participants

performed ten repetitions of three different walking activities;

level-ground walking, ramp ascent and ramp descent. Level-

ground walking was performed on a flat cement surface (see

Figure 2B). Both ramp ascent and descent were performed

on a metallic ramp with a slope of 8.5 deg (see Figure 2C).

The signals collected from walking activities were processed

by a second-order Butterworth filter with a cut-off frequency

of 10 Hz, prepared and stored in an appropriate format for

their analysis with our approach for prediction of gait events.

Figure 3 shows the angular velocities measured from the

thigh, shank and foot for level-ground walking (black colour

curves), ramp ascent (blue colour curves) and ramp descent

(green colour curves). Solid and dashed lines represent mean

angular velocities and standard deviations respectively. We

divided the gait cycle for each walking activity into stance

intertial measurement unit pressure sensor

(A) Wearable sensors used for systematic data collection

(B) Level-ground walking (C) Ramp ascent/descent

Fig. 2. Human participant performing multiple walking activities using
wearable sensors for data collection. (A) IMU and pressure sensors used
for systematic data collections. (B) Level-ground walking on a flat cement
surface. (C) Ramp ascent and descent on a metallic ramp with a slope of
8.5 deg. Participant was asked to repeat ten times each walking activity.

and swing phases, and eight events (initial contact, loading

response, mid stance, terminal stance, pre-swing, initial

swing, mid swing, terminal swing) as shown in Figure 4. This

segmentation of the gait cycle, together with our Bayesian

approach presented in Section II-B, allows us to determine

and predict the state of the human body at specific moment

for a certain walking activity.

B. Bayesian perception system

In this work we have extended our method for recognition

of walking activities presented previously in [13] with a

set of modules for prediction of gait phases and events

during walking activities. The core of our proposed approach

uses a Bayesian formulation that, based on the iterative

accumulation of evidence from wearable sensors attached

to the human lower limbs, allows to accurately recognise

multiple human walking activities.

1) Bayesian formulation: the core of our recognition

method uses a probabilistic formulation that recursively

updates the posterior probability from the product of the

prior probabilities and likelihood estimated over time. Here,

we use the following notation:

• C is a finite set of classes or events N = |C|, e.g., here

it denotes a set of the gait events.

• z represents the measurements from the wearable sen-

sors attached to the human body.

• n denotes a specific gait event from the set N .

Then, the Bayesian formulation for recognition of gait

events is performed as follows:

P (cn|zt) =
P (zt|cn)P (cn|zt−1)

P (zt|zt−1)
(1)
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Fig. 3. Angular velocity data collected from three locomotion modes; level-ground walking, ramp ascent and ramp descent represented by black, blue and
green colour curves. The data were collected using three inertial measurement units (IMUs) attached to (A) the thigh, (B) shank and (C) foot of healthy
human participants. Solid lines show the mean angular velocities for each locomotion mode, while dashed-lines represent the standard deviation.
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Fig. 4. Diagram that depicts the gait phases and segmentation of the gait
cycle into eight gait events: (1) initial contact, (2) loading phase, (3) mid
stance, (4) terminal stance, (5) pre-swing, (6) initial swing, (7) mid swing,
(8) terminal swing. This information is used by our perception system to
perform the recognition and prediction of gait events. Also, this process
allows to know when the gait cycle is in stance and swing phase.

where P (cn|zt) is the posterior probability of a gait event

cn given the sensor measurements zt at time t, and P (zt|cn)
is the likelihood of the sensor measurements zt given the

gait event cn at time t. The prior probability represented

by P (cn|zt−1) for time t > 0 is updated with the posterior

probability estimated at time t − 1. Here, n = 1, 2, . . . , N
with N = 8 gait events (see gait events in Figure 4).

The posterior in Equation 1 is iteratively updated and a

decision about the gait event is made once a predefined

belief threshold βthreshold is exceeded. The decision-making

process to recognise a gait event is performed as follows:

if any P (cn|zt) > βthreshold then

ĉ = argmax
cn

P (cn|zt)
(2)

where the estimated gait event ĉ at time t is obtained

using the maximum a posteriori (MAP) estimate. We can

control the confidence of our Bayesian perception system

by adjusting the belief threshold βthreshold, which allows

to control the desired accuracy for the recognition process.

The physical and perception layers in Figure 5 contain the

processes for sensor data collection and Bayesian perception.

For more details about the estimation of the parameters of

our Bayesian perception system and their application for

different tasks see [13], [26].

Our Bayesian formulation method assumes an initial uni-

form prior probability distribution for each new decision-

making process. However, humans normally make decisions

using the knowledge and observations learned from previous

events, which generate non-uniform initial priors. This aspect

contributes to attain accurate and fast decisions, but also to

predict next events based on the observation of past decisions

and actions. For that reason, we have extended our Bayesian

formulation with a prediction layer based on the observation

and evaluation of past decisions and actions.

C. Prediction of gait events

For prediction of gait events we obtain a predicted proba-

bility distribution, which is estimated by the observation of

transitions between gait events (eight events, see Figure 4)

over time. The predicted probability is obtained as follows:

Ppredicted(cn|zτ ) = P (cn|zτ−1) + ∆ (3)

where Ppredicted(cn|zτ ) is the predicted probability distri-

bution used for initialisation of the new decision-making

process at time τ . P (cn|zτ−1) is the posterior distribution

from previous decisions made by our Bayesian formulation.

The parameter ∆ is learned by the observation of how

transitions between gait events occur from previous ĉτ−1 and

current ĉτ decisions made over time τ as follows:

∆ = ĉτ − ĉτ−1 (4)

where ∆ ∈ {0, . . . , 7} estimates the transition between gait

events to obtain the predicted probability distribution for next



decision-making process during the walking cycle. We use

the MAP estimate to obtain the most probable predicted class

c̃τ from Ppredicted(cn|zτ ) as follows:

c̃τ = argmax
cn

Ppredicted(cn|zτ ) (5)

In order to ensure reliable predictions and decisions made

by our approach, we evaluate the accuracy of the predicted

class or gait event. The evaluation process is as follows:

ξτ = (βthreshold − (ĉτ − c̃τ−1)) (6)

where ξτ is the accuracy of the predicted gait event estimated

at previous time. Equation 6 is used to determine whether

our recognition system needs to rely or give more weight

to predictions or current observations to ensure the best

performance. Then, we use the parameter ξτ to obtain the

weighting parameter α at decision time τ as follows:

ατ =

(

τ − 1

τ

)

ατ−1 +

(

1

τ

)

ξτ (7)

P (cn|zτ ) = ατPpredicted(cn|zτ ) + (1− ατ )Pflat(cn) (8)

where P (cn|zτ ) is the prior distribution that initialises the

new decision process τ . This prior distribution is obtained by

the weighted combination of the predicted distribution and

a uniform distribution Pflat(cn). Equation 8 shows that our

probabilistic system autonomously uses more information

from the data source that is more accurate. For example,

our method relies more on Ppredicted when predictions are

accurate, reducing the contribution from the uniform distri-

bution and vice versa. Notice that when α = 0 the predicted

distribution does not contribute and our method behaves as

the Bayesian formulation shown in Section II-B.

Figure 5 shows a high level description of our approach

using a layered control architecture composed of physical,

perception and prediction layers. The physical layer contains

sensation and data preparation processes. Next, the percep-

tion layer processes and analyses the data by implementing

our Bayesian formulation for perception. The output from

our perception approach is used to predict the next gait events

by the processes implemented in the prediction layer.

III. RESULTS

The Bayesian perception system is validated in both

accuracy and speed with experiments for recognition and

prediction of gait events. In these experiments training and

testing data sets are collected from IMU sensors attached to

the lower limbs of human participants (see Section II-A).

A. Recognition of gait events

First, we validate the accuracy and speed of our perception

system for recognition of gait events for different walking

activities. For this experiment we use angular velocity signals

from level-ground walking, ramp ascent and ramp descent.

These signals measured from the thigh, shank and foot

of human participants are shown in Figure 3. The eight
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Fig. 5. Control architecture that implements our Bayesian perception
system for recognition and prediction of gait events. This architecture is
divided in physical, perception and prediction layers. The physical layer
interacts directly with the environment, e.g., the human and wearable
devices, and it is responsible for data collection. The data received from
IMU sensors are prepared in the appropriate format for their analysis.
The perception layer implements the Bayesian formulation, based on the
combination of the prior probability and likelihood. Control of the amount of
sensor data required to make a decision is also performed by the perception
layer. The prediction layer implements our approach for prediction of
gait events by adapting the prior probability based on the observation of
decisions made over time.

segments in which the gait cycle is divided for recognition

of gait events are shown in Figure 4. All data collected from

all participants are prepared and grouped into training and

testing data sets for validation of our proposed method.

Our Bayesian perception system is configured with

C ={initial contact, loading phase, mid stance, terminal

stance, pre-swing, initial swing, mid swing, terminal swing}
and N = 8 that represent the gait events. We also defined

βthreshold = [0.0, 0.05, . . . , 0.99] to evaluate the recognition

accuracy and decision time for different levels of confidence

employed by our proposed perception method. In this exper-

iment for recognition accuracy and speed our method ran-

domly draws samples from the testing data set. This process

was repeated 10,000 iterations for each belief threshold value

in βthreshold. Averaged results over all walking activities for

recognition accuracy of gait events against belief threshold

are shown in Figure 6A. We observe that the recognition

accuracy for gait events is gradually improved from a mean

error of 5% to a mean error of 0.13% with threshold values

of βthreshold = 0.0 and βthreshold = 0.99 respectively. The

plot of decision time against belief threshold in Figure 6B

shows the speed of our method to make a decision. These
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Fig. 6. Recognition of gait events with our Bayesian perception system. (A) Mean recognition error of gait events gradually decrease for large belief
thresholds achieving the smallest error of 0.13%. (B) Increments in the confidence level of our perception system also shows a gradual increment in the
mean time to make a decision, where 4 samples (40 ms) are required to achieve the highest gait event recognition accuracy. (C) Confusion matrix with
accuracy recognition of each gait event and stance and swing phases.

stance phase swing phase

Fig. 7. Confusion matrices with prediction accuracy of the eight gait events that composed the gait cycle: (1) initial contact, (2) loading phase, (3) mid
stance, (4) terminal stance, (5) pre-swing, (6) initial swing, (7) mid swing, (8) terminal swing. The accuracy for prediction of the most probable gait events,
for three walking activities, are shown in black and light brown colours, which represent low and high probability respectively. (A) Very low accurate
prediction results (x axis), which is related to the low belief threshold βthreshold = 0 and the low accurate recognition of the current gait event (y axis).
(B) Both recognition and prediction of gait events are improved with a belief threshold of βthreshold = 0.8. (C) Highly accurate recognition and prediction
of gait events achieved with a belief threshold βthreshold = 0.99.

decision times gradually increase from a mean of 1 to 4

sensor samples with βthreshold = 0.0 and βthreshold = 0.99
respectively. This shows that our perception system requires

a mean of 40 ms (sampling rate of 100 Hz) to make a decision

with the highest accuracy of 99.87%.

Recognition accuracy for each gait event is shown by

the confusion matrix in Figure 6C, where black and white

colours represent low and high accuracy respectively. We

observe that the accuracy for recognition of each gait event

is high, but also these results allow to determine in which

gait phase is the human currently, e.g., stance or swing

phase. This information from both, gait event and gait phase,

provide a better knowledge about the current state of the

walking activity, which can be used to develop more robust

and intelligent devices that safely assist humans in ADLs.

B. Prediction of gait events

Prediction results of gait events for different belief thresh-

old values βthreshold and averaged over all walking ac-

tivities are presented by confusion matrices in Figure 7.

These results show the accuracy of our Bayesian perception

system to predict the next most probable gait event based

on the recognition of the current event and observation of

previous decisions. Rows of each confusion matrix show

the current recognised events, while columns show the most

(light brown colour) and least (black colour) probable gait

events. Figure 7A shows the confusion matrix obtained with

βthreshold = 0.0, which achieved low accuracy for prediction

of gait events. This result is related to the low accuracy

for recognition of current gait events given the low value

of the belief threshold. Figure 7B shows the results when

the confidence of our perception system was increased to

βthreshold = 0.8. In this confusion matrix we observe that

the perception system is capable to achieve better predictions

for next gait events, which also improves the accuracy to

recognise whether the gait cycle is in stance or swing phase.

The highest accuracy was achieved with βthreshold = 0.99
shown by the confusion matrix in Figure 7C. Here, again our

Bayesian perception system was capable to both accurately



recognise the current gait event and predict the most probable

gait events. Interestingly, our perception system is able to

achieve high recognition and prediction results with a mean

of 4 sensor samples (40 ms) as shown by plot C in Figure 6.

These results validate our proposed method that, adapting

the prior distribution of our Bayesian perception system by

learning the parameters ∆ and α, improves the accuracy

and speed for recognition and prediction of gait events. This

predictive functionality offered by our perception method, at

high-level layer, can be used to prepare low-level controllers

to act according to the predicted or anticipated gait events for

safe assistance to humans in their activities of daily living.

IV. CONCLUSIONS

In this work we presented a Bayesian perception system

for prediction of gait events. This method extends our

previous work for recognition of walking activities. For

prediction of gait events we developed a method based

on the observation of actions and decisions made by our

Bayesian perception system over time. This observation

allows to learn a transition parameter which is used to obtain

a predicted probability distribution. Our perception system

is also capable to evaluate its own performance, allowing

to autonomously adjust the amount of information to be

used from the predictions obtained over time. We validated

our Bayesian perception system with the prediction of gait

events for multiple walking activities. First, we collected

angular velocity data from three IMU sensors attached to the

lower limbs of human participants. The data collected were

prepared for training and testing phases. Second, we divided

the gait cycle into eight gait events. Third, we performed

various experiments where we observed that our perception

system is capable to achieve fast and high accuracy of both

recognition and prediction of gait events.

Overall, our Bayesian perception systems demonstrated

to be accurate and fast for recognition and prediction of

human movements using wearable sensors. Furthermore, the

features offered by our work, integrated together with low-

level controllers, provide a reliable approach to develop

intelligent robotic devices that safely assist humans in ADLs.
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