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Abstract—In recognition of walking gait modes using surface
electromyography (sEMG), the use of sEMG sensor array can
provide sensor redundancy and less rigorous identification of
sEMG electrode placements as compared to the conventional
sEMG electrode placements right in the middle of muscle bellies.
However, the potentially lesser discriminative and noisier sEMG
signals from the sEMG sensor array pose the challenge in
developing accurate and robust machine learning classifier for
walking activity recognition. In this paper, we explore the use
of convolution neural network (CNN) classifier with frequency
gradient feature derived from EMG signal spectogram for
detecting different walking activities using an sEMG sensor array
on thigh circumference. EMG dataset from five healthy subjects
and an amputee for five walking activities namely walking at slow,
normal and fast speed, ramp ascending and ramp descending are
used to train and test the CNN-based classifier. Our preliminary
findings suggest that frequency gradient feature can improve the
CNN-based classifier performance for walking activity recogni-
tion using EMG sensor array on thigh circumference.

Index Terms—electromyography, sensor array, walking gait
intent recognition, convolutional neural networks, frequency
gradient feature

I. INTRODUCTION

Myoelectric control is a control approach which utilises
electromyography (EMG) signals as its control input to recog-
nise muscle activities and subsequently derive the actuator out-
put commands. Myoelectric control has been widely applied
in many assistive robotics devices such as exoskeletons [1]
and prosthesis [2].

Surface electromyography (sEMG) is a commonly preferred
way of acquiring the EMG signals due to its non-invasive
nature and ease of use [3]. The sEMG electrodes are typically
attached onto the skin areas of the middle of the subject
muscle bellies where highest motor unit activations can be
detected. Such approach however requires proper palpation
procedure to locate the exact locations of those muscles [4].
This can be time consuming and at some point impractical for
everyday wearing of any lower-limb assistive robotic devices.
To alleviate this problem, alternatively the EMG sensors can
be arranged in the form of a sensor array and then be worn

based on certain body parts made as landmarks. For example,
an array of EMG sensor can be placed along the circumference
of a subject’s thigh at a certain distance from the patella.
This setting however would need to cope with the crosstalks
between muscles and even potentially very low signal due
to electrodes being placed on the skin areas for illotibial
tracts or tendons. Hence, pattern recognition strategies used to
recognise human activities associated with the EMG signals
from these areas would need to be robust to such challenge.

One of the increasingly popular artificial neural network ar-
chitectures for pattern recognition problem is the convolutional
neural network (CNN) [5]. CNN has been successfully applied
in the field of image recognition [6], [7]. In such application,
the red-green-blue (RGB) image data have been typically used
as the input to the network models. To extend the use of CNN
for sequential data such as the EMG signals, the CNN needs
to be able to detect the temporal patterns within its input data
structure.

To fit the spatio-temporal information of the EMG signals
analogous to the standard CNN image input representation,
the EMG spectrogram can be used as the image input to the
CNN in which the time lapse and frequency axes of the graph
represent the horizontal and vertical axes of the image input
respectively. With such setting, the convolution filters would
be able to scan for any temporal patterns as they strides along
the horizontal axis of the input matrix.

Here we suggest that the temporal information can be also
be potentially augmented by the use of frequency gradient
along the frequency axis of the EMG spectogram. We hypoth-
esise that the frequency gradient can have more discriminative
and consistent characteristics over time compared to frequency
amplitude. Hence the use of frequency gradient can potentially
improve a CNN-based classifier to become more robust toward
EMG noise and produce more consistent output over time.
In this paper, we propose the use of a classifier based on
convolution neural network (CNN) with frequency gradient
feature from the EMG spectogram to recognise different
human walking activities based on sEMG measured along the



thigh circumference using a sEMG sensor array.
Our contributions are two, first is to introduce the procedure

of applying an array of sEMG sensors along the subject’s
thigh circumference to acquire sEMG signals from the thigh
for activity recognition and potentially to control assistive
robotic devices. This procedure involves the identification of
electrode locations based on patella as the landmark, which
can alleviate the need of rigorous muscle palpation procedure
and help to establish more consistent electrode locations for
repeated wearing of EMG sensors. Our second contribution is
the development of a CNN-based classifier which utilises the
frequency gradient feature derived from the EMG spectograms
as the image inputs to the CNN. We compare its performance
to another CNN-based classifier which uses EMG spectogram
only as the image inputs and a standard support vector
machines-based (SVM-based) classifier as the baseline.

This paper is divided into six sections. Section II briefly
explains related works, Section III explains about our EMG
data acquisition and analysis procedures, Section IV describes
our classification approach, Section V presents our results and
discussions respectively, and finally Section VI provides the
conclusions of this paper.

II. RELATED WORKS

Biosignal-based sensor arrays have been widely applied in
the recognition of human upper limb movements. In [8], three
sets of 128-channel EMG sensor arrays placed on the triceps,
biceps and forearm areas were used to obtain high density
EMG signals for forearm movement recognition. [9] used
MMG sensor array on the wrist for identification of finger
movements. A hybrid EMG-MMG sensor array was utilised to
characterise hand muscle activities during object manipulation
tasks.

CNN has been used for classification of hand movements
using standard muscle locations as in [10]. [11] use Myo
Armband by by Thalmic Inc [12] to obtain the EMG signals
at 200 Hz sampling frequency. They then use the EMG
spectrogram as the input to their CNN-based classifier. In [13],
one-dimensional convolution operation is applied along the
frequency band only of the EMG spectrogram within each
single time-step.

Applications of sensor array for human activity recognition
based on lower-limb movements has been less explored as
compared to upper-limb movements. In [14], input signals
from an array of eight mechanomyography (MMG) sensors
and two inertial measurement units (IMUs) are used to develop
classifiers to identify four different walking activities namely
walking, stair ascending and stair descending. Whereas [15]
uses a neoprene cuff consisting of four piezoresistive force
sensors and silicone balloon actuators as a haptic feedback
system based on the ground reaction forces. To the best of our
knowledge, our work is the first to use the frequency gradient
feature derived from the EMG spectrograms as the inputs to
the CNN classifier for walking activity recognition using EMG
sensor array.

Fig. 1. Electrode placements along the thigh circumference

Fig. 2. Electrode IDs on single thigh

III. EMG DATA COLLECTION

A. Experiment Setup

To evaluate the feasability of EMG sensor array for walking
gait recognition based on thigh muscle activities, we conducted
EMG data collection sessions for five different walking activ-
ities namely level ground walking at slow, normal and fast
speeds, ramp ascending and ramp descending. The data were
obtained from ten male subjects of which nine were healthy
individuals and one was a transfemoral amputee. The subjects’
ages ranged between 19 and 77 years old with average heights
of 177.5 ± 7.3 cm and average weights of 74.8 ± 10.6 kg.
This study was approved by the University of Leeds Research
Ethics Committee and all the subjects had signed their written
informed consents before participating in this experiment.

For our EMG sensor array, we used eight Biometrics SCX-
1000 EMG sensors. Each sensor can be attached to the skin
area with a transparent medical grade tape. It also has a built-
in gain of 1000 with bi-polar electrode distance of 15 cm.



The EMG sensors were connected to the National Instruments
NI-USB 6212 data acquisition (DAQ) device which was con-
nected to a Windows 10 laptop with a 5 m USB cable. The
EMG data stream was recorded using a LabVIEW program in
the laptop with a sampling frequency of 1 kHz per channel.
Two mechanical switches were also connected to the DAQ
hardware to be used by the experiment investigator. One was
a latching used to control the remote start and stop of each
data logging session and another was a non-latching one to
indicate the start and stop of each trial or set.

During each data collection session with a subject, we
first identified the circumference location to place the EMG
sensor array which was 10 cm from the farthest surface of
the subject’s patella during sitting position. We then shaved
and cleaned skin area along the circumference to improve the
EMG signal detection. After that eight Biometrics SCX-1000
EMG sensors were attached along the thigh circumference
using medical grade tape at 45° from each other with respect to
the centre of the thigh circumference cross-section as shown in
Figure 1. The EMG sensors were assigned identification labels
from 0 to 7 as in Figure 2. Sensor 0 basically represented
biceps femoris, sensor 1 (semitendinosus), 2 (semimembra-
nosus), 3 (gracilis), 4 (vastus medialis), 5 (rectus femoris), 6
(vastus lateralis) and 7 (illotibial tract).

Another main equipment in this experiment was a 5-meter
long ramp with inclination of 5° from the ground. The ramp
was also installed with aluminium parallel bars as a safety fea-
ture for subjects to hold onto in case of becoming imbalanced.
For the ramp walking activities, the walking distance was set
at 2.5 meters from the lower edge of the ramp. Meanwhile
the level ground walking distance was set at 3 meters. Both
distances would allow the subjects to achieve at least two full
walking strides based on men’s average stride length of 88.5
cm [16].

B. Experiment Protocol

Each subject was first instructed to perform two preliminary
activities to obtain his maximum voluntary contraction (MVC)
values. The first activity was the isometric knee extension in
seating position by having the subject’s ankle tied to the chair
leg with a strap. In the second activity, the subject tried to
perform knee flexion in standing position while his ankle was
tied to a stationery vertical rod in front of him. The highest
EMG value from both activities was then taken as the MVC
for each channel. The subject would perform each activity in
three sets with two minutes of rest between sets. For each set,
the subject would first relax at the starting position for ten
seconds to reduce baseline offset followed by performing the
movements for six repetitions with ten seconds of rest between
each repetition.

The subject then performed one set of level ground walking
activity at slow speed to the other end of the walking distance.
The next set was performed by returning to the start position.
This procedure was repeated for six trials and for another
two speeds namely the normal and fast speeds. Two and five
minutes of rest were allowed between each trial and activity

Fig. 3. Sample of EMG signals from the sensor array for two consecutive
walking trials

Fig. 4. Feature transformation from EMG spectrogram to frequency gradient

respectively. Finally the subject was instructed to walk up and
down the ramp for six trials with two minutes of rest between
the activities.

C. Data Preprocessing

We first filtered our raw EMG signals using high pass
filter at 20 Hz, bandpass filtered them with a fourth order
Butterworth filter with the cut-off frequencies of 20 and 450
Hz and then applied notch filter between 59 to 61 Hz to
minimise the powerline noise. A sample set of EMG envelopes
from the eight EMG electrodes of a subject for two consecutive
walking trials are as shown in Figure 3.

D. Feature Extraction

For the CNN-based classifier, we used frequency gradient
feature derived from time-frequency graph or spectrogram
feature respectively. While these feature selection seems to be
very minimal as compared to other EMG-related works [2],



Fig. 5. CNN-based classification approach for walking gait recognition

such a minimal feature extraction approach was intended to
test our classifier training with minimal computational load for
future real-time control of assistive robotics device. We chose
50 ms and 200 ms respectively as our time window overlap
size and main time window size for the frequency gradient
and spectrogram features based on earlier works [11], [18],
[19] and [20].

The EMG spectrogram of each sensor for a single time step
was obtained using short-time Fourier transform (STFT) based
on Matlab implementation. To derive the frequency gradient
feature from the EMG spectrogram, only the real part of the
spectrogram was involved for the computation to minimise
computation complexity. Four gradient computation methods
have been considered, namely Sobel operator, Prewitt operator,
central difference and intermediate difference methods. For
our main classifier training of each subject, we have selected
Sobel operator based on [17] due to its edge enhancement
effects which may enhance the discriminative characteristic
of frequency gradient image. During the later part of our
research, other gradient operators have also been applied on
a single subject’s data to compare their computation times.
Similar data was used to measure the computation time for
STFT and continuous wavelet transform (CWT) to obtain the
EMG spectrogram.

Sobel gradient operator along the vertical direction, TSy is
defined as follows [17]:

TSy =

−1 −2 −1
0 0 0
+1 +2 +1

 (1)

The vertical gradient Gy can be computed from an image
input I using Sobel operator using the following formula:

Gy = TSy ∗ I (2)

where * refers to convolution operation.
Figure 4 illustrates transformation effect from EMG spec-

trogram to frequency gradient using Sobel operator along the
frequency band axis.Through visual observation, the transfor-
mation managed to uncover latent temporal pattern of the
EMG spectrogram. The EMG spectrogram image displays
more noticeable colour gradient along the frequency band but

olour changes along the time axis would be more useful for
feature separability.

IV. CLASSIFICATION APPROACH

A. Convolution Neural Network Architecture

Figure 5 shows our classification approach using a simple
CNN architecture. The CNN consists of an eight-dimensional
input layer for the eight EMG inputs, a convolutional layer, a
rectified linear unit (ReLU) activation layer, a fully-connected
layer, a softmax activation layer and the output layer. Each
input dimension corresponds to a 129-by-8 matrix of EMG
spectrogram or frequency input. The kernel size and the stride
size of the convolution filter is 4-by-4 and 4-by-1 respectively.
The CNN hyperparameters are set as follows; batch size as 20,
number of epoch at 100 and learning rate at 0.005.

B. Classifier Evaluation

The data analysis was conducted in Matlab R2017a on a 64-
bit Windows PC with Intel Xeon 3.2 GHz processor and 8 GB
RAM. To evaluate our classifier performance, we stratified our
data into three sets, namely training set (80%), validation set
(5%) and test set (15%). We then reran the classifier training
for each subject to obtain the subject-specific classification
accuracy. Finally we calculated the average classification ac-
curacy by adding the classification accuracies for all subjects
and divide the sum with the number of subjects.

V. RESULTS AND DISCUSSIONS

A. Classification Accuracy

Table I shows the classification results between different
classifiers namely CNN-based with frequency gradient fea-
tures, CNN with spectrogram feature and SVM-based classifier
at 200 ms time window. CNN-based classifier with feature
gradient feature performs better than CNN-based classifier
with spectogram feature and SVM-based classifier. The use of
frequency gradient as the classifier feature helps to increase
the classification accuracy by about 6.39% from spectrogram
feature. This findings support our assumption that the temporal
information in EMG frequency gradient feature can be more
discriminative and consistent as compared to EMG spectro-
gram feature. However, with bigger time window size of the
input frame, the frequency gradient advantage reduces and the



feature contributes no better than the EMG spectrogram toward
the performance of CNN-based classifier as shown in Figure
??. This can be explained by higher abundance of temporal
information in bigger time windows which can be used to
derive more feature map by the convolution filter. Yet smaller
time window size is more attractive for myoelectric control
application to produce faster responses. For the purpose of
offline training, the use of longer time windows is useful for
better classification performance since more temporal patterns
can be detected by the classifier. But question remains as
whether the longer time windows can be practical for real-
time myoelectric control and further investigation is needed
on this issue. Samples of accuracy and loss over the training
iteration for one subject and confusion matrix can be found in
Figure 6 and Figure ??.

The classification accuracy results however are slightly
lower generally achieved accuracy of 80% above in other
EMG classification research works [21]. We attribute this to
the resultant EMG signal quality due to hardware limitation.
Specifically, the EMG electrode tapes that we tested could
not continuously attach the EMG electrodes firmly to some
subjects’ skin areas due to changes in the shapes of the lower
third of their thighs during walking movements. Furthermore,
the thigh volume changes also has caused some skin ten-
sions on the electrodes and hence movement artifacts to the
EMG signals. Better EMG measurements could potentially be
achieved with firm placements of the EMG sensor array at
different thigh heights.

By measuring the EMG signals on implicit muscle locations
as we performed, the acquired EMG signals might also be
more prone to crosstalks between muscles. However, even with
the existing noisy measurements, the results suggest that the
inputs from EMG sensor array could help the classifier to
leverage those effects to a certain extent rather than behaving
as a random classifier. In addition, with more data samples,
the CNN-based classifier can be further trained and tested for
improved classification accuracy.

B. Computational Costs

Table II shows the computational times of different image
gradient methods, spectrogram and CWT for single input
sample based on Matlab implementation. Spectrogram compu-
tation using either STFT or CWT was found to be substantially
longer that frequency gradient computation. Computation time
for the Sobel method is comparable to the Prewitt method but
both are slightly slower than central and intermediate differ-
ence methods. The differences can be considered trivial in
offline training. However, if computational efficiency remains
crucial, then the latter two methods can be considered for
gradient computation.

C. Limitations and Future Works

Our current CNN-based classifier development here is
mainly intended as a proof of concept particularly with regards
to the use of sEMG sensor array on thigh and frequency
gradient feature. Hence the classifier only consists of a simple

TABLE I
COMPARISON OF CLASSIFICATION ACCURACIES AT 200 MS TIME

WINDOW

Classifier Accuracy
CNN with frequency gradient feature 70.93 %

CNN with spectrogram feature 64.54 %
SVM 67.8 %

Fig. 6. Accuracy and loss over the training iteration for a subject

CNN architecture without additional optimisation steps such
as dropout, batch normalisation or momentum. More complex
CNN architecture may be developed in the future.

The final goal of this research is to develop a novel ANN-
based myoelectric control scheme of an assistive robotic
device. The developed classifier will be used as part of the
high-level control scheme that can be connected to the middle
and low-level controllers. For example, higher level knowledge
of current walking activity type would be used to predict the
suitable torque responses for such walking condition.

Our future works will also include improvement of the
classifier for subject-independent setting and experimentation
with different EMG sensor array locations namely the higher
parts of the thigh. Higher number of subjects and evaluation
of classifier performance over time will also be considered in
future experiments.

VI. CONCLUSIONS

As the conclusion, sEMG sensor array application on thigh
circumference can be potentially used as an alternative ap-
proach to standard electrode placement procedure. However,
the inherent crosstalks and weaker signals on certain locations
need to be addressed with the use of more robust classifier
and discriminative features. Frequency gradients of EMG
spectogram is one promising feature to serve as the image
input to a CNN-based classifier.



TABLE II
AVERAGE COMPUTATION TIMES OF FREQUENCY GRADIENT AND

SPECTROGRAM FEATURES FOR A SINGLE ONE-DIMENSIONAL INPUT
SAMPLE

Computation methods Computation time (s)
Spectogram:

STFT 0.1782
CWT 0.1907

Frequency Gradient:
Sobel method 0.0007
Prewitt method 0.0008
Central difference method 0.0003
Intermediate difference method 0.004
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