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ABSTRACT 

Hematite as a sustainable photoabsorber material offers a band gap close to 2 eV and 

photoanode characteristics, but usually requires additional catalysts to enhance surface redox 

chemistry during steady state light energy harvesting for water splitting. Here, for a highly 

doped hematite film, sufficient intrinsic photo-capacitor behaviour is reported for the 

conversion of light transients into energy. Residual energy is harvested in a symmetric 

architecture with two opposing mesoporous hematite films on conductive glass. Transient 

light energy harvesting is shown to occur without the need for water splitting. 

 

 

Ambient energy harvesting technologies have emerged for mechanical vibrations 

(based on piezo-electrics) and variations of temperature with time (based on pyro-

electrics), as well as for static light energy.1,2 Often the harvesting mechanism is based 

on a cycle of high/low mechanical pressure or high/low temperature applied in an 

alternating fashion to create AC power output that is often rectified and stored in a 

capacitor. Similarly, for light energy harvesting a light-on/light-off cycle could be 

imagined. In nature, a similar principle of intermittent energy storage is realised in 

photosynthesis, which is based on a diurnal light-dark cycle with continuous energy 

production even during the night-time phase. The “dark process” relies on stored 

energy and operates out-of-phase to the “light process”. Recently, new artificial 

systems mimicking this behaviour have been proposed based on stored charge carriers 

or “photo-capacitance”; for example in photocatalytic hydrogen production.3  
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Photocapacitor behaviour was initially proposed and developed by Miyasaka4,5 which 

coupled a mesoporous titania photo-active film with a porous carbon capacitive layer. 

Materials for typical photocapacitors are mainly based on carbon,6 PANI,7 silicon,8 

or pedot9 which are usually configured as a separate photo-active absorber layer and 

capacitor layer. A review in this area has appeared recently.10 However, it is rare for 

a capacitance to be directly integrated into the light absorber layer, although related 

bio-photocapacitor systems have been described recently.11 In semiconductor 

electrodes, intrinsic photocapacitance is usually an unwanted component in solar cells 

as it can lead to “reversible charging” of traps as opposed to the “irreversible 

charging” required for flow of electricity and energy production. The irreversible 

surface chemical step of water oxidation links electrical ionic current flow and leads 

to internal rectification and energy harvesting. It is shown here that a reversible 

charging/ discharging effect induced by intrinsic photocapacitance in highly doped 

hematite in the presence of a transient/pulsed light source can also be used in energy 

harvesting when rectified externally (see Figure 1). Rules for this AC energy 

harvesting still need to emerge. However, similar approaches have been used in 

pyroelectric devices for harvesting residual heat since thermal cycling leads to 

reversible charging/discharging as a result of an increase and decrease of the 

polarisation of a material.12  
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Figure 1. Schematic of a symmetric electrochemical cell with two hematite-coated 

FTO electrodes immersed in aqueous 0.1 M NaOH. Lamp 1 and lamp 2 apply 

synchronised on-off cycles so that one electrode is always illuminated and the other 

dark. An external rectifier converts the AC output to DC energy. 

 

 

The net energy harvesting efficiency under “steady state” conditions could in 

principle be comparable to that under “transient” or cyclic conditions (given similar 

light absorption coefficients and recombinational losses), although very different 

parameters need to be optimised in the two approaches. The ability to store charges 

or “intrinsic photocapacitance” as well as the charging/ discharging time constant are 

crucial in the latter case. The switching frequency of the light source will therefore be 

of importance.  

 

For hematite, the intrinsic capacitance (or redox pseudo-capacitance) response has 

been shown to be associated with surface states and exploited in light or potential 

modulated adsorption spectroscopy (LMAS or PMAS).13 Hematite has often been 

highlighted as an abundant and sustainable raw material with potential for 
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applications as a photoabsorber.14,15,16 Hematite offers a band gap of typically 2 eV 

with good characteristics as a photoanode for water splitting.17,18,19 Problems in 

performance are linked mainly to recombination of photo-generated charge carriers 

in the bulk and at surface states,20 slow surface kinetics associated with the formation 

of oxygen,13 and poor electrical conductivity.21,22,23 In this study fluorine-doped tin 

oxide (FTO) electrodes were used as a substrate and hematite films prepared 

following the spin-coating methodology introduced by Souza et al.24‡ A notable 

modification to the preparation method here is a shorter calcination/annealing time to 

provide a more highly doped (and more capacitive) hematite product of semi-

transparent reddish-brown coloration (see inset in Figure S1A). The cross-sectional 

image of a hematite spin-coated electrode after annealing is shown in Figure S1A. 

Top view images reveal only a very smooth layer (not shown). The cross-section of 

the sample shows a thin hematite layer of approximately 600 nm thickness on an 

equally thick FTO support. The hematite layer is composed of smaller nanoparticles 

of about 40 nm diameter. XRD data (Figure S1B) confirm the formation of hematite 

without any other iron oxide phases being identified. However, the crystallinity of 

samples was variable, with minor unidentified signals at 28.47° and 42.57°.  

 

Characteristic Raman peaks for hematite (Figure S1C) are anticipated25 at 225, 247, 

293, 299, 412, 498, and 613 cm-1. As shown in Figure S1C, only five main signals are 

present at 215, 243, 279, 401, 493, and 599 cm-1. These signals demonstrate the 

presence of hematite, and the small shift in signals can be attributed to the use of a 

higher laser power.21 In addition, a strong peak at 1314 cm-1 commonly encountered 

in hematite, is visible and may be associated with an artefact caused by 

antiferromagnetic behaviour of α-Fe2O3.
21 Partially covered by this signal, a smaller 
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peak around 1100 cm-1 is visible. A broad signal at 2400-2600 cm-1 and a smaller 

bump at 814 cm-1 are also visible and possibly linked to the presence of FTO 

underneath the hematite layer. Some of these signals could be associated with the 

presence of residual carbon inclusions due to incomplete calcination of the carbon-

rich precursor material. Carbon containing materials usually display a strong signal 

in the 1300-1350 cm-1 range for sp3 hybridised carbon.26 The colour of films and cut 

off wave length at 592 nm are consistent with hematite and a band gap of 2 eV.21 

 

Voltammetry experiments were performed in aqueous 0.1 M NaOH initially in the 

absence of light which revealed the onset of a reduction at -0.2 V vs. SCE (see Figure 

2A). Therefore, further experiments were initiated at -0.2 V vs. SCE. Next, linear 

sweep voltammograms were recorded in the presence of pulsed light, as shown in 

Figure 2B. Photocurrent density measurements were performed with back and with 

front illumination. Back illumination can be seen to produce considerably higher 

photocurrents. With back illumination, charge carriers are generated closer to the 

FTO-hematite interface, which facilitates their extraction into the FTO layer and 

thereby reduces the extent of transport/recombinational losses. In hematite films, light 

has a penetration depth of approximately 500 nm thickness.17 With an estimated 

thickness of 600 nm for these films, front illumination light may not penetrate deep 

enough for charge separation to be effectively collected at the interface. The transport 

layer for electrons, transport (see inset Figure 2A), is likely to be only a fraction of the 

total thickness. The reaction layer, reaction = (De/ksurface)
0.5, can be defined based on 

the electron diffusivity and the first order surface reaction for the water splitting 

process involving holes at the hematite surface. This is likely to be more extended in 
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the case of low surface reactivity, i.e. the process becomes transport limited and 

current spikes are observed. 

 

Transient photocurrents for both back and front illumination show a characteristic 

light-on spike of anodic current, which is followed by a decay to give a steady state 

current density. When the light is switched off, a cathodic current spike is observed. 

The anodic spike arises from charge separation and rapid electron diffusion 

towards/into the FTO-hematite interface.27,28 The fast decay following the anodic 

spike is usually associated with slow oxygen evolution kinetics and the presence of 

surface traps (pseudo-capacitance). Trap concentrations can be enhanced due to 

defects on the surface or in the crystal structure often associated with a low degree of 

crystallinity and purity of the hematite film.23,29 When the light is turned off, the 

generation of mobile charges is interrupted and electrons flow back and undergo 

recombination with holes, which can occur by reduction of the previously oxidised 

surface traps. This process induces a cathodic light-off current spike.  

 

Spin-coated electrodes were found to exhibit current spikes of typically 1.0 mA cm-2 

and steady state currents of typically 0.5 mA cm-2 at 0.4 V vs SCE. Some variation in 

photocurrent between samples was observed, but the behaviour explained above was 

common to all samples. Even though the same procedure was applied for each spin-

coated sample, these variations suggest that photo-activity is highly sensitive to layer 

composition and calcination conditions. More extended calcination resulted in less 

cathodic light-off current responses. Harvesting energy from the steady state water 

splitting response of the films in Figure 2B is inefficient because of extensive 

charging and slow oxygen evolution. Traditionally, a catalyst such as Co(II) has been 
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proposed as a way to improve performance. Figure 2C shows data for hematite films 

with Co(II) coated hematite following the procedure suggests by Zhong et al.30 Much 

improved water splitting responses (higher steady state photo-anodic currents and less 

evidence for light-on/off transients)  are observed in particular for back illumination.  

 

Figure 2. (A) Schematic of light-on and light-off processes in mesoporous hematite. 

Cyclic voltammograms (3 consecutive cycles, scan rate 20 mVs-1) for hematite film 

immersed in 0.1 M NaOH. (B) Linear scan voltammogram (scan rate 20 mVs-1; 

pulsed LED light; 1 s on 1 s off pulses; irradiance ca. 100 mWcm-2) for a hematite 

film immersed in aqueous 0.1 M NaOH. (C) As before, but with Co(II)-catalyst coated 

hematite. 
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The production of oxygen at the hematite surface by photocatalytic water splitting 

introduces irreversibility (rectification via semi-conductor interfaces and chemistry) 

to allow conversion of light energy into chemical energy. The transient or intrinsic 

photocapacitive behaviour of the hematite electrodes in Figure 2B is usually 

considered a drawback of photoanode materials due to the considerable drop in 

photocurrent as a result of charging of the semiconductor interface and extensive 

charge recombination in trap states. However, energy stored in this intrinsic 

capacitive charging process can be extracted by switching the light source on and off. 

The resulting AC current output can be rectified and accumulated/rectified in an 

external capacitor as shown in Figure 1. Instead of employing a single hematite 

photoanode with a second non-photoactive electrode, here two hematite electrodes 

are used in tandem with one light source being switched on simultaneous to the second 

being switched off. As a result the voltage between the two electrodes will change 

with time, as well as the charge state, to generate current. 

 

Typical chronopotentiometry (zero current) for light-on and light-off transients for a 

single hematite electrode are shown in Figure 3A. Back illumination can be seen to 

result in more pronounced changes in potential with approximately 0.2 V voltage span 

between light-on and light-off conditions. When considering two coupled hematite 

electrodes, as shown in Figure 1, the complexity of resolving processes at individual 

hematite electrodes under these conditions is beyond the scope of this report. 

However, preliminary proof-of-principle data sets in Figure 3B demonstrate that the 

potential U (measured across an external capacitor) is increased when switching the 
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light sources at a 1 Hz frequency. A small external capacitor of 1 F (see circuit in 

Figure 1) rapidly charges to approximately U = 0.18 V (corresponding to an energy 

of ½CU2) but then rapidly loses energy during the second part of the cycle. This is 

due to one of the two hematite electrodes being less effective, thereby leading to a 

modulation. The “potential ceiling” at 0.18 V (compare 0.2 V transients in Figure 3A) 

suggests that at this relative voltage the loss of charge at the semiconductor | 

electrolyte interface is increased so much (possibly due to oxygen evolution or 

reduction) that further charging is impossible. Water splitting chemistry at more 

positive potentials now may be considered an unwanted side reaction causing energy 

losses. In order to suppress the “voltage ceiling” effect, increasing the external 

capacitor value (C) to 100 F or 470 F is effective (see Figure 3B iv and v) since 

this leads to a lower voltage for a given charge (Q) level, since Q=C×U. When 

compared to the experiment with the 1 F capacitor, the 470 F capacitor provides 

an approximately 200 fold increase in energy harvesting after 120 s. 

 

Cuadras et al.31 provide an approximate analysis of the ceiling voltage Uceiling based 

on the assumption of ideal diodes, Q the charge generated each cycle, Qleak the charge 

leaked over a cycle (here mainly due to oxygen evolution), Udiode the voltage dropped 

across the diodes (here a very significant factor), and Cphoto here the intrinsic 

photocapacitance (see equation 1). 

 

𝑈𝑐𝑒𝑖𝑙𝑖𝑛𝑔 =
𝑄−𝑄𝑙𝑒𝑎𝑘−4𝑈𝑑𝑖𝑜𝑑𝑒𝐶𝑝ℎ𝑜𝑡𝑜

2𝐶𝑝ℎ𝑜𝑡𝑜
                                                               (1) 
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Clearly, the voltage Uceiling is not dependent on the external capacitor (see Figure 3B), 

but the energy harvested is directly proportional to the external capacitor. The 

parameter Qleak here is mainly associated with the charge transfer resistance for 

oxygen evolution and is crucial in limiting the voltage and limiting energy harvesting. 

The voltage Udiode as well as Qleak should ideally be small so that ultimately Uceiling = 

Q/2Cphoto. Both are considerable in the work reported here and therefore further 

improvements are likely. The charge generated in the energy harvesting cycle should 

be high (compared to Qleak). Other components to consider are the effects of frequency 

and wave shape. Any deviation from an ideal square waves will cause losses. 

 

The frequency of light source switching offers a further parameter to optimise the 

energy harvesting process. High frequencies lead to energy losses due to an 

insufficient photovoltage being built up and low frequencies lead to losses due to 

more recombination and water splitting. The plots in Figure 3B can be interpreted as 

square root of energy versus time (with a fixed capacitance) and clearly lower 

frequencies are beneficial. Even lower frequencies (not shown) caused loss in 

performance and the optimum light switching frequency here was 0.1 Hz. The energy 

stored in 60 s reaches 3.3 J corresponding to 0.05 W cm-2 (or 0.5 A at 0.1 V). 

This energy output seems low when compared to the light energy absorbed (assuming 

ca. 100 mWcm-2 LED intensity), but is comparable to output of other devices for 

residual energy harvesting32 and improvements will be possible. In particular surface 

blocking layers could be applied to the hematite surface to further suppress water 

splitting and to allow higher voltages to build up on the capacitor. Although water 

and particularly protons may be important in the photocapacitance effect, it may also 

be possible to operate similar devices under non-aqueous conditions. Furthermore, 
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better matching of applied frequency and internal photo-capacitance leakage 

resistance will be important. Also the stability of photocapacitance responses under 

light transient conditions for these hematite electrodes in aqueous 0.1 M NaOH 

appears limited and will need further attention. 

 

 

Figure 3. (A) Chronopotentiometry (zero current) for a hematite electrode in 0.1 M 

NaOH under front (orange) and back (blue) illumination conditions (irradiance ca. 

100 mWcm-2). (B) Capacitor charging potential (light switching frequency 1 Hz) as a 

function of time for external capacitance (i) 1, (ii) 10, (iii) 33, (iv) 100, and (v) 470 

F. (C) As before, but for 470 F capacitance and (i) 1, (ii) 0.5, (iii) 0.2, (iv) 0.1 Hz 

light switching frequency. 
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In conclusion, highly doped pseudo-capacitive hematite thin film electrodes were 

successfully synthesised using a spin-coating deposition method adapted from Souza 

et al.24 using the citric acid polymerisation approach. The resulting electrodes were 

semi-transparent and of a dark-red-orange colour and based on approximately 600 nm 

thick hematite. Doping-enhanced intrinsic photocapacitance was observed compared 

to that observed for more thoroughly calcined hematite. Transient photocurrent 

behaviour has been exploited with an external rectifier circuit to provide an example 

of an “AC solar cell” for residual energy harvesting. Energy loss mechanisms have 

been identified primarily based on the voltage drop in the diode rectifier circuit (to be 

dealt with in future by working at higher voltages) and due to residual water splitting 

activity (to be dealt with in future by improving hematite surface chemistry and by 

changing the electrolyte). The frequency for energy harvesting to maximise was 

shown in this case to be 0.1 Hz. This optimum frequency (or time constant) will need 

to be adjusted depending on application to diurnal (for solar light harvesting) or much 

faster to 50 Hz (for harvesting from artificial light sources). More work will also be 

required to explore/improve the principal limits of AC mode light harvesting devices 

compared to DC mode light harvesting cells. 
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