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Abstract

Many biological and physical systems exhibit behaviour at multiple spatial, temporal or population
scales. Multiscale processes provide challenges when they are to be simulated using numerical techniques.
While coarser methods such as partial differential equations are typically fast to simulate, they lack the
individual-level detail that may be required in regions of low concentration or small spatial scale. However,
to simulate at such an individual-level throughout a domain and in regions where concentrations are high
can be computationally expensive. Spatially-coupled hybrid methods provide a bridge, allowing for
multiple representations of the same species in one spatial domain by partitioning space into distinct
modelling subdomains. Over the past twenty years, such hybrid methods have risen to prominence,
leading to what is now a very active research area across multiple disciplines including chemistry, physics
and mathematics.

There are three main motivations for undertaking this review. Firstly, we have collated a large number
of spatially-extended hybrid methods and presented them in a single coherent document, while comparing
and contrasting them, so that anyone with a need for a multi-scale hybrid method will be able to find the
most appropriate one for their need. Secondly, we have provided canonical examples with algorithms and
accompanying code, serving to demonstrate how these types of methods work in practice. Finally, we
have presented papers that employ these methods on real biological and physical problems, demonstrating
their utility. We also consider some open research questions in the area of hybrid method development
and the future directions for the field.

1 Introduction

The requirement for multi-scale models arises naturally from many biological and physical scenarios due
to their inherent complexity. However, modelling such systems is often difficult using a single modelling
paradigm. This is due to the fine balance between acquiring results in a timely manner (efficiency)
and obtaining results that are consistent with the experimentally derived knowledge or physical laws
(accuracy). One such example is modelling the release of calcium from the endoplasmic reticulum, and
its subsequent movement throughout the cell (Dobramysl et al., 2015; Flegg et al., 2013). Calcium ions
leave the endoplasmic reticulum through ion channels which open or close depending on whether other
calcium ions have bound to receptors. The behaviour of calcium ions close to the receptors can only be
simulated using an individual-based method, as we require the knowledge of every particles’ locations.
However, when the channel opens, a large number of particles enter the cytoplasm of the cell. Keeping
track of all of these particles is computationally costly, leading to limitations on the time-scales which
can feasibly be simulated using the fine-grained model alone.

This review will focus on four modelling scales. The first of these is the macroscopic scale. This
encompasses all models in which we make the assumption of large copy numbers within the system, such
as partial differential equations (PDEs) or stochastic partial differential equations (SPDEs). In most
cases, these continuum models can be simulated extremely efficiently, but they are generally invalid for
low numbers of particles.
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At the next finest scale is the mesoscopic scale. Typically, models at this scale employ stochastic
methods in which particles are compartmentalised into small subregions of the domain, within which
they are assumed to be well-mixed. Particles can transfer between compartments, and interact with
other particles within their own compartment, according to a Markov chain. Models at the mesoscale
can be fast to simulate with small copy numbers, but when these become large, the method can become
prohibitively slow.

On an even finer scale, we have microscopic models. These simulate the trajectory of each particle in
the system (typically using a fixed time-step algorithm), requiring their locations to be updated at each
time-step. Examples of individual-based microsopic models include Brownian dynamics (Andrews and
Bray, 2004; Smoluchowski, 1917) or Langevin dynamics (Langevin, 1908). These methods can be very
computationally intensive. For example, for a system of N particles undergoing Brownian dynamics, at
each time-step, we are required to generate δN Gaussian random variables (where δ is the dimension of
the system) in order to update the positions of the particles. In addition, if pairwise interactions are
necessary, the calculation of N2 pairwise distances is required. For large N this can be the limiting step
in the method. While costly, microscopic individual-based dynamics do allow for a high level of modelling
accuracy, which is often required.

On the very finest scale are molecular dynamics (Dürr et al., 1981; Holley, 1971). In a typical molec-
ular dynamics simulation, a large number or particles (∼ 1010) with attributes of mass, momentum
and volume-exclusion are simulated with an extremely small time-step (typically around 10−15 s). The
position and velocity of all particles are updated according to deterministic equations specified by con-
servation of mass, momentum and energy. Because of the very small time-scales and enormous number
of molecules, these simulations are extremely computationally expensive. However, they are necessary in
order to accurately resolve the fine-level detail that is crucial for many sub-cellular processes including,
for example, protein-protein interactions (Plattner et al., 2017).

The term ‘hybrid method’ has come to mean many different things in the modelling literature. Typ-
ically, it refers to computational methods which represent phenomena using more than one modelling
paradigm. Usually, the reason for multiple modelling paradigms is a significant separation in scale. This
separation may be in time scales (Cao et al., 2005; Hellander et al., 2012; Klann et al., 2012), in species
copy number (Anderson, 2005; Franz et al., 2013b) or in spatial scales (Dobramysl et al., 2015). By cou-
pling an expensive, but accurate ‘fine-scale’ model to a cheaper, but less accurate, ‘coarse-scale’ model,
hybrid methods allow for the significant acceleration of simulations that would be computationally ex-
pensive if the fine-level model were used for all components of the system or inaccurate if the coarse-level
model were employed ubiquitously.

There are range of hybrid methods that have been developed to model well-mixed systems (Bentele
and Eils, 2004; Bobashev et al., 2007; Burrage et al., 2004; Duncan et al., 2016; Hellander and Lötstedt,
2007; Hepp et al., 2015; Kiehl et al., 2004; Salis and Kaznessis, 2005). These methods typically exploit
a separation of time-scales in which fast reactions or abundant species are modelled using a coarse
description and slow reactions or scarcer species are modelled using a more accurate finer description.

However, if the spatial extent of a system is important (when modelling pattern formation, travelling
waves and chemotaxis (Murray, 2003), for example) then there are an even broader range of spatially-
extended hybrid methods which employ different modelling paradigms at different scales in order to
complement the strengths and negate the weaknesses of each.

If individual species are present in very different concentrations throughout the domain (for example,
in the context of chemotaxis, cells are present in low numbers whilst the chemical signalling molecules
with which they interact are present in high copy numbers (Dallon and Othmer, 1997; Erban, 2004;
Franz and Erban, 2011; Guo et al., 2008; Xue and Othmer, 2009)), distinct modelling paradigms can be
used to represent each species in the same simulation. The particular representation will depend on the
abundance of each species (Alarcón et al., 2003; Anderson, 2005; Anderson and Chaplain, 1998; Dallon
and Othmer, 1997; Dormann and Deutsch, 2002; Franz and Erban, 2011; Franz et al., 2013b; Gerlee and
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Anderson, 2007; Jackson et al., 2006; Jeon et al., 2010; Jeschke and Uhrmacher, 2008; Landsberg and
Waring, 1997; Osborne et al., 2010; Patel et al., 2001; Ribba et al., 2004; Smallbone et al., 2007; Wylie
et al., 2006). Other types of spatial hybrid method partition the physical processes (for example reactions
and diffusion) to be simulated according to their relative speeds, using a technique known as operator
splitting (Hellander et al., 2012; Klann et al., 2012), simulating faster processes using relatively cheap
methods and slower processes using more accurate but more expensive representations.

For the purposes of this review, we will largely focus on methods in which distinct modelling paradigms
are used in different regions of space in order to represent the same physical quantity. The models in these
distinct regions of space are typically coupled together though an interface or overlap region. Spatially-
coupled hybrid methods, of the sort we cover in this review, rely on the assumption that different regions
of the spatial domain can be accurately represented using modelling paradigms at different scales (Erban,
2014; Flegg et al., 2012, 2015; Smith and Yates, 2017; Yates and Flegg, 2015). The motivation for these
methods will typically be either a separation in the scale of species copy numbers in distinct regions of
the domain or a requirement for a detailed model on small spatial scales.

Widely differing species copy numbers in distinct regions of the domain allow coarse models to cheaply
capture the dynamics in regions in which copy numbers are high whilst a fine model captures the details
of low copy number populations with the required accuracy. Typically these methods would be used for
phenomena which are multiscale in copy number, such as travelling wave problems (Moro, 2004; Robinson
et al., 2014). Behind the wave we have large copy numbers meaning that a coarse description can be
used. At the wave front and further ahead, however, stochastic variation will play a more important role
in determining the correct dynamics. Consequently, a fine description is required in these regions.

Alternatively, even if there is no significant difference in copy numbers throughout the domain, there
may be a small region of space which requires fine-level modelling locally, but which can tolerate coarser
modelling further away in regions which are not sensitive to the individual dynamics. Typically, these
methods are used to represent phenomena in which boundary effects are important (Dobramysl et al.,
2015).

We will refer to these methods (whatever the underlying motivating dynamics) as spatially-coupled
hybrid methods. Although we will largely focus on these spatially-coupled hybrid methods in this re-
view, we will also touch upon other the hybrid methods which accelerate spatially-extended stochastic
simulations where appropriate.

While a full description of each is beyond the scope of this review, we nevertheless reference numerous
software packages designed to simulate systems at each of the four spatial scales described above (typically
individually, but occasionally incorporating hybrid dynamics), which are summarised in Table 1. For more
information on any of these software packages, we refer the reader to the appropriate reference, which is
given in the final column of the table.

In this paper, we review some of the vast array of hybrid methods present in the literature. In Section
2, we introduce the four most popular modelling paradigms for reaction-diffusion systems at different
scales. In Sections 3, 4 and 5 we review the three main forms of spatially-coupled hybrid method. Each
of these sections will begin with an in-depth review of an illustrative example, including pseudocode for
its implementation, before we summarise other existing hybrid models of that type. Following these, in
Section 6, several other types of hybrid method will be reviewed, before we conclude in Section 7.

2 Modelling paradigms

Within this section, we will describe modelling paradigms that are coupled most often in order to create
hybrid methods. In Section 2.1 we describe a general PDE for reaction-diffusion systems with a single
species. Section 2.2 contains an outline of compartment-based models, while in Section 2.3 we investigate
individual-based dynamics. In Section 2.4, we briefly introduce molecular dynamics, and finally in Section
2.5 we indicate how each of these modelling methods can, in some sense, be demonstrated to be equivalent
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Software
Package

Uses Types Reference

Copasi
Next reaction method,

Hybrid methods
Meso,

Macro-meso
Hoops et al. (2006)

E-Cell
Direct method,

Next reaction method,
τ -leaping

Meso
Tomita et al.

(1999)

Lattice
Microbes

Direct method,
Next reaction method

Meso
Roberts et al.

(2013)

MCell Spatial stochastic simulation
Meso,
Micro

Stiles and Bartol
(2001)

Smoldyn Spatial stochastic simulation Meso-micro
Andrews and Bray

(2004)

STEPS Direct method Meso
Wils and

De Schutter (2009)

StochKit

Direct method,
Optimised direct method,

τ -leaping,
stochastic simulation algorithm

Meso Li et al. (2008)

(py)URDME Next subvolume method Meso
Drawert et al.

(2012)

Table 1. Summary of software implementations and the scales which they can be used to model. The
table contains only packages that have been updated since 2013. All have been downloaded to test that
the links still work. Adapted from Pahle (2009).
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representations of reaction-diffusion.

2.1 Macroscopic models

Macroscopic models encompass ordinary differential equations (ODEs) and stochastic differential equa-
tions (SDEs) in a well-mixed context, and partial differential equations (PDEs) and stochastic partial
differential equations (SPDEs) in a spatially-extended context. PDEs, with which we shall primarily
be concerned in this review, are used to model the mean-field behaviour of particles, provided they are
at a sufficiently high concentration, whilst SPDEs fulfil the same purpose but with the additional abil-
ity to incorporate stochasticity in particle numbers/concentrations. These macroscopic methods can be
simulated efficiently, but can fail to correctly capture the appropriate behaviour at low copy numbers,
in which the combination of stochastic fluctuations, small particle numbers and potentially non-linear
reactions can cause significant discrepancies between the true individual-based dynamics and those of
their continuum counterparts.

The methods discussed in this review which employ (S)PDEs are all designed to simulate reaction-
diffusion systems, mostly comprising a single species. The PDE for the concentration of a single species,
c(x, t), at position x and time t has the general form:

∂c

∂t
(x, t) = D∇2c(x, t) + R(c(x, t), x, t), x ∈ R

δ, t ∈ [0, T ] (1)

with appropriate boundary and initial conditions. Here D is the diffusion coefficient, R is a function
representing the reactions and δ is the dimension of the space which we are modelling. These systems of
PDEs are, in general, very difficult or impossible to solve analytically, especially when second- or higher-
order reactions are involved making the reaction function R non-linear. Typically, however, they can
be solved straightforwardly using numerical approximations. One popular family of numerical solution
techniques, employed in many of the papers discussed in this review, are finite-difference methods1 such
as the forward Euler or Crank-Nicolson methods. Finite-difference methods discretise the spatial and
temporal domains onto a mesh, upon which the PDE solution is approximated. The PDE (1) is converted
into a system of difference equations which relate the solution at the next time-step to the solution at
previous time-steps. Often, these systems of difference equations may be approximated to first order to
form a linear system. There are many efficient techniques for solving such linear systems (see for example
(Brenner and Carstensen, 2004; Eymard et al., 2000; Morton and Mayers, 2005; Smith, 1985)), giving a
fast method for obtaining a numerical solution of PDE (1).

In this review, in-keeping with the terminology used throughout the reviewed papers, these models
will be described as “macroscopic” and, in the deterministic case as “mean-field”.

2.2 Compartment-based methods

Compartment-based methods are a coarse-grained stochastic representation. The spatial domain is split
into a number of compartments of size hc, which are assumed to contain uniformly distributed, well-mixed
particles. The system can be simulated using either a time-driven or an event-driven algorithm. In both
cases, an event is defined as either a diffusive jump, in which a particle jumps from one compartment
to a neighbour with rate d = D/h2

c (here D is the corresponding macroscopic diffusion coefficient) or a
reaction, in which particles interact within a compartment according to a specified reaction pathway.

Time-driven algorithms assume a time-step, ∆t, that is small enough so that at most one “event”
occurs in the time interval [t, t + ∆t) (Erban et al., 2007). A scaled uniform random number is used to
decide whether an event takes place, and if so, which event it is.

Event-driven algorithms are generically known in this context as stochastic simulation algorithms
(SSAs). The most commonly used SSA is the Gillespie direct method (Gillespie, 1977), an exact SSA

1Note that finite-volume and finite-element methods may work equally well depending on the PDE.
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in which each event, represented by a propensity function, has an exponentially distributed waiting
time. Consequently, the minimum waiting time of all the events is also exponentially distributed with
a rate which is the sum of the rates of the individual reactions. The direct method, thus, simulates an
exponential waiting time for the next reaction of any type to occur and then the specific reaction to be
implemented is chosen with probability proportional to its propensity function. This method is exact in
the sense that it simulates the corresponding chemical master equation (CME) exactly. Although this
basic method accurately simulates the underlying dynamics, it can be quite slow, and so other, faster
methods have been formulated (Cao et al., 2004; Elf and Ehrenberg, 2004; Gibson and Bruck, 2000; Li
and Petzold, 2006; McCollum et al., 2006; Yates and Klingbeil, 2013). Additionally if some moderate
sacrifices in accuracy are acceptable, several approximate simulation algorithms are available, including
τ -leaping and R-leaping (Auger et al., 2006; Gillespie, 2001).

The spatially-extended methods described in this section will be referred to as “compartment-based”,
“mesoscopic” or “stochastic” (the latter only when coupled with a deterministic model) throughout this
report.

2.3 Individual-based modelling

The next set of methods we will consider are individual-based methods. These methods are very com-
putationally intensive for large numbers of particles because they require the storage and maintenance
of the positions of potentially large numbers of particles. If second- or higher-order reactions or volume
exclusion is to be represented, we need to consider pairwise interactions. The calculation of pairwise
distances can also contribute significantly to the cost of these detailed algorithms. In many biologically
realistic situations, we may be modelling large numbers of objects at the atomistic scale. In the process of
calcium induced calcium release, for example (Dobramysl et al., 2015), there could be tens of thousands
of ion positions to keep track of, as well as millions of potential pairwise interactions.

One method of simulating diffusing particles on an individual level is to allow the particles to follow
Brownian trajectories, such that:

yi(t + ∆t) = yi(t) +
√

2D∆t ξi, (2)

where yi(t) is the position of particle i at time t and ξ ∼ MV N(0, Iδ) is a δ−dimensional unit Gaussian
random variable. Reactions can then be simulated in a number of different ways. One method, called
the λ-ρ model (Erban and Chapman, 2009), uses a reaction radius: if two eligible particles come within a
certain distance of one another, ρ, they react with a given rate, λ, according to the appropriate reaction
pathway. If this probability is unity and the reaction is certain to occur upon particles reaching the
reaction radius, we have the special case of the “Smoluchowski” model (Smoluchowski, 1917). Green’s
function reaction dynamics are an alternative event-driven microscopic model for simulating reaction-
diffusion dynamics (van Zon and ten Wolde, 2005), but since none of the hybrid methods discussed
herein employ it, we shall not discuss it further.

We will refer to these methods as “individual-based”, “microscopic”, “particle-based” or “off-lattice”
models in what follows.

2.4 Molecular dynamics

At the very finest scale lies molecular dynamics (Dürr et al., 1981; Holley, 1971). In molecular dynamics
simulations, the molecules for the medium in which a particle of interest is moving (air, water etc.) are
explicitly modelled rather than implicitly incorporated into the movement dynamics of the focal particle,
as is the case with random position jumps of Brownian motion models, for example. For coarse molecular
dynamics representations (as opposed to fully atomistic simulations), the particles of the medium can
be considered to be identical hard spheres with a given radius and mass and whose velocity and hence
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momentum are specified initially, but change dynamically throughout the simulation. Particles interact
with each other and in such a way as to conserve mass and momentum.

Although the resulting motion of the large focal particle may appear stochastic, it is in fact calculated
deterministically by considering the many interactions with each of the small particles in the surrounding
fluid, as well as the larger microscopic particles. Whilst this method of modelling explicitly accounts
for the surrounding molecules instead of modelling them as a stochastic force (as in an individual-based
method), keeping track of the large number of particles of the medium, their coordinates and their
velocities, is computationally intensive.

2.5 Connections between models at different scales

In order to couple models at different scales together, we first need to be satisfied that they are represen-
tations of the same phenomena. Here we briefly detail how the different scale models described above can,
in some senses, be thought to be equivalent to each other. We direct the interested reader to appropriate
sources for full derivations.

Firstly, in order to move from the mesoscale to the macroscale, we take the diffusive limit of a set
of equations for the mean number of particles in each compartment, derived directly from the reaction-
diffusion master equation (Erban and Chapman, 2009). In the case of second- and higher-order reactions,
the mean equations depend on higher order moments (variance etc.). As a result, moment closure is
required in order to close the system. The most common moment closure at first order is known as
the mean-field moment-closure and the resulting equations are known as the mean-field equations. It
should be noted that the mean-field PDEs derived in the case of second- and higher-order reactions,
therefore, are not exact descriptions of the mean behaviour of the mesoscale model (Erban et al., 2007).
To derive the corresponding macroscale model of diffusion from the microscale model, one can use the
Fokker-Plank equation, which describes the evolution of the probability density of a particle moving
according to a given SDE (Erban et al., 2007). For example, the Fokker-Planck equation corresponding
to non-interacting particles undergoing simple Brownian motion is the canonical diffusion equation. The
mesoscopic and microscopic representations can therefore be thought of as equivalent, in some sense,
through their connection to the PDE. A rigorous derivation of the connections between the models at
microscale and mesoscale is given by Isaacson (2008). Finally, the motion of a large focal particle buffetted
by smaller particles of medium as part of a coarse molecular dynamics simulation, has been shown, in
the limit that the focal particle’s mass becomes large in comparison to the mass of the particles of the
medium, to be equivalent to Brownian dynamics (Erban, 2014).

3 Macroscopic-to-mesoscopic models

In this section, we will first introduce the broad concept, and then review specific examples of models
which couple macroscopic dynamics to mesoscopic dynamics, which we will refer to as “macro-meso”
hybrid methods. We list and describe the macro-meso hybrid methods covered in this section in Table
2. We begin by giving an illustrative example of a macro-meso hybrid method, the pseudo-compartment
method (PCM) (Yates and Flegg, 2015) and present pseudocode for its implementation. We then sum-
marise several other existing macro-meso hybrid methods and present schematics (where appropriate) to
aid the reader’s understanding.

Macro-meso models are used when we want to simulate a region of the domain in which stochastic
variation is important but in which the exact locations of every particle are not required, whilst for
the remainder of the domain we have sufficiently high copy numbers to employ the associated continuum
model. Typical examples to which these hybrid methods have been applied are the simulation of travelling
wave phenomena (Harrison and Yates, 2016; Moro, 2004). Behind the wave-front, we have a large number
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Paper Type System modelled

Yates and Flegg
(2015)

Spatially-coupled,
non-adaptive, non-overlap

Reaction–diffusion

Moro (2004)
Spatially-coupled,
non-adaptive, non-overlap

Reaction–diffusion

Spill et al. (2015)
Spatially-coupled,
adaptive, non-overlap

Reaction–diffusion

Schulze et al. (2003)
Spatially-coupled,
adaptive, no-overlap

Epitaxial growth

Harrison and Yates
(2016)

Spatially-coupled,
adaptive, overlap

Reaction–diffusion

Flekkøy et al. (2001)
Spatially-coupled,
non-adaptive, overlap

Reaction–diffusion

Rossinelli et al.
(2008)

Operator splitting Reaction–diffusion

Lo et al. (2016) Operator splitting Reaction–diffusion

Chiam et al. (2006)
Propensity-based spatial split-
ting

Reaction–diffusion

Table 2. A summary of the macro-meso hybrid papers that will be covered in this section. The “type”
column gives a brief description of the type of coupling used to join the two regimes.
“Spatially-coupled” means that the domain is split into two distinct regions within which different
paradigms are used. “Adaptive” refers to whether an interface is able to move, while “overlap” indicates
if an overlap region is investigated. “Operator splitting” indicates where reaction and diffusion are
modelled in different ways, rather than dividing space, and “propensity-based spatial splitting” is where
the propensity functions are split based on their value. The “system modelled” column describes the
application for which these models can be used. All of the macro-meso hybrid papers present novel
methods rather than applications of pre-existing methods to real-world systems.

of particles so that the continuum limit is valid, whilst in front of the wave, fluctuations can play a
prominent role in the overall dynamics, including the wave speed.

3.1 Illustrative example of a macro-meso hybrid – the pseudo-compartment

method

The first macroscopic-to-mesoscopic example we present is the pseudo-compartment method (PCM)
(Yates and Flegg, 2015). We will treat this method as an illustrative example for this section, and as
such, will present it in a high level of detail, including a schematic (see Figure 1) and pseudo-code (see
Algorithm 1). Note that for all three illustrative examples, we set the dimension of space to be δ = 1 for
simplicity.

The authors divide their domain of interest into two subdomains, separated by an interface. A
PDE representation is used in one subdomain, and a compartment-based method in the other. These
subdomains are labelled ΩP and ΩC respectively. Within the PDE subdomain, the solution is evolved
using the Crank-Nicolson method (a finite-difference approximation to the underlying PDE) with zero
flux boundary conditions at both ends. The time-step used for the numerical solution of the PDE is ∆t
and the spatial step is hp. The compartment based regime is evolved according to the Gillespie SSA,
where the subdomain is split into K separate compartments, each of width hc, so that |ΩC| = Khc. The
authors choose hc = nphp where np ∈ N is the factor by which the PDE grid is finer than the compartment
size. Again, a zero-flux boundary is used within ΩC at the exterior boundary of the subdomain (i.e. the
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propensity for jumping out of the domain at that end is set to zero). The zero-flux boundaries on the
PDE side of the interface ensure that no mass can leak from one subdomain to the other. The coupling is
completed through the use of a pseudo-compartment, C−1. This is a compartment of width hc adjacent
to the interface within ΩP. A schematic for this method is shown in Figure 1.

Figure 1. A schematic for the PCM (Yates and Flegg, 2015). The green line represents the PDE
solution, while the blue boxes represent particles within each compartment. The red line denotes the
interface between the two subdomains. The green boxes represent the number of pseudo-particles
within the pseudo-compartment, calculated by direct integration of the solution over that region. The
arrows in the centre represent the movement of pseudo-particles over the interface between the
pseudo-compartment and the first compartment of the mesoscopic domain.

Pseudo-particle numbers within this pseudo-compartment are calculated through direct integration
of the PDE, giving

n (C−1, t) =

∫

C
−1

c(x, t) dx,

where n(A, t) is the number of particles residing in the region A ⊆ Ω at time t. This value is then used
to generate a propensity function for particles jumping out of the pseudo-compartment and into the first
compartment adjacent to the interface in ΩC. Similarly, in order to correctly model the flux over the
interface, particles in the first compartment in ΩC can jump into the pseudo-compartment with the usual
diffusive rate.

The algorithm proceeds by firstly generating a time until the next event (a diffusive jump between
(pseudo-)compartments or one of the M reactions within the true compartments) according to the
Gillespie algorithm (Gillespie, 1977). This can be found by transforming a uniform random variable
u1 ∼ Unif(0, 1) into an exponential random variable with rate equal to the sum of all propensity func-
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tions, given by

τ =
1

α0
ln

(

1

u1

)

, (3)

where α0 is the sum of all propensity functions (including the extra ones for jumps out of and into the
pseudo-compartment). The algorithm then checks to see whether the time has been incremented past
the next PDE update time. If not, a compartment-based event occurs first, and an event is selected
with probability proportional to its propensity function. Otherwise, the numerical solution of the PDE
is incremented by a single time-step. When a particle jumps from the pseudo-compartment to the first
compartment of ΩC, we remove a particle’s worth of mass uniformly from the PDE solution at the
points within the pseudo-compartment, and increment the count of particles in the first compartment.
A movement in the opposite direction is completed in a similar manner, by adding a particle’s worth of
mass to the PDE solution uniformly across the pseudo-compartment, and removing a particle from the
first compartment. Pseudocode for this method is given in Algorithm 1.

Algorithm 1: Pseudo-compartment method (PCM)

(1a) Initialise the time, t = t0 and set the final time, T . Specify the PDE-update time-step ∆t and
initialise the next PDE time-step to be t∆ = t + ∆t.

(1b) Initialise the number of particles in each compartment in ΩC, n(Ci, t) for i = 1, . . . , K (where
Ci is the region of the domain covered by compartment i), and the distribution of density in
ΩP, c(x, t), for x ∈ ΩP.

(1c) Calculate the propensity functions for diffusion between the compartments as αi,j =
n(Ci, t)D/h2

c for i = 1 . . . K and j = M + 1, M + 2 (corresponding to left and right move-
ments) and for reactions as αi,j for i = 1 . . . K and j = 1, . . . , M using the usual mass action
kinetics.

(1d) Calculate the propensity function for diffusion from the pseudo-compartment, C−1, in ΩP, into
the adjacent compartment, C1, in ΩC: α∗ = D

∫

C
−1

c(x, t) dx/h2
c .

(1e) Calculate the sum of the propensity functions, α0 =
∑K

i=1

∑M+2
j=1 αi,j + α∗.

(1f) Determine the time for the next ‘compartment-based’ event, tc = t + τ , where τ is given by
equation (3).

(1g) If tc < t∆ then the next compartment-based event occurs:

(a) Determine which event occurs according to the method described in the text (see Gillespie
(1977)).

(b) If the event corresponds to αi,j for i = 1 . . . K and j = M + 1, M + 2 then move a particle
from interval i in the direction specified by j. If the particle crosses the interface into
pseudo-compartment, C−1, then add a particle’s worth of mass uniformly to the region
C−1 i.e. c(x, t + τ) = c(x, t) + 1[x∈C

−1]/hc. Here, 1x∈A is an indicator function which
takes the value 1 when x ∈ A and 0 otherwise.

(c) If the event corresponds to propensity function α∗ and c(x, t) > 1/hc for all x ∈ C−1 then
place a particle in C1. Remove a particle’s worth of mass from the PDE solution in the
region C−1 i.e. c(x, t + τ) = c(x, t) − 1[x∈C

−1]/hc.
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(d) Update the current time, t = tc.

(1h) If t∆ < tc the the PDE regime is updated:

(a) Update the PDE solution according to the numerical method.

(b) Update the current time, t = t∆ and set the time for the next PDE update step to be
t∆ = t∆ + ∆t.

(1i) If t ≤ T , return to step (1c).

Else end.

In Figure 2 we have reproduced an example simulation from (Yates and Flegg, 2015) using the pseudo-
compartment method. We initialise N = 500 particles uniformly throughout the PDE subdomain, where
ΩP = (−1, 0) and hp = 0.01. The compartment-based subdomain, ΩC = (0, 1), is split into K = 20
compartments, each of width hc = 0.05. The interface naturally lies at I = 0 and the results were
averaged over 5000 repeats until a final time of T = 100. We set the diffusion coefficient to be D = 0.0025
and the PDE time-step to be ∆t = 0.01.
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Figure 2. A replication of results from Yates and Flegg (2015) using the PCM. The green line
corresponds to the PDE part of the hybrid solution, the red line is the interface, the blue bars are the
compartment-based part of the hybrid solution. The dashed black line is the analytical solution of the
mean-field PDE model (the diffusion equation) across the entire domain. Parameter values are as in the
text.

3.2 Other macro-meso hybrid methods

We now turn our attention to other macro-meso hybrid methods, indicating where they share similarities
with one another and where they differ. The full list of methods considered in this section is given in
Table 2.

Another type of hybrid method incorporates an adaptive interface. The interface between two mod-
elling regions moves adaptively based on a pre-determined criteria, that may involve (local) copy numbers
or densities. Moro (2004) present one such hybrid method when investigating pulled fronts in a diffu-
sive reversible dimerisation. In contrast to the PCM above, they use the same discretisation for both
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the continuum and the compartment-based simulations. The boundary between the two subdomains
is determined using a threshold number of particles. Any voxels with more particles than this thresh-
old will be simulated by numerically solving the macroscopic Fisher-Kolmogorov-Petrovsky-Piscounov
(FKPP) equation. Any voxels with fewer than this number of particles are simulated as a mesoscopic
compartment-based position-jump Markov chain. If particles in the compartment-based region jump into
the macroscopic region, they are immediately removed from their voxel and held until the next PDE
update step. When the PDE update occurs, PDE voxels away from the interface are updated accord-
ing to the usual finite-difference method, but the value of the voxel closest to the interface is updated
with a mixed flux condition. Flux from the macroscopic side to the mesoscopic side is specified by the
deterministic flux from the PDE region, whereas flux from the mesoscopic side to the macroscopic side
is determined by the number of particles that jumped beyond the interface into the macroscopic subdo-
main from the mesoscopic subdomain during the PDE update time-step. Flux in the opposite direction
(from macroscopic to mesoscopic) is implemented by adding a Poisson distributed random number of
particles (with mean corresponding to the expected flux of particles over the boundary as determined by
the deterministic model) to the first voxel in the mesoscopic region.

Building upon this idea of adaptive interfaces, Spill et al. (2015) include the possibility of having
multiple adaptive interfaces (see Figure 3 for a schematic with a single interface). As in Moro (2004), the
same grid spacing is used for both modelling paradigms. The authors are able to add multiple interfaces
by again introducing a threshold value in order to determine which regions of the domain should be
simulated deterministically and which stochastically, allowing the positions of the interfaces between
distinct modelling regions to move, appear and disappear. Boxes with particle numbers lower than the
threshold are simulated according to the compartment-based dynamics. Boxes with particle numbers
greater than the threshold are categorised as deterministic and evolve according to a set of coupled ODEs
which describe the mean field number of particles in each compartment. The single threshold value
potentially gives rise to multiple distinct regions of stochastic and deterministic modelling for species
whose values fluctuate around the threshold value. In order to ensure there are not too many distinct
regions a minimum subdomain size condition is implemented which prevents the occurrence of small,
disconnected regions of a particular method.

To implement the coupling between the macroscale and mesoscale models, flux from the determin-
istic side is governed by the mean-field ODEs, while particles can jump into and out of the interface
compartment from the mesoscopic side with rates determined by the SSA (Gillespie, 1977) (in a method
similar to that of the PCM (Yates and Flegg, 2015)). All reactions within the interface compartment are
completed using the SSA, whereas reactions in other parts of the domain are implemented according to
their respective modelling paradigm.

Although many hybrid methods are designed for simulating reaction-diffusion systems, others have
been designed to represent different physical phenomena. Schulze et al. (2003) present a hybrid method
for modelling epitaxial growth. The method couples a discretised version of the macroscopic Burton-
Cabrera-Frank (BCF) continuum model for the growth of a crystalline structure to its corresponding,
on-lattice, mesoscopic kinetic Monte-Carlo (KMC) representation. In this mesoscopic model, crystals
grow layer upon layer. Layers are first nucleated and then expand by the addition, surface diffusion,
and deposition of adatoms (crystalline particles) from solution. The front of a growing layer is referred
to as a “step”. The method for simulating the KMC model is taken from (Bortz et al., 1975), however,
it proceeds in the same way as the Gillespie SSA (Gillespie, 1977). The BCF model, as implemented
in this paper, is effectively a finite-difference discretisation of the diffusion equation. This continuum
representation is employed in cells which comprise multiple sites of the individual-based model. Steps are
simulated using the fine-grained KMC algorithm, and regions away from steps are simulated using the
coarse diffusion approximation for the movement of adatoms on the surface. Separating the subdomains
are interfaces, which adaptively move with the locations of the steps. The authors consider both two- and
three-dimensional simulation regions, referred to as the 1+1- and 2+1-dimensional domains (the “+1”
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Figure 3. A schematic for the method from Spill et al. (2015). The green line and blue boxes are as in
Figure 1, while the red boxes denote an extra compartment between the PDE and compartment
subdomains. The coloured double-headed arrows denote how the flux over each of the two red interfaces
are calculated.

refers to the crystals growing upwards, meaning that we are effectively simulating a surface process in
one- and two-dimensional space).

The algorithm proceeds in a similar way to the PCM (Yates and Flegg, 2015) for reaction-diffusion
systems. Close to a step, adatoms are represented using the stochastic KMC algorithm so that their
locations can be individually updated, and processes such as absorption, dissociation and nucleation can
be accurately modelled. Further away from a step, we neglect these processes and simply consider the
particles diffusing along the surface. The time until the next KMC event is calculated using exponentially
distributed random variables. If the next KMC event occurs before the next PDE update time, the
corresponding event is enacted, otherwise the PDE is evolved forwards in time. Particles jump across
the interface, with a rate which depends on the number of particles within the continuum cell adjacent
to the interface. These stochastic jump events are simply added to the list of KMC events. If a particle
leaves the continuum cell, a new particle is initialised in an adjacent KMC site and the density in the
continuum cell is decreased uniformly across its width by a total of one particle. In the opposite direction,
the particle is removed from the KMC simulation and a particle’s worth of mass is added uniformly across
the corresponding continuum cell. As with the PCM, care has to be taken to ensure positive density
in the continuum at all times. The interface is also adaptive in that it can evolve as the steps move
through space. If a cell needs to change representation from KMC to BCF, we simply count the number
of particles in this region and convert it to a particle density uniformly spread across the now-continuum
cell. In the opposite direction, the density is converted to the floor of the number of particles (whilst
remembering the fractional part in case the cell is again represented by the continuum description later
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in the simulation). This number of particles is then initialised randomly throughout the now-discretised
cell.

Figure 4. A schematic for the method of Harrison and Yates (2016). The descriptions for the green
line and blue bars are the same as in Figure 1. The overlap region is denoted by the red region. The
width of the overlap region can be any integer number of compartment widths (here, for simplicity, we
have chosen a two compartment-width overlap region). In the overlap region, the sum of the densities of
the two methods gives the overall solution.

Point interfaces are not the only way to divide the domain between modelling paradigms – overlap
regions may also be employed. Typically these regions inherit properties from both of the models that are
being coupled. Harrison and Yates (2016) utilise such a region to couple their mesoscopic and macroscopic
models of reaction diffusion. The authors suggest a fixed-time-step, finite-difference scheme for the
numerical solution of the macroscopic PDE and use a time-driven algorithm for simulating the stochastic
regime (with the same fixed time-step as the PDE). This is in contrast to many of the other hybrid
algorithms within this review, in which the Gillespie SSA (Gillespie, 1977) is employed for the mesoscopic
regime. It is noted, however, that event-driven alternatives can be applied with minor alterations.

The authors focus on reaction-diffusion systems in one dimension with the compartment-based subdo-
main on the right and the PDE subdomain on the left (see Figure 4) (although the algorithm would work
equally well in higher dimensions and with the orientation of the regions reversed). The overlap region
has two interfaces, one at either end. At the right-hand interface where the PDE begins (part-way into
the compartment subdomain), a Dirichlet matching boundary condition is implemented on the PDE. This
is achieved by calculating the average concentration in the two compartments either side of the interface,
and ensuring that the PDE solution at the interface is set to that value. At the left-hand interface, where
the compartment-based subdomain ends (part-way into the PDE subdomain), a flux-matching boundary
condition is applied to the compartment immediately to the right of the interface. The diffusive flux
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across the interface is calculated using the value of the PDE lattice sites corresponding to the centres of
compartments either side of the interface. This flux is then imposed on the compartment-based regime
by adding or removing particles from the left-most compartment with probability proportional to the
magnitude of the flux (with time-step chosen to ensure this magnitude is less than one). An adaptive in-
terface condition similar to that implemented in the adaptive two-regime method (Robinson et al., 2014)
(see Section 4.2) is also presented. Repositioning criteria based on density are checked at pre-defined
time-steps, and the overlap region is moved accordingly.

Similarly to Harrison and Yates (2016), Flekkøy et al. (2001) utilise an overlap region as part of a non-
adaptive algorithm. They introduce a method for coupling a discretised version of the diffusion equation
with a discrete-time and -space mesoscopic Markov chain representation of diffusion in which particles can
jump to neighbouring voxels in each fixed time-step. The PDE time-step is chosen to be coarser than its
stochastic counterpart, meaning that there can be multiple stochastic jumps for every PDE update step.
The spatial-mesh for the mesoscopic, stochastic representation is also finer than that of the corresponding
discretisation of the diffusion equation; that is to say that there are multiple mesoscopic voxels for every
macroscopic voxel. This is in contrast to many of the other macroscopic-to-mesoscopic coupling methods
we have outlined in this review, in which the PDE mesh is at least as fine as the compartment size.
In these papers, this finer macroscopic resolution was motivated by the idea that the PDE is an exact
representation of the scaled probability density of diffusing particles and so warranted an appropriately
fine discretisation. Here, Flekkøy et al. (2001) motivate their choice of discretisation (multiple mesoscopic
voxels for every macroscopic voxel) by arguing that the PDE-based model is a coarse-grained version of
the particle model and hence requires a coarser discretisation in both space and time.

In order to couple the two methods, Flekkøy et al. (2001) allow the two subdomains to overlap across
several PDE sites. Within this overlap region, mass is represented as both mesoscopic and macroscopic.
The regimes are coupled using a flux-balancing argument which implements the flux of the macroscopic
representation on the mesoscopic model at one end of the overlap region and vice versa at the other.
The flux term from the PDE description is implemented as a source term which is added to the particle
description on the penultimate mesoscopic mesh point. This PDE flux is calculated by using a centred
finite-difference approximation across the two PDE sites which span the penultimate mesoscopic mesh
point. However, in order to prevent discontinuities in density between the different descriptions, the PDE
density at one of the two mesh points (used in the finite-difference approximation of the PDE gradient)
is substituted for the particle density at the same point. At the other end of the overlap region, the
averaged particle flux (determined to be the difference between the number of right moving and left
moving particles) over a PDE time-step is added to the penultimate site of the PDE mesh.

The previous six methods detailed in the macro-meso section (Flekkøy et al., 2001; Harrison and Yates,
2016; Moro, 2004; Schulze et al., 2003; Spill et al., 2015; Yates and Flegg, 2015) are all spatially-coupled
hybrid methods – methods that split the spatial domain into distinct (possibly partially overlapping)
regions in which different modelling methods are used. However, other methods exist, which do not
specify distinct or even overlapping subdomains for each of the two methods to be coupled. We now
focus on two other types of hybrid method. The first employs operator splitting - a process in which the
operators which evolve the system are implemented separately (Lo et al., 2016; Rossinelli et al., 2008).
The second method employs propensity-based spatial splitting (Chiam et al., 2006), which divides the
representation of the dynamics adaptively according to the value of each event’s propensity function.

Rossinelli et al. (2008) use τ -leaping (Gillespie, 2001) in order to introduce two new methods for
accelerating stochastic reaction-diffusion systems (Cao et al., 2006). The spatial domain is discretised
into a regular lattice, with the particles situated at each lattice site subject to the same reactions. Particles
can also diffuse to neighbouring lattice sites with appropriately chosen rates.

The first accelerated method presented by Rossinelli et al. (2008) is a purely stochastic algorithm
that the authors name the “spatial τ -leap” (Sτ -leap) method. This is not a hybrid method, but does
allow for faster approximate simulations by employing τ -leaping. This algorithm proceeds by calculating
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maximum acceptable leap times for reactions and diffusive events across all voxels. The minimum of
these adaptively chosen, acceptable times, τ , is then selected as the next time-step for the algorithm.
The entire system is updated by drawing Poisson random variables to simulate the number of events of
each type that occur during the next τ time units.

The second method Rossinelli et al. (2008) introduce is the “hybrid τ -leap” (Hτ -leap) method. This
method exploits the premise that diffusion processes are typically up to two orders of magnitude faster
than corresponding reaction processes (Bernstein, 2005). For this method, the authors split the dynamics,
completing the diffusive jumps deterministically and the reactions using the τ -leaping method. The time-
step for the reactions is calculated adaptively, as before, but only the reactions are updated in this step.
Following this, a centred finite-difference approximation combined with forward Euler time-integration
is used to deterministically advance the diffusion of particles according to the macroscopic diffusion
operator.

A similar operator splitting method is presented by Lo et al. (2016). Their method simulates all
reactions using a compartment-based mesoscopic representation, implemented using the Gillespie SSA
(Gillespie, 1977). Where molecule numbers are sufficiently large, the number of diffusive jumps be-
tween compartments are approximated using continuous Gaussian random variables, with time-dependent
means and variances. Where particle numbers are low, diffusive jumps are implemented as events within
the SSA. This coupling allows for large time-steps to be taken, even in the presence of rapid diffusion.
The numbers of diffusive jumps between compartments are approximated as the sum of the “determin-
istic” number of jumps and appropriately scaled zero-mean Gaussian random variables. The system
size expansion is applied to the reaction-diffusion master equation (RDME) in order to characterise the
covariances of these random variables.

Another type of hybrid method chooses which events of the compartment-based regime are to be
simulated using the continuum or mesoscopic solvers by using their propensity functions. Chiam et al.
(2006) simulate the mesoscopic dynamics using the Gillespie SSA (Gillespie, 1977) while the PDE is
discretised using a second-order finite-difference approximation and evolved using the forward Euler
method. Each of these descriptions is simulated on the same discretised mesh. Propensity functions are
calculated for all possible events (reactions within and diffusive jumps from each box). A threshold value
is then used to decide which events are to be simulated using the SSA and which using the deterministic
description. The threshold value corresponds to a given fraction of the maximum propensity function.
Any events with a sub-threshold propensity are simulated using the SSA. Those with super-threshold
propensities are simulated using the finite-difference discretisation. The authors comment that the value
of the threshold needs to be “tuned” depending on the specific problem to obtain the correct balance
between efficiency and accuracy.

In this section we have outlined several spatially-extended hybrid methods which can be used to couple
macroscopic and mesoscopic methods. We now turn our attention towards mesoscopic-to-microscopic
couplings.

4 Mesoscopic-to-microscopic models

In this section we will begin by introducing, in broad terms, models which couple microscopic dynamics
to mesoscopic dynamics, which we will refer to as “meso-micro” hybrid methods. After summarising the
key properties of the meso-micro hybrid methods covered in this section, in Table 3, we go on to describe
them in more detail. We begin by giving a detailed description of an illustrative example of a meso-micro
hybrid method, the ghost cell method (Flegg et al., 2015) and present pseudocode for its implementation.
We then summarise other existing meso-micro hybrid methods.

For meso-micro hybrid methods, both of the models which comprise the hybrid method incorporate
some form of stochastic variation. These types of method will be required whenever fluctuations are
deemed important across the entire domain, but where specific particle locations are not required in some
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subregions of the domain. As an example, we can consider the modelling of an ion channel (Dobramysl
et al., 2015; Flegg et al., 2013). We require detailed knowledge of the molecules in regions of space close
to the ion channel’s receptors in order to resolve the binding dynamics accurately. However, away from
the channels, this detailed representation is not required.

Paper Type System modelled

Flegg et al. (2015)
Spatially-coupled,
non-adaptive, non-overlap

Reaction–diffusion

Flegg et al. (2012)
Spatially-coupled,
non-adaptive, non-overlap

Reaction–diffusion

Robinson et al.
(2014)

Spatially-coupled,
adaptive, non-overlap

Reaction–diffusion

Flegg et al. (2014)
Spatially-coupled,
non-adaptive, non-overlap

Reaction–diffusion

Dobramysl et al.
(2015)

Spatially-coupled,
non-adaptive, non-overlap

Reaction–diffusion

Hellander et al.
(2012)

Operator splitting Reaction–diffusion

Klann et al. (2012) Operator splitting Reaction–diffusion

Table 3. A summary of the meso-micro hybrid papers that will be covered in this section. The methods
in all the meso-micro hybrid papers summarised here are designed for modelling reaction-diffusion
systems. Each of these papers are concerned with the development of a novel hybrd method, apart from
the paper by Dobramysl et al. (2015), which employs the two-regime method (Flegg et al., 2012) to
investigate the formation of calcium puffs. See text for more information. Descriptors are as in Table 2.

4.1 Illustrative example of a meso-micro hybrid – the ghost cell method

As an illustrative example for the mesoscopic-to-microscopic methods, we look at the ghost cell method
(GCM), developed by Flegg et al. (2015). The domain is divided into two subdomains, which we refer
to as ΩC and ΩB, within which the system is evolved according to a compartment-based method and
Brownian dynamics respectively. As in the PCM (see Section 3.1), ΩC is split into K compartments
of width hc, so that |ΩC| = Khc. In the Brownian subdomain, particles move in continuous space
and a reflective boundary is enforced at the interface to prevent individual particles from entering the
compartment-based region due to Brownian jumps. In order to allow the particles to move between the
two subdomains, the authors construct a “ghost cell” in ΩB adjacent to the interface with ΩC, which is
the same width, hc, as the compartments. We present a schematic for this method in Figure 5.

Particles move across the interface in both directions according to compartment-based dynamics,
with the ghost cell constituting an extra compartment. In order to calculate the propensity function for
particles to jump out of the ghost cell, the number of particles in that region of space is simply counted
and multiplied by the compartment-based jump rate, d. The Brownian dynamics are implemented with
a time-based algorithm and the compartment-based dynamics with an event-driven algorithm. At any
time point, the time until the next compartment-based event (including jumps out of and into the ghost
cell) is found according to (3). It is then determined whether this event takes place before the next
Brownian update. If a Brownian update comes first, the Brownian dynamics are evolved within ΩB for a
small time interval, ∆t according to (2). Otherwise, the mesoscopic event corresponding to the waiting
time is determined and implemented. If a jump from the last compartment to the ghost-cell is enacted,
a single particle is removed from the final compartment and is initialised with position chosen uniformly
at random across the ghost cell. For movement across the interface in the opposite direction, one of the
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Figure 5. Schematic for the GCM (Flegg et al., 2015). The blue boxes represent particles within each
compartment and the yellow dots represent individual particles. These particles are shown with a
volume, but in the simulations do not have a mass or volume. The particles reside on the
one-dimensional line, but have been illustrated in the plane in order to show the directions and
magnitudes of their next movement clearly (black arrows). The yellow boxes within the ghost-cell
correspond to the number of Brownian particles which reside within it. The coloured arrows in the
centre are similar to those in Figure 1.

Brownian particles in the ghost-cell is chosen uniformly at random and removed from the system. An
extra particle is then added to the final compartment of ΩC. Pseudocode for the GCM for diffusion only
is provided in Algorithm 2.

Algorithm 2: Ghost cell method (diffusion only)

(2a) Initialise time t = t0, set the final time T . Specify the Brownian update step ∆t and set the
next Brownian update time to be t∆ = t0 + ∆t.

(2b) Initialise particles in the compartments of ΩC and Brownian particles in ΩB.

(2c) Calculate propensity functions for each compartment given by αi(t) = dni(t) = Dni(t)/h2
c for

i = 1, . . . , K, where ni(t) is the number of particles in compartment i at time t. Calculate the
propensity function for diffusion from the ghost cell, αGC(t) = nGC(t)D/h2

c , where nGC(t) is the
number of particles in the ghost cell at time t.
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(2d) Sum the propensity functions to find α0(t).

(2e) Determine the time τ until the next compartment-based event according to equation (3). Set
tc = t + τ .

(2f) If tc ≤ t∆, then the next compartment-based event occurs:

(a) Choose the event with probability proportional to the associated propensity function.

(b) If the event corresponds to a diffusive jump out of the ghost-cell and into the last com-
partment, choose one particle in the ghost cell at random to remove and place it in the
final compartment of ΩC.

(c) If the event corresponds to a particle jumping from the final compartment of ΩC to the
ghost cell, remove a particle from the final compartment and add place it with position
chosen uniformly at random across the width of the ghost cell.

(d) If the event corresponds to a purely compartment-based event, implement the jump ac-
cording to the usual compartment-based dynamics.

(e) Update time t = tc.

(2g) If t∆ < tc, we update the Brownian system:

(a) Update the positions of all particles using (3).

(b) Complete reactions using an appropriate method (Andrews and Bray, 2004; Erban and
Chapman, 2009; Smoluchowski, 1917).

(c) Update time t = t∆. Update t∆ = t + t∆.

(2h) If t < T , return to (2c), otherwise stop.

We have replicated some results from Flegg et al. (2015) using the GCM. These are displayed in
Figure 6. As in the PCM, we have placed the interface centrally, I = 0, with the mesoscopic subdomain
at ΩC = (−1, 0) and the microscopic subdomain situated at ΩB = (0, 1). We set the Brownian update
step to be ∆t = 0.01, and all other parameters are the same as the pseudo-compartment simulation.

4.2 Other meso-micro hybrid methods

We now outline the remaining meso-micro hybrid methods summarised in Table 3. Many of these papers
are variations of, or applications of, the same method, namely the two-regime method (Flegg et al., 2012).
We start by describing this method, and then follow by describing the adaptations and applications. We
then consider two further methods, which fall under the operator splitting category (Hellander et al.,
2012; Klann et al., 2012).

Some of the authors of the GCM previously developed the two-regime method (TRM) (Flegg et al.,
2012) to couple compartment-based and Brownian-based dynamics. The individual particle paths are
evolved according to independent Browninan motions, whilst the compartment regime is updated using
the on-lattice, event-based next reaction method (Gibson and Bruck, 2000). Flux over the interface from
the compartment-based subdomain to the Brownian-based subdomain is implemented using an altered
jump rate to ensure that the flux over the interface is consistent with diffusion. If a particle is selected
to jump across the interface from the final compartment to the Brownian-based subdomain, a particle
is removed from the relevant compartment and placed at a position selected from a normalised error
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Figure 6. A replication of results from the GMC (Flegg et al., 2015). Descriptions are as in Figure 2,
with the addition that yellow bars denote the ‘binned’ solution of the individual-based simulation in the
hybrid method. Parameter values are as in the text.

function probability distribution function. When a particle jumps from the microscopic subdomain to
the mesoscopic subdomain, it is simply removed and added to the compartment it has moved in to. The
TRM is represented schematically in Figure 7 (a).

(a) (b)

Figure 7. (a) Schematic for the TRM (Flegg et al., 2012). The blue blocks and yellow dots are as
described in Figure 5. The arrow from left to right over the interface denotes the jump in this direction,
with the specified altered jump rate. In this jump rate, D is the macroscopic diffusion coefficient, ha is
the width of a compartment and ∆t is the time-step used to evolve the particles in the Brownian-based
subdomain. The other cross interface arrow represents jumps in the other direction. The yellow
rectangle and blue particle near the interface represent particles converted from one modelling regime to
the other upon crossing the interface in either direction according to the method described. (b)
Schematic for the application of the TRM to the problem of calcium-induced calcium release
(Dobramysl et al., 2015). The blue outlined box denotes the outer boundaries of the compartment-based
subdomain. All boundaries are absorbing, apart from the grey one (bottom), which is reflective. The
yellow box in the centre of the lower face is the microscopic subdomain, containing nine ion channels
(yellow circles). For simplicity, no particles or compartments are displayed in this schematic.
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Robinson et al. (2014) introduce an extension to this method, called the adaptive TRM (ATRM),
which adds an adaptive interface to the algorithm. The interface is moved in order to ensure that the
subdomain that is to be simulated using the computationally intensive particle-based dynamics is as
small as possible. The interface can only move in discrete steps, which are the same size as the width
of a compartment in the mesoscopic subdomain. The interface movement condition is, similarly to Moro
(2004) (see section 3.2), a local condition. If the number of particles within a compartments width of the
interface (and within the microscopic subdomain) is above a pre-specified level, the interface is moved
into the microscopic subdomain, extending the mesoscopic subdomain. Conversely, if the number of
particles in the compartment adjacent to the interface is below a distinct (lower) threshold, the interface
moves towards the mesoscopic subdomain, increasing the size of the microscopic subdomain. The coupling
between the compartment-based and Brownian-based methods is implemented exactly as the TRM (Flegg
et al., 2012).

The TRM is generalised into two (and higher) dimensions by Flegg et al. (2014). The authors discuss
in detail the case of a regular square lattice of points with a planar interface (in which the interface is
either purely horizontal or vertical) and cases for which the interface may contain corners. The paper
follows a similar method to the TRM paper, in which the authors calculate the factor by which the
jump rate over the interface must be scaled by in order for a particle to move from the mesoscopic to
microscopic subdomain, together with the rate in the opposite direction.

These methods can be applied to biologically relevant scenarios such as the formation of calcium puffs
in a range of eukaryotic cells (Dobramysl et al., 2015; Erban et al., 2014; Flegg et al., 2013). Dobramysl
et al. (2015) investigate the formations of such calcium puffs using the TRM. Calcium ions are modelled
as diffusive particles, which can bind to activating and inhibiting receptors on the ion channels. Each
channel contains four sub-channels, each with one activating and one inhibiting receptor. A sub-channel
is activated if the activating receptor has a calcium ion bound to it, and the inhibiting one does not, and
a channel is ‘open’ if at least three of its four sub-channels are activated. When a channel is activated,
a constant influx of particles is introduced into the domain. A particle can bind to a receptor with a
given probability if it is within a small hemi-sphere of the receptor in question. Particles can also unbind.
When particles unbind they are placed a given distance away from the receptor with a second probability.
The authors simulate this process in a (three-dimensional) cube representing some part of the cytoplasm
of the cell. One face of the cube represents part of the surface of the impermeable endoplasmic reticulum
(the cell’s major calcium store) upon which a reflecting boundary condition is implemented. In the centre
of one of this faces are nine ion channels. On all other faces, an absorbing boundary condition is used.
The authors couple the microscopic Brownian dynamics for particle motion in a small cube around the
nine ion channels to a mesoscopic compartment-based regime throughout the rest of the domain. The
mesoscopic regime is simulated using the next reaction method (Gibson and Bruck, 2000). This hybrid
representation is used to investigate calcium puffs which occur when a calcium channel opens and then
closes quickly, allowing for a large number of ions to enter the domain over a short time period. This
problem is a good example of the need for hybrid methods to couple simulation methods at different
scales. If this is simulated using a fully individual-based model, the computational complexity would be
too high to simulate accurately within a reasonable time-frame.

Another method which falls into the meso-micro category is presented by Hellander et al. (2012).
This is an operator splitting method rather than a spatially-coupled hybrid method. The spatial domain
is divided into discrete voxels and the algorithm allows for particular voxels or species to be described as
either mesoscopic or microscopic. The algorithm progresses using a splitting scheme. First the microscopic
particles are frozen and the mesoscopic particles are progressed using the SSA (Gillespie, 1977). Then,
the mesoscopic particles are frozen to allow the microscopic particles to advance according to the Green’s
function reaction dynamics (van Zon and ten Wolde, 2005). Finally, reactions between mesoscopic and
microscopic particles are completed according to the microscopic algorithm, with an adjusted reaction
rate to account for the difference in representation.
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Operator splitting is also employed by Klann et al. (2012). The spatial domain (assumed three-
dimensional) is split into equally sized cubic compartments. Within each of these subvolumes, some
species are chosen to be simulated via the compartment-based paradigm using Gillespie’s SSA, whilst
others are evolved using the Brownian-based approach with a fixed time-step. Thus, different modelling
paradigms are used for different species within the same voxel, but also potentially for the same species
in different regions of the domain. For each species simulated under the compartment-based paradigm,
a minimum time until the next occurrence of any type of first-order reaction affecting that species
(other than diffusive jumps) is stored. If a particle diffusively jumps out of a compartment (either into
a region in which the compartment-based paradigm is being employed for that species or a region in
which that species is being modelled as particles) then with probability inversely proportional to the
number of particles of its species in the compartment it has just left, the jumping particle takes this
minimum first order reaction time with it to the new compartment. The authors use an updated next
reaction method (introduced by Anderson (2007)) to implement both reactions and diffusive jumps for
particles which are modelled using the compartment-based approach. For particles which are modelled
microscopically, diffusion is completed via a discretised SDE which represents Brownian motion, while
bimolecular reactions are simulated using the λ-ρ methodology (Erban and Chapman, 2009; Lipková
et al., 2011).

If an entire compartment changes description from mesoscopic to microscopic according to the specified
criteria, the appropriate number of particles are initialised uniformly throughout the compartment. Of the
new individual particles, one inherits the next reaction time for first order reactions from the mesoscopic
description, whilst exponentially distributed first reaction times which are later than the inherited time
are generated for the others. For a conversion in the opposite direction, the next firing times for diffusive
and second- (and higher-, if required) order reactions are calculated according to the standard Gillespie
method. For first order reactions, the minimum time (over all the particles of the same species) is used.
A similar mechanism is employed if only certain species change their description based on a threshold.

The number of unique methods that we have considered in this category is relatively small. However,
the development of the TRM that we have reviewed, serves to demonstrate how a basic method can
be altered to incorporate adaptive interfaces and higher dimensions, as well as applied to genuinely
multiscale problems. In the following section, we investigate a third category of our spatial coupling
involving macroscopic and microscopic models.

5 Macroscopic-to-microscopic methods

In this section, we will introduce and review models which couple macroscopic dynamics to microscopic
dynamics, which we will refer to as “macro-micro” hybrid methods. We list and describe the macro-micro
hybrid methods covered in this section in Table 4. We begin by summarising an illustrative example of
a macro-micro hybrid method, the auxiliary region method (ARM) (Smith and Yates, 2017) and present
pseudocode for its implementation. We then summarise other existing macro-micro hybrid methods.

Hybrid methods that couple the macroscopic continuum representations to discrete microscopic dy-
namics have been relatively poorly studied in comparison to macro-meso and meso-micro hybrid methods.
One contributing factor is the fact that such hybrid algorithms bypass the intermediate mesoscale repre-
sentations of particle dynamics, meaning that the scale separation gap which they must bridge is greater
than either of the other two hybrid paradigms. Primarily though, we postulate the relative dearth
of macro-micro hybrid methods is due to the inherent difficulty when converting individual Brownian
particles into continuum mass (and vice-versa) when coupling individual-based microscopic methods to
continuum macroscopic continuum representations.

Although they are less common, macroscopic-to-microscopic methods provide useful insight into a
number of biological and physical phenomena, such as the movement of cytochrome c particles in the
presence of a charged surface (Gorba et al., 2004).
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Paper Type System modelled

Smith and Yates
(2017)

Spatially-coupled,
non-adaptive,
no overlap

Reaction-diffusion

Franz et al. (2013a)
Spatially-coupled,
non-adaptive,
no overlap/overlap

Reaction-diffusion

Geyer et al. (2004)
Spatially-coupled,
non-adaptive,
no overlap

Reaction-diffusion

Gorba et al. (2004)
Spatially-coupled,
non-adaptive,
no overlap

Electrostatics

Alexander et al.
(2002)

Spatially-coupled,
non-adaptive,
no overlap

Reaction-diffusion

Alexander et al.
(2005)

Spatially-coupled,
non-adaptive,
no overlap

Viscous gas (train
model)

Plapp and Karma
(2000)

Spatially-coupled,
non-adaptive,
no overlap

Dendritic growth

Table 4. A summary of the macro-micro hybrid papers that will be covered in this section. The
methods in the macro-micro hybrid papers are designed for modelling a diverse array of applications.
Each of these papers are concerned with the development of a novel hybrd method, apart from the
paper by Gorba et al. (2004), which uses method they previously developed (Geyer et al., 2004) in order
to model the movement of cytochrome c molecules in the presence of a charged surface. Descriptors are
as in Table 2.

5.1 Illustrative example of a macro-micro hybrid – the auxiliary region method

As an illustrative example of a macroscopic-to-microscopic hybrid method, we consider the auxiliary
region method (ARM) (Smith and Yates, 2017). The ARM couples a PDE for reaction-diffusion systems in
a subdomain ΩP to individual-based Brownian dynamics in a subdomain ΩB. Both of the subdomains have
zero flux boundaries at the interface so that no PDE mass “leaks” into the individual-based subdomain,
and vice versa. Flux over the interface is governed strictly by compartment-based dynamics between the
two auxiliary regions, ΩPA and ΩBA, adjacent to the interface within the PDE and Brownian subdomains
respectively. The one-dimensional schematic for the ARM is displayed in Figure 8.

In order to implement compartment-based jumps over the interface, particle numbers within each of
the auxiliary regions are calculated. For the PDE auxiliary region, the number of auxiliary particles can
be calculated as:

nPA(t) =

∫

ΩPA

c(x, t) dx, (4)

where c(x, t) is the solution to the hybrid PDE in ΩP. Similarly, the number of particles within the
Brownian auxiliary region is

nBA(t) = |{j : yj(t) ∈ ΩBA}| , (5)
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Figure 8. Schematic for the ARM (Smith and Yates, 2017). The green line and yellow dots represent
the same phenomena as in Figures 1 and 5 respectively. The auxiliary regions on either side of the
interface are highlighted in red. The green and yellow boxes within auxiliary regions represent
compartment-based particle numbers in the PDE and Brownian auxiliary regions respectively. The
coloured arrows in the centre represent the conversion of particles between the mesoscopic and
microscopic auxiliary regions, similar to those in Figure 1.

with yj(t) the position of particle j at time t. These auxiliary particle numbers are used to calculate
propensity functions, which are then employed in an event-driven SSA which determines the time of the
next jump across the interface. These auxiliary regions, the dynamics of which are simulated using the
compartment-based method, are designed to bridge the gap between the finest and coarsest representa-
tions. Particles which jump from the macroscopic subdomain to the microscopic subdomain are removed
from the PDE auxiliary region ΩPA by removing one particle’s worth of mass uniformly over its width,
and are then initialised with position chosen uniformly at random within ΩBA, the Brownian auxiliary
region. A movement in the opposite direction is completed by first choosing a particle in ΩBA uniformly
at random, removing it, and then adding a particle’s worth of mass to the PDE solution uniformly over
the region ΩPA.

Reactions are completed using the appropriate methodology for the subdomain in which they reside,
with the exception that for reactions with at least one set of participating particles lying within the Brow-
nian auxiliary region, ΩBA. Firings of the reactions involving these subsets of particles are implemented
according to the SSA in order to prevent the potential creation of individual-based particles within the
PDE subdomain. Pseudocode for the implementation of the ARM is given in Algorithm 3. For simplicity,
we present the algorithm for a single species in one dimension.
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Algorithm 3: Auxiliary region method (ARM)

(3a) Initialise time t = t0, set final time T , PDE/Brownian update time-step, ∆t, the PDE dis-
cretisation grid size, hp, and the auxiliary region width, ha. Initialise particles in the PDE
subdomain, ΩP, and the Brownian subdomain, ΩB, as required. Calculate the time until the
next PDE and Brownian update step t∆ = t + ∆t.

(3b) Calculate the number of particles nPA and nBA in the auxiliary regions, using formulae (4)
and (5) respectively. Consequently, calculate the corresponding propensity functions, αP(t) =
dnPA(t) and αB(t) = dnBA(t). Calculate propensity functions for any relevant reactions within
ΩBA, and finally the sum of all the propensity functions to give α0.

(3c) Calculate the time, τ , until the next auxiliary region event according to equation (3). Update
the auxiliary region time tc = t + τ .

(3d) If tc < t∆

(i) Draw three random numbers u1, u2, u3 ∼ Unif(0, 1).

(ii) If u1α0(t) < αPA(t) (corresponding to a jump from ΩPA to ΩBA):

• Remove a particle from the PDE auxiliary region according to

c(x, t) = c(x, t) − 1

ha

1[x∈ΩPA].

• Initialise a new particle of uniformly within ΩBA with position y∗ = u3ha + I.

Else if u1α0(t) < αP(t) + αB(t) (corresponding to a jump from ΩBA to ΩPA):

• Choose a particle at random from within the Brownian auxiliary region and remove
it from the system by selecting an index q according to q = ⌈u3nBA⌉ (where ⌈x⌉
represents the smallest integer greater than x).

• Add a new particle into the PDE auxiliary region according to

c(x, t) = c(x, t) +
1

ha

1[x∈ΩPA].

Else (corresponding to a reaction in ΩBA)

• Use u2 to choose a reaction to be implemented from the list of possible reactions with
probability proportional to its propensity function.

• Enact the reaction chosen in the previous step according to the usual kinetics of the
reaction pathway

(iii) Set t = tc

Else

(i) Update the PDE system using an appropriate numerical method.

(ii) Implement any reactions in ΩB using any appropriate method. Note that production reac-
tions should be implemented after any degradation reactions in order to prevent particles
being created and destroyed in the same time-step.

(iii) Update the positions of the Brownian particles according to equation (2), including any
boundary conditions

(iv) Set t = t∆, update t∆ = t + ∆t.

(3e) If t < T , return to (3b), otherwise stop.
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As with the PCM and GCM, we have replicated some of the results from (Smith and Yates, 2017)
using the ARM. For these examples, the macroscopic subdomain is ΩP = (−1, 0) and the microscopic,
Brownian subdomain is ΩB = (0, 1). Both auxiliary regions are set to be size ha = 0.05, and the time-step
for both the Brownian and PDE updates are set to ∆t = 0.01. All other parameter values are as in the
previous simulations. The results are shown for the same initial condition as in Figure 6.
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Figure 9. Replication of results from the ARM (Smith and Yates, 2017). Descriptions for the PDE
and Brownian domains are as in Figures 2 and 6, respectively, with parameter values given in the text.

5.2 Other macro-micro hybrid methods

Franz et al. (2013a) present a macro-micro hybrid method in which the coupling is completed directly,
without the use of a compartment-based intermediary regime (Figure 10). In the microscopic subdomain,
particles evolve their positions according to Brownian motion. The corresponding Fokker-Planck equation
which describes the evolution of the probability density of each particle is the diffusion equation.

The conversion of PDE mass to individual particles is achieved by allowing PDE mass to flow over the
interface and probabilistically determining whether sufficient mass has crossed the interface to warrant
the instantiation of a new Brownian particle. Conversely, Brownian particles crossing he interface in the
opposite direction are realised as delta function contributions to the PDE solution at the position at
which they arrive at the end of their jump (10).

Upon finding that their initial coupling algorithm can correctly maintain mean particle concentra-
tions, but incorrectly matches particle variance profiles, Franz et al. (2013a) adapt their algorithm by
incorporating an overlap region in which some of the mass is represented as PDE and some as Brownian
particles. At the interface at one end of the overlap region, PDE mass is converted in to particles, as
before, and at the the other end, particles are incorporated into the PDE by the addition of delta func-
tions as previously. The addition of this overlap region corrects the variance of the particles in the purely
Brownian region of the hybrid simulations.

Geyer et al. (2004) also allow mass from the PDE to flow over the interface. They introduce two
methods to interface Brownian dynamics simulations for diffusion to a deterministic macroscopic density-
based representation. The first method couples individual particles to a constant density reservoir,
whereas in the second, the macroscopic subdomain itself evolves according to a discretised version of
the diffusion equation. In the first case, the authors ensure the correct movement over the boundary
by removing particles when they cross into the reservoir from the Brownian dynamics subdomain, and
inserting new particles into the Brownian dynamics subdomain with an appropriate rate and position. The
rate and position are determined by using the fundamental solution of the diffusion equation to calculate
the probability density function (PDF) and magnitude of mass which has flowed over the interface in the
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Figure 10. Schematic for the method by Franz et al. (2013a) (without overlap region). The green line
and yellow dots represent the same quantities as in Figure 8. The orange mass labelled α is the amount
of mass that flows over the interface in a small time-interval (comprising several PDE updates). Its
total mass is used to find the probability of a particle being initialised in the microscopic subdomain,
and its profile acts as a scaled probability density function for the position of the new molecule. The
spike in the PDE solution is representative of a Dirac delta-function which is added to the PDE at the
location that a Brownian particle has jumped to from the Brownian subdomain.

intervening time period. This can then be used to determine if, and where, a particle should be placed
in the microscopic Brownian dynamics subdomain.

For their second hybrid method (see Figure 11 (a)), which couples Brownian particles to a dynamic
PDE, the PDE mesh-point located closest to the interface is used to determine the probability density
function of particles flowing into the Brownian subdomain (i.e. it is treated as a constant density reservoir
as in the fixed density case). This relies on choosing the PDE mesh width sufficiently large (and thus
sacrificing accuracy for the PDE solution) or the time step to be sufficiently small so that the majority
of the mass that flows in to the Brownian subdomain originates in this region. However, the value of
the PDE solution at this mesh-point is allowed to evolve dynamically according to diffusive fluxes. The
flux into this PDE mesh-point from the Brownian dynamics side is proportional to the net number of
particles which have flowed between the regions in the preceding time-step. The flux from the remainder
of the PDE subdomain is calculated according to the usual centred finite-difference approximation of the
diffusion equation.

The first method is then used by Gorba et al. (2004) to investigate the behaviour of cytochrome c
molecules which move in the presence of a charged membrane. Two kinds of external force are considered
(electrostatic interaction and van der Waals forces) between pairs of cytochrome c molecules and between
cytochrome c molecules and the charged membrane. The system is modelled as follows. The region
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of interest (see Figure 11 (b)) is a cuboid-shape box, with equal width and length. On each side of
of the box, reflective boundary conditions are implemented, whilst the base of the box has a repelling
boundary condition due to the repulsion caused by van der Waals forces between the membrane and
the molecules. At a prescribed height there is an interface, below which particles evolve according to a
Langevin equation, and above which is a fixed-density reservoir of particles. All simulations using this
method are initialised with no particles in the Brownian subdomain, with particles entering solely via
the reservoir.

The authors compare the results using their hybrid coupling algorithm with previous simulation
results, which assume a fixed number of particles with a zero-flux boundary condition replacing the
reservoir at the top of the box. They show that the shape of concentration profiles as a function of
distance from the membrane generated by the two methods agree.

(a) (b)

Figure 11. (a) Schematic for the method presented by Geyer et al. (2004). The green lines and yellow
dots represent the same phenomena as in Figure 8. The additional green line which resides in the
microscopic subdomain is the mass which flows over the interface after a given time, where ρ0 is the
density at the PDE meshpoint adjacent to the interface and σ = 2

√
D∆t is the average Brownian step

size during a time interval of length ∆t. (b) Schematic for the application presented by Gorba et al.
(2004). The yellow dots are the same as in Figure 8, while the blue region is a constant density
heat-bath. There are reflective boundary conditions on all sides of the computational domain, with the
exception of the lower boundary, denoted in orange. This is a repulsive boundary caused by the van der
Waals forces, representing the charged boundary.

In contrast to the previous works presented here, Alexander et al. (2002) introduce a hybrid method
to couple an SPDE (as well as a similar algorithm for a PDE) to Brownian dynamics (see Figure 12).
Separating the continuum and individual-based subdomains is an interface, over which particle fluxes
are matched to ensure that particle movement is correctly calculated between the two descriptions. The
continuum subdomain is divided into a mesh, upon which the solution to the SPDE/PDE is calculated
numerically. In the particle-based subdomain, particles move according to the standard off-lattice Brow-
nian motion SDE. The hybrid algorithm progresses in discrete time with both subdomains using the same
time-step.

In order to hybridise the two methods, at the beginning of each time-step, an integer number of
particles are uniformly initialised within the SPDE/PDE voxel closest to the interface, referred to as
the “handshaking” region. The number of particles initialised is the closest integer to the value of the
SPDE/PDE solution at the handshaking mesh point at the beginning of the time-step. All particles
(both in the handshaking region and elsewhere) are then evolved according to the standard Brownian
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motion equation. The number of particles crossing the interface gives the flux into the handshaking mesh
point which is stored and later implemented when the PDE/SPDE values are updated. Any particles
which do not reside in the Brownian subdomain following the position update step are removed from the
simulation. All other SPDE/PDE fluxes are calculated using the discretised version of the SPDE/PDE
equation and the values of the mesh points are consequently updated.

Figure 12. Schematic for the method by Alexander et al. (2002). The green line and yellow dots
represent the same phenomena as in Figure 8. The green dots residing within the PDE subdomain are
particles initialised at the beginning of a time-step (corresponding to the numbers of particles within
the corresponding region obtained by direct integration of the PDE solution). Black arrows show the
directions and magnitudes of next movement of all particles. The discretisation on the lower axis is the
PDE mesh over the entire domain.

In a later paper, the same authors also consider correlated systems (Alexander et al., 2005). They
develop a hybrid algorithm for the train model which describes the transport of material in a viscous
gas. This model is chosen due to its relative simplicity and the readily derived continuum (SPDE/PDE)
counterparts which are straightforward to solve numerically. The train model can be summarised as
follows: several trains run parallel to one another at different speeds with varying numbers of passengers.
Passengers jump, with exponentially distributed waiting times, between neighbouring trains, changing
the momentum of the participating trains. At each end of the array of trains are “platforms” which move
at a fixed velocity and contain a reservoir of passengers.

The authors couple a discretised version of the SPDE/PDE representation of the train model to the
discrete individual-based description. Both the discretised SPDE/PDE and the train model are simulated
with the same grid spacing. Separating the two subdomains is an interface. The hybrid algorithm uses
flux-matching for both the velocity and the momentum over the interface, whilst also maintaining the
long-range spatial correlations in the velocity caused by stochastic fluctuations. The algorithm employed
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is analogous to the one that is presented in Alexander et al. (2002). At the beginning of a continuum
time-step the first voxel in the continuum part of the domain (called the “handshaking” region) is filled
with particles. The number of particles initialised is the nearest integer value to the SPDE/PDE solution
in this voxel. Each of these particles is also assigned a velocity which corresponds to the velocity of the
continuum model at that point. The individual-based particles are then evolved and the fluxes of velocity
and momentum over the interface are calculated. These values are then utilised within the continuum
solver in place of the the fluxes over the interface.

Finally, Plapp and Karma (2000) introduce a hybrid method for simulating interfacial patterns, with
specific application to dendritic crystal growth. In the inner-region, which includes the area in which the
crystal is growing and a buffer layer of liquid adjacent the interface, a discretised version of the diffusion
equation is solved and the position of the crystal interface is updated using a deterministic phase-field
approach. This update method is coupled to particles evolving according to off-lattice Brownian motion.
The time-step at which the positions of particles are updated increases the further away the particles are
from the interface. At the edge of the inner-region between the crystal surface and the outer region is
a “buffer-region” of undercooled liquid. This buffer-region acts to damp the stochastic variation of the
outer-region to negligible levels at the crystal surface. Adjacent to the interface between in the inner
and outer regions are “conversion cells” which facilitate the conversion of Brownian walkers into PDE
density and vice versa, via the implementation of boundary conditions on each of the models. A Dirichlet
boundary condition for the PDE is determined by the number of Brownian particles residing in each of
the conversion cells. In the other direction, the heat flux over the boundary is collected in a reservoir. If
the value of the reservoir exceeds a threshold, H , a new particle is added to the cell. If it drops below
−H , then a particle is absorbed and consequently removed from the corresponding conversion cell.

6 Other hybrid methods

Within this section, we investigate some other hybrid methods that do not fall within any of the above
three categories. The section will encompass microscopic-to-molecular dynamics spatially-coupled meth-
ods. These hybrid methods are typically designed to represent hydrodynamical systems, adaptive mesh
and algorithm refinement and quasicontinuum methods. We will also investigate another class of hybrid
methods, which we shall call “species splitting”, where different species are simulated using different
representations.

6.1 Micro-molecular methods

In this subsection, we present a paper which introduces hybrid methods for coupling a molecular dynamics
model to a corresponding Brownian motion model for the movement of a large particle in a surrounding
‘molecular’ medium.

Erban (2014) introduces one such spatial hybrid method in one and three dimensions. The author
motivates the use of such a method by considering a large focal protein molecule which is being moved
by interactions with the smaller water molecules that surround it. The protein molecule is modelled as a
hard sphere with a larger radius and mass than the water molecules. The motion of the molecules in this
molecular dynamics model are fully deterministic once they have been randomly initialised, with changes
in velocity caused by momentum exchange. If the protein molecule were to be modelled using Brownian
dynamics or the Langevin equation (respectively), the interactions between it and the surrounding water
molecules could be encapsulated implicitly through the random changes in position or velocity (respec-
tively) of the protein. Erban (2014) demonstrates the equivalence between the motion of the protein
molecule in the molecular dynamics simulation to the motion specified by the corresponding Langevin
or Brownian dynamics equations in certain limits. This equivalence engenders the possibility of a hybrid
method.
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In both the one- and three-dimensional hybrid methods, the domain is split into two subdomains: one
in which water molecules are explicitly simulated and the other in which the water molecules are modelled
implicitly and the protein moves according to the appropriate Langevin equation. The first coupling
algorithm introduced is for a one-dimensional domain, in which water molecules are initialised across a
subset of the real line according to a spatial Poisson point process with a specific density, while velocities
are normally distributed with zero mean and variance which incorporates the diffusion coefficient, the
ratio between the large and small particles’ masses and a friction coefficient. Collisions between water
molecules and proteins are elastic and subject to conservation of momentum. Any water molecules which
leave the molecular dynamics subdomain are removed from the system. Molecular dynamics particles can
also be created towards the edges of the subdomain, and are initialised using a normalised complementary
error function. This maintains the density of water molecules in the molecular dynamics heat bath. The
three-dimensional algorithm is similar. The algorithms are time-driven, that is the system is evolved
by implementing exchange of momentum through collisions, updating positions and the addition and
removal of heat bath molecules at each fixed time-step. There is a constraint on the size of the time-step
to ensure that at most one macro particle enters the subdomain in each time-step. A similar coupling is
presented in Erban (2016).

Figure 13. A schematic for the method presented by Erban (2014). The large yellow circle is an
individual particle (protein molecule) with mass, volume and velocity. The small purple dots represent
the molecular dynamics particles (air/water molecules) and also have a mass, volume and velocity.

6.2 Hydrodynamics

Whilst most of the examples that have been presented in Sections 3-5 are designed to represent reaction-
diffusion systems (with noted exceptions), these are not the only systems in which spatial hybrid methods
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have been employed. In this subsection we review spatial hybrid methods and their uses in modelling
hydrodynamics in an efficient and accurate manner.

The most common type of spatially-coupled hybrid method employed within hydrodynamics is macro-
micro couplings. Donev et al. (2010) couple the stochastic hydrodynamics model given by the Landau-
Lifshitz Navier-Stokes (LLNS) equations, to a corresponding direct simulation Monte-Carlo represen-
tation. The LLNS equations include hydrodynamic fluctuations, and, as such, are SPDEs. They are
simulated using a fixed-time, three-stage Runge-Kutta integration scheme (a finite volume method) al-
though the authors note that other other finite-volume explicit schemes can be substituted. Within the
particle subdomain, the hydrodynamics are simulated using a fixed-time stochastic momentum exchange
method which preserves the essential hydrodynamic properties of molecular dynamics. The time-scale
of the micro solver is smaller than that of the macro solver, so that multiple particle updates occur for
every continuum update. This is in contrast to PDE-assisted Brownian dynamics (Franz et al., 2013a)
for reaction-diffusion systems which does the opposite.

Within the continuum subdomain, the only quantities that need to be considered are the conserved
variables of mass, momentum and energy within each continuum cell, as well as the continuum normal
flux between any two neighbouring macroscopic cells. Within the particle subdomain, inter-atomic forces
are simulated by stochastic collisions, so that any particles within a given distance have a probability
of colliding. Separating the two subdomains is an (adaptive) interface. The coupling algorithm ensures
that both the fluxes and the states (density, momentum and energy) at the interface are continuous
by introducing a state-flux coupling methodology; the macroscopic LLNS equations act as a source
of particles into the microscopic subdomain at the interface, and the particles impose a flux boundary
condition on the continuum. To impose the state boundary condition from the continuum subdomain onto
the particle subdomain, a reservoir of temporary particles (in a small region within macro cells adjacent
to the interface) are initialised (every micro time-step) with some velocity and temperature according to
a Maxwell-Boltzmann or Chapman-Enskog distribution chosen to match the velocity and temperature of
the associated macro cell (reminiscent of the method of Alexander et al. (2002) for modelling diffusion).
The number of these particles is chosen to match the continuum density in the associated macro cell.
The particle flux over the interface is calculated and stored every micro time-step and imposed on the
continuum solver at the end of every macro time-step.

There are other methods which also utilise an interface in order to couple two subdomains. Flekkøy
and Coveney (1999) couple the mesoscopic dissipative particle dynamics to the derived Langevin equation
in order to simulate the movement of large colloid molecules. O’Connell and Thompson (1995) also
utilise an interface in order to create a generic algorithm for simulating a macroscopic and microscopic
representation of a fluid system. The authors couple by averaging the velocities of the individual particles
close to the interface, providing a boundary condition for the corresponding continuum model.

Overlap regions have also been employed in the hydrodynamics literature. Flekkøy et al. (2000)
couple a macroscopic PDE to a microscopic method in which particles interact according to Lennard-
Jones potentials (Allen and Tildesley, 2017). Separating the two subdomains is an overlap region in
which both the particle and continuum descriptions are valid. The conservation of mass and momentum
between the two regions is handled explicitly using flux exchange, which means that the coupling scheme
adheres to the relevant conservation laws.

Within the continuum description, the mass and momentum fluxes are represented using finite-
differences across each continuum node. These finite-difference approximations are used to advance the
continuum equations in time. The boundary conditions derived from the particle region are implemented
on the continuum representation by replacing the fluxes at the end of the continuum subdomain with
the mean mass and momentum fluxes of particles around the boundary, averaged over a continuum time-
step. To implement the fluxes of mass and momentum from the macroscopic to microscopic subdomain,
a number of particles per unit time (determined in order to conserve mass flux) are placed into a region
close to the boundary of the particle subdomain. Additionally, the velocities of the particles are chosen
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to conserve the flux of momentum. The authors note that there is an asymmetry relating to the fluctua-
tions using their method; the continuum subdomain effectively acts to damp fluctuations in the particle
subdomain meaning, for example, that fluctuations in particle numbers will be diminished in comparison
to predictions from statistical mechanics (reminiscent of the damping of the Brownian dynamics by the
PDE observed by Franz et al. (2013a)).

A second coupling, presented by Wagner and Flekkøy (2004) extends previous works (Flekkøy et al.,
2000; Wagner et al., 2002), in which fluxes for momentum and mass were preserved between the two
subdomains, to the situation in which energy flux is also conserved. The authors also investigate the
limitations of this hybrid representation when simulating both homogeneous and gradient flow.

The continuum equations are discretised using a centred finite-difference scheme on a regular mesh.
Separating the continuum and particle subdomains is an overlap region which allows for the conservation
of flux between the two descriptions. To calculate the continuum flux for the penultimate node within
the overlap region (which corresponds to the boundary of the particle subdomain), a similar method
to the one employed by Flekkøy et al. (2001) is used. One of the terms in the centred finite-difference
approximation is replaced by the corresponding value from the particle subdomain at the particle end
of the overlap region. These fluxes (for mass momentum and energy) are then arithmetically averaged
with the corresponding mean fluxes of the particles that occupy positions within the final voxel of the
overlap region. These mean fluxes are then used to implement Neumann boundary conditions on the
final node of the continuum representation. The same averaged fluxes are implemented on the particle
subdomain by adding/removing particles to/from the microscopic description in a region corresponding
to the penultimate node of the continuum discretisation. To ensure that both momentum and energy are
conserved, velocities and accelerations of particles in the overlap region are altered accordingly.

Several other papers have adopted the use of an overlap region. Wagner et al. (2002) use mutual
flux exchange in order to couple their finite-difference representation of a PDE for fluid flow to the
corresponding microscopic dynamics. The authors measure the fluxes for mass, momentum and energy
in order to ensure conservation. Delgado-Buscalioni et al. (2005a) and Delgado-Buscalioni et al. (2005b)
present two further papers which couple using flux conservation. These methods use flux exchange from
the continuum to particle density in order to modify the microscopic description, while fluxes in the
opposite direction supply boundary conditions for the continuum representation.

Delgado-Buscalioni et al. (2009) present a hybrid method with three spatial scales - coupling the
macroscopic to the mesoscopic to the microscopic scales, with an application to liquid water. The
authors use two different schemes in order to complete the coupling. To couple between the macro and
microscales, the HybridMD scheme is used (De Fabritiis et al., 2006) and to couple the microscale to the
mesoscale, the adaptive resolution scheme (AdResS) is employed (Praprotnik et al., 2005).

There are many other papers which have addressed hybrid methods for hydrodynamics. We direct
the interested reader to the reviews of Koumoutsakos (2005) and Mohamed and Mohamad (2010) and
the PhD thesis of Hadjiconstantinou (1999) for further details.

6.3 Adaptive mesh and algorithm refinement

Adaptive mesh refinement (AMR) is a method for evaluating PDE solutions on inhomogeneous domains,
in which coarse cells are recursively refined in both time and space in regions of high sensitivity (Berger
and Colella, 1989). Adaptive mesh and algorithm refinement (AMAR) extends the idea of AMR. The
difference between AMR and AMAR is that when the predefined highest spatial resolution has been
reached, AMAR switches to using a discrete method for simulating the underlying phenomena. The
coupling between the coarse PDE and the fine discrete method is completed using a buffer region residing
within the PDE region close to the interface between the two subdomains. Particles are created within
this region at the beginning of the fixed PDE update time-step with the appropriate physical quantities
such as mass, momentum and energy, and are then allowed to flow forwards in time. This provides
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boundary conditions for the two systems. Garcia et al. (1999) and Williams et al. (2008) use AMAR in
order to accurately model hydrodynamic flow.

6.4 Quasicontinuum methods

Quasicontinuum (QC) methods combine continuum and atomistic representations for modelling crys-
talline structures, and were first introduced by Tadmor et al. (1996). Shenoy et al. (1999) propose a
hybrid method for coupling the atomistic-scale dynamics of solid deformation to a corresponding contin-
uum description. The quasicontinuum method exploits the kinematic constraints inherent to the atomistic
lattice, reducing the large number of degrees of freedom by employing the finite-element method in order
to simplify the minimisation of the potential energy associated with the system under a deformation. The
system of interest is typically made up of a huge number of atoms, and consequently has an extremely
large number degrees of freedom. It is therefore computationally difficult to calculate any quantity of in-
terest. To reduce the number of degrees of freedom, a subset of the atoms are chosen to be representative
atoms. Each representative atom is a proxy for a number of neighbouring atoms, reducing the number of
degrees of freedom. Close to the deformation, where each atom experiences a different local environment,
atoms are represented individually. In these regions, an atomistic, non-linear approach to calculating
the energy is required. Further from the deformation, where non-linear effects are negligible and each
representative atom is a proxy for some of its neighbours, linear elasticity theory is used. This allows for
the faster calculation of the energy landscape in large regions of the spatial domain without the loss of
accuracy in the regions in which a more detailed representation is required. The condition which specifies
the homogeneity, or otherwise, of a local region is determined by calculating the right stretch tensor of
the deformation. If the maximum difference of the eigenvalues over any pair of atoms within a given
distance is less than a pre-determined threshold, it is treated as a near-homogeneous environment. This
ensures that the algorithm adaptively chooses which regions are to be treated as homogeneous. However,
the algorithm does create additional forces, referred to as “ghost forces”, due to the hybridisation. These
are corrected for by applying correction forces within the energy minimisation calculation.

6.5 Other hybrids

This section contains several hybrid methods that do not fall into the spatially-coupled reaction-diffusion,
or hydrodynamics categories. They are designed to model a wealth of different mathematical, biological
and physical problems and employ a variety of hybridisation techniques.

Jeschke and Uhrmacher (2008) introduce a hybrid method for the simulation of macromolecular
crowding. They combine the mesoscopic next subvolume method (NSM) (Elf and Ehrenberg, 2004) for
the efficient simulation of compartment-based reaction-diffusion systems with an off-lattice representation
of large crowding particles (crowders). The crowders are spherical and evolve according to an individual-
based method which assumes random movements of particles over fixed time-intervals. All other particles
are updated using the NSM on a square lattice.

Crowders occupy a certain volume. As they move, the volume that is available for the compartment-
based particles and their interactions changes. Any compartments which intersect a crowder are sub-
divided, using an octree refinement algorithm, until a pre-defined number of sub-divisions have been
completed. The volume of the compartment that is occupied by the crowder is then approximated
as the number of sub-octants that intersect the it. The crowders and compartment-based particles
can interact with one another. For example, the location of overlapping crowders will influence the
neighbouring compartments into which compartment-based particles are able to diffuse. Diffusion occurs
at the usual diffusive rate, but scaled down by the proportion of the boundary between the current
compartment and the neighbouring compartments that is occupied by crowders. Particles can also
bind to the crowders, meaning that they are removed from the NSM reactions list and move about
with the crowder. When the crowders move, they “push” the compartment-based particles into the
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unoccupied region of their current compartment, or into neighbouring compartments if the crowder
completely fills their current compartment. All movements, reactions and steric interactions are controlled
by the “coordinator component” which keeps track of all putative next event times, schedules the next
reaction and updates the two systems.

There are many spatially-extended hybrid methods in which some species are represented using con-
tinuum models throughout the domain and others using discrete models in the same domain. These
methods are popular when representing species which are inherently different in copy number throughout
the domain. For example, small numbers of chemotaxing bacterial cells might be represented using an
individual-based model, whereas the chemical signal to which they respond might be represented as a
continuum. Since these models are not the primary focus of this review (rather we focus on models in
which the same species is represented variably throughout the domain) we will give only a brief mention
to some of these hybrid methods.

Cancerous tumour behaviour has frequently been represented using such hybrid methods. Anderson
and Chaplain (1998) model angiogenesis – the directed growth of blood vessels towards the tumour. In
order to do so they couple the macroscopic system of PDEs governing the growth of a tumour to a
discrete model of blood vessel formation on a lattice. The discrete model is used in order to investigate
how individual cells branch and undergo anastomosis and mitosis close to the tips of blood vessels which
have sprouted. The authors also use a similar method to model the invasion of healthy tissue by a solid
tumour (Anderson, 2005). Other examples of tumour growth hybrid methods include the use of cellular
automata (Dormann and Deutsch, 2002; Gerlee and Anderson, 2007) and a method which models the
environment as a continuum, while the tumour cells themselves are discrete and react the environment
(Jeon et al., 2010). A similar idea has also been employed by Franz et al. (2013b), in which bacteria
respond to a chemotactic signal. The signal is modelled by a continuum PDE, which the bacteria,
modelled as individuals, can adapt and respond to.

7 Discussion and outlook

Within this review, we have explored the rich and diverse field of spatial hybrid methods, and illustrated
how they can be utilised in order to probe previously intractable problems in the biological and physical
sciences. Biological and physical phenomena exists at a variety of temporal, spatial and population scales
(Dobramysl et al., 2015; Khan et al., 2011; Mort et al., 2016; Sherratt, 2005; Volpert and Petrovskii, 2009).
Take, for example, the formation of calcium puffs at the endoplasmic reticulum (Dobramysl et al., 2015).
Just before a calcium ion channel opens, the number of calcium ions is small. However, once the channel
opens, the number of particles becomes orders of magnitude larger. Further away from the channels,
particle numbers remain relatively small until diffusion disperses them. Even for a single phenomenon,
populations can vary over orders of magnitude making traditional modelling approaches difficult. Novel
modelling methods which span these scales in a computationally efficient manner may provide insights
into these phenomena. This is precisely the purpose of many of the hybrid methods reviewed in this paper
– they permit the representation of multiple scales within a system, allowing for efficient and accurate
simulation. This review has focussed mostly on spatially-coupled hybrid methods for reaction-diffusion
systems that allow space to be partitioned into subdomains in which different modelling paradigms are
employed.

We covered couplings that broach four different spatial scales – the macro, meso and microscales,
together with molecular dynamics. We have provided detailed summaries of illustrative examples for
macroscopic-to-mesoscopic (PCM by Yates and Flegg (2015)), mesoscopic-to-microscopic (GCM by Flegg
et al. (2015)) and macroscopic-to-microscopic (ARM by Smith and Yates (2017)) couplings, together with
pseudocode for their implementation and demonstrations of worked examples, in order to facilitate the
use of such hybrid methods. In addition, in the electronic supplementary material for this paper we
provide working MATLAB code for each of the three methods. Schematics and descriptions of various
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other methods provide an extensive yet non-exhaustive list of possible hybrid methods, which should be
chosen depending on the application at hand, and the type of coupling desired.

Whilst not the focus of this review, there are other hybrid methods in which space is not modelled
explicitly. Several hybrid methods concern the simulation of well-mixed chemical systems (Bentele and
Eils, 2004; Burrage et al., 2004; Duncan et al., 2016; Hellander and Lötstedt, 2007; Salis and Kaznessis,
2005) while epidemiology (Bobashev et al., 2007) and stochastic reaction networks (Hepp et al., 2015) have
also been investigated. We have also described several spatially-extended methods which used different
types of hybridisation within section 6.

This review contains a summary of the current state of spatial hybrid methods. We now look to the
future and directions in which the area will progress. Whilst much work has been completed within the
field, there are still issues which are common to many of the methods. Chief amongst these is variation in
hybrid methods that involve deterministic PDEs compared to the full solution simulated using a stochastic
approach. Typically the deterministic nature of the continuum model results in damping of the variation
in the stochastic subdomain in comparison to that of the fully stochastic method. Some authors have
fixed this problem by incorporating an overlap region instead of an interface (Flekkøy et al., 2001; Franz
et al., 2013a; Harrison and Yates, 2016). Within the overlap region, mass is simultaneously modelled
using both representations. A second method for resolving the variance is to replace the PDE with an
appropriate SPDE, a macroscopic model for which stochasticity is inherently incorporated. Provided
the stochasticity is chosen in a consistent manner (consistent with the fully stochastic method), hybrid
methods have been postulated for which the variance in the individual subdomain has been shown to
match that of the fully stochastic model (Alexander et al., 2002).

As mentioned in Section 6, recently there has been work to couple microscopic descriptions to molec-
ular dynamics. Erban (2014, 2016) has pioneered work in this area, providing methods which do just
this. This type of method can be utilised in order to simulate biological phenomena at the molecular
level, which even microscale Brownian motion may be unable to accurately capture.

There is a relative abundance of spatial hybrid methods (attested to by this review). Although we
have presented a small number of papers which employ these methods in real physical and biological
problems, there still remain very few practical applications of such methods. Whether this is due to the
complexity of the hybrid methods in comparison to their single model counterparts or to the low profile of
such methods, the challenge remains for the developers of such hybrid algorithms to realise the potential
impact of their methods by applying them to real problems. We hope that this review has served the
purpose of increasing the profile of hybrid methods, whilst simultaneously making them more accessible
to the user.
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