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Abstract 

There is increasing recognition that women have a higher prevalence of certain psychiatric 

illnesses, and a differential treatment response and course of illness compared to men. 

Additionally, clinicians deal with a number of disorders like premenstrual syndrome (PMS), 

premenstrual dysphoric disorder (PMDD) and postpartum depression, which affect women 

specifically and for which treatment and biological pathways are still unclear. In this article 

we highlight recent research which suggests that different biological mechanisms may 

underlie sex differences in responsiveness to stress.  Sex differences are evident at the 

receptor level; where corticotropin releasing factor receptor (CRF1) shows differential 

coupling to adaptor proteins in males and females. The neuropeptide oxytocin also shows 

sex-specific effects in a range of social behaviours. It may act as a biomarker in post-traumatic 

stress disorder (PTSD) where sex differences are evident. Studies in women using hormonal 

contraception show that some of these oxytocin mediated effects are likely influenced by sex 

hormones. In female rats rapid changes in circulating progesterone levels are associated with 

exaggerated behavioural responses to mild stress and blunted response to benzodiazepines 

that could be prevented by acute treatment with low dose fluoxetine. Perceived barriers in 

research on women have hindered progress. The development of a sex specific 

psychopharmacology as a basis for translating this type of research into clinical practice is 

vital to improve treatment outcomes for women.  

Word count-223  

Keywords: sex differences, sex hormones, gender, oestrogen, estrogen, progesterone, 

neurosteroids, allopregnanolone, oxytocin. 
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Introduction 

The World Health Organization recognizes sex as a crucial factor determining the prevalence 

and severity of mental health problems (World Health Organization, 2000). Some disorders 

affect women exclusively: approximately 20% of women of reproductive age experience 

premenstrual syndrome (PMS) and 3-8% of women experience premenstrual dysphoric 

disorder (PMDD) (Halbreich et al., 2003, Halbreich et al., 2007). Women are twice as likely to 

suffer from depression and anxiety disorders and have higher rates of attempted suicide 

(Mergl et al., 2015) while men have a higher risk of substance use disorders, some 

neurodevelopmental conditions and death by suicide (Eaton et al., 2012; McCarthy and 

Wright, 2017); (Bekker and van Mens-Verhulst, 2007; McCarthy, 2016; W.H.O, 2015). Social, 

cultural and economic inequalities across sexes have been found to account for some of these 

disparities (World Health Organization, 2000; Kuehner, 2017). For example, women are more 

frequently the primary victims of domestic violence, which is a risk factor for depression 

(World Health Organization, 2000). The fact that a proportion of these differences can be 

explained by sociocultural factors has somehow concealed the importance of biological 

determinants (Li and Graham, 2017).  

An extensive body of literature from animal and human studies has appeared in the last 

twenty-five years describing biochemical sex differences in response to stress (McEwen and 

Milner, 2017; Carey et al., 1995; Ferrini et al., 1997). Given that stress is implicated in 

numerous psychiatric diseases including affective disorders, post-traumatic stress disorder 

and substance abuse, sex differences in stress response systems (McEwen, 2017) may 

underlie the different prevalence by sex seen in these disorders (Luine et al., 2017). Two 
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important stress response systems in which sex differences have been reported are the 

corticotropin-releasing factor (CRF) system and the brain norepinephrine system arising from 

the locus coeruleus (LC).  Additionally, differential effects between the sexes have been found 

in the effectiveness, side effect profile and pharmacokinetics of psychotropic drugs (Bigos et 

al., 2009; Marazziti et al., 2013). As an example, zolpidem, one of the most widely prescribed 

drugs for insomnia is known to have lower clearance in women and the FDA recommends 

different doses for men and women (Greenblatt et al., 2014; FDA, 2014). However, despite 

growing evidence suggesting differential pharmacological effects, the underlying mechanisms 

remain woefully under-researched. In this review, we aim to highlight some specific aspects 

of the current research in the literature in this area, focusing specifically on sex differences in 

stress response systems such as corticotropin-releasing factor and the brain norepinephrine 

systems, female neurophysiology and the contribution of sex hormones, allopregnanolone 

and oxytocin to sex differences in stress-responsiveness and psychiatric illness. The authors 

contributed to a symposium on this topic held at the British Association for 

Psychopharmacology Summer Meeting 2016. 

Stress-responsiveness and corticotropin releasing factor signalling 

Life stressors have been implicated in many of the major psychiatric disorders that are more 

prevalent in females compared to males, including depression and post-traumatic stress 

disorder (PTSD)(Choi et al., 2016; van der Meer et al., 2016; Olff et al., 2007). Individuals with 

these disorders often exhibit features of a dysfunctional hypothalamic-pituitary-adrenal 

(HPA) axis (Arnett et al., 2016). As a result, most investigations into sex differences in 

neuropsychiatric disease have focused on stress hormones or the HPA axis. Psychiatric 
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diseases that are more prevalent in females also share symptoms of hyperarousal, 

characterized by sleep disturbances, restlessness, and inability to concentrate.   

The major brain norepinephrine (NE) system that arises from the pontine nucleus locus 

coeruleus (LC) is a stress responsive structure that regulates arousal and cognitive responses 

to stress through a network of widely distributed projections to the cortex (Aston-Jones and 

Cohen, 2005; Valentino and Van Bockstaele, 2008; Valentino et al., 2013a). This system is 

activated in parallel with the HPA axis by many of the same triggers and its stimulation is 

associated with increased arousal, and cognitive flexibility. This LC response to stress is 

mediated by corticotropin-releasing factor (CRF), the same neuropeptide released by the HPA 

axis to initiate the endocrine limb of the stress response. The combined neurohormone and 

neurotransmitter function of CRF may coordinate endocrine and cognitive responses to life-

threatening challenges. Although LC-NE activation would be adaptive in response to an acute 

stressor, inappropriate or persistent activation of this system could produce the pathological 

hyperarousal that characterizes stress-related psychiatric disorders. 

In unstressed rats, the basic neuronal characteristics of LC neurons, such as spontaneous 

discharge rate and sensory-evoked discharge, are comparable between males and females 

(Curtis et al., 2006). However, LC neurons of female rats are sensitized to CRF and this is 

manifested as a greater activation by certain stressors (Curtis et al., 2006). Receptor 

immunoprecipitation studies revealed a molecular basis for this in the differential coupling of 

the CRF receptor (CRF1) to adaptor proteins in males and females (Bangasser et al., 2010). For 

example, in unstressed rats, we found that CRF1 showed greater association with its GTP-

binding protein Gs, in females compared to males, consistent with a greater CRF-elicited 

neuronal activation. Like other G-protein coupled receptors, CRF1 internalizes following 
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agonist binding and is transported into multivesicular bodies, a step towards CRF1 

downregulation (Reyes et al., 2006; Reyes et al., 2008). CRF1 internalization is initiated by its 

association with β-arrestin-2. This process protects neurons from excessive CRF. In an 

experiment with rats exposed to swim stress, both increased CRF1 coupling to β-arrestin-2 

and CRF1 internalization were found in males compared to females (Bangasser et al., 2010). 

The greater coupling of CRF1 to Gs and the impaired ability of β-arrestin-2 to associate with 

CRF1 is predicted to render LC neurons of females more sensitive to stress and less able to 

adapt by receptor internalization. In the absence of stress, sex differences in CRF receptor 

signalling would have no consequences because there is no tonic influence of CRF. However, 

sex differences in LC activity will be apparent and magnified in conditions in which CRF release 

is excessive as has been proposed in stress-related psychiatric disorders such as depression 

and post-traumatic stress disorder. This condition can be modelled in mice that are genetically 

modified to overexpress CRF (CRF-OE mice). Both male and female CRF-OE mice show 

hyperinnervation of the LC by CRF axon terminals and there is no sex difference in this 

innervation (Bangasser et al., 2012). Based on this, LC neuronal discharge rates are predicted 

to be higher in both male and female CRF-OE mice compared to wildtype animals. Recordings 

from LC slices of male and female wildtype revealed no sex difference in LC discharge rates. 

Surprisingly, LC neuronal discharge rates of male CRF-OE mice were similar to wildtype mice 

indicating that they were protected from CRF overexpression (Bangasser et al., 2012). In 

contrast, LC discharge rates of female CRF-OE mice were nearly three times greater than all 

other groups.  Electron microscopic analysis suggested that this was due to a lack of CRF1 

internalization in females (Bangasser et al., 2012). Whereas CRF1 was predominantly localized 

to the cytoplasm in male CRF-OE mice, in female CRF-OE mice it appeared mainly in the 

plasma membrane leaving the cells vulnerable to excessive CRF in the synapse. This 
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combination of increased sensitivity due to enhanced CRF1-Gs binding and decreased ability 

to internalize CRF1 as a result of decreased CRF1-β-arrestin-2 association could make females 

more vulnerable to stress-related disorders.  

Because Gs and β-arrestin-2 engage different cellular signalling pathways, the sex bias in CRF1 

coupling predicts that stress will initiate sex-specific cellular reactions in males and females 

(Valentino et al., 2013b). These can translate to sex specific physiological and behavioural 

responses to stress and sex-specific stress-related pathology. These sex differences would be 

magnified under conditions of elevated CRF release, which are believed to occur in certain 

stress-related psychiatric disorders that show a female prevalence, including depression and 

PTSD (Banki et al., 1987; Bremner et al., 1997; Nemeroff et al., 1984).  Supporting this, male 

and female CRF-OE mice have distinct cortical phosphoproteomic profiles that can be 

accounted for in part by sex biases in CRF1 coupling to Gs and -arrestin-2 (Bangasser et al., 

2016).  Distinctions between these profiles may reveal substrates that are the basis for sex 

differences in the prevalence of stress-related diseases.             

In addition to differences at the postsynaptic level, sex differences in afferents that mediate 

the response of the LC-norepinephrine system to stress could account for sex biases in stress-

related diseases.  Some of the circuitry underlying LC activation by different stimuli has been 

delineated (Van Bockstaele et al., 2001).  For example, LC activation by hypotensive stress and 

social stress is mediated by CRF amygdalar afferents, while LC activation by colonic distention 

is mediated in part by Barrington’s nucleus (Curtis et al., 2002; Reyes et al., 2015; Rouzade-

Dominguez et al., 2001).  The possibility that there are sex differences in CRF expression or 

release from these afferents requires future investigation. 
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Impact of sex hormones and allopregnanolone in PMS and PMDD. 

During the luteal phase of the menstrual cycle, many women develop adverse psychological 

and physical symptoms collectively known as premenstrual syndrome (PMS). The most 

commonly reported psychological symptoms included anger and irritability, mood swings, 

tearfulness, fatigue, lack of energy, and food cravings (Ryu and Kim, 2015). Premenstrual 

Dysphoric Disorder (PMDD) is commonly characterized as a severe type of PMS. The current 

DSM-5 diagnosis requires a perimenstrual pattern of physical, behavioural and/or mood 

related symptoms with special emphasis on the severity of psychological symptoms 

(American Psychiatric Association, 2013). Typically, symptoms peak during the late luteal 

phase and resolve shortly after the onset of menstruation (Halbreich et al, 2003). The cyclical 

change in secretion of progesterone during the menstrual cycle may be one of the factors 

that contribute to the development of these negative mood states in susceptible women. 

Following ovulation progesterone secretion increases markedly, remains elevated during the 

luteal phase, before returning to basal levels immediately prior to menstruation (Fig 1-A). 

However, there is considerable individual variation in hormone levels and women who 

developed symptoms of PMS displayed a significantly different luteal phase salivary 

progesterone profile compared to women who remained asymptomatic (Lovick et al., 2017). 

Whereas early luteal phase progesterone concentration was similar in both groups, in women 

who remained asymptomatic progesterone showed a gradual linear decline throughout the 

mid and late luteal phase right up to the onset of menstruation (Fig 1-B). In contrast, in 

women who developed symptoms of PMS, progesterone remained at a relatively high and 

stable level during the early and mid-luteal phase before undergoing a sharp decline during 

the three days prior to menstruation (Fig 1-C) (Lovick et al., 2017).  



9 
 

Progesterone, as well as its neuroactive steroid metabolite allopregnanolone, passes readily 

through the blood brain barrier and in the brain its concentration parallels that in the plasma 

(Pardridge et al., 1980). Progesterone, via the action of allopregnanolone, exerts dose-related 

anxiogenic and anxiolytic effects in women, characterised by an inverted U-shaped dose-

response relationship (Andréen et al., 2009). Interestingly, in post-menopausal women in 

whom endogenous progesterone concentration remains at a stable low level, daily 

administration of progesterone at doses sufficient to achieve a physiological concentration 

was associated with a progressive worsening of negative mood (Andréen et al., 2006). This 

response mimics the progressive worsening in severity of symptoms that occurs in PMS 

sufferers who display a stable elevated level of progesterone during the early to mid-luteal 

phase (Lovick et al., 2017). The mechanism that underlies the effect of prolonged exposure to 

progesterone is not completely understood but may be linked to tolerance effects [see 

(Turkmen et al., 2011) for a review of this topic]. 

Paradoxically, in women who developed PMS, symptoms worsened even further during the 

sharp decline progesterone concentration in the 3 days prior to menstruation (Lovick et a, 

2017). In animal models, withdrawal from progesterone following prolonged exposure 

precipitated anxiogenic effects (Devall et al., 2009) (Smith et al., 1998). However, such effects 

were seen only when the withdrawal was rapid and were absent if the steroid concentration 

was allowed to fall gradually (Doornbos et al., 2009), in line with the absence of PMS 

symptoms in women in whom progesterone underwent a slow linear decline during the 

whole luteal phase (Lovick et al, 2017). It is well established in rats that a rapid decline in 

progesterone, either following cessation of prolonged dosing, or during the natural decline 

that occurs during the late diestrus phase, can precipitate changes in GABAA receptor 
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expression associated with an increase in behavioural measures of anxiety-like behaviour and 

an increase in excitability of neural circuits controlling fear and anxiety (Smith et al., 1998; 

Brack and Lovick, 2007; Devall et al., 2009; Devall et al., 2015). The effect is mediated not by 

progesterone itself but via the decline in its neuroactive metabolite allopregnanolone. 

Interestingly, in spontaneously cycling rats the anxiogenic effects precipitated by an abrupt 

decline in progesterone could be prevented by offsetting the rapid fall in brain concentration 

by short-term treatment in the late diestrus phase with the SSRI fluoxetine (Devall et al, 2015). 

At low doses, fluoxetine increases brain allopregnanolone concentration without affecting 5-

hydroxytryptamine systems, a property which is shared by other SSRIs (Pinna et al, 

2009;Devall et al, 2009).  By raising the brain concentration of allopregnanolone, 

administration of fluoxetine during late diestrus would offset the rapid fall in concentration 

of the steroid that normally occurs at this time. In this context, it is interesting that when 

allopregnanolone but not progesterone levels, were stabilized during the late luteal phase in 

women with PMDD by blocking the conversion of progesterone to allopregnanolone, luteal 

phase symptoms of irritability, anxiety and sadness reduced significantly (Martinez et al., 

2016). 

Clinically, selective serotonin reuptake inhibitors (SSRIs) are offered for the management of 

premenstrual syndrome. The latest Cochrane review (Majoribanks et al, 2013) rated the 

available evidence of only low to moderate quality but nevertheless concluded that SSRIs are 

effective in reducing the symptoms of PMS although adverse effects were relatively frequent. 

Interestingly, treatment was equally effective whether taken continuously or only during the 

two weeks prior to menstruation (the luteal phase).  This finding raises questions regarding 

the mechanisms of action of SSRIs for PMS.  Their effectiveness as antidepressants typically 
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requires a long lead in time to produce therapeutic effects via actions on 5-HT systems. Yet 

therapeutic effects for PMS can be obtained by short term dosing during the luteal phase 

(Majoribanks et al, 2013). In animal studies acute administration of SSRIs at doses 

subthreshold for effects on 5-HT systems has been shown to produce a rapid elevation in 

brain allopregnanolone (Pinna et al, 2009 Devall et al, 2015). Moreover, short-term dosing 

with low dose of the SSRI fluoxetine, was effective in reducing late diestrus phase anxiety (a 

model for PMS) (Devall et al, 2015).  These findings suggest not only that the doses currently 

used in clinical practice, which are based on those developed for antidepressant actions, may 

be far higher than necessary but also that the effectiveness of SSRIs for PMS may be linked to 

their steroid stimulating properties, rather than uptake of serotonin.  

Whilst a change in progesterone secretion during the menstrual cycle can clearly have a 

significant influence on brain function and behaviour in females, it may also a factor, together 

with actions and interactions with other gonadal hormones, that influences drug effects. 

There is evidence that progesterone-induced change in GABAA receptor status during the 

estrous cycle may influence the effectiveness of psychoactive drugs that act on this receptor 

site. For example, anxiolytic effects of a benzodiazepine seen in the early stages of the estrous 

cycle in female rats were not evoked when the drug was given in the late diestrus phase 

(Soares-Rachetti et al., 2016). In a similar vein, women who suffer with premenstrual 

syndrome (but not asymptomatic women) showed reduced sensitivity to benzodiazepines 

during the luteal phase of the menstrual cycle (Bell et al., 2004; Sundstrom et al., 1997). These 

findings highlight the importance of taking into account female hormonal status when 

working towards developing a sex- specific pharmacology. 

Estrogen and PTSD.  
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Posttraumatic Stress Disorder (PTSD) is a syndrome that can appear after exposure to a life 

threatening event, death, serious injury or violence. Symptoms include intrusive thoughts, 

nightmares, flashbacks about the traumatic event, emotional distress or physical reactivity 

after exposure to triggers related to the trauma, hypervigilance and heightened startle 

reaction (American Psychiatric Association, 2013). Patients often report experiencing 

feelings of reliving the traumatic event (Shearing et al., 2011; Hagenaars et al., 2009; 

Halligan et al., 2006). These memories trigger feelings of fear similar to those suffered 

during the event itself.   This Impaired fear extinction or the inability to extinguish a 

conditioned fear response, is a hallmark of the condition (Zuj et al., 2017; Garfinkel et al., 

2014; Fani et al., 2012). Gonadal steroids such as estrogen have been found to modulate the 

expression of fear extinction (Glover et al., 2015). Specifically, extinction deficits observed in 

women with PTSD correlate with low estrogen plasma levels (Glover et al., 2012) and the 

administration of synthetic estrogen to healthy women increased extinction recall after fear 

extinction (Graham and Milad, 2013). Moreover, both in healthy women and women with 

PTSD lower estrogen levels have been linked to impaired fear inhibition, evident in a lack of 

discrimination between danger and safety cues in a fear-potentiated startle paradigm 

(Glover et al., 2013). Estrogen levels had no effect on contingency awareness but seem to 

influence activity in an inhibitory neurocircuit. In female rats, estrogen enhances infralimbic 

control over the central amygdala during extinction recall (Maeng et al., 2017) and women 

with high estrogen levels exhibit increased dorsal lateral prefrontal cortex reactivity during 

emotional response inhibition (Amin et al., 2006). Importantly, PTSD is also characterized by 

diminished fear inhibition and there is converging evidence from imaging studies that 

patients with PTSD show hyperreactivity of the amygdala coupled with reduced top-down 

control by the prefrontal cortex in response to trauma- and fear-associated stimuli (Etkin 
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and Wager, 2007; Jovanovic and Norrholm, 2011). Recently, it has also been suggested that 

estrogen status may increase risk for PTSD in some women, in part through its epigenetic 

regulation of the HDAC4 gene, which encodes histone deacetylase 4 and is involved in long-

term memory formation (Maddox et al., 2017). The apparently contradictory findings of 

estrogen as a protective factor versus higher PTSD prevalence rates in women, who 

generally have higher estrogen levels than men, underscore the necessity to consider a 

possible interplay between multiple hormonal systems (Zuj et al., 2016).  

Role of oxytocin 

The hypothalamic neuropeptide oxytocin (OXT) has often been implicated in modulating fear 

and stress responses (Meyer-Lindenberg et al., 2011). For example, male police officers with 

PTSD show lower basal salivary OXT levels than healthy trauma-exposed controls, while there 

is no difference in females between PTSD patients and controls (Frijling et al., 2015). By 

contrast, serum OXT levels in survivors of motor vehicle accidents positively predict 

posttraumatic coping at a 1-month follow-up in women (Nishi et al., 2015). Importantly, the 

intranasal administration of synthetic OXT increases OXT concentrations in the brain 

(Striepens et al., 2013) and may thus be used as a pharmacological means to alter central OXT 

signalling. Two studies showed that OXT administered intranasally before fear extinction 

enhanced both extinction (Eckstein et al., 2015) and the recall of extinction in healthy men 

(Acheson et al., 2013). This anxiolytic effect of OXT could be mediated by a down-regulation 

of amygdala response and a concomitant up-regulation of activity in prefrontal regions 

(Eckstein et al., 2015). However, there is mounting evidence that social effects of exogenous 

OXT are dependent upon both context and person variables (Hurlemann and Scheele, 2016). 

First and foremost, intranasal OXT may also increase fear conditioning when the peptide is 
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administered before the conditioning phase (Eckstein et al., 2016). As such, a greater risk of 

developing PTSD after an interpersonal trauma may be associated with an OXT-induced 

enhancement of fear learning.  Another instance of context-dependency is the observation 

that OXT improves the buffering effect of social support on stress responsiveness (Heinrichs 

et al., 2003), but also facilitates the sensation of psychosocial stress in the absence of social 

support (Eckstein et al., 2014).  

Sex also appears to be a key moderator of OXT effects. Sex-specific OXT effects have been 

found in various domains ranging from social approach/avoidance behaviour (Scheele et al., 

2012; Preckel et al., 2014) and social perception (Fischer-Shofty et al., 2013) to moral 

decision-making (Scheele et al., 2014). Some of these sex differences could be due to 

hormonal fluctuations during the menstrual cycle or the use of hormonal contraception. 

Along these lines, a recent report showed that intranasal OXT increased a positive 

attractiveness bias in the perception of the romantic partner and enhanced reward-

associated brain activations in men and freely cycling women, but not in women using 

hormonal contraception (Scheele et al., 2013; Scheele et al., 2016). Moreover, OXT increased 

amygdala responses to fearful faces (Domes et al., 2010) and aversive scenes (Lischke et al., 

2012) in healthy women. On the flipside, OXT reduced amygdala responses to infant crying in 

healthy women (Riem et al., 2011), and higher doses of OXT dampened amygdala responses 

to fearful faces in both male and female patients with PTSD (Koch et al., 2016). Notably, the 

amygdala is not a homogenous structure but rather consists of various nuclei and 

consequently imaging with high spatial resolution may be necessary to disentangle 

differential OXT effects on amygdala substructures. For instance, it has been observed that 

OXT attenuates activation in lateral and dorsal regions of the left anterior amygdala for fearful 



15 
 

faces but enhances activity in a more ventral cluster for happy expressions (Gamer et al., 

2010). In female mice, estrogen pre-treatment enhances anxiolytic OXT actions (McCarthy et 

al., 1996), indicating that anti-anxiety effects of OXT may be dependent upon interactions 

with steroids. Given the above mentioned evidence for facilitating effects of estradiol on fear 

extinction, future human studies are warranted to explore possible interactions between 

gonadal steroids and OXT in fear learning.   

  

Perceived barriers to the development of sex based psychopharmacology research 

 

Pre-clinical research in psychopharmacology is still based predominantly on male animal 

models of disease (Kokras and Dalla, 2014). The assumption, which is probably unfounded 

(Prendergast et al., 2014), of increased variability of data obtained in females compared to 

males has historically deterred researchers from conducting experiments on females. 

Moreover where researchers have used females, there are frequent contradictions in the 

literature because the effects of the estrous cycle have not been carefully determined to 

assess whether behaviours are in fact regulated in this way or not. In many cases, the 

behavioural tasks employed have not been validated for use with female animals which may 

also contribute to the variability in behavioural outcomes (Becker and Koob, 2016). 

Differences in the expression of symptoms between males and females extend to biological 

markers and these are not always acknowledged in research (Kokras and Dalla, 2017). While 

there is a need to include more female animals in psychopharmacology research to improve 

translational outcomes (Leger and Neill, 2016), these studies must be designed carefully to 

account for these differences.  In 2014 the National Institute of Health (NIH) introduced 
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policies that required applicants to balance the use of male and female cells and animals in 

preclinical studies, unless sex-specific inclusion was unwarranted (Clayton and Collins, 2014). 

This move is potentially very powerful and appears to be stimulating research into both 

women’s health issues and sex differences in disease. In the UK, the research councils have 

not issued the same mandate as NIH. However, there is increasing emphasis on the 

justification of the use of animals in research and appropriate experimental design. For 

example, the National Center for the Replacement, Refinement and Reduction of Animal 

Research (NC3Rs) experimental design hub suggests the use of an adequately powered 

factorial experimental design such that the effect of a drug can be tested on both males and 

females in the same experiment (NC3Rs). Where there is evidence of a sex difference, then it 

is necessary to assess the effects of gonadal steroids on that behaviour or drug treatment 

(Becker et al., 2005). Initially this can be achieved by establishing the effects of the estrous 

cycle. In rodents the estrous cycle is typically 4 days-a 2 day diestrous (rats) or 

metoestrus/diestrous (mice),  pro-estrous (associated with luteinizing hormone surge), and 

estrous (sexual receptivity, ovulation) (Becker et al., 2005). Changes in cell type morphology 

can be assessed in vaginal smears and used to identify the estrous phase in a relatively 

straightforward way (McLean et al., 2012; Becker et al., 2005). As one can see, there are few 

barriers to using female animals in research, and a number of potential benefits for 

translational psychopharmacology research.   

Sex differences in clinical research 

In terms of clinical research, women have only been included in clinical trials relatively 

recently (FDA, 1993). A 2016 review of fifty-seven randomized controlled trials (RCTs) 

published in peer reviewed journals found that only 39% recruited women and men in equal 
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numbers and a meagre 20% described results by sex or examined possible sex interactions 

(Phillips and Hamberg, 2016). It is even more difficult to explain greater recruitment of men 

for illnesses that have the same rates of prevalence in both sexes or higher prevalence in 

women (Phillips and Hamberg, 2016; Holdcroft, 2007). Concerns about pregnancy and 

experimenting with women of childbearing age, while possibly justifiable (Vargesson, 2015; 

Balon and Riba, 2016), led to a protectionist position and the consequence was that women’s 

health research was excluded (Mastroianni et al., 1994). Issues around ensuring the use of 

contraception to avoid potential fetal harm appear to complicate enrolment of women 

(Holdcroft, 2007). A study of contraceptive requirements for clinical research found that 

almost 42% of protocols did not explain why contraception was mandatory (Cain et al., 2000). 

There is also the possibility of interaction of between medication and hormonal 

contraception. In the US 28% of women of fertility age are using some type of hormonal 

contraception (Jones et al., 2012). Excluding women from trials may hide these effects leading 

to a knowledge gap about these interactions when the drug is commercialized, which could 

potentially lead to further harm for women.  

Evidence suggests a series of social, legal, medical and perhaps institutional barriers to 

implementing equal recruitment in RCTs. Results of trials with biased recruitment may not 

apply to both sexes, but it will only be evident when the medication or intervention is released 

to the general public. A further concern is that researchers perceive that investigating 

women’s physiology is more complicated because of lack of data and, specifically, the lack of 

replication studies (Holdcroft, 2007). This paradox can only be resolved by increasing research 

in the area and by encouraging scientists and institutions to prioritize sex-equal samples and 

the reporting of results by sex.  
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Sex differences in clinical practice 

In psychiatric practice, sex differences are acknowledged in several areas such as domestic 

violence, sexual related side-effects, and perinatal mental health.  Conscious sex-differential 

prescribing based on evidence is rare as is clinical recognition of variation of drug efficacy 

across sexes even when pharmacokinetic or pharmacodynamic differences are known 

(Legato, 2004). Recent guidelines have addressed sex differences by considering guidance for 

the perinatal period (NICE, 2014) but general evidence from translational research that does 

not refer to pregnancy or breastfeeding has yet to reach the clinician.  Certain awareness in 

practice will be required to implement these changes. In some cases treatment protocols 

separated by sex may help (Mendrek and Stip, 2011). The development of a branch of 

psychopharmacology focused on sex differences will aid to structure the evidence and 

increase knowledge translation between preclinical researchers and clinical professionals 

until these findings are fully integrated in everyday medical practice.   
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Fig 1.A. Schematic representation of time course of change in systemic and brain 

progesterone concentration during the menstrual cycle. M: menses start. B. Time course of 

mean PMS score and saliva progesterone concentration in 22 symptomatic women over the 

http://www.who.int/gho/mental_health/suicide_rates_male_female/en/
http://apps.who.int/iris/bitstream/10665/66539/1/WHO_MSD_MDP_00.1.pdf
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10 days prior to menstruation. ** p<0.01; *** p<0.001 compared to Day -10, Friedman test 

across all days followed by Dunn’s multiple comparisons. C. Time course of mean PMS score 

and saliva progesterone concentration in 12 asymptomatic women over the last 10 days 

prior to menstruation. Reproduced from Lovick et al (Lovick et al., 2017) with permission. 
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