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Operational and economic aspects of water distribution make water demand forecasting paramount for water distribution systems
(WDSs) management. However, water demand introduces high levels of uncertainty in WDS hydraulic models. As a result, there
is growing interest in developing accurate methodologies for water demand forecasting. Several mathematical models can serve
this purpose. One crucial aspect is the use of suitable predictive variables. The most used predictive variables involve weather and
social aspects. To improve the interrelation knowledge between water demand and various predictive variables, this study applies
three algorithms, namely, classical Principal Component Analysis (PCA) and machine learning powerful algorithms such as Self-
Organizing Maps (SOMs) and Random Forest (RF). We show that these last algorithms help corroborate the results found by
PCA, while they are able to unveil hidden features for PCA, due to their ability to cope with nonlinearities. This paper presents a
correlation study of three district metered areas (DMAs) from Franca, a Brazilian city, exploring weather and social variables to
improve the knowledge of residential demand for water. For the three DMAs, temperature, relative humidity, and hour of the day
appear to be the most important predictive variables to build an accurate regression model.

1. Introduction

The main objective of water distribution systems (WDSs) is
to supply water to consumers with adequate quantity and
quality. For water utilities, using accurate water demand
estimation has the advantage of allowing better operation
and management of their systems. Among the benefits
associated with suitable water demand forecasting, leakage
identification, optimal operation of pumps and valves, and
the possibility of improving planning and design of network
expansions must be highlighted. These engineering aspects
represent a key step forward in the improvement of WDS
operation efficiency, which ultimately will lead to the provi-
sion of quality water supply [1].

Water demand forecastingmodels can be roughly divided
into long- and short-termmodels, whose approaches depend
on the time horizon used for scheduling further predictions.

Long-term water demand forecast is useful to define reha-
bilitation and expansion strategies and water source capacity
evaluations [2]. In their turn, short-term water demand
forecasting models can help to suitable define the operation
and management of the water systems, with the aim of
supplying water to costumers withmaximum efficiency [1, 3].
As a result, working with water predictivemodels is central to
suitably establish the set of variables involved in the model.
Donkor et al. [4] present a review of several studies of
water demand forecasting including various time horizons.
This study is sensitive to the different nature of the used
predictive variables. For long-term forecasting models it is
proposed to use population density, size of the buildings,
water price, and weather variables such as air temperature
and relative humidity [5–7]. However, for short-term water
demand approaches, several studies in the literature [8–10]
include previous demanddata, weather variables (such as rain
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or wind speed), and calendar variables, such as weekday, hour
of the day, and presence of holidays.

Autoregressive integrated moving average- (ARIMA-)
based models [11] have been traditionally considered for
understanding and modeling urban water demand [12].
With the improvements brought by data mining tools and
machine learning techniques, a number of data analysis
models have been considered more recently. For instance,
several authors [13–15] have applied artificial neural network
(ANN) architectures to both long- and short-term demand
forecasting. The use of other machine learning tools has
also increased during the last years. As an example, [9] has
performed a comprehensive comparison of various predictive
methods for hourly water demand forecasting, suggesting the
use of support vector regression (SVR) as one of the models
through which it is possible to reach better results. However,
off-line predictive models are likely to develop growing bias,
if models are not updated with the arrival of new data.
Models can also become rapidly obsolete in the case of abrupt
changes occurring in the forecasting framework. These are
the models known as intervened [16] and are a consequence
of unexpected changes in the scenario inwhich the demand is
computed. For example, opening and closing valves, extreme
variation of weather conditions, appearance of new leaks, and
celebration of a social events, among others, may change the
end-user response regarding water demand.

Despite short-term water demand forecasting models
being crucial to improvewater systemoperation andmanage-
ment, there is a lack of recent studies focused on correlation
analyses between water demand and the usual (weather,
calendar, and hydraulic) predictive variables.This is the main
objective of the present paper. In-depth knowledge of those
correlations will greatly improve those crucial aspects for the
water supply industry.

In mathematical grounds, a general objective for regres-
sion methods is to map the input data into a convenient
output space to optimally approach predictions through a
set of independent variables. As this set might be formed
by a large group of inputs, it is often suitable to count on
ways of synthesizing the input space with minimum loss of
information [17, 18]. For water demand forecasting problems,
three main groups of variables integrate the input space:
weather, social, and economic variables.

Despite several studies proposing various methodologies
to forecast water demand, few investigations present in-
depth correlation analyses able to give deeper insight into the
causality principle of water demand. Among these studies,
weather variables are explored as one of themain components
that have influence on water demand. In this case, the impact
of air temperature, relative humidity, and amount of rain
may be highlighted [19–21]. Depending on the forecasting
horizon, the water price and the consumer size (residential
houses, businesses, industries, etc.) are used to estimate
water demand as well [22]. Furthermore, large-sizeWDSs are
usually divided into DMAs, and the correlation among these
DMAs is not usually exploited in the models found in the
literature. In this paper, we claim that this aspect can be used
to refine water demand forecasting.

In this regard, Coomes et al. [23] reinforce pioneering
studies of weather influences onwater demand [20] and show
the effects of weather variables. Using time-series analysis,
specifically autoregressive models, can be highlighted as a
classical approach for short-term water demand forecasting
[19, 24, 25]. However, posterior machine learning theory
developments tackle the main flaw of autoregressive models
(constrained to only model linear relationships) by consider-
ing nonlinear modeling of water demand. These approaches
result in substantial advances for predictive models since,
regardingwater demand, seasonality, dynamic-featuring, and
state-dependent models cannot be built just considering
linear relationships [16]. In this line, neural networks and
various statistical learningmethods have been widely applied
to estimate the future demand with the advantage of using
nonlinear regression [10, 26–29].

This work presents three methodologies to analyze water
demand in close connectionwith various predictive variables.
Firstly, the classical algorithm of correlation evaluation,
Principal Component Analysis (PCA), is considered. Then,
Self-Organizing Maps (SOMs) and Random Forest (RF)
algorithms are also proposed to evaluate data correlations
because of their ability to treat nonlinear relationships among
the variables, in contrast to PCA. The three approaches are
then used to deal with real world data corresponding to three
district metered areas (DMAs) of Franca, a Brazilian city, in
an attempt to verify potential existing correlations among
water demand and some social and weather variables.

The rest of the paper is organized as follows.The following
section provides the methodological aspects. The methodol-
ogy is then applied to the case study, which is first suitably
described; this section also includes the main results of the
investigation. Finally Conclusions and References close the
paper.

2. Correlation Analysis Algorithms

Correlation analysis is important to better understand var-
ious interdependences among the variables in a problem.
Correlation also allows the construction of mathematical
models of many phenomena. By increasing the knowledge
of the set of variables that describe a given problem, the
capacity to forecast also increases. This opens the possibility
of performing better action policies of any related operation
linked to the phenomenon under study.

The techniques and algorithms to evaluate the corre-
lation degree among a set of predictive variables and the
variable(s) they try to explain are varied. These techniques
and algorithms, according to their mathematical nature, can
be applied to a wide variety of situations. Among these
algorithms, PCA is a classical approach using linear transfor-
mations to find data correlation. However, with the increase
of data mining techniques, correlation assessment of the
analyzed data is frequently not necessary, since neural net-
works and other machine learning methods are able to treat
the data without previous assumptions as those involved in
PCA. Among some other significant and powerful machine
learning techniques, the SOMs and the RF algorithms can
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be highlighted because of their respective ability to process
large databases. Next, we concisely present these algorithms
and provide the necessary elements for their application in
the problem we investigate in this paper.

2.1. Principal Component Analysis (PCA). PCAhas the objec-
tive to reduce the dimensionality of a dataset and to identify
the superposition degree of the variables. In general terms,
PCA (orthogonally) linearly transforms the input space by
evidencing some correlations between variables.

Given a matrix 𝑋 = (𝑥𝑖𝑗), 𝑖 = 1, . . . , 𝑝; 𝑗 = 1, . . . , 𝑚,
which stores 𝑝 𝑚-dimensional samples it is possible to
determine the covariance matrix Σ = (𝜎𝑖𝑗), 𝑖, 𝑗 = 1, . . . , 𝑚,
among the 𝑚 variables whose diagonal elements 𝜎𝑖𝑖 are the
variances 𝜎2𝑖 of variables 𝑖, and the other elements are the
covariances 𝜎𝑖𝑗 between variables 𝑖 and 𝑗.

As the covariance matrix is real and symmetric, using
the spectral theory, it is possible to find real eigenvalues
and (orthonormal) eigenvectors for this matrix. From the
set of sorted eigenvalues, 𝜆1, 𝜆2, . . . ,𝜆𝑚, and their associated
orthonormal eigenvectors e𝑖 = [𝑒𝑖1, . . . , 𝑒𝑖𝑚]𝑇, new variables,
named principal components, PC𝑖, can be written:

PC𝑖 = 𝑋 ⋅ ei. (1)

The aim behind PCA is to create a component order
explaining the variance of the dataset. This is based on the
values of the corresponding eigenvalues. Once the eigen-
values are ordered, the principal component PC𝑖 explains
the variance of the dataset proportionally to the loading
𝜆𝑖/∑𝜆. When represented on a two-dimensional plane the
similarity between the vector directions graphically points to
the similarity between variables.

2.2. Self-Organizing Maps (SOMs). SOMs are nonsupervised
learning methods based on the brain behavior when excited
by external signals [30]. Motivated by this idea, SOMs are
processing tools able to find out patterns in a dataset. Awidely
used application lies on the possibility of visualizing high
dimensional datasets in reduced dimensions (usually 2D)
while maintaining the topological correlations. This makes
SOMs highly useful for correlation analyses among several
variables.

SOM represents the input space by a mesh of points, so-
called neurons. A neuron is represented by a vector with
𝑚 components, known as synaptic weights. The synaptic
weights change at each iteration to get the best rendering
of the input space. The process to adjust the mesh is the
training stage.The competitive learning process is responsible
to adjust the map.

The process starts by creating a mesh of neurons, where
each neuron is described by its synaptic weight vector, w𝑗 =
[𝑤𝑗1, . . . , 𝑤𝑗𝑚]𝑇.

Each step of the learning process ismade of three different
stages: competition, cooperation, and synaptic update. The
competition stage is responsible for identifying the most
activated region by an input x. This region is defined as
a neighborhood of the highest reactive neuron, so-called
winning neuron. The winning neuron is identified by the

similarity between the input and the neuron itself. This
measure is usually computed by the minimal Euclidean
distance. So, the winning neuron, 𝑖(x), can be written as

𝑖 (x) = argmin (x − w𝑗
) . (2)

Once the winning neuron is identified, the competition
stage stops and the cooperation stage begins. In this stage,
the activated region is defined and, in particular, how much
these neurons are activated is also decided. The cooperation
stage determines the influence of the winning neuron in
the neighborhood. Finally, in the update stage the activated
region has the synaptic weights modified. Following the
biological inspiration, the activation decays according to the
distance to the winning neuron. The activation power can
be written as a monotonic decay, for example, as a Gaussian
function,

ℎ𝑗𝑖 (x𝑖) =
exp (−𝑑2𝑗𝑖)

2𝜎2𝑛
, (3)

where ℎ𝑗𝑖(x𝑖) is the neighborhood topology function, cen-
tered in the winning neuron 𝑖(x𝑖), containing a set of 𝑗
neurons excited by the winner, and 𝜎𝑛 is the size of the
neighborhood in iteration 𝑛 and is defined by an exponential
decay function at each time step. The distance 𝑑𝑗𝑖 can be
written as the Euclidean norm of the difference between two
vectors:

𝑑𝑖𝑗 = 𝑟𝑗 − 𝑟𝑖
2 , (4)

where 𝑟𝑗 is the position of an excited neuron 𝑗 and 𝑟𝑖 is the
position of the winning neuron.

The winning neuron determines a region or neighbor-
hood of influence. The closer a neuron is to the winner,
the larger the change of position of this neuron is. The
neighborhood defined before is shrunk through a number of
iterations attempting to achieve several objectives: improving
the process stability, leading themap to the final arrangement
of neurons, and making the model better mimic the brain
behavior. This reduction process has the disadvantage of
reducing the winning neuron power. According to [31], a
usual representation of the learning rate is written as

𝜎𝑛 = 𝜎𝑜 ⋅ exp(−𝑛𝜏) , (5)

where 𝜎𝑜 is the size of the initial neighborhood, 𝑛 is the
current iteration, and 𝜏 is a time constant, usually defined
by a correlation between the maximum number of iterations,
𝑛max, and the initial topology size.

The synaptic weights are updated after the neighborhood
activation is defined. Each weight (neural position in the
topological space of the data) is then updated according to
the corresponding increment, Δw𝑗, defined as

Δw𝑗 = 𝜂𝑜 ⋅ exp (−𝑛𝜏) ⋅ ℎ𝑗,𝑖 (x𝑖) ⋅ (x − w𝑗) , (6)

where 𝜂𝑜 is the initial learning rate.
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Random Forest 𝑥1, . . . ,𝑥𝑛;𝑋 = 𝑋1, . . . ,𝑋𝑛: Training Set𝑌 = 𝑌1, . . . ,𝑌𝑚: Response
for 𝑏 = 1 : 𝐵 do

Create a bootstrap sample (𝑋𝑏, 𝑌𝑏) with 𝑘 instances of (𝑋, 𝑌)
Run a regression tree model 𝑓𝑏 for the training set (𝑋𝑏, 𝑌𝑏)

end
Return the ensemble regression tree model: 𝑓(𝑥) = ∑𝐵𝑏=1 𝑓𝑏(𝑥)

Algorithm 1: Basic Random Forest algorithm.

Finally, the new neural position is written as

w𝑛+1𝑗 = w𝑛𝑗 + Δw𝑗. (7)

The learning process finishes when the mesh updates are
less than a predefined threshold value or when the maximum
number of iterations is reached. At this stage, it is expected
that this mesh is a good two-dimensional representation
of the input space, while preserving the topological rela-
tionships of data. Each variable can be represented by its
neuron position allowing, by comparison ofmaps, qualitative
inference over the correlation of variables.

2.3. Random Forest (RF). Before introducing Random Forest
models, it is necessary to introduce a decision tree (DT) for
regression. A DT [32] is based on a recursive partition over
the range of the input space (also called instance space). It
can be used for either classification or regression depending
on whether the response variable is discrete or continuous,
respectively. The decision tree consists of a set of nodes
containing the status of the dataset partition and edges
connecting them in a way in which they form a hierarchical
sequence of logical rules.

A DT starts on a special node called “root” with no
incoming edges. Following a previously defined sequence
of logical rules, the root node iteratively breaks down the
instance space into smaller instance subspaces. This is by
drawing outgoing edges from the root node to other nodes
and from these nodes to further ones. In tree building, all
nodes, but the root, have exactly one incoming edge. In the
case of a DT for regression analysis, the Sum of Squared
Error (SSE) is used to define each split of the tree. The SSE
computes the error between the predicted value, considering
as predictor the mean per node (instance subspace), and the
observed values. Comparing all these errors allows choosing
the candidate node to be split at each iteration as the one
having the lowest SSE. A stop criterion (tree depth or a
certain SSE threshold) provides the final partition. Eventually,
a subspace partition is produced and its predictors are in
special nodes called leaves or terminal nodes. These are
characterized by having incoming but not outgoing edges.

A Random Forest (RF) is an ensemble of tree-based
models. RF algorithms can be used for classification when the
basemodels are classification trees, or for regressionwhen the
base models are regression trees. The algorithm is based on a
bootstrap aggregation (or bagging) of tree models [33].

Given the response, 𝑌 = (𝑌1, . . . ,𝑌𝑚), from the cor-
responding training set, 𝑋 = (𝑋1, . . . ,𝑋𝑚), a bagging
tree is constructed by selecting 𝐵 samples (sampling with
replacement) from (𝑋, 𝑌) and training a DT for each sample.
Finally, in the case of regression, the bagging tree is computed
by averaging all the resulting single trees. RFs use a variation
of the bagging tree method by forcing each split to consider
only a subset of the predictors (see Algorithm 1). This makes
RFs computationally efficient compared to bagging trees
for large datasets. As a general rule, for a 𝑘-dimensional
problem a subset of √𝑘 variables is selected to build single
regression trees. These trees are combined in a further
ensemble to improve sample tree variability. Other benefits
of tree ensembles in RF are to avoid sources of bias in
model outcomes and to help reducing overfitting. RFs have
proven to be outstanding predictive models in regression
(and classification) tasks.

3. Case Study

Thiswork analyzes water demand records along with weather
data of a Brazilian city. This case study corresponds to the
WDS of Franca, a city with 318,000 inhabitants, one of the
most important cities in São Paulo State (Brazil). Franca’s
WDS is divided into DMAs (see Figure 1). This work uses
water demand data of three of its DMAs.

The three studied DMAs are typical residential areas in
Brazil, encompassing family customers and small businesses.
In Figure 1, Tks are storage tanks and the hatched DMAs are
used in this study. Table 1 presents the number of connexions
and the mean demand for each DMA.

The available demand data was measured every 20
minutes for the various DMAs. The weather data were
obtained from the meteorological station of the University
of Franca (Unifran) and the weather database is integrated
by air temperature (∘C), relative humidity (%), wind speed
(m/s), wind direction (∘), dew point temperature (∘C), and
atmospheric pressure values (hPa). All these measurements
were taken in an hourly basis. To correspond to the same
measurement frequency of water demand, weather data
is linearly interpolated. Table 2 presents a brief statistical
description of the weather database.

Social behavior is introduced in themodel using calendar
variables such as the hour of the day, the day of the week, the
day of the month, and the month of the year.
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Figure 1: Spatial arrangement of the DMAs in Franca.

Table 1: DMA features.

DMA Connections Mean demand (l/s)
Azevedo (SAz) 8,187 96.32
Leporace (SL) 2,506 15.827
Airport (SA) 2,782 14.385

Table 2: Weather statistical features.

Variable 𝜇 𝜎 Max. Min.
Temperature (∘C) 24.396 3.399 33.500 9.900
Humidity (%) 50.845 14.109 84.500 20.400
Dew point (∘C) 13.025 3.825 21.500 0.200
Wind velocity (m/s) 8.249 3.888 24.100 0
Wind direction (∘) 216.873 80.670 357.000 0
Rain (mm) 0.175 1.252 50.80 0
Atm pressure (hPa) 906.323 3.750 895.70 918.00

Applying PCA to the data corresponding to each DMA
studied in this work, the loading plots in Figures 2–4 are
obtained. It is possible to observe the high positive correlation
between water demand and hour of the day. Disregarding
the DMA 𝑆𝐿, temperature also has a positive correlation
with water demand. Relative humidity presents a negative
correlation with water demand for all DMAs, as observed by
the opposite direction of the loading value.

A strong correlation among hour of day, water demand,
and temperature can be observed for the three DMAs. A
negative correlation between water demand and relative
humidity can also be observed. This mainly happens in
Azevedo’s DMA. The secondary correlations, such as wind
direction with month of the year or dew point and rain with
atmosphere pressure, may be highlighted. These secondary
correlations help validate the results of other methodologies,
since they can be observed also in SOM and RF results.

The application of SOMs to identify correlations among
variables can be useful, since the SOMs synthesize the
topological space of inputs, by their projection onto a two-
dimensional space. This projection turns easier data distri-
bution and clustering. For the DMAs previously analyzed
by the PCA, Figures 5–7 present the respective maps. The
maps are based on the final distribution of neurons and the
color of the maps represents the distance between neurons.
Light colors represent short distances between neurons, while
dark colors represent large distances.The fact that two inputs
have similar distribution of neurons, that is to say, similar
color distribution in the maps, helps identify qualitative
correlations among data.

The distribution trends observed for temperature, hour
of the day, and water demand are indicated by the reduction
of the number of neurons in the positive diagonal of the
maps for Airport DMA. The SOM analysis corroborates the
correlations among water demand, hour of the day, and
temperature. Also, the correlation among humidity and the
dew point can be observed.These variables are also correlated
with water demand, even if this correlation is not so clear as
the one with the hour of the day.

Some secondary correlations appear in the SOM analysis
clearer than in the PCA. That is the case of humidity and
dew point temperature. From the physical point of view,
this correlation is meaningful and points towards a good
correlation analysis by the SOM interpretations. However,
despite the correlation results obtained by SOMs having full
physical sense, the lack of a quantitative analysis can impair
the application of this kind of analysis.

To obtain deeper knowledge of the variables without pre-
vious considerations of their relationship, the RF algorithm
is applied. When used to evaluate the importance of each
variable, the RF algorithm runs as many times as the number
of variables, removing a variable by turn and evaluating the
improvement of the regression. Using this evaluation, the RF
analysis ranks the priority variables. Figure 8 shows the scores
of the variables for each DMA standardized in the interval
[0, 1].

The hour of the day appears as the most important
variable for the short-term water demand forecasting. The
secondmost important variable for the Airport and Leporace
DMAs is the temperature, while for the Azevedo DMA it is
the month of year. For this DMA, the humidity is the most
important weather variable. For the three DMAs, the rain
is the lowest important variable, corroborating the previous
results obtained by SOM and PCA.

Despite the fact that quantitative analysis of the variables
can be easily performedwith RFs, the secondary correlations,
however, cannot be easily defined by the mathematical
approach of RFs. That is to say, once the correlations have
been determined by a regression process, the secondary
correlations are disregarded.

SOMs and RFs appear as efficient alternatives to capture
complex relationships when compared with PCA. Both pro-
vide a clear set of correlations between water demand, social
variables, and weather inputs. In this study, RF corroborates
the influence of the hour of the day, temperature, and relative
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humidity. Other lower correlations are observed between rain
and water demand for all the DMAs in the case study.

All in all, the quantitative analysis performed by SOMs
can help identify important correlations, without the assump-
tion of a linear correlation among the variables. However,
quantitative analyses require personal interpretation of the
maps, and this can lead to faulty correlations. In this sense,
a quantitative method like the one provided by a RF is
very useful. Quantitative methods can give the magnitude
of the correlations and, when combined with quantitative

analyses, the correlation identification process can be more
powerful.

The correlation analysis of weather and social variables
to improve water demand forecasting models are exploited
in this work with different computational tools. Applying the
methodologies to various DMAs, it is possible to evaluate
the correlation properties by different spatial levels in DMAs
with different size. Furthermore, the hour of the day, a
predictive variable highlighted as very important for the three
methodologies, corroborates the typical approach used to
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consider temporal trends of water demand in forecasting
processes.

4. Conclusions

Water demand forecasting models help decision-making
processes dealing with various issues in water resources
planning and management. Several studies propose using
soft computing techniques to model water demand for
different time horizons. However, these approaches are not

exploited enough regarding the understanding of correlations
between predictive variables andwater demand. In this sense,
assessing social and weather variables is a useful approach
to improve the accuracy of regression models on water
demand. This work presents three techniques to evaluate
the correlation among water demand, social variables, and
weather information.

A classical tool, such as PCA, can find the main cor-
relations: temperature, hour of the day, and water demand.
However, PCA is unable to find deeper correlations as they
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Figure 7: SOM analysis for Leporace DMA.

are of nonlinear nature. SOM analyses process the input
space and turn further visual analytics easier. However, the
qualitative nature of these analyses can affect the final results.
RF algorithms are able to evaluate the influence of a predictive
variable through comparisons of regression models. Using
this approach, RF algorithms quantify the influence of each
variable into the quality of the regression model.

This paper also presents a water demand analysis for
various related DMAs with different consumers’ features.
A bullet point of this work is the space-time analysis of
the correlation among water demand and the studied input

variables. The obtained results allow concluding the good
generalization capacity of the presented tools based on SOMs
and RF algorithms.

Last but not least, it is worth mentioning that accurate
water demand models help improve urban water system
operation, as the degree of uncertainty in water demand is
reduced. In this regard, the operation of pumps and valves
thenmight be approached under better hydraulic conditions.
Consequently, better knowledge of short-term future water
demandsmay directly translate into several improvements on
water, energy, and economic resources.
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Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] F. K. Odan and L. F. R. Reis, “Hybrid water demand forecasting
model associating artificial neural network with fourier series,”
Journal of Water Resources Planning and Management, vol. 138,
no. 3, pp. 245–256, 2012.

[2] S. Behboudian, M. Tabesh, M. Falahnezhad, and F. A. Gha-
vanini, “A long-term prediction of domestic water demand
using preprocessing in artificial neural network,” Journal of
Water Supply: Research and Technology-AQUA , vol. 63, no. 1,
pp. 31–42, 2014.

[3] R. Klempous, J. Kotowski, J. Nikodem, and J. Uasiewicz, “Opti-
mization algorithms of operative control in water distribution
systems,” Journal of Computational and Applied Mathematics,
vol. 84, no. 1, pp. 81–99, 1997.

[4] E. A. Donkor, T. A. Mazzuchi, R. Soyer, and A. Roberson,
“Urban water demand forecasting: review of methods and
models,” Journal of Water Resources Planning and Management,
vol. 140, no. 2, pp. 146–159, 2014.

[5] E. R. Levin, W. O. Maddaus, N. M. Sandkulla, and H. Pohl,
“Forecasting wholesale demand and conservation savings,”
Journal - American Water Works Association, vol. 98, no. 2, pp.
12–111, 2006.

[6] P. Cutore, A. Campisano, Z. Kapelan, C. Modica, and D. Savic,
“Probabilistic prediction of urban water consumption using the
SCEM-UA algorithm,” Urban Water Journal, vol. 5, no. 2, pp.
125–132, 2008.

[7] W. Li and Z. Huicheng, “Urban water demand forecasting
based on HP filter and fuzzy neural network,” Journal of
Hydroinformatics, vol. 12, no. 2, pp. 172–184, 2010.

[8] M. Firat, M. A. Yurdusev, and M. E. Turan, “Evaluation
of artificial neural network techniques for municipal water
consumption modeling,”Water Resources Management, vol. 23,
no. 4, pp. 617–632, 2009.

[9] M.Herrera, L. Torgo, J. Izquierdo, and R. Pérez-Garćıa, “Predic-
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