Citation for published version: https://doi.org/10.1249/MSS. 0000000000001524
\section*{DOI:}
10.1249/MSS. 0000000000001524

Silva, DAS, Chaput, J-P, Katzmarzyk, PT, Fogelholm, M, Hu, G, Maher, C, Olds, T, Onywera, V, Sarmiento, OL, Standage, M, Tudor-Locke, C \& Tremblay, MS 2018, 'Physical Education Classes, Physical Activity, and Sedentary Behavior in Children', Medicine \& Science in Sports \& Exercise, vol. 50, no. 5, pp. 995-1004.

Publication date:
2018

Document Version
Peer reviewed version

Link to publication

This is not the final published version of the article. The version of record is available to subscribers via https://doi.org/10.1249/MSS.0000000000001524.

University of Bath

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Diego Augusto Santos Silva ${ }^{1,2}$, Jean-Philippe Chaput ${ }^{1}$, Peter T. Katzmarzyk ${ }^{3}$, Mikael Fogelholm ${ }^{4}$, Gang Hu ${ }^{3}$, Carol Maher ${ }^{5}$, Timothy Olds ${ }^{5}$, Vincent Onywera ${ }^{6}$, Olga L. Sarmiento ${ }^{7}$, Martyn Standage ${ }^{8}$, Catrine Tudor-Locke ${ }^{3,9}$ and Mark S. Tremblay ${ }^{1, *}$. for the ISCOLE Research Group

${ }^{1}$ Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada ${ }^{2}$ Federal University of Santa Catarina, Brazil ${ }^{3}$ Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA ${ }^{4}$ University of Helsinki, Helsinki, Finland
${ }^{5}$ University of South Australia, Adelaide, Australia
${ }^{6}$ Kenyatta University, Nairobi, Kenya
${ }^{7}$ Universidad de los Andes, Bogota, Colombia
${ }^{8}$ University of Bath, Bath, United Kingdom
${ }^{9}$ University of Massachusetts Amherst, Amherst, USA
*Corresponding Author: Mark S. Tremblay, Healthy Active Living and Obesity Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario, Canada, K1H 8L1. Phone: +1 6137377600 ext. 4114. Fax: +1 613738 4800. Email: mtremblay@cheo.on.ca

Abstract

Purpose: To examine the associations between participation frequency in Physical Education (PE) classes and objective measures of physical activity (PA) and sedentary behavior (SB) in children from 12 countries at different levels of development.

Methods: This multinational, cross-sectional study included 5,874 children aged 9-11 years from sites in Australia, Brazil, Canada, China, Colombia, Finland, India, Kenya, Portugal, South Africa, the United Kingdom and the United States. PA and SB were monitored over 7 consecutive days using a waist-worn accelerometer. PA and SB data were presented for weekdays (times in- and out-of-school) and weekend days. Participation frequency in PE classes was determined by questionnaire. Multilevel modeling analyses stratified by sex were used.

Results: Overall, 24.8% of children self-reported participation in PE classes ≥ 3 times/week (25.3% in high-income countries [HIC], and 24.3% in low- and middle-income countries [LMIC]). After adjusting for age, sex, parental education and body mass index z-score, results showed that children from LMIC who took PE classes 1-2 times/week were more likely to present better indicators of PA and shorter time in SB in- and out-of-school. In HIC, boys that participated in PE classes were more likely to meet the moderate-to-vigorous PA (MVPA) recommendations and to present better indicators of PA (in school) and shorter time in SB in- and out-of-school. For girls in HIC, attending PE classes increased the likelihood of spending more time in MVPA, especially if they attended ≥ 3 times/week.

Conclusion: Attending PE classes is associated with a higher level of PA and lower level of SB in- and out-of-school during weekdays in children from countries at various levels of development.

Keywords: CROSS-SECTIONAL STUDY, EPIDEMIOLOGY, EXERCISE, GLOBAL HEALTH, SCHOOL HEALTH.

INTRODUCTION

Physical activity (PA) and sedentary behavior (SB) are distinct behaviors that affect the health of children (1-3). The two movement behaviors have different determinants and because levels of PA and SB around of the world are concerning, these behaviors represent major challenges for public health authorities (4). According to a study coordinated by the Active Healthy Kids Global Alliance (4), which compiled data from 38 countries, more than 60% of children do not meet the recommended 60 minutes of daily moderate-to-vigorous PA (MVPA). Likewise, more than 60% of children spend more than two hours a day on recreational screen time (4), exceeding public health recommendations of some countries (5).

The school environment is a context where young people spend much of the day assimilating knowledge about different topics, including health. In this way, the school environment is conducive to informing children about the benefits of regular PA and the importance of preventing excessive SB throughout the day (4). In addition to guiding and educating young people about these lifestyle behaviors, schools play a key role in providing structured and unstructured PA (4). One opportunity for this to happen is through Physical Education (PE) classes (6,7). The importance of PE classes for the PA of children has been highlighted in guidelines from various countries where it is recommended that young people engage in MVPA for at least 50% of PE class time $(6,7)$.

The discussion of PE classes in the guidelines comes from a series of studies that showed that participation frequency in PE was associated with higher levels of PA and lower levels of SB on days with PE classes and on days without PE classes (8,9). However, equivocal findings are also reported in the literature (18). Specifically, the association between participation frequency in PE classes and PA and SB may differ depending on age, sex, or weight status (10). Two explanations have been proposed to explain these equivocal observations. First, Dishman et al. (11) suggested that the practice of PA, at any intensity,
causes changes at the level of the brain that stimulate vigor and more movement throughout the day. Thus, it can be inferred that children who engage in PE classes will tend to be more physically active on different days (week days and weekend days) or vice versa. Second, the "activitystat" hypothesis suggests that there is an energy expenditure threshold for children and, once reached, the rest of the daily time may be compensated with little or no PA on the same day or on other days of the week $(12,13)$. From this theory, it can be inferred that participation frequency in PE classes may help to reach this threshold of energy expenditure and, on PE days, the PA time for the rest of the day will be decreased. Both explanations (1113) do not give details about the differences that may exist between boys and girls that have been identified as one of the factors that can modify the association between participation frequency in PE classes and PA and SB time (10).

Previous studies that have investigated the association between participation frequency in PE classes and PA and SB levels throughout the day have typically been developed with samples of students from a single city or country, and most of these studies have been conducted in high-income countries (HIC) $(9,14,15)$. The few studies in low- and middleincome countries (LMIC) have used subjective measures of PA and SB, which likely impacts the accuracy of estimates reported $(16,17)$. In order to overcome limitations of previous studies, the present analysis aims to examine the association between participation frequency in PE classes and objective measures of PA and SB throughout the day, both on weekdays (in- and out-of-school) and weekend days in children from 12 countries.

METHODS

Study Design and Setting

The International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE) is a cross-sectional, multinational study designed to examine the relationships between lifestyle behaviors and obesity in children in 12 study sites located in Australia,

Brazil, Canada, China, Colombia, Finland, India, Kenya, Portugal, South Africa, the United Kingdom, and the United States. These countries represent a wide range of economic development (low to high income), Human Development Index (0.509 in Kenya to 0.929 in Australia), and income inequality (Gini index of 26.9 in Finland to 63.1 in South Africa) (18). The rationale, design, and methods of ISCOLE have previously been published in detail elsewhere (18). The primary sampling frame was schools, which were typically stratified by an indicator of socioeconomic status (SES) to maximize variability within sites. Each study site identified one or more school districts (within reasonably close proximity to the local study center), to provide a sufficient population to draw a sample of 500 students. A standardized protocol was used to collect data across all sites, and all study personnel underwent rigorous training and certification to ensure data quality. The Pennington Biomedical Research Center Institutional Review Board as well as Institutional/Ethical Review Boards at each site approved the study. Written informed consent was obtained from parents/legal guardians, and child assent was also obtained as required by local ethics review boards. Data were collected during the school year at each study site and occurred between September 2011 and December 2013.

Participants

ISCOLE targeted grade levels likely to ensure minimal variability around a mean age of 10 years. All children within the targeted grade level in a sampled school were eligible to participate; hence, the sample included 9-11 year-old children. Based on a priori sample size and power calculations (18), each site aimed to recruit a sex-balanced sample of at least 500 children. The response rate in ISCOLE was 60.0% (children with consent to participate divided by consents distributed). Of the 7,372 children who participated in ISCOLE, a total of 5,874 remained in the final analytical sample. We excluded participants without valid accelerometry ($n=1,214$), information on participation frequency in PE classes ($n=24$),
reported level of parental education ($\mathrm{n}=255$), or body mass index (BMI) z-score ($\mathrm{n}=5$). Children who were excluded for missing data did not significantly differ in their descriptive characteristics from those who were included in the present analysis (see Table, Supplemental Digital Content 1).

Measurements

Physical Activity and Sedentary Time

Vigorous PA (VPA), moderate PA (MPA), MVPA, light PA (LPA), total PA (TPA = MVPA + LPA), and total sedentary time were objectively-assessed using 24-h, waist-worn accelerometry (19). An Actigraph GT3X+ accelerometer (ActiGraph LLC, Pensacola, FL, USA) was worn at the waist on an elasticized belt at the right mid-axillary line. Participants were encouraged to wear the accelerometer 24 h per day (removing only for water-based activities) for at least 7 days, including 2 weekend days. Overall, mean 24-h wear time and wake wear time were $22.6 \mathrm{~h} /$ day and $14.9 \mathrm{~h} /$ day in ISCOLE, respectively. The minimum amount of non-sleep data that was considered acceptable for inclusion was at least 4 days with at least 10 h of wake wear time per day, including at least 1 weekend day (19). Data were collected at a sampling rate of 80 Hz , downloaded in 1-s epochs with the low-frequency extension filter using the ActiLife software version 5.6 or higher (ActiGraph LLC, Pensacola, FL, USA), and reintegrated to 15 -s epochs for analysis. After exclusion of sleep period time $(20,21)$ and awake non-wear time (any sequence of ≥ 20 consecutive minutes of zero activity counts), VPA was defined as activity ≥ 1003 counts $/ 15 \mathrm{~s}$, MPA was defined as all activity ≥ 574 counts $/ 15 \mathrm{~s}$ and <1003 counts $/ 15 \mathrm{~s}$, MVPA was defined as all activity ≥ 574 counts $/ 15 \mathrm{~s}$, LPA was defined as all activity >25 counts $/ 15 \mathrm{~s}$ and <574 counts $/ 15 \mathrm{~s}$, and total sedentary time as all movement ≤ 25 counts $/ 15 \mathrm{~s}$, consistent with the widely used Evenson cutoffs (22). MVPA and SB were analyzed considering the average of weekdays and weekend days. The weekdays were divided as "in-school" and "out-of-school", with out-of-school comprising
the time before and after school. The before school time period was considered from sleep onset wake (established using a validated algorithm (20)) until school start time, "in-school" was defined as the time between school start and end times (determined individually for each participating school), and the after school period was from school end time through the child's bedtime (also determined by our validated algorithm (20) determined from accelerometry). Full details on how wake time was determined are reported in previous studies by the ISCOLE group (19-21).

Children were classified as meeting the MVPA recommendation of an average of ≥ 60 $\mathrm{min} /$ day, or not $(5,23)$. In addition, each PA intensity (min/day) and the overall SB time (min/day) were categorized according to the distribution tertile for boys and girls. We chose this classification because there are no specific recommendations for each PA intensity and the overall SB time. Sensitivity analyses using other cut-points for PA and SB revealed similar patterns of associations; therefore, only tertiles are presented in the present paper.

Participation frequency in PE classes

Participation frequency in PE classes was assessed using a self-report questionnaire item from the U.S. Youth Risk Behavior Surveillance System (24). The students were asked: "In the last week you were in school, on how many days did you go to physical education (PE) classes?" Response options ranged from zero days to five days. In the present study, responses were classified into three categories, " 0 days/week", "1-2 days/week", and " ≥ 3 days/week" to maximize power and because the results of the associations between participation frequency in PE classes and $\mathrm{PA} / \mathrm{SB}$ for 3, 4, and 5 days/week were similar.

Covariates

Age, sex, level of parental education, and BMI z-scores were included as covariates. These variables were chosen because of their association with the dependent and independent variables in previous studies $(9,15,25,26)$. Age was computed from birthdates and
measurement dates, and sex was self-reported on a questionnaire. The level of parental education was reported by the parents themselves in a questionnaire sent to them (18). Highest level of parental education was used as a proxy measure for family SES and coded into three categories based on the highest level of education attained by either parent: "did not complete high school", "completed high school or some college", or "completed bachelor's or postgraduate degree". Body mass was measured with a Tanita SC-240 scale (Arlington Heights, IL, USA), after all outer clothing, heavy pocket items and shoes were removed. Body height was measured without shoes using a Seca 213 portable stadiometer (Hamburg, Germany), with the participant's head in the Frankfort horizontal plane and after a deep inspiration. Each measurement was repeated, and the average was used for analysis (a third measurement was obtained if the first two measurements were greater than 0.5 kg or 0.5 cm apart for body mass and body height, respectively, and the average of the two closest measurements was used for analysis). BMI ($\mathrm{kg} / \mathrm{m}^{2}$) was calculated, and BMI z-scores were computed using age- and sex-specific reference data from the World Health Organization (27).

Statistical Analysis

The analyses were performed for the whole sample, stratified by sex and country-level World Bank classification of economic development. Descriptive statistics (absolute frequency, relative frequency, mean values and standard deviations) on the characteristics of the sample were presented for each site and for the set of sites from countries classified as HICs (Australia, Canada, Finland, Portugal, United Kingdom, United States) and LMICs (Brazil, China, Colombia, India, Kenya, South Africa), in accordance with the recommendations of the World Bank (28). A multi-level logistic mixed regression model was used where the dependent variable was meeting the MVPA recommendations $(5,23)$. Multilevel polytomous logistic mixed regression models were used $(29,30)$, where the dependent
variables were the various PA indices, with a model for each (VPA, MPA, MVPA, LPA, TPA), and SB (sex-specific reference categories $=1^{\text {st }}$ (lowest) tertile for PA indices and $3^{\text {rd }}$ (highest) tertile for SB). Odds ratios and 95% confidence intervals were estimated. Study sites were considered to have fixed effects and schools nested within study sites were viewed as having random effects. Age, sex (with models containing the whole sample), parental education, and BMI z-scores were included as covariates. Statistical analyses were performed using Stata 13.0 software (STATA Corp. College Station, Texas, USA). The level of statistical significance was set at $\mathrm{p}<0.05$.

RESULTS

This study analyzed data from 5,874 children $(45.6 \%$ male) from 12 countries, with an average age of 10.4 ± 0.6 years old (Table 1). Average MVPA was $60.3 \pm 24.8 \mathrm{~min} /$ day , average VPA was $17.9 \pm 11.1 \mathrm{~min} /$ day, average MPA was $42.4 \pm 5.6 \mathrm{~min} /$ day, and average LPA was $314.9 \pm 52.7 \mathrm{~min} /$ day. Total sedentary time was $513.4 \pm 69.2 \mathrm{~min} /$ day. Table 1 also presents this information for each country and according to the country-level World Bank classification of economic development (HIC and LMIC). Supplemental Digital Content 2 and 3 present these results for boys (see Table, Supplemental Digital Content 2) and girls (see Table, Supplemental Digital Content 3).

In the full sample $(\mathrm{n}=5,874)$ (see Figure 1), 24.8% of children self-reported participation frequency in PE classes three or more times per week (25.3% in HIC and 24.3% LMIC, $\mathrm{p}>0.05$). The country that had most students reporting attending PE classes for three days or more in the week was Canada (64.8%). Portugal was the country with the greatest proportion of children reporting attending PE classes once or twice a week (99.0%). South Africa was the country with the greatest proportion of students not attending PE classes (32.1%). These results were similar when analyzing boys (see Figure, Supplemental Digital Content 4) and girls (see Figure, Supplemental Digital Content 5) separately.

In general (Table 2), 44.4% of the sample met the recommendations for MVPA, with a greater adherence in Finland (63.8\%) and a lower adherence in China (15.9\%). The highest proportion of children who spent more time in VPA was found in Finland (53.0\%) and the lowest in India (12.3\%). The highest proportion of children who spent more time in MPA was found in Colombia (55.7\%) and the lowest in China (8.1\%). The highest proportion of children who spent more time in LPA was found in Brazil (49.0\%) and the lowest in Finland (14.0\%) and the UK (14.0\%). The highest proportion of children who spent less time on SB was found in Australia (52.5%) and the lowest in China (9.5%). Full details for all PA indices and SB in- and out-of-school are provided in Table 2 (full sample) and in Supplemental Digital Content (boys: see Table, Supplemental Digital Content 6; girls, see Table, Supplemental Digital Content 7).

As shown in Table 3, children from LMIC who participated in PE classes at least 1-2 times/week were more likely to meet the MVPA recommendations (male - OR: 1.80; 95% CI: 1.17; 2.77 ; female - OR: $2.17 ; 95 \%$ CI: $1.44 ; 3.27$), to spend more time at different PA intensities, and to have shorter SB time than those who did not attend PE classes. In HIC, there were differences between boys and girls, where boys participating in PE classes were more likely to meet the recommendations for time spent in MVPA and VPA, and shorter SB time. For girls from HIC, attending PE classes increased the likelihood of spending more time in MVPA (OR: $2.42 ; 95 \%$ CI: 1.22; 4.80) and MPA (OR: $2.44 ; 95 \%$ CI: $1.25 ; 4.75$), especially if they attended three or more classes/week.

As reported in Table 4, children from LMIC who participated in PE classes 1-2 times/week were more likely to spend more time in MVPA out of school on weekdays (male - OR: 2.39 ; 95% CI: 1.43 ; 3.99; female: $2.79,95 \%$ CI: $1.71,4.58$). Children from LMIC (male - OR: 3.23; 95\% CI: 1.82; 5.71; female - OR: 7.27; 95\% CI: 4.39; 12.05) and HIC (male - OR: $5.87 ; 95 \%$ CI: $2.78 ; 12.35$; female - OR: $3.47 ; 95 \%$ CI: $1.77 ; 6.82$) who
participated in PE classes three or more times/week were more likely to spend more time on MVPA at school. Girls from LMIC that had at least 1-2 PE classes/week were more likely to spend more time in MVPA on weekends (OR: $1.86 ; 95 \%$ CI: $1.17 ; 2.95$).

As shown in Table 4, children of both sexes from LMIC (male - OR: 2.23; 95\% CI: 1.23; 4.05; female - OR: $2.76 ; 95 \%$ CI: $1.56 ; 4.88$) and the boys from HIC (OR: $2.45 ; 95 \%$ CI : 1.09 ; 5.51) who participated in 3 or more PE classes/week were more likely to spend less time in SB out of school on weekdays. For in-school SB time, the children who presented the highest odds of spending shorter time in SB were boys (OR: 3.33, 95% CI: 1.97; 6.63) and girls (OR: 4.87; 95\% CI: 2.94; 8.06) from LMIC, and boys (OR: 2.40; 95\% CI: 1.01; 5.81) from HIC who took 3 or more PE classes/week. For the time in SB on weekends, no significant associations were found.

DISCUSSION

The main finding of the present study was that participation frequency in PE classes was related to greater odds of children demonstrating desirable indicators of PA and SB daily behaviors. In addition, participation frequency in PE classes was associated with longer time spent in MVPA and shorter time in SB in- and out-of-school on weekdays, especially in children from LMIC. These results were more evident in LMIC, where at least one PE class/week represented improvements in PA and SB indicators. For HIC, the results were more evident in boys and with participation frequency in ≥ 3 PE classes/week.

The health benefits of participation frequency in PE classes for children have been reported in previous studies (31-34). A shared explanation provided by these authors for the improvement in health indicators of children who participated in PE classes was that PE class attendance was associated with greater involvement in PA in general. The present study supports these findings by showing better indicators of PA and SB in- and out-of-school for children who report attending PE classes.

Similar to the present study, other studies have also found an association between participation frequency in PE classes and higher PA levels and lower SB levels in children $(8,9,25)$. A cross-sectional study with children from Estonia measured PA and SB by accelerometry during PE classes and during the remainder of the day. The authors found that only one third of PE classes was spent on MVPA and the rest was spent on LPA and SB. However, Estonian children who participated in PE classes had shorter SB time and greater MVPA involvement throughout the day than peers who did not take PE classes (9). A study conducted with school-aged children from the US measured PA using SenseWear armband monitor (BodyMedia®, Pittsburg, US) during weekdays and weekends. The authors found that the students were less sedentary and more physically active for the rest of the day following the classes on PE days (8). In Brazilian children, it was reported that at least one PE class/week was associated with less time in SB throughout the day (25). Although the present study did not discriminate the measurement of PA and SB during the PE class, we can hypothesize that involvement in PE classes is a stimulus to keep young people more physically active and less sedentary throughout the day. This hypothesis was supported because the children in this study who participated in PE classes had more time in MVPA and less time in SB in- and out-of-school on weekdays. The rationale for this hypothesis is that the practice of PA, regardless of intensity, causes changes in the cerebral cortex and neurophysiological stimulation and can reduce the sensation of fatigue throughout the day, while improving mood and the willingness to keep moving (11). Another possible explanation would be that PE classes make children familiar and more confident with physical activity, which increases the possibility of engaging in other activities out of school (35).

Some studies examining the moderators of the relationship between participation frequency in PE classes and PA/SB throughout the day have found no associations
$(10,14,15)$. According to these authors, sex, weight status and lesson content are key moderators of this association. For example, no association was found between participation frequency in PE classes and PA/SB levels throughout the day in overweight and obese girls. On the other hand, participation frequency in PE classes contributed significantly to higher LPA in the normal-weight girls and boys during the school day (15). Nettlefold et al. (10) also reported no association between participation frequency in PE classes and PA levels throughout the day for children in Vancouver, Canada. One justification found in the literature for the null findings observed between involvement in PE classes and PA/SB levels throughout the day is the "activitystat'" hypothesis, which suggests that children have an energy expenditure set point and, therefore, compensate for increased PA in one part of the day by decreasing PA later $(12,13)$. The present study did not confirm this hypothesis because the participation in PE classes was associated with greater involvement in MVPA and less time spent in SB in- and out-of-school on weekdays.

The present study investigated whether the country-level World Bank classification of economic development modified the associations found between participation frequency in PE classes and PA/SB. We observed that the relationship between participation frequency in PE classes and PA/SB levels of children was related to the development status/income level of the country. The literature has already reported that levels of PA and SB vary according to the development status/income level of the country and family $\operatorname{SES}(15,17,28)$. A recent systematic review and meta-analysis of studies with school-aged children revealed that in HIC, family SES was inversely associated with SB, whereas in low/middle-income countries, there was a positive association between family SES and SB (36). A systematic review revealed that school-aged children in Sub-Saharan Africa (low income region) with higher family SES were less physically active and spent more time on SB than those with lower family SES (37). The present study added the component of PE classes to this discussion
between different income levels with the understanding that PE classes are opportune moments in the school day for young people to practice PA. However, we did not stratify analyses by income level of the families in each group of countries to protect against type 2 error (i.e., we sought to retain power in the statistical analyses). Thus, it is suggested that future studies with larger samples make this stratification.

This study found that in LMIC, participation frequency in at least one PE class was associated with higher levels of PA and lower SB levels. In HIC, this result was most evident in male children only or those attending three or more PE classes/week. A possible explanation for these differences is that countries implement different strategies and policies to promote PA and healthy habits for children (4). The Active Healthy Kids Global Alliance organizes and prepares Report Cards on the PA of children and youth from different countries around the world. This program revealed that government actions and policies to encourage and promote PA are more evident in HIC, and some LMIC do not have government policies to encourage PA, including in the school environment (4). Based on this evidence and the results of the present study, it is deduced that participation frequency in PE classes in LMIC represents an important avenue for young people to engage in PA throughout the day in- and out-of-school. In this study, young people who did at least one PE class/week were more likely to be classified as having higher levels of PA of different intensities and with lower SB than those who did not take PE classes.

For HIC, the literature reports greater incentives and government actions to promote PA, both in- and out-of-school $(4,38,39)$. For activities at school, the justification given is that schools in HIC provide built environments more suitable for the practice of PA when compared to LMIC $(4,38,39)$. For out-of-school activities, the justification is not centered only on the built environment but also on the opportunities for young people to engage in targeted PA practice in periods outside of school $(4,39)$. It is possible that these other
structured and unstructured activities (compared to PE classes), inside and outside of the school, represent the largest portion of the students' time spent on PA (38).

This study found that for some PA and SB indicators, at least 1-2 PE classes/week represented higher odds to spend more time in PA and shorter time in SB, and that to do three or more PE classes/week did not represent greater odds. Thus, there was no dose-response relationship between participation frequency in PE classes and PA and SB throughout the day. We can speculate that the quality of PE classes is as important as the frequency of these classes. Fröberg et al. (14) reported that the contents that are discussed in PE classes can be facilitators or barriers to PA in children. Perhaps even a small dose (e.g., 1 or 2 PE classes per week) can achieve desirable outcomes. In this regard, it is recommended that the contents of the PE classes be promoters of an active lifestyle of the children.

There are several limitations in the present study. First, the cross-sectional design precludes us from making cause-and-effect inferences. Second, we cannot exclude the possibility that unmeasured confounding variables may explain some of the observed relationships. Third, we did not evaluate the PA level and the SB level during PE classes and, therefore, we do not know the behavior pattern of the students during PE classes. Fourth, we objectively assessed PA and SB using accelerometry; however, a limitation of this approach is the inability to quantify some physical activities such as cycling and swimming. Five, the sample of 12 countries involved in the survey was not nationally representative and not represent the behavior pattern of any particular country, though the samples were generally quite comparable to other nationally representative surveys (40). Finally, the participation frequency in PE classes was self-reported and information on the PE curriculum was not collected. The strength of this study was in the recruitment of a large multinational sample of children from LMIC across several regions of the world, the highly standardized
measurement protocol, the use of objective measurements whenever possible, and the rigorous quality control program.

In conclusion, participation frequency in PE classes was associated with healthy indicators of PA and SB throughout the day in children from around the world. Participation frequency in PE classes also resulted in longer time spent in MVPA and shorter time in SB in- and out-of-school on weekdays. These results were more evident in LMIC, where at least one PE class/week was associated with the desirable indicators of PA and SB. For HIC, these results were more evident in boys and those attending three or more PE classes/week. Collectively, PE classes seem to represent an opportunity to positively influence PA and SB levels of children, especially those from LMIC.

Funding

The International Study of Childhood Obesity, Lifestyle, and the Environment (ISCOLE) was funded by The Coca-Cola Company. GH was supported by a grant from the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health under Award Number R01DK100790. The funder had no role in the design and conduct of the study; collection, management, analysis and interpretation of the data; and preparation, review, or approval of the manuscript.

Acknowledgments

We wish to thank the ISCOLE External Advisory Board, the ISCOLE participants and their families who made this study possible, and the ISCOLE Research Group that was quoted in Katzmarzyk et al. (11).

Conflict of Interest

The authors declare no conflicts of interest.
The results of the present study do not constitute endorsement by the American College of Sports Medicine.

The authors declare that the results of the study are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation.

REFERENCES

1. Carson V, Hunter S, Kuzik N, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. Appl Physiol Nutr Metab. 2016;41(6 Suppl 3):S240-65.
2. Poitras VJ, Gray CE, Borghese MM, et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016;41(6 Supp1 3):S197-239.
3. Tremblay MS, Aubert S, Barnes JD, et al. Sedentary Behavior Research Network (SBRN) - Terminology Consensus Project process and outcome. Int J Behav Nutr Phys Act. 2017;14(1):75.
4. Tremblay MS, Barnes JD, González SA, et al. Global Matrix 2.0: Report Card Grades on the Physical Activity of Children and Youth Comparing 38 Countries. J Phys Act Health. 2016;13(11 Suppl 2):S343-S366.
5. Tremblay MS, Carson V, Chaput JP, et al. Canadian 24-hour Movement Guidelines for Children and Youth: An Integration of Physical Activity, Sedentary Behaviour, and Sleep. Appl Physiol Nutr Metab. 2016;41(6 Supp1 3):S311-S27.
6. Association for Physical Education. Health position paper. Phys Educ Matters. 2008; 3(1):8-12.
7. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Division of Adolescent and School Health. Strategies to improve the quality of Physical Education. [Internet]. 2010; [cited 2016 Dec 30]. Available from: https://www.cdc.gov/healthyschools/pecat/quality_pe.pdf.
8. Chen S, Kim Y, Gao Z. The contributing role of physical education in youth's daily physical activity and sedentary behavior. BMC Public Health. 2014;14:110.
9. Mooses K, Pihu M, Riso EM, Hannus A, Kaasik P, Kull M. Physical Education Increases Daily Moderate to Vigorous Physical Activity and Reduces Sedentary Time. J Sch Health. 2017;87(8):602-7.
10. Nettlefold L, McKay HA, Warburton DE, McGuire KA, Bredin SS, Naylor PJ. The challenge of low physical activity during the school day: at recess, lunch and in physical education. Br J Sports Med. 2011;45(10):813-9.
11. Dishman RK, Thom NJ, Puetz TW, O'Connor PJ, Clementz BA. Effects of cycling exercise on vigor, fatigue, and electroencephalographic activity among young adults who report persistent fatigue. Psychophysiology. 2010;47(6):1066-74.
12. Rowland TW. The biological basis of physical activity. Med Sci Sports Exerc. 1998;30(3):392-9.
13. Wilkin TJ. Can we modulate physical activity in children? No. Int J Obes. 2011;35(10):1270-6.
14. Fröberg A, Raustorp A, Pagels P, Larsson C, Boldemann C. Levels of physical activity during physical education lessons in Sweden. Acta Paediatr. 2017;106(1):135-41.
15. Sigmund E, Sigmundová D, Hamrik Z, Madarásová Gecková A. Does participation in physical education reduce sedentary behavior in school and throughout the day among normal-weight and overweight-to-obese Czech children aged 9-11 years? Int J Environ Res Public Health. 2014;11(1):1076-93.
16. Santos SJ, Hardman CM, Barros SS, Franca CS, Barros MV. Association between physical activity, participation in Physical Education classes, and social isolation in adolescents. J Pediatr (Rio J). 2015;91(6):543-50.
17. Tassitano RM, Barros MV, Tenório MC, Bezerra J, Florindo AA, Reis RS. Enrollment in physical education is associated with health-related behavior among high school students. J Sch Health. 2010;80(3):126-33.
18. Katzmarzyk PT, Barreira TV, Broyles ST, et al. The International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE): design and methods. BMC Public Health. 2013;13:900.
19. Tudor-Locke C, Barreira TV, Schuna JM Jr, et al. Improving wear time compliance with a 24-hour waist-worn accelerometer protocol in the International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE). Int J Behav Nutr Phys Act. 2015;12:11.
20. Barreira TV, Schuna Jr JM, Mire EF, et al. Identifying children's nocturnal sleep using a 24-h waist accelerometry. Med Sci Sports Exerc. 2015; 47(5):937-43.
21. Tudor-Locke C, Barreira TV, Schuna Jr JM, Mire EF, Katzmarzyk PT. Fully automated waist-worn accelerometer algorithm for detecting children's sleep-period time separate from 24-h physical activity or sedentary behaviors. Appl Physiol Nutr Metab. 2014;39(1):53-7.
22. Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci 2008;26(14):1557-65.
23. World Health Organization. Global Recommendations on Physical Activity for Health. [Internet]. 2010; [cited 2013 Nov 30]. Available from: http://www.who.int/dietphysicalactivity/factsheet_recommendations/en/.
24. U.S. Centers for Disease Control and Prevention. Youth Risk Behavior Surveillance System (YRBSS) [Internet]. 2012; [cited 2016 Dec 30]. Available from: https://www.cdc.gov/healthyyouth/data/yrbs/index.htm.
25. Costa BG, Silva KS, George AM, Assis MA. Sedentary behavior during school-time: Sociodemographic, weight status, physical education class, and school performance correlates in Brazilian schoolchildren. J Sci Med Sport. 2017;20(1):70-4.
26. Sutherland R, Campbell E, Lubans DR, et al. Physical education in secondary schools located in low-income communities: Physical activity levels, lesson context and teacher interaction. J Sci Med Sport. 2016;19(2):135-41.
27. de Onis M, Onyanga AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85(9):660-7.
28. World Bank. World Development Indicators. [Internet]. 2012; [cited 2013 Nov 30]. Available from: https://openknowledge.worldbank.org/handle/10986/6014.
29. Skrondal A, Rabe-Hesketh S. Multilevel logistic regression for polytomous data and rankings. Psychometrika. 2003;68(2):267-87.
30. Skrondal A, Rabe-Hesketh S. (2004). Generalized Latent Variable Modeling: Multilevel, Longitudinal and Structural Equation Modeling. Boca Raton (FL): Chapman \& Hall/CRC; 2004. 528p.
31. Kim SY, So WY. The relationship between school performance and the number of physical education classes attended by Korean adolescent students. J Sports Sci Med. 2012;11(2):226-30.
32. Klakk H, Andersen LB, Heidemann M, Møller NC, Wedderkopp N. Six physical education lessons a week can reduce cardiovascular risk in school children aged 6-13 years: a longitudinal study. Scand J Public Health. 2014;42(2):128-36.
33. Park JW, Park SH, Koo CM, et al. Regular physical education class enhances sociality and physical fitness while reducing psychological problems in children of multicultural families. J Exerc Rehabil. 2017;13(2):168-78.
34. Telford RD, Cunningham RB, Fitzgerald R, et al. Physical education, obesity, and academic achievement: a 2-year longitudinal investigation of Australian elementary school children. Am J Public Health. 2012;102(2):368-74.
35. Palmer SE, Bycura DK, Warren M. A Physical Education Intervention Effects on Correlates of Physical Activity and Motivation. Health Promot Pract. [Epub ahead of print]
36. Mielke GI, Brown WJ, Nunes BP, Silva IC, Hallal PC. Socioeconomic Correlates of Sedentary Behavior in Adolescents: Systematic Review and Meta-Analysis. Sports Med. 2017;47(1):61-75.
37. Muthuri SK, Wachira LJ, Leblanc AG, et al. Temporal trends and correlates of physical activity, sedentary behaviour, and physical fitness among school-aged children in Sub-

Saharan Africa: a systematic review. Int J Environ Res Public Health. 2014;11(3):332759.
38. García Bengoechea E, Sabiston CM, Ahmed R, Farnoush M. Exploring links to unorganized and organized physical activity during adolescence: the role of gender, socioeconomic status, weight status, and enjoyment of physical education. Res Q Exerc Sport. 2010;81(1):7-16.
39. Sanchez-Vaznaugh EV, Goldman Rosas L, Fernández-Peña JR, Baek J, Egerter S, Sánchez BN. Physical education policy compliance and Latino children's fitness: Does the association vary by school neighborhood socioeconomic advantage? Plos One. 2017;12(6):e0178980.
40. LeBlanc AG, Katzmarzyk PT, Barreira TV, et al. Are participant characteristics from ISCOLE study sites comparable to the rest of their country? Int J Obes Suppl. 2015;5(Suppl 2):S9-S16.

Table 1. Descriptive characteristics of the sample.

Country (site)	Participants		MVPA	VPA	MPA	LPA	TPA	SB	$\begin{gathered} \text { MVPA } \\ \text { out of } \\ \text { school* } \end{gathered}$	$\begin{aligned} & \text { MVPA } \\ & \text { in } \\ & \text { school* } \end{aligned}$	MVPA on weekends	$\begin{gathered} \hline \text { SB out } \\ \text { of } \\ \text { school* } \end{gathered}$	SB in school*	SB on weekends
	$\begin{aligned} & (\mathrm{n}, \% \\ & \text { males }) \end{aligned}$	Mean (S.D.)												
All sites	5874 (45.6)	$\begin{aligned} & \hline 10.4 \\ & (0.6) \end{aligned}$	60.3 (24.8)	17.9 (11.1)	42.4 (15.6)	314.9 (52.7)	375.2 (64.6)	513.4 (69.2)	36.3 (19.4)	25.8 (13.6)	55.4 (31.9)	292.9 (67.5)	233.8 (61.3)	488.7 (92.3)
HIC	2779 (43.5)	$\begin{aligned} & 10.5 \\ & (0.5) \end{aligned}$	60.4 (23.0)	19.0	41.4 (13.5)	301.9 (48.2)	362.3 (58.6)	516.3 (66.8)	35.5 (17.1)	27.6 (12.6)	53.4 (29.5)	$\begin{aligned} & 301.6 \\ & (61.0) \end{aligned}$	224.1 (47.5)	502.9 (91.6)
Australia (Adelaide)	439 (46.0)	$\begin{aligned} & 10.7 \\ & (0.4) \end{aligned}$	$\begin{gathered} 65.2 \\ (23.1) \end{gathered}$	$\begin{gathered} 22.5 \\ (11.8) \end{gathered}$	$\begin{gathered} 42.7 \\ (13.0) \end{gathered}$	$\begin{aligned} & 310.1 \\ & (47.8) \end{aligned}$	$\begin{aligned} & 375.3 \\ & (59.3) \end{aligned}$	$\begin{aligned} & 476.8 \\ & (59.9) \end{aligned}$	$\begin{gathered} 35.0 \\ (14.7) \end{gathered}$	$\begin{gathered} 34.6 \\ (13.4) \end{gathered}$	$\begin{gathered} 55.7 \\ (30.4) \end{gathered}$	$\begin{aligned} & 269.9 \\ & (45.9) \end{aligned}$	$\begin{aligned} & 210.8 \\ & (32.1) \end{aligned}$	$\begin{aligned} & 475.7 \\ & (88.9) \end{aligned}$
Canada (Ottawa)	502 (41.2)		58.6 (19.4)	$\begin{aligned} & 16.8 \\ & (9.0) \end{aligned}$	41.8 (12.1)	304.7 (44.5)	363.3 (54.6)	511.6 (62.9)	32.4 (14.2)	$\begin{aligned} & 29.6 \\ & (9.9) \end{aligned}$	49.7 (24.2)	295.9 (49.2)	215.3 (29.9)	518.2 (86.6)
Finland (Helsinki, Espoo and Vantaa)	434 (46.4)	$\begin{aligned} & 10.5 \\ & (0.4) \end{aligned}$	$\begin{gathered} 70.8 \\ (26.2) \end{gathered}$	$\begin{gathered} 23.2 \\ (13.9) \end{gathered}$	47.6 (15.1)	293.4 (43.7)	$\begin{aligned} & 364.2 \\ & (58.4) \end{aligned}$	528.9 (67.1)	$\begin{gathered} 48.7 \\ (21.8) \end{gathered}$	$\begin{gathered} 26.3 \\ (12.0) \end{gathered}$	$\begin{gathered} 60.9 \\ (34.2) \end{gathered}$	$\begin{aligned} & 372.7 \\ & (66.3) \end{aligned}$	$\begin{aligned} & 164.2 \\ & (30.0) \end{aligned}$	$\begin{aligned} & 519.5 \\ & (89.2) \end{aligned}$
Portugal (Porto)	578 (43.4)	$\begin{gathered} 10.5 \\ (0.3) \end{gathered}$	$\begin{gathered} 56.0 \\ (21.8) \end{gathered}$	$\begin{gathered} 16.8 \\ (10.1) \end{gathered}$	$\begin{gathered} 39.2 \\ (13.4) \end{gathered}$	$\begin{aligned} & 301.8 \\ & (50.0) \end{aligned}$	$\begin{aligned} & 357.8 \\ & (59.7) \end{aligned}$	$\begin{aligned} & 552.6 \\ & (61.3) \end{aligned}$	$\begin{gathered} 30.6 \\ (14.7) \end{gathered}$	$\begin{gathered} 29.4 \\ (12.9) \end{gathered}$	$\begin{gathered} 43.9 \\ (25.4) \end{gathered}$	$\begin{aligned} & 312.7 \\ & (48.7) \end{aligned}$	$\begin{aligned} & 248.1 \\ & (34.7) \end{aligned}$	$\begin{aligned} & 543.6 \\ & (81.3) \end{aligned}$
UK (Bath and North East Somerset)	377 (43.5)	$\begin{aligned} & 10.9 \\ & (0.5) \end{aligned}$	$\begin{gathered} 64.2 \\ (22.4) \end{gathered}$	$\begin{gathered} 20.9 \\ (11.5) \end{gathered}$	$\begin{gathered} 43.3 \\ (12.9) \end{gathered}$	$\begin{aligned} & 286.1 \\ & (45.5) \end{aligned}$	$\begin{aligned} & 350.3 \\ & (55.9) \end{aligned}$	$\begin{aligned} & 495.2 \\ & (58.8) \end{aligned}$	$\begin{gathered} 39.3 \\ (16.7) \end{gathered}$	$\begin{gathered} 27.8 \\ (11.1) \end{gathered}$	$\begin{gathered} 58.3 \\ (29.8) \end{gathered}$	$\begin{aligned} & 283.7 \\ & (44.1) \end{aligned}$	$\begin{aligned} & 223.2 \\ & (31.1) \end{aligned}$	$\begin{aligned} & 483.1 \\ & (85.4) \end{aligned}$
USA (Baton Rouge)	449 (41.1)	$\begin{gathered} 9.9 \\ (0.6) \end{gathered}$	$\begin{gathered} 49.9 \\ (18.8) \end{gathered}$	$\begin{aligned} & 15.1 \\ & (9.2) \end{aligned}$	$\begin{gathered} 34.8 \\ (11.1) \end{gathered}$	$\begin{aligned} & 313.7 \\ & (50.9) \end{aligned}$	$\begin{aligned} & 363.6 \\ & (60.5) \end{aligned}$	$\begin{aligned} & 520.4 \\ & (61.3) \end{aligned}$	$\begin{gathered} 30.2 \\ (12.9) \end{gathered}$	$\begin{aligned} & 17.3 \\ & (8.7) \end{aligned}$	$\begin{gathered} 56.1 \\ (30.3) \end{gathered}$	$\begin{aligned} & 271.2 \\ & (46.4) \end{aligned}$	$\begin{aligned} & 273.8 \\ & (34.1) \end{aligned}$	$\begin{aligned} & 461.9 \\ & (90.7) \end{aligned}$
LMIC	3095 (47.4)	$\begin{gathered} 10.3 \\ (0.6) \end{gathered}$	$\begin{gathered} 60.1 \\ (26.3) \end{gathered}$	$\begin{gathered} 16.9 \\ (10.7) \end{gathered}$	43.2 (17.4)	326.9 (53.8)	$\begin{aligned} & 387.0 \\ & (67.6) \end{aligned}$	$\begin{aligned} & 510.6 \\ & (71.2) \end{aligned}$	$\begin{gathered} 36.9 \\ (21.1) \end{gathered}$	24.2 (14.3)	$\begin{gathered} 57.3 \\ (33.8) \end{gathered}$	285.1 (72.0)	242.6 (70.3)	475.9 (90.9)

Brazil (Sao Paulo)	435 (49.0)	10.5	59.4	17.7	41.7	337.9	397.3	500.6	36.4	24.8	54.1	315.1	194.6	483.0
		(0.5)	(26.2)	(11.3)	(16.6)	(53.1)	(67.9)	(68.4)	(21.4)	(18.8)	(34.9)	(84.7)	(68.2)	(97.7)
China (Tianjin)	463 (52.0)	9.9	45.2	12.6	32.6	293.4	338.6	564.7	21.9	24.1	41.6	279.8	308.4	521.8
		(0.5)	(15.9)	(6.7)	(10.5)	(53.6)	(62.3)	(67.7)	(10.3)	(11.3)	(21.5)	(42.4)	(43.1)	(82.8)
Colombia (Bogotá)	821 (49.3)	10.5	68.1	17.9	50.2	333.0	401.1	500.1	46.8	24.0	62.0	329.1	187.4	466.0
		(0.6)	(24.8)	(10.1)	(16.8)	(49.4)	(63.2)	(67.1)	(21.9)	(13.0)	(32.3)	(63.6)	(48.5)	(85.4)
India (Bangalore)	526 (45.6)	10.5	48.7	12.8	35.9	340.1	388.8	516.7	27.6	21.5	47.0	286.9	244.1	488.1
		(0.5)	(20.8)	(7.8)	(14.1)	(50.5)	(60.8)	(66.2)	(13.5)	(10.7)	(27.5)	(47.8)	(37.9)	(83.2)
Kenya (Nairob)	459 (46.5)	10.3	71.6	22.5	49.1	329.9	401.5	494.7	37.0	33.7	74.8	201.5	314.6	454.3
		(0.7)	(31.3)	(13.8)	(19.6)	(51.7)	(65.3)	(65.9)	(20.8)	(16.9)	(40.7)	(49.9)	(55.6)	(90.9)
South Africa (Cape	391 (39.7)	10.3	63.5	17.9	45.6	321.5	385.0	489.1	47.2	16.8	62.8	260.9	247.8	443.6
Town)		(0.7)	(25.4)	(10.4)	(16.8)	(53.1)	(66.7)	(66.3)	(21.4)	(8.2)	(33.6)	(50.7)	(33.5)	(88.6)

List of Supplemental Digital Content

Supplemental Digital Content 1. $\operatorname{doc}(\mathrm{x})$
Descriptive characteristics of children who were excluded for missing data and of children who participated in the present analysis.

Supplemental Digital Content 2. $\operatorname{doc}(\mathrm{x})$
Descriptive characteristics of boys in the present study ($n=2,678$).

Supplemental Digital Content 3. doc(x)
Descriptive characteristics of girls in the present study $(\mathrm{n}=3,196)$.

Supplemental Digital Content 4. JPEG

Distribution of participation frequency in Physical Education (PE) classes of boys by study site $(\mathrm{n}=2,678)$.

Supplemental Digital Content 5. JPEG
Distribution of participation frequency in Physical Education (PE) classes of girls by study site $(n=3,196)$.

Supplemental Digital Content 6. doc(x)
Distribution of the sample of boys in relation to meeting the recommendations for physical activity, and highest tertile of time in physical activity (most active) and lowest tertile of time in sedentary behavior (least sedentary) $(\mathrm{n}=2,678)$.

Supplemental Digital Content 7. doc(x)
Distribution of the sample of girls in relation to meeting the recommendations for physical activity, and highest tertile of time in physical activity (most active) and lowest tertile of time in sedentary behavior (least sedentary) $(\mathrm{n}=3,196)$.

Supplemental Digital Content 1. Descriptive characteristics of children who were excluded for 601 missing data and of children who participated in the present analysis.

	Male ($\mathrm{n}=3,422$)		
	Children who were excluded for missing data $(\mathrm{n}=744)$	Children who were included in the present analysis $(n=2,678)$	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$
$\begin{aligned} & \text { Age - years (Mean, } \\ & \text { S.D.) } \end{aligned}$	10.4 (0.6)	10.5 (0.5)	0.95*
Level of parental education (\%)			
Less high school	9.8	11.4	$0.523 \dagger$
Some high school	10.5	8.1	
Completed high school	22.6	23.3	
Some college	21.2	19.7	
Bachelor's degree	17.7	18.2	
Post-graduate degree	18.2	19.3	
Countries (\%)			
High-income	49.9	45.0	$0.06 \dagger$
Low- and middleincome	50.1	55.0	
Participation frequency in Physical			
Education classes/week (\%)			
0	6.3	6.5	$0.80 \dagger$
1-2	68.5	69.7	
≥ 3	25.2	23.8	
BMI z-score (WHO)			
Severe thinness	0.4	0.1	$0.12 \dagger$
Thinness	1.5	1.5	
Normal	60.1	64.2	
Overweight	23.4	19.1	
Obesity	14.5	15.1	

Female ($\mathrm{n}=3,950$)
Children who were excluded Children who were included in for missing data the present analysis

S.D.: standard deviation; BMI: body mass index; WHO: World Health Organization; * Student's ttest; \dagger Chi-squared test.

Supplemental Digital Content 2. Descriptive characteristics of boys in the present study ($\mathrm{n}=2,678$).

Country (site)	$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$	MVPA	VPA	MPA	LPA	TPA	SB	$\begin{gathered} \hline \text { MVPA } \\ \text { out of } \\ \text { school* } \end{gathered}$	$\begin{gathered} \text { MVPA } \\ \text { in } \\ \text { school* } \end{gathered}$	MVPA on weekends	SB out of school*	SB in school*	$\begin{gathered} \text { SB on } \\ \text { weekends } \end{gathered}$
	$\begin{aligned} & \text { Mean } \\ & \text { (S.D.) } \end{aligned}$	$\begin{aligned} & \hline \text { Mean } \\ & \text { (S.D.) } \end{aligned}$	Mean (S.D.)	$\begin{aligned} & \text { Mean } \\ & \text { (S.D.) } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { (S.D.) } \end{aligned}$	$\begin{aligned} & \hline \text { Mean } \\ & \text { (S.D.) } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { (S.D.) } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { (S.D.) } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { (S.D.) } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { (S.D.) } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { (S.D.) } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { (S.D.) } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { (S.D.) } \end{aligned}$
All sites	$\begin{aligned} & \hline 10.5 \\ & (0.5) \end{aligned}$	$\begin{gathered} \hline 69.8 \\ (25.8) \end{gathered}$	$\begin{gathered} 21.7 \\ (12.2) \end{gathered}$	$\begin{gathered} \hline 48.1 \\ (15.9) \end{gathered}$	$\begin{aligned} & 319.6 \\ & (51.5) \end{aligned}$	$\begin{aligned} & 389.4 \\ & (63.6) \end{aligned}$	$\begin{aligned} & 503.9 \\ & (69.9) \end{aligned}$	$\begin{gathered} 40.7 \\ (20.8) \end{gathered}$	$\begin{gathered} \hline 31.2 \\ (14.9) \end{gathered}$	$\begin{gathered} \hline 64.1 \\ (34.9) \end{gathered}$	$\begin{aligned} & 290.8 \\ & (69.1) \end{aligned}$	$\begin{aligned} & \hline 223.4 \\ & (60.8) \end{aligned}$	$\begin{aligned} & 488.7 \\ & (96.6) \end{aligned}$
HIC	$\begin{aligned} & 10.5 \\ & (0.5) \end{aligned}$	$\begin{gathered} 70.7 \\ (24.2) \end{gathered}$	$\begin{gathered} 23.4 \\ (12.7) \end{gathered}$	$\begin{gathered} 47.3 \\ (13.9) \end{gathered}$	$\begin{aligned} & 305.6 \\ & (47.5) \end{aligned}$	$\begin{aligned} & 376.3 \\ & (57.8) \end{aligned}$	$\begin{aligned} & 509.1 \\ & (68.6) \end{aligned}$	$\begin{gathered} 40.3 \\ (18.5) \end{gathered}$	$\begin{gathered} 33.2 \\ (13.6) \end{gathered}$	$\begin{gathered} 61.9 \\ (33.2) \end{gathered}$	$\begin{aligned} & 303.1 \\ & (63.5) \end{aligned}$	$\begin{aligned} & 211.6 \\ & (46.5) \end{aligned}$	$\begin{aligned} & 507.6 \\ & (97.3) \end{aligned}$
Australia (Adelaide)	$\begin{aligned} & 10.8 \\ & (0.4) \end{aligned}$	$\begin{gathered} 74.9 \\ (23.7) \end{gathered}$	$\begin{gathered} 26.7 \\ (12.6) \end{gathered}$	$\begin{gathered} 48.2 \\ (13.1) \end{gathered}$	$\begin{aligned} & 313.2 \\ & (48.5) \end{aligned}$	$\begin{aligned} & 388.1 \\ & (58.8) \end{aligned}$	$\begin{aligned} & 470.9 \\ & (63.9) \end{aligned}$	$\begin{gathered} 38.6 \\ (15.1) \end{gathered}$	$\begin{gathered} 41.2 \\ (13.6) \end{gathered}$	$\begin{gathered} 62.0 \\ (32.6) \end{gathered}$	$\begin{aligned} & 270.7 \\ & (48.1) \end{aligned}$	$\begin{aligned} & 197.6 \\ & (28.9) \end{aligned}$	$\begin{aligned} & 487.9 \\ & (96.2) \end{aligned}$
Canada (Ottawa)	$\begin{gathered} 10.5 \\ (0.3) \end{gathered}$	$\begin{gathered} 67.1 \\ (19.4) \end{gathered}$	$\begin{gathered} 19.5 \\ (10.0) \end{gathered}$	$\begin{gathered} 47.6 \\ (11.7) \end{gathered}$	$\begin{aligned} & 310.0 \\ & (43.6) \end{aligned}$	$\begin{aligned} & 377.1 \\ & (51.9) \end{aligned}$	$\begin{gathered} 507.0 \\ (65.9) \end{gathered}$	$\begin{gathered} 37.5 \\ (14.8) \end{gathered}$	$\begin{aligned} & 34.5 \\ & (9.4) \end{aligned}$	$\begin{gathered} 54.7 \\ (25.8 \end{gathered}$	$\begin{aligned} & 297.7 \\ & (53.6) \end{aligned}$	$\begin{aligned} & 203.8 \\ & (26.8) \end{aligned}$	$\begin{aligned} & 524.3 \\ & (89.3) \end{aligned}$
Finland (Helsinki, Espoo and Vantaa)	$\begin{aligned} & 10.5 \\ & (0.4) \end{aligned}$	$\begin{gathered} 81.6 \\ (27.9) \end{gathered}$	$\begin{gathered} 27.8 \\ (15.5) \end{gathered}$	$\begin{gathered} 53.8 \\ (15.6) \end{gathered}$	$\begin{aligned} & 298.6 \\ & (42.8) \end{aligned}$	$\begin{aligned} & 380.2 \\ & (58.0) \end{aligned}$	$\begin{aligned} & 524.1 \\ & (70.6) \end{aligned}$	$\begin{gathered} 54.0 \\ (24.1) \end{gathered}$	$\begin{gathered} 31.6 \\ (13.2) \end{gathered}$	$\begin{gathered} 72.0 \\ (38.8) \end{gathered}$	$\begin{aligned} & 374.1 \\ & (70.2) \end{aligned}$	$\begin{aligned} & 154.2 \\ & (37.5) \end{aligned}$	$\begin{aligned} & 519.5 \\ & (97.0) \end{aligned}$
Portugal (Porto)	$\begin{aligned} & 10.5 \\ & (0.2) \end{aligned}$	$\begin{gathered} 68.1 \\ (23.0) \end{gathered}$	$\begin{gathered} 21.8 \\ (11.5) \end{gathered}$	$\begin{gathered} 46.3 \\ (13.7) \end{gathered}$	$\begin{aligned} & 306.2 \\ & (48.6) \end{aligned}$	$\begin{aligned} & 374.3 \\ & (58.3) \end{aligned}$	$\begin{aligned} & 538.3 \\ & (65.1) \end{aligned}$	$\begin{gathered} 36.5 \\ (16.0) \end{gathered}$	$\begin{gathered} 36.3 \\ (13.5) \end{gathered}$	$\begin{gathered} 53.3 \\ (29.5) \end{gathered}$	$\begin{aligned} & 308.5 \\ & (51.6) \end{aligned}$	$\begin{aligned} & 233.6 \\ & (33.8) \end{aligned}$	$\begin{aligned} & 543.0 \\ & (90.0) \end{aligned}$
UK (Bath and North East Somerset)	$\begin{gathered} 10.9 \\ (0.4) \end{gathered}$	$\begin{gathered} 73.9 \\ (23.9) \end{gathered}$	$\begin{gathered} 26.0 \\ (12.5) \end{gathered}$	$\begin{gathered} 47.9 \\ (13.7) \end{gathered}$	$\begin{aligned} & 285.5 \\ & (43.7) \end{aligned}$	$\begin{aligned} & 359.4 \\ & (55.8) \end{aligned}$	$\begin{aligned} & 493.4 \\ & (61.2) \end{aligned}$	$\begin{gathered} 42.3 \\ (18.5) \end{gathered}$	$\begin{gathered} 33.9 \\ (10.9) \end{gathered}$	$\begin{gathered} 65.0 \\ (33.7) \end{gathered}$	$\begin{aligned} & 291.7 \\ & (45.2) \end{aligned}$	$\begin{aligned} & 213.1 \\ & (31.4) \end{aligned}$	$\begin{aligned} & 500.3 \\ & (88.9) \end{aligned}$
USA (Baton Rouge)	$\begin{aligned} & 10.0 \\ & (0.6) \end{aligned}$	$\begin{gathered} 58.1 \\ (19.9) \end{gathered}$	$\begin{gathered} 18.4 \\ (10.1) \end{gathered}$	$\begin{gathered} 39.7 \\ (11.4) \end{gathered}$	$\begin{aligned} & 318.3 \\ & (50.7) \end{aligned}$	$\begin{aligned} & 376.4 \\ & (60.5) \end{aligned}$	$\begin{aligned} & 512.3 \\ & (62.1) \end{aligned}$	$\begin{gathered} 34.1 \\ (13.5) \end{gathered}$	$\begin{aligned} & 19.8 \\ & (9.8) \end{aligned}$	$\begin{gathered} 67.9 \\ (34.2) \end{gathered}$	$\begin{aligned} & 270.0 \\ & (47.1) \end{aligned}$	$\begin{aligned} & 265.6 \\ & (34.0) \end{aligned}$	$\begin{aligned} & 454.1 \\ & (97.5) \end{aligned}$
LMIC	$\begin{aligned} & 10.3 \\ & (0.6) \end{aligned}$	$\begin{gathered} 69.0 \\ (26.9) \end{gathered}$	$\begin{gathered} 20.2 \\ (11.5) \end{gathered}$	$\begin{gathered} 48.8 \\ (17.5) \end{gathered}$	$\begin{aligned} & 331.4 \\ & (51.7) \end{aligned}$	$\begin{aligned} & 400.4 \\ & (66.2) \end{aligned}$	$\begin{aligned} & 499.5 \\ & (70.8) \end{aligned}$	$\begin{gathered} 40.9 \\ (22.4) \end{gathered}$	$\begin{gathered} 29.5 \\ (15.7) \end{gathered}$	$\begin{gathered} 65.9 \\ (36.2) \end{gathered}$	$\begin{aligned} & 280.2 \\ & (71.7) \end{aligned}$	$\begin{aligned} & 233.2 \\ & (69.1) \end{aligned}$	$\begin{aligned} & 472.7 \\ & (92.9) \end{aligned}$
Brazil (Sao Paulo)	$\begin{aligned} & 10.5 \\ & (0.5) \end{aligned}$	$\begin{gathered} 71.4 \\ (27.9) \end{gathered}$	$\begin{gathered} 22.6 \\ (13.0 \end{gathered}$	$\begin{gathered} 48.8 \\ (16.9) \end{gathered}$	$\begin{aligned} & 342.3 \\ & (52.4) \end{aligned}$	$\begin{aligned} & 413.7 \\ & (67.8) \end{aligned}$	$\begin{aligned} & 491.4 \\ & (70.1) \end{aligned}$	$\begin{gathered} 42.2 \\ (24.2) \end{gathered}$	$\begin{gathered} 31.3 \\ (21.4) \end{gathered}$	$\begin{gathered} 65.7 \\ (40.2) \end{gathered}$	$\begin{gathered} 303.9 \\ (88.2) \end{gathered}$	$\begin{aligned} & 194.9 \\ & (66.1) \end{aligned}$	$\begin{gathered} 482.7 \\ (101.3) \end{gathered}$

China (Tianjin)	9.9	49.5	14.1	35.4	304.6	354.1	551.6	24.2	26.0	45.2	277.0	297.4	514.2
	(0.5)	(16.2)	(7.2)	(10.7)	(51.3)	(59.2)	(64.9)	(10.8)	(11.2)	(22.2)	(42.2)	(43.3)	(80.4)
Colombia (Bogotá)	10.5	76.3	21.4	54.9	336.7	413.0	491.4	50.0	29.3	69.1	323.6	180.8	467.4
	(0.6)	(25.8)	(11.1)	(17.3)	(48.0)	(63.3)	(66.9)	(23.6)	(14.7)	(34.9)	(63.9)	(50.6)	(88.0)
India (Bangalore)	10.5	61.5	16.8	44.7	348.4	409.9	490.3	33.0	28.9	61.4	272.8	225.1	473.8
	(0.5)	(10.7)	(8.4)	(13.9)	(49.0)	(58.2)	(61.0)	(14.8)	(10.4)	(31.7)	(45.1)	(32.5)	(83.5)
Kenya (Nairob)	10.2	80.5	25.8	54.7	330.0	410.5	486.4	38.6	40.5	83.8	202.3	306.6	446.8
	(0.7)	(30.5)	(13.9)	(19.1)	(48.5)	(62.9)	(69.3)	(18.9)	(17.6)	(40.9)	(53.7)	(55.1)	(95.3)
South Africa (Cape Town)	10.4	72.8	21.2	51.6	321.6	394.4	481.2	54.9	20.2	71.5	256.5	239.9	444.3
	(0.7)	(25.9)	(10.5)	(17.0)	(51.5)	(66.2)	(70.4)	(22.6)	(8.8)	(34.7)	(52.4)	(34.6)	(95.8)

HIC: High income countries; LMIC: Low- and middle-income countries; MVPA: moderate to vigorous physical activity; VPA: vigorous physical activity; MPA: moderate physical activity; LPA: light physical activity; TPA: total physical activity; SB: sedentary behavior; *week days (from Monday to Friday).

Supplemental Digital Content 3. Descriptive characteristics of girls in the present study ($\mathrm{n}=3,196$).

Country (site)	$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$	MVPA	VPA	MPA	LPA	TPA	SB	MVPA out of school*	$\begin{gathered} \text { MVPA } \\ \text { in } \\ \text { school* } \end{gathered}$	$\begin{gathered} \hline \text { MVPA } \\ \text { on } \\ \text { weekends } \end{gathered}$	$\begin{gathered} \hline \text { SB out } \\ \text { of } \\ \text { school* } \end{gathered}$	SB in school*	$\begin{gathered} \text { SB on } \\ \text { weekends } \end{gathered}$
	$\begin{aligned} & \hline \text { Mean } \\ & \text { (S.D.) } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { (S.D.) } \end{aligned}$	Mean (S.D.)	$\begin{aligned} & \text { Mean } \\ & \text { (S.D.) } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { (S.D.) } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { (S.D.) } \end{aligned}$	Mean (S.D.)	$\begin{aligned} & \hline \text { Mean } \\ & \text { (S.D.) } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { (S.D.) } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { (S.D.) } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { (S.D.) } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { (S.D.) } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { (S.D.) } \end{aligned}$
All sites	$\begin{aligned} & \hline 10.4 \\ & (0.5) \end{aligned}$	$\begin{gathered} 52.3 \\ (20.8) \end{gathered}$	$\begin{aligned} & \hline 14.8 \\ & (8.9) \end{aligned}$	$\begin{gathered} 37.5 \\ (13.6) \end{gathered}$	$\begin{aligned} & \hline 311.1 \\ & (53.2) \end{aligned}$	$\begin{aligned} & \hline 363.4 \\ & (62.9) \end{aligned}$	$\begin{aligned} & \hline 521.3 \\ & (67.4) \end{aligned}$	$\begin{gathered} 32.9 \\ (17.4) \end{gathered}$	$\begin{gathered} 21.2 \\ (10.4) \end{gathered}$	$\begin{gathered} 48.5 \\ (27.5) \end{gathered}$	$\begin{aligned} & 294.8 \\ & (66.3) \end{aligned}$	$\begin{aligned} & 241.7 \\ & (59.7) \end{aligned}$	$\begin{aligned} & 489.3 \\ & (89.6) \end{aligned}$
HIC	$\begin{aligned} & 10.5 \\ & (0.5) \end{aligned}$	$\begin{gathered} 52.6 \\ (18.4) \end{gathered}$	$\begin{aligned} & 15.7 \\ & (8.8) \end{aligned}$	$\begin{gathered} 36.9 \\ (11.3) \end{gathered}$	$\begin{aligned} & 299.1 \\ & (48.5) \end{aligned}$	$\begin{aligned} & 351.7 \\ & (56.8) \end{aligned}$	$\begin{aligned} & 521.8 \\ & (64.7) \end{aligned}$	$\begin{gathered} 31.7 \\ (14.7) \end{gathered}$	$\begin{aligned} & 23.2 \\ & (9.6) \end{aligned}$	$\begin{gathered} 46.3 \\ (24.4) \end{gathered}$	$\begin{aligned} & 301.2 \\ & (59.4) \end{aligned}$	$\begin{aligned} & 233.6 \\ & (45.8) \end{aligned}$	$\begin{aligned} & 502.1 \\ & (88.0) \end{aligned}$
Australia (Adelaide)	$\begin{aligned} & 10.7 \\ & (0.4) \end{aligned}$	$\begin{gathered} 56.9 \\ (19.1) \end{gathered}$	$\begin{aligned} & 18.9 \\ & (9.7) \end{aligned}$	$\begin{gathered} 38.0 \\ (10.8) \end{gathered}$	$\begin{aligned} & 307.5 \\ & (47.1) \end{aligned}$	$\begin{aligned} & 364.4 \\ & (57.5) \end{aligned}$	$\begin{aligned} & 481.7 \\ & (56.0) \end{aligned}$	$\begin{gathered} 31.4 \\ (13.3) \end{gathered}$	$\begin{aligned} & 28.6 \\ & (9.9) \end{aligned}$	$\begin{gathered} 49.8 \\ (26.8) \end{gathered}$	$\begin{aligned} & 269.4 \\ & (43.4) \end{aligned}$	$\begin{aligned} & 221.7 \\ & (30.3) \end{aligned}$	$\begin{aligned} & 466.2 \\ & (80.8) \end{aligned}$
Canada (Ottawa)	$\begin{aligned} & 10.5 \\ & (0.4) \end{aligned}$	$\begin{gathered} 52.7 \\ (16.9) \end{gathered}$	$\begin{aligned} & 14.9 \\ & (7.6) \end{aligned}$	$\begin{gathered} 37.8 \\ (10.7) \end{gathered}$	$\begin{aligned} & 300.9 \\ & (45.4) \end{aligned}$	$\begin{aligned} & 353.6 \\ & (54.3) \end{aligned}$	$\begin{aligned} & 514.8 \\ & (60.6) \end{aligned}$	$\begin{gathered} 28.6 \\ (12.3) \end{gathered}$	$\begin{aligned} & 26.1 \\ & (8.8) \end{aligned}$	$\begin{gathered} 46.3 \\ (22.3) \end{gathered}$	$\begin{aligned} & 294.6 \\ & (46.2) \end{aligned}$	$\begin{aligned} & 223.0 \\ & (29.3) \end{aligned}$	$\begin{aligned} & 513.2 \\ & (84.2) \end{aligned}$
Finland (Helsinki, Espoo and Vantaa)	$\begin{aligned} & 10.5 \\ & (0.4) \end{aligned}$	$\begin{gathered} 61.5 \\ (20.5) \end{gathered}$	$\begin{gathered} 19.2 \\ (10.7) \end{gathered}$	$\begin{gathered} 42.3 \\ (12.5) \end{gathered}$	$\begin{aligned} & 288.8 \\ & (44.0) \end{aligned}$	$\begin{aligned} & 350.4 \\ & (55.1) \end{aligned}$	$\begin{aligned} & 533.1 \\ & (63.6) \end{aligned}$	$\begin{gathered} 43.9 \\ (18.5) \end{gathered}$	$\begin{aligned} & 21.9 \\ & (8.7) \end{aligned}$	$\begin{gathered} 50.5 \\ (26.8) \end{gathered}$	$\begin{gathered} 373.4 \\ (64.0) \end{gathered}$	$\begin{aligned} & 172.2 \\ & (37.8) \end{aligned}$	$\begin{aligned} & 523.5 \\ & (83.9) \end{aligned}$
Portugal (Porto)	$\begin{aligned} & 10.4 \\ & (0.3) \end{aligned}$	$\begin{gathered} 46.7 \\ (15.1) \end{gathered}$	$\begin{aligned} & 13.0 \\ & (6.5) \end{aligned}$	$\begin{gathered} 33.7 \\ (10.0) \end{gathered}$	$\begin{aligned} & 298.4 \\ & (50.8) \end{aligned}$	$\begin{aligned} & 345.1 \\ & (57.6) \end{aligned}$	$\begin{aligned} & 563.4 \\ & (56.1) \end{aligned}$	$\begin{gathered} 26.4 \\ (11.3) \end{gathered}$	$\begin{aligned} & 24.1 \\ & (9.0) \end{aligned}$	$\begin{gathered} 37.6 \\ (20.0) \end{gathered}$	$\begin{aligned} & 313.5 \\ & (46.3) \end{aligned}$	$\begin{aligned} & 259.3 \\ & (31.0) \end{aligned}$	$\begin{aligned} & 543.7 \\ & (78.7) \end{aligned}$
UK (Bath and North East Somerset)	$\begin{aligned} & 10.9 \\ & (0.4) \end{aligned}$	$\begin{gathered} 56.7 \\ (17.8) \end{gathered}$	$\begin{aligned} & 16.9 \\ & (8.7) \end{aligned}$	$\begin{gathered} 39.7 \\ (11.0) \end{gathered}$	$\begin{aligned} & 286.6 \\ & (46.9) \end{aligned}$	$\begin{aligned} & 343.3 \\ & (54.9) \end{aligned}$	$\begin{aligned} & 496.7 \\ & (56.9) \end{aligned}$	$\begin{gathered} 35.8 \\ (14.0) \end{gathered}$	$\begin{aligned} & 22.9 \\ & (8.7) \end{aligned}$	$\begin{gathered} 50.4 \\ (25.1) \end{gathered}$	$\begin{aligned} & 279.1 \\ & (43.3) \end{aligned}$	$\begin{aligned} & 232.0 \\ & (28.0) \end{aligned}$	$\begin{aligned} & 477.9 \\ & (83.4) \end{aligned}$
USA (Baton Rouge)	$\begin{gathered} 9.9 \\ (0.5) \end{gathered}$	$\begin{gathered} 44.1 \\ (15.7) \end{gathered}$	$\begin{aligned} & 12.8 \\ & (7.7) \end{aligned}$	$\begin{aligned} & 31.3 \\ & (9.4) \end{aligned}$	$\begin{aligned} & 310.5 \\ & (50.9) \end{aligned}$	$\begin{aligned} & 354.6 \\ & (58.8) \end{aligned}$	$\begin{aligned} & 526.1 \\ & (60.2) \end{aligned}$	$\begin{gathered} 27.4 \\ (11.6) \end{gathered}$	$\begin{aligned} & 15.5 \\ & (7.3) \end{aligned}$	$\begin{gathered} 47.8 \\ (23.7) \end{gathered}$	$\begin{gathered} 272.4 \\ (45.7) \end{gathered}$	$\begin{gathered} 279.4 \\ (32.8) \end{gathered}$	$\begin{aligned} & 467.2 \\ & (85.5) \end{aligned}$
LMIC	$\begin{gathered} 10.3 \\ (0.6) \end{gathered}$	$\begin{gathered} 52.1 \\ (22.9) \end{gathered}$	$\begin{aligned} & 13.9 \\ & (8.9) \end{aligned}$	$\begin{gathered} 38.2 \\ (15.6) \end{gathered}$	$\begin{aligned} & 322.8 \\ & (55.2) \end{aligned}$	$\begin{aligned} & 374.9 \\ & (66.4) \end{aligned}$	$\begin{aligned} & 520.6 \\ & (70.0) \end{aligned}$	$\begin{gathered} 34.0 \\ (19.5) \end{gathered}$	$\begin{gathered} 19.3 \\ (10.8) \end{gathered}$	$\begin{gathered} 50.5 \\ (30.0) \end{gathered}$	$\begin{aligned} & 288.5 \\ & (71.8) \end{aligned}$	$\begin{aligned} & 249.6 \\ & (69.8) \end{aligned}$	$\begin{aligned} & 476.7 \\ & (89.5) \end{aligned}$
Brazil (Sao Paulo)	$\begin{aligned} & 10.4 \\ & (0.5) \end{aligned}$	$\begin{gathered} 47.8 \\ (18.3) \end{gathered}$	$\begin{aligned} & 12.9 \\ & (6.4) \end{aligned}$	$\begin{gathered} 34.9 \\ (13.1) \end{gathered}$	$\begin{aligned} & 333.7 \\ & (53.6) \end{aligned}$	$\begin{aligned} & 381.5 \\ & (64.2) \end{aligned}$	$\begin{aligned} & 509.3 \\ & (65.7) \end{aligned}$	$\begin{gathered} 31.1 \\ (16.7) \end{gathered}$	$\begin{gathered} 18.6 \\ (13.1) \end{gathered}$	$\begin{gathered} 43.7 \\ (24.2) \end{gathered}$	$\begin{gathered} 324.4 \\ (80.7) \end{gathered}$	$\begin{aligned} & 194.0 \\ & (70.2) \end{aligned}$	$\begin{aligned} & 482.3 \\ & (93.4) \end{aligned}$

China (Tianjin)	9.9	40.5	11.0	29.5	281.2	321.7	578.8	19.2	22.0	37.5	283.0	320.0	530.5
	(0.5)	(14.1)	(5.6)	(9.3)	(53.3)	(61.2)	(68.0)	(8.8)	(10.8)	(19.8)	(42.4)	(39.6)	(84.5)
Colombia (Bogotá)	10.4	60.1	14.5	45.6	329.4	389.5	508.6	43.6	18.8	55.0	334.4	193.6	464.7
	(0.6)	(20.8)	(7.8)	(14.9)	(50.5)	(61.0)	(66.3)	(19.6)	(8.3)	(27.8)	(62.9)	(45.5)	(82.8)
India (Bangalore)	10.4	37.9	9.3	28.6	333.1	371.0	538.7	23.6	15.5	35.9	297.7	259.0	497.8
	(0.5)	(13.5)	(5.1)	(9.2)	(50.6)	(57.3)	(62.2)	(11.0)	(6.2)	(17.4)	(47.3)	(35.5)	(82.8)
Kenya (Nairob)	10.2	63.8	19.6	44.2	329.8	393.6	501.9	35.6	28.0	67.3	200.7	321.3	460.4
	(0.6)	(29.9)	(13.0)	(18.7)	(54.4)	(66.3)	(61.9)	(22.0)	(13.8)	(39.0)	(46.6)	(55.1)	(86.6)
South Africa (Cape Town)	10.2	57.3	15.7	41.6	321.3	378.6	494.3	43.8	14.9	60.5	261.6	251.3	438.7
	(0.6)	(23.1)	(9.7)	(15.4)	(54.3)	(66.5)	(62.9)	(19.1)	(7.0)	(32.7)	(46.7)	(31.9)	(82.6)

HIC: High income countries; LMIC: Low- and middle-income countries; MVPA: moderate to vigorous physical activity; VPA: vigorous physical activity; MPA: moderate physical activity; LPA: light physical activity; TPA: total physical activity; SB: sedentary behavior; *week days (from Monday to Friday).

Female
$■ 0$ PE classes/w eek : 1-2 PE classes/week $\quad>=3$ PE classes/w eek

617 Supplemental Digital Content 6. Distribution of the sample of boys in relation to meeting the recommendations for physical activity, and highest tertile of time in physical
618 activity (most active) and lowest tertile of time in sedentary behavior (least sedentary) ($n=2,678$).

Country (site)	Meeting the MVPA recommendations	MVPA	VPA	MPA	LPA	TPA	SB	MVPA out of school	$\begin{gathered} \text { MVPA } \\ \text { in } \\ \text { school } \end{gathered}$	$\begin{gathered} \hline \text { MVPA } \\ \text { on } \\ \text { weekends } \end{gathered}$	$\begin{gathered} \hline \text { SB } \\ \text { out of } \\ \text { school } \end{gathered}$	SB in school	SB on weekends
		$\begin{gathered} 3^{\text {rd }} \\ \text { tertile } \end{gathered}$	$\begin{gathered} 3^{\text {rd }} \\ \text { tertile } \end{gathered}$	$\begin{gathered} 3^{\text {rd }} \\ \text { tertile } \end{gathered}$	$\begin{gathered} 3^{\text {rd }} \\ \text { tertile } \end{gathered}$	$\begin{gathered} 3^{\text {rd }} \\ \text { tertile } \end{gathered}$	$\begin{gathered} 1^{\text {st }} \\ \text { tertile } \end{gathered}$	$\begin{gathered} 3^{\text {rd }} \\ \text { tertile } \end{gathered}$	$\begin{gathered} 3^{\text {rd }} \\ \text { tertile } \end{gathered}$	$\begin{gathered} 3^{\text {rd }} \\ \text { tertile } \end{gathered}$	$\begin{gathered} \mathbf{1}^{\text {st }} \\ \text { tertile } \end{gathered}$	$\begin{gathered} 1^{\text {st }} \\ \text { tertile } \end{gathered}$	$\begin{gathered} \mathbf{1}^{\text {st }} \\ \text { tertile } \end{gathered}$
	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%
All sites	61.2	33.3	33.3	33.3	33.3	33.3	33.3	33.3	33.3	33.3	33.3	33.3	33.3
HIC	64.7	33.0	38.4	30.4	22.5	24.5	29.3	31.3	40.5	31.3	23.6	35.4	25.1
Australia (Adelaide)	73.2	39.1	51.4	34.5	26.8	32.3	48.6	32.5	62.7	33.0	41.1	46.9	34.4
Canada (Ottawa)	60.1	27.2	24.4	31.5	24.9	23.9	30.5	25.4	46.9	20.1	23.0	33.0	18.7
Finland (Helsinki, Espoo and	78.4	50.5	52.3	46.8	15.6	26.6	24.3	58.4	33.5	42.1	4.3	85.6	21.1
Vantaa)													
Portugal (Porto)	61.0	29.0	32.7	26.4	24.5	23.0	14.5	24.5	48.9	23.7	13.5	15.3	10.6
UK (Bath and North East	71.1	37.4	47.1	29.4	10.7	16.0	39.0	30.9	37.6	37.6	22.7	32.0	26.0
Somerset)													
USA (Baton Rouge)	43.6	14.4	23.1	12.8	31.3	24.1	22.6	16.8	7.9	35.1	41.4	2.6	46.6
LMIC	58.2	33.5	29.4	35.9	42.9	40.8	36.6	35.2	27.3	35.1	38.6	31.2	37.3
Brazil (Sao Paulo)	64.8	36.5	39.7	36.5	48.4	42.5	39.3	39.7	36.3	34.2	34.2	59.0	35.9
China (Tianjin)	23.3	6.2	8.9	6.2	21.7	13.6	10.5	3.7	17.8	10.0	32.8	0.8	16.2
Colombia (Bogotá)	72.0	46.2	34.4	52.1	48.1	51.2	41.9	53.3	24.3	41.4	14.9	66.3	38.0
India (Bangalore)	47.8	19.7	16.1	24.1	57.0	45.8	35.7	20.3	22.0	28.6	36.1	16.2	34.0
Kenya (Nairob)	71.2	47.2	44.2	44.6	41.2	47.2	45.1	24.9	58.9	52.6	87.1	3.3	53.1
South Africa (Cape Town)	66.7	41.5	34.6	45.9	35.8	37.7	49.7	62.9	5.1	44.4	52.8	9.6	51.7

HIC: High income countries; LMIC: Low- and middle-income countries; PE: physical education; MVPA: moderate-to-vigorous physical activity; VPA: vigorous physical

622 Supplemental Digital Content 7. Distribution of the sample of girls in relation to meeting the recommendations for physical activity, and highest tertile of time in physical
623 activity (most active) and lowest tertile of time in sedentary behavior (least sedentary) ($\mathrm{n}=3,196$).

Country (site)	Meeting the MVPA recommendations	MVPA	VPA	MPA	LPA	TPA	SB	$\begin{gathered} \hline \text { MVPA } \\ \text { out of } \\ \text { school } \end{gathered}$	$\begin{gathered} \hline \text { MVPA } \\ \text { in } \\ \text { school } \end{gathered}$	$\begin{gathered} \hline \text { MVPA } \\ \text { on } \\ \text { weekends } \end{gathered}$	$\begin{gathered} \hline \text { SB } \\ \text { out of } \\ \text { school } \end{gathered}$	SB in school	$\begin{gathered} \text { SB on } \\ \text { weekends } \end{gathered}$
		$\begin{gathered} 3^{\text {rd }} \\ \text { tertile } \end{gathered}$	$\begin{gathered} 3^{\text {rd }} \\ \text { tertile } \end{gathered}$	$\begin{gathered} 3^{\text {rd }} \\ \text { tertile } \end{gathered}$	$\begin{gathered} 3^{\text {rd }} \\ \text { tertile } \end{gathered}$	$\begin{gathered} 3^{\text {rd }} \\ \text { tertile } \end{gathered}$	$\begin{gathered} 1^{\text {st }} \\ \text { tertile } \end{gathered}$	$\begin{gathered} 3^{\mathrm{rd}} \\ \text { tertile } \end{gathered}$	$\begin{gathered} 3^{\text {rd }} \\ \text { tertile } \end{gathered}$	$\begin{gathered} 3^{\text {rd }} \\ \text { tertile } \end{gathered}$	$\begin{gathered} \mathbf{1}^{\text {st }} \\ \text { tertile } \end{gathered}$	$\begin{gathered} 1^{\text {st }} \\ \text { tertile } \end{gathered}$	$\begin{gathered} 1^{\text {st }} \\ \text { tertile } \end{gathered}$
	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%
All sites	30.4	33.3	33.3	33.3	33.3	33.3	33.3	33.3	33.3	33.3	33.3	33.3	33.3
HIC	30.7	33.6	37.8	30.5	23.6	25.0	32.9	29.9	42.2	30.8	27.8	32.7	27.2
Australia (Adelaide)	39.9	42.2	52.3	32.9	28.3	30.6	55.8	28.4	63.8	32.5	46.5	39.9	42.4
Canada (Ottawa)	31.6	35.5	34.2	34.5	25.0	25.3	34.9	21.1	53.5	30.8	26.4	37.5	19.4
Finland (Helsinki, Espoo and	51.2	53.2	53.6	46.8	12.7	23.0	24.2	60.5	37.9	41.1	1.6	87.4	19.4
Vantaa)													
Portugal (Porto)	16.5	19.1	25.1	18.2	23.9	23.1	10.8	15.1	43.8	16.4	14.0	10.4	11.5
UK (Bath and North East	38.3	42.8	43.2	42.4	16.5	21.0	47.7	45.7	41.9	35.5	38.5	29.5	35.5
Somerset)													
USA (Baton Rouge)	14.3	16.1	25.4	13.9	33.6	27.1	27.5	18.7	12.5	34.8	46.5	2.9	43.6
LMIC	30.0	32.6	28.7	35.6	42.9	41.2	34.3	36.6	24.7	35.7	36.0	34.0	37.2
Brazil (Sao Paulo)	25.0	28.1	27.2	30.7	49.6	44.3	36.4	30.5	24.0	29.7	23.6	72.8	35.4
China (Tianjin)	8.0	10.1	17.2	10.1	16.4	14.3	8.4	3.1	30.4	17.2	28.2	0.9	15.0
Colombia (Bogotá)	47.2	50.5	33.4	59.2	48.4	49.5	40.6	61.6	21.5	46.1	12.6	76.1	41.5
India (Bangalore)	5.7	6.4	9.1	8.1	47.8	36.7	21.5	10.7	8.6	13.1	22.0	11.0	27.8
Kenya (Nairob)	45.1	47.4	48.1	47.0	47.4	54.1	44.0	36.7	57.4	54.2	91.2	3.2	46.6
South Africa (Cape Town)	38.4	43.0	35.5	44.2	41.7	41.3	46.7	59.0	12.9	47.8	53.6	15.1	51.8

HIC: High income countries; LMIC: Low- and middle-income countries; PE: physical education; MVPA: moderate-to-vigorous physical activity; VPA: vigorous physical activity; MPA: moderate physical activity; LPA: light physical activity; TPA: total physical activity; SB: sedentary behavior.

