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MAX-PLUS ALGEBRAIC STATISTICAL LEVERAGE SCORES∗

JAMES HOOK†

Abstract. The statistical leverage scores of a matrix A ∈ Rn×d record the degree of alignment
between col(A) and the coordinate axes in Rn. These scores are used in random sampling algorithms
for solving certain numerical linear algebra problems. In this paper we present a max-plus algebraic
analogue of statistical leverage scores. We show that max-plus statistical leverage scores can be
used to calculate the exact asymptotic behavior of the conventional statistical leverage scores of a
generic radial basis function network (RBFN) matrix. We also show how max-plus statistical leverage
scores can provide a novel way to approximate the conventional statistical leverage scores of a fixed,
nonparametrized matrix.
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1. Introduction. The statistical leverage scores of A ∈ Rn×d are the vector
p(A) ∈ Rn, with

(1) pi(A) =
(

max
x∈Rn

|(Ax)i|
‖Ax‖2

)2

for i = 1, . . . , n.

The ith statistical leverage score of A is equal to the square of the cosine of the angle
between col(A) and the unit vector ei. To calculate p(A) we take a decomposition
that provides an orthogonal basis for col(A). For example, suppose that A has rank
k; then if we take the QR decomposition, we obtain A = QR, with Q ∈ Rn×k and

(2) pi(A) = ‖Qi·‖22 for i = 1, . . . , n,

where Qi· denotes the ith row of Q. Note that
∑n
i=1 pi(A)/k = 1, so that the vector

p(A)/k ∈ Rn is a probability distribution on {1, . . . , n}.
Statistical leverage score distributions are used in random sampling algorithms

for solving certain numerical linear algebra problems [7, 8, 12, 17, 20]. For example,
Algorithm 1 approximates the least squares solution x∗ = arg minx∈Rd ‖Ax− y‖2 by
examining a randomly selected sample of the rows of [A, y]. The r×n random matrix
M samples r rows from the least squares problem with replacement, according to the
probability distribution p. The sampled rows are scaled by one over the square root of
their sampling probability to ensure that the approximate solution is unbiased. Next
we compute the solution x̂ that is optimal for the sampled rows and then use it as an
approximate solution for the full problem. This is similar to taking a poll to predict
an election result, and just like taking a poll, it is crucial that our sample set reflect
the statistical properties of the full set of rows. Theorem 1.1 shows that sampling
with respect to statistical leverage scores is one way of achieving this. The full result
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presented in [10] also shows how approximate statistical leverage scores can also be
used for sampling. Note that Theorem 1.1 holds for an arbitrary matrix A ∈ Rn×d;
in particular, there is no assumed statistical model for the rows of A.

Algorithm 1 Given A ∈ Rn×d, y ∈ Rn, a probability distribution p ∈ Rn, and
r ∈ {d, . . . , n}, compute x̂ ≈ x∗ = arg minx∈Rd ‖Ax− y‖2.

1: for i = 1, . . . , r independently do
2: set Mi· = eTj /

√
pj , with probability pj , for j = 1, . . . , n

3: end for
4: set x̂ = arg minx∈Rd ‖(MA)x−My‖2

Theorem 1.1 (see [10, Theorem 3.1]). Let A ∈ Rn×d, y ∈ Rn. Let x∗ =
arg minx∈Rd ‖Ax − y‖2, let p ∈ Rn be the statistical leverage scores of [A, y], and
let x̂ be the output of Algorithm 1; then for

r ≥ 8
d+ 1
ε2

ln
(d+ 1)
δ

we have
P {‖Ax̂− y‖2 ≤ (1 + 2ε)‖Ax∗ − y‖2} > 1− 3δ.

In practice if we are considering solving an n × d least squares problem using a
random sampling method, then we must be in a scenario where O(nd2) computations
are too costly and we are therefore unable to use (2) to calculate the statistical leverage
scores of the matrix [A, y]. Thus there is interest in developing efficient methods for
approximating the statistical leverage scores of a matrix. Drineas et al. present such a
method in [9]. Their approach uses random projections and can be tuned to provide
approximations with a desired accuracy for a desired reliability probability. While
the exact cost of computing this approximation depends on the chosen accuracy and
probability, it is O

(
nd log(n)

)
for moderate values.

Clarkson and Woodruff present an algorithm based on sparse subspace embed-
dings, which for ε > 0 returns an x′ for which

‖Ax′ − y‖2 ≤ (1 + ε) min
x∈Rd

‖Ax− y‖2,

with cost O
(
nnz(A)+d2ε−1

)
, where nnz(A) is the number of nonzeros in the matrix A.

They call this a regression in sparsity time algorithm [7]. The same techniques enable
them to approximate all of the statistical leverage scores of A up to a constant relative
error with cost O

(
nnz(A) log(n)

)
. They are able to solve the regression problem

faster than approximating all of the statistical leverage scores up to a constant factor
because their regression algorithm is able to use a less precise statistical leverage score
approximation.

Cohen et al. use iterative row resampling to achieve another regression in sparsity
time algorithm [8]. Using this technique they are able to approximate all of the statis-
tical leverage scores of A up to a multiplicative factor of dθ with cost O

(
nnz(A)θ−1

)
,

which yields an approximation up to a constant factor with cost O
(
nnz(A) log(d)

)
,

by setting θ−1 = 1/ log(d).
Although these recent works have achieved optimal worst case complexity for

solving tall skinny regression problems, they can suffer from large constant factors, and
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since developing fast methods for solving huge linear systems is such an important area
of research, it is worthwhile to explore alternatives. In this paper we present a max-
plus algebraic analogue of statistical leverage scores. In section 2 we show that max-
plus statistical leverage scores can be used to calculate the exact asymptotic behavior
of the statistical leverage scores of a radial basis function network (RBFN) matrix. In
section 5 we present an algorithm for computing max-plus statistical leverage scores.
Our algorithm uses quickselect, which has good average case complexity but poor
worst case complexity. As a result our algorithm also has good average case complexity
but poor worst case complexity. We justify in section 5 the claim that with high
probability our algorithm can compute all of the max-plus statistical leverage scores
of an n× d max-plus matrix A with cost O

(
nf(A) + d3

)
, where nf(A) is the number

of finite entries in A; note that finite entries play the role of nonzero entries in a max-
plus matrix. Alternatively, by using a heap-based algorithm instead of quickselect,
we achieve a worst case complexity of O(nf(A) log(d) + d3), but with the attractive
feature that the algorithm requires only two passes of the input matrix.

In section 3 we show how these max-plus scores can be used to approximate the
conventional statistical leverage scores of a matrix A ∈ Rn×d. Our approximation
method has three promising features: first, that it agrees with the asymptotic be-
havior of an RBFN matrix (in the sense of Theorem 3.2); second, that it is quick
to compute; and third, that it performs well on the randomly generated problems
presented in section 4. However, we must also point out that since the max-plus ap-
proximation depends only on the moduli of the entries in the matrix, there are certain
highly structured problems for which it is very inaccurate. Developing a more reliable
alternative approximation method, which still uses some of the ideas surrounding the
max-plus statistical leverage scores, but which also uses sign information to provide
a more reliable approximation, is a promising avenue for future research.

Throughout this paper real matrices will be denoted by capital letters, with their
entries denoted by the corresponding lower case letter in the usual way, e.g., A =
(aij) ∈ Rn×d. Max-plus matrices will be denoted by calligraphic capital letters, and
their entries by the corresponding lower case calligraphic letter, e.g., A = (aij) ∈
Rn×dmax .

For an n× d matrix A, we use the notation A([i1, . . . , im], [j1, . . . , jk]) to denote
the m×k matrix formed from the {i1, . . . , im} rows and {j1, . . . , jk} columns of A. We
also use the notation A([i1, . . . , im]c, [j1, . . . , jk]c) to denote the (n−m)×(d−k) matrix
formed from the {1, . . . , n}/{i1, . . . , im} rows and {1, . . . , d}/{j1, . . . , jk} columns of
A.

1.1. Quick introduction to max-plus algebra. Max-plus algebra concerns
the max-plus semiring Rmax = (R ∪ {−∞},⊕,⊗), where

(3) a ⊕ b = max{a, b}, a ⊗ b = a + b for all a, b ∈ Rmax.

Akian, Bapat, and Gaubert showed that max-plus algebra can be used to calculate
the exact asymptotic growth rates of the eigenvalues of generic matrices whose entries
are Puiseux series [1, 2]. Gaubert and Sharify were the first to exploit this idea to
develop max-plus algebraic methods for approximating the order of magnitude of the
eigenvalues of a fixed complex matrix polynomial [11]. This approach has since been
adapted and expanded to approximate matrix singular values and LU factors [15, 16].
In this paper we extend the approach further to include statistical leverage scores.
We introduce a definition for max-plus statistical leverage scores, which enables us to
calculate the exact asymptotic growth rates of the statistical leverage scores of generic
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RBFN matrices, and to approximate the statistical leverage scores of a fixed complex
matrix. We provide all of the necessary background material in this section. For a
more thorough introduction to max-plus algebra, see [6].

A max-plus matrixA ∈ Rn×dmax is simply an n×d array of elements from Rmax. Max-
plus matrix multiplication is defined in analogy to the classical case: for A ∈ Rn×dmax
and B ∈ Rd×mmax , the product (A⊗ B) ∈ Rn×mmax is the max-plus matrix with

(4) (A⊗ B)ij =
d⊕
k=1

aik ⊗ bkj =
d

max
k=1

(aik + bkj).

For clarity we will often display equations using max-plus algebraic notation alongside
equivalent expressions that only use standard notation.

For A ∈ Rn×dmax , with n ≥ d, we define the max-plus permanent of A by

(5) perm(A) =
⊕

φ∈Φ(d,n)

d⊗
j=1

aφ(j)j = max
φ∈Φ(d,n)

d∑
j=1

aφ(j)j ,

where Φ(d, n) is the set of all injections from {1, . . . , d} to {1, . . . , n}. We also define
the set of optimal assignments of A by

(6) oas(A) = arg max
φ∈Φ(d,n)

d∑
j=1

aφ(j)j .

Computing perm(A) and oas(A) is commonly referred to as the optimal assignment
problem. For φ ∈ oas(A) and i ∈ {1, . . . , n}, if φ(j) = i for some j ∈ {1, . . . , d},
then we say that φ assigns row i to column j and vice versa. Note that for a square
matrix A ∈ Rn×nmax , the formula (6) looks very much like the max-plus version of the
determinant, except for the alternating sign term, which has no max-plus algebraic
analogue since ⊕ is not invertible. We exploit this connection between max-plus
permanents and conventional determinants extensively in section 3.

Optimal assignments have a neat operational research interpretation. Suppose
that we have n jobs and d workers and that we must assign each worker to a distinct
job. Let A ∈ Rn×d

max be the max-plus matrix with aij equal to the benefit of assigning
worker j to job i. Then perm(A) is the maximum possible total benefit, and oas(A)
is the set of optimal assignments of workers to jobs.

For A ∈ Rn×dmax and for i = 1, . . . , n, j = 1, . . . , d, we define the (i, j)-obligated
permanent of A by

(7) perm(A, j 7→ i) =
⊕

φ∈Φ(d,n;j 7→i)

d⊗
k=1

aφ(k)k = max
φ∈Φ(d,n;j 7→i)

d∑
k=1

aφ(k)k,

where Φ(d, n; j 7→ i) is the set of all injections φ from {1, . . . , d} to {1, . . . , n}, with
φ(j) = i. In terms of the operational research interpretation, perm(A, j 7→ i) is the
maximum possible total benefit if we are obliged to assign worker j to job i.

We can expand the permanent of a square matrix along a row or column in the
same way as a determinant.

Proposition 1.2. Let A ∈ Rn×nmax ; then for i = 1, . . . , n

perm(A) =
n⊕
j=1

aij ⊗ perm
(
A([i]c, [j]c)

)
=

n
max
j=1

(
aij + perm

(
A([i]c, [j]c)

))
.
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Proof. For a square matrix (5) can be written as

perm(A) = max
φ∈Π(n)

d∑
k=1

akπ(k),

where Π(n) is the set of permutations on {1, . . . , n}. Now for i, j = 1, . . . , n, set
Π(n)ij = {π ∈ Π(n) : π(i) = j}. Then for i = 1, . . . , n we have

perm(A) =
n

max
j=1

(
max

π∈Π(n)ij

d∑
k=1

akπ(k)

)

=
n

max
j=1

aij + max
π∈Π(n)ij

∑
k 6=i

akπ(k)


=

n
max
j=1

(
aij + perm

(
A([i]c, [j]c)

))
.

1.2. Max-plus statistical leverage scores. We define the max-plus statistical
leverage scores of A to be the vector p(A) ∈ Rnmax with

(8) pi
(
A) = 2

(
d

max
j=1

perm(A, j 7→ i)− perm(A)
)

for i = 1, . . . , n.

We can understand this definition of max-plus statistical leverage scores in terms
of the previously outlined jobs-to-workers interpretation of the optimal assignment
problem.

Operational research interpretation. The score of the ith row, pi
(
A), is equal

to minus two times the smallest nonnegative bonus that needs to be applied to the
benefit of job i in order for there to exist an optimal assignment of workers to jobs
that assigns a worker to job i. Thus if there exists an optimal assignment that assigns
job i, then row i will have score zero, and otherwise row i will have a strictly negative
score.

Example 1.3. Consider

A =

 3 3
0 2
1 0

 , perm(A, j 7→ i) =

 5 4
3 5
4 3

 , A+ ∆A =

 3 3
0 2

1 + x x

 .
To compute the max-plus statistical leverage scores of A we need to compute the
permanent of A. This is given by perm(A) = 3 + 2 = 5, which is attained by
φ = (1, 2). Since φ assigns rows 1 and 2, these rows have score zero. The (3, 1)-
obligated permanent is given by perm(A, 1 7→ 3) = 3 + 1 = 4, which is attained by
φ(3, 1). Since this is the maximally weighted assignment that assigns row 3, row 3
has score −2(4− 3) = −2. Therefore the max-plus statistical leverage scores of A are
given by p(A) = [0, 0,−2].

In terms of the operational research interpretation, suppose that we apply a bonus
of x to the benefit of carrying out job 3. This adjusted benefit matrix is given by
A+∆A. Clearly the least nonnegative x such that A+∆A has an optimal assignment
that assigns row 3 is given by x = 1, and hence p3(A) = −2.
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2. Asymptotics of generic radial basis function network (RBFN) ma-
trices. An RBFN matrix K ∈ Rn×d is the form

(9) kij = exp(aij/σ) for i = 1, . . . , n, j = 1, . . . , d,

for some A ∈ Rn×dmax and σ ∈ R+. We will use the notation K = exp(A/σ) to mean
(9). Such matrices arise in the formulation of RBFNs [5] as follows. Suppose that
we have a set of data points x1, . . . ,xn ∈ Rm, with target values y1, . . . , yn ∈ R, and
that we wish to fit an RBFN to this data using d radial basis functions, centered at
the locations c1, . . . , cd ∈ Rm. Then for x ∈ Rm, the output of the RBFN is given by

(10) ϕ(x) =
d∑
i=1

wi exp
(
− ‖x− cj‖22/σ

)
,

where w ∈ Rd is a vector of weights that needs to be learned. If we wish to minimize
the 2-norm difference between the target values and the output of the RBFN, then
the optimal weights are given by

w = arg min
w′∈Rd

‖Kw′ − y‖2,

where K = exp(A/σ), with A ∈ Rn×dmax given by

(11) aij = −‖xi − cj‖22.

In machine learning applications, n can be very large, so we may wish to solve (10)
approximately using Algorithm 1.

Understanding the behavior of an RBFN matrix in the limit σ → 0 can give
useful insight into its behavior for more moderate values. Proposition 2.1 (below)
tells us that, provided the centers are evenly distributed among the data points,
the RBFN matrix will have orthogonal columns in the limit σ → 0. From this
result we might expect that RBFNs, with centers evenly distributed among their
data points, will be close to orthogonal for small but nonzero values of σ, which
would imply that we can accurately approximate their statistical leverage scores using
row norms. Using max-plus algebra we can study the asymptotic behavior of RBFN
matrices with more general distribution of centers. Theorems 2.8 and 2.9, which are
the main results of this section, extend the result of Proposition 2.1 and show that
the asymptotic exponential growth rates of the statistical leverage scores of an RBFN
matrix K = exp(A/σ) are exactly equal to the max-plus statistical leverage scores of
the matrix A.

Proposition 2.1. Let x1, . . . ,xn ∈ Rm and c1, . . . , cd ∈ Rm, and let A ∈ Rn×dmax
be as defined in (11); then no two centers have a common nearest data point if and
only if

lim
σ→0

(Kdiag(s)−1)T (Kdiag(s)−1) = I,

where the diagonal scaling s ∈ Rd is given by sj = ‖K·j‖2 for j = 1, . . . , d and
I ∈ Rd×d is the identity matrix.

Proof. First note that

lim
σ→0
‖K·j‖2/ exp

(
−

n
min
i=1
‖xi − cj‖22/σ

)
=
√
cj ,
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where cj is the number of distinct elements in arg minni=1 ‖xi − cj‖2. Thus

lim
σ→0

(Kdiag(s)−1)ij =
{

1/√cj for i ∈ arg minni′=1 ‖xi′ − cj‖2,
0 otherwise,

and therefore

lim
σ→0
〈(Kdiag(s)−1)·j′ , (Kdiag(s)−1)·j〉

= 1 if j′ = j,
> 0 if j′ 6= j and cj′ and cj have a common

nearest data point,
= 0 otherwise.

It will be useful for us to distinguish a subset of nondegenerate matrices to
work with. We say that A ∈ Rn×dmax is a generic distance matrix if for all subsets
{i1, . . . , im} ⊂ Nn and {j1, . . . , jk} ⊂ Nd, with k ≤ m, the submatrix A([i1, . . . , im],
[j1, . . . , jk]) has a finite permanent and a unique optimal assignment.

Lemma 2.2. Suppose that x1, . . . ,xn ∈ Rm and c1, . . . , cd ∈ Rm are points in
general position; then the matrix A defined in (11) is a generic distance matrix.

Proof. By general position we mean that there is an open and dense set G ⊂
Rm×n×Rm×d such thatA is a generic distance matrix whenever (x1, . . . ,xn, c1, . . . , cd)
∈ G.

For any two subsets {i1, . . . , im} ⊂ Nn, {j1, . . . , jk} ⊂ Nd the submatrix AIJ =
A([i1, . . . , im], [j1, . . . , jk]) will have a finite permanent, since (11) is finite for all
(x1, . . . ,xn, c1, . . . , cd) ∈ Rm×n × Rm×d. Now consider two distinct assignments
φ1, φ2 ∈ Φ(k,m), and let G(φ1, φ2) ⊂ Rm×n × Rm×d be the subset of data points
and centers for which f(x1, . . . ,xn, c1, . . . , cd) = w(φ1)− w(φ2) = 0, where

w(φ) =
k∑
`=1

aiφ(`),j` .

The function f is a polynomial in the coefficients of (x1, . . . ,xn, c1, . . . , cd), and it is
therefore identically equal to zero or only zero on some lower dimensional manifold.
Now consider (x1, . . . ,xn, c1, . . . , cd) ∈ Rm×n×Rm×d, with c1 = · · · = cd = xiφ1(1) =
· · · = xiφ1(k) = 0 and xi = 1 for the remaining data points; then w(φ1) = 0 and
w(φ2) 6= 0. Thus f is not identically equal to zero, and its zero set G(φ1, φ2) forms a
lower dimensional manifold whose complement is open and dense in Rm×n × Rm×d.

The set of data points and centers for which no two assignments have the same
weight is a subset of the set for which the maximally weighted assignment is unique.
Thus ⋂

φ1,φ2

G(φ1, φ2)C ⊂ G,

where the intersection is taken over all pairs of assignments of submatrices of A.
Since a finite intersection of open and dense sets is open and dense, and since a set
containing a set that is open and dense is itself open and dense, this completes the
proof.

Lemma 2.3. For a generic distance matrix B ∈ Rd×dmax, there exists ε > 0, such
that det(M) 6= 0 for all 0 < σ ≤ ε and

lim
σ→0
−σ log |det(M)| = perm(B),

where M = exp(B/σ).
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Proof. We have

det(M) =
∑
π∈Πd

sgn(π)
d∏
i=1

miπ(i) =
∑
π∈Πd

sgn(π) exp

(
d∑
i=1

biπ(i)/σ

)
.

Let π′ be the unique optimal assignment of B; then g(π) =
∑d
i=1 miπ(i)−perm(B) < 0

for all π 6= π′, and

(12) det(M) = exp
(
perm(B)/σ

)sgn(π′) +
∑
π 6=π′

sgn(π) exp
(
g(π)/σ

) .

For the first result let g = maxπ 6=π′ g(π); then∣∣∣∣∣ ∑
π 6=π′

sgn(π) exp
(
g(π)/σ

)∣∣∣∣∣ < 1,

and det(M) 6= 0, whenever σ < −g/(log n!). The second result then follows from
taking the limit σ → 0 in (12).

Max-plus linear systems, i.e., equations of the form A⊗x = b, have many applica-
tions in scheduling and dynamical systems [6, 13]. Such systems are better understood
by studying the symmetrization of max-plus algebra S, which is an extension of Rmax,
that allows for a kind of max subtraction operation (see [3, section 3.4] for an intro-
duction). In this setting it is possible to either solve or determine that no solution
exists to certain max-plus linear equations using a max-plus analogue of Cramer’s rule
(see [3, section 3.5.2]). This approach uses an expression for the max-plus inverse of a
max-plus matrix, which looks exactly like the conventional Cramer’s rule inverse, only
with permanents instead of determinants. Typically this max-plus inverse does not
provide a functional inverse in the usual sense, as only a special subset of all max-plus
matrices are invertible. In Lemma 2.4 we show how to use this same max-plus inverse
expression to calculate the asymptotic growth rates of the entries in the inverse of an
RBFN matrix.

For B ∈ Rd×dmax, define the max-plus inverse B⊗−1 ∈ Rd×dmax by

(13) (B⊗−1)ij = perm
(
B([j]c, [i]c)

)
− perm(B) for i, j = 1, . . . , d.

Lemma 2.4. For a generic distance matrix B ∈ Rn×dmax , there exists ε > 0, such
that M = exp(B/σ) is invertible for all 0 < σ ≤ ε and

lim
σ→0

σ log |(M−1)ij | = (B⊗−1)ij .

Proof. From Cramer’s rule we have

(M−1)ij = (−1)i+j det
(
M([j]c, [i]c)

)
/ det(M) for i, j = 1, . . . , d.

Applying the result of Lemma 2.3, we have that each (M−1)ij is finite for sufficiently
small σ and that

lim
σ→0

σ log |(M−1)ij | = perm
(
B([j]c, [i]c)

)
− perm(B)

= (B⊗−1)ij for i, j = 1, . . . , d.
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The following three lemmas are technical results which are needed to prove The-
orems 2.8 and 2.9.

Lemma 2.5. Let A ∈ Rn×dmax , let φ ∈ oas(A), and let j ∈ {1, . . . , d}; then

perm
(
A([1, . . . , n], [j]c)

)
= perm

(
A([φ(1), . . . , φ(d)], [j]c)

)
.

Proof. First note that, since the left-hand side (LHS) is the maximum over a set
of assignments that includes all of the assignments in the right-hand side (RHS), we
have

perm
(
A([1, . . . , n], [j]c)

)
≥ perm

(
A([φ(1), . . . , φ(d)], [j]c)

)
.

To prove the reverse inequality we will need the following results (14), (15):
(i) For B ∈ Rm×`max with m ≥ `, φ ∈ oas(B), and i ∈ {1, . . . ,m}, either φ does not

assign row i, or it assigns row i to some column j ∈ {1, . . . , `}. This yields

perm(B) = perm
(
B([i]c, [1, . . . , k])

)
(14)

⊕ `
max
j=1

(
bij + perm

(
B([i]c, [j]c)

))
.

The expression in the first line of the RHS of (14) is the maximum over all assignments
that do not assign row i, and the expression in the second line is the maximum over
j ∈ {1, . . . , `}, of the maximum over all assignments that assign row i to column j.

(ii) For B ∈ Rm×`max with m ≥ ` and φ ∈ oas(B) we have

(15) perm
(
B([φ(j1), . . . , φ(jk)]c, [j1, . . . , jk]c)

)
=

∑
t 6=j1,...,jk

bφ(t)t.

First note that by restricting φ to the rows and columns of the submatrix on the LHS
of (15), we obtain an assignment with weight equal to the expression on the RHS, so
that LHS ≥ RHS. Now suppose that LHS > RHS; then there exists an assignment
φ′ of the submatrix with weight strictly greater than that of φ. But we can extend φ′

to an assignment of the full matrix B by assigning jt to φ(jt) for t = 1, . . . , k. This
results in an assignment of B with weight strictly greater than that of φ, which is a
contradiction.

We construct a sequence j1, . . . , jk as follows. Set j1 = j, as in the statement of
the lemma; then from (14) we have

perm
(
A([1, . . . , n], [j1]c)

)
= perm

(
A([φ(j1)]c, [j1]c)

)
⊕max

t 6=j1

(
aφ(j1)t + perm

(
A([φ(j1)]c, [j1, t]c)

))
.

If the expression in the first line of the RHS attains the maximum, we stop; otherwise
we set j2 to be a value of t that attains the maximum in the second line of the RHS.
After k − 1 steps we have j1, . . . , jk, a sequence of distinct elements of {1, . . . , d}.
From (14) we have

perm
(
A([φ(j1), . . . , φ(jk−1)]c, [j1, . . . , jk]c)

)
= perm

(
A([φ(j1), . . . , φ(jk)]c, [j1, . . . , jk]c)

)
⊕ max
t 6=j1,...,jk

(
aφ(jk)t + perm

(
A([φ(j1), . . . , φ(jk−1)]c, [j1, . . . , jk, t]c)

))
.

If the expression in the first line of the RHS attains the maximum, we stop; otherwise
we set jk+1 to be a value of t that attains the maximum in the second line. Continuing
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in this way either we generate a sequence of length d, in which case

(16) perm
(
A([1, . . . , n], [j1]c)

)
=
d−1∑
t=1

aφ(jt)jt+1 ,

or we stop after k < d steps, in which case
(17)

perm
(
A([1, . . . , n], [j1]c)

)
=
k−1∑
t=1

aφ(jt)jt+1 + perm
(
A([φ(j1), . . . , φ(jk)]c, [j1, . . . , jk]c)

)
.

The expression on the RHS of (16) is the weight of an assignment of A that only
assigns the rows {φ(1), . . . , φ(d− 1)} and does not assign the column j1 = j, so that

perm
(
A([1, . . . , n], [j1]c)

)
=

d∑
t=1

aφ(jt)jt+1 ≤ perm
(
A([φ(1), . . . , φ(d)], [j1]c)

)
.

Applying result (15) to (17) yields

perm
(
A([1, . . . , n], [j1]c)

)
=
k−1∑
t=1

aφ(jt)jt+1 +
d∑

t=k+1

aφ(jt)jt .

The expression on the RHS is the weight of an assignment of A that only assigns the
rows {φ(1), . . . , φ(d)}/φ(k) and does not assign the column j, so that

perm
(
A([1, . . . , n], [j1]c)

)
=
k−1∑
t=1

aφ(jt)jt+1 +
d∑

t=k+1

aφ(jt)jt

≤ perm
(
A([φ(1), . . . , φ(d)], [j]c)

)
.

Operational research interpretation. The result of Lemma 2.5 can also be un-
derstood in terms of the jobs-to-workers interpretation of the optimal assignment
outlined in section 1.1. Suppose that we have an optimal assignment of workers to
jobs and that one of the workers quits. Then we can find a new optimal assignment of
workers to jobs that only assigns jobs which were assigned under the previous optimal
assignment, and we do not need to consider any previously unassigned jobs.

Lemma 2.6. For a generic distance matrix A ∈ Rn×dmax , let φ be the optimal as-
signment of A and let B ∈ Rd×dmax be the matrix formed from the d rows of A that are
assigned by φ:

B = A([φ(1), . . . , φ(d)], [1, . . . , d]).

Then the following hold:
1.

perm(A, j 7→ i) = aij +
(
B⊗−1 ⊗ 0

)
j

+ perm(A)

for all i such that row i is not assigned by φ, and for all j = 1, . . . , d.
2. The max-plus statistical leverage scores of A are given by

pi(A) =
{

0 if i is an assigned row,
2
(
A⊗ B⊗−1 ⊗ 0

)
i

otherwise.
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Proof. For result 1: Recall that the (i, j)-obligated permanent of A is the weight
of the maximally weighted assignment that assigns column j to row i. Clearly this
weight is attained by the optimal assignment of the remaining rows and columns as
follows:

perm(A, j 7→ i) = aij + perm
(
A([i]c, [j]c)

)
.

From Lemma 2.5 and using the fact that i is not assigned by φ, we have

perm(A, j 7→ i) = aij + perm
(
A([φ(1), . . . , φ(d)], [j]c)

)
= aij + perm

(
B([1, . . . , d], [j]c)

)
= aij +

d
max
k=1

perm
(
B([k]c, [j]c)

)
.

From (13) we have

perm(A, j 7→ i) = aij +
d

max
k=1

(
B⊗−1
jk + perm(B)

)
.

Finally using the fact that perm(B) = perm(A) and the definition of max-plus matrix-
vector multiplication (4), we have

perm(A, j 7→ i) = aij +
(
B⊗−1 ⊗ 0

)
j

+ perm(A).

For result 2: For the assigned rows i = φ(1), . . . , φ(d), we have pi(A) = 0, which
matches the definition of p(A) given in (8). For the remaining unassigned rows recall
from (8) that

pi
(
A) = 2

(
d

max
j=1

perm(A, j 7→ i)− perm(A)
)
.

Then using result 1, we have

pi
(
A) = 2

(
d

max
j=1

aij +
(
B⊗−1 ⊗ 0

)
j

)
= 2
(
A⊗ B⊗−1 ⊗ 0

)
i
.

Lemma 2.7. For a generic distance matrix A ∈ Rn×dmax , let φ be the optimal as-
signment of A and let B ∈ Rd×dmax be the matrix formed from the d rows of A that are
assigned by φ. Then

lim
σ→0

σ log |(KM−1)ij | =
{

log δiφ(j) if i is an assigned row,(
A⊗ B⊗−1

)
ij

otherwise.

Proof. Since the matrix M consists of the assigned rows of K that are assigned
by the optimal assignment φ, we have

(18) (KM−1)φ(j)· = eTj for j = 1, . . . , d.

For an unassigned row i, from Cramer’s rule we have

(19) (KM−1)ij = det
(
M(Ki·, j)

)
/ det(M),

where M(Ki·, j) is the matrix formed by replacing the jth row of M with the ith row
of K. Note that M(Ki·, j) = exp

(
C(i, j)/σ

)
, where

C(i, j) = A([φ(1), . . . , φ(j − 1), i, φ(j + 1), φ(d)], [1, . . . , d]).
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Applying the result of Lemma 2.3 to (19), we obtain

(20) lim
σ→0

σ log |(KM−1)ij | = perm
(
C(i, j)

)
− perm(B).

By Proposition 1.2 we can expand perm
(
C(i, j)

)
along its jth row:

perm
(
C(i, j)

)
=

d
max
k=1

cjk + perm
(
C(i, j)([k]c, [j]c)

)
=

d
max
k=1

aik + perm
(
B([k]c, [j]c)

)
.

Substituting back into (20), we have

lim
σ→0

σ log |(KM−1)ij | =
d

max
k=1

aik + perm
(
B([k]c, [j]c)

)
− perm(B)

=
d

max
k=1

aik + (B⊗−1)
kj

=
(
A⊗ B⊗−1)

ij
.

Theorem 2.8. For a generic distance matrix A ∈ Rn×dmax , let φ be the optimal
assignment of A and let B ∈ Rd×dmax be the matrix formed from the d rows of A that
are assigned by φ. Then

lim
σ→0

(KM−1)T (KM−1) = I,

where K = exp(A/σ) and M = exp(B/σ).

Proof. From the proof of Lemma 2.7 we have (18) for assigned rows. For unas-
signed rows we have (20), where since B is formed from the rows that are assigned by
the optimal assignment ofA, we have perm(A) = perm(B). Also since C(i, j) is formed
from a different subset of the rows of A, we must have perm

(
C(i, j)

)
< perm(B), be-

cause A has a unique optimal assignment. Therefore

lim
σ→0

(KM−1)ij = 0

for all i = 1, . . . , n unassigned by φ and all j = 1, . . . , d.

Theorem 2.9. For a generic distance matrix A ∈ Rn×dmax , we have

lim
σ→0

σ log pi(K) = pi(A) for i = 1, . . . , n,

where K = exp(A/σ), pi(K) is the ith statistical leverage score of K, and pi(A) is
the ith max-plus statistical leverage score of A.

Proof. Let φ be the optimal assignment of A, and let B ∈ Rd×dmax be the matrix
formed from the d rows of A that are assigned by φ. Then from Lemma 2.3 there
exists ε > 0 such that M = exp(B/σ) is invertible for all 0 < σ ≤ ε and therefore such
that KM−1 has statistical leverage scores identical to those of K.

Since KM−1 has a subset of rows which form the d× d identity matrix, we have

(21) ‖KM−1x‖2 ≥ ‖x‖2 for all x ∈ Rd.

From Theorem 2.8 we have

(22) lim
σ→0

‖KM−1x‖22
‖x‖22

≤ lim
σ→0

∑d
j=1 ‖KM−1ej‖22x2

j

‖x‖22
= 1,
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uniformly for all x ∈ Rd. Therefore

lim
σ→0

‖KM−1x‖22
‖x‖22

= 1,

uniformly for all x ∈ Rd.
Using the above results, the asymptotic growth rate of the ith statistical leverage

score of KM−1 is given by

lim
σ→0

σ log pi(KM−1) = lim
σ→0

σ log

(
max
x∈Rd

(
|(KM−1x)i|
‖KM−1x‖2

)2
)

= lim
σ→0

max
x∈Rd

(
σ log

(
|(KM−1x)i|2

‖x‖22

)
− lim
σ→0

σ log
(
‖KM−1x‖22
‖x‖22

))
= lim
σ→0

σ log
(
‖eiKM−1‖22

)
= lim
σ→0

2σ log
(

d
max
j=1
|KM−1|ij

)
= pi(A),

where the final step uses the results of Lemmas 2.6 and 2.7.

Example 2.10. We randomly generate an RBFN matrix by sampling n = 5 data
points and d = 2 centers from a standard 2-variate Gaussian; see Figure 1(a). We
compute the distance matrix A ∈ Rn×d and the max-plus statistical leverage scores
p(A). Next we compute the statistical leverage scores p(K) of K = exp(A/σ) for a
range of values of σ. Figure 1(b) shows σ log p(K) converging to p(A) as required by
Theorem 2.9.

In this example each center cj has a distinct closest data point xφ(j), where φ is
the optimal assignment of A, so that Proposition 2.1 applies. In this case we have

lim
σ→0

K

[
exp(‖x2 − c1‖22/σ) 0

0 exp(‖x1 − c2‖22/σ)

]
=


0 1
1 0
0 0
0 0
0 0

 .
Example 2.11. We repeat the experiment of Example 2.10. See Figures 1(c) and

1(d). In this example the property that each center cj has a distinct closest data
point xφ(j) is not satisfied, since both centers have the same closest data point x5.
Consequently Proposition 2.1 does not apply. In this case we have

lim
σ→0

K

[
exp(‖x2 − c1‖22/σ) 0

0 exp(‖x1 − c2‖22/σ)

]
=


0 0
0 0
0 0
0 0
1 1

 .
However, Theorem 2.8 does apply, and we have

lim
σ→0

K

[
exp(−‖x5 − c1‖22/σ) exp(−‖x5 − c1‖22/σ)
exp(−‖x2 − c1‖22/σ) exp(−‖x2 − c2‖22/σ)

]−1

=


0 0
0 1
0 0
0 0
1 0

 .
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Fig. 1. Left plots: Data points in blue and RBF centers in red with crosses. Right plots:
Convergence of statistical leverage scores.

3. Approximation of statistical leverage scores of a fixed matrix. In
this section we show how we can use max-plus statistical leverage scores, or rather
the obligated permanent scores, to approximate the scores of a fixed, nonparametrized
matrix.

Let A ∈ Rn×d, and define M ∈ Rn×d by

mij = exp
(
perm(log |A|, j 7→ i)

)
.

Then the max-plus statistical leverage score approximation q(A) ∈ Rn is given by

(23) qi(A) = ‖Ci·‖22 for i = 1, . . . , n,

where C = Mdiag(s)−1, with s ∈ Rd given by sj = ‖M·j‖2 for j = 1, . . . , d.

Heuristic 3.1. For A ∈ Rn×d, we have

p(A) ≈ q(A),

where p(A) are the exact statistical leverage scores and q(A) are the max-plus approx-
imate scores of A. The approximation ≈ should be interpreted as meaning an order
of magnitude level approximation.
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The intuition behind this approximation is as follows. The obligated permanent
perm(log |A|, j 7→ i) scores how “strong” row i is in column j. These scores are then
exponentiated and normalized to give the matrix C, where cij also scores how “strong”
row i is in column j, except that now we also have

∑
i c

2
ij = 1. The approximate scores

q(A) are then given by the squared row norms of C. Thus if we add new copies of an
existing row, then this will reduce the original row’s score in the natural way. This
approximation is compatible with the asymptotic results of section 2 in the following
sense.

Theorem 3.2. Let K = exp(A/σ) ∈ Rn×d be an RBFN matrix, and let q(K) be
the max-plus approximated scores of K. Then

lim
σ→0

σ log qi(K) = pi(A),

where p(A) are the max-plus scores of A.

Proof. For K = exp(A/σ), the matrix M ∈ Rn×d, in Heuristic 3.1, is given by

mij = exp
(
perm(A, j 7→ i)/σ

)
.

The diagonal scaling s ∈ Rd is given by the column norms of M and satisfies

exp
(
perm(A)/σ

)
≤ sj ≤ n exp

(
perm(A)/σ

)
,

so that
d∑
j=1

(Rij/n)2 ≤ qi(K) ≤
d∑
j=1

R2
ij ,

where
Rij = exp

((
perm(A, j 7→ i)− perm(A)

)
/σ
)
.

Thus

lim
σ→0

σ log qi(K) = lim
σ→0

σ log
(

d
max
j=1

R2
ij

)
= 2

d
max
j=1

(
perm(A, j 7→ i)− perm(A)

)
= pi(A).

Theorem 3.2 tells us that the asymptotic behavior of the max-plus approximation
given in Heuristic 3.1 will match the max-plus statistical leverage scores, which, as
we showed in section 2, match the asymptotic behavior of the exact scores.

Example 3.3. Consider

A =

 1000 1000
1 100
10 1

 , A = log |A| =

 3 3
0 2
1 0

 , perm(A, j 7→ i) =

 5 4
3 5
4 3

 .
We have p(A) = [0.9999, 0.9918, 0.0083] and q(A) = [0.9999, 0.9901, 0.0100], which
captures the order of magnitude of all of the scores.

Example 3.4. Consider

A =

 1000 1000
1 100
10 10

 , A = log |A| =

 3 3
0 2
1 1

 , perm(A, j 7→ i) =

 5 4
3 5
4 4

 .
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Fig. 2. Distribution of log
(
p(A)3

)
for randomly generated matrices based on (a) Example 1.3

and (b) Example 3.4. Max-plus approximation marked in red, and score of example problem in
green.

We have p(A) = [0.9999, 1, 0.00009] and q(A) = [0.9998, 0.9805, 0.0197]. In this exam-
ple the max-plus approximation fails to capture the order of magnitude of the score
of row 3.

To understand why the max-plus approximation works better for Example 3.3
than Example 3.4, it is important to consider the fact that the max-plus approximation
is “blind to sign” in the sense that it does not depend on the sign or complex argument
of the entries inA. To illustrate this point further we randomly generate many matrices
with the same sized entries as the previous example problems but with independent,
uniformly distributed complex arguments. For each of these randomly generated
matrices we compute the log of the statistical leverage score of row 3 and plot a
histogram of the results. See Figure 2. Note that for Example 1.3 the scores are
always confined to a narrow band, which is within an order of magnitude of the max-
plus approximation. But note that for Example 3.4 the scores have a light lower tail,
so that there is a set of small measure for which the max-plus approximation is not
accurate to within an order of magnitude. The matrix A in Example 3.4 belongs to
this small measure set.

The only direct support for Heuristic 3.1 comes from the empirical evidence pre-
sented in section 4. We have no theorem saying that the accuracy of the approximation
should be within a certain factor for an arbitrary matrix. This is because there are
certain problems for which the max-plus approximation is very inaccurate. Whenever
we have such a problem we find that applying a random perturbation to the complex
arguments of its entries results in a matrix A′ whose statistical leverage scores are
well approximated by the max-plus approximation. In this sense we say that the max-
plus approximation provides an order of magnitude approximation for the statistical
leverage scores for all but a small measure set of “nasty” matrices.

Of course this is cold comfort if we are interested in approximating the scores of a
particular matrix A that happens to fall in this nasty set. Ultimately the success of the
max-plus approximation in practice will depend on identifying domains of problems
and compatible preprocessing techniques that give rise to matrices where these prob-
lems do not occur, or on finding new approximation strategies that also satisfy a result
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like Theorem 3.2, but which are more robust in practice. We should note that issues
of this sort are common to other methods which use max-plus algebra to approximate
classical linear algebra objects including eigenvalues [11] and LU factors [16]. In these
other applications we find that max-plus methods tend to work well on large sparse
matrices from practical problems, particularly highly unstructured problems with a
large range of entry sizes.

4. Numerical experiments. In this section we apply the max-plus approxima-
tion of Heuristic 3.1 to some larger numerical examples and compare using different
sampling distributions in Algorithm 1. For each matrix A ∈ Rn×d, we compute the
exact statistical leverage score probability distribution p(A)/d, using (2). We use
Algorithm 3 to compute the max-plus approximation q(A)/d. For comparison we
also compute an alternative statistical leverage score approximation which, like the
max-plus approximation, depends only on the size of the entries in A. The column
normalized row norm (CNRN) scores of A are given by

(24) ri(A) = ‖Ci·‖22 for i = 1, . . . , n,

where C = A diag(s)−1, with s ∈ Rd given by sj = ‖A·j‖2 for j = 1, . . . , d. We com-
pute the CNRN probability distribution r(A)/d for each matrix. Note that, although
their computation is far more straightforward, the cost of computing the CNRB scores
is of the same order as the max-plus scores.

For each numerical example we formulate and solve the least squares problem
x∗ = arg minx∈Rd−1 ‖Ax− y‖2. We then compute approximate solutions using Algo-
rithm 1. For each different sampling distribution and a range of values of r, we run
100 independent instances of Algorithm 1.

4.1. RBFN matrices. For each of the following example problems we construct
the matrix K = exp(A) from the data points and centers as described in section 2.
For each example we choose data points and centers that lie in R25.

Tall skinny example. We set n = 10000 and d = 100; each data point and center
is sampled independently from N (0, I).

Moderate aspect ratio example. We set n = 2500 and d = 100; each data point
and center is sampled independently from N (0, I).

Tall and skinny with clustered centers example. We set n = 10000 and d = 100;
each data point is sampled independently from N (0, I), and each center is sampled
independently from N (0, I/2).

For each matrix we sample a vector h from N (0, I) and use it to construct the
target vector y ∈ Rn, with yi = sin

(
〈xi,h〉/

√
k
)

exp
(
− ‖xi‖2/k

)
, where xi ∈ R25

is the ith data point for i = 1, . . . , n. We then compute approximate solutions to
minx ‖Kx − y‖2, using Algorithm 1 as described above. The results of these experi-
ments are displayed in Figure 3.

All of the RBFN example problems have highly nonuniform scores. For the tall
skinny problem both of the approximation methods capture the order of magnitude
of all of the scores. The uniform sampling method performs poorly, while all of
the nonuniform methods perform well. For the moderate aspect ratio problem the
max-plus approximation captures the order of magnitude of all of the scores, while
the CNRN approximation underapproximates many of the scores by more than a
factor of 10. The uniform and CNRN sampling methods both perform poorly on this
problem, while the exact statistical leverage scores and max-plus approximation both
perform well. For the tall and skinny with clustered centers problem the max-plus
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Fig. 3. Left: Scatterplot of exact statistical leverage scores versus max-plus approximation.
Middle: Scatterplot of exact statistical leverage scores versus CNRN approximation. Right: Error
versus sample size for sampled least squares approximations. Errors plotted are the geometric mean
of 100 independent trials; vertical bars show 90% range. Plots are for (a) tall and skinny, (b)
moderate aspect ratio, and (c) tall and skinny with clustered centers. Plots of statistical leverage
score approximations have their axes clipped to focus on detail of higher scores.

approximation captures the order of magnitude of all of the scores, but the CNRN
approximation is inaccurate by more than a factor of 10 for many of the rows. The
uniform and CNRN sampling methods both perform poorly on this problem, while
the exact statistical leverage scores and max-plus approximation both perform well.

The performance of the different approximation methods can be understood by
examining the behavior of K = exp(A/σ) in the limit σ → 0. Theorems 2.9 and 3.2
guarantee that the max-plus approximation will match the exact statistical leverage
scores in the limit σ → 0, so we expect the approximation to be fairly accurate for
moderate values of σ for all of the example problems. For the tall skinny example
there are many more data points than centers, so with high probability the centers
will be distributed evenly among the data points and each center will have a distinct
closest data point. Therefore from Proposition 2.1 we expect the matrix K to have
close to orthogonal columns and hence the CNRN approximation to be accurate. For
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the moderate aspect ratio problem there are fewer data points per center, so there
is a greater likelihood that centers will share nearest data points. In this case, as in
Example 2.11, the matrix K does not converge to a matrix with orthogonal columns,
so the CNRN method performs poorly. Similarly for the tall skinny with clustered
centers problem, since the centers are distributed unevenly among the data points,
there is a greater likelihood that centers will share nearest data points, and again,
this is why the CNRN method performs poorly on this example.

4.2. Varying coherence. The next test set of matrices that we use is randomly
generated using the scheme set out in [17, section 4.1]. The coherence of a matrix A ∈
Rn×d is equal to its largest individual statistical leverage score. A coherent matrix,
with a large coherence value, will have a wide range of statistical leverage scores. An
incoherent matrix, with a small coherence value, will have more uniform statistical
leverage scores. We set n = 105, d = 50 + 1, and Σ ∈ Rd×d, with Σij = 2 × 0.5|i−j|.
The example matrices are generated as follows.

Incoherent example. Each row of A ∈ Rn×d is chosen independently from a
multivariate Gaussian distribution N (1,Σ), where 1 ∈ Rd is a vector of ones.

Semicoherent example. Each row of A ∈ Rn×d is chosen independently from a
multivariate t-distribution t3(1,Σ), with three degrees of freedom.

Coherent example. Each row of A ∈ Rn×d is chosen independently from a multi-
variate t-distribution t1(1,Σ), with one degree of freedom.

For each example matrix we formulate and solve the least squares problem x∗ =
arg minx∈Rd−1 ‖Bx− y‖2, where B = A([1, . . . , n], [1, . . . , d− 1]) and y = A([1, . . . , n],
[d]). We then compute approximate solutions using Algorithm 1. The results of these
experiments are displayed in Figure 4.

For the incoherent example the exact statistical leverage scores are nearly uniform.
Both approximation methods capture the order of magnitude of all of the scores, and
all of the different sampling methods have the same performance. For the semicoherent
example the exact statistical leverage scores range between 10−2 and 10−6. Both
approximation methods capture the order of magnitude of all of the scores, but the
CNRN approximation is slightly more accurate. The rows with the largest exact
scores are underapproximated by the max-plus scores, but never by more than a
factor of 10. The uniform sampling method does not perform as well as the other
methods in this example. For the coherent example the exact statistical leverage scores
range between 10−2 and 10−10. The max-plus approximation captures the order of
magnitude of all of the scores, but the CNRN scores overapproximate the largest scores
and underapproximate many of the smaller scores. The uniform sampling method
performs very poorly on this problem, and the CNRN method does not perform as
well as the exact statistical leverage scores method or the max-plus approximation
method, which both perform well.

4.3. Structured matrices from practical problems. The previous examples
are all randomly generated and so avoid the sort of degenerate behavior that cannot
be detected by our “blind to sign” method. We did attempt to run our approxima-
tion on some more structured problems from practical applications, but the results
were inconsistent. We found many examples where both the max-plus approximation
and the CNRN approximation worked well, as well as examples where the max-plus
approximation worked well, but the CNRN method failed. However, we also found
several examples where both approximation methods failed and even some examples
where the CNRN approximation worked well, but the max-plus method failed.
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Fig. 4. Left: Scatterplot of exact statistical leverage scores versus max-plus approximation.
Middle: Scatterplot of exact statistical leverage scores versus CNRN approximation. Right: Error
versus sample size for sampled least squares approximations. Errors plotted are the geometric mean
of 100 independent trials; vertical bars show 90% range. Plots are for (a) incoherent example, (b)
semicoherent example, and (c) coherent example.

5. Max-plus statistical leverage score algorithm. Lemma 2.6 shows us how
to calculate the max-plus statistical leverage scores p(A) for A ∈ Rn×dmax . First we com-
pute an optimal assignment φ ∈ oas(A). Next we set B = A([φ(1), . . . , φ(d)], [1, . . . , d])
and compute B⊗−1. Then

(25) pi(A) =
{

0 if i is assigned by φ,
2
(
A⊗ B⊗−1 ⊗ 0

)
i

otherwise.

See Algorithm 3. We treat the computations of the optimal assignment and max-plus
inverse separately below. The multiplication on line 4 has costO(d2). For i = 1, . . . , n,
setting pi(A) has cost O(d), so that the total cost of setting p(A) is O(nd). Note that
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each row can be treated independently in parallel and that if A is a sparse matrix,1

then the total cost of setting p(A) is O
(
nf(A)

)
, where nf(A) is the number of finite

entries in A.
To compute an optimal assignment φ ∈ oas(A), we can use the Hungarian algo-

rithm [18], the successive shortest paths algorithm [19], or the auction algorithm [4].
Applied directly to A ∈ Rn×dmax , all of these algorithms have cost O(nd2). However,
we can reduce this cost considerably by noting that the optimal assignment of a tall
skinny n × d matrix depends only on the d largest entries in each column. For each
row of A we select the d largest entries, which we then sort in decreasing order. This
results in a sparse matrix with at most d entries per column and a known sorting
order for each column. We then pass this matrix to the successive shortest paths
algorithm, which is able to compute the optimal assignment with cost O(d3). An effi-
cient implementation which exploits the fact that the d largest entries in each column
have been sorted is essential to achieve this lower cost. To select the d largest entries
in each column we use quickselect [14]. Like quicksort this algorithm has poor worst
case cost but good average case cost. For quickselect, finding the d largest entries in
a column of length n has worst case cost O(n2) but average case cost O(n). This
means that it is possible for the operation of finding the d largest entries in each
column to have cost total O(n2d). However, for a large problem, if we think of each
column as being randomly ordered, independently of the other columns, then with
high probability the total cost is O(nd). Using this approach the total average case
cost of computing the optimal assignment φ is O(nd+ d3). Clearly each column can
be treated independently in parallel, and if A is a sparse matrix, then the total cost
is O(nf(A) + d3).

To compute the max-plus inverse B⊗−1 we adapt the approach taken in [16,
Appendix A], where the authors present an algorithm for computing max-plus LU
factors. For B ∈ Rd×dmax and π ∈ oas(B), let Pπ ∈ Rd×dmax be the max-plus permutation
matrix with

(26) (Pπ)ij =
{

0 if i = π(j),
−∞ otherwise.

There exist max-plus diagonal matrices2 such that

(27) H = Pπ ⊗D1 ⊗ B ⊗D2

satisfies hij ≤ 0 and hii = 0 for all i, j = 1, . . . , d. We say that H is a Hungarian
scaling of B. The coefficients of the diagonal scaling matrices are given by the dual
variables in the LPP form of the optimal assignment problem. Primal dual algorithms
for computing the optimal assignment of a matrix, like those listed above, will also
produce these scaling coefficients a byproduct. Ordinarily we would need to apply
one of these algorithms to B with worst case cost O(d3), but in this setting we can
use the results from the previous computation applied to A.

To compute the max-plus inverse of B we use the formula

(28) B⊗−1 = D1 ⊗H⊗−1 ⊗D2,

where the entries in the inverse of the Hungarian matrix H can be calculated as
follows. Let G(H) be the graph with vertices {1, . . . , d} and an edge i 7→ j with

1A sparse max-plus matrix is one with many entries equal to minus infinity. If A ∈ Rn×d is a
conventional sparse matrix, then log |A| ∈ Rn×d

max is a sparse max-plus matrix.
2A max-plus diagonal matrix is one whose off-diagonal entries are all equal to minus infinity.
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weight hij whenever hij 6= −∞. Then
(29)(
H⊗−1)

ij
= weight of the maximally weighted path through G(H) from i to j.

Each row of H⊗−1 can be computed by independently using Dijkstra’s algorithm,
with a total worst case cost of O(d3) for a dense matrix.

The total average case cost of Algorithm 3 is therefore O(nd+d3) or O(nf(A)+d3)
in the sparse case. Of course, since quickselect has worst case cost O(n2), Algorithm 3
has worst case cost O(n2d + d3), which is greater than the cost of computing the
statistical leverage scores exactly. However, this worst case cost is extremely unlikely
to be attained in practice unless the problem matrix has been carefully constructed
for this purpose. If we want to minimize the worst case cost at the expense of the
average case cost, we can instead use a heap-based algorithm to select the d largest
entries in each column. This has worst case cost O(n log(d) per column and results
in a total worst case cost of O(nd log(d) + d3) or O(nf(A) log(d) + d3) in the sparse
case. This approach results in a two-pass algorithm which is also appealing.

5.1. Max-plus statistical leverage score approximation algorithm. To
compute the max-plus statistical leverage score approximation (23) for a complex
matrix A ∈ Cn×d, we need to compute the full matrix of obligated permanents R ∈
Rn×dmax , with rij = perm(log |A|, j 7→ i). LetA = log |A|, let φ be an optimal assignment
of A, and let B = A([φ(1), . . . , φ(d)], [1, . . . , d]). Then from Lemma 2.6, we have

rij = aij +
(
B⊗−1 ⊗ 0

)
j

+ perm(A)

for all i such that row i is unassigned by φ and for all j = 1, . . . , d. Computing
perm(A) and B⊗−1 as described above, the total cost of computing the obligated
permanents for all of the unassigned rows is O(nnz(A) + d3).

Lemma 2.6 does not apply to assigned rows, so we must treat these separately.
Note that the (i, j)-obligated permanent of a tall skinny n×d matrix can only depend
on the (i, j) entry and the remaining d + 1 largest entries in each column (one more
than for the basic permanent). As before we use quickselect to form the sparse matrix
containing only the d+1 largest entries in each column, and then compute the optimal
assignment of this matrix using the successive shortest paths algorithm. The obligated
permanents are then computed using the approach taken in [16, Appendix A]. First we
augment the associated bipartite graph with respect to the optimal assignment. Then,
for each assigned row i, we calculate all of the (i, j)-obligated permanents through a
single application of Dijkstra’s algorithm, with an initial weight of zero on the ith row
vertex. The total cost of computing the obligated permanents for the assigned rows
in this way is O(nnz(A) + d3).

The max-plus statistical leverage score approximation is then a simple function of
the obligated permanents. See Algorithm 2. The total cost of computing the max-plus
statistical leverage score approximation is O(nnz(A) + d3).

Conclusion. We presented a max-plus algebraic analogue of statistical leverage
scores. We showed that these scores could be used to calculate the exact asymptotic
behavior of the statistical leverage scores of an RBFN matrix. We also showed how
the max-plus scores could be used to approximate the scores of a conventional ma-
trix. This approximation could be useful in practice since the max-plus scores can
be computed very quickly. However, it is clear from our experiments that while the
max-plus approximation given in Heuristic 3.1 works very well on randomly generated
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problems, it is unreliable on highly structured problems, which are more typical in ap-
plications. Developing a more reliable alternative approximation method, which still
uses some of the ideas surrounding the max-plus statistical leverage scores, but which
also uses sign information to provide a more reliable approximation, is a promising
avenue for future research.

Algorithm 2 Given a max-plus matrix A ∈ Rn×dmax , compute p(A).

1: compute an optimal assignment φ ∈ oas(A)
2: set B = A([φ(1), . . . , φ(d)], [1, . . . , d])
3: compute B⊗−1

4: set x = B⊗−1 ⊗ 0
5: for i = 1, . . . , n do
6: if i assigned by φ then
7: set pi(A) = 0
8: else
9: set pi(A) = 2(A⊗ x )i

10: end if
11: end for

Algorithm 3 Given a max-plus matrix A ∈ Cn×d, compute q(A).

1: set A = log |A|
2: compute an optimal assignment φ ∈ oas(A)
3: set B = A([φ(1), . . . , φ(d)], [1, . . . , d])
4: compute B⊗−1

5: set x = B⊗−1 ⊗ 0
6: for i = 1, . . . , n do
7: if i assigned by φ then
8: compute Ri,· by Dijkstra’s algorithm
9: else

10: set rij = aij + xj + perm(A) for j = 1. . . . , d
11: end if
12: end for
13: for j = 1, . . . , d do
14: set sj =

√∑n
i=1 exp(2rij)

15: end for
16: for i = 1, . . . , n do
17: set qi =

∑d
j=1(exp(rij)/sj)2

18: end for
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