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Abstract 

This chapter reviews empirical and theoretical results concerning knowledge of causal 

mechanisms—beliefs about how and why events are causally linked. First, we review the effects 

of mechanism knowledge, showing that mechanism knowledge can trump other cues to causality 

(including covariation evidence and temporal cues) and structural constraints (the Markov 

condition), and that mechanisms play a key role in various forms of inductive inference. Second, 

we examine several theories of how mechanisms are mentally represented—as associations, 

forces or powers, icons, abstract placeholders, networks, or schemas—and the empirical 

evidence bearing on each theory. Finally, we describe ways that people acquire mechanism 

knowledge, discussing the contributions from statistical induction, testimony, reasoning, and 

perception. For each of these topics, we highlight key open questions for future research. 

 

Keywords: Causal mechanisms, causal representation, causal learning, causal chains, induction 
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Introduction 

Our causal knowledge not only includes beliefs about which events are caused by other 

events, but also an understanding of how and why those events are related. For instance, when a 

soprano hits an extremely high note, the sound can break a wine glass due to the high frequency 

of the sound waves. Although people may not know the detailed mechanisms underlying this 

relationship (Rozenblit & Keil, 2002), people believe that some mechanism transmits a force 

from the cause to the effect (White, 1989). Likewise, people believe in causal mechanisms 

underlying interpersonal relations (see Hilton, this volume). When Romeo calls to the balcony, 

Juliet comes, and she does so because of her love. When Claudius murders the king, Hamlet 

seeks revenge, because Hamlet is filled with rage. We use mechanisms to reason about topics as 

grand as science (Koslowski, 1996) and morality (Cushman, 2008; see Lagnado & Gerstenberg, 

this volume); and domains as diverse as collision events (Gerstenberg & Tenenbaum, this 

volume; White, this volume) and psychopathology (Ahn, Kim, & Lebowitz, this volume). Causal 

mechanisms pervade our cognition through and through. 

 Indeed, when a person tries to determine the cause of an event, understanding the 

underlying causal mechanism appears to be the primary concern. For instance, when attempting 

to identify the cause of “John had an accident on Route 7 yesterday,” participants in Ahn, Kalish, 

Medin, and Gelman (1995) usually asked questions aimed at testing possible mechanisms (e.g., 

“Was John drunk” or “Was there a mechanical problem with the car?”) rather than which factor 

was responsible for the effect (e.g., “Was there something special about John?” or “Did other 

people also have a traffic accident last night?”). 

 In this chapter, we describe the state of current research on mechanism knowledge. After 

defining terms, we review the effects of mechanism knowledge. We summarize studies showing 
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(1) that mechanism knowledge can trump other important cues to causality, and (2) that 

mechanism knowledge is critical for inductive inference. Next, we examine how mechanisms 

might be mentally represented, and summarize the empirical evidence bearing on each of several 

approaches. We then turn to how mechanisms are learned, parsing the contributions from 

statistical induction, testimony, reasoning, and perception. For each of these broad topics, we 

discuss potential avenues of future research. 

What is a Causal Mechanism? 

 A causal mechanism is generally defined as a (i) system of physical parts or abstract 

variables that (ii) causally interact in systematically predictable ways so that their operation can 

be generalized to new situations (e.g., Glennan, 1996; Machamer, Darden, & Craver, 2000). We 

use the term mechanism knowledge to refer to a mental representation of such a system. 

 Mechanism knowledge is critical in cognition because we use it to understand other 

causal relations (Ahn & Kalish, 2000). Thus, we are motivated to seek out the mechanisms that 

underlie a causal relationship. The mechanism underlying the relation “X caused Y” (e.g., a 

soprano’s singing caused a wine glass to break) will involve constructs other than X and Y (e.g., 

high frequency of the voice), but which can connect those events together. For this reason, 

mechanisms have a close relationship to explanations (Lombrozo, 2010, Lombrozo & Vasilyeva, 

this volume). For instance, the causal relation “Mary was talking on her cell phone and crashed 

into a truck” can be explained through its underlying mechanism, “Mary was distracted and 

didn’t see the red light.” However, because causal knowledge is organized hierarchically 

(Johnson & Keil, 2014; Simon, 1996), this entire causal system could be embedded into a larger 

system such that more specific events might act as mechanisms underlying more general events. 

That is, “Mary was talking on her cell phone and crashed into a truck” might be a mechanism 
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underlying “Mary’s driving caused a traffic accident,” which in turn might be a mechanism 

underlying “Mary caused delays on I-95,” and so on. Thus, mechanism knowledge is not merely 

a belief about what caused some event, but a belief about how or why that event was brought 

about by its cause, which can itself be explained in terms of another underlying mechanism, ad 

infinitum. Although we adopt this understanding of mechanism as a working definition, other 

factors such as the organization of memory appear to play a role in how mechanism knowledge 

is used and in what counts as a mechanism (Johnson & Ahn, 2015). We discuss some of these 

factors later in this chapter (see “Representing Mechanism Knowledge”). 

 The term ‘mechanism’ has also been used in several other ways in the literature, which 

are somewhat different from our use. First, the term ‘mechanistic explanation’ is used to refer to 

backward-looking explanations (e.g., the knife is sharp because Mark filed it), as opposed to 

forward-looking, teleological explanations (the knife is sharp because it is for cutting; Lombrozo, 

2010). However, this distinction does not map onto our sense of mechanism, because teleological 

explanations can often be recast in mechanistic terms, in terms of causally interacting variables 

(e.g., the knife is sharp because human agents wanted to fashion a sharp object, and forging a 

sharp piece of metal was the best way to accomplish this goal; Lombrozo & Carey, 2006).  

 Second, some have argued that our knowledge of mechanisms underlying two causally 

related events, say A and B, includes not only the belief that there is a system of causally related 

variables mediating the relationship between A and B (a ‘mechanism’ as defined in the current 

chapter), but also an assumption that a force or causal power is transmitted from A to B (Ahn & 

Kalish, 2000; White, 1989). This is an independent issue because knowledge about a system of 

causally interconnected parts does not have to involve the notion of causal power or force. In fact, 

many of studies reviewed in this chapter demonstrating effects of mechanism knowledge did not 
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test whether the assumptions of causal force are required to obtain such effects. In this chapter, 

we separate these two issues when defining mechanism knowledge. Thus, our discussion of the 

effects of mechanism knowledge does not take a position on the debate concerning causal force, 

and our discussions of how people represent and learn mechanisms do not beg the question 

against statistical theories. 

Using Mechanism Knowledge 

 A major purpose of high-level cognition is inductive inference—predicting the unknown 

from the known. Here, we argue that mechanism knowledge plays a critical role in people’s 

inductive capacities. We describe studies on how mechanism knowledge is used in a variety of 

inductive tasks, including causal inference, category formation, category-based induction, and 

probability judgment. 

Mechanisms and Causal Inference 

 David Hume (1977/1748) identified two cues as critical to identifying causal 

relationships—covariation (the cause and effect occurring on the same occasions more often than 

would be expected by chance) and temporal contiguity (the cause and effect occurring close 

together in time). Both of these factors have received considerable empirical attention in recent 

years, and it has become increasingly clear that neither of these cues acts alone, but rather in 

conjunction with prior knowledge of causal mechanisms. In this section, we first describe how 

mechanism knowledge influences the interpretation of covariation information. We then describe 

how mechanism knowledge can result in violations of the Causal Markov Condition, a key 

assumption to modern Bayesian approaches to causal inference. Finally, we review evidence that 

even the seemingly straightforward cue of temporal contiguity is influenced in a top-down 

manner by mechanism knowledge.  
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 Covariation. Scientists must test their hypotheses using statistical inference. To know 

whether a medical treatment really works, or a genetic mutation really has a certain effect, or a 

psychological principle really applies, one must test whether the cause and effect are statistically 

associated. This observation leads to the plausible conjecture that laypeople’s everyday causal 

reasoning also depends on an ability to test for covariation between cause and effect.  

 But consider the following (real) research finding from medical science (Focht, Spicer, & 

Fairchok, 2002): Placing duct tape over a wart made it disappear in 85% of the cases (compared 

to 60% of cases receiving more traditional cryotherapy). Despite the study’s experimental 

manipulation and statistically significant effect, people may still be doubtful that duct tape can 

remove warts because they cannot think of a plausible mechanism underlying the causal 

relationship. In fact, the researchers supplied a mechanism: the duct tape irritates the skin, which 

in turn stimulates an immune system response, which in turn wipes out the viral infection that 

had caused the wart in the first place. Given this mechanism information, people would be far 

likelier to believe this causal link. Thus, even statistically compelling covariation obtained 

through experimental manipulation may not be taken as evidence for a causal link in the absence 

of a plausible underlying mechanism. 
 However, in this example, it could be that the mechanism is supplying ‘covert’ 

covariation information—for example, the mechanism implies covariation between duct tape and 

irritation, irritation and immune response, and immune response and wart recovery, and could 

have thereby conveyed stronger covariation between duct tape and wart recovery. In that case, 

one might argue that there is nothing special about mechanism information other than conveying 

covariation. To empirically demonstrate that mechanism information bolsters causal inferences 

above and beyond the covariation implied by the mechanism, Ahn et al. (1995, Experiment 4) 
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asked a group of participants to rate the strength of the covariation implied by sentences like 

“John does not know how to drive” for “John had a traffic accident.” They then asked a new 

group of participants to make causal attributions for the effect (e.g., the accident), given either 

the mechanism (e.g., John does not know how to drive) or its equivalent covariation (e.g., John is 

much more likely to have a traffic accident than other people are), as rated by the first group of 

participants. Participants were much more inclined to attribute the accident to the target cause 

when given the underlying mechanism, showing that mechanism information has an effect that 

goes beyond covariation. 

 More generally, the interpretation of covariation data is strongly influenced by 

mechanism knowledge. For example, learning about a covariation between a cause and effect has 

a stronger effect on the judged probability of a causal relationship when there is a plausible 

mechanism underlying the cause and effect (e.g., severed break lines and a car accident) than 

when there is not (e.g., a flat tire and a car failing to start; Fugelsang & Thompson, 2000). 

Similarly, both scientists and laypeople are more likely to discount data inconsistent with an 

existing causal theory, relative to data consistent with the theory (Fugelsang, Stein, Green, & 

Dunbar, 2004). Finally, people are more likely to condition on a potential alternative cause when 

interpreting trial-by-trial contingency data, if they are told about the mechanism by which the 

alternative cause operates (Spellman, Price, & Logan, 2001). These effects show that not only 

does mechanism information do something beyond covariation, but that it even constrains the 

way that covariation is used. 

 Structural constraints. Patterns of covariation between variables can be combined into 

larger patterns of causal dependency, represented as Bayesian networks (Pearl, 2000; Rottman & 

Hastie, 2014; Rottman, this volume). For example, if a covariation is known to exist between 
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smoking cigarettes (A) and impairment of lung function (B), and another is known to exist 

between smoking cigarettes (A) and financial burden (C), this can be represented as a causal 

network with an arrow from A to B and an arrow from A to C (a common cause structure). But of 

course, all of these events also have causes and consequences—social pressure causes cigarette 

smoking, impairment of lung function causes less frequent exercise, financial burden causes 

marital stress; and so on, ad infinitum. If we had to take into account all of these variables to 

make predictions about any of them (say, B), then we would never be able to use causal 

knowledge to do anything. The world is replete with too much information for cognition without 

constraints. 

 The key computational constraint posited by Bayesian network theories of causation is 

the Causal Markov Condition (also known as ‘screening off’; Pearl, 2000; Spirtes, Glymour, & 

Scheines, 1993). This assumption allows the reasoner to ignore the vast majority of potential 

variables—to assume that the probability distribution of a given variable is independent of all 

other variables except its direct effects, conditional on its causes. For example, the Markov 

condition tells us, given the causal structure described above for smoking, that if we know that 

Lisa smokes (A), knowing about her lung function (B) doesn’t tell us anything about her potential 

financial burden (C), and vice versa. Because the Markov Condition is what allows reasoners to 

ignore irrelevant variables (here, we can predict B without knowing about C or any of the causes 

of A), it is crucial for inference on Bayesian networks. 

 Alas, people often violate the Markov Condition. Although there appear to be a number 

of factors at play in these violations, including essentialist (Rehder & Burnett, 2005) and 

associationist (Rehder, 2014) thinking, one critical factor is mechanism knowledge (Park & 

Sloman, 2013, 2014). In common cause structures such as the smoking example above (smoking 
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leading to lung impairment and financial burden) where each causal link relies on a different 

mechanism, people do tend to obey the Markov Condition. That is, when asked to judge the 

probability of lung impairment given that a person smokes, this judgment is the same as when 

asked to judge the probability of lung impairment given that a person smokes and has a financial 

burden. But when the links rely on the same mechanism (e.g., smoking leading to lung 

impairment and to blood vessel damage), people robustly violate the Markov condition. When 

asked to judge the probability of lung impairment given that a person smokes, this judgment is 

lower than when asked to judge the probability of lung impairment given that a person smokes 

and has blood vessel damage. 

 This effect is thought to occur because participants use mechanism information to 

elaborate on the causal structure, interpolating the underlying mechanism into the causal graph 

(Park & Sloman, 2013). So, when the link between A and B depends on a different mechanism 

than the link between A and C, the resulting structure would involve two branches emanating 

from A, namely AàM1àB and AàM2àC. In Lisa’s case, cellular damage might be the 

mechanism mediating smoking and lung impairment, but cigarette expenditures would be the 

mechanism mediating smoking and financial burden. Thus, knowing about C (Lisa’s financial 

burden) triggers an inference about M2 (cigarette expenditures), but this knowledge has no effect 

on B (lung impairment) given that A (smoking) is known—the Markov condition is respected. 

But when the link between A and B depends on the same mechanism as the link between A and 

C, the resulting structure would be a link from A to M1, and then from M1 to B and to C—so, in 

effect, the mechanism M1 is the common cause, rather than A. That is, cellular damage might be 

the mechanism mediating the relationship between smoking and lung impairment and the 

relationship between smoking and blood vessel damage. Thus, knowing about C (blood vessel 
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damage) triggers an inference about M1 (cellular damage), and this knowledge has an effect on B 

(lung impairment) even if A (smoking) is known. Mechanism knowledge therefore not only 

affects the interpretation of covariation information, but also the very computational principles 

used to make inferences over systems of variables. 

 Temporal cues. According to the principle of temporal contiguity, two events are more 

likely to be causally connected if they occur close together in time. This idea has considerable 

empirical support (e.g., Lagnado & Sloman, 2006; Michotte, 1963/1946), and at least in some 

contexts, temporal contiguity appears to be used more readily than covariation in learning causal 

relations (Rottman & Keil, 2012; White, 2006). The use of temporal contiguity was long taken as 

a triumph for associationist theories of causal inference (Shanks, Pearson, & Dickinson, 1989), 

because longer temporal delays are associated with weaker associations in associationist learning 

models. 

 Yet, people’s use of temporal cues appears to be more nuanced. People are able to 

associate causes and effects that are very distant in time (Einhorn & Hogarth, 1986). For 

example, a long temporal gap intervenes between sex and birth, between smoking and cancer, 

between work and paycheck, and between murder and prison. Why is it that the long temporal 

gaps between these events do not prevent us from noticing these causal links?  

 A series of papers by Buehner and colleagues documented top-down influences of causal 

knowledge on the use temporal contiguity (see Buehner, this volume). When participants expect 

a delay between cause and effect, longer delays have a markedly smaller deleterious effect on 

causal inference (Buehner & May, 2002, 2003), suggesting some knowledge mediation. In fact, 

when temporal delay is de-confounded with contingency, the effect of temporal delay can be 

eliminated altogether by instructions that induce the expectation of delay (Buehner & May, 
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2004). Most dramatically, some experiments used unseen physical causal mechanisms, which 

participants would believe to take a relatively short time to operate (a ball rolling down a steep 

ramp, hidden from view) or a long time to operate (a ball rolling down a shallow ramp). Under 

such circumstances, causal judgments were facilitated by longer delays between cause and 

effect, when the mechanism was one which would take a relatively long time to operate 

(Buehner & McGregor, 2006). Although older (9- to 10-year-old) children can integrate such 

mechanism cues with temporal information, younger (4- to 8-year-old) children continued to be 

swayed by temporal contiguity, suggesting that the relative priority of causal cues undergoes 

development (Schlottmann, 1999). Thus, when people can apply a mechanism to a putative 

causal relationship, they adjust their expectations about temporal delay so as to fit their 

knowledge of that mechanism. 

Mechanisms and Induction 

 The raison d’être for high-level cognition in general, and for causal inference in 

particular, is to infer the unknown from the known—to make predictions that will usefully serve 

the organism through inductive inference (Murphy, 2002; Rehder, this volume a, b). In this 

section, we give several examples of ways that mechanism knowledge is critical to inductive 

inference. 

 Categories are a prototypical cognitive structure that exists to support inductive inference. 

We group together entities with similar known properties, because those entities are likely to also 

share similar unknown properties (Murphy, 2002). Mechanism knowledge influences which 

categories we use. In a study by Hagmayer, Meder, von Sydow, and Waldmann (2011), 

participants learned the contingency between molecules and cell death. Molecules varied in size 

(large or small) and color (white or grey). While large white (11) molecules always led to cell 
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death and small grey (00) molecules never did, small white (01) and large grey (10) ones led to 

cell death 50% of the time. That is, 01 and 10 were equally predictive of cell death. However, 

prior to this contingency learning, some participants learned that molecule color was caused by a 

genetic mutation. Participants used this prior causal history to categorize small white molecules 

(01) with large white (11) molecules, which always resulted in cell death. Consequently, these 

participants judged that small white molecules (01) were much more likely to result in cell death 

than large grey molecules (10), even though they observed both probabilities to be 50%. The 

opposite pattern was obtained when participants learned that genetic mutation caused molecules 

to be large.  

Critically, this effect of prior categorization on subsequent causal learning depended on 

the type of underlying mechanism. Note that most people would agree that genetic mutations 

affect deeper features of molecules, which not only affects surface features such as color of 

molecules, but also can affect likelihood of cell death. Thus, the initial category learning based 

on the cover story involving genetic mutations provided a mechanism, which could affect later 

causal judgments involving cell death. In a subsequent experiment, however, the cover story 

used for category learning provided an incoherent mechanism. Participants learned that the 

variations in color (or size) were due to atmospheric pressure, which would be viewed as 

affecting only the surface features. Despite identical learning situations, participants provided 

with mechanism information that were relevant only to surface features did not distinguish 

between 10 and 01 in their causal judgments; their judgments stayed close to 50%. Thus, 

Hagmayer et al. (2011) showed that prior learning of categorization affects subsequent causal 

judgments only when the categorization involves mechanisms that would be relevant to the 

content of the causal judgments (see also Waldmann & Hagmayer, 2006 for related results). 
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More generally, people are likely to induce and use categories that are coherent (Murphy 

& Allopenna, 1994; Rehder & Hastie, 2004; Rehder & Ross, 2001). A category is coherent to the 

extent that its features ‘go together’, given the reasoner’s prior causal theories (Murphy & 

Medin, 1985). For example, “lives in water, eats fish, has many offspring, and is small” is a 

coherent category, because one can think of a causal mechanism that unifies these features, 

supplying the necessary mechanism knowledge; in contrast, “lives in water, eats wheat, has a flat 

end, and is used for stabbing bugs” is an incoherent category because it is difficult to supply 

mechanisms that could unify these features in a single causal theory (Murphy & Wisniewski, 

1989). Categories based on a coherent mechanism are easier to learn (Murphy, 2002), more 

likely to support the extension of properties to new members (Rehder & Hastie, 2004), and 

require fewer members possessing a given property to do so (Patalano & Ross, 2007). 

 Mechanism knowledge also influences category-based induction, or the likelihood of 

extending features from one category to another (see Heit, 2000 for a review). If the mechanism 

explaining why the premise category has a property is the same as the mechanism explaining 

why the conclusion category might have the property, then participants tend to rate the 

conclusion category as very likely having that property (Sloman, 1994). For example, 

participants found the following argument highly convincing: 

 Hyundais have tariffs applied to them; therefore, 

 Porsches have tariffs applied to them. 

That is, the reason that Hyundais have tariffs applied to them is because they are foreign cars, 

which would also explain why Porsches have tariffs applied to them. So, the premise in this case 

strongly supports the conclusion. In contrast, one may discount the likelihood of a conclusion 

when the premise and conclusion rely on different mechanisms, such as: 
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 Hyundais are usually purchased by people 25 years old and younger; therefore, 

 Porsches are usually purchased by people 25 years old and younger. 

In this case, the reason that Hyundais are purchased by young people (that Hyundais are 

inexpensive and young people do not have good credit) does not apply to Porsches (which might 

be purchased by young people because young people like fast cars). Because the premise 

introduces an alternative explanation for the property, people tend to rate the probability of the 

conclusion about Porsches lower when the premise about Hyundais is given, compared to when 

it is not given—an instance of the discounting or explaining-away effect (Kelley, 1973). These 

results show that mechanism knowledge can moderate the likelihood of accepting an explanation 

in the presence of another explanation.  

Ahn and Bailenson (1996) further examined the role of mechanism knowledge in the 

discounting and conjunction effects. In the discounting effect (Kelley, 1973), people rate the 

probability P(B) of one explanation higher than its conditional probability given another 

competing explanation, P(B|A). In the conjunction effect (Tversky & Kahneman, 1983), people 

rate the probability of a conjunctive explanation, P(A&B), higher than its individual constituents 

such as P(A). The two effects may appear contradictory because the discounting effect seems to 

imply that one explanation is better than two, whereas the conjunction effect seems to imply that 

two explanations are better than one. Yet, Ahn and Bailenson (1996) showed that both 

phenomena turn on mechanism-based reasoning, and can occur simultaneously with identical 

events. For example, consider the task of explaining why Kim had a traffic accident. Further 

suppose that a reasoner learns that Kim is nearsighted. Given this explanation, a reasoner can 

imagine Kim having a traffic accident due to her nearsightedness. Note that to accept this 

explanation, one has to imagine that Kim’s nearsightedness is severe enough to cause a traffic 
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accident even under normal circumstances. Once such a mechanism is established, another 

explanation, “There was a severe storm,” would be seen as less likely because Kim’s 

nearsightedness is already a sufficient cause for a traffic accident. Thus, the second cause would 

be discounted. However, consider a different situation where both explanations are presented as 

being tentative and to be evaluated simultaneously. Thus, one is to judge the likelihood that Kim 

had a traffic accident because she is nearsighted and there was a severe storm. In this case, a 

reasoner can portray a slightly different, yet coherent mechanism where Kim’s (somewhat) poor 

vision coupled with poor visibility caused by a storm would have led to a traffic accident. Due to 

this coherent mechanism, the reasoner would be willing to accept the conjunctive explanation as 

highly likely—even as more likely than either of its conjuncts individually. That is, the 

discounting effect occurs because a reasoner settles in on a mechanism that excludes a second 

explanation, whereas the conjunction effect occurs because a reasoner can construct a coherent 

mechanism that can incorporate both explanations.  

In addition to demonstrating simultaneous conjunction and discounting effects, Ahn and 

Bailenson (1996) further showed that these effects do not occur when explanations are purely 

covariation-based—that is, when the explanations indicate positive covariation between a 

potential cause and effect without suggesting any underlying mechanism mediating their 

relationship. For instance, the explanations “Kim is more likely to have traffic accidents than 

other people are” and “traffic accidents were more likely to occur last night than on other nights” 

resulted in neither conjunction nor discounting effects. This pattern of results indicates that both 

discounting and conjunction effects are species of mechanism-based reasoning. 

Open Questions 
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These studies demonstrate a variety of ways that mechanism knowledge pervades our 

inductive capacities, but mechanism knowledge could affect induction in yet other ways. Beyond 

covariation, structural constraints, and temporal cues, might other cues to causality be affected 

by the nature of the underlying mechanisms? For instance, might the results of interventions be 

interpreted differently given different mechanisms? Might mechanism knowledge modulate the 

relative importance of these various cues to causality? 

There are also open questions about how mechanisms are used in induction. Given the 

tight link between mechanisms and explanation, what role might mechanisms play in inference 

to the best explanation, or abductive inference (Lipton, 2004; Lombrozo, 2012)? To what extent 

do different sorts of inductive problems (Kemp & Jern, 2013) lend themselves more to 

mechanism-based versus probability-based causal reasoning (see also Lombrozo, 2010)? Are 

there individual differences in the use of mechanisms? For instance, given that mechanisms 

underlie surface events, could people who are more intolerant of ambiguity or more in need of 

cognitive closure be more motivated to seek them out? Could people who are high in creativity 

be more capable of generating them, and more affected by them as a result? Finally, although we 

could in principle keep on asking “why” questions perpetually, we eventually settle for a given 

level of detail as adequate. What determines this optimal level of mechanistic explanation? 

Representing Causal Mechanisms 

 In the previous section, we described several of the cognitive processes that use 

mechanism knowledge. Here, we ask how mechanism knowledge is mentally represented 

(Markman, 1999). That is, what information do we store about mechanisms, and how do 

different mechanisms relate to one another in memory? We consider six possible representational 

formats—associations, forces or powers, icons, abstract placeholders, networks, and schemas. 
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Associations 

 According to associationist theories of causality, learning about causal relationships is 

equivalent to learning associations between causes and effects, using domain-general learning 

mechanisms that are evolutionarily ancient and used in other areas of causation (Shanks, 1987; 

Le Pelley, Griffiths, & Beesley, this volume). Thus, causal relations (including mechanism 

knowledge) would be represented as an association between two classes of events, akin to the 

stored result of a statistical significance test, so that one event would lead to the expectation of 

the other. This view is theoretically economical, in that associative learning is well-established 

and well-understood in other domains and in animal models. Further, associative learning can 

explain many effects in trial-by-trial causal learning experiments, including effects of 

contingency (Shanks, 1987) and delay (Shanks, Pearson, & Dickinson, 1989). 

 However, hard times have fallen on purely associative theories of causation. Because 

these theories generally do not distinguish between the role of cause and effect, they have 

difficulty accounting for asymmetries in predictive and diagnostic causal learning (Waldmann, 

2000; Waldmann & Holyoak, 1992). Further, these theories predict a monotonic decline in 

associative strength with a delay between cause and effect, yet this decline can be eliminated or 

even reversed with appropriate mechanism knowledge (Buehner & May, 2004; Buehner & 

McGregor, 2006). Although associative processes are likely to play some role in causal 

reasoning and learning (e.g., Rehder, 2014), causal learning appears to go beyond mere 

association.  

 There are also problems with associations as representations of mechanism knowledge. 

One straightforward way of representing mechanism knowledge using associations is to 

represent causal relations among sub-parts or intermediate steps between cause and effect using 
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associations. Thus, association between cause and effect would consist of associations between 

the cause and first intermediate step, the first intermediate step and second intermediate step, and 

so on, while the overall association between cause and effect remain the same. This approach to 

mechanisms may be able to account for some effects of mechanism knowledge described earlier. 

For example, to account for why people believe more strongly in a causal link given a plausible 

mechanism for observed covariation (Fugelsang & Thompson, 2000), an advocate of 

associationism can argue that the mechanism conveys additional associative strength. 

 However, other effects of mechanism knowledge described earlier seem more 

challenging to the associationist approach. Ahn et al. (1995; Experiment 4) equated the 

covariation or association conveyed by the mechanism statements and the covariation statements, 

but participants nonetheless gave stronger causal attributions given the mechanism statements 

than covariation statements. Likewise, it is unclear on the associationist approach why 

conjunction and discounting effects are not obtained given purely covariational statements (Ahn 

& Bailenson, 1996) or why mechanism knowledge influences which categories we induce, given 

identical learning data (Hagmayer et al., 2011). 

Forces and Powers 

 The associationist view contrasts most strongly with accounts of causal mechanisms in 

terms of forces (Talmy, 1988; Wolff, 2007) or powers (Harré & Madden, 1975; White, 1988, 

1989). The intuition behind these approaches is that causal relations correspond to the operation 

of physical laws, acting on physical objects (Aristotle, 1970; Harré & Madden, 1975) or through 

physical processes (Dowe, 2000; Salmon, 1984; see also Danks, this volume). For example, 

Dowe (2000) argued that causal relations occur when a conserved quantity, such as energy, is 

transferred from one entity to another. This idea is broadly consistent with demonstrations that 
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people often identify visual collision events as causal or non-causal in ways concordant with the 

principles of Newtonian mechanics, such as conservation of momentum (Michotte, 1963/1946). 

Indeed, even young children seem to be sensitive to physical factors such as transmission in their 

causal reasoning (Bullock, Gelman, & Baillargeon, 1982; Shultz, Fisher, Pratt, & Rulf, 1986). 

 The force dynamics theory (Talmy, 1988; Wolff, 2007; Wolff, this volume) fleshes out 

these intuitions by representing causal relations as combinations of physical forces, modeled as 

vectors. On this theory, the causal affector (the entity causing the event) and patient (the entity 

operated on by the agent) are both associated with force vectors, indicating the direction of the 

physical or metaphorical forces in operation. For example, in a causal interaction between a fan 

and a toy boat, the fan would be the affector and the toy boat would be the patient, and both 

entities would have a vector indicating the direction of their motion. These forces as well as any 

other forces in the environment would combine to yield a resultant vector; e.g., the boat hits an 

orange buoy. On Wolff’s (2007) theory, the affector causes a particular endstate to occur if (a) 

the patient initially does not have a tendency toward that endstate, but (b) the affector changes 

the patient’s tendency, and (c) the endstate is achieved. For instance, the fan caused the boat to 

hit the buoy because (a) the boat was not initially headed in that direction, but (b) the fan 

changed the boat’s course, so that (c) the boat hit the buoy. This sort of force analysis has been 

applied to several phenomena in causal reasoning, including semantic distinctions among causal 

vocabulary (cause, enable, prevent, despite; Wolff, 2007); the chaining of causal relations (e.g., 

A preventing B and B causing C; Barbey & Wolff, 2007); causation by omission (Wolff, Barbey, 

& Hausknecht, 2010); and direct versus indirect causation (Wolff, 2003).  

 A related physicalist approach is the causal powers theory (Harré & Madden, 1975; 

White, 1988, 1989). On this view, people conceptualize particulars (objects or persons) as 
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having dispositional causal properties, which operate under the appropriate releasing conditions. 

These properties can be either causal powers (capacities to bring about effects) or liabilities 

(capacities to undergo effects). For example, a hammer might strike a glass watch face, causing it 

to break (Einhorn & Hogarth, 1986). In this case, the hammer has a power to bring about 

breaking, and the glass has the liability to be broken. (See White, 2009b for a review of many 

studies consistent with the notion that causal relations involve transmission of properties among 

entities.) People then make causal predictions and inferences based on their knowledge of the 

causal powers and liabilities of familiar entities.  

 These physicalist theories capture a variety of intuitions and empirical results concerning 

causal thinking (see Waldmann & Mayrhofer, in press), and any complete theory of causal 

mechanisms is responsible for accounting for these phenomena. However, these theories are 

compatible with many different underlying representations. In the case of force dynamics, the 

vector representations are highly abstract and apply to any causal situation. That is, this theory 

does not posit representations for specific mechanisms in semantic memory, and therefore 

mechanism representations could take one of many formats. In the case of causal powers theory, 

the reasoner must represent properties of particular objects, which in combination could lead to 

representations of specific mechanisms. However, these property representations could 

potentially take several different representational formats, including icons and schemas (see 

below). Thus, although force and power theories certainly capture important aspects of causal 

reasoning, they do not provide a clear answer to the question of how mechanisms are mentally 

represented. 

Icons 
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 A related possibility is that people represent causal mechanisms in an iconic or image-

like format. For example, when using mechanism knowledge to think about how a physical 

device works, the reasoner might mentally simulate the operation of the machine using mental 

imagery. More generally, people might store mechanism knowledge in an iconic format 

isomorphic to the physical system (Barsalou, 1999)—a view that sits comfortably with the 

physicalist theories described above. (Goldvarg & Johnson-Laird, 2001 propose a different, 

broadly iconic view of causal thinking based on mental models; see also Johnson-Laird & 

Khemlani, this volume.) 

 Forbus’s (1984) qualitative process theory is an artificial intelligence theory of this style 

of reasoning. Qualitative process theory is designed to solve problems such as whether a bathtub 

will overflow, given the rate of water flowing out the faucet, the rate of drainage, and the rate of 

evaporation. This theory is ‘qualitative’ in the sense that it compares quantities and stores the 

direction of change, but does not reason about exact quantities. In this way, it is supposed to be 

similar to how humans solve these problems. 

 However, even if qualitative process theory accurately characterizes human problem 

solving processes, it is unclear whether these processes rely on mental representations that are 

propositional or image-like; after all, qualitative process theory itself is implemented in a 

computer programming language, using propositional representations. Several experimental 

results have been taken to support image-like representations (see Hegarty, 2004 for a review). 

First, when solving problems about physical causal systems (such as diagrams of pulleys or 

gears), participants who think aloud are likely to make gestures preceding their verbal 

descriptions, suggesting that spatial reasoning underlies their verbalizations (Schwartz & Black, 

1996). Second, solving problems about physical causal systems (such as diagrams of pulleys or 
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gears) appears to rely on visual ability but not verbal ability. Performance on such problems is 

predicted by individual differences in spatial ability but not in verbal ability (Hegarty & Sims, 

1994), and dual-task studies reveal interference between mechanical reasoning and maintenance 

of a visual working memory load but not a verbal working memory load (Sims & Hegarty, 

1997). 

 It is an open question whether people run image-like mental simulations even when 

reasoning about causal processes that are less akin to physical systems, but some indirect support 

exists. For instance, asymmetries in cause-to-effect versus effect-to-cause reasoning suggest that 

people may use simulations. Tversky and Kahneman (1981) showed that people rate the 

conditional probability of a daughter having blue eyes given that her mother has blue eyes to be 

higher than the conditional probability of a mother having blue eyes given that the daughter has 

blue eyes. If the base rates of mothers and daughters having blue eyes are equal, these 

probabilities should be the same, but people appear to err because they make higher judgments 

when probability ‘flows’ with the direction of causality (for similar findings, see Fernbach, 

Darlow, & Sloman, 2010, 2011; Medin, Coley, Storms, & Hayes, 2003; Pennington & Hastie, 

1988). While these results do not necessitate image-like representations, they do speak in favor 

of simulation processes, as forward simulations appear to be more easily ‘run’ than backward 

simulations, just as films with a conventional narrative structure are more readily understood 

than films like Memento in which the plot unfolds in reverse order. 

 However, other arguments and evidence suggest that these results may be better 

understood in terms of non-iconic representations. First, a number of researchers have argued 

that there are fundamental problems with iconic representations. Pylyshyn (1973) argues, for 

example, that if we store iconic representations and use them in the same way that we use visual 
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perception, then we need a separate representational system to interpret those icons, just as we 

do for vision. Rips (1984) criticizes mental simulation more generally, pointing out that the sort 

of mental simulation posited by AI systems in all but the simplest cases is likely to be beyond the 

cognitive capacity of human reasoners. Reasoning about turning gears is one thing, but 

Kahneman and Tversky (1982) claim that people use mental simulation to assess the 

probabilities of enormously complex causal systems, such as geopolitical conflict. Clearly, the 

number and variety of causal mechanisms at play for such simulations is beyond the ken of even 

the most sophisticated computer algorithms, much less human agents. In Rips’s view, rule-based 

mechanisms are far more plausible candidates for physical causal reasoning. According to both 

Pylyshyn and Rips, then, the phenomenology of mental simulation may be epiphenomenal. 

 There is also empirical evidence at odds with iconic representations of mechanisms. For 

example, Hegarty (1992) gave participants diagrams of systems of pulleys, and asked them 

questions such as “if the rope is pulled, will pulley B turn clockwise or counterclockwise?” 

Response times were related to the number of components between the cause (here, the rope) and 

effect (pulley B). While this result is broadly consistent with the idea of mental simulation, it 

suggests that people simulate the system piecemeal rather than simultaneously (as one might 

expect for a mental image or ‘movie’). More problematically, participants seem to be self-

inconsistent when all parts are considered. In a study by Rips and Gentner (reported in Rips, 

1984), participants were told about a closed room containing a pan of water. They were asked 

about the relations between different physical variables (such as air temperature, evaporation 

rate, and air pressure)—precisely the sort of inferences that mental simulations (such as those 

proposed by qualitative process theory) are supposed to be used for. The researchers found that 

people not only answered these questions inconsistently with the laws of physics, but even made 
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intransitive inferences. That is, participants very frequently claimed that a variable X causes a 

change in variable Y, which in turn causes a change in variable Z, but that X does not cause a 

change in Z—an intransitive inference. Such responses should not be possible if people are 

qualitatively simulating the physical mechanisms at work: Even if their mechanism knowledge 

diverges from the laws of physics, it should at least be internally consistent. (Johnson and Ahn 

(2015) review several cases where causal intransitivity can be normative, but none of these cases 

appear to be relevant to the stimuli used in the Rips and Gentner study). These results are more 

consistent with a schema view of mechanism knowledge (see below). 

 In sum, while studies of physical causal reasoning provide further evidence that causal 

thinking and mechanism knowledge in particular are used widely across tasks, they do not seem 

to legislate strongly in favor of iconic representations of mechanism knowledge. These results 

do, however, provide constraints on what representations could be used for mechanism-based 

reasoning. 

Placeholders 

 A fourth representational candidate is a placeholder or reference pointer. On this view, 

people do not have elaborate knowledge about causal mechanisms underlying causal relations, 

but instead have a placeholder for a causal mechanism. That is, people would believe that every 

causal relation has an (unknown) causal mechanism, yet in most cases would not explicitly 

represent the content. (See Keil, 1989; Kripke, 1980; Medin & Ortony, 1989; Putnam, 1975 for 

the original ideas involving conceptual representations; and see Pearl, 2000 for a related, formal 

view.) 

 The strongest evidence for this position comes from metacognitive illusions, where 

people consistently overestimate their knowledge about causal systems (Rozenblit & Keil, 2002). 
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In a demonstration of the illusion of explanatory depth (IOED), participants were asked to rate 

their mechanistic knowledge of how a complex but familiar artifact operates (such as a flush 

toilet). Participants were then instructed to explain in detail how that artifact operates. When 

asked to re-rate their mechanistic knowledge afterwards, ratings were sharply lower, indicating 

that the act of explaining brought into awareness the illusory nature of their mechanistic 

knowledge. Thus, people’s representations of causal mechanisms appear to differ from their 

metarepresentation—people’s representations of mechanisms are highly skeletal and 

impoverished, yet their metarepresentations point to much fuller knowledge. 

 Further, this illusion goes beyond general overconfidence. Although similar effects can 

be found in other complex causal domains (e.g., natural phenomena such as how tides occur), 

people’s knowledge is comparatively well-calibrated in non-causal domains, such as facts (e.g., 

the capital of England), procedures (e.g., how to bake chocolate chip cookies from scratch), and 

narratives (e.g., the plot of Good Will Hunting), although some (more modest) overconfidence 

can be found in these other domains too (Fischhoff, Slovic, & Lichtenstein, 1977). 

 Together, these results suggest that, at least in some cases, people do not store detailed 

representations of mechanisms in their heads, but rather some skeletal details together with a 

metarepresentational placeholder or ‘pointer’ to some unknown mechanism assumed to exist in 

the world. These impoverished representations, together with the robust illusions of their 

richness, are another reason to be suspicious of iconic representations of mechanism knowledge 

(see “Icons” above). To the extent that this is a plausible representational format because it feels 

introspectively right, we should be suspicious that this intuition may be a metacognitive illusion. 

 However, in addition to these metarepresentational pointers or placeholders, people 

clearly do have some skeletal representations of mechanisms. Many of the effects described in 
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earlier sections depend on people having some understanding of the content of the underlying 

mechanisms (e.g., Ahn & Bailenson, 1996; Ahn et al., 1995; Fugelsang & Thompson, 2000). 

And although people’s mechanistic knowledge might be embarrassingly shallow for scientific 

phenomena and mechanical devices, it seems to be more complete for mundane phenomena. For 

instance, people often drink water after they exercise. Why? Because they become thirsty. 

Although the physiological details may elude most people, people surely understand this 

mechanism at a basic, skeletal level. If not as associations, causal powers, or icons, what format 

do these representations take? Below, we consider two possibilities for these skeletal 

representations—causal networks and schemas. 

Networks 

 The idea that causal mechanisms might be represented as networks has recently received 

much attention (e.g., Glymour & Cheng, 1998; Griffiths & Tenenbaum, 2009; Pearl, 2000). 

According to this view, causal relationships are represented as links between variables in a 

directed graph, encoding the probabilistic relationships among the variables and the 

counterfactuals entailed by potential interventions (see Rottman, this volume for more details). 

For example, people know that exercising (X) causes a person to become thirsty (Y), which in 

turn causes a person to drink water (Z). The causal arrows expressed in the graph encode facts 

such as: (1) Exercising raises the probability that a person becomes thirsty (a probabilistic 

dependency); and (2) intervening to make a person exercise (or not exercise) will change the 

probability of thirst (a counterfactual dependency). The relationship between thirst (Y) and 

drinking water (Z) can be analyzed in a similar way. These two relationships can lead a reasoner 

to infer, transitively, a positive covariation between exercise (X) and drinking water (Z), and a 

counterfactual dependence between interventions on exercise and the probability of drinking 
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water (but see “Schemas” below for several normative reasons why causal chains can be 

intransitive). Similarly, the effects of drinking water will also have probabilistic and 

counterfactual relationships to exercise, as will the alternative causes of drinking water, and so 

on. These networks are used in artificial intelligence systems because they are economical and 

efficient ways of storing and reasoning about causal relationships (Pearl, 1988, 2000; Spirtes, 

Glymour, & Scheines, 1993). 

 If causal knowledge is represented in causal networks, then they could be reducible to the 

probabilistic dependencies and counterfactual entailments implied by the network. One 

proponent of this view is Pearl (1988), who argued that our knowledge is fundamentally about 

probabilities, and that causal relationships are merely shorthand for probabilistic relationships 

(though Pearl, 2000 argues for a different view; see “Open Questions” below). If causal relations 

are merely abbreviations of probabilistic relationships, we can define a mechanism for the causal 

relationship XàZ as a variable Y which, when conditioned on, makes the correlation between X 

and Z go to zero (Glymour & Cheng, 1998) so that the Markov condition is satisfied. That is, Y is 

a mechanism for XàZ if P(Z|X) > P(Z|~X), but P(Z|X,Y) = P(Z|~X,Y). The intuition here is the 

same as in mediation analysis in statistics—a variable Y is a full mechanism or mediator if it 

accounts for the entirety of the relationship between X and Z. As an example, Glymour and 

Cheng (p. 295) cite the following case (from Baumrind, 1983): 

The number of never-married persons in certain British villages is highly inversely 
correlated with the number of field mice in the surrounding meadows. [Marriage] was 
considered an established cause of field mice by the village elders until the mechanisms 
of transmission were finally surmised: Never-married persons bring with them a 
disproportionate number of cats. 
 

In this case, the number of cats (Y) would be a mechanism that mediates the relationship between 

marriage (X) and field mice (Z) because there is no longer a relationship between marriage and 
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field mice when marriage is held constant. In the next section, we discuss limitations of 

conceptualizing mechanisms this way after describing the schema format. 

Schemas 

 Finally, mechanism knowledge might be represented in the form of schemas—clusters of 

content-laden knowledge stored in long-term memory. Schemas are critical for inductive 

inference because they are general knowledge that can be used to instantiate many specific 

patterns (Bartlett, 1932; Schank & Abelson, 1977). For example, if Megan tells you about her ski 

trip, you can already fill in a great amount of the detail without her explicitly telling you—you 

can assume, for example, that there was a mountain, that the ground was snowy, that warm 

beverages were available in the lodge, and so on. Causal mechanisms could likewise be 

represented as clusters of knowledge about the underlying causal relations. 

 Like networks, schemas are a more skeletal representation and would not necessarily 

implicate image-like resources. Unlike networks, however, relationships between causally 

adjacent variables would not necessarily be stored together. This is because two causal 

relationships can be ‘accidentally’ united in a causal chain by sharing an event in common, yet 

not belong to the same schema. For example, we have a schema for sex causing pregnancy, and 

another schema for pregnancy causing nausea. But we may not have a schema for the 

relationship between sex and nausea. On the network view discussed above (Glymour & Cheng, 

1998), because these three events are related in a causal chain, pregnancy is a mechanism 

connecting sex and nausea. On the schema view, in contrast, sex and nausea might not even be 

seen as causally related. 

 To distinguish between networks and schemas, Johnson and Ahn (2015) tested people’s 

judgments about the transitivity of causal chains—the extent to which, given that A causes B and 
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B causes C, A is seen as a cause of C. According to the network view, the AàC relationship 

should be judged as highly causal to the extent that AàB and BàC are seen as highly causal. In 

contrast, the schema view implies that AàC would be judged as highly causal only if A and C 

belong to the same schema, even if AàB and BàC are strong. This is exactly what was found. 

For chains that were found in a preliminary experiment to be highly schematized (e.g., Carl 

studied, learned the material, and got a perfect score on the test), participants gave high causal 

ratings to AàB, BàC, and AàC (agreeing that Carl studying caused him to get a perfect score 

on the test). But for chains that were not schematized (e.g., Brad drank a glass of wine, fell 

asleep, and had a dream), participants gave high causal ratings for AàB and BàC, but not for 

AàC (denying that Brad’s glass of wine made him dream). Johnson and Ahn (2015) also ruled 

out several normative explanations for causal intransitivity (e.g., Hitchcock, 2001; Paul & Hall, 

2013). For example, causal chains can be normatively intransitive when the Markov condition is 

violated, but the Markov condition held for the intransitive chains. Similarly, chains can appear 

intransitive if one or both of the intermediate links (AàB or BàC) is probabilistically weak, 

because the overall relation (AàC) would then be very weak. But the transitive and intransitive 

chains were equated for intermediate link strength, so this explanation cannot be correct. 

 The lack of transitive inferences given unschematized causal chains is a natural 

consequence of the schema theory, but is difficult to square with the network theory. When 

assessing whether an event causes another, people often use a ‘narrative’ strategy, rejecting a 

causal relationship between two events if they cannot generate a story leading from the cause to 

the effect using their background knowledge (e.g., Kahneman & Tversky, 1982; Taleb, 2007). 

Hence, if people store AàB and BàC in separate schemas, they could not easily generate a path 

leading from A to C, resulting in intransitive judgments. The very point of the network 
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representation, however, is to allow people to make precisely such judgments—to represent, for 

example, the conditional independence between A and C given B, and the effects of potential 

interventions on A on downstream variables. Indeed, if the network view defines mechanisms in 

terms of such conditional independence relations, then it would require these variables to be 

linked together. Participants’ intransitive judgments, then, are incompatible with network 

representations. 

Open Questions 

 Because the issue of how causal knowledge is represented is a young research topic, we 

think it is fertile ground for further theoretical and empirical work. The greatest challenge 

appears to be understanding how mechanism knowledge can have all the representational 

properties that it does—it has schema-like properties (e.g., causally adjacent variables are not 

necessarily connected in a causal network; Johnson & Ahn, 2015), yet it also has association-like 

properties (e.g., causal reasoning sometimes violates probability theory in favor of associationist 

principles; Rehder, 2014), force-like properties (e.g., vector models capture aspects of causal 

reasoning; Wolff, 2007), icon-like properties (e.g., people have the phenomenology of visual 

simulation in solving mechanistic reasoning problems; Hegarty, 2004), placeholder-like 

properties (e.g., our metarepresentations are far richer than our representations of mechanisms; 

Rozenblit & Keil, 2002), and network-like properties (e.g., people are sometimes able to perform 

sophisticated probabilistic reasoning in accord with Bayesian networks; Gopnik et al., 2004). 

 One view is that Bayesian network theories will ultimately be able to encompass many of 

these representational properties (Danks, 2005). Although one version of the network theory 

equates mechanism knowledge with representing the causal graph (Glymour & Cheng, 1998), 
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other network-based theories might be more flexible (e.g., Griffiths & Tenenbaum, 2009). For 

example, Pearl (2000, p. xv–xvi) writes: 

In this tradition [of Pearl’s earlier book Probabilistic Reasoning in Intelligent Systems 
(1988)], probabilistic relationships constitute the foundations of human knowledge, 
whereas causality simply provides useful ways of abbreviating and organizing intricate 
patterns of probabilistic relationships. Today, my view is quite different. I now take 
causal relationships to be the fundamental building blocks both of physical reality and of 
human understanding of that reality, and I regard probabilistic relationships as but the 
surface phenomena of the causal machinery that underlies and propels our understanding 
of the world. 
 

That is, our causal knowledge might be represented on two levels—at the level of causal graphs 

that represent probabilities and counterfactual entailments, and at a lower level that represents 

the operation of physical causal mechanisms. This view does not seem to capture all of the 

empirical evidence, as the results of Johnson and Ahn (2015) appear to challenge any theory that 

posits representations of causal networks without significant qualifications. Nonetheless, theories 

that combine multiple representational formats and explain the relations among them are needed 

to account for the diverse properties of mechanism knowledge. 

 Another largely open question is where the content of these representations comes from. 

For example, to the extent that mechanism knowledge is stored in a schema format, where do 

those schemas come from? That is, which event categories become clustered together in memory 

and which do not? Little is known about this, perhaps because schema formation is multiply 

determined, likely depending on factors such as spatial and temporal contiguity, frequency of 

encounter, and others. This problem is similar in spirit and difficulty to the problem of why we 

have the particular concepts that we do. Why do we have the concept of “emerald” but not the 

concept of “emeruby” (an emerald before 1997 or a ruby after 1997; Goodman, 1955)? Likewise, 

why do we have a schema for pregnancy and a schema for nausea, but not a schema that 
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combines the two? Although we describe prior research below on how people learn causal 

mechanisms, this existing work does not resolve the issue of where causal schemas come from. 

Learning Causal Mechanisms 

 In this section, we address how mechanism knowledge is learned. Associationist and 

network theories have usually emphasized learning from statistical induction (e.g., Glymour & 

Cheng, 1998). However, these theories can also accommodate the possibility that much or even 

most causal knowledge comes only indirectly from statistical induction. For example, some 

mechanisms could have been induced by our ancestors and passed to us by cultural evolution 

(and transmitted by testimony and education) or biological evolution (and transmitted by the 

selective advantage of our more causally enlightened ancestors). Although the bulk of empirical 

work on the acquisition of mechanisms focused on statistical induction, we also summarize what 

is known about three potential indirect learning mechanisms—testimony, reasoning, and 

perception. 

Direct Statistical Induction 

 If mechanisms are essentially patterns of covariation, as some theorists argue (Glymour 

& Cheng, 1998; Pearl, 1988), then the most direct way to learn about mechanisms is by inducing 

these patterns through statistical evidence. In fact, people are often able to estimate the 

probability of a causal relationship between two variables from contingency data (e.g., Griffiths 

& Tenenbaum, 2005; see also Rottman, this volume). However, mechanisms involve more than 

two variables, and the ability to learn causal relationships from contingency data largely vanishes 

when additional variables are introduced. For instance, in Steyvers, Wagenmakers, Blum, and 

Tenenbaum (2003), participants were trained to distinguish between three-variable common 

cause (i.e., A causes both B and C) and common effect (i.e., A and B both cause C). Although 
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performance was better than chance levels (50% accuracy), it was nonetheless quite poor—less 

than 70% accuracy on average even after 160 trials, with nearly half of participants performing 

no better than chance. (For similar results, see Hashem & Cooper, 1998 and White, 2006.) 

Although people are better able to learn from intervention than from mere observation (Kushnir 

& Gopnik, 2005; Lagnado & Sloman, 2004; Waldmann & Hagmayer, 2005; see also Bramley, 

Lagnado, & Speekenbrink, 2015; Coenen, Rehder, & Gureckis, 2015), they are still quite poor at 

learning multivariable causal structures. In Steyvers et al. (2003), learners allowed to intervene 

achieved only 33% accuracy at distinguishing among the 18 possible configurations of three 

variables (compared to 5.6% chance performance and 100% optimal performance). For the 

complex causal patterns at play in the real world, it seems unlikely that people rely on 

observational or interventional learning of multivariable networks as their primary strategy for 

acquiring mechanism knowledge. 

 Given that people have great difficulty learning a network of only 3 variables when 

presented simultaneously, a second potential learning strategy is piecemeal learning of causal 

networks. That is, instead of learning relations among multiple variables at once, people may 

first acquire causal relationships between two variables, and then combine them into larger 

networks (Ahn & Dennis, 2000; Fernbach & Sloman, 2009). For example, Baetu and Baker 

(2009) found that people who learned a contingency between A and B and between B and C 

inferred an appropriate contingency between A and C, suggesting that participants had used the 

principle of causal transitivity to combine inferences about these disparate links (for similar 

findings, see Goldvarg & Johnson-Laird, 2001; von Sydow, Meder, & Hagmayer, 2009).1 

                                                
1 Although this result may appear to conflict with the results of Johnson and Ahn (2015), which 
demonstrated causal intransitivity in some causal chains, the two sets of findings can be 
reconciled, because Johnson and Ahn (2015) used familiar stimuli for which people could expect 
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Although more work will be necessary to test the boundary conditions on piecemeal construction 

of causal networks (e.g., Johnson & Ahn, 2015), this appears to be a more promising strategy for 

acquiring knowledge of complex causal mechanisms. 

 Learning networks of causal relations from contingency data is challenging, whether 

from observations or from interventions, likely as a result of our computational limits. Hence, it 

seems unlikely that we induce all of our mechanism knowledge from statistical learning (see Ahn 

& Kalish, 2000), even if direct statistical induction plays some role. Where might these other 

beliefs about causal mechanisms come from? 

Indirect Sources of Mechanism Knowledge 

 Much of our mechanism knowledge appears to come not directly from induction over 

observations, but from other sources, such as testimony from other people or explicit education, 

reasoning from other beliefs, and perhaps perception. Although relatively little work has 

addressed the roles of these sources in acquiring mechanism knowledge in particular, each has 

been implicated in causal learning more generally. 

 Testimony and cultural evolution. Much of our mechanism knowledge seems to come 

from family members and peers, from experts, and from formal and informal education. Children 

are famously curious, and renowned for their enthusiasm for asking series of “why” questions 

that probe for underlying mechanisms. Although parents are an important resource in children’s 

learning (e.g., Callanan & Oakes, 1992), parents’ knowledge is necessarily limited by their 

expertise. However, children’s (and adults’) ability to seek out and learn from experts puts them 

                                                                                                                                                       
to have schematized knowledge, whereas Baetu and Baker (2009) used novel stimuli. In 
reasoning about novel stimuli, people would not use a narrative strategy (i.e., trying to think of a 
story connecting the causal events), but would instead use a statistical (Baetu & Baker, 2009) or 
rule-based strategy (Goldvarg & Johnson-Laird, 2001). The lack of schematized knowledge 
would not block transitive inferences under these reasoning strategies.   
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in a position to acquire mechanism knowledge when unavailable from more immediate 

informants (Mills, 2013; Sobel & Kushnir, 2013; Sperber et al., 2010). In particular, children 

have an understanding of how knowledge is distributed across experts (Lutz & Keil, 2002) and 

which causal systems are sufficiently rich or “causally dense” that they would have experts 

(Keil, 2010). 

 Further, the growth of mechanism knowledge not only over ontogeny but over history 

points to powerful mechanisms of cultural evolution (Boyd & Richerson, 1985; Dawkins, 1976). 

Successive generations generate new scientific knowledge and transmit a subset of that 

knowledge to the public and to other scientists. Most experimental and computational work in 

cultural evolution has focused on how messages are shaped over subsequent generations 

(Bartlett, 1932; Griffiths, Kalish, & Lewandowsky, 2008), how languages evolve (Nowak, 

Komarova, & Niyogi, 2001), or how beliefs and rituals are propagated (Boyer, 2001). Less is 

known from a formal or experimental perspective about how cultural evolution impacts the 

adoption of scientific ideas (but see Kuhn, 1962). Nonetheless, it is clear that the succession of 

ideas over human history are guided in large part by a combination of scientific scrutiny and 

cultural selection, and that these forces therefore contribute to the mechanism knowledge that 

individual cognizers bring to bear on the world. 

 Reasoning. Imagine you have done the hard work of understanding the mechanisms 

underlying the circulatory system of elephants—perhaps by conducting observations and 

experiments, or through explicit education. It would be sad indeed if this hard-won mechanism 

knowledge were restricted to causal reasoning about elephants. What about specific kinds of 

elephants? Mammals in general? Particular mammals like zebras? 
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 Beliefs are not informational islands. Rather, we can use reasoning to extend knowledge 

from one domain to another. We can use deductive reasoning to extend our general knowledge 

about elephant circulation ‘forwards’ to African elephant circulation (Johnson-Laird & Byrne, 

1991; Rips, 1994; Stenning & van Lambalgen, 2008; see Oaksford & Chater, this volume and 

Over, this volume). We can use analogical reasoning to extend our knowledge of elephant 

circulation ‘sideways’ to similar organisms like zebras (Gentner & Markman, 1997; Hofstadter, 

2014; Holyoak & Thagard, 1997; see Holyoak & Lee, this volume). And we can use abductive 

reasoning to extend our knowledge ‘backwards’ to mammals (Keil, 2006; Lipton, 2004; 

Lombrozo, 2012; see Lombrozo & Vasilyeva, this volume and Meder & Mayrhofer, this 

volume); indeed, Ahn and Kalish (2000) suggested that abductive reasoning is a particularly 

important process underlying mechanistic causal reasoning. Although these reasoning strategies 

do not always lead to veridical beliefs (e.g., Lipton, 2004; Stenning & van Lambalgen, 2008), 

they seem to do well often enough that they can be productive sources of hypotheses about 

causal mechanisms, and they may be accurate enough to support causal inference in many 

realistic circumstances without exceeding our cognitive limits. 

 Perception. Intuitively, we sometimes seem to learn mechanisms from simply watching 

those mechanisms operate in the world (see White, this volume). For example, you might 

observe a bicycle in operation, and draw conclusions about the underlying mechanisms from 

these direct observations. Indeed, much evidence supports the possibility that people can visually 

perceive individual causal relations (Michotte, 1963/1946; Rolfs, Dambacher, & Cavanagh, 

2013; see White, 2009a for a review and Rips, 2011 for a contrary view). Haptic experiences 

may also play a role in identifying causal relations (White, 2012, 2014; Wolff & Shepard, 2013). 

Just as people seem to learn about individual causal relationships from statistical information and 



 38 

combine them together into more detailed mechanism representations (Ahn & Dennis, 2000; 

Fernbach & Sloman, 2009), people may likewise be able to learn about individual causal events 

from visual experience, and combine these into larger mechanism representations. 

 However, we should be cautious in assuming that we rely strongly on perceptual learning 

for acquiring mechanism knowledge, because little work has addressed this question directly and 

people are susceptible to metacognitive illusions (Rozenblit & Keil, 2002). For example, Lawson 

(2006) found that people have poor understanding of how bicycles work, and when asked to 

depict a bicycle from memory, often draw structures that would be impossible to operate (e.g., 

because the frame would prevent the wheels from turning). These errors were found even for 

bicycle experts and people with a physical bicycle in front of them while completing the task 

(see also Rozenblit & Keil, 2002). Hence, in many cases, what appears to be a mechanism 

understood through direct perceptual means is in fact something far more schematic and 

incomplete, derived from long-term memory. 

Open Questions 

 One major open question concerns the balance among these direct and indirect sources. 

Do we acquire many of our mechanism beliefs through statistical induction, despite our difficulty 

with learning networks of variables, or is the majority of our causal knowledge derived from 

other indirect sources? When we combine individual causal relations into mechanism 

representations, do we do so only with relations learned statistically, or are we also able to 

combine disparate relations learned through testimony, reasoning, or perception? To what extent 

can these causal maps combine relations learned through different strategies? Put differently, do 

these learning strategies all produce mechanism representations of the same format, or do they 

contribute different sorts of representations that may be difficult to combine into a larger picture? 
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 Another challenge for future research will be investigating the extent to which these 

sources contribute not only to learning general causal knowledge (learning that A causes B) but 

also mechanism knowledge (learning why A causes B). The majority of the evidence summarized 

above concerns only general causal knowledge, so the contribution of these indirect sources to 

acquiring mechanism knowledge should be addressed empirically. 

 Finally, might some mechanism knowledge be conveyed through the generations not only 

through cultural evolution, but also through biological evolution? It is controversial to what 

extent we have innate knowledge (e.g., Carey, 2009; Elman et al., 1996), and less clear still to 

what extent we have innate knowledge of causal mechanisms. Nonetheless, we may be born with 

some highly schematic, skeletal representations of mechanisms. For example, 4-month-old 

infants appear to understand the fundamental explanatory principles of physics (e.g., Spelke, 

Breinlinger, Macomber, & Jacobson, 1992), including physical causality (Leslie & Keeble, 

1987); belief-desire psychology emerges in a schematic form by 12 months (Gergely & Csibra, 

2003); and young children use the principles of essentialism (Keil, 1989), vitalism (Inagaki & 

Hatano, 2004), and inherence (Cimpian & Salomon, 2014) to understand the behavior of living 

things. These rudimentary explanatory patterns may provide candidate mechanisms underlying 

many more specific causal relationships observed in the world. To the extent that these patterns 

are innate, we might be born with some highly skeletal understanding of causal mechanisms that 

can underlie later learning.  

Conclusion 

 The chapters in this volume demonstrate the depth to which causality pervades our 

thinking. In this chapter, we have argued further that knowledge of causal mechanisms pervades 

our causal understanding. First, when deciding whether a relationship is causal, mechanism 
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knowledge can trump other cues to causality. It provides evidence over and above covariation, 

and a mechanism can even change the interpretation of new covariation information; it can result 

in violations of the Causal Markov Condition—a critical assumption for statistical reasoning via 

Bayesian networks; and it can alter expectations about temporal delays, moderating the effect of 

temporal proximity on causal judgment. Second, mechanism knowledge is crucial to inductive 

inference. It affects which categories are used and induced; how strongly an exemplar’s features 

are projected onto other exemplars; how likely we are to extend a property from one category to 

another; and how we make category-based probability judgments, producing discounting and 

conjunction effects. 

 Mechanism knowledge is also key to how causal relations are mentally represented. 

Several representational formats have been proposed—associations, forces or powers, icons, 

placeholders, networks, and schemas. Although there are likely to be elements of all of these 

formats in our mechanism knowledge, two positive empirical conclusions are clear: First, 

people’s metarepresentations of causal knowledge are far richer than their actual causal 

knowledge, suggesting that our representations include abstract placeholders or ‘pointers’ to real-

world referents that are not stored in the head. Second, however, people do represent some 

mechanism content, and this content appears to often take the form of causal schemas. Future 

theoretical and empirical work should address how the various properties of mechanism 

knowledge can be understood in a single framework. 

 Mechanisms may be acquired in part through statistical induction. However, because 

people are poor at learning networks of three or more variables by induction, it is more likely 

that people learn causal relations individually and assemble them piecemeal into larger networks. 

People also seem to use other learning strategies for acquiring mechanism knowledge, such as 
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testimony, reasoning, and perhaps perception. How these strategies interact, and whether they 

produce different sorts of representations, are open questions. 

 Although we would not claim that all reasoning about causation is reasoning about 

mechanisms, mechanisms are central to many of our nearest and dearest inferential processes. 

Hence, understanding the representation and acquisition of mechanism knowledge can help to 

cut to the core of causal thinking, and much of the cognition that it makes possible. 
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