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Inhibitory neural networks are found to encode high volumes of information through delayed
inhibition. We show that inhibition delay increases storage capacity through a Stirling transform of
the minimum capacity which stabilizes locally coherent oscillations. We obtain both the exact and
asymptotic formulae for the total number of dynamic attractors. Our results predict a (ln 2)−N -fold
increase in capacity for a N -neuron network and demonstrate high density associative memories
which host a maximum number of oscillations in analog neural devices.

Inhibitory neural networks bind the electrical activ-
ity of different brain regions during tasks such as cogni-
tion [1] and memory consolidation [2]. A growing body
of evidence suggests that inhibitory interneurons play the
central role in entraining cortical circuits [3–5] and em-
phasizes the importance of synaptic kinetics in triggering
synchronized oscillations [5–7]. Dynamical theories [8, 9]
have described inhibitory networks as chaotic systems
which host a manifold of fixed point attractors activated
by external stimulation [10–13]. An understanding of the
dependence of the number of attractors on the kinetics
of interconnections is now needed to determine the max-
imum network capacity and to predict the formation of
locally coherent oscillations [14] associated with patho-
logical cortical oscillations.

The present paper focuses on the effect of inhibition de-
lay on the oscillatory states of mutually inhibitory neural
networks and qualitatively describes the effects of synap-
tic conductances on the sizes of attractor basins which in
turn determine robustness to noise. We show that inhi-
bition delay increases the number of dynamic attractors
through a Stirling transform operation [15]. Using in-
silico neuromorphic models [16], we show that inhibition
delay boosts network capacity (ln 2)−N -fold by stabiliz-
ing partially coherent oscillations. We obtain the exact
analytic and asymptotic expressions of the upper bound
of the network capacity, in excellent agreement with the
capacity observed at inhibition delays exceeding 1/3 of
the duration of an action potential. Analog network im-
plementations demonstrate novel high density associative
memories which are robust against noise, temperature
and fluctuations in device parameters.

We studied inhibitory networks in-silico by intercon-
necting Hodgkin-Huxley neurons [17] with mutually in-
hibitory synapses [18]. This approach presents the advan-
tage of integrating multivariate time dependent stimuli
without compromising on model accuracy. In particular
the use of VLSI synapses allowed the effects of inhibition
delay and neurotransmitter kinetics to be fully incorpo-
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rated in the model. We probed inhibitory networks of
various sizes ranging from N = 3 to 6 neurons and ob-
served the same general dependence on inhibition delay
as in the 4-neuron network (Fig.1). We generated the
phase lag maps of the network by stimulating individual
neurons, i = 1 − 4, with current steps of 25µA ampli-
tude (Fig.1(a)) and by varying their timings in the range
0 ≤ τi ≤ T to change the initial phases of membrane
voltage oscillations. T is the period of synchronized os-
cillations. The phases of neuron oscillations defined the
dynamic state of the network. We constructed the phase
lag maps by plotting the dephasings of peak voltages from
one period to the next and throughout the regime of tran-
sient oscillations until the dynamic state reached a fixed
point attractor.

A neuron also received postsynaptic inhibitory cur-
rents from all other neurons (Fig.1(b)). Dendrite pro-
jecting neurons may postpone the onset of inhibition by
introducing transmission line delays d which retard the
arrival of inhibitory signals at the soma of the postsynap-
tic neuron. For example, somatostatin interneurons are
known to introduce inhibition delays d = 0 − 800µs by
projecting their synapses on the 15µm long dendrites of
postsynaptic neurons [19]. When inhibition delay is small
d < 150µs, state trajectories are observed to converge to-
wards six equivalent attractors corresponding to neurons
that discharge in the sequence 1 → 2 → 3 → 4 and its
five permutations (Fig.1(c)). Increasing inhibition delay
to d = 400µs stabilizes partially coherent oscillations in
which two or more neurons discharge in phase (Fig.1(d)).

Partially coherent oscillations reduce the number of in-
terspike intervals per cycle from N to M with 1 ≤ M ≤
N (Fig.2). These interspike intervals (ISIs) split the N
neuron discharges into M distinguishable events of car-
dinality k1 ≥ · · · ≥ kM > 0 where k1 + · · · + kM = N .
For example, the 4-neuron network of Fig.1(d) has a sin-
gle coherent attractor corresponding to all neurons dis-
charging in phase which gives (k1, k2, k3, k4) = (4, 0, 0, 0)
(triangle symbol). Neurons that discharge over M = 2
ISIs may distribute as (3, 1, 0, 0) or (2, 2, 0, 0) giving 4+3
partially coherent attractors (diamond symbols). Over
M = 3 ISIs, event cardinalities are (2, 1, 1, 0) giving 12
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FIG. 1. (color online) (a) 4-neuron network with all-to-all
reciprocal inhibition. Current steps of amplitude 25µA are
injected into neurons 1-4 at times 0 ≤ τi ≤ T (i = 1−4). The
timings of current stimuli set the initial conditions of phase
lag trajectories. (b) Action potential of the pre-synaptic neu-
ron (black line) and the post-synaptic inhibitory current in-
duced at different inhibition delays d = 0−500µs (color lines).
The kinetics of the post-synaptic current is controlled by the
neurotransmitter undocking time τu. (c) Orthographic phase
portrait of the 4-neuron network measured at small inhibition
delay d = 100µs. The 6 attractors (white circles) correspond
to sequential discharge patterns of the 4 neurons. (d) Phase
portrait at large inhibition delay d = 400µs. The additional
attractors are partially coherent oscillations with M = 3 ISIs
per cycle (square symbols), M = 2 (diamond symbols) and
M = 1 for the fully synchronized attractor (triangle symbol).

M ISI k1 k2 k3 k4 n1 n2 n3 n4 wM
N AM

N wM
N ×AM

N

4 T/4 1 1 1 1 4 0 0 0 1/4 24 6
3 T/3 2 1 1 2 1 0 0 1 12 12
2 T/2 3 1 1 0 1 0 1 4 4

2 2 0 2 0 0 1/2 6 3
1 T/1 4 0 0 0 1 1 1 1

26

TABLE I. Calculation of T4. wM
N = WM

N /M .

partially coherent attractors (square symbols). Lastly for
M = 4, there are 6 sequential attractors (1, 1, 1, 1) (circle
symbols). The 4-neuron network therefore hosts 26 at-
tractors in total. The results in Figs.1(c,d) demonstrate
that inhibition delay boosts the capacity of the 4-neuron
network from 6 to 26 attractors. We now calculate the
dependence of network capacity on inhibition delay for a
network of arbitrary size.

The list of event occupancies {ki}, i = 1, . . . ,M has

a dual list {nj}, j = 1, . . . , N which contains the fre-
quency of events of same cardinality. A cycle thus com-
prises n1 single spike events, n2 2-spike events, ... , nN
N -spike events (Table.I) which satisfy the dual sum rule
n1 + · · · + nN = M . We calculate the total number of
attractors by multiplying the number of possible wave-
forms WM

N (n1, . . . , nN ) obtained by re-ordering events of
different cardinalities within a period, with the number of
ways of distributing labelled spikes within each waveform
AM

N (k1, . . . , kM ) (Fig.2). WM
N is the number of ways of

distributing the M events over N distinguishable slots
n1, . . . , nN . AM

N is the number of ways of distributing
the N spikes over M distinguishable events of cardinal-
ity k1, . . . , kM . One obtains:

AM
N (k1, . . . , kM ) =

N !

k1! . . . kM !
, (1)

WM
N (n1, . . . , nN ) =

M !

n1! . . . nN !
. (2)

Since the product AM
N ×WM

N contains M cyclically equiv-
alent trajectories, the total number of attractors is ob-
tained by dividing this product by M and summing over
the partition of N (k ` N):

TN =
∑
k `N

1

M

(
M

n1,...nN

)(
N

k1,...,kM

)
. (3)

The round brackets are the multinomial coefficients
(Eqs.1 and 2). The WM

N multinomial takes care of the
degeneracy arising from permutations within {ki} satis-
fying k1 + · · · + kM = N . This is why the summation
is done over k1 ≥ · · · ≥ kM > 0 where M is the num-
ber of positive integers in the partition. The capacity
of the 4-neuron network is calculated in Table.I. Eq.3
shows that the maximum capacity increases as T3 = 6,
T4 = 26, T5 = 150, T6 = 1082, ... TN ∼ (N −1)!/(ln 2)N ,
as we shall see below. If one restricts the summation
over the partition of N to sequentially discharging neu-
rons, k1 = · · · = kN = 1, Eq.3 yields the minimum net-
work capacity: L3 = 2, L4 = 6, L5 = 24, L6 = 120,
... LN = (N − 1)! . This increase in capacity occurs as
inhibition delay stabilizes partially coherent oscillations,
for example from Fig.1(c) to Fig.1(d).

There is actually a direct operation that converts the
minimum capacity LN to the maximum capacity TN ,
given by the Stirling transform:

TN =

N∑
M=1

{
N
M

}
LM N ≥ 3 , (4)

where
{

N
M

}
is the Stirling number of the second kind

which counts the number of ways of partitioning the N
spikes into M non-empty sets. An explicit formula for
the Stirling numbers is:



3

N=7

M=4

T ISI

k =1
4

k =1
3

n =2
1

k =2
2

n =1
2

k =3
1

n =1
3

FIG. 2. (color online) Distribution of the action potentials
(vertical bars) of a 7-neuron network over 4 events separated
by interspike intervals (ISI) of duration T/4. Action poten-
tials repeat with the periodicity of synchronized oscillations T .
The number of spikes occupying each time slot - or event - is
(k1, k2, k3, k4) = (3, 2, 1, 1). The frequencies of events of same
cardinality are (n1, n2, n3, n4, n5, n6, n7) = (2, 1, 1, 0, 0, 0, 0).

{
N
M

}
=

1

M !

M∑
j=0

(−1)M−j
(
M
j

)
jN . (5)

In order to derive the asymptotic form of TN , it
is useful to introduce the sequence of Fubini numbers,
RN =

∑
k `N WM

N AM
N , which differs from TN by count-

ing the linearly ordered trajectories of an N -neuron net-
work. The two sequences are related by TN = 2RN−1
(N ≥ 3) since omitting a reference neuron gives a 2:1
correspondence between the cyclically ordered trajecto-
ries of the N -neuron network and the linearly ordered
trajectories of the N − 1-neuron network excluding the
reference neuron.

One seeks the exponential generating function R(z) of
RN . As observed by Good [20], the term 1/(k1! . . . kM !)
which appears in AM

N is the coefficient of zk1+···+kM in
the expansion of:

( ∞∑
k1=1

zk1

k1!

)
. . .

( ∞∑
kM=1

zkM

kM !

)
= (ez − 1)M . (6)

Using k1 + · · · + kM = N and summing over events M ,
one obtains the generating function R(z) as:

∞∑
M=0

(ez − 1)M =

∞∑
N=0

∑
k `N

WM
N

N !

k1! . . . kM !

zN

N !
, (7)

which simplifies by replacing the left hand side with its
geometric series and the coefficient of zN/N ! with RN :

1

2− ez
=

∞∑
N=0

RN
zN

N !
. (8)
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FIG. 3. (color online) (a) Asymptotic errors εN and εsN plot-
ted as a function of network size. (b) Upper and lower bound-
aries of the network capacity: TN and LN . The capacity of
experimental networks is TN for inhibition delays larger than
1/3 of the duration of an action potential. For smaller delays,
the network capacity lies in the shaded region between LN

and TN .

R(z) has a pole at z = ln 2 where the series diverges.
Near this pole, the terms zN/N ! at large N dominate in
the series which allows the asymptotic value of RN to
be calculated [21]. Expanding R(z) about the pole, one
obtains:

1

2− ez
=

∞∑
N=0

N !

2(ln 2)N+1

(
1 +

(ln 2− z)2

2z
+ . . .

)N
zN

N !
.

(9)
Identifying the coefficients of zN/N ! in Eqs.9 and 8 at
z → ln 2 yields the asymptotic formula of RN . Recalling
that TN = 2RN−1 the asymptotic value of the maximum
capacity follows as:

TN ∼
(N − 1)!

(ln 2)N
, N ≥ 3 (10)

∼
√

2π(N − 1)

ln 2

(
N − 1

e ln 2

)N−1

. (11)

Eq.10 is a highly accurate estimate of the total number
of attractors. The relative error is ε3 = 9×10−4 (N = 3),
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ε20 = 7 × 10−20 (N = 20) and decreases as εN ∼ 10−N

(Fig.3(a), square symbols). The capacity of larger net-
works may be estimated using Stirling’s approximation
of the factorial (Eq.11). In this case the relative error
decreases as εsN ∼ 1/N (Fig.3(a), dot symbols).

When inhibition delay is small (d < 150µs), network
capacity scales with network size according to sequence
LN (Fig.3(b)). Large inhibition delays (d > 300µs) in-
crease capacity (ln 2)−N -fold to TN by stabilizing par-
tially coherent oscillations (Fig.3(b)). At intermediate
delay (150µs≤ d ≤ 300µs), the network only supports
oscillations with low coherence (M → N) which are the
most robust. As a result, the network capacity lies be-
tween LN and TN (Fig.3(b), shaded region). Biological
neurons may establish up to 104 connections with other
neurons. In the absence of noise, an all-to-all network the
size of the neuron connectome would boost its capacity
101,592-fold to 1037,250 attractors by increasing inhibition
delay up to 1/3 of the duration of the action potential.

Eq.11 introduces constant η = e ln 2 whose physical
meaning we elucidate by calculating the rate of change
of capacity with network size. We find dTN/dN ∼ [1 +
ln((N − 1)/η)]TN . We then seek the size of the network
Ng whose capacity increases g-fold upon the addition of
an extra neuron (∆N = 1). Since ∆TN/TN = g − 1,
one obtains Ng ∼ 1 + ηeg−2. It follows that one extra
neuron will double the capacity of a 3-neuron network,
decuple the capacity of a 5617-neuron network, and in-
crease 20-fold the capacity of a hypothetical network 1%
the size of the human cerebral cortex (120 million neu-
rons). η = (Ng − 1)/eg−2 thus defines the growth rate
of the network with capacity gain. The larger the net-
work, the greater the effect a tiny size increment will have
in boosting capacity, both in absolute and relative terms.
Using these principles, our inhibitory networks (Fig.1(d))
demonstrate associative memories which have greater

memory capacity than winnerless networks ∼ (N−1)! [9]
and Hopfield networks ∼ 0.14N [22].

Experiments in Fig.1 show that the maximum capac-
ity is robust in a noisy environment consisting of synaptic
current noise (Fig.1(b)), contact noise, current stimulus
noise, component-to-component deviations, and fluctu-
ations in synaptic conductances. This further demon-
strates the known robustness of dynamical encoding of
stimuli by heteroclinic activation paths [9]. Changing
synaptic conductances has the effect of varying the sizes
of basins of attraction relative to one another [11]. The
residual imbalance of synaptic conductances in the ex-
perimental network breaks the 6-fold symmetry of phase
portraits in Figs.1(c,d). Basins of attraction protect dy-
namical attractors from decoherence by noise. This is
why the maximum network capacity can always be ob-
served at a finite noise level provided inhibition delay is
sufficient. At large values of N , the number of dynami-
cal attractors increases faster than the volume of phase
space. This makes the average attractor radius decrease
as η/(N − 1). Memories implemented in physical hard-
ware will thus have finite immunity to noise at any N but
their tolerance to noise will tend to zero when N → ∞.
These conclusions may be extended to bursting neuron
networks [23, 24].
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