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ABSTRACT 20 

A fluid dynamic gauging (FDG) technique was used for on-line and in-situ measurements of 21 

Pseudomonas aeruginosa PAO1 biofilm thickness and strength on flat sheet polyethersulfone 22 

membranes. The measurements are the first to be successfully conducted in a membrane cross-23 

flow filtration system under constant permeation. In addition, FDG was used to demonstrate 24 

the removal behaviour of biofilms through local biofilm strength and removal energy 25 

estimation, which other conventional measurements such as flux and TMP cannot provide. The 26 

findings suggest that FDG can provide valuable additional information related to biofilm 27 

properties that have not been measured by other monitoring methods. 28 

 29 

Keywords: Fluid dynamic gauging (FDG), biofilm strength, biofilm thickness, membrane 30 

biofouling 31 
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Introduction 32 

Biofouling in membrane processes is a long-standing problem and biofilm development on 33 

and/or within membrane surfaces can cause lower product water quality, increased energy 34 

requirement and higher overall costs. Although biofouling predominantly occurs in high 35 

pressure systems such as reverse osmosis (RO) and nanofiltration (NF) (Baker and Dudley 36 

1998, Flemming et al. 1997), this problem may also affect other membrane systems including 37 

low pressure microfiltration (MF) and ultrafiltration (UF) (Pontié et al. 2007), membrane 38 

bioreactors (MBR) (Le-Clech et al. 2006), and other novel membrane systems (eg membrane 39 

distillation, pressure retarded osmosis, etc.) (Bar-Zeev et al. 2015, Goh et al. 2013).  40 

It has been understood that complete elimination of biofouling is almost impossible (Flemming 41 

et al. 1997). Current pretreatment technologies mainly focus on the reduction of 42 

microorganisms in the source water, which may not provide effective biofouling control since 43 

biofilm development relies heavily on the availability of biodegradable nutrients (Chen et al. 44 

2013, Jamaly et al. 2014, Nguyen et al. 2012). Despite the effort to lower biocide usage, it is 45 

currently still the most commonly used method for membrane cleaning. While biocide does 46 

kill bacteria, the dead cells are not totally removed but instead become a nutrient source for 47 

surviving bacteria (Murthy and Venkatesan 2009). Therefore, a reliable monitoring method 48 

which provides insights to biofilm removal under stress conditions is crucial for the 49 

development of effective membrane cleaning protocols (Nguyen et al. 2012).  50 

Traditionally, flux decline or transmembrane pressure (TMP) rise have been used to determine 51 

and infer the occurrence and extent of membrane fouling because they can be measured readily 52 

in the laboratory and industrial settings. However, these two parameters, though intuitive, are 53 

indirect indicators of the properties of the fouling layer, which may not provide information 54 

regarding the actual condition of membrane foulant thus causing ineffective membrane 55 
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cleaning. Moreover, flux and TMP are normally time, spatial or volume averaged 56 

measurements. Therefore, direct and local information of the deposition and removal behavior 57 

of foulant, by measuring the thickness and strength of the foulant, can assist the optimization 58 

of the cleaning regimes, operating protocols and module design of membrane systems (Chavez 59 

et al. 2016). Most existing on-line monitoring techniques including (i) microscopic (confocal 60 

laser scanning microscopy) (Mukherjee et al. 2016), (ii) spectroscopic [infrared, nuclear 61 

magnetic resonance spectroscopy (NMR) and Raman] (Graf von der Schulenburg et al. 2008, 62 

Kögler et al. 2016), (iii) ultrasonic time-domain reflectometry (UTDR) (Sim et al. 2013), and 63 

(iv) optical coherence tomography (OCT) (Chew et al. 2004b, Linares et al. 2016a), mostly 64 

focus on the detection of foulant thickness or flow distribution and are unable to provide 65 

information on foulant strength or attachment behaviour which could be the relevant parameter 66 

for membrane fouling. Atomic force microscopy (AFM) is probably the only technique that 67 

allows the measurement of the physical adhesive forces of foulants to surfaces in-situ, which 68 

may include bacteria and biofilm adhesion to membrane surfaces (Powell et al. 2017). In 69 

addition, it is especially challenging to obtain reliable measurements in flow systems 70 

commonly found in membrane operations.  71 

Fluid dynamic gauging (FDG) is a relatively simple technique which was initially developed 72 

to measure the thickness of deposits on solid surfaces in situ and on-line (Tuladhar et al. 2000). 73 

It has been employed to investigate foulant thickness formed on heated surfaces such as heat-74 

exchangers used primarily in food processing, polymer manufacturing and crude oil industries 75 

(Gu et al. 2009, Peck et al. 2015, Tuladhar et al. 2002). The FDG technique can measure (in a 76 

destructive mode) local strength properties throughout the different layers of deposits (Chew 77 

et al. 2004a). The ability of the FDG to be operated at elevated temperature and pressure (Ali 78 

et al. 2013) has gained some interest for use in membrane filtration scenarios, where permeation 79 

is involved (Chew et al. 2007, Jones et al. 2010, Lewis et al. 2016). However, these studies 80 
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were mainly performed using synthetic organics to simulate constant TMP filtration in food 81 

industries. Here, FDG is applied to membrane processes to simulate water and wastewater 82 

treatment operations under constant permeation.  83 

The objective of this study was to investigate the feasibility of FDG technique for on-line 84 

membrane biofouling detection by measuring both biofilm thickness and strength. This study 85 

is the first attempt to apply FDG to measure biofilm thickness and strength in a membrane 86 

cross-flow filtration system under constant permeation. This study also explored the impact of 87 

biofilm desiccation which could happen due to flow disturbances or during cleaning (transition 88 

from feed to cleaning formulations).  89 

Experimental 90 

Biofouling experimental protocol 91 

The experimental set-up and protocols used for simulating biofouling in cross-flow filtration 92 

were adapted from previous work (Figure 1A) (Sim et al. 2013). A rectangular flat-sheet cross-93 

flow cell that had a membrane area of 0.0126 m2 (180 mm × 70 mm) and a channel height of 94 

2.0 mm was used. Before installation, the low protein binding polyethersulfone (PES) flat sheet 95 

membrane (PALL, 10K OMEGATM, MWCO 10 kDa) was cut and soaked in deionised water 96 

(Milli-Q, Merck-Millipore) for 24 h. The feed water contained background salinity of 500 mg 97 

L-1 NaCl (Merck) and 20 mg L-1 nutrient broth (Difco NB, BD Diagnostics) which provided 98 

total organic carbon (TOC) of approximately 8 mg L-1, similar to typical TOC in secondary 99 

effluent water. Feed water was circulated via a gear pump (Cole-Palmer, Model 74013-45) in 100 

a closed loop as shown in Figure 1A. Wild type Pseudomonas aeruginosa PAO1, a common 101 

representative of wastewater bacteria, was chosen as model bacterium in this study (Hentzer et 102 

al. 2002, Kim et al. 2015, O'Toole and Kolter 1998). A stock solution of PAO1 (cell counts 103 

~106 CFU mL-1) was injected at a constant rate of 0.25 mL min-1 via an injection pump 104 
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(ELDEX, model 5979-OptosPump 2HM). The preparation of bacteria stock solution can be 105 

found elsewhere (Suwarno et al. 2012). The temperature of the feed was kept at 25°C by using 106 

a continuous flow chiller (PolyScience 9706A, USA). A microfilter (0.2 µm pore size, Karei 107 

Filtration) was installed at the retentate line to prevent bacteria from entering the feed tank. 108 

Additionally, the feed solution was replenished within every 24 h to further ensure a controlled 109 

feed condition throughout the whole experiment duration.  110 

In this study biofouling experiments were conducted at constant feed pressure (P1) (80 kPa) 111 

and cross-flow (0.95 cm s-1) and flux (10 LMH) for durations of 2, 4, and 6 days in duplicates. 112 

FDG analysis was conducted on-line (under same operating conditions) at the end of every 113 

biofouling experiment. The experiments are identified as 2-day, 4-day and 6-day, respectively. 114 

Apart from the biofouling experiment at varying durations, an additional experiment was 115 

conducted by performing a 2-day biofouling experiment under the same operating conditions, 116 

followed by 24-h desiccation under no cross-flow and no nutrient supply, followed by a 2-day 117 

biofouling experiment. This experiment was aimed at investigating the impact of flow cessation 118 

due to possible process interruption in a large-scale process. The above experiment is identified 119 

as 4*-day. 120 

FDG System 121 

The schematic of the FDG system and experimental set-up is depicted in Figure 1B. The FDG 122 

system was comprised of a stepper motor, linear slide with mount to provide vertical 123 

movements, linear stainless steel FDG gauge, pressure transducer, and a motorized syringe 124 

pump for a controlled suction speed. A desktop computer was connected with the stepper motor 125 

and pressure transducer to record the gauge position and differential pressure (ΔP). The stepper 126 

motor movement was controlled by a constant current drive (Nanotec, SMC42) in a 127 

programmable circuit board (Arduino, ATmega2560). This circuit board also read voltage from 128 
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the linear potentiometer which provided an independent measurement of the position of the 129 

gauge. A signal converter (RS Components, Solartron OD5) was used to transform the linear 130 

variable differential transformer (LVDT) output into a steady ±10 V reading. A precision data 131 

acquisition (DAQ) device (National Instruments, NI USB-6210) read both the LVDT and 132 

pressure transducer signals. The programmable circuit board and DAQ device were configured 133 

using LabVIEWTM visual interface (VI) to perform control and data-logging activities.  134 

The inset in Figure 1B shows the operation of FDG. The FDG gauge was constructed from a 135 

stainless steel tube of a diameter (d) of 2.0 mm, connected to a tapered (45o) end with internal 136 

nozzle diameter of dt (0.5 mm). FDG is based in the principles of fluid dynamics to determine 137 

the foulant thickness by reading the pressure difference ΔP (Lewis et al. 2016). A dimensionless 138 

characteristic height – h/dt, is uniquely correlated to ΔP in a calibration plot of ΔP vs. h/dt, such 139 

that the foulant thickness, δ, can be determined (Figure 2A). Principally, with a constant suction 140 

mass flow rate (mg = 0.2 g s-1) controlled by the syringe pump, as the FDG gauge approaches 141 

the biofilm surface (ie decreasing h/dt), ΔP shall firstly be stable and then gradually increase, 142 

thus a curve (ΔP vs. h/dt) to indicate the position of biofilm surface could be generated. In non-143 

invasive mode, the biofilm is not disturbed by the suction flows as the FDG gauge approaches 144 

the surface. Comparison of the biofilm surface and membrane surface curves in Figure 2A 145 

allow biofilm thickness to be estimated (detailed calculation is described in Supporting 146 

Information section 1-2). 147 

In destructive mode, however, as the gauge approaches the biofilm surface, the suction flow 148 

shall eventually cause removal of biofilm in the region directly underneath the gauge (Figure 149 

2B).The gauge clearance from surface (h, as in Figure 1B) when removal of biofilm layer 150 

occurs is recorded to estimate the strength (cohesive strength or adhesive strength) of biofilms. 151 

The thickness of biofilm was estimated by comparing the biofilm surface and membrane 152 

surface curves (Figure 2A), and strength of biofilm was calculated by  153 
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τw,max =
3µ𝑚𝑔

⍴𝐿𝜋ℎ2
1

𝑟
      (1) 154 

where µ is viscosity of water, mg is the suction mass flow rate by syringe pump, ⍴L is density 155 

of water, h is the clearance from surface when removal of biofilm layer occurs as indicated in 156 

Figure 2A and r is dt/2 (Chew et al. 2004a, Lewis et al. 2012). After destructive testing, the 157 

energy required to remove the biofilm layers was also estimated (detailed calculation is 158 

described in Supporting Information section 3). The fouled membrane was then carefully 159 

removed from the test apparatus and immediately analysed using a confocal laser scanning 160 

microscope (Figure 2B). Biofilm samples were maintained moist and stored in covered 161 

containers during storage and transport to ensure minimum deformation and contamination.  162 

Confocal Microscopy 163 

The thickness of biofilm formed on the membrane surface was also measured by observing the 164 

fouled membrane via a confocal laser scanning microscope (CLSM, Zeiss, model LSM810). 165 

Biofilm thickness measured by the CLSM and FDG were analysed statistically using the 166 

Pearson’s correlation analysis. Biofilms were prepared by staining with SYTO9 nucleic acid 167 

fluorescent stain (Molecular Probes, S34854) in accordance with manufacturer’s specifications. 168 

Working solutions were prepared by mixing 1.5 µL SYTO9 in 10 mL phosphate buffered saline 169 

(PBS) solution.  170 

The flow cell was initially dismantled by removing the top-plate, followed by carefully 171 

collecting the membrane samples by holding the two corners of the membranes with sterilized 172 

forceps. Centre sections of the membrane samples (1.5 cm x 2.0 cm) were slowly cut and 173 

separated from the rest of the membrane areas for CLSM analysis. CLSM samples were then 174 

soaked in working solutions and incubated for 30 min in the dark at room temperature. After 175 

the incubation the membrane samples were rinsed three times with sterile PBS before placing 176 

on the glass slide. Each experimental variable (at different durations) was repeated in duplicate 177 
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and five replicates of CLSM three-dimensional (3D) images were constructed by stacking 2D 178 

images of the biofilm at different thickness (Z-Stack mode). 179 

Results and Discussion 180 

Determination of Biofilm thickness by FDG 181 

Biofouling experiments were conducted at durations of 2, 4, and 6 days, and FDG analysis was 182 

conducted at the end of every experiment. Typical biofilm and membrane surface curves from 183 

FDG measurements are shown in Figure 2A which provides information of both biofilm 184 

strength and thickness. The biofilm strength can be separated into cohesive and adhesive 185 

strength. Cohesive strength is considered as the strength required to deform layers within the 186 

biofilm, while the adhesive strength is the removal strength required to detach biofilms from 187 

the membrane surface (FDG thickness = 0) (Peck et al. 2015). Biofilm thickness in this study 188 

was measured by comparing the distance between before and after the FDG destructive mode 189 

(i.e., cleaned membrane). The rationale behind this method is that the membrane reference 190 

point was constantly changed and calibrated due to membrane compaction and possible 191 

changes in hydrodynamic conditions caused by fouling. This method differed from previously 192 

published literature in which the thickness was measured by taking a reference point at clean 193 

condition before fouling (Chew et al. 2004b, Lewis et al. 2016, Peck et al. 2015).  194 

The TMP rise (measured by the difference between P1 and P2 in Figure 1A), thickness 195 

measured by FDG, and thickness measured by CLSM from different experimental durations 196 

are summarized in Table 1. In general the results showed greater TMP rise and thickness 197 

associated with more biofilm on the membrane surfaces at longer durations. This is consistent 198 

with data reported in literature (Chen et al. 2013, Sim et al. 2013). Pearson correlation analysis 199 

was conducted between FDG thickness and confocal thickness. The Pearson correlation 200 

coefficient and significant correlation were 0.9733 and 0.0267 (< 0.05), respectively. The close 201 
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correlation between FDG thickness and confocal thickness shows that biofilm thickness can be 202 

reliably determined by FDG.  203 

Table 1. TMP rise and thickness of biofilm at different experiment durations. 204 

Duration, d TMP Rise, kPa FDG Thickness, µm Confocal Thickness, µm 

2 7.7 (± 1.8) 19.4 (± 0.5) 18.0 (± 2.5) 

4 11.0 (± 0.9) 27.9 (± 0.8) 28.0 (± 2.0) 

6 13.9 (± 0.2) 43.1 (± 0.5) 45.0 (± 3.0) 

4* 12.3 (± 0.4) 23.3 (± 2.3) 28.0 (± 3.0) 

*) Special treated biofilm (4 days intermittent run). 

Determination of biofilm strength by FDG and impact of biofilm desiccation  205 

The results for destructive strength testing at each time point are shown in Figure 3, in which 206 

the biofilm thickness is plotted against the applied gauging shear stress (eq. 1) (Lewis et al. 207 

2016). The scatter in the data points, especially for 4- and 6-day, reflect the dynamic nature of 208 

the biofilm growth. The yield stress, characterised as that above which significant erosion of 209 

the biofilm (due to suction flow from gauge), for biofilms developed over 2, 4 and 6 days were 210 

estimated at 1165, 1600, and 1660 N m-2, respectively (indicated by the vertical dotted lines on 211 

Figure 3). These values were estimated from the average initial FDG strengths from duplicate 212 

experiments. The dashed lines, obtained from the yield stress and the average adhesive 213 

strengths, were drawn on the figure for each experiment duration to aid visualization. A general 214 

negative trend was observed in all these results, showing that the layers closer to the membrane 215 

surface were harder to remove than those at the top of the biofilm (ie the cohesive strength 216 

increases as the biofilm gets thinner). The increased strength of the biofilm layers closer to the 217 

membrane could be caused by the permeate flux through the membrane and/or the increase in 218 

EPS concentration. It has been reported that permeate flux is a dominant factor in the 219 
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accumulation and compaction of EPS matrix within the biofilm which may further affect the 220 

hydraulic resistance on membrane surfaces. The drag force caused by the permeate flux may 221 

also lead to an increased number of binding points between EPS molecules, and thus, greater 222 

cohesive and adhesive strengths (Dreszer et al. 2013).  223 

It is clear from Figure 3 that the adhesion increased with the duration of biofouling experiments. 224 

However, for 4- and 6-day experiments, the increase in adhesive strength was marginal. One 225 

possible explanation could be reduced transfer of fresh nutrient to the bottom layers due to less 226 

diffusion through the denser EPS layers (Oubekka et al. 2012). Hence, strengthening of the 227 

layers closer to the membrane was marginal. 228 

Another interesting observation was the degree of variation of biofilm strength at a particular 229 

thickness at different experiment durations ie the gradient of the thickness versus strength curve 230 

(Figure 3).  There was an apparent increase of cohesive and adhesive strengths from the 2-day 231 

biofilm to those of 4-day which resulted in a larger gradient, ie, - 8.8×10-3 m Pa-1 (2-day) vs. 232 

- 5.6×10-3 m Pa-1 (4-day). However, the 6-day biofilm showed a slight increase in strength 233 

with thickness ie - 8.6×10-3 m Pa-1 compared to that of 4-day. 234 

Figure 4 shows that the average cohesive (more details provided in Supporting Information 235 

section 3) and adhesive strengths for 2-day biofilms were lower than those for 4-day and 6-day. 236 

This behaviour suggested that the biofilm developed its strength dramatically between 2 and 4 237 

days. However, the increase in average cohesive and adhesive strengths from 4 days to 6 days 238 

was marginal. The results in Figure 4 may further support the findings in Figure 3 which show 239 

slower increase in biofilm strength with thickness at the 6-day duration. 240 

Nevertheless, with the increasing thickness, the required removal energy was greater at longer 241 

durations (see Figure 5). There was a good correlation between the removal energy (from FDG) 242 

and the required energy to overcome fouling (as shown by the TMP rise). While the increasing 243 
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removal energy with longer duration and biofilm thickness is not counter-intuitive, this 244 

information may be required in the consideration for membrane cleaning protocol, in contrast 245 

to the traditional parameters of TMP rise or permeate quality.  246 

It should be noted that the information of biofilm strength and biofilm removal energy proposed 247 

in this study is not intended to be used independently for the consideration of membrane 248 

cleaning. Instead, this additional biofilm characteristic may be used in conjunction with the 249 

information of production energy (ie TMP) to provide the overall comparison between (1) 250 

continuing production with presence of fouling, or (2) performing cleaning. 251 

Both cohesive and adhesive strengths obtained from biofilms in the present study are 252 

considerably higher than those of other FDG studies (Lewis et al. 2012, Mohle et al. 2007). 253 

Mohle et. al (2007) used FDG to investigate the activated sludge forming biofilm grown on a 254 

rotating disc biofilm reactor (rotation speed of less than 9 min-1 for 7 days) and found the 255 

cohesive strength of the biofilm was only 6-7 N m-2.  Lewis et. al (2012) applied a cross-flow 256 

system and formed biofilm by yeast suspension. Their experiment was conducted for 30 min 257 

with a duct flow rate of 0.9 L min-1 under constant TMP of 3.5 kPa. The highest strength of 258 

biofilm was around 55 N m-2. In the present study, the operating conditions applied were 259 

harsher and simulated the actual conditions of microfiltration for water treatment. Moreover 260 

biofilms formed by Pseudomonas aeruginosa tend to have higher strength as evidenced by 261 

other ex-situ methods (6,000-15,000 N m-2) (Korstgens et al. 2001, Poppele and Hozalski 2003). 262 

Comparison of 4*-day with 4-day tests shows that biofilm desiccation did not significantly 263 

impact the overall TMP and thickness (see Table 1). There was around 8% increase of TMP 264 

and 8% decrease of FDG thickness, and the CLSM measurement did not show any thickness 265 

change. Interestingly, the strength observation by the FDG showed significant increase in both 266 

adhesive and cohesive strength of around 101.5% and 85.6% respectively (see Figure 4). The 267 
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apparent changes of biofilm condition were also shown by the slope strength at different 268 

biofilm layers (Figure 6). Therefore, although the thickness and TMP rise were similar between 269 

4-day and 4*-day, the latter showed significant increase of biofilm strength and resulted in an 270 

increase of required removal energy (see Figure 5). An interruption to a biofilm development 271 

process may cause undesired impact (eg accelerated attachment process) which affect biofilm 272 

growth (Murthy and Venkatesan 2009, Timoner et al. 2012) and it is possible that desiccated 273 

biofilm may produce an additional evaporation barrier and denser EPS, which may result in a 274 

stronger biofilm (Flemming et al. 2016). These results may indicate that the FDG strength 275 

analysis was able to provide additional information related to biofilm structural properties 276 

which could not be reflected by TMP rise and biofilm thickness.  277 

FDG as an aid for biofouling detection and cleaning in membrane systems 278 

There have been previous studies related to biofilm properties and biofouling. In general, these 279 

studies can be grouped into three main areas: biofilm surface characteristics, biofilm structure 280 

and thickness, and biofilm adhesion to surface (see Table 2). Apart from these studies, there 281 

have also been some interests on the impact of biofilm development toward flow channel 282 

constriction and localized channeling (Graf von der Schulenburg et al. 2008).  283 

In this study, the FDG technique provided unique additional information related to biofilm 284 

strength for both biofilm-biofilm (cohesive) and biofilm-surface (adhesive) through an on-line 285 

and simple method. This information is unique and can be correlated to the requirements of 286 

foulant removal energy due to biofilm development on membrane surfaces. This study also 287 

presented comparisons between the energy for maintaining permeate production rate and the 288 

required energy for foulant removal (see Figure 5).  289 

Biofouling is still a major fouling problem in membrane operations and the most common 290 

indicator for exercising the cleaning-in-place is pressure drop (TMP). FDG showed different 291 
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levels of cohesive and adhesive strength, while the TMP and thickness did not show significant 292 

differences. The results in this study may provide an avenue for more developments on the use 293 

of FDG in future studies related to membrane biofouling. Several areas that can be considered 294 

for future research include impact of different operating conditions and validation of the FDG 295 

strength information in a large-scale plant. 296 
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Table 2. Biofilm characteristic studies in literature. 297 

 298 
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Biofilm 

properties 

Detailed 

characteristics 
Literature Note 

Surface 

characteristics 

Hydrophobicity (van Oss 1997) Surface energy measurements using contact angle technique. 

Surface charge (He et al. 2015, Ikuma et al. 2014) 
Surface zeta-potential measurements of biofilm coated or EPS 

surfaces.  

Viscoelastic 
(Ferrando et al. 2017, Kundukad et 

al. 2016) 

Surface viscoelastic determination including modulus and 

biofilm viscosity. 

Biofilm structure 

Porosity (Chew et al. 2014, Goh et al. 2013) Biofilm porosity distribution determination. 

Rheological 
(Körstgens et al. 2001, Linares et al. 

2016b) 

Compressibility of biofilm, including impact of membrane 

permeations. 

Thickness 
(Linares et al. 2016a, Mukherjee et 

al. 2016, Sim et al. 2013) 

Most techniques are able to provide accurate thickness 

prediction of biofilm both on-line and off-line.  

Adhesion 

Surface adhesion 
(Habimana et al. 2014, Huang et al. 

2015, Suwarno et al. 2016) 

Most studies focus on bacterial attachment to surfaces 

including impact of initial conditioning layers. 

Cohesive strength (Mohle et al. 2007) 
Measurement of cohesive strength through an offline FDG 

method. 

299 
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