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PROJECTIVE GEOMETRY

AND THE QUATERNIONIC FEIX–KALEDIN CONSTRUCTION

ALEKSANDRA W. BORÓWKA AND DAVID M. J. CALDERBANK

Abstract. Starting from a complex manifold S with a real-analytic c-projective struc-
ture whose curvature has type (1, 1), and a complex line bundle L with a connection
whose curvature has type (1, 1), we construct the twistor space Z of a quaternionic man-
ifold M with a quaternionic circle action which contains S as a totally complex subman-
ifold fixed by the action. This construction includes, as a special case, a construction of
hypercomplex manifolds, including hyperkähler metrics on cotangent bundles, obtained
independently by B. Feix [21, 22, 23] and D. Kaledin [35, 36].

When S is a Riemann surface, M is a self-dual conformal 4-manifold, and the quotient
of M by the circle action is an Einstein–Weyl manifold with an asymptotically hyperbolic
end [32, 42], and our construction coincides with the construction presented by the first
author in [11]. The extension also applies to quaternionic Kähler manifolds with circle
actions, as studied by A. Haydys [25] and N. Hitchin [27].

Introduction

The construction of hyperkähler metrics on cotangent bundles of Kähler manifolds has
a distinguished history, going back to E. Calabi’s metric on the cotangent bundle of
CPn [14], and its generalizations to complex semisimple Lie groups and their flag vari-
eties [9, 38, 39, 47]. General constructions were provided independently by B. Feix [21, 23]
and D. Kaledin [35, 36], who showed that on a complex manifold S, any real-analytic Kähler
metric induces a hyperkähler metric on a neighbourhood of the zero section in T ∗S. In
fact, both authors further established (see [22] in Feix’s case) that any real-analytic com-
plex affine connection on S with curvature of type (1, 1) induces a hypercomplex structure
on a neighbourhood of the zero section in TS.

An important generalization of hypercomplex manifolds are quaternionic manifolds [54],
which are of particularly great interest when they admit a quaternionic Kähler metric (of
nonzero scalar curvature). While the most famous problem in the area is the classification
in the compact case, namely the LeBrun–Salamon conjecture [43], recently much attention
has been given to correspondences between quaternionic Kähler and hyperkähler metrics
in connection with theoretical physics, e.g., string theory duality [1, 20, 25, 27, 44]. Herein,
we develop a projective-geometric framework for Feix–Kaledin results which constructs,
more generally, quaternionic manifolds with circle actions. Moreover, we prove that any
such manifold arises in this way on a neighbourhood of a generic fixed totally complex
submanifold. Hence this natural framework encompasses the recently studied quaternionic
Kähler manifolds with circle actions [25, 27] and describes their behaviour around such a
fixed submanifold.

The structure of the paper is as follows. We motivate and overview this construction
in Section 1. We begin by comparing the “hypercomplexification” of S in TS (cf. [8]) to
the complexification of a real-analytic manifold. In particular, results of R. Bielawski [8]
and R. Szöke [56] imply that a real-analytic projective manifold M has a complexification
MC ⊆ TM which meets the tangent bundle to any geodesic in a holomorphic submanifold
(Theorem 1), illustrating the role of projective geometry already in this setting. Then in
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§1.2 we establish the context for the construction by showing (Theeorem 2) that the natural
structure induced on a maximal totally complex submanifold of a quaternionic manifold
is a c-projective structure (see [16]). We next motivate the construction through the
model example of quaternionic projective space HPn, which has CPn as a maximal totally
complex submanifold. Our approach (cf. [10]) to the quaternionic Feix–Kaledin construc-
tion (Theorem 3) generalizes the model example, and the twistor method of Feix [21, 22]
(cf. also [40]). This is explained in §1.4, where we also state a converse result (Theorem 4).

The remainder of the paper contains technical details and applications of the construc-
tion. We provide background material on projective geometries in Section 2 and on quater-
nionic twistor theory in Section 3. We give the remaining details of the proof of Theorem 3,
and prove Theorem 4, in Section 4. Section 5 concludes the paper with examples and con-
nections with other results in the area. Here we explain how the constructions of Feix (and
hence Kaledin) arise as a special case, and are also related to the quaternionic construction
using twisted Swann bundles [55, 33, 34, 49, 54] and Armstrong cones [5] (Theorem 5).
We show how the 4-dimensional case is related to LeBrun’s asymptotically hyperbolic
Einstein–Weyl structures [11, 42], and use the Haydys–Hitchin correspondence [25, 27] to
analyse quaternionic Kähler metrics (Theorem 6). We end by discussing further directions
suggested by these results.

1. Motivation and overview of the construction

1.1. Complexification and projective geometry. Any real-analytic n-manifoldM has
a complexification which is a holomorphic n-manifold MC containing M as the fixed point
set of an antiholomorphic involution; MC is locally unique along M (i.e., up to unique bi-
holomorphism between neighbourhoods of M inducing the identity onM). The underlying
complex manifold of MC, a real 2n-manifold MC

R
with an integrable complex structure J ,

has M as a totally real submanifold, i.e., TM ∩ J(TM) = 0, so TMC

R
|M = TM ⊕ J(TM).

Since J(TM) ∼= TM is the normal bundle to M in MC

R
, there is a local isomorphism along

M between MC

R
and TM , where M is identified with the zero section in TM , along which

J is an isomorphism between horizontal and vertical tangent spaces in T (TM). Such a
complexification of M inside TM is unique up to unique local automorphism inducing
the identity to first order along M ; furthermore, the complexification can be determined
uniquely by choosing an affine connection D on M and requiring that the tangent map of
any geodesic is holomorphic [8, 56]. However, the unparametrized geodesics of D depend
only on its projective class in the following sense.

Definition 1.1. A projective manifold is a manifold M with projective structure, i.e., a
projective equivalence class Πr = [D]r of torsion-free affine connections, where D̃ ∼r D if
there is a 1-form γ ∈ Ω1(M) such that for all vector fields X, Y ∈ Γ(TM),

(1) D̃XY = DXY + [[X, γ]]r(Y ), where [[X, γ]]r(Y ) = γ(X)Y + γ(Y )X.

Hence the results of Bielawski and Szöke [8, 56] have the following consequence.

Theorem 1. A real-analytic projective manifold M has a complexification MC ⊆ TM
which meets the tangent bundle to any geodesic in M in a holomorphic submanifold.

1.2. Quaternionic manifolds and totally complex submanifolds. Recall [54] that
a quaternionic structure on a 4n-manifold M is a bundle Q of Lie subalgebras of the
endomorphism bundle gl(TM) of TM which is pointwise isomorphic to the Lie algebra
sp(1) of imaginary quaternions acting on R4n ∼= Hn; a quaternionic connection D on
(M,Q) is a torsion-free affine connection preserving Q. If (M,Q) admits a quaternionic



PROJECTIVE GEOMETRY AND THE QUATERNIONIC FEIX–KALEDIN CONSTRUCTION 3

connection (satisfying a curvature condition when n = 1 which we discuss later), we say
it is a quaternionic manifold.

A submanifold S of (M,Q) is totally complex [3] if there is a section J of Q|S with
J2 = − id such that:

• J(TS) ⊆ TS (so that J is an almost complex structure on S);
• for all I ∈ J⊥, I(TS) ∩ TS = 0, where J⊥ := {I ∈ Q : IJ = −JI}.

If M has real dimension 4n, it follows that S has real dimension 6 2n. If S is maximal,
i.e., dimension 2n, then TM |S = TS ⊕ NS where (NS)u = I(TuS) for any nonzero
I ∈ J⊥

u . (Any other element of J⊥
u is a pointwise linear combination of I and IJ , so (NS)u

is independent of the choice of I, and the map J⊥
u × TuS → (NS)u; (I,X) 7→ IX induces

an isomorphism J⊥
u ⊗C TuS ∼= (NS)u, where J⊥

u and TuS are complex vector spaces via
right multiplication by J and its left action respectively.)

Lemma 1.1. Let S be a maximal totally complex submanifold of (M,Q) and D a quater-

nionic connection, and let π : TM |S → TS be the projection along NS. Then the projection

DXY := π(DXY ), for vector fields X, Y on S, defines a torsion-free complex connection

(i.e., DJ = 0) on S, and hence J is integrable on S.

Proof. Clearly D is a torsion-free connection on S: for any vector fields X, Y on S, DXY −
DYX = π([X, Y ]) = 0. Furthermore,

(DXJ)Y = DX(JY )− JDXY = π(DX(JY ))− Jπ(DXY )

= π(DXJ)Y + (πJ − Jπ)DXY = 0,

since DXJ is a section of J⊥, and J commutes with π. �

If D̃ is another quaternionic connection on M , it is well known [2] that there is a 1-form

γ on M such that D̃XY = DXY + [[X, γ]]q(Y ), where

(2) [[X, γ]]q(Y ) := 1
2
(γ(X)Y + γ(Y )X −

∑3
i=1

(

γ(JiX)JiY + γ(JiY )JiX)
)

where J1, J2, J3 is any local anticommuting frame of Q with J 2
i = − id. Thus, given one

quaternionic connection D, we can construct all others using [[·, ·]]q.
For a maximal totally complex submanifold S ⊆ M , we may take the anticommuting

frame defined by the given complex structure J preserving TS, a local section I of J⊥ with
I2 = − id, and K = IJ . Then for vector fields X, Y along S, we compute

π(D̃XY −DXY ) =π([[X, γ]]q(Y )) = [[X, γ]]c(Y ), where

[[X, γ]]c(Y ) :=1
2

(

γ(Y )Z + γ(Z)Y − (γ(JY )JZ + γ(JZ)JY )
)

(3)

and we use π(IX) = π(KX) = 0. This prompts the following definition.

Definition 1.2. A c-projective manifold is a manifold S with an integrable complex struc-
ture J and a c-projective structure, i.e., an c-projective equivalence class Πc = [D]c of
torsion-free complex connections, where D̃ ∼c D if there is a 1-form γ such that for all
vector fields X, Y on S, D̃XY = DXY + [[X, γ]]c(Y ).

This is complex, though not necessarily holomorphic, analogue of a real projective struc-
ture (see §2.4 and [16, 30, 31, 59], some of which use misleading terms “holomorphically
projective” and “h-projective”). The observations above imply the following.

Theorem 2. Let S be a maximal totally complex submanifold of a quaternionic manifold

(M,Q). Then S is a c-projective manifold, whose c-projective structure consists of the

connections induced by quaternionic connections on M via Lemma 1.1.
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Since the normal bundle of S in M is isomorphic to TS ⊗C J⊥, a neighbourhood of S
in M is isomorphic to a neighbourhood of the zero section in TS ⊗C J⊥.

We show in §2.4 that the c-projective curvature of S has type (1, 1) with respect to
J . Conversely, as we shall see, the quaternionic Feix–Kaledin construction exhibits every
real-analytic c-projective manifold with type (1, 1) c-projective curvature as a maximal
totally complex submanifold of a quaternionic manifold.

1.3. The model example and the twistor construction. Given a quaternionic vector
space W ∼= Hn+1, its quaternionic projectivization M = PH(W ) ∼= HPn has a canonical
quaternionic structure: a point H ∈ M is a 1-dimensional quaternionic subspace of W ,
and its tangent space THM is the space of quaternionic linear maps H → W/H , which is
itself a quaternionic vector space; the action of the imaginary quaternions on THM defines
an sp(1) subalgebra QH

∼= sl(H,H) ⊆ gl(THM). Now let WC be the underlying complex
vector space of W with respect to one of its complex structures J . Then there is a natural
map πM from Z = P(WC) ∼= CP2n+1 to M whose fibre at H ∈ M is P(HC) ∼= CP1, which
is isomorphic to the 2-sphere of unit imaginary quaternions in sl(H,H). These fibres are
fixed by the antiholomorphic involution of Z induced by any nonzero element of J⊥.

Now let WC = W 1,0 ⊕ W 0,1, where W 1,0 ∼= W 0,1 ∼= Cn+1 are maximal totally complex
subspaces of W with respect to the chosen complex structure J , i.e., JW 1,0 = W 1,0,
JW 0,1 = W 0,1, and IW 1,0 = W 0,1 for any nonzero I ∈ J⊥. Then P(W 1,0) and P(W 0,1) are
disjoint projective n-subspaces of Z = P(WC), and S := πM (P(W 1,0)) = πM (P(W 0,1)) ∼=
CPn is a maximal totally complex submanifold of M ∼= HPn.

Proposition 1.1. Z \P(W 1,0) is canonically isomorphic to (the total space of ) the vector

bundle Hom(OW 0,1(−1),W 1,0) → P(W 0,1), with fibre Hom(x̃,W 1,0) over x̃ ∈ P(W 0,1), and
similarly Z \ P(W 0,1) ∼= Hom(OW 1,0(−1),W 0,1) → P(W 1,0). Furthermore the blow-up of

Z along P(W 1,0) ⊔ P(W 0,1) is canonically isomorphic to the CP1-bundle

Ẑ := P(O(−1, 0)⊕ O(0,−1)) → P(W 1,0)× P(W 0,1),

whose fibre over (x, x̃) is P(x⊕ x̃).

Proof. The fibre of the map Z \ P(W 1,0) → P(W 0,1); [w + w̃] 7→ [w̃] over x̃ ∈ P(W 0,1)
is P(W 1,0 ⊕ x̃) \ P(W 1,0). Any 1-dimensional subspace of W 1,0 ⊕ x̃ transverse to W 1,0 is
the graph of linear map x̃ → W 1,0, yielding an isomorphism P(W 1,0 ⊕ x̃) \ P(W 1,0) →
Hom(x̃,W 1,0). The isomorphism of Z \P(W 0,1) with Hom(OW 1,0(−1),W 0,1) is analogous,
and Ẑ is the blow-up of Z because (see §2.2) the blow-up of a vector space E at the origin
is isomorphic to the total space of the tautological bundle OE(−1) → P(E). �

Thus Z may be obtained from P(W 1,0)×P(W 0,1) by gluing together the vector bundles
Hom(OW 1,0(−1),W 0,1) → P(W 1,0) and Hom(OW 0,1(−1),W 1,0) → P(W 0,1) to obtain a
blow-down of P(O(−1, 0)⊕O(0,−1)) along its two canonical (“zero and infinity”) sections.
Each fibre P(x⊕ x̃) then maps to a projective line in Z with normal bundle isomorphic to
Ox⊕x̃(1)⊗ C2n, and these are the fibres of Z over S ⊆ M .

This picture generalizes using an extension to quaternionic manifolds, introduced by
S. Salamon [53, 54], of Penrose’s twistor theory for self-dual conformal manifolds [6, 50].
The twistor space of a quaternionic 4n-manifold (M,Q)—or, for n = 1, a self-dual confor-
mal manifold—is the total space Z of the 2-sphere bundle πM : Z → M of elements of Q
which square to −1. Salamon showed that Z admits a integrable complex structure (and
hence is a holomorphic (2n + 1)-manifold) such that the involution ρ of Z sending J to
−J is antiholomorphic, and the fibres of πM are real twistor lines, i.e., holomorphically
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embedded, ρ-invariant projective lines with normal bundle isomorphic to O(1)⊗C2n. The
following converse will be crucial to our main construction.

Theorem. Let Z be a holomorphic (2n + 1)-manifold equipped with an antiholomorphic

involution ρ : Z → Z containing a real twistor line on which ρ has no fixed points. Then

the space of such real twistor lines is a 4n-dimensional quaternionic manifold (M,Q) such
that (Z, ρ) is locally isomorphic to its twistor space.

For hyperkähler and quaternionic Kähler manifolds, this result is due to N. Hitchin et
al. [29] and C. LeBrun [41] respectively. H. Pedersen and Y-S. Poon [48] establish an
extension to general quaternionic manifolds, although they assume that Z is foliated by
real twistor lines. However, the Kodaira deformation space [37] of u is a holomorphic 4n-
manifold MC with a real structure ρM whose fixed points are real twistor lines. It follows
that the real twistor lines form a real-analytic submanifold M of MC with real dimension
4n, which is enough to establish the above result, following [7, 29, 41, 48].

1.4. The quaternionic Feix–Kaledin construction. Let S be a 2n-manifold equipped
with an integrable complex structure J and a real-analytic c-projective structure Πc. Our
goal is to build the twistor space Z of a quaternionic manifold M from a projective line

bundle Ẑ = P(L ∗
1,0⊕L ∗

0,1)
p
−→ SC, where SC is a complexification of S. The fibres of p over

SC are projective lines in Ẑ with trivial normal bundle O ⊗ C2n, but if we map them into
a suitable blow-down Z of Ẑ, along “zero” and “infinity” sections 0 = P(L ∗

1,0 ⊕ 0) and

∞ = P(0⊕ L ∗
0,1), then their images in Z will have normal bundle O(1)⊗ C2n.

In the model example, SC is a product of projective spaces, and L1,0 and L0,1 are dual
to tautological line bundles over the factors. In general, it will be an open subset of a
projective bundle in two different ways, and the line bundles L1,0 and L0,1 will be dual to
fibrewise tautological line bundles over these projective bundles. There is some freedom
in the choice of L1,0 and L0,1, which we parametrize by an auxiliary complex line bundle
L → S equipped with a real-analytic complex connection ∇. We proceed in several steps.

Step 1: Complexification. First we introduce a complexification of S, i.e., a holomor-
phic manifold SC with S as the fixed point set of an antiholomorphic involution—see §2.1.
Since S is a complex manifold, it has an essentially canonical complexification by embed-
ding it as the diagonal in S1,0×S0,1, where S1,0 denotes S with the holomorphic structure
induced by J and S0,1 = S1,0 is its conjugate (with the holomorphic structure induced
by −J) so that transposition is an antiholomorphic involution of S1,0 × S0,1. However,
the c-projective structure Πc on S and connection ∇ on L may only extend to a tubular
neighbourhood of the diagonal in S1,0 × S0,1, so we let SC be such a neighbourhood, with
extensions ΠC

c and ∇C of Πc and ∇. Thus SC has transverse (0, 1) and (1, 0) foliations,
which are the fibres of the projections π1,0 : S

C → S1,0 and π0,1 : S
C → S0,1. We let L1,0 and

L0,1 be the pullbacks to SC of L ⊗ OS(1) → S = S1,0 and its conjugate over S0,1, where
OS(1)

⊗(n+1) = ∧
nTS. (In examples, it can happen that L and OS(1) are not globally

defined on S, but their tensor product is.)
As explained in Proposition 2.4, the algebraic bracket [[·, ·]]c restricts to [[·, ·]]r on the

leaves of the (0, 1) and (1, 0) foliations and so restrictions of connections in ΠC

c induce
projective structures, and hence projective Cartan connections D , along these leaves—
see §2.4–§2.5. In fact, as explained in §2.6, we couple these connections to the connection
∇C on L C to obtain connections D∇ on the bundles of 1-jets of L0,1 and L1,0 along the
leaves of the (0, 1) and (1, 0) foliations respectively.

Step 2: Development. We now introduce the fundamental assumption that Πc and ∇
have (curvature of) type (1, 1) with respect to the complex structure J on S—see §2.6. By
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Proposition 2.5, the coupled projective Cartan connections D∇ are flat along the leaves
of the (0, 1) and (1, 0) foliations. Since these leaves are assumed to be contractible, hence
simply connected, the rank n + 1 bundles J1L0,1 and J1L1,0 are trivialized by parallel
sections along the (0, 1) and (1, 0) foliations respectively.

Definition 1.3. The bundle Aff (L0,1) → S1,0 of affine sections along the leaves of the
(0, 1) foliation (the fibres of π1,0) is the bundle whose fibre at x ∈ S0,1 is the space of
sections ℓ of L0,1 over π−1

1,0(x) such that j1ℓ is D∇-parallel. The bundle Aff (L1,0) → S0,1

is defined similarly. We further define V 0,1 := Aff (L0,1)
∗ ⊗ L1,0 → S1,0 and V 1,0 :=

Aff (L1,0)
∗ ⊗ L0,1 → S0,1.

The evaluation maps π∗
1,0Aff (L0,1) → L0,1 and π∗

0,1Aff (L1,0) → L1,0 over SC send
an affine section along a leaf to its value at a point on that leaf. Dual to these are line
subbundles L ∗

0,1 →֒ π∗
1,0Aff (L0,1)

∗ and L ∗
1,0 →֒ π∗

0,1Aff (L1,0)
∗ over SC, and hence fibrewise

developing maps from SC to P(V 0,1) over S1,0, or from SC to P(V 1,0) over S0,1, sending
a point of SC to the fibre of L ∗

0,1 ⊗ L1,0 in V 0,1, or L ∗
1,0 ⊗ L0,1 in V 1,0 respectively. The

developing maps are local diffeomorphisms, so we may assume (shrinking SC if necessary)
that they embed SC as open subsets of P(V 0,1) and P(V 1,0) respectively. These induce
embeddings of the line bundles L ∗

0,1⊗L1,0 and L ∗
1,0⊗L0,1 into the tautological line bundles

OV 0,1(−1) → P(V 0,1) and OV 1,0(−1) → P(V 1,0).

Step 3: Blow-down. To blow Ẑ down along 0 and ∞, we make following definition.

Definition 1.4. Let φ0,1 : Ẑ \ ∞ → V 0,1 and φ1,0 : Ẑ \ 0 → V 1,0 be the restrictions, to

Ẑ \∞ ∼= L ∗
0,1⊗L1,0 and Ẑ \ 0 ∼= L ∗

1,0⊗L0,1 respectively, of the blow-downs OV 0,1(−1) →

V 0,1 and OV 1,0(−1) → V 1,0 of zero sections of tautological line bundles.

On the complement of 0 ⊔∞, the blow-down maps φ0,1 and φ1,0 are biholomorphisms
onto their image—see §2.2. However, since SC typically embeds as a proper open subset
of P(V 0,1) and P(V 1,0), the images of φ0,1 and φ1,0 are cones in each fibre of V 0,1 and
V 1,0 (see Remark 2.3), hence singular along the zero sections. As a first attempt to fix
this problem, we could replace these images by V 0,1 and V 1,0 themselves, and then glue
these two vector bundles together by identifying φ0,1(z) with φ1,0(z) for z ∈ Ẑ \ (0 ⊔∞).
Unfortunately the space obtained in this way is typically not Hausdorff. We repair this by
gluing instead open subsets Z0,1 ⊆ V 0,1 and Z1,0 ⊆ V 1,0 as follows.

Definition 1.5. Let U0,1 and U1,0 be tubular neighbourhoods of the zero section in V 0,1

and V 1,0 respectively, such that

(4) φ−1
0,1(U

0,1) ∩ φ−1
1,0(U

1,0) = ∅

and define

Z0,1 = imφ0,1 ∪ U0,1, Z1,0 = imφ1,0 ∪ U1,0, Z = Z0,1 ⊔
∼
Z1,0,

where φ0,1(z) ∼ φ1,0(z) for all z ∈ Ẑ \ (0 ⊔∞). This gluing induces a map

(5) φ : Ẑ = P(L ∗
1,0 ⊕ L

∗
0,1) → Z,

whose restriction to any leaf of the (0, 1) foliation is an isomorphism away from 0, and
whose restriction to any leaf of the (1, 0) foliation is an isomorphism away from ∞.

Remark 1.1. Via the developing maps, φ0,1 and φ1,0 are restrictions of the blow-down
maps which contract 2n-dimensional zero sections of L ∗

0,1 ⊗ L1,0 and L ∗
1,0 ⊗ L0,1 to n-

dimensional zero sections of V 0,1 and V 1,0. The multiplicative parts (L ∗
0,1 ⊗ L1,0)

× and
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(L ∗
1,0 ⊗ L0,1)

× are both isomorphic to Ẑ \ (0 ⊔∞), the composite of these isomorphisms

being the inversion map ℓ 7→ 1/ℓ. Fibrewise, Z0,1 and Z1,0 look like cones with small balls
added around the origin, and they are glued along the cones by inversion.

The following diagram summarizes the construction of Z, where the hooked arrows
are open embeddings, and the other arrows are fibrations or blow-downs. The left-right
symmetry in the diagram corresponds to interchanging the (1, 0) and (0, 1) directions.

Z

Ẑ = P(L ∗
1,0 ⊕ L ∗

0,1)

φ

✻

Z0,1 ✛
φ0,1

⊂

✲

L
∗
0,1 ⊗ L1,0

⊂

✲

L
∗
1,0 ⊗ L0,1

φ1,0 ✲

✛
⊃

Z1,0

✛

⊃

OV 0,1(−1)
✛

⊃

SC

p

❄✛
✲

OV 1,0(−1)

⊂

✲

V
0,1
❄

∩

✛
P(V 0,1)

✛
⊃

✲

P(V 1,0)
✛

⊂

✲

V
1,0
❄

∩

✲

S1,0
π1,0✛✲

S0,1
✛π0,1

✲

Step 4: Canonical twistor lines. We now reach the key point of the construction.
Whereas any fibre p−1(x) of p : Ẑ = P(L ∗

1,0 ⊕ L ∗
0,1) → SC has trivial normal bundle

in Ẑ, its image φ(p−1(x)), called a canonical twistor line, has normal bundle isomorphic to
C

2n ⊗ O(1) in the blow-down Z. We thus obtain our main result.

Theorem 3. Let (S,Πc) be a c-projective manifold of type (1, 1). Then for any complex line

bundle L with connection ∇ of type (1, 1), the holomorphic manifold Z of Definition 1.5
is the twistor space of a quaternionic manifold M with a quaternionic S1 action having S
as a component of its fixed points. Furthermore, S is a totally complex submanifold of M ,

with induced c-projective structure Πc, and a neighbourhood of S in M is S1-equivariantly

diffeomorphic to a neighbourhood of the zero section in TS ⊗ (L ∗
0,1 ⊗ L1,0)|S.

Proof. • By Proposition 4.1, Z is a holomorphic manifold with a holomorphic S1 action.
• By Corollary 4.1, the canonical twistor lines form a family of projective lines in Z with
normal bundle isomorphic to C2n ⊗ O(1).

• By Proposition 4.3, ρ is an S1-equivariant antiholomorphic involution of Z, the canonical
twistor lines parametrized by S ⊆ SC are real, and ρ has no fixed points.

Thus Z is the twistor space of quaternionic manifold M with a quaternionic S1 action. By
Proposition 4.4, S is a (maximal) totally complex submanifold, with induced c-projective
structure Πc. The S1-equivariant diffeomorphism follows from Proposition 4.5, and hence
S is a component of the fixed point set of the S1 action on M . �

Definition 1.6. The construction of Z and M in Theorem 3 from S and L is called the
quaternionic Feix–Kaledin construction.

It remains to understand when a quaternionic 4n-manifold (M,Q) with a quaternionic
S1 action arises in this way. For this note that at any fixed point x ∈ M , the S1 action
induces a linear action on the sp(1) subalgebra Qx ⊆ gl(TxM) preserving the bracket
(or equivalently, the inner product). If the action is trivial, we say x is triholomorphic;
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otherwise the action is generated by a positive multiple of [J, ·] ∈ Qx for some J ∈ Qx

with J2 = − id (this is a rotation fixing span{J} ⊆ Qx).

Theorem 4. Let (M,Q) be a quaternionic 4n-manifold with a quaternionic S1 action

whose fixed point set has a connected component S which is a submanifold of real dimension

2n with no triholomorphic points. Then S is totally complex, and a neighbourhood of S in

M arises from the induced c-projective structure on S via the quaternionic Feix–Kaledin

construction, for some complex line bundle L on S.

2. Background on projective geometries

2.1. Complexification and real structures. We first summarize some basic facts about
complexification. For further information see, for example, [8] or [46, p.66].

Definition 2.1. A real structure ρ on a holomorphic manifold SC is an antiholomorphic
involution, i.e., an antiholomorphic map ρ : SC → SC with ρ2 = id. If the fixed point set S
of ρ is nonempty and SC is connected, we say (SC, ρ) is a complexification of S.

A real holomorphic map (SC

1 , ρ1) → (SC

2 , ρ2) between holomorphic manifolds with real
structures is a holomorphic map f : SC

1 → SC

2 such that f ◦ ρ1 = ρ2 ◦ f .

Remark 2.1. The derivative of ρ at a fixed point y ∈ SC is a real involution of TyS
C,

whose ±1-eigenspaces are interchanged by the complex structure, hence have the same
(real) dimension. It follows that the fixed point set S, if nonempty, is a real-analytic
submanifold whose real dimension is the complex dimension of SC. Conversely, any real-
analytic manifold S admits a complexifcation SC using holomorphic extensions of real-
analytic coordinates on S. Furthermore, a complexification of S is locally unique in the
following sense: if (SC

1 , ρ1) and (SC

2 , ρ2) are both complexifications of S then there is real
holomorphic isomorphism from a ρ1-invariant neighbourhood of S in SC

1 to a ρ2-invariant
neighbourhood of S in SC

2 .

If E is a real-analytic vector bundle of rank k over a manifold S with complexification
(SC, ρ), then by shrinking SC to a smaller connected neighbourhood of S, we may assume
that the transition functions of E have holomorphic extensions to SC and hence construct a
holomorphic vector bundle E C of complex rank k over SC, with an isomorphism ρ∗E C ∼= E C.
As with the complexification SC of S, E C is not unique, but any two complexifications of
E are locally isomorphic near S. Note that TSC is a complexification of TS.

If E is a complex vector bundle with real-analytic complex structure I, then, after
shrinking SC if necessary, we may assume I extends to E C, thus defining a decomposition
E C = E 1,0 ⊕ E 0,1 into the ±i eigenspaces of I (i2 = −1). In particular, if dimS = 2n and
J is a real-analytic almost complex structure on S, then (after shrinking SC if necessary)
the tangent bundle of SC has a decomposition

TSC = T 1,0SC ⊕ T 0,1SC,

into ±i eigendistributions of J . These distributions are integrable if and only if J is an
integrable complex structure, in which case T 1,0SC and T 0,1SC define two transverse folia-
tions, interchanged by ρ, called the (1, 0) and (0, 1) foliations. Shrinking SC if necessary,
we may assume these foliations are regular, and hence define fibrations

SC

S1,0

π1,0

✛
S0,1

π0,1✲
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from SC to the leaf spaces S1,0 and S0,1 of the (0, 1) and (1, 0) foliations respectively; the
real structure ρ then induces a biholomorphism θ : S0,1 → S1,0. We may further assume
that the projections π1,0 and π0,1 are jointly injective, defining an embedding

(π1,0, π0,1) : S
C →֒ S1,0 × S0,1.

Thus we may identify SC with an open subset of S1,0×S0,1, where ρ is induced by (x, x̃) 7→
(θ(x̃), θ−1(x)), so that S is identified with the “antidiagonal” {(x, θ−1(x)) : x ∈ S1,0}, and
T 1,0SC ∼= TS1,0, T 0,1SC ∼= TS0,1 are tangent to the factors.

If E → S is a complex vector bundle with an integrable ∂-operator, then (up to shrinking
SC) the latter defines a trivialization of E 1,0 along the leaves of (0, 1) foliation, and of E 0,1

along the leaves of (1, 0) foliation. Thus we may write E 1,0 and E 0,1 as pullbacks by π1,0

and π0,1 of holomorphic vector bundles on S1,0 and S0,1 respectively.
In summary, a 2n-manifold S with an integrable complex structure J has an essentially

canonical complexification: we may define S1,0 to be S equipped with the holomorphic
structure induced by J , and S0,1 = S1,0 (which has the holomorphic structure induced by

−J) so that the biholomorphism θ : S0,1 → S1,0 is the identity.

Proposition 2.1. If S has an integrable complex structure, then S1,0×S0,1, is a complex-

ification of S, with ρ(x, x̃) = (x̃, x), and any sufficiently small complexification SC of S
may be identified with a neighbourhood of the (anti)diagonal in S1,0 × S0,1.

A complex vector bundle E → S with an integrable ∂-operator defines holomorphic vector

bundles E 1,0 → S1,0 and E 0,1 → S0,1, where E 0,1 = θ∗E 1,0, and (omitting pullbacks by π1,0

and π0,1) E 1,0 ⊕ E 0,1 → SC is a complexification of E → S.

Suppose that D is a real-analytic affine connection on S. Since the connection forms
of D are given by real-analytic functions, we can holomorphically extend them near S to
obtain a holomorphic affine connection DC (i.e., it has holomorphic connection forms in
holomorphic coordinates) on some complexification SC ⊆ S1,0 × S0,1.

Similarly if E → S admits a real-analytic complex connection ∇ compatible with the
holomorphic structure, i.e., a complex connection such that ∇0,1 = ∂E , then locally we can
complexify the connection (by holomorphic extension of the connection forms) to obtain
a complexified connection ∇c on E C.

2.2. Projective bundles and blow-ups. The projective space P(E) of a vector space
E is the set of 1-dimensional subspaces of E. Writing E× := E \ {0}, the map E× →
P(E), which sends a nonzero vector to its span, realizes E× as the subbundle OE(−1)× of
nonzero vectors in the tautological line bundle OE(−1) → P(E) whose fibre at ℓ ∈ P(E)
is OE(−1)ℓ = ℓ ⊆ E.

Notation 2.1. For k ∈ Z, denote OE(k) := OE(1)
⊗k, where for any line bundle L , L ⊗k

is the k-fold tensor power of L for k > 0, with L ⊗0 = O (the trivial line bundle) and
L ⊗k = (L ∗)⊗(−k) for k < 0. We sometimes write L k for L ⊗k.

The bundle OE(−1) is a subbundle of P(E) × E and the inclusion defines a section of
the bundle Hom(OE(−1), E) → P(E) with fibre Hom(OE(−1), E)ℓ = Hom(ℓ, E). Dually
there is a canonical bundle map P(E)× E∗ → OE(1) (sending (ℓ, α) to α|ℓ ∈ ℓ∗), hence a
map from E∗ to the space of global sections of OE(1). The image of this map is called the
space Aff (OE(1)) of affine sections of OE(1) because of the following standard fact.

Observation 2.1. The bundle map P(E) × E∗ → J1OE(1) induced by taking 1-jets of

affine sections is a bundle isomorphism. Hence J1OE(1) has a canonical flat (indeed,
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trivial) connection whose parallel sections are 1-jets of affine sections of OE(1), and there

is an exact sequence of bundles :

(6) 0 → T ∗P(E)⊗ OE(1) → P(E)× E∗ → OE(1) → 0.

Remark 2.2. For any 1-dimensional vector space L, P(E ⊗ L) is canonically isomorphic
to P(E), but OE⊗L(−1) = OE(−1) ⊗ L. However, if dimE = m + 1, then by taking the
top exterior power of (6), we obtain that OE(m+ 1) ∼= ∧

mTP(E)⊗∧
m+1E∗.

The above ideas may be applied fibrewise to a vector bundle.

Definition 2.2. Given a vector bundle E
π
−→ M , we define the projectivization P(E ) → M

by requiring that for any x ∈ M , P(E )x = P(Ex); we further define E × := E \ 0, where 0
is (the image of) the zero section of E . This an open subset of the fibrewise tautological

bundle OE (−1) → P(E ) whose fibre over ℓ ∈ P(E )x (for x ∈ M) is ℓ 6 Ex.

If L → M is a line bundle, then by Remark 2.2, P(E ⊗ L ) is canonically isomorphic
to P(E ), but OE⊗L (−1) ∼= OE (−1)⊗ π∗L .

We next summarize blow-up and blow-down, in the holomorphic category.

Definition 2.3. A map p : M̂ → M is called a blow-up of a holomorphic manifold M
along a submanifold B with exceptional divisor B̂ ⊆ M̂ (and M is the blow-down of M̂
along p) if

• p|B̂ : B̂ → B is isomorphic to P(NB) → B, where NB = TM |B/TB,

• p|M̂\B̂ : M̂ \ B̂ → M \B is a biholomorphism.

B̂ ⊆ M̂

B
❄
⊆ M

p❄

The prototypical example is the blow-up of a vector space E at the origin, given by the
projection OE(−1) →֒ P(E) × E → E, where the exceptional divisor is the zero section
of OE(−1) → P(E). Similarly, for any vector bundle E , the projection from OE (−1) to E

blows down the zero section of OE (−1) to the zero section of E .
These examples have a further variant to projective completions such as the projective

line bundle P(O ⊕OE(−1)) → P(E). This is a subbundle of P(E)×P(C⊕E), with fibre
P(C⊕ ℓ) ⊆ P(C⊕E) over ℓ ∈ P(E). Hence there is a blow-down map P(O ⊕OE(−1)) →
P(C⊕ E) which is isomorphic to the blow-down OE(−1) → E on the complement of the
section P(OE(−1)) ∼= P(E). We shall later use the following.

Observation 2.2. In the blow-down P(O ⊕ OE(−1)) → P(C ⊕ E), the fibre P(C ⊕ ℓ)
over ℓ ∈ P(E) maps to the corresponding projective line in P(C⊕E), with normal bundle

TP(C⊕ E)|P(C⊕ℓ/TP(C⊕ ℓ) ∼= OC⊕ℓ(1)⊗E/ℓ.

Here the normal bundle is identified by applying (6) to P(C⊕ ℓ) and P(C⊕E).

Remark 2.3. As this last example illustrates, blow-up and blow-down are local to the
submanifold or exceptional divisor. Hence disconnected submanifolds and exceptional
divisors can be blown up or down componentwise. On the other hand, the blow-down of
the inverse image of an open subset U ⊆ P(E) in OE(−1) (for example) is the cone on U
in E, which (for U proper) is singular at the origin.
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2.3. Cartan geometries. Let G be a real or complex Lie group, and P a (closed) Lie
subgroup, so that G/P is a (smooth or holomorphic) homogeneous space. Let M be a
(smooth or holomorphic) manifold with the same dimension as G/P .

Definition 2.4. A Cartan connection of type (G,P ) onM is a principal G-bundle G → M ,
with a principal G-connection η : TG → g and a reduction ι : P →֒ G of structure group
to P 6 G satisfying the following (open) Cartan condition:

• the pullback ι∗η induces a bundle isomorphism of TP with P × g.

A manifold M with a Cartan connection is called a Cartan geometry. Its Cartan bundle

is the bundle of homogeneous spaces CM := G /P ∼= G ×G (G/P ) ∼= G ×P (G/P ) over M .
The principal connection η on G induces a connection on CM , while the reduction to P
equips CM with a tautological section τ : M ∼= P/P →֒ G /P = CM .

The model Cartan connection of type (G,P ) is the reduction G →֒ (G/P )×G of principal
bundles over G/P , with connection given by the Maurer–Cartan form ηG : TG → g of G.
This is an isomorphism on each tangent space, so the bundle map T (G/P ) → G×P (g/p),
induced by the horizontal 1-form ηG + p ∈ Ω1(G, g/p)P , is a bundle isomorphism.

For a general Cartan geometry M of type (G,P ), it follows that the vertical bundle of
CM is (isomorphic to) G ×G T (G/P ) ∼= G ×P (g/p), and the induced connection on CM

is the 1-form ηC : TCM → G ×P (g/p) induced by the (horizontal, P -equivariant) 1-form
η + p : TG → g/p. Let gM = G ×G g ∼= P ×P g and pM = P ×P p. Then the covariant
derivative ηM := τ ∗ηC : TM → P ×P (g/p) ∼= gM/pM of the tautological section τ is
the 1-form on M induced by the pullback ι∗(η + p) = ι∗η + p : TP → g/p. The Cartan
condition means (equivalently) that ηM is a bundle isomorphism.

The key idea behind Cartan connections is that if D is flat, then in a local trivialization
CM by parallel sections over an open subset U , the tautological section τ |U : U → C |U ∼=
U ×G/P defines a developing map from U to G/P : by the Cartan condition, these maps
are local diffeomorphisms, which identify the universal cover of M with a cover of an open
subset of G/P . Since this notion of development will be crucial to us, we establish it
explicitly using a linear representation of the Cartan connection described in §2.5.

2.4. Projective parabolic geometries. Smooth projective, c-projective and quater-
nionic manifolds are Cartan geometries modelled on the projective spaces RP n, CP n

and HP n, which are (real) homogeneous spaces for the projective general linear groups
PGL(n,R), PGL(n,C) and PGL(n,H). The corresponding holomorphic Cartan geome-
tries are modelled on complexifications of these varieties, namely CP n, CP n × CP n and
the grassmannian Gr2(C

2(n+1)) of two dimensional subspaces of C2(n+1).
These Cartan geometries are examples (cf. [17]) of parabolic geometries [19]: the model

G/P is a generalized flag variety, with G semisimple, and p a parabolic subalgebra of g.
This means that the Killing perp p⊥ is a nilpotent ideal in p—and in the above examples,
p⊥ is abelian. For such Cartan geometries, the isomorphism TM ∼= gM/pM induces an
isomorphism of T ∗M ∼= p⊥M := P ×P p⊥, the Lie bracket on gM induces a graded Lie
bracket [[·, ·]] on TM ⊕ (pM/p⊥M)⊕ T ∗M , and so there is an algebraic bracket

[[·, ·]] : TM × T ∗M → pM/p⊥M ⊆ gl(TM).

These geometries all admit an equivalence class Π of torsion-free connections [D], where

D̃ ∼ D ⇔ ∃ γ ∈ Ω1(M) such that D̃XY = DXY + [[X, γ]](Y )

for all vector fields X, Y . For projective, quaternionic and c-projective manifolds, the
bracket is defined explicitly in equations (1), (2) and (3) respectively.
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If the curvature RD is viewed as a function of D ∈ Π, then its derivative with respect
to a 1-form γ is ∂γR

D = −[[id ∧Dγ]], where ∂γF (D) = d

dt
F (D+ tγ)|t=0 and [[id ∧Dγ]]X,Y =

[[X,DY γ]] − [[Y,DXγ]]. One further feature of these geometries is the existence of a “nor-
malized Ricci” or “Rho” tensor rD ∈ Ω1(M,T ∗M) (a cotangent-valued 1-form) such that
∂γ r

D = −Dγ and hence W := RD −[[id ∧ rD]] is an invariant of the geometry (i.e., indepen-
dent of D ∈ Π) called its Weyl curvature. It follows also that the Cotton–York curvature

CD := dD rD satisfies ∂γC
D = −dDDγ + [[[[id, γ]] ∧ rD]] = −[[W , γ]]. In particular, if the

Weyl curvature vanishes, then the Cotton–York curvature is an invariant.
Conversely, given an equivalence class Π of torsion-free affine connections on M , com-

patible with an appropriate reduction of the frame bundle, the general theory of parabolic
geometries [19] constructs a Cartan connection η which is flat if and only if the Weyl and
Cotton–York curvatures vanish. We now discuss this for projective structures.

2.5. Projective structures, affine sections and development. On a projective space
P(E), the trivialization J1OE(1) ∼= P(E) × E∗ of Observation 2.1 may be viewed as a
linear representation of a flat Cartan connection. Its parallel sections are 1-jets of sections
of OE(1) induced by linear forms on E, which are affine functions in any affine chart.
Globally, these are the elements of the space H0(P(E),OE(1)) of regular (or holomorphic)
sections. Locally, these affine sections of OE(1) are solutions of a second order differential
equation. Projective structures generalize this local description.

Definition 2.5. Let M be a smooth or holomorphic n-manifold. Then we denote by
OM(1) a (chosen) line bundle over M that satisfies OM(n + 1) := OM(1)⊗(n+1) ∼= ∧

nTM .
We set OM(−1) := (OM(1))∗.

Let Πr be a projective structure on a manifold M . A choice of D ∈ Πr gives a splitting
of the 1-jet sequence

0 → T ∗M ⊗ OM(1) → J1
OM(1) → OM(1) → 0,

i.e., an isomorphism J1OM(1) ∼= OM(1) ⊕ (T ∗M ⊗ OM(1)) sending j1ℓ to (ℓ,Dℓ). For
n > 1, there is also a normalized Ricci tensor rD associated to D, with ∂γ r

D = −Dγ.

Definition 2.6. For any D ∈ Πr, ℓ ∈ OM(1) and α ∈ T ∗M ⊗ OM(1), let
[

ℓ
α

]

D
=

j1ℓ−Dℓ+α (defined using a local extension of ℓ) be the element of J1OM(1) corresponding
to (ℓ, α) ∈ (OM(1)⊕ T ∗M ⊗ OM(1)). Define a connection D on J1OM(1) by

(7) DX

[

ℓ
α

]

D
=

[

DXℓ− α(X)
DXα + (rD)Xℓ

]

D
.

Proposition 2.2. The connection D does not depend on the choice of D ∈ Πr.

Proof. Since ∂γDℓ = γℓ, we have

∂γ

[

ℓ
α

]

D
= ∂γ(j

1ℓ−Dℓ+ α) = −γℓ =
[

0
−γℓ

]

D
.

Then by the Leibniz rule

∂γ

[

DXℓ− α(X)
DXα+ (rD)Xℓ

]

D
= −

[

0
γ(DXℓ− α(X))

]

D
+
[

γ(X)ℓ
[[X, γ]]r · α−DXγ ℓ

]

D
.

Since α is OM(1)-valued 1-form, [[X, γ]]r · α = −α(X)γ, and hence

∂γ

[

DXℓ− α(X)
DXα + (rD)Xℓ

]

D
=

[

γ(X)ℓ
−γDXℓ− (DXγ)ℓ

]

D
= DX

[

0
−γℓ

]

D
.

Thus ∂γ ◦ D = D ◦ ∂γ on J1OM(1), which completes the proof. �
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Definition 2.7. A section ℓ of OM(1) overM is called an affine section if j1ℓ is a D-parallel
section of J1OM(1). Note that if

[

ℓ
α

]

D
is parallel for D then α = Dℓ, i.e.,

[

ℓ
α

]

D
= j1ℓ,

and hence D2ℓ + rD ℓ = 0. Thus ℓ 7→ j1ℓ is a bijection between affine sections of OM(1)
and D-parallel sections of J1OM(1).

Proposition 2.3. D is flat iff Πr has vanishing Weyl and Cotton–York curvatures.

Proof. Choosing D ∈ Πr and computing the curvature of D from (7), we obtain

RD

X,Y

[

ℓ
α

]

D
=

[ 0
WX,Y · α + CD

X,Y ℓ

]

D

for all vector fields X, Y , where we use the fact that tr(WX,Y ) = 0. �

If n > 2 and W = 0, the differential Bianchi identity implies that CD = dD rD = 0,
and so D is flat if and only if the projective Weyl curvature vanishes. For n = 2, W is
identically zero, and so D is flat if and only if the projective Cotton–York curvature (which
is a projective invariant, also known as the Liouville tensor) vanishes.

Remark 2.4. If L is a line bundle with connection ∇ on a projective manifold M , then
we can define a coupled (tensor product) connection D∇ on J1OM(1)⊗ L , and the map
ℓ ⊗ u 7→ (j1ℓ) ⊗ u + ℓ ⊗ ∇u similarly defines a bijection between distinguished “affine
sections” of OM(1)⊗ L and D∇-parallel sections of J1OM(1)⊗ L .

2.6. C-projective structures and their foliations. Let (S, J) be a complex manifold
of complex dimension n > 1, and let Πc be a real-analytic c-projective structure on S (i.e.,
there is a real-analytic connection in Πc). Then we can extend real-analytic connections in
Πc to a complexification SC of (S, J) as in §2.1. Since [[·, ·]] depends only on J , it extends
to any such complexification, the following is immediate.

Observation 2.3. There is a complexification (SC,ΠC

c) of (S, J,Πc) such that the holomor-

phic connections in ΠC

c are holomorphic extensions of connections in Πc. The c-projective

Weyl and Cotton–York curvatures of ΠC

c are holomorphic extensions of corresponding c-

projective Weyl and Cotton–York curvatures of Πc.

Proposition 2.4. A holomorphic c-projective structure ΠC

c on SC →֒ S1,0 × S0,1 induces

holomorphic projective structures on the leaves of the (1, 0) and (0, 1) foliations.

Proof. Since TSC = TS1,0 ⊕ TS0,1, any connection in ΠC

c induces a connection on any leaf
by restriction and projection. Now vectors tangent to the (1, 0) and (0, 1) foliations are of
the form X + iJX and X − iJX respectively, and for any 1-form γ on SC,

[[X + iJX, γ]]c(Y + iJY ) = [[X + iJX, γ]]r(Y + iJY ),

[[X − iJX, γ]]c(Y − iJY ) = [[X − iJX, γ]]r(Y − iJY ).

Hence c-projectively related connections on SC, after restriction to leaves of the (1, 0) and
(0, 1) foliations, are projectively related. �

Remark 2.5. Conversely the projective structures on the leaves determine Πc: for any
y ∈ SC and any affine connections D and D̃ on the leaves through y, there is a unique
affine connection at y preserving the product structure and restricting to D and D̃.

Since the decomposition TSC = TS1,0 ⊕ TS0,1 is a holomorphic extension of the type
decomposition TS ⊗ C = T 1,0S ⊕ T 0,1S on S, the decomposition

∧
2T ∗SC = ∧

2T ∗S1,0 ⊕ (T ∗S1,0 ⊗ T ∗S0,1)⊕∧
2T ∗S0,1

is a holomorphic extension of the type decomposition ∧
2T ∗S ⊗ C = ∧

2,0 ⊕∧
1,1 ⊕∧

0,2.
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Definition 2.8. We say that a c-projective structure Πc on (S, J) has type (1, 1) if its
c-projective Weyl and Cotton–York curvatures have type (1, 1).

Proposition 2.5. A real-analytic c-projective structure of type (1, 1) induces flat projective
structures on the leaves of (1, 0) and (0, 1) foliations in any complexification.

Proof. As the c-projective Weyl and Cotton–York have type (1, 1), their holomorphic ex-
tensions have vanishing pullbacks, as a 2-forms, to any leaf of the (1, 0) or (0, 1) foliation.
However, due to the relation between the algebraic brackets in the proof of Proposition 2.4,
these pullbacks are the projective Weyl and Cotton–York curvatures of the leaves, so the
the induced projective structures are flat by Proposition 2.3. �

We now discuss the line bundle L → S with connection ∇; its holomorphic extension
∇C to SC provides line bundles with connection along the (1, 0) and (0, 1) foliations which
we use to twist the projective Cartan connections along the leaves as in Remark 2.4. To
preserve flatness of the leafwise projective structures, we require ∇C to be flat along leaves,
i.e., ∇ has type (1, 1) curvature. In particular, ∇0,1 is a holomorphic structure on L .

For a simply-connected projective manifold, a twist by a flat line bundle is essentially
trivial, corresponding to the ambiguity in OE(1) → P(E) = P(E ⊗ L) mentioned in
Remark 2.2. However, here we have two families of projective leaves, and ambiguities in
the choice of O(1) along these leaves which need not be compatible—and which we want
to encode in the (1, 1) curvature of ∇. Thus, rather than simply taking L1,0 = π∗

1,0OS(1),

where OS(m + 1) = ∧
nTS1,0, we first twist by L and take L1,0 = π∗

1,0(L ⊗ OS(1)). As
mentioned in the introduction, in this more general construction, it can happen that L

and OS(1) are not globally defined on S, but L1,0 is. Indeed, as we shall see in §5.1, in
the original Feix–Kaledin construction L = OS(−1) and L1,0 is trivial.

2.7. C-projective surfaces, projective curves and conformal geometry. A complex
structure J on an oriented surface S is the same data as a conformal structure, and complex
connections are conformal connections. Torsion-free conformal (i.e., complex) connections
on S form an affine space modelled on 1-forms, i.e., a unique c-projective class on S.
However, these data do not suffice to construct a Cartan connection modelled on the flag
variety S2 ∼= CP 1 for SO0(3, 1) ∼= PSL(2,C), so we need to modify the notion of a c-
projective or conformal (Möbius) structure. Similarly a (real or holomorphic) projective
curve C has a unique projective class of affine connections, but these do not determine the
second order Hill operator on OC(1) whose kernel consists of the affine sections.

Following [15], we therefore require that (S, J) is equipped with a tracefree hessian
operator (or Möbius structure), which is a second order differential operator ∆: ΓLS →
ΓS 2

0 T
∗S, where LS := OS(1) is a square root of ∧2TS, such that for some (hence any)

torsion-free connection D there is a section rD0 of S 2
0 T

∗S with

∆(ℓ) = sym0D
2ℓ+ rD0 ℓ

for all sections ℓ of L. This allows us to construct a normalized Ricci tensor rD with
∂γ r

D = −Dγ, which is the crucial ingredient to build a Cartan connection.
Assuming ∆ is real-analytic, it extends to a complexification SC →֒ S1,0 × S0,1, with

S
2
0 T

∗SC = (T ∗S1,0)2 ⊕ (T ∗S0,1)2,

(rD0 )
C = (rD0 )

(2,0) ⊕ (rD0 )
(0,2).

We now define, as in §2.5–§2.6, a connection along the leaves of the (1, 0) foliation by

D
1,0
Y

[

ℓ
α

]

D
=

[ D1,0
Y ℓ− α(Y )

D1,0
Y α + (rD0 )

(2,0)
Y ℓ

]

D
,
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where ℓ is a section of O(1), α is an O(1)-valued (1, 0)-form and Y is a (1, 0)-vector field.
As in Proposition 2.2, D1,0 is independent of the choice of D, and a similar construction
applies along the leaves of the (0, 1) foliation.

3. Quaternionic twistor theory

3.1. Complexified quaternionic structures. Let Z be the twistor space of a quater-
nionic manifold [54, 29, 41, 48], i.e., a holomorphic (2n+1)-manifold with a real structure
(antiholomorphic involution) ρ : Z → Z, admitting a twistor line (a projective line which
is holomorphically embedded in Z with normal bundle isomorphic to O(1) ⊗ C2n) which
is real, i.e., ρ-invariant, and on which ρ has no fixed points.

By Kodaira deformation theory [37], the moduli space of twistor lines in Z is a holo-
morphic 4n-manifold MC, and there is an incidence relation or correspondence

(8)

FM := {(z, u) ∈ Z ×MC : z ∈ u}

Z
πZ✛

MC,πMC

✲

where we identify u ∈ MC with the corresponding twistor line u = πZ(π
−1
MC(u)) ⊆ Z. Thus

π−1
MC(u) lifts u ⊆ Z to the incidence space FM , which “separates twistor lines” (the fibres

are disjoint). The normal bundles to twistor lines define a bundle N → FM with fibre

N(z,u) := TzZ/Tzu.

We then have [37] that TuM
C ∼= H0(u,N |u).

Locally over MC, we may decompose N (noncanonically) as N = π∗
MCE ⊗ π∗

ZOZ(1)
where E is a rank 2n bundle on MC and OZ(1) is a line bundle on Z restricting to a dual
tautological bundle on each twistor line. Hence

TMC ∼= E ⊗ H ,

where Hu = H0(u,OZ(1)|u), so that FM → MC is canonically isomorphic to P(H ∗) ∼=
P(H ) (since H has rank two), and we have used that π∗

MCE |u = u × Eu. This tensor
decomposition of TMC is the key structure carried by MC [48, 7], although E ,H are only
determined up to tensoring by mutually inverse line bundles. The quaternionic connections
on MC are the tensor product connections on TMC = E ⊗ H which are torsion-free.

Remark 3.1. We can restrict the freedom in E and H (locally) by requiring that
OMC(1) := ∧

2H = ∧
2nE . This determines H (and hence E ) up to a sign, so that

H ×/{±1} is globally defined. Since ∧
4nTMC = (∧2nE )2 ⊗ (∧2H )2n, this convention

means equivalently that OMC(2n+ 2) = ∧
4nTMC. Taking top exterior powers of

0 → V πMC → π∗
ZTZ → N → 0,

using V πMC = π∗
MC(∧

2H ∗)⊗ π∗
ZOZ(1) and N = π∗

MCE ⊗ π∗
ZOZ(1), yields

π∗
Z(∧

2n+1TZ) = π∗
MC(∧

2
H

∗ ⊗∧
2n

E )⊗ π∗
ZOZ(2n+ 2).

Thus a third equivalent formulation is that OZ(2n+ 2) = ∧
2n+1TZ.

3.2. Null vectors, α-submanifolds and projective structures. We say a tangent
vector to MC is null if it is decomposable in E ⊗H and that a linear subspace of a tangent
space is null if its elements are. The fibre of FM over z ∈ Z projects to a submanifold αz

of MC called an α-submanifold. Thus u ∈ αz iff z ∈ u, and then Tuαz = Eu ⊗OZ(−1)z, so
that tangent spaces to αz are null. Since the normal bundle to u has degree 1, the twistor
lines through z ∈ u are determined by their tangent space at z. Thus αz is isomorphic
to an open submanifold of P(TzZ), and has a canonical flat projective structure: any
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Θ ∈ Grk+1(TzZ) parametrizes a k-dimensional projective (totally geodesic) submanifold
of αz given by the twistor lines tangent to Θ at z.

Any such null projective k-submanifold of MC is determined by its tangent space at
a point u ∈ MC, which is a subspace of the form θ ⊗ ℓ ⊆ Eu ⊗ Hu = TuM where θ is
a k-dimensional subspace of Eu and ℓ is a 1-dimensional subspace of Hu. The tangent
lifts of null projective k-submanifolds thus foliate the subbundle Grk(E ) ×MC P(H ) of
null k-planes in Grk(TM) ∩P(∧kE ⊗ SkH ) →֒ P(∧kTM) over the grassmannian bundle
Grk+1(TZ) as follows.

Grk(E )×MC P(H )→֒P(∧k
E ⊗ Sk

H )→֒P(∧kTMC)

Grk+1(TZ)
✛

P(H )
❄

Z
❄ πZ✛

MC

❄✛πMC
✲

For k = 1, the geodesics of these projective structures are called null geodesics of MC. At
the other extreme, when k = 2n− 1, Gr2n(TZ) ∼= P(T ∗Z) and Gr2n−1(E ) ∼= P(E ∗).

Proposition 3.1. On any α-submanifold αz in a complexified quaternionic manifold MC,

any quaternionic connection D induces an affine connection on αz compatible with its

canonical flat projective structure.

Proof. Observe that π−1
Z (z) is the image of a section of P(H )|αz

and if h is a nonvanishing
lift of this section to H |αz

, then any vector (field) tangent to αz have the form X = e⊗ h
for an element (or section) e of E |αz

. Since D is torsion-free, and isomorphic to DE ⊗DH ,
we have, for any two null vector fields X1 = e1 ⊗ h1 and X2 = e2 ⊗ h2,

(9) [X1, X2] = DE

X1
e2 ⊗ h2 −DE

X2
e1 ⊗ h1 + e2 ⊗DH

X1
h2 − e1 ⊗DH

X2
h1.

If h1 = h2 = h, then [X1, X2] is tangent to αz for all e1, e2, so DH
X preserves the span of h

for all X tangent to αz. Hence D restricts to a (torsion-free) connection on αz.
It remains to show that D preserves any projective hypersurface of αz, i.e., the sub-

manifold of twistor lines tangent to any hyperplane in TzZ. Such twistor lines generate
a hypersurface Y in Z, and the twistor lines in Y form a codimension two submanifold
Y of MC, with conormal bundle ε ⊗ H ∗, where ε is a line subbundle of E ∗ over Y . Now
equation (9) implies that DE

X preserves ker ε along Y for X tangent to Y . Hence Y ∩ αz

is totally geodesic with respect to D. �

3.3. Instantons, twists, and quaternionic complex structures. A G-connection ∇
on a G-bundle V over a quaternionic 4n-manifold (M,Q) is called a G-instanton (or
a quaternionic, self-dual or hyperholomorphic G-connection) if its curvature F∇ is Q-
hermitian, i.e., F∇(IX, Y ) + F∇(X, IY ) = 0 for all I ∈ Q and X, Y ∈ TM . This means
equivalently the complexified pullback V of V to Z is holomorphic and of degree zero,
i.e., trivial on twistor lines [34, 45, 54]. This is a generalization of the Penrose–Ward
correspondence for self-dual Yang–Mills connections on self-dual conformal 4-manifolds [6].
From the perspective of complexified quaternionic geometry, if V C → MC is the bundle
whose fibre over u ∈ MC is the space of parallel sections over the twistor line u ⊆ Z,
then ∇ extends to a GC-connection on V C which is flat on α-submanifolds, and conversely
(taking MC to be sufficiently small) Vz is the space of parallel sections of V C along αz.

Suppose now that G̃ acts on M preserving Q with dim G̃ = dimG, and let P be
the principal G-bundle with connection ω : P → g induced by (V,∇). Then D. Joyce

showed [34] that for any lift of the G̃ action to P commuting with G, preserving ω, and
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transverse to ker ω, the quotient P/G̃ is (at least locally) a quaternionic manifold (M̃, Q̃)

with a G action preserving Q̃. Joyce gave a twistorial proof using the induced principal
GC-bundle P → Z. Indeed (omitting technical details), since G̃ commutes with G and
preserves ω, there is an induced action of G̃C on P; now the transversality condition
implies that the image in Z̃ := P/G̃C of any section s of P over a twistor line u has

normal bundle O(1)⊗ C
2n, and Z̃ is then the twistor space of (M̃,Q).

This method is now known as the twist construction, particularly in the case that
dimG = 1 or (more generally) G is abelian (see [44] and references therein). Here we
apply it to generalize some results on self-dual conformal 4-manifolds in [18].

To do this, we use the notion, introduced in [33] and further studied in [51, 28], of a
quaternionic complex manifold, which (for us) is a quaternionic manifold (M,Q) equpped
with a section of Q defining an integrable complex structure on M . Then ±J define a
divisor D1,0+D0,1 in the twistor space Z ofM and there is a unique quaternionic connection
D with DJ = 0 [4]. In fact in [33, 51, 28], the authors restrict to the case that D preserves
a volume form, which we prefer to call a special quaternionic complex manifold. As in [18],
it is straightforward to see that (M,Q, J) is special if and only if [D1,0 +D0,1] = OZ(2)—
where where OZ(2n + 2) = ∧

nTZ as in Remark 3.1—and (locally) hypercomplex (i.e., D
is flat on Q) if and only if [D1,0 − D0,1] = O . In general, L(s) := [D1,0 + D0,1] ⊗ OZ(−2)
and L(h) := [D1,0 − D0,1] are degree zero line bundles on Z, and so correspond to an
R+-instanton L(s) (which is in fact D on a root of ∧4nTN) and an S1-instanton L(h) on
M (which is in fact D on J⊥ ⊆ Q).

If G̃ preserves J as well as Q in the twist construction, then G̃C preserves the inverse
image of D1,0+D0,1 in P, hence M̃ is also a quaternionic complex manifold. Furthermore,
if (M,Q, J) is special or hypercomplex, and G̃ preserves the D-parallel sections of L(s) or

L(h) respectively, then M̃ will also be special or hypercomplex accordingly.

When dim G̃ = 1, the G̃ action always lifts (at least locally on M) but the lift is not
unique. In more invariant terms, P → Z has an action of a complex 2-torus TC, and its
principal bundle structure over Z is a C× subgroup of TC. Thus there is a family of twists
of M whose twistor spaces are quotients of P by other C× subgroups of TC.

In this case, we can (in particular) take the G-bundle over M to be L×

(s) or L×

(h), so
that P → Z is either L ×

(s) or L ×

(h). Then the pullback R of L(s) or L(h) to P has a

tautological nonvanishing section and so there is a homomorphism β : TC → C× via the
action on H0(P,R) ∼= C. When this action is trivial all twists are special or hypercomplex
(respectively) and we already considered this situation (for more general twists) above.
Otherwise, the identity component of ker β is a distinguished C× subgroup of TC such that
(wherever it is transverse) the quotient Z̃ is the twistor space of a special quaternionic
complex or hypercomplex manifold respectively. We summarize as follows.

Proposition 3.2. Let (M,Q, J) be a quaternionic complex manifold which is either not

special or not hypercomplex, but admits a local S1 action preserving Q and J . Then there

is locally a twist of M (by L×

(s) or L×

(h)) which is special or hypercomplex (respectively).

A special case of this result arises in one direction of the Haydys–Hitchin correspon-
dence [25, 27] between quaternionic Kähler and hyperkähler manifolds with S1 actions.
Suppose that (M,Q, g) is a quaternionic Kähler manifold (of nonzero scalar curvature).
Then its twistor space Z is a holomorphic contact manifold, where the contact distribu-
tion is the kernel of an OZ(2)-valued 1-form η, invariant under the real structure τ , and
such that (quaternionic) Killing vector fields on M correspond to τ -invariant sections of
OZ(2) by contracting the induced contact vector field on Z with η [53]. Now if (M,Q, g)
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has S1 symmetry, the zero set of the section of OZ(2) corresponding to the generator of
the action is a C×-invariant degree two divisor which may be written as D1,0 + D0,1. By
construction, L(s) is trivial, and so (M,Q) has a special quaternionic complex structure.
There is therefore locally a twist of M by L×

(h) which is hyperkähler with an S1 action.

3.4. Twisted Swann bundles. If (M,Q) is a quaternionic manifold then the total space
of the principal CO(3)-bundle πU : UM → M of oriented conformal frames λ(J1, J2, J3) :
λ ∈ OM(1)+, J2

i = − id = J1J2J3 of OM(1) ⊗ Q has a canonical hypercomplex structure
(where OM(1) is an oriented real line bundle with OM(2n+2) = ∧

4nTM). Indeed, π∗
U
TM

has a tautological hypercomplex structure, and this lifts to a hypercomplex structure on
TUM using any quaternionic connection D and the hypercomplex structure on the vertical
bundle of UM coming from the isomorphism of CO(3) with H

×/{±1}.
This construction was introduced by A. Swann [55] for quaternionic Kähler manifolds,

and UM is called the Swann bundle or hypercomplex cone of M . The general case is studied
e.g. in [33, 34, 54, 49]. As observed by Hitchin [27] in the quaternionic Kähler case, the
twistor space of the Swann bundle is (C2 ⊗OZ(1))

×/{±1}, where OZ(2n+ 2) = ∧
nTZ as

in Remark 3.1: this space has a natural C× action induced by scalar multiplication on C2,
and the quotient is Z × CP1.

In [34, 49], it was observed that the Swann bundle construction could be twisted by an
R+-instanton (an oriented real hyperholomorphic line bundle L): one can replace OM(1)⊗
Q with L⊗OM (1)⊗Q above to obtain a hypercomplex manifold UL called a twisted Swann

bundle. The twistor space of the twisted Swann bundle is then (C2⊗LZ ⊗OZ(1))
×/{±1},

where LZ is the Penrose–Ward transform of L.

4. Details and properties of the construction

4.1. The twistor space. We now fill in the remaining details in the proof of Theorem 3.
First, we need to show that U1,0 and U0,1 can be chosen so that Z, constructed in Defini-
tion 1.5 is a twistor space with a holomorphic S1 action.

Proposition 4.1. Z is a complex manifold, with a holomorphic vector field induced by

scalar multiplication by λ ∈ C× in the fibres of V 0,1 and by λ−1 in the fibres of V 1,0.

Proof. As Z is obtained by gluing open subsets of the manifolds Z0,1 ⊆ V 0,1 and Z0,1 ⊆
V 1,0 by a relation intertwining the action of λ and λ−1, it remains to show that Z is
Hausdorff. So suppose z ∈ Z1,0 and z̃ ∈ Z0,1 with [z] 6= [z̃] in Z. If z ∈ imφ1,0 or
z̃ ∈ imφ0,1 then we can replace it by the corresponding point in Z0,1 or Z1,0, which is
distinct, hence separated, from z̃ or z. However, for z ∈ U1,0 and z̃ ∈ U0,1, the images of
U1,0 and U0,1 are open, and separate [z] and [z̃] by assumption (4). �

The construction of Z from Ẑ = P(L ∗
1,0 ⊕ L ∗

0,1) yields the diagram

(10)

Ẑ= P(L ∗
1,0 ⊕ L ∗

0,1)

Z × SC

❄

Z

φ

✛ πZ✛
SC.

p

✲

πSC

✲

The induced (vertical) map (φ, p) : Ẑ → Z × SC is injective and its image is the incidence
relation FS ⊆ FM for canonical twistor lines: for y ∈ SC, we write u(y) := φ(p−1(y)) for
the canonical twistor line parametrized by y.
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Definition 4.1. The normal bundle N on Ẑ ∼= FS is the bundle φ∗TZ/V p, where V p

denotes the vertical bundle of p : Ẑ → SC, with fibre N(z,y) = TzZ/Tz(u(y)).

Proposition 4.2. N = N 1,0 ⊕ N 0,1, where

N
1,0 ∼= p∗(TS1,0 ⊗ L

∗
1,0)⊗ OL ∗

1,0
⊕L ∗

0,1
(1),

N
0,1 ∼= p∗(TS0,1 ⊗ L

∗
0,1)⊗ OL ∗

1,0
⊕L ∗

0,1
(1).

Proof. For any y = (x, x̃) ∈ SC, we define (n+ 1)-dimensional submanifolds of Z by

Ẑ1,0
x̃ = Z1,0

x̃ ∪ φ0,1((π0,1 ◦ p)
−1(x̃)),

Ẑ0,1
x = Z0,1

x ∪ φ1,0((π1,0 ◦ p)
−1(x)).

By Remark 1.1, these are well defined smooth submanifolds of Z, and for any y = (x, x̃) ∈
SC, we have

T Ẑ1,0
x̃ |u(y) + T Ẑ0,1

x |u(y) = TZ|u(y) and T Ẑ1,0
x̃ |u(y) ∩ T Ẑ0,1

x |u(y) = Tu(y)

Hence N = N 1,0 ⊕ N 0,1, where

N
1,0

(z,y) = TzẐ
1,0
x̃ /Tzu(y) and N

0,1
(z,y) = TzẐ

0,1
x /Tzu(y).

The (canonical) identification of N 1,0 with p∗(TS1,0 ⊗L ∗
1,0)⊗OL ∗

1,0
⊕L ∗

0,1
(1) follows easily

from Observation 2.2, as Ẑ1,0
x̃ is a blow-down along the zero section of the projective bundle

p−1(π−1
0,1(x̃)) ⊆ P(L ∗

1,0 ⊕ L ∗
0,1) over π−1

0,1(x̃)
⊂
π1,0✲ S1,0, and V

1,0
x̃ /u(y) ∼= TxS

1,0 ⊗ (L ∗
1,0 ⊗

L0,1)y. A similar argument identifies N 0,1. �

We next construct the real structure on Z. By definition the holomorphic line bundles
L0,1 → S0,1 and L1,0 → S1,0 are isomorphic, and we denote the biholomorphisms S0,1 →

S1,0 and L0,1 → L1,0 by θ. The real structure ρ on SC →֒ S1,0 × S0,1 sends (x, x̃) to

(θ(x̃), θ−1(x)). We lift this real structure to Ẑ = P(L ∗
1,0 ⊕ L ∗

0,1) by defining ρ([σ, σ̃]) =
[σ̃ ◦ θ−1,−σ ◦ θ], where the minus sign ensures ρ has no fixed points. Since ρ(0) = ∞, ρ
maps L1,0 ⊗L ∗

0,1 to L ∗
1,0 ⊗L0,1. Since the leafwise connections D∇ are (by construction)

related by θ, ρ induces an antiholomorphic isomorphisms, also denoted ρ, between V 0,1

and V 1,0, with ρ ◦ φ1,0 = φ0,1 ◦ ρ and ρ ◦ φ0,1 = φ1,0 ◦ ρ. We further observe (again by
construction) that for any v ∈ V 0,1,

ρ(λ · v) = ρ(λv) = λρ(v) = λ
−1

· ρ(v),

where · denotes the C× action. Thus ρ intertwines the S1 actions on V 0,1 and V 1,0.

Proposition 4.3. We may choose U0,1 and U1,0 so that Z0,1 and Z1,0 are S1-invariant

with ρ(Z0,1) = Z1,0. Then ρ induces an S1-invariant antiholomorphic involution of Z with

no fixed points on any real (ρ-invariant) canonical twistor line.

Proof. Take U0,1 to be a sufficiently small S1-invariant neighbourhood of the zero section
in V 0,1 so that φ−1

0,1(U
0,1) ∩ ρ(φ−1

0,1(U
0,1)) = ∅. Now set U1,0 = ρ(U0,1). The real canonical

twistor lines are the images of the fibres of p over the real submanifold S ⊆ SC. Since
ρ ◦ φ = φ ◦ ρ, ρ has no fixed points on any such twistor line. �

Corollary 4.1. Z is a twistor space, and for any canonical twistor line u = u(y) (with
normal bundle N |u ∼= N 1,0|u ⊕ N 0,1|u isomorphic to C2n ⊗ O(1)),

H0(u,N 1,0|u) = (TS1,0 ⊗ L
∗
1,0)y ⊗ (L1,0 ⊕ L0,1)y

H0(u,N 0,1|u) = (TS0,1 ⊗ L
∗
0,1)y ⊗ (L1,0 ⊕ L0,1)y.
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4.2. The quaternionic manifold. By Corollary 4.1 and [7], the moduli space of twistor
lines in Z is a complexified quaternionic manifold MC with TMC = E ⊗ H , where

E |SC = (TS1,0 ⊗ L
∗
1,0)⊕ (TS0,1 ⊗ L

∗
0,1), H |SC = L1,0 ⊕ L0,1

TMC|SC = TS1,0 ⊕ TS0,1 ⊕ (TS1,0 ⊗ L
∗
1,0 ⊗ L0,1)⊕ (TS0,1 ⊗ L1,0 ⊗ L

∗
0,1).

(11)

Note that in this decomposition, the terms TS1,0 ⊕ TS0,1 correspond to the tangent space
to the submanifold SC of MC. Furthermore, the moduli space of real twistor lines is a real
quaternionic manifoldM inMC containing S [48]. Since the S1 action on Z is generated by
a holomorphic vector field, whose local flow maps twistor lines to twistor lines, it induces
an S1 action on MC, preserving M , and fixing SC pointwise.

Proposition 4.4. S is a maximal totally complex submanifold of M , and the induced

c-projective structure via Theorem 2 is the original c-projective structure Πc on S.

Proof. By [7, 48], Q ⊆ gl(TM) is isomorphic to the bundle of real tracefree endomorphisms
of H |M . The real endomorphisms of H |S = (L1,0⊕L0,1)|S (see (11)) are those commuting
with its quaternionic structure (σ, σ̃) 7→ (σ̃ ◦ θ−1, σ ◦ θ). In particular

J =

(

i 0
0 −i

)

is a section of Q, preserving TS, and inducing the original complex structure on S. The
bundle J⊥ consists of endomorphisms of H of the form

Is =

(

0 −s−1

s 0

)

.

where s is a unit section of (L ∗
1,0 ⊗ L0,1)|S. Clearly the induced endomorphisms of TM

maps TS into (TS1,0 ⊗ L ∗
1,0 ⊗ L0,1) ⊕ (TS0,1 ⊗ L1,0 ⊗ L ∗

0,1). Thus (S, J) is a maximal
totally complex submanifold of (M,Q).

By Remark 2.5 the original and induced c-projective structures on S are uniquely de-
termined by the corresponding families of holomorphic flat projective structures on the
leaves of the (1, 0) and (0, 1) foliations of SC. For x ∈ S1,0, the original flat projective
structure on π−1

1,0(x) has a development into P(V 0,1
x ) ⊆ P(TzZ), where z is the zero vector

in V 0,1
x . Hence π−1

1,0(x) is a projective submanifold of the α-submanifold corresponding to
z (with its canonical projective structure). Hence by Proposition 3.1, any quaternionic
connection on MC induces a connection on π−1

1,0(x) compatible with its original projective
structure. �

Proposition 4.5. Locally near S, M is S1-equivariantly diffeomorphic to a neighbourhood

of the zero section of TS ⊗ U, where U = (L1,0 ⊗ L ∗
0,1)|S is unitary.

Proof. By (11), the normal bundle to S in M is the real part of (TS1,0 ⊗ L ∗
1,0 ⊗ L0,1) ⊕

(TS0,1 ⊗ L1,0 ⊗ L ∗
0,1). The result now follows by the equivariant tubular neighbourhood

theorem. �

This completes the details needed for the proof of Theorem 3.

4.3. Proof of Theorem 4. Let (M,Q) be a quaternionic 4n-manifold with a quaternionic
S1 action whose fixed point set has a connected component S which is a submanifold of
real dimension 2n with no triholomorphic points.

If J is the section of Q|S generating the infinitesimal S1 action, then (TM |S, J) decom-
poses into weight spaces for the action, with zero weight space TS. Thus TS is J-invariant,
and for any I ∈ J⊥, ITS is a nonzero weight space, complementary to TS in TM . It follows
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that S is a (maximal) totally complex submanifold of M . By restricting to a neighbour-
hood of S in M , we may assume that the S1 action has no other fixed points. It thus
lifts to a holomorphic S1 action on the twistor space Z → M , generated by a holomorphic
vector field transverse to the fibres over M \S, tangent to the fibres over S, and vanishing

(only) along the sections ±J of Z|S, denoted S1,0 and S0,1. Let φ : Ẑ → Z be the blow-up
of Z along S1,0 ∪ S0,1, with exceptional divisor 0 ∪∞, where 0 and ∞ are the projective
normal bundles in Z of S1,0 and S0,1 respectively. The real structure on Z (induced by
− id on Q) interchanges S1,0 and S0,1, and induces a fibre-preserving real structure on Ẑ
interchanging 0 and ∞.

The proper transform in Ẑ of any fibre of Z|S is a rational curve with trivial normal
bundle meeting both 0 and ∞. Thus φ−1(Z|S) has a neighbourhood foliated by a 2n-
dimensional moduli space SC of rational curves with trivial normal bundle. Each such
curve meets 0 and ∞ in unique points, and projects to a twistor line in Z meeting S1,0 and
S0,1 in unique points. The induced map SC → S1,0×S0,1 is an immersion along the proper
transforms of the fibres of Z|S, hence an open embedding in a neighbourhood. Thus we

may assume Ẑ is a CP1-bundle over a complex 2n-manifold SC, which embeds as an open
subbundle of 0 → S1,0 and ∞ → S0,1, and as an open neighbourhood SC of the diagonal
in S1,0×S0,1. By Lemma 1.1 and Proposition 3.1, the induced c-projective structure on S
has c-projective curvature of type (1, 1): in the complexified c-projective structure on SC,
the fibres over S1,0 and S0,1 are projectively-flat.

The holomorphic S1 action on Z has a single nontrivial weight space at each point
of S1,0 ∪ S0,1 (the normal bundle to S in M has the same weight as the normal bundle
to S1,0 or S0,1 in Z|S). Hence it acts by scalar multiplication on the normal bundles
V 0,1 to S1,0 in Z, and V 1,0 to S0,1 in Z. In particular, the S1 action is trivial on the
projectivizations of V 0,1 and V 1,0, i.e., the lifted action on Ẑ fixes 0∪∞ pointwise. Thus
Ẑ \ (0∪∞) is a holomorphic principal C×-bundle over SC, with associated CP1-bundle Ẑ.
The associate (dual) line bundles are subbundles of the pullbacks of V 0,1 and V 1,0 to SC,
which thus have trivial Cartan connections along the fibres over S1,0 and S0,1 respectively.
Unravelling the constructions in §2.6, these are twists of the Cartan connections induced by
the c-projective structure by dual and conjugate line bundles which are flat along the fibres
over S1,0 and S0,1; we deduce that these twists come from a complex line bundle L → S
with both a holomorphic and an antiholomorphic structure, hence a (Chern) connection
with curvature of type (1, 1). We now have reconstructed the data for the quaternionic

Feix–Kaledin construction of Z as a blow-down on Ẑ, and hence of (a neighbourhood of
S in) M . �

5. Examples and applications

5.1. The hypercomplex and hyperkähler cases. The line bundles L1,0 → S1,0 and
L0,1 → S0,1 which provide the input to the quaternionic Feix–Kaledin construction are
twists of the line bundle OS(1), over a c-projective manifold S with c-projective curvature
of type (1, 1), by a connection ∇ on a complex line bundle L → S with curvature of type
(1, 1). When OS(1) itself admits such a connection, we can take L = OS(−1), so that
L1,0 → S1,0 and L0,1 → S0,1 are trivial bundles.

Proposition 5.1. If the c-projective structure Πc on S admits a real-analytic connection

D with curvature of type (1, 1), and ∇ is the induced connection on L = OS(−1), then
the quaternionic manifold M of Theorem 3 is hypercomplex, and is the the hypercomplex

manifold constructed by Feix [22]. Furthermore, when D is the Levi-Civita connection of

a Kähler metric, then M is hyperkähler, as in [21].
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Proof. As noted above, the assumptions of this theorem imply that L1,0 → S1,0 and
L0,1 → S0,1 are trivial. We compute their spaces of affine sections using the connection
D ∈ Πc, so that twisted connections D∇ on L1,0 and L0,1 are trivial. Furthermore, D has
curvature of type (1, 1) if and only if Πc has c-projective curvature of type (1, 1) and rD has
type (1, 1). Thus, in this case, rD vanishes on the leaves of the (1, 0) and (0, 1) foliations,
and hence a function f on such a leaf defines an affine section if and only if Ddf = 0 along
the leaf, i.e., f is an affine function with respect to the flat affine connection induced by
D on the leaf. We conclude that V 1,0 and V 0,1 are vector bundles dual to the spaces of
affine functions along leaves considered by Feix [21, 22].

It is easy to check that φ1,0 : S
C × C → V 1,0 and φ0,1 : S

C × C → V 1,0 send (x, x̃, 1) to
the evaluation maps that Feix uses in her construction; hence our construction reduces to
hers. Because constant functions are affine, the projection Ẑ = SC×CP 1 → CP 1 descends
to Z, which implies M is hypercomplex by [29]. We refer to [21] for the proof that M is
hyperkähler when D is the Levi-Civita connection of a Kähler metric. �

5.2. Twisted Swann bundles and Armstrong cones. Let UL be the twisted Swann
bundle of a quaternionic manifold (M,Q) with real instanton L, and suppose that S is
a maximal totally complex submanifold of M with respect to a section J of Q|S. Then
the set of λ(J1, J2, J3) ∈ UL|S with J3 = J is a principal C×-subbundle, and a maximal
totally complex submanifold of UL with respect to the third tautological complex struc-
ture. Furthermore, by Lemma 1.1, the Obata connection of UL induces a complex affine
connection on this submanifold. Thus when M is obtained from the quaternionic Feix–
Kaledin construction, it is natural to expect that UL can be obtained by applying the
original Feix–Kaledin construction to a complex cone over S.

In [5], S. Armstrong shows that for any c-projective manifold S, the total space CS of
OS(1)

×, carries a canonical complex affine connection. As explained also in [16], this is
because TCS is canonically isomorphic to the pullback of the standard representation of
the Cartan connection on S (the standard tractor bundle). It follows that we can twist this
construction by any complex line bundle L → S with connection ∇ to obtain a twisted

Armstrong cone CL = (L ⊗ OS(1))
×, whose tangent bundle is the pullback of the tensor

product of the standard tractor bundle with L .

Theorem 5. Let (M,Q) be obtained from the quaternionic Feix–Kaledin construction

applied to the c-projective manifold (S,Πc) of type (1, 1) and the line bundle L with con-

nection ∇ of type (1, 1) as in Theorem 3. Then the hypercomplex manifold obtained from

twisted Armstrong cone CL by the (original) Feix–Kaledin construction is an open subset

of the twisted Swann bundle of M , where the pullback of L 2
Z to Ẑ is p∗(L ⊗ L ).

Proof. The principal C× ×C
× bundle C C

L
:= L ×

1,0 ×L ×

0,1 → SC is a complexification of the
twisted Armstrong cone CL = (L ⊗ OS(1))

×, and so L ∗
1,0 ⊕ L ∗

0,1 → SC is an associated

bundle C C

L
×C××C× C2, and its projectivization Ẑ is C C

L
×C××C× CP1 (where the diagonal

subgroup acts trivially on CP1). Thus C C

L
× CP1 is a principal C× × C× bundle over Ẑ.

Hence the Feix–Kaledin twistor space of CL is an open subset of a twist of Z ×C2 (where
Z is the twistor space of M) by a line bundle of degree one (so that the twistor lines in Z
lift to twistor lines). This line bundle therefore has the form LZ ⊗ OZ(1) for some degree

zero line bundle LZ , and the pullback of LZ ⊗OZ(1) by φ : Ẑ → Z must be OL ∗

1,0
⊕L ∗

0,1
(1).

We now take top exterior powers of the short exact sequence

0 → V p → φ∗TZ → N
1,0 ⊕ N

0,1 → 0.
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over Ẑ to obtain

φ∗
OZ(2n+ 2) = φ∗(∧2n+1TZ) ∼= V p⊗∧

n
N

1,0 ⊗∧
n
N

0,1,

where the vertical bundle V p to the fibres of p : Ẑ → SC satisfies

V p ∼= OL ∗

1,0
⊕L ∗

0,1
(2)⊗ p∗L ∗

1,0 ⊗ p∗L ∗
0,1,

and therefore (using Proposition 4.2)

φ∗
OZ(2n+ 2) ∼= OL ∗

1,0
⊕L ∗

0,1
(2n+ 2)⊗ p∗(∧nTS1,0 ⊗ L

−(n+1)
1,0 ⊗∧

nTS0,1 ⊗ L
−(n+1)
0,1 )

∼= OL ∗

1,0
⊕L ∗

0,1
(2n+ 2)⊗ p∗(L ⊗ L )−(n+1).

We conclude that the Feix–Kaledin twistor space of CL is a double cover of an open subset
of the twisted Swann bundle twistor space, with φ∗L 2

Z
∼= p∗(L ⊗ L ) as required. �

5.3. The four-dimensional case and Einstein–Weyl spaces. In four dimensions, a
quaternionic manifold (M,Q) is a self-dual conformal manifold. LeBrun [42] studied quo-
tients of self-dual manifolds by a class of S1 actions which he called “docile”; these include
semi-free S1 actions (whose stabilizers are either trivial or the whole group), for which one
of his results specializes as follows.

Lemma 5.1 ([42]). Let (M, g) be a self-dual manifold with a semi-free S1 action whose

fixed point set is a nonempty surface S. Let B be a maximal smooth manifold (without
boundary) in Y = M/S1. Then the Einstein–Weyl structure [26] D on B defined by the

Jones–Tod correspondence [32] has S as an asymptotically hyperbolic end.

This means that D is asymptotic (in a precise sense [42]) to the Levi-Civita connection
of the hyperbolic metric in a punctured neighbourhood of the image of S in Y .

Proposition 5.2. The quotient by the S1 action of the self-dual conformal 4-manifold

obtained by the quaternionic Feix–Kaledin construction is Einstein–Weyl with S as an

asymptotically hyperbolic end.

Proof. The S1 action is induced by a holomorphic vector field on the twistor space, which
implies that it is conformal (see for example [32]). It is also clearly semi-free and the zero
section is the fixed point set, which by completes the proof. �

There are special features of the quaternionic Feix–Kaledin construction of (M,Q) from
a surface S with a c-projective structure. As discussed in §2.7, such a surface S carries
more data than (J,Πc). In the approach discussed there, the additional data is a second
order operator [15]. Alternatively, one can characterize the Cartan connection on S or SC

explicitly. Following [11, 13], we now consider the latter approach (on SC).
A conformal Cartan connection (V ,Λ,D) on a holomorphic surface SC consists of:

• a rank 4 holomorphic vector bundle V → SC with inner product 〈, 〉;
• a null line subbundle Λ ⊂ V ;
• a linear metric connection D satisfying the Cartan condition, that D |Λ mod Λ is an
isomorphism from TSC ⊗ Λ to Λ⊥/Λ.

The Cartan condition implies that TSC carries a conformal structure. We may suppose
that SC →֒ S1,0 × S0,1 where the the leaves of the (1, 0) and (0, 1) foliations are the null
curves of the conformal structure; we then write Λ⊥ = U+ +U−, where U+ ∩U− = Λ and
D1,0Λ ⊆ U+ and D0,1Λ ⊆ U−. Observe that D1,0 and D0,1 are flat connections, on U+

and U− respectively, along the curves of the (1, 0) and (0, 1) foliations respectively.
In [11], the first author constructed a minitwistor space [26] of an asymptotically hyper-

bolic Einstein–Weyl manifold B from a conformal Cartan connection by lifting the curves
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of (1, 0) and (0, 1) foliations to P(U+) and P(U−) respectively, and gluing together the
leaf spaces. We now relate this approach to the quaternionic Feix–Kaledin construction.
The work of [11] already shows that B is a quotient of a self-dual 4-manifold M with an
S1 action, whose twistor space Z is also constructed explicitly there. Hence it suffices to
establish the following.

Proposition 5.3. The construction of the twistor space in [11] from S coincides with the

quaternionic Feix–Kaledin construction given here.

Proof. The inner product on V induces a duality between U+ and V /U+, with respect to
which D1,0 induces dual connections along the curves of the (1, 0) foliation. We thus have
isomorphisms

0 ✲ T ∗S1,0 ⊗ V /Λ⊥ ✲ J1(V /Λ⊥) ✲ V /Λ⊥ ✲ 0

0 ✲ Λ⊥/U+
❄

✲ V /U+
❄

✲ V /Λ⊥

w

w

✲ 0,

and similarly for D0,1 on U− and V /U− along the (0, 1) foliation.
As explained in [11], we may also suppose that Λ = Λ+ ⊗ Λ−, with Λ+ and Λ− trivial

along the (1, 0) and (0, 1) foliations respectively. The bundles Ũ+ := U+ ⊗ (Λ+)−2 and

Ũ− := U− ⊗ (Λ−)−2 have induced flat connections along the (1, 0) and (0, 1) foliations
respectively, dual to (V /U−)⊗ (Λ+)2 and (V /U+)⊗ (Λ−)2. Hence, along the null curves,
the spaces V ± of parallel sections of Ũ± are dual to spaces of affine sections of (V /Λ⊥)⊗
(Λ±)2 ∼= Λ± ⊗ (Λ∓)

∗. Hence the construction in [11] reduces to the one herein by taking
Λ+ = L ∗

0,1 and Λ− = L ∗
1,0. �

The link with conformal Cartan connections elucidates the role of the connection ∇ on
L → S: any conformal Cartan connection over S, is up to isomorphism, the twist of
the normal Cartan connection (induced by a Möbius structure [15]) by such a connection
∇. The construction of the Einstein–Weyl manifold B as an S1-quotient equips it with
a distinguished gauge (or abelian monopole) [32]. Since P(E ⊗ L ) = P(E ) for any line
bundle L and vector bundle E , the construction of the minitwistor space from P(V +)
and P(V −) does not depend on (L ,∇). We thus have a gauge for each such choice.

5.4. Complex grassmannians. In [58], J. Wolf classified the totally complex subman-
ifolds of quaternionic symmetric spaces fixed by a circle action. These provide many
examples of the quaternionic Feix–Kaledin construction which are not (even locally) hy-
percomplex. We focus on the the quaternionic symmetric spaces isomorphic (for some
n > 1) to Gr2(C

n+2), the complex grassmannian of 2-dimensional subspaces of Cn+2. The
twistor space Z is the flag manifold F1,n+1(C

n+2) of pairs B ⊆ W ⊆ Cn+2 with dimB = 1
and dimW = n + 1. The standard hermitian inner product 〈·, ·〉 on Cn+2 defines a real
structure on Z, sending the flag B ⊆ W to W⊥ ⊆ B⊥. It also defines an antiholomor-
phic diffeomorphism between Gr2(C

n) with Grn(C
n+2), and it is convenient to identify the

quaternionic manifold M with the graph of this map in Gr2(C
n+2)×Grn(C

n+2). In these
terms the twistor projection from Z to M , whose fibres are the real twistor lines, sends
B ⊆ W to the pair (B ⊕W⊥, B⊥ ∩W ) in M .

The space of all twistor lines in Z is the holomorphic (i.e., complexified) quaternionic
manifold MC ∼= {(U, V ) ∈ Gr2(C

n+2)×Grn(C
n+2) : Cn+2 = U ⊕ V }:

• the flags B ⊆ W on the twistor line corresponding to (U, V ) ∈ MC have B ⊆ U and
V ⊆ W , so that B = U ∩W and W = V +B;

• this twistor line is canonically isomorphic to P(U) ∼= P(Cn+2/V );
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• also OU(−1) ∼= OCn+2/V (−1) via the map sending b ∈ U to b+ V in Cn+2/V .

A fixed decomposition Cn+2 = A⊕ Ã, with dimA = 1 and dim Ã = n+ 1, determines a
submanifold SC = {(U, V ) ∈ MC : A ⊆ U, V ⊆ Ã} of MC:

• (U, V ) 7→ (U/A, V ) embeds SC as an open subset of P(Cn+2/A)×Grn(Ã);

• the fibre of SC over V ⊆ Ã is isomorphic to the affine space P(Cn+2/A) \P((V ⊕A)/A)
and similarly for the fibre over U ⊇ A;

• P(Cn+2/A) ∼= P(Ã) may be identified with S1,0 = {B ⊆ Ã : dimB = 1} ⊆ Z, and,

similarly, Grn(Ã) ∼= Grn(C
n+2/A) with S0,1 = {A ⊆ W : dimW = n+ 1} ⊆ Z.

• Grn(Ã) ∼= P(Ã∗) is the dual projective space to P(Cn+2/A) ∼= P(Ã), and for any (U, V ) ∈

SC, the corresponding tautological lines (Ã/V )∗ ∼= V 0 ⊆ Ã∗ and U/A ∼= U ∩ Ã are
canonically dual to each other.

If Ã = A⊥ then the real points in SC ⊆ MC form a maximal totally complex submanifold
S ⊆ M fixed by an S1 action, and S1,0, S0,1 are lifts of S to Z with respect to the induced
complex structures ±J on S. Hence Theorem 4 applies.

Following the proof in §4.3, let Ẑ be the blow-up of Z along S1,0 ∪ S0,1. The fibre of
Ẑ → SC over (U, V ) is P(U) ∼= P(Cn+2/V ), and the natural map to Z is a biholomorphism

over (B ⊆ W ) ∈ Z unless B = A or W = Ã, which are the “zero” and “infinity” sections 0

and ∞ of Ẑ → SC, mapping to S1,0 and S0,1 respectively. Identifying SC = P(Ã)×P(Ã∗),

Ẑ ∼= P(OÃ(−1)⊕ O)|SC
∼= P(O ⊕ OÃ∗(−1))|SC.

We now set Ã = A⊥ and identify P(Ã∗) with P(A⊥) using the real structure; thus

SC is the open subset {([ℓ], [w]) ∈ P(A⊥) × P(A⊥) : 〈ℓ, w〉 6= 0}, and the hermitian

metric induces a pairing of the tautological line bundles over P(A⊥) and P(A⊥), i.e., a

nonvanishing section of O(1, 1) → SC. On the (anti-)diagonal S in P(A⊥) × P(A⊥), this
section may be viewed as a hermitian metric on O(−1) → S.

Locally, O(−1) → S has a square root L = O(−1
2
), and the trivialization of O(1, 1)

identifies O(1, 0) with O(1
2
,−1

2
). Thus we have the following result.

Proposition 5.4. Let Πc be the flat c-projective structure on S and let L = O(−1
2
)

(defined over any open subset of S). The standard hermitian metric on Cn+2 induces

hermitian metric on L with Chern connection ∇. Then Z and M are obtained from the

quaternionic Feix–Kaledin construction applied to these data.

5.5. Quaternionic Kähler metrics and the Haydys–Hitchin correspondence. The
quaternionic Feix–Kaledin construction produces a hyperkähler metric or hypercomplex
structure on M when it reduces to the original constructions by Feix and Kaledin. It
is natural to ask when the quaternionic manifold M admits an S1-invariant quaternionic
Kähler metric of nonzero scalar curvature. For example, we have seen that the quaternionic
Kähler symmetric spaces HPn and Gr2(C

2n+2) may be constructed locally from the flat
c-projective structure on CPn using different twists.

Quaternionic Kähler manifolds (M,Q, g) with S1 actions have been studied by A. Haydys
and N. Hitchin [25, 27] who associate to any such manifold a hyperkähler manifold with a
non-triholomorphic S1 action. As special cases, the Haydys–Hitchin correspondence relates
the rigid c-map construction of semi-flat hyperkähler metrics to the quaternionic Kähler
c-map [1, 20, 27, 44], and it generalizes the link between S1-invariant self-dual Einstein
manifolds of nonzero and zero scalar curvature [24, 52, 57].

The quaternionic Feix–Kaledin construction complements these methods (which gen-
erally apply on the open subset where the S1 action is locally free) by describing the
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correspondence on a neighbourhood of a maximal totally complex submanifold of fixed
points of the S1 action.

Theorem 6. Let (S, J, g) be a Kähler–Einstein 2n-manifold with the c-projective structure

and connection on OS(1) induced by the Levi-Civita connection. Then the quaternionic

Feix–Kaledin construction, with L = OS(k) a tensor power of OS(1), yields (locally)
a quaternionic Kähler manifold Mk in the Haydys–Hitchin family associated to the hy-

perkähler manifold M−1 obtained from the Feix–Kaledin construction.

Proof. Since g is Kähler–Einstein, the normal Cartan connection of the c-projective struc-
ture preserves a metric on the standard tractor bundle (see e.g. [16, Prop. 4.8]) and hence
so does its twist by a unitary connection. Since this connection is also torsion-free, the
twisted Armstrong cone Ck = L ⊗OS(1) of S is Kähler, so the Feix–Kaledin construction
yields a hyperkähler manifold, which is an open subset of the (untwisted) Swann bundle
of Mk by Theorem 5, since L is a unitary bundle. Furthermore, for k 6= −1 each Ck

is covered by C0, so the Swann bundles are all locally isomorphic to a fixed hyperkähler
manifold U . The circle actions on Mk lift to a triholomorphic circle action on U , which
preserves the Obata connection, i.e., the Levi-Civita connection of the hyperkähler metric.
However, a homothetic circle action must be isometric. It follows that each Mk admits an
S1-invariant quaternionic Kähler metric [55].

To see that M−1 is (locally) the hyperkähler manifold M̃ in the family, we use the twist

construction of the latter from Zk as in §3.3 and [27]. Thus the twistor space ζ̃ : Z̃ → CP1

of M̃ is a C× quotient of L ×

k where Lk → Zk is the divisor line bundle of D1,0 −D0,1 and
D1,0 + D0,1 is the zero-set of the section of OZ(2) corresponding to S1 action on Mk. In
particular, S1,0 ⊆ D1,0, S0,1 ⊆ D0,1 and τ(D0) = D∞. The vertical C× action on L ×

k → Z

descends to a C
× action on Z̃ preserving the divisor D̃1,0 + D̃0,1 = ζ̃−1({0} + {∞}), and

fixing copies of S1,0 and S0,1. Thus the induced S1-action on M̃ preserves the complex
structures ±J in the hyperkähler family corresponding to these divisors, and fixes a copy
of S which is maximal totally complex with respect to ±J . As in proof of Theorem 4, it
now follows that the blow-up of Z̃ along S1,0⊔S0,1 is locally isomorphic to SC×CP1, where
the CP1-bundle in Theorem 4 has been trivialized by the pullback of ζ̃ to the blow-up of
Z̃. Hence M̃ is locally isomorphic to M−1. �

5.6. Further directions. This paper suggests several directions for further study.

• In [3], D. Alekseevsky and S. Marchiafava study in particular the geometry of maximal
totally complex submanifolds of quaternionic Kähler manifolds. In view of Lemma 1.1,
it would be natural to study such submanifolds S of (general) quaternionic manifolds M
in the context of parabolic submanifold geometry [12]. In particular, for the submani-
folds appearing in the quaternionic Feix–Kaledin construction, we would like to read off
properties of the c-projective structure Πc and connection ∇ from the extrinsic geometry
of S in M .

• In §3.3, we generalized some results of [18], using the methods of [34]. The four dimen-
sional versions of these results were originally obtained not by twisting, but by taking
the local S1 quotient of M (and corresponding C× quotient of Z) and considering the
Einstein–Weyl geometry of the base B, as in §5.3 and [11]. It would be interesting to
understand the geometry of the local S1 quotient in higher dimensions.

• Theorem 6 should generalize to the case that S is merely a c-projective manifold of type
(1, 1) and L = OS(k) is a tensor power of OS(1), where ∇ is induced by any connec-
tion on OS(1) with type (1, 1) curvature. The quaternionic Feix–Kaledin construction
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should then yield a family of quaternionic manifoldsMk with locally isomorphic (perhaps
twisted) Swann bundles (for k 6= −1) and M−1 hypercomplex.
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