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Abstract— Due to the limited visibility at low voltage (LV) networks, existing Distribution Use-of-System (DUoS) 

charging methodologies assume that all the network users use the network in proportion to their peak flows. This naive 

supposition fails to reflect the contribution of network users to network peak flows, which actually is the driver for 

network reinforcement. This can send an inadvertent signal to customers, leading to aggravated network pressure. This 

paper for the first time, brings the new dimension into the design of DUoS charging methodology by considering the true 

contribution of customer class’s load on network peak flows. It proposes a novel Hierarchical Contribution Factor based 

Model (HCM), recognizing the contributions of differing customer classes to the network reinforcement of upstream 

asset. Such contribution will be further propagated to network assets at higher voltage level, forming a Hierarchical CF 

model and reflecting the true individual class contribution to the whole-system reinforcement. Benefit of the proposed 

model on investment deferral is assessed by determining annuitized present value (PV) of future investments, and 

consequences are assessed on a 22-bus practical Indian reference network. The approach helps customers as a class to 

reduce their network usage charges by minimizing their energy usage contribution during distribution network peaks, 

eventually reducing distribution network investment and energy transfer costs. 

 

Keywords—Contribution factor, Demand Side Response, Distribution Use-of-System Charges, Long-term 

Incremental Cost, LV Networks, Energy Economics  

I.  INTRODUCTION 

The UK government has set an ambitious target to transit towards a low carbon energy future by reducing carbon emission 

and increasing renewable energy [1-3]. Year 2015 has witnessed £3.5bn annual subsidies in the UK just for photovoltaic (PV) 

installations. With the increasing number of low carbon energy technologies (such as PV, electric vehicles, battery storage and 

heat pumps) being connected to the edge of the grid, power distribution networks will have unprecedented complexity and 

uncertainty [4-9]. Load estimation at various network nodes is becoming a challenging task for the utilities in such a situation 

[10]. Currently, the default solution to this issue is passive network reinforcement, which will finally be paid from customers’ 
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rising energy bills. In order to accommodate the large influx of low carbon energy technologies without passing extra economic 

burden to customers, it is critical to design innovative technical and commercial solutions to guide the planning and operation of 

end-customers [11-16]. 

Network planning methodologies aim to model the actual network, while considering some assumptions to make for data 

deficit and unknown future variations. For this methodology, considered modelling may not be a true reflection of network and 

the overall formulation of network cost. Further, optimisation algorithms may not guarantee global optima, as it would depend 

on the accuracy of assumed parameters. Such methodologies may lead to erroneous solutions, despite adopting the best of 

optimisation algorithms and well thought out assumptions. In contrast to the use of optimisation algorithms, use of network 

pricing involves consideration of few basic assumptions. A robust and thoughtful pricing model would offer an appropriate 

signal to the user, who would respond to the economic signal by way of optimal location and utilisation, such that its network 

utilisation is minimized. This would eventually lead to low requirement of network reinforcement, thus minimizing network 

investment required to meet the specified load.   

Distribution Use-of-System (DUoS) charges is an effective commercial tool for distribution network operators (DNOs) to 

guide new network users in a deregulated power market. The aims of DUoS charges are twofold: i) to recover reinforcement 

cost for the distribution network operators (DNOs) based on an economic pricing model; ii) to reflect industry regulation as a 

whole and to offer an efficient economic signal to the users. According to the energy market regulator in the UK, an ideal DUoS 

charging model should accurately reflect forward-looking costs, incentivise efficient usage and development of the system, and 

incorporate the generation use of system charges (GDUoS) [17].  

A significant amount of research on DUoS model has been reported from industry and academia. The Distribution 

Reinforcement Model (DRM), a Postage Stamp method, was traditionally used by the UK industry, which allocates all the 

network cost to customers only according to the voltage level connected. DRM provides no locational signals or ex-ante cost 

information to customers [18]. It offers no guidance for the planning of distributed generators (DG’s) [19]. DRM’s weakness 

was rectified in many new models proposed by academia. Location is considered as the key factor in most of these models by 

charging against the critical power flow scenarios, network congestion and power losses [20]. Investment Cost Related pricing 

(ICRP) was proposed to not only recover the historical investment, but more importantly to evaluate the impact of future 

incremental cost placed on the system, as a result of new load or generation being added at any point on the distribution network 

[21-22]. Long Run Incremental Cost Pricing (LRIC) model considers utilisation rate of an asset in addition to distance [23-24]. 

This approach is recognized as an economically efficient approach for allocating distribution network cost, as it determines 

network charges as the difference in the present value of future investment, consequent upon nodal power perturbation for 

generation or demand. Further the impacts of network security, contingencies, and reliability have been integrated into the LRIC 
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pricing approach [25-28]. The integration of DG is considered using DUoS price as a signal to encourage DG connection at the 

appropriate location [29].  The interaction of generation and demand in the distribution network is investigated by nodal pricing, 

contract pricing and value-based pricing [30-32]. The uncertainty introduced by DG is also considered in the network 

reinforcement and charging methodology [33-34].  Demand response plays a major role in demand reduction and demand 

shifting, and dynamic pricing models can effectively consider the same [35-38].   

Existing DUoS methodologies have covered many attributes of an ideal model, considering factors like forward-looking cost, 

distance, location, utilisation rate, reliability, and generation technology. Traditional methods assume that all customers 

consume energy in a similar way within a distribution network and follow the aggregated load profile. However, end-users 

actually consume energy in diverse manners and thus have different contribution to the networks’ reinforcement. Likewise, the 

downstream assets contribute differently to the upstream assets, based on the coincidence level of the load profiles. The industry 

has attempted to address the issue by introducing a diversity factor, which is defined as the ratio of maximum demand at the 

substation to the sum of the maximum demand at all points of the immediate lower distribution network served by that 

substation. However, this factor aims to calculate the after-diversity peak load to evaluate the reinforcement cost, instead of 

accurately allocating such cost to individual customers [39]. In order to send customer-tailored signals to effectively guide 

individual’s energy behavior, it is critical to develop a new DUoS model considering the additional dimension of energy 

consumption pattern variations among customers.   

This work develops a novel customer-specific DUoS charging model based on a hierarchical contribution model (HCM), 

which distinguishes between different customer class contributions to the distribution network and all the way to the upstream 

assets. As a first, this considers customer class’s contribution to network peak flow, instead of considering customer class’s peak 

flow, which may occur at a different time. A novel concept of CF is proposed to evaluate contributions at two levels: i) 

contribution of total load connected at any node to each upstream shared asset, and ii) contribution of customer class to total 

load connected at any node. Based on this HCM model, the customer-specific DUoS charging model is implemented using basic 

LRIC approach. The proposed approach encourages various customer classes to modify their distribution network usage pattern 

to minimize network peaks, thus delaying network investment. The ultimate goal of proposed pricing scheme is to offer a 

customer class specific pricing signal to distribution network users, which incorporates CF to highlight users’ contribution to 

network peak conditions, in addition to location based signal. Main contributions of this paper are summarized as follows: 

i) A novel hierarchical contribution model based on CF in order to reflect actual propagation of the key reinforcement 

driver within a distribution network.  

ii) It considers the contribution of customer class load to network peak, rather than merely considering peak flow of a 

customer class, thus reflecting the true impact of customer class load on network reinforcement requirement.  
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iii) For the first time proposes a usage-based pricing signal to customer classes in addition to locational signal, directly 

encouraging them to modify their usage pattern in response to changed distribution network prices. 

The research could make significant impact to the efficient planning and operation of DNOs in a low carbon environment, 

offering individual charges to customer class, considering their specific class characteristics. Lower distribution network charges 

can be offered for customer classes not expected to contribute to system peak, with their peak demand differing significantly 

from system peak demand characteristics. These charges attract customers with characteristics favorable for distribution network 

development at specific locations. Such charges would make the system efficient; utilities may delay network reinforcements, 

investments in new generation units, and network infrastructure [40-41]. LRIC pricing is a well-established approach to evaluate 

long term distribution network charges for UK distribution networks, assuming that network reinforcement would be required 

when the loading level of circuit reaches its capacity. Hence proposed HCM based approach to offer customer class specific 

signal is implemented using LRIC as the base approach. However, the HCM approach is equally applicable to other DUoS 

charging methodologies. 

The rest of the paper is organized as follows: Section II gives a description of HCM based DUoS charging methodology. 

Section III discusses the test case system and analyses the results from proposed and traditional models. Finally, Section IV 

concludes the work contribution. 

II.  HIERARCHICAL CONTRIBUTION MODEL BASED DUOS CHARGING METHODOLOGY  

The proposed HCM based charging mechanism illustrated in Fig. 1 shows the algorithm for calculating customer class specific 

DUoS charges. This integrates the reflection of different customer class contributions to distribution network peak demand for 

network charging. The contributions are determined using CF, based on which coincident demand is calculated. CF is 

incorporated at two levels to reflect user’s actual network usage. First, the contribution of total load connected at any node to 

each upstream shared asset is considered using load-to-asset contribution factor (LACF). Based on this LACF, unit charges are 

computed at all nodes. Second, the contribution of customer class to the total load connected to that node is determined using 

class-to-load contribution factor (CLCF). DUoS charges from the proposed model are evaluated for various customer classes 

connected to the network. Outline of the proposed model is as follows: 

1. Use input system data to evaluate LACF and CLCF. 

2. Obtain coincident demand from LACF. 

3. Use these demand to perform power flow analysis. Evaluate time horizon and present value (PV) of future reinforcement, 

with and without nodal injections.  

4. With this change in PV of future reinforcement, obtain unit charges.  



 5 

5. Use unit charges and CLCF to compute total DUoS charges for various classes of customers. 

6. Calculate benefit of the new model through the annuitized PV of future reinforcement cost. 

Flowchart of Fig. 1 describes the proposed model for evaluating customer class specific charges. Input system data, i.e. sub-

class profile, upstream asset profile, and total load profile at the node, is used to evaluate LACF and CLCF. Coincident demand 

are computed from LACF and further used to calculate power flow through network asset. When the capacity of any network 

component is fully utilized, it needs to be reinforced in the upcoming future. This enhancement is known as future reinforcement 

in the network, over a given planning horizon. Base case and incremental case load flows are run to compute time horizon 

required for future network asset reinforcement. Base case power flow analysis determines network utilisation under normal 

demand/generation condition, whereas incremental case power flow analysis determines the effect of demand/generation change 

at the study node. Then PV of future reinforcement is calculated with and without nodal injections for all customer classes. 

Further, annualized incremental cost of components is evaluated for all customer classes at the connection node. Aggregating 

the annualized incremental cost of components for all customer classes, unit charges are obtained. CLCF and unit charges are 

used to compute customer class specific charges. CF considered at two levels helps to determine the effective contribution of 

customer class on distribution network asset peak usage and reinforcement costs. 

 

Fig. 1. Flow chart for Hierarchical Contribution Model 

 

 

 



 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          Fig. 2. (a) Load profile at different network levels                                                                  (b) Simple 3-bus bar network 

The concept and impact of HCM approach can be highlighted using Fig. 2 (a). This figure represents multiple load profiles at 

different distribution network levels.
k1S and

k2S are two possible profiles of total load at the node k . k  is the index of nodes. 

Traditional LRIC model evaluates charges for usage of thj asset based on peak profile at
thk node. j is the index of upstream 

assets. Since the peaks of both profiles are same, traditional model does not differentiate between the impacts of two profiles on 

network charges. Proposed HCM approach uses LACF to evaluate the contribution of load at node k , at the time of peak 

occurrence at the upstream asset j . Node k ’s contribution to upstream asset’s peak is equal to
j

k pS (t ) for profile
k2S , where pt is 

the time of peak load occurrence of upstream asset j . This would result in higher charges for
k1S , as compared to a relatively 

lower charge for
k2S , despite their peaks being similar. This appropriately reflects the contribution of each profile to asset 

reinforcement, and signals the user of the profile 
k1S to shift towards profile

k2S . Similarly,
im,k1L and

im,k2L  are two possible load 

profiles of customer sub-class i  of customer class m supplying node k . Here, m and i are the indices of customer classes and 

sub-classes respectively. CLCF is contribution factor from customer sub-class i  of customer class m , to total load at node k , 

during the occurrence of peak at node k . The contribution of sub-class’s load to total load’s peak is equal to
im,k qL (t ) for 

profile
im,k2L , where qt is the time of total load’s peak occurrence at node k . This results in higher charges for

im,k1L and lower 

charges for
im,k2L , despite their peaks being equal. This encourages user with

im,k1L
  

profile to shift towards profile
im,k2L , to 

reduce its contribution to peak of 
k2S .This CLCF consideration reduces peak of total load at node k , thus reducing upstream 

asset peak. CLCF calculation is independent from load flow analysis and is calculated from the existing load profile scenario of 

customer sub-classes and total load connected at any node. 

The proposed approach is highlighted using a 3-node network illustrated in Fig. 2 (b). In reference to Fig. 2 (a), 
k1S and

k2S are 

two possible profiles of load L2. 
im,k1L and 

im,k2L  are two possible load profiles of customer sub-class i  of customer class m of 

im,k qL (t )  
im,k sL (t )  

jth upstream asset profile  

Sk1 Sk2 

Lim,k1 

Lim,k2 

tp 
 Hour 

Load 

tq 

 

k qS (t )

 
j

k pS (t )

 

ts  
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load connected at load L2. Load L1 is supplied by asset 1 while load L2 is supplied by two networks, identified as asset 1 and 

asset 2. Value of loads L1 and L2 is 15 MW each. The two assets are assumed to be identical, each having a capacity of 45 MW, 

with an overall cost of Rs. 1000. Power flows are shown with red arrows. For this scenario, asset 2 supplies power only to load 

L2, hence has a power flow of 15 MW. Asset 1 supplies power to both loads L1 and L2, hence has a power flow of 30 MW. 

For illustration, charges are calculated for load L2 only. To evaluate unit charges with proposed approach, it is assumed that 

load-to-upstream shared asset contribution factor (LACF) for load L2 to upstream shared asset i.e. asset 1, is 0.80. Asset 1 is the 

shared asset while asset 2 is the individual asset for this load, so LACF for asset 2 would always be 1. With this, coincident 

demand of load 2 to asset 1 comes out to be 12 MW. With the consideration of coincident demand, power flows through asset 1 

and asset 2 will be 27 MW and 15 MW, respectively. From the power flows, time horizons for future reinforcement of asset are 

evaluated with and without 0.1 MW increment in load L2. The value of these time horizons for asset 1 and asset 2 are 31.94 and 

32.18 (in Years) respectively. Then change in present value is evaluated from these time horizons, which further gives unit 

charges. Unit charges for L2 node is 0.0346 Rs/MW/Yr.  

Further, it is assumed that load L2 consists of A, B, C, and D classes, having 30%, 40%, 20%, and 10% share in peak load at the 

connection node respectively. Class-to-load contribution factor (CLCF) for A, B, C, and D classes is presumed to be 0.5, 0.8, 

0.6, and 0.7, respectively. With the unit charges and CLCF, total distribution-use-of system charges would be 0.078, 0.166, 

0.062, and 0.036 (all in Rs/Yr) for the four customer classes respectively. 

A mathematical formulation reflecting the above discussed concept and flowchart has been developed hence.  

A.  Coincident demand calculations for each upstream asset 

From the load profile data available at various nodes, coincident demand of total load connected to any node k , to peak of 

upstream asset j , is calculated using load-to-asset CF. This factor is calculated as  

j

k p

kj

k q

S (t )
LACF

S (t )


                                                                                                                                                                 

(1) 

where 1 2 nk k k kS [S (t ), S (t ), ,S (t )] is the total load at node k  for different times t ; 1 2 nt [t , t , , t ] is the time moment of daily 

load profile;
j

k pS (t ) is the total load at node k at thp time instant
pt which is the time of peak loading of an upstream 

asset j connected above node k ; k qS (t ) is the total load connected at node k  at time instant
qt which is the time of total load’s 

peak at node k ;
kjLACF  is the contribution of total load connected at any load point k to any of its upstream asset j ; k  is index of 

network nodes; and j  is index of upstream assets feeding node k from load point to grid supply point. Here, j  may or may not be 

an immediate upstream asset of node k . 
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From these LACF, coincident demand of load at node k to each upstream shared asset j , i.e. CDkj is evaluated as 

Rated

kj kj kSCD LACF *
                                                                                                                                                                  

(2) 

where 
k

RatedS is the rated load connected at node k . 

B.  Unit charges 

Coincident demand calculated from (2) is used as input power flow data to assess actual asset usage. Distribution network asset 

needs reinforcement when its loading level approaches its capacity. So time horizon required for future reinforcement can be 

evaluated from current loading and capacity of network asset. Distribution network asset j  supplying node k  has power carrying 

capacity
kjC and supports power flow

kjP . Load growth rate for sub-class i of customer class m is assumed as
imr . Time horizon, 

in years, required to reinforce network asset j due to load growth in sub-class i of customer class m connected at node k is given 

by   

kj kj

im,kj

im

logC log P
n

log(1 r )





                                                                                                                                                                    

(3) 

LRIC charges are evaluated by reviewing the present value of future reinforcement cost, PV with and without the load 

increment. The future investment can be discounted back to its present value. For a discount rate d , PV of future investment in 

network asset j  is determined for sub-class i of customer class m connected at node k  as  

im ,kj

j

im,kj n

AC
PV

(1 d)


                                                                                                                                                                          

(4) 

where
jAC is modern equivalent asset cost of network asset j . PV of future investment is determined by discounting the modern 

equivalent asset cost to its present value. 

 
PV with nodal increment is evaluated considering new time horizon for future reinforcement. Power flow along the associated 

network assets j is altered by
kjP due to nodal injection by customer sub-class i of customer class m supplying node k . The new 

time horizon for reinforcement of asset j is  

kj kj kjnew

im,kj

im

logC log(P P )
n

log(1 r )

 



                                                                                                                                                       

(5) 

This in turn affects PV of future investment in network asset j  for sub-class i of customer class m connected at node k  

new
im,kj

jnew

im,kj n

AC
PV

(1 d)



                                                                                                                                                                         

(6) 

As a result of nodal injection, change in PV for an asset j  for sub-class i of customer class m connected at node k  is 
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new
im ,kjim,kj

new

im,kj im,kj im,kj

j nn

PV PV PV

1 1
AC

(1 d)(1 d)

  

 
   

                                                                                                                                             

(7) 

Annuitized unit incremental cost for network asset j , due to sub-class i of customer class m  connected at node k  is  

im,kj

im,kj

kj

PV AF
IC

C

 
                                                                                                                                                                (8) 

where AF is the annuity factor . 

Long-run incremental cost to support node k is summation of annuitized incremental cost over all assets j
 
by all customer classes 

over that node, and is given by 

im,kj

j,im

k

k

IC

LRIC
D






                                                                                                                                                                          

(9) 

where kD is the overall power injection at node k . From (9), unit charges in (Rs/MVA/Yr) at the node k are obtained.  

C.  Charges for various customer classes at the nodes 

After calculating unit charges, total charges are calculated for sub-class i of customer class m , considering that CF reflects class 

customer’s contribution to the peak of a total load connected at a node k .This class-to-load CF  is  

im,k q
im,k

im,k s

L (t )
CLCF

L (t )


                                                                                                                                                                    

(10) 

where 1 2 nim,k im,k im,k im,kL [L (t ), L (t ), ,L (t )] is the load of sub-class i of a customer class m connected at node k during 

time t ; 1 2 nt [t , t , , t ]  is the time interval of daily load profile;
im,k qL (t )  is the load of sub-class i of a customer class m at thq time 

instant
qt which is the time of total load’s peak at node k ;

im,k sL (t ) is the load of sub-class i of customer class m connected at 

node k at time instant
st which is the time of peak load occurrence of sub-class i ,

im,kCLCF is the contribution from customer sub-

class i of class m to peak of total load at node k . 

Charges for customer sub-class i of class m , reflecting its contribution to peak of total load connected at node k  is  

Rated

im,k k im,k im,kTLC LRIC *CLCF *L
                                                                                                                                              

(11) 

 
where

im,kTLC is the total DUoS charges for customer sub-class i of customer class m at node k and 
im, k

RatedL is the rated load of 

customer sub-class i of customer class m at node k .These charges reflect contributions of various customer classes to network 

peak. Hence, total DUoS charges are calculated for various customer classes from (11). 
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D.  Investment deferral 

PV of future investment for asset j  supplying node k  is obtained from the proposed model. This is evaluated using im,kjPV  

obtained from (4). 

kj im,kj

i,m

PV PV                                                                                                                                                              (12) 

Benefit of the proposed model can be assessed in terms of the difference in annuitized PV of future reinforcement cost of 

network assets, defined here as PV . Mathematically this can be evaluated for the whole system as 

old

kj kj

k, j

PV (PV PV ) AF                                                                                                                                                          

 

(13) 

where old

kjPV is PV of future investment for asset j  supplying node k , evaluated from basic LRIC model [23].  

III.  RESULTS AND ANALYSIS 

A.  System Description 

Efficiency evaluation of any network pricing methodology requires modelling of the network. Considering the large network 

size and the quantum of data to be handled, network pricing analysis could become a complex and challenging task. This 

necessitates reducing large practical networks into smaller representative networks, called reference networks. The proposed 

model is applied to a part of practical Indian reference network. Reference network was formed with practical data available for 

Jodhpur district, located in the Rajasthan State of Northern India, for the months of October and November in 2007. The 

network has four voltage levels, 220 kV, 132kV, 33kV and 11kV, consisting of 22 buses, 11 transformers, 10 distribution lines 

and 11 load points, as shown in Fig. 3. These are considered to be a part of distribution networks, where the power flows are 

usually radial and contribute to a specified distribution network area only. Each load point comprises of various class users, viz. 

General, Industrial, Agricultural and Water-Works. General class users represent group of Domestic, Non-Domestic, Public 

Street Lighting and Mixed Load customers. Similarly, Metered Agricultural, Flat Rate Agricultural and Agricultural Nursery 

comprise of Agricultural class, while Small Industrial, Medium Industrial, and High Tension Industrial are grouped into 

Industrial class. Water-Works consists of all type of Water-Works connections for supplying water pumping stations [42].  

Profile of total load connected at various nodes is shown in Fig. 4. This profile is sufficiently different from various customer 

class and sub-class profiles of customers connected at these nodes. This diversity in load profile is represented by considering 

each customer class to be classified into customer sub-classes, representing the capacity up-to which connection can be offered 

to various customers of that class. The general class comprises of three sub-classes with capacities 1 kW, 2 kW, and 5 kW. 

Industrial, Agricultural and Water-Works classes comprise of two sub-classes with capacities 17 kW & 50 kW, 7 kW & 25 kW 
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and 5 kW & 15 kW respectively. With a consideration of total load profile at various nodes, a representative average load profile 

for every sub-class over the preceding year is assumed to represent its network usage characteristics. Peak demand of these 

profiles is used to evaluate the contribution of different sub-classes to peak load at the connection node. Customer sub classes of 

a certain class are presumed to have similar load profiles and their response to price signals is presumed to be convergent. The 

cost of all transforming assets (T1, T2, …T11) and line assets (D1, D2, … D10) is to be allocated between customers of all sub-

classes connected at load points (L1, L2, … L11). 

 

Fig. 3. 22- bus practical Indian network [42] 

 

 

Fig. 4. Total load profile at various nodes 
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B.  HCM based DUoS charges implementation 

This section discusses the customer class specific charges based on HCM for the Indian reference network, obtained from the 

proposed model. Coincident demand to each upstream asset is calculated for the demand at each node, using its load profile. 

First, LACF’s are calculated at the nodes from (1). CF’s for loads at various nodes, to each upstream shared asset are shown in 

Table I. As seen in Table I, loads L1 and L8 dominate in the usage of asset T1, while L2 and L7 have the lowest contribution to 

T1 usage. Also, L7 has lowest contribution to the usage of asset D5 and L8 dominates usage of asset D5. Similarly, contribution 

of other loads can be visualized for their usage contribution of assets supplying them power. 

 

TABLE I 

CONTRIBUTION FACTOR OF LOAD TO EACH UPSTREAM SHARED ASSET (LACF) 

Nodes T1 T3 D1 D2 D3 D5 T8 D6 D7 D8 D9 

L1 0.99 - - - - - - - - - - 

L2 0.62 0.95 0.95 - - - - - - - - 

L3 0.95 0.89 0.89 0.94 - - - - - - - 

L4 0.81 0.86 0.86 0.89 0.90 - - - - - - 

L5 0.97 0.84 0.84 0.98 0.98 - - - - - - 

L6 0.96 - - - - 0.96 - - - - - 

L7 0.62 - - - - 0.65 0.72 0.72 - - - 

L8 0.98 - - - - 0.98 0.97 0.97 0.98 - - 

L9 0.80 - - - - 0.85 0.81 0.81 0.80 0.75 - 

L10 0.95 - - - - 0.94 0.90 0.90 0.95 0.97 0.99 

L11 0.94 - - - - 0.93 0.95 0.95 0.94 0.92 0.91 

 

Further, coincident demands of load to the upstream asset are evaluated from (2). Using these coincident demands as input 

network data, AC power flow is performed to compute flows required for calculating unit charges. Line, bus, and transformer 

data for power flow analysis are given in the appendix. Discount rate and annuity factor of 6.9% and 7.4% are assumed 

respectively [23]. Load growth rate varies in the range of 0-3% [28]. Growth rates assumed for various customer sub-classes are 

given in Table II. For unit charges at all nodes, annualized incremental cost of all distribution network components are evaluated 

from (1)-(8) for customer sub-classes. 

TABLE II 

PERCENTAGE LOAD-GROWTH RATE FOR CUSTOMER CLASSES 

Class Water Works Agricultural General Industrial 

Subclass Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 Class 3 Class 1 Class 2 

% LGR 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.9 

 

Incremental charges by customer sub-classes are shown in Fig. 5. Here component charges are shown with basic LRIC model, 

as well as for various sub-classes at all nodes with proposed model. Individual network component charges for the customer of 
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different classes connected at nodes L1 to L5 are represented in Fig. 5(a), while that at nodes L6 to L11 are represented in Fig. 

5(b). Basic LRIC model offers same incremental charges to each customer sub-class connected at a node, while proposed model 

offers different charges to each sub-class. The vertical axis of the plot represents incremental charges while the depth axis 

represents network components. Charges for each component by various sub-classes are shown in different colour. The 

horizontal axis shows customer sub-classes at the respective nodes. The first label of each nodal component, BM represents 

incremental charges from basic LRIC model. Depending on the customer sub-classes existing at each node, remaining labels of 

each nodal component are indicated by GC1, GC2, & GC3, IC1 & IC2, AC1 & AC2, and WC1 & WC2, representing various 

sub-classes of General, Industrial, Agricultural, and Water-Works classes respectively.  

  

                         (a) At Nodes L1-L5                                                                                                                    (b) At Nodes L6-L11 

Fig. 5. Component incremental charges for customer sub-classes 

As seen from Fig. 5(a), with the consideration of proposed model, a significant difference between charges is created at node L4, 

as compared to the basic model. This happens because network component T5 serving load at this node is highly utilized; hence 

high charges are applicable to accommodate any nodal increment. Also, charges for various sub-classes at all nodes consider 

LACF, hence are relatively lower than with BM. A similar difference can be visualized for nodes L6 to L11 in Fig. 5(b). 

TABLE III 

BRANCH INCREMENTAL CHARGES FOR NODE L8 (RS/MVA/YR) 

 T1 D5 T8 D6 D7 T9 

Water-Works 

Class 1 62.32 3.07 83.01 5.02 0.37 141.39 

Class 2 59.76 3.66 92.27 5.16 0.43 145.61 

Agricultural 

Class 1 57.28 4.20 100.02 5.25 0.48 148.12 

Class 2 54.92 4.70 106.40 5.29 0.52 149.32 

General 

Class 1 52.68 5.14 111.59 5.30 0.56 149.54 

Class 2 50.58 5.53 115.75 5.28 0.59 149.03 

Class 3 48.60 5.87 119.02 5.24 0.61 147.98 

Industrial Class 1 46.76 6.16 121.54 5.19 0.64 146.53 
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Class 2 43.42 6.63 124.79 5.06 0.67 142.82 

 

For explanation, branch incremental charges calculated for every sub-class of customers connected at node L8 are shown in 

Table III. Charges for asset T8 and T9 are high, but minuscule for D7 used by all customer classes. This is because T8 and T9 

are highly loaded, while D7 is lightly loaded. Another factor affecting charges for customer classes at any location is load 

growth rate. It can be seen in Table III that for components like T1 (with 91% loading), incremental charges decrease 

continuously as growth rate increases for various classes. For components like D5, T8, and D7 (with loading as 64.05%, 

71.82%, and 68.11%, respectively), charges rise continuously with increase in growth rate. For components like D6 and T9 

(with loading 81.52% and 81.44% respectively), charges increase with growth rate till it reaches 1.4%, after which they decline. 

As these charges are evaluated considering coincident demand in upstream asset usage, they reflect actual incremental cost due 

to a specific customer class. After computing annualized incremental cost for network components, unit LRIC charges are 

calculated at all nodes. 

 

Fig. 6. Unit charges at all nodes 

Unit charges computed from (9) are shown in Fig. 6. The impact of considering LACF in proposed approach vis-à-vis the 

traditional approach can be visualized as the difference between charges. Basic LRIC model reflects only distance and 

utilisation, whereas charges from the proposed model consider users’ coincident demand on network usage, reflecting distance, 

utilisation of network component, and coincident peak usage of the asset by users. High charge at node 4 reflects that major 

network asset serving load at this node has low capacity to accommodate overall 0.1 MVA load increment.  

TABLE IV 

CONTRIBUTION FACTOR OF VARIOUS CUSTOMER CLASSES (CLCF) 

 General Industrial Agricultural Water Works 

Nodes Class 1 Class 2 Class 3 Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 

L1 0.57 0.51 0.44 0.91 0.81 0.60 0.62 0.76 0.74 

L2 0.86 0.80 0.73 - - - - - - 

L3 0.77 0.67 0.69 0.87 0.71 - - 0.88 0.93 
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L4 0.71 0.85 0.73 - - 0.59 0.77 0.79 0.82 

L5 0.56 0.50 0.52 0.86 0.75 0.87 0.81 0.88 0.78 

L6 0.55 0.53 0.57 0.87 0.84 0.83 0.86 0.75 0.82 

L7 0.88 0.85 0.83 - - - - - - 

L8 0.77 0.79 0.67 0.68 0.81 0.69 0.74 0.70 0.57 

L9 0.74 0.78 0.77 - - - - - - 

L10 0.47 0.53 0.48 0.81 0.89 0.87 0.90 0.69 0.78 

L11 0.58 0.62 0.68 0.77 0.78 - - 0.84 0.88 

 

After computing unit charges, the contribution of specific class customers to total load is evaluated from (10), and shown in 

Table IV. This CLCF reflects the contribution of various customer sub-classes to the total load connected at any node. As seen 

from Table IV, sub-classes of General class have lowest while Industrial sub-classes have the highest contribution to the peak 

load of L1. Further sub-classes of Water-Works class have highest, and of General classes have the lowest contribution to the 

peak load of L11. Similarly, the contribution of various customer sub-classes in the total load connected at the nodes can be 

observed. This reflects customer class contribution to nodal peak loads, responsible for network reinforcement. Customer classes 

are charged only for part of load coinciding with peak nodal demand, and not for their maximum load. Due to this, charges with 

proposed model would be more cost-reflective than with traditional model. 

TABLE V 

TOTAL DUOS CHARGES (RS/YR) FOR VARIOUS CLASS CUSTOMERS  

 
General Industrial Agricultural Water-Works 

Nodes Class 1 Class 2 Class 3 Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 

L1 8194 4721 1389 44250 37905 5208 4161 5241 6205 

L2 7997 4969 2965 - - - - - - 

L3 4658 2031 1609 9403 5337 - - 6626 4495 

L4 16697 58278 24822 - - 14613 13117 19796 13935 

L5 10874 13218 10951 34890 19821 22753 14964 20844 16514 

L6 13070 19030 20358 39116 30330 25263 30877 27565 29574 

L7 14484 23474 11492 - - - - - - 

L8 12541 13510 7720 140390 115885 4369 6364 16048 10521 

L9 3083 3741 2462 - - - - - - 

L10 4008 6432 4658 16305 23907 11325 13129 11104 13357 

L11 5892 4459 8083 10326 11194 - - 13455 16877 

 

Total DUoS charges for various class customers located at different nodes are given in Table V. Characteristics of individual 

customer class are considered to calculate total network charges with CLCF from (11). Customers are charged for network 

usage based on their contribution to nodal peak conditions. These charges with CF consideration reflect individual customer 

class contribution to network loadings.  
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Fig. 7.  Impact of CF on total DUoS charges 

Total DUoS charges paid by users at different nodes with and without CF consideration are shown in Fig. 7. As can be seen, 

total charges paid by users connected at the nodes considering CF are lower than that without CF consideration. Charges are 

lower because consideration of coincident demand reduces future distribution network investment. DUoS charges without 

consideration of coincident demand reflect both distance and utilisation of distribution network components. These charges do 

not reflect actual network usage, and hence do not give users a pricing signal based on their load profile. Distribution network 

users are responsible for reinforcement of components when their imposed demand on network results in its full utilisation. 

Information about the timing of network peak usage is reflected in the electricity bill. Consideration of CF incentivizes users, by 

offering reduced charges for their low usage during network peaks. Hence, users are encouraged to improve their load profile 

and reduce their contribution to network peak. This results in lower total charges for users with CF consideration, as compared 

to the basic model which does not consider customer contributions. Modified load profile reduces network peaks, resulting in 

network reinforcement delay and investment deferral. Here, load profiles over the preceding year are used and updated every 

year. As the signal offered is based on a yearly profile, the customer response can be visualized as a composite load profile 

change over the following year.  

C.  Deferral in Network Investment 

Annuitized PV of future reinforcement cost over all assets evaluated from (13) is shown in Fig. 8. Here, network component T1 

and T8 have high annuitized PV. Investment for these components comes down significantly with the proposed pricing model. 

The proposed HCM approach offers lower annuitized PV for other components as well. Overall PV of future investment for all 

components with proposed pricing model and basic LRIC pricing model defers investment.  Proposed pricing approach offers an 

investment reduction of £1359.54 per year, for the considered 22-bus system. 
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Fig. 8. Comparison of annuitized PV 

IV.  CONCLUSION 

Existing DUoS charging approaches offer location-specific signal to customers and charge them based on their use-of-system. 

These approaches consider the load profile in conjunction with system’s peak load, to calculate the component of network 

charges to be levied on a specific class. The calculations are based on measurements performed at system level, and not based 

on network flows in any upstream network. Thus, it does not offer a justifiable reflection of network usage, but just an assumed 

reflective usage.  Also such models do not differentiate between various customer classes contributions to distribution network 

peak flow. This paper proposes a Hierarchical Contribution Factor based model to offer customer class-specific signal, along 

with a locational signal. This considers different customer class contributions to network peak demand using LACF and CLCF. 

CFs considered at two levels determines customer classes’ effective contribution to asset reinforcements for evaluating 

distribution network prices. Proposed model provides a forward-looking economic signal, and thus encourages customer classes 

to improve their load profile and reduce their contribution to distribution network peaks. Price signals provided by this model 

are beneficial to both utility and users; users would be charged lower network charges and utility would defer network 

investment.  

With increasing penetration of smart meters, this pricing model is likely to have a wider influence on the future network 

charging mechanisms. Major investment are being made world over, in smart meters and smart distribution management 

systems, with UK targeting a complete smart meter roll out at house hold level. As a general framework, smart meters could be 

used at multiple network levels to measure real-time power flow in networks at each level. With smart distribution management 

systems and embedded algorithms in place, information from each network level could be correlated and processed to assess any 

customer’s contributions to upstream network asset’s peak power flow at each level. These true network usage reflections could 

be translated into price signals representing network usage charges. This would offer an opportunity to assess a measured 

reflection of network usage, rather than an assumed network usage based on customer’s peak load. 
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V.  APPENDIX 

TABLE VI 

LINE DATA FOR 22-BUS PRACTICAL INDIAN NETWORK [42] 

Line Name Voltage (kV) R (Ω) X (Ω) B (S) 

D1 33 0.1026 0.1157 0.0000 

D2 33 0.0181 0.0204 0.0000 

D3 33 0.1346 0.1519 0.0000 

D4 33 0.0385 0.0434 0.0000 

D5 132 0.0241 0.0574 0.0066 

D6 33 0.0468 0.0528 0.0000 

D7 33 0.0103 0.0116 0.0000 

D8 33 0.0385 0.0434 0.0000 

D9 33 0.1167 0.1316 0.0000 

D10 33 0.1408 0.1588 0.0000 

 

 

TABLE VII 

BUS DATA FOR 22-BUS PRACTICAL INDIAN NETWORK [42] 

Bus Name Voltage (kV) Power Factor Load (MVA) 

L1 11 0.95 26.6 

L2 33 0.96 3.15 

L3 11 0.888 2.79 

L4 11 0.928 1.23 

L5 11 0.953 8.44 

L6 11 0.921 17.58 

L7 33 0.971 4.19 

L8 11 0.91 15.7 

L9 33 0.98 0.76 

L10 11 0.903 5.68 

L11 11 0.917 1.93 

 

 

TABLE VIII 

TRANSFORMER DATA FOR 22-BUS PRACTICAL INDIAN NETWORK [42] 

Transformer Name Voltage (kV) Effective Z (Ω) 

T1 220/132 0.0985 

T2 132/11 0.284 

T3 132/33 0.4096 
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T4 33/11 1.5 

T5 33/11 3.625 

T6 33/11 0.75 

T7 132/11 0.6135 

T8 132/33 0.2702 

T9 33/11 0.3901 

T10 33/11 0.8742 
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