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Abstract 

A new method of runup detection from video imagery is introduced and validated at an 

energetic dissipative beach. The instantaneous waterline is detected from uprush and backwash 

by using the Radon Transform (RT). The method is compared to conventional color contrast 

method from RGB images and LiDAR measurements. In our observations, the RT shows better 

detection skill even for adverse conditions, such as those present on flat dissipative swash zones 

where contrast is reduced. Because the RT is a proxy of deeper waterline (~0.1 m) it is less 

sensitive to lack of contrast due to sand saturation. Moreover, since it is based on motion 

detection, it is less sensitive to changes in lighting conditions. Overall, the RT offers an attractive 

alternative for long term automated detection of the runup. 

 

Keywords: Nearshore, Image processing, Radon Transform, LiDAR, Swash zone, Shoreline, Flow 
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1. Introduction 

Swash zone processes are a fundamental component of the beach system dynamics (Masselink 

and Hughes, 1998; Puleo et al., 2001). The swash zone links the terrestrial and marine 

environments and is an important source of sediment exchange between the surf zone and the 
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subaerial beach (Masselink and Puleo, 2006). Given this relevance for nearshore hydrodynamics 

and morphodynamics, it is essential to have a monitoring system capable of capturing its large 

variability in space and time. 

Remote sensing techniques, such as video imagery, are becoming more common in coastal 

studies and techniques have advanced greatly in recent years (Holman and Stanley, 2007; 

Holman and Haller, 2013). This type of remote sensing technique allows the automatic collection 

of a dense array of data, over a large range of temporal domains, ranging from wave-by-wave 

(seconds) to long term (years).  

Video pixel array are usually sampled over time along cross-shore lines, allowing the creation 

of space-time maps of optical pixel intensity (usually termed timestacks) from which the swash 

can be identified (Aagaard and Holm, 1989; Guedes et al., 2013). Most existing methods of runup 

detection from video timestacks are based on pioneering studies of Holland & Holman (1993) 

and Holland et al. (1995, 2001) where the instantaneous waterline is defined as the interface 

between water and beach, and it is derived from optical information by the sharp Contrast in 

Colour band (CC). These methods are based on color contrast and not on hydrodynamical aspects. 

Thus, they can be sensitive to any changes in lighting conditions, sand and water color which may 

reduce the contrast, or induce false detection. Alas, they generally necessitate a time (to allow for 

changing lighting conditions throughout the daylight hours) and site specific calibration 

(Vousdoukas et al., 2014). For instance, the presence of wet sand creates a stark contrast with 

dry sand, and it is this boundary that can be erroneously identified as the shoreline. This is more 

frequent at dissipative beaches, and it often requires a manual correction of runup detection 

(Senechal et al., 2011; Guedes et al., 2013).  

As an alternative to methods based on CC, the waterline can be defined from its motion, using 

the Radon Transform (Radon, 1917), by taking advantage of the spatio-temporal format from 

video timestacks, which is perfectly suited for this type of angle separation. The RT has recently 

been successfully applied to ocean waves, in particular for the detection of ship wave (Copeland 

et al., 1995) and more recently to nearshore wave dynamics (Yoo et al., 2011; Almar et al., 2014a), 

alongshore current (Almar et al., 2016) and swash motion (Zhang et al., 2009) but no attempt as 

conducted to estimate runup, despite the high potential of its use. 
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This paper introduces an alternative method for runup detection based on the RT and provides 

a quantitative validation through a comparison with LiDAR measurements conducted at a 

dissipative beach. 

 

2. Runup detection principle using the Radon Transform 

The RT R(�,�) of a bidimensional field η(x,y) (Radon, 1917; Deans, 1983; Duda and Hart, 1972) 

corresponds to a polar projection and can be defined as: 

∫∫ −+= yxyxyxR dd)sincos(),(),( ρθθδηθρ       (1) 

where δ is the Dirac delta function, � and � are the angle and distance from origin of the 

integration line defined as θθρ sincos yx += . The origin is the center of the two-dimension field. 

The Radon transform R(ρ, θ) is defined for all possible values of θ from [0 to 180◦] and ρ from 0 

to the diagonal length. The original field η(x,y) can be back projected using the Inverse Radon 

Transform at selected range of � values : 

∫∫= ρθθρη dd),(),( Ryx          (2) 

As an illustration, Figure 1 shows the application of the RT to a realistic cross-shore video 

timestack in the swash zone. The uprush and downrush motions are clearly visible in Figure 1a 

from the optical textured surface of turbulent swash flow. In the Radon space (Figure 1b), these 

motions with opposite direction show peaks at different values of �, and alternate as the swash 

flow reverses; here negative and positive � values respectively for uprush and donwrush. The 

incoming and outgoing motions are separated (see Figure 1a, red and blue features) by back 

projecting the original signal at negative and positive angles, respectively. In video timestack 

images, the runup is generally visible as a rapidly moving edge. Based on the RT, the runup can 

be then defined as the location of the maximum variance of the incoming (periods of uprush) and 

outgoing (periods of backwash) components. Our algorithm is implemented in Matlab, using on 

the Image Processing Toolbox, and is available from the authors upon request. 
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3. Field data 

Data used in this paper were collected at Mataquito, Chile, on December 9th, 2012 (Figure 2.a, 

Cienfuegos et al., 2014). Mataquito is located in the Central coast of Chile. It is a black-colored, 

medium grain-size (D50 = 0.2 mm), intermediate to dissipative, micro-tidal beach, exposed to 

energetic waves. During the measurements, waves were moderate (Hs=1.5 m, Tp=14 s), the tide 

was low (-0.23 m) and the swash zone was located on the flat section of the lower intertidal 

profile (slope ~0.04, Figure 2.b).  

A 2D scanning LiDAR (SICK LMS511-10100 Laser Measurement System) was deployed on a 

scaffolding tower, at an elevation 7.3 m above the beach in the upper swash to measure swash 

hydro- and morphodynamics (Blenkinsopp et al. 2010; Almeida et al. 2013; Vousdoukas et al., 

2014; Brodie et al., 2015). Video swash monitoring was undertaken at 30 Hz using a SONY HDR-

CX190 full HD 1920x1080 camcorder installed on a tripod. Timeseries of video pixel intensity 

were sampled along a cross-shore line, separated 3 m alongshore from LiDAR transect, and 

instrumented with metallic poles (Ibaceta et al., 2014). Rectification from image pixels into real 

world coordinates was accomplished through a direct linear transformation using DGPS ground 

control points (Holland et al., 2013) at the pole locations (Figure 2). The horizontal resolution 

obtained from the video data varied from less than 0.01 to 0.06 m along the cross-shore transect. 

The ability of the RT method to detect runup is tested against concurrent LiDAR measurements 

over a 20-minute period obtained during the Mataquito experiment. The raw LIDAR 

measurements represent reflection of the laser beams from the beach topography as well as the 

water surface, without any distinction between the two. Water level is computed as water surface 

elevation above the bed, computed as the minimum level measured over the 20-min period. The 

runup edge is detected using a water level threshold, typically around 0.05-0.08 m (Blenkinsopp 

et al., 2016; Vousdoukas et al., 2014; Almeida et al., 2015), to cope with noise inherent to LiDAR 

measurements. Here, a 0.08 m threshold for LiDAR data for bed and water limit is used and is 

further discussed in Section 5. The conventional method based on colour contrast (CC) is also 

tested for comparison. There are several options for implementing CC methods and we chose 

here a simple but representative version based on the ratio of red-over-blue colour bands. A 

threshold standing for the maximum gradient is defined for the transition between water to 



5 

beach pixels, from blue and red dominated respectively, and this interface is tracked at each 

timeframe over the 20-min period. 

 

4. Results 

4.1 Validation of the Radon Transform method with LIDAR runup measurements 

Taking the LiDAR as the baseline data, Figure 3 qualitatively shows that the RT approach 

captures the timing of individual swash events with far greater consistency than the conventional 

CC method, which struggles to distinguish between the shoreline during backwash and the 

groundwater seepage line as previously observed elsewhere (Vousdoukas et al., 2014). The CC 

approach appears incapable of resolving the rundown limit for the lighting conditions and mild 

beach slope investigated here and tends to detect the upper envelope of swash motions rather 

than the instantaneous shoreline. The RT can capture backwash, though typically gives rundown 

limits further landward than the LiDAR. While not in total agreement with the LiDAR data, this 

can also be due to the latter being less effective in detecting the shoreline during backwash 

(Blenkinsopp et al., 2016). 

Table 1 shows that a better agreement is found between LiDAR and the RT than with CC, with 

correlation coefficients of 0.71 and 0.56 (both significant at 95% level), respectively and 

corresponding RMSE values of 0.1 and 0.4 m. The better performance of the RT approach is also 

evidenced by the swash parameters given in Table 1. It is noted that while both the CC and RT 

methods both underestimate the significant runup (Rsig), the RT value is closer in magnitude to 

the LiDAR value. As a consequence of the poor ability of the CC approach to resolve backwash 

discussed above, this approach estimates a mean swash period, Tm = 35 s, which is far larger than 

that obtained by either the LiDAR (Tm = 15.6 s) or RT (Tm = 13.4 s). 

 

4.2 Depth identified by Radon Transform as the waterline 

The RT detects the runup from its motion, which might not strictly coincide with the waterline 

limit. To estimate the water depth typically captured by the RT as the waterline, the depth 

threshold applied to the LiDAR data was varied in the range 0.02 to 0.2 m in Figure 4.a. Figure 4.b 
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shows correlation coefficients between RT and CC waterlines with different LIDAR depth 

thresholds. Levels lower than 0.05 have weak correlation primarily due to the difficulty of 

detecting such small water depths using LiDAR. When the water depth becomes very small, very 

few bubbles are present, which are required by the LiDAR to obtain valid signal returns. In 

addition, small wave-by-wave changes in bed elevation introduce uncertainty into depth 

estimations and lead to erroneous detections of the swash front. As previously found, a stronger 

correlation is obtained between LIDAR and RT (max. R²=0.62) than with CC (max. R²=0.4). 

Additionally, the RT offers better skills to pick the waterline defined at deeper water levels, with 

a maximum correlation around 0.1 m, than the CC, where the maximum is at 0.05 m.  

 

5. Discussion 

Weak correlation values are obtained between LiDAR and video waterlines at lower depths, in 

particular with CC. This could be somehow a bit misleading, not really because the LiDAR actually 

detects a short of thin slow moving backwash layer (which looks similar to the slow groundwater 

seepage line detected by the CC instead of backwash) but rather struggles to distinguish the 

runup front when the threshold is low, as observed for largest events in Figure 3 (which can also 

be caused by the 3-m separation between video and LiDAR transects). This because the LiDAR 

encounters difficulties with low depths as it becomes hard to distinguish between the bed/swash 

interface. This has the effect of slowing the backwash to groundwater desaturation with no 

assurance that the LiDAR is actually detecting anything real (Blenkinsopp et al., 2016). 

The RT has a distinct behaviour than the CC and detects deeper waterline than the dry/wet 

limit: this because it is based on motion (i.e. flow) detection rather than colour contrast. Whereas 

no substantial differences are expected for swash statistics, the RT might be more suited when 

studying swash shape, such as asymmetry (Power et al., 2011) as it describes main flow 

behaviour instead of weak thin backwash limit. The potential of the RT can be extended in 

tracking instant surface current in the cross-shore direction. This is key in determining the flow 

velocities and reversal (Hugues and Baldock, 2004; Power et al., 2011) and associated sediment 

transport (Puleo et al., 2003). Noteworthy, similarly to what done for separating incoming and 

reflected waves in the surf zone by Almar et al. (2014), the RT can also be applied to swash zone 

in investigating swash-based reflection (Martin et al., 2017). 
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Puleo (2009) and Huisman et al. (2011) demonstrated that the optical trace of the groundwater 

seepage is clearly distinguishable on video images and this wet–dry boundary (such as often used 

in video shoreline-finding algorithms) is related to groundwater seepage on low-sloped beaches 

and may not be a good indicator of the position of the shoreline. The differences of behavior 

between the CC and RT to groundwater seepage and lighting conditions are illustrated in Figure 

5 with their application to conventional tower-camera (Argus-like) video system timestacks at 

contrasted sites: a reflective (Grand Popo, Benin; slope=0.15), an intermediate (Nha Trang, 

Vietnam; slope=0.08) and a dissipative beach (Mataquito, Chile; slope=0.03). No substantial 

differences are seen between RT and CC methods at a steep reflective beach beach (correlation 

coefficient of 0.92), However, differences between the two methods raise when slope decreases 

at the intermediate (0.81) and dissipative beaches (0.59). The RT approach offers significant 

advantages at dissipative flat beaches where the CC can struggle to distinguish between the 

backwash and the more slowly moving groundwater seepage line (Figure 5.c). This shows the 

interest of combining the two methods to study dependencies between the swash and 

groundwater seepage, line as well as the waves, tides and rainfall (Huisman et al., 2011; 

Vousdoukas, 2014). This raises the question of the best waterline proxy to be used applying for 

the broadest range of conditions. Pixel intensity methods may be better suited for reflective 

beaches with turbulent white swash zone (Plant and Holman, 1997). This bright-band is 

generally absent on dissipative beaches (Plant et al., 2007) where CC methods with appropriate 

parametrization can retrieve both waterline and seepage line (Huisman et al., 2011; Vousdoukas, 

2014) though it generally requires manual correction. More sophisticated methods based on 

swash-processes based definition generally offer better skills at complex intertidal or flat beaches 

(Aarninkhof et al., 2003; Almar et al., 2012). It is also noteworthy for automated detection that 

contrary to the CC, the RT is based on flow motion considerations so it is influenced to a lesser 

extent by varying lighting conditions, water and sand color, which offer significant advantages in 

long term monitoring.  

 

6. Conclusions 

A new video method based on the Radon Transform for detecting runup was introduced and 

tested at a dissipative beach, Mataquito, Chile. The ability of the RT to detect the instantaneous 
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shoreline was assessed by comparison to concurrent LiDAR measurements and compared to the 

commonly used color contrast method (CC), which defines the waterline from RGB colorbands 

contrast. In our observations, the RT shows better skill than the CC for the commonly adverse 

conditions of flat dissipative swash zones. Because the RT is based on motion detection it is better 

able than the CC approach to distinguish between backwash and the groundwater seepage line 

and is less sensitive to poor light conditions. Overall the RT offers an attractive alternative for 

long term automated detection of the runup. 
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Figure captions 

Figure 1. a) Aerial view of Mataquito beach, Chile with studied cross-shore transect (dashed line) 

and b) surveyed bathymetric profile, solid and dashed blue lines stand for mean sea level, max 

and min spring tidal elevations, respectively. The local slopes on the upper and lower intertidal 

parts of the beach profile were 0.06 and 0.03 respectively. In c) and d) the deployment of the 

LiDAR and concurrent video camera and swash poles are shown.  

 

Figure 2. Illustration of the runup detection using the Radon Transform. a) Example of video 

timestack image from Mataquito. The superimposed red and blue patches indicate incoming 

and outgoing pixel intensity components, respectively. The black line indicates the location of 

the estimated instantaneous waterline position. b) Corresponding angular density (signal 
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integration along angled lines -Eq1-, see Almar et al. (2014) for details on the RT) computed 

from the Radon Transform. Positive angles are offshore oriented and negative angles are 

onshore oriented. 

 

Figure 3. Timeseries of horizontal runup from Colour Contrast (CC), Radon Transform (RT) and 

LIDAR (0.08 m threshold) superimposed on the cross-shore pixel timestack. Of note, the 

uprush limit goes beyond the limit of the images for quite a few of the swashes.  

 

Figure 4. a) Illustration of the cross-shore evolution of depth from LiDAR where the colorscale and 

white contours represent water free surface elevation; and b) coefficient of determination R² 

of LiDAR waterline with RT and CC, for different LIDAR reference water levels. 

 

Figure 5. Illustration of runup detection with RT (red) and CC (blue) methods. Video cross-shore 

timestacks from a reflective beach (Grand Popo, Benin; up panel), intermediate beach (Nha 

Trang, Vietnam; mid panel) and a dissipative beach (Mataquito, Chile; low panel).  
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